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walls to limit their nest area within a rock crevice. To determine wall position, workers are thought to
rely on a distance template (from the cluster of brood and nurses at the nest centre) and on indirect
social (i.e. stigmergic) information found in the aggregations of already-deposited building material.
Analytical and simulation models of this behaviour predict that the combination of these two
mechanisms can produce the observed wall structure, but there is so far no empirical evidence of
either mechanism. Here, we find statistical evidence in support of the stigmergic relationship between
stone density and deposition behaviour. We apply hidden Markov models (HMMs) to analyse wall-
building data from four colonies of T. rugatulus. We show that material deposition activity changes
following a parabolic relationship with the density of building material at building sites, different
from the linear relationship hypothesized previously. This parabolic curve is similar to behavioural
response curves identified in the nest enlargement process of several ant species. In addition, HMM
analysis indicates the existence of two distinct states in T. rugatulus building activity. These states are
associated with different mean building rates (that is, the two states can be described as a high and a
low activity state) and might be caused by changes in task priorities during the colony process of
settling into a new nest. This study updates one of the earliest models of self-organized animal

behaviour.
© 2024 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).

An Early Model of Self-Organized Animal Behaviour

studies investigating the underlying mechanisms of collective
patterns across a variety of biological systems; thus, this case study

In the late 1980s and early 1990s, the study of self-organization
in physical and biological systems witnessed its first burst of
computational and experimental activity, not least due to the ad-
vances in computational power that introduced spatial simulations
as a methodology in scientific research (Camazine et al., 2001;
Kauffman, 1993). One of the earliest models in the field of collective
animal behaviour reconstructed nest wall building in Temnothorax
ants as the result of a simple, collectively applied and coherent rule
set (Franks & Deneubourg, 1997; Franks et al., 1992). This model has
been included in a textbook well known in the subfield of self-
organization in biology (Camazine et al., 2001), which collects
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of Temnothorax ants is one of the staple introductory examples for
researchers new to this area of biology. However, at least to our
knowledge, this behavioural model has never been empirically
tested. In this paper, we apply statistical analysis to Temnothorax
wall-building data to investigate the cue—response relationship
proposed by the model, specifically the role of local stone density in
guiding deposition behaviour.

Nest Wall Building in Temnothorax Ants

Many ant species of the genus Temnothorax form small colonies
that inhabit confined areas, such as acorn cavities or rock crevices.
Due to the fragility of their nest sites, they frequently migrate to a
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new nest (Moglich, 1978). At least two species in this large genus,
Temnothorax albipennis and Temnothorax rugatulus, are known to
build a circular wall that delimits and protects the new nest site;
typically, the wall is constructed by stone deposition rather than by
excavation. The resulting wall structure is one of the simplest
structures produced by eusocial insects, but its construction is still
not fully understood. Our case study offers an exceptional oppor-
tunity to investigate social insect nest building under laboratory
conditions.

The current behavioural model of Temnothorax nest wall
building (Franks & Deneubourg, 1997; Franks et al., 1992) hypoth-
esizes that stone deposition and pick-up activity are guided by two
rules: a template-based rule determining building distance from
the centre of the nest and a positive feedback effect (generated by
the density of the stones already present at building sites) modu-
lating building rates. While this model seems to capture the key
mathematical dynamics of the building process (as shown in spatial
simulations; Chapter 17 in Camazine et al., 2001; Franks &
Deneubourg, 1997; Franks et al, 1992), there are a few
shortcomings.

First, there is so far no experimental or statistical evidence
indicating what cues guide the behaviour: the model is based on
observational data (Franks et al., 1992) supported by computational
simulations (Camazine et al., 2001; Franks & Deneubourg, 1997,
Franks et al., 1992). Namely, the model proposes that Temnothorax
workers use the cluster of brood and nurse ants (positioned at the
centre of the nest) as a reference point for a distance template.
Building rate in the model is also supposed to be modulated by
stone density. The focal mechanism is thought to be as follows: a
worker's propensity for stone deposition increases as it physically
comes across other stones, so that, the larger a stone pile, the more
likely the pile is to attract further depositions. Conversely, isolated
stones or small heaps are more likely to be picked up and moved to
a larger pile. These two dynamics, corresponding (respectively) to
positive and negative feedback, would ensure that building activity
is co-localized at the most active building site, which is likely to be
near the (possibly optimal) distance defined by the template rule.
The modulation of building activity through cues that are them-
selves generated by the building process (stigmergy; Grassé, 1939)
is a known feedback mechanism in eusocial insect collective nest
building (Buhl et al., 2005; Fouquet et al., 2014; Khuong et al., 2016;
Rasse & Deneubourg, 2001; Toffin et al., 2009).

A second noticeable issue with previous studies is that they
were based on data extracted during the initial phase of the
behaviour, when the wall is far from complete (Franks &
Deneubourg, 1997; Franks et al., 1992). While the current behav-
ioural model satisfactorily reproduces the shape of the wall
observed in nature when applied to wall building beyond the initial
phase (i.e. until it generates a complete wall), recent work
(Invernizzi & Ruxton, 2021) has shown that there are two limita-
tions: (1) the model leads to the formation of an incomplete wall
when building material is limited and (2) it lacks a termination
mechanism that brings wall expansion to an end. With regard to
the first limitation, limited material availability in the simulation
leads to the behavioural algorithm producing clumps of material,
rather than a wall (even a partial one). In nature (or in the labo-
ratory), the wall-building performance of Temnothorax colonies in
conditions of low material availability has not (to our knowledge)
been tested. Consequently, the prediction of poor performance
obtained from the simulations leaves us facing two alternative
considerations: either the behavioural model is correct, and these
species fail to build a complete wall when material is scarce, or the
model is incomplete, and further work is needed. We believe that
the second hypothesis is more likely. The second limitation (the
lack of a behavioural termination mechanism in the model) is based

on the finding that, in computational simulations, the wall keeps
expanding in thickness as long as there is material available,
because deposition rate never decreases once it has reached its
maximum. Given that the cost, to the colony, in time and energy of
such behaviour makes this an unrealistic feature in a natural pro-
cess, we believe that this second limitation also calls for an
extension to the current model.

In this article, we present an extension that solves the second
shortcoming (introducing a termination mechanism) and partially
addresses the first (finding statistical evidence supporting the use
of stone density as a behavioural cue). We first tested this change
with a computational simulation and then proceeded to find evi-
dence for it in empirical data. Before we introduce our extended
model, however, we need to describe two features of ant colony
activity that determined our choice of analysis.

The Problem with Ant Colonies

A key problem, when analysing ant activity data sets, is ac-
counting for colony states. By ‘state’, we mean a change in the
overall activity patterns of the workers, which, in turn, affects the
level of activity measured in single tasks (e.g. foraging, building,
brood care, etc.). An example of such change in patterns would be a
switch in colony priorities from foraging to closing gaps in the nest
walls in response to rain: high engagement in foraging shifts to-
wards high engagement in building. There are two processes in ant
colonies that may induce changes in colony state and thus increase
or decrease the measured activity rate value. The first one, which
we have just mentioned in our example, is interaction between
tasks. It is known that perturbations to one task, such as worker
removal, decrease the number of workers in other tasks in some ant
species. This is because workers are reallocated from other tasks to
the one that has become high demand (Pogonomyrmex barbatus:
Gordon, 1986, 1987, 1989; Pogonomyrmex badius: Kwapich &
Tschinkel, 2013, 2016). Temnothorax rugatulus and T. albipennis
workers exhibit weak specialization but high segregation: that is,
they perform more than one task but are consistently found asso-
ciated with wider task groups (Charbonneau & Dornhaus, 2015b).
For example, T. rugatulus builders are also foragers but not brood
workers. These workers are likely to switch to other tasks if de-
mand increases, decreasing the activity levels for the previous task
even if other conditions are unchanged (Gordon, 1986, 1987).

The second state change-inducing process is the occurrence of
periodic shifts in activity levels that is typical of some ant species
(Cole & Trampus, 1999). We know that many species (of which the
most studied is Leptothorax allardycei; Cole, 1991a, 1991c, 1992;
Cole & Hoeg, 1996; Franks et al., 1990) display oscillations in the
total activity of their colonies, from phases during which the
majority of workers is active to phases in which the majority is
inactive. This periodicity is unrelated to circadian rhythms and
indeed occurs on much shorter timescales (tens of minutes).
Measurements of colony activity, accordingly, are affected by the
overall colony activity state. This phenomenon begins at the in-
dividual level. Workers display chaotic behavioural switches be-
tween an active state, during which they are engaged in a task or
walking around the nest (Leitner & Dornhaus, 2019), and an
inactive one, throughout which they remain immobile (Cole,
19914, 1991c). The reason behind these shifts is unclear: some
models assume chaotic locomotory activity generated by the un-
derlying neural network (Miramontes et al., 2001), while others
model ant activity as a function of the energy levels of the colony,
in relation to food storage and digestion (Hemerik et al., 1990).
Both models can reproduce the observed patterns. In colonies,
these individual worker phases become synchronized through the
physical interaction of workers (Cole, 1991a, 1991b; Cole &
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Trampus, 1999; Franks et al., 1990) and the colony acquires an
activity pattern with a periodic component. Does T. rugatulus
display periodic activity? A recent study has shown that it indeed
does, albeit the degree of periodicity varies among colonies
(Doering et al., 2019).

Switches between colony states are expected to cause changes
in measured building rates even when building-specific behav-
ioural cues remain unchanged. The task-specific behavioural model
can thus be better understood by accounting for state switches as a
separate phenomenon. This can be done by using the right statis-
tical approach. Specifically, state changes can be incorporated in a
statistical model by assuming that a time series contains observa-
tions drawn from two separate distributions, each associated with a
colony level state (e.g. specialized workers engaged in building
versus foraging; or occurrence of active versus inactive phase). The
process of switching between states can be modelled as a Markov
chain even if the exact sequence of states is unknown (hidden).
Hidden Markov models (HMM), which are well established in
ecology, offer a statistical framework to carry out inference on
unobserved Markov chains (McClintock et al., 2020). They also ac-
count for temporal autocorrelation in the measurements and the
effects of covariates can be included in the distribution of obser-
vations in each state, analogously to linear modelling. Importantly,
applying this approach does not require being able to identify
which underlying process is causing the changes in state: the
process remains unknown. We used this framework to infer the
relationship between predictors and deposition rate in our time
series.

Aims of the Study

In the present study, we had three aims. First, we sought sta-
tistical support for a feedback effect of stone density at building
sites in the nest wall-building behavioural model of Temnothorax.
This feedback effect is consistent with the existing behavioural
model proposed by Franks et al. (1992) but has not been empirically
tested. Second, we wished to extend the original behavioural model
to incorporate termination of building activity. We hypothesized
that negative feedback is crucial for decreasing, and eventually
terminating, the deposition activity. Third, we hypothesized that
stone density is the cue guiding termination, by exercising a
negative effect on activity after a certain density at building sites
has been reached. This is a parsimonious hypothesis, because it
implies that worker activity is modulated by one cue only (stone
density) throughout the duration of building.

We first performed a spatial computational simulation, in which
we tested the ability of the extended model to produce a complete
wall similar to that observed in nature. We then empirically tested
the existence of a stone density-dependent feedback effect of
building sites on worker building activity rates, using laboratory
data of T. rugatulus. We compared two model types, which we fitted
using hidden Markov models: (1) a positive feedback-only model
(i.e. modelling a positive correlation between stone density and
stone deposition rate; model 1) representing the model proposed
by Franks et al. (1992), Franks and Deneubourg (1997) and
Camazine et al. (2001); (2) a positive + negative feedback model
(i.e. modelling a change in the relationship between stone density
and stone deposition rate, from positive to negative, depending on
the stone density value; model 2), representing our extended
model. The first model can be approximated, mathematically and
statistically, by a linear model, while the second model can be
represented by a quadratic model. We additionally tested for the
effect of distance from the brood cluster (i.e. the template
component of the behavioural model) in each model type (models
3 and 4).

METHODS
Agent-Based Model

The architecture of the agent-based model is identical to the one
applied in Invernizzi and Ruxton (2021), which is itself a replication
of the original model found in Camazine et al. (2001). The behav-
ioural model of nest wall building that we used assumes that
workers rely on two pieces of information for picking up and
depositing a pellet: the distance from the brood and nurse cluster,
which acts as a template, and the number of stones surrounding the
location. The only difference between the simulations reported
here and those reported in Invernizzi and Ruxton (2021) is found in
the equation (described below) that models the relationship be-
tween probability of deposition (Dyx) and stone density at each
deposition location x. For convenience, we summarize the charac-
teristics of the agent-based model below.

The simulations consist in the movement of agents (the
workers) in two-dimensional space. The space is represented by a
matrix of 81 x 81 point locations (hence referred to as nodes),
where locations with adjacent coordinates are considered to be
adjacent in space. The space contains 1000 building blocks (the
pellets), which are randomly and uniformly scattered across space
at the beginning of the simulation. Agents encountering pellets
may pick one up and may deposit it at the next encountered
location, with probability dependent on the pick-up function Py
(defined as Py = P(X = x)) and on the deposition function Dy
(defined as Dy = D(X = x)), respectively. The pick-up probability is
defined as:

a:PM<1 L >XF5) (1)

1+73(r—ro)°

Here, r is the distance of location x from the centre of the brood
cluster, r, is an optimal distance value known to all workers at
which the wall should be built, S is the total number of stones
nearby, summed to include the current node x and the neigh-
bouring four nodes (north, south, west and east of x), Py is the
maximum possible probability of deposition if we ignore the effect
of the stones and F(S) is the effect of the stones:

_ [ FyforS<Sc
FS)= { Fn for S >S. (2)

where S. is a critical number of stones after which the behaviour
changes, and with Fp, < Fy.
The deposition probability is defined as
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The first part of the right-hand side of this equation (outside the
brackets) is similar to equation (1), representing the effect of dis-
tance from the brood cluster on the maximum possible value of
deposition probability (not accounting for the effect of stones), Dy;.
The second part of the right-hand side, within the brackets, rep-
resents the effect of the number of stones on deposition probability
as a bell curve: the effect reaches its maximum value, Gy, if the
number of stones at the current location, Sx, equals the critical
number of stones, Sc. Away from this quantity, the value of the
effect of number of stones decreases with the difference between Sy
and S, following a normal curve, plateauing at its minimum value
Gm. Therefore, overall, the curve of Dy at a single location x changes,
following the shape of a bell curve, according to the number of
stones at that location x.



318 E. Invernizzi et al. / Animal Behaviour 210 (2024) 315—330

Note that this equation differs from the equation in the original
model (Camazine et al., 2001):

mG(S)Q (4)

where Q = 0 if the maximum stone carrying capacity at that node
has already been reached and Q = 1 otherwise. The effect of stones
on deposition in this equation is

G(S) = Guif S = S
G(S) =Gm if S<Sc (5)

In this original equation, a change in the local number of stones S
of one unit causes a jump in the upper bound of the deposition
probability from Dyx Gn to Dyx Gy, without intermediate
values. In our model, in contrast, the effect grows proportionally
with the value of S. Biologically, we can think of this as a pro-
portional increase in the resistance that a laden ant encounters
when dragging its stone across a stone pile; the larger the stone
pile (the bigger S), the higher the probability that the ant will drop
the stone it is carrying.

At each round of the simulation, the following events occur. (1)
The first agent moves to a random location in the matrix, chosen
with uniform probability. (2) If there is at least one pellet present at
the location, the agent picks it up with probability Py. (3) If the agent
has picked up a pellet, it moves to a new, randomly and uniformly
chosen location. (4) If the current number of pellets at the new
location is below the carrying capacity of the node, the agent de-
posits its pellet with probability Dy. Steps 3—4 are repeated until the
pellet is deposited. (5) Steps 1—4 are repeated for all agents.

Each simulation contains 30 agents and is run for 5000 rounds.
Longer simulations (up to 20 000 rounds) were tested and showed
that the emerging wall structure reached an equilibrium point by
the 1000th round; that is, the location and density of the wall did
not change after this point.

The parameter values used in the simulations are identical to the
original model. They are P; = 0.35, Dy = 0.5, Gyy = Fyy = 0.55,
Gm = Fn = 0.01, Sc = 6, T =0.025 and r, = 18. The maximum
carrying capacity of a node is six stones.

Colonies

Four colonies of T. rugatulus were used for the experiments (for
details on colony origin and keeping, see Ethical Note). The main
limited factor of sample size was the extent of manual data
collection and processing involved in this study. Colonies were
collected from the wild (Pinal Mountains near Globe, AZ, US.A.; N
33°19.00'N, 110°52.56'W) during the summer of 2019. After
collection, colonies were kept in a temperature-controlled labora-
tory room at the University of Georgia (Atlanta, GA, U.S.A.) and
subject to 12:12 h dark:light cycles. Temperature was set to 13 °C
during dark hours and 22 °C during light hours. Individual colonies
were housed in 12 x 12 cm plastic boxes, pierced to ensure airflow.
For nesting, they were given an artificial cavity made of two
75 x 50 mm microscope slides separated by cardboard corners of
size 100 x 100 x 1.15 mm (Franks et al., 1992). The top slide was
opaque. In nature, this species nests in rock crevices with minimal
natural light access and this set-up adequately reproduces the
natural environment. Each box included a water tube and a tray of
agar-based diet that were refreshed (Bhatkar & Whitcomb, 1970).
After the experiment, the colony was placed back in the housing
box together with the new nest cavity.

Colony sizes and approximate numbers of brood items are re-
ported in Table 1. All colonies used were monogynous with no
alates present. Each colony was used once.

Experimental Procedure

Experiments were conducted during the summer of collection,
over the course of 2 months. Each colony was tested on a separate
day. Experiments were run in a light-optimized set-up (see
Filming Set-up) and filmed, starting from the moment the colony
was introduced in the new environment. Experiments took place
in an arena box where the workers were free to move and where
the new nest and the stones could be easily found (Fig. 1). The
arena consisted in a 20 x 27.5 x 9.75 cm open plastic box with
Fluon-coated walls that prevented escape from the arena. A clean,
empty artificial cavity consisting of two 75 x 50 mm microscope
slides separated by cardboard corners (Franks et al., 1992) was
provided as a potential nest site in the arena. The top slide was
opaque to mimic the darker nesting environments typical of these
species. Before the start of the experiment, a pile of 4 g of black
0.4—0.6 mm aquarium gravel (of a similar size to the sand
described in Franks et al., 1992, where the authors report an
average grain size of 0.5 mm) was placed in front of the new nest,
approximately 4 cm away from the side of the artificial cavity
facing the arena. The arena, as well as the stones and the slides
used to build the new nest, was cleaned with 90% ethanol the day
before every experiment. No food or water was provided during
the experiment.

Experiments started in the early morning, between 0630 and
0830 hours. Immediately after the start of the recording, the colony
was removed from the housing box and the original nest opened by
cutting the tape that held the slides together. The bottom slide
(where the queen, brood and majority of workers are found) was
placed in the arena and the remaining ants were gently brushed off
from the top slide or removed from the housing box with a pair of
tweezers. The colony was then left to spontaneously migrate to the
new nest, where the new wall would be built. Filming continued for
a total of 39 h.

Filming Set-up

Video recordings of building behaviour were taken in a set-up
optimized to guarantee uniform light conditions (Fig. 1). Three
lights (right, left and rear) were placed adjacent to a white diffuser
containing the arena. Filming was done with a Sony FDR-AX100E
camera placed approximately 30 cm above the arena floor. Cam-
era height was controlled for in the data by converting pixels to
millimetres using the microscope slide as a reference. The videos
were shot at 25 frames/s in 4K resolution. The original video files
are available upon request. Modified video files showing only the
areas of observations (see Fig. 1c) are publicly available in the Open
Science Framework (Foster & Deardorff, 2017) online depository
(https://osf.io/xvbgf/).

Table 1
Size and approximate number of brood items in each colony

Colony (video file) Workers Brood items (approximate)
Colony 1 (R05) 68 15
Colony 2 (R29) 89 20
Colony 3 (R34) 108 15
Colony 4 (R54) 120 30
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Figure 1. Experimental set-up and image processing for data collection. (a) Simplified drawing of the set-up as seen from the front. The blue lines represent the sides of the white
diffuser fixture and the black lines represent the building arena. The artificial cavity was placed against either the left wall or the back wall of the arena, with building stones piled
approximately 4 cm from it. The dotted circle represents the third (back) light. (b) Video frame extracted from one of the colony videos. (¢) The same frame in (b) after a digital black
mask was applied to the file, so that only the three selected building sites were visible to the observer for behavioural event recording.

Data Collection

Out of the total video length, we used the first few hours of
building activity for continuous observation (i.e. observations from
the same colony come from a single, continuous observation time
block), totalling an average of 9 h per colony (7.5—11.5 h depending
on colony). The criterion used to choose the end point of the
observation period is described below.

Observation Sites

Using the final video frame of each colony's recordings, we
selected three distinct building sites corresponding to sections of
the final wall as observation areas. The sites were chosen haphaz-
ardly, but purposely on three different sides of the wall, to control
for any biases in ant preferred building side. The choice of using
three sites was motivated by the consideration that this number is
large enough to account for variance among building sites, but
small enough to ensure sufficient distance between them (i.e. the
sites can be considered independent in the sense that any effect of
predictors can be attributed to the predictor value at that site,
rather than at a nearby site; the predictor's effect on worker
behaviour is assumed to be localized). At each chosen site, we
measured the final wall width and extracted its midpoint co-
ordinates using FIJI software (see Software for version details). All
colony videos were then blackened out, leaving only three 75-pixel
radii (i.e. 6.35—6.60 mm, depending on the colony; this was due to
small differences in the height of the camera) areas, centred on the
extracted coordinates. These isolated areas (building sites) were
used as independent areas of observations to collect building data
(Fig. 1c).

Start and End of the Observation Period
Our criterion for determining the duration of data collection was

as follows. For all colonies, behavioural recording started at the
start of the experiment and the start of building activity was

defined as the first deposition event (see below for the definition of
deposition used) at any of the three building sites. To determine the
end point of behavioural recording, we first collected observations
until each site had reached 49 stones (i.e. at least 0.36 stones/mm).
This high number of stones means that stones are too packed
together for the observer to be able to accurately count them.
Because building proceeds with independent speed at each site,
this approach resulted in time series of varying length. We then
extended the two shorter time series in each colony to match the
length of the longest time series, so as to obtain, for each colony,
three time series covering the same time period. The number of
stones at each site in these extended time series (i.e. after manual
count could no longer be performed) was tracked by adding
deposition events to the stone count and subtracting pick-up
events from the stone count.

Behavioural Event Coding

Only two types of behavioural events are most germane for
building activity and both were accordingly recorded in our data
collection: stone deposition and stone pick-up. Stone deposition was
defined as the positioning of a carried stone by an ant at any location
within the building site. This could happen by lifting (the worker lifts
the stone over the ground during transport, using its mandibles), by
bulldozing (as described by Franks et al., 1992: the worker pushes the
stone in front of itself on the ground) or by dragging (the ant pulls
the stone through the nest using its mandibles while moving back-
wards towards the chosen deposition site). Lifting and dragging are
the most common stone-moving behaviours in T. rugatulus, in
contrast to the use of bulldozing by T. albipennis reported by Franks
et al. (1992). This might be due to the larger size of T. rugatulus
workers, which enables them to lift stones of similar weight whereas
T. albipennis have to push them. Accordingly, dragging was observed
most often with larger stones. Stone pick-up was defined as the
removal of a previously deposited stone either (1) for deposition at a
location greater than one ant length (approximately) away within
the same building site, or (2) for carrying out of the site (presumably
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for deposition at a different location; the worker was out of sight
when it left the circular area). Note that pick-up events of type (1)
also counted as a deposition event.

Variables

For each observed event, we recorded the time of occurrence
and the number of stones in the site at the time of the event (the
latter of which was used to calculate stone density). The number of
stones was counted manually. The event rate was calculated by
counting events over 15 min intervals, starting from the first
deposition event in the colony. The per-minute rate, calculated as
the number of events/15 min, was used in the analysis. Pick-up rate
was also calculated, but, due to the low frequency of pick-up events
and to the limited sample size, the statistical model could not be
reliably fit. That is because, if the sample size is small and the events
are rare, then there is little information in the data about the model
parameters, and the estimation procedure is susceptible to nu-
merical instability (i.e. the optimizer might fail to identify sensical
parameter values). Therefore, model fitting was limited to deposi-
tion rate. We used pick-up rate only to evaluate whether colony
activity showed a similar pattern of shifts in activity levels across
nest-building activities.

We measured the distance between the brood cluster and each
building site from frame shots taken at 15 min intervals from the
start of building activity (i.e. these time points overlap with the end
of the interval over which the per-minute rate was calculated). To
measure this variable, we first had to define what constitutes the
brood cluster. We defined ants as belonging to the brood cluster if
they were within 1.5 ant lengths of a brood item (egg, larva, pupa or
queen) or of another ant belonging to the cluster. We then manually
drew the contours of this area, following the profile of the ants that
were part of it, using FIJI software, and extracted the coordinates of
the area's centroid (in pixels). We calculated the distance between
the brood cluster and the building site as the Euclidean distance
between the cluster centroid and the centre of the site.

All measurements taken in pixels (i.e. distance and building site
area) were converted to millimetres. The pixel-to-millimetre ratio
was obtained for each video using the known length of a side of the
microscope slide as reference.

Hidden Markov Models

Methodology

It is reasonable to assume that ants undergo different, unob-
servable behaviour states, each of them associated with a different
building activity, measured by the deposition rate. A suitable sta-
tistical modelling tool in this context are hidden Markov models
(HMMs). HMMs (McClintock & Michelot, 2018; Rabiner, 1989) are
an established method in animal movement ecology. They assume
the existence of an unobserved (hidden) process, which switches
between a finite number of states through time, each associated
with a different probability distribution for the observed vari-
able(s). In our scenario, the hidden process is assumed to represent
the overall colony level sequence of behavioural states, which can
roughly be interpreted as low and high rates of building activity.

There are two main components to estimate in an HMM: (1)
transition probabilities between the states; (2) state-dependent
parameters of the observation distributions (Fig. 2a). From a
fitted HMM, it is also possible to predict the most likely state
sequence given the data (Fig. 2b), as it is often of great interest to
infer which observations were generated by each state. The HMM
methodology has been extended so that it is possible to specify any
of the parameters as functions of covariates, using an approach
similar to generalized linear models.

HMMs have been used, for example, to identify different
behavioural states, such as foraging and resting, from movement
data, and to estimate the effect of covariates such as group status,
season and environment on movement parameters or on behav-
ioural transition probabilities (McKellar et al., 2015; van Beest et al.,
2019). In our study, we have assumed the existence of two hidden
colony states, corresponding to whether building activity is prior-
itized (high activity state) or workers are instead mostly engaged in
other tasks or inactive (low activity state).

HMM fitting and model comparison

We assumed that the deposition rate followed a gamma distri-
bution in each state, parametrized in terms of mean and standard
deviation. The choice of gamma distribution was made based on
the observable skew in the frequency distribution of rate values
(see Results). A problem associated with the choice of the Gamma
distribution is that it is defined for positive values, while we had
several observations taking the value 0. To work around this
problem for each such observation we drew a uniformly distributed
random variable taking a value between 0 and the minimum
observed deposition rate.

Data from each colony and site were treated as independent
time series. We assumed that model parameters are the same
between and within colonies (between building sites) because
they are generated by the same underlying building behavioural
model. The only model parameter assumed to be colony-specific
is the intercept, which captures colony-specific activity features
(e.g. a colony might have more workers specialized in building
compared to another). In this model, each site within a colony is
driven by its own hidden state sequence, to allow for local var-
iations in activity levels (due, for example, to delays in period
syncing across the colony, or to variations in numbers of workers
active at any one building site that might appear in the data as
differences in activity state). The Viterbi algorithm (Viterbi, 2006)
was used to estimate the most likely state sequence.

In each fitted HMM model, a different relationship between
mean deposition rate and predictors was assumed to have
generated the data. The full list of models is found in Table 2. We
fitted the models using a numerical optimization of the likeli-
hood function (McClintock & Michelot, 2018). This procedure is
sensitive to the starting parameter values given to the optimizer.
Therefore, we fitted each model 200 times with different
(randomly generated) sets of starting values searching for the
global maximum of the likelihood function. Because of the high
number of trials used, we believe that the estimated parameters
are close to those of the global optimum. The goodness-of-fit
analysis (see the paragraph below), as well as the comparison
of the observations simulated from the model with the real data
(see Results), provide further evidence for the adequacy of the
model fit.

The goodness-of-fit was evaluated using the pseudo-residuals of
the fitted HMMs (analogous to linear model residuals). All fitted
models passed the residual check (i.e. the pseudo-residuals
appeared normally distributed and their autocorrelation coeffi-
cient was close to zero) and were included in an information
criterion-based comparison, using Akaike's method (Akaike's In-
formation Criterion or AIC; Akaike, 1974). We then used posterior
predictive checking on the best model: that is, we compared pat-
terns between the observed time series and simulations from the
model, to check that important features were captured.

Software

The agent-based model was built in Python 3.6 (Van Rossum &
Drake, 2009). For video data analysis, individual building sites were
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Figure 2. Schematic representation of hidden Markov model (HMM) estimation. Simplified representation of the HMM formulation. The two model components are (1) a set of
hidden states (here, S4 and Sg) with associated transition probabilities and (2) a probability distribution for the data variable (Z) within each state, described by some state-specific
parameters (here, the mean ; and standard deviation ;). The state-dependent mean parameter is influenced by predictors (x) through a generalized linear model.

isolated from the rest of the video using FFmpeg software (version
N-94383-g3883c9d147; Bellard & FFmpeg Team, 2000) and the
opencv (Bradski, 2000) and numpy (Oliphant, 2006) libraries for
Python 3.6 (Van Rossum & Drake, 2009). Measurements (i.e. brood
cluster centroid) from video frames were taken using FIJI
(Schneider et al., 2012). Data processing and statistical analysis
were conducted in R, version 4.3.1, using the hmmTMB package
(Michelot, 2022).

Ethical Note

The data were collected under the University of Georgia's ethics
guideline on animal handling and welfare. Ants are not covered by
the Animal Scientific Procedures Act (ASPA) guidelines. The ex-
periments required the colonies to perform nest migration
following disruption of the old nest. This type of event poses
temporary stress to the colony but is not believed to have long-term
effects on its wellbeing or survival. After the end of our study,
colonies were kept for use in other experiments.

RESULTS

This study wants to extend the existing behavioural model of
Temnothorax wall building by incorporating and testing two hy-
potheses: (1) Temnothorax ants use the density of stone deposited
at building sites as a feedback cue guiding construction; (2) stone
density modulates the rate of building activity from start to
termination. Our study was theory driven: to test whether a
behavioural model incorporating both hypotheses leads to the
formation of wall structures similar to the ones built in nature, we
first used an agent-based model. Once the theoretical results were
known, we sought empirical evidence by conducting a statistical
analysis of deposition activity in T. rugatulus colonies, comparing
models with different predictors and shape of the relationship
between stone density and response (Table 2).

Agent-Based Model Predictions

The computational simulations confirm that the extended
behavioural model produces a wall structure similar to the one
built by T. albipennis and T. rugatulus under laboratory conditions.
Fig. 3 shows a sample output of the agent-based model, under
conditions of limited stone availability (1000 stones; Fig. 3a) and of
intermediate stone availability (3000 stones; Fig. 3b). Iterating the
simulation 100 times shows that, having set a distance template
that optimizes deposition at 18 mm distance from the brood clus-
ter, stones are consistently deposited within close proximity to this
value (‘1000 stones’ condition: the mean distance is 18.18 cm, with
a standard deviation of 0.15cm; the minimum mean distance
across simulations is 17.86 cm and the maximum 18.72 cm. ‘3000
stones’ condition: the mean distance is 18.76 cm, with a standard
deviation of 0.18 cm; the minimum mean distance across simula-
tions is 18.36 cm and the maximum 19.20 cm). This performance is
qualitatively similar to that of the Franks and Deneubourg model at
intermediate stone availability; however, the Franks and Deneu-
bourg model performs poorly when building material is scarce,
resulting in a wall with many gaps. To assess the degree to which
deposition in the extended model occurs uniformly in a circular
shape (i.e. with no gaps), we can use the measure of circular
dispersal called circular spread or R:

== ZcoseerZsmez (6)

with M being the total number of deposition locations and 6; the
angle of each location i measured in radians. Note that R is thus a
value comprised between 0 and 1, where 0 indicates perfect uni-
formity in circular dispersal (deposition occurs equally at all angles
around the circle).



322

Table 2

Fitted models
Model 1
Model 1 up = exp (stone density + c)
Model 2 1p = exp (stone density + stone density? + c)
Model 3 up = exp (stone density + distance + c)
Model 4

Up = exp (stone density + stone density2 + distance + c)

List of all statistical models fitted to the state-dependent hidden Markov model
(HMM) parameters. The data points in each state are said to be drawn from a gamma
distribution, defined by the mean of deposition rate D, i, and by its standard de-
viation SDp. Only the mean is assumed to depend on covariates. Models were
formulated based on the parameters thought to guide deposition behaviour, from
existing literature (see main text). The constant c is the intercept.

Over 1000 iterations, we find that the circular dispersal of
deposited stones is highly uniform, with a mean of 0.09 and a
standard deviation of 0.05 in simulations run with 1000 stones
(minimum value of 0.009 and maximum value of 0.25), and a mean
of 0.03 and a standard deviation of 0.02 in simulations run with
3000 stones (minimum value of 0.002 and maximum value of 0.08).
The extended model is therefore an improvement on the original
model in terms of how reliably a good-quality wall is built across
environments (Fig. 3c). To quantify the effect of the underlying
behavioural model on the value of circular spread, we ran the
simulations with both models (all other conditions being equal)

1000 stones

fd"‘
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and then fitted a linear regression model on the circular spread
values obtained. We used circular spread as the dependent variable
and stone availability and model type as predictors (this approach
is equivalent to running a t test, but it avoids the issues that come
with applying this type of statistics to simulated data; White et al.,
2014). With this approach, we detect that model type has an effect
size of 0.05, that is, nests generated from the extended behavioural
model have, on average, a circular spread value that is 0.05 units
lower than nests generated from the original model. To put this into
perspective, if we look at the quantiles of all circular spread values,
we can see that the core 50% (i.e. the values comprised but not
included between the bottom 25% and the top 25%) sits between a
value of 0.03 and a value of 0.12. The effect size of switching to the
extended model is over half of the distance between these two
boundaries. We can also compare the quantiles of the circular
spread values obtained from the extended model (0%: 0.00; 25%:
0.02; 50%: 0.05; 75%: 0.09; 100%: 0.25) with the quantiles from the
original model (0%: 0.01; 25%: 0.06; 50%: 0.10; 75%: 0.14; 100%:
0.37) to get an idea of how much the two distributions differ.

To understand whether these results can be generalized to other
parameter values, we conducted a sensitivity analysis of the agent-
based model and found that results are highly robust (see
Appendix). This is important because it means that we expect these
results to be consistent no matter what parameters might be esti-
mated empirically.

3000 stones
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Figure 3. Two example outputs of the agent-based model incorporating the double feedback effect of neighbouring stone density on deposition activity at a building site. (a) Output
under limited building material (stone) availability, which produces a circular but incomplete wall. (b) Output of the same simulation run when the number of stones available in
the simulation is increased to 3000, which leads to the formation of a full wall. The greyscale shows the number of stones at each location. (c) Box plot of circular dispersal values
across simulation runs in the original model (Franks et al., 1992) and in our revised version. The revised model resulted in a substantial increase in the evenness of the distribution of

building material across the ideal circumference (i.e. the wall had fewer gaps).
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Experimental Data Analysis

The statistical analysis of laboratory data supports the existence
of two alternating colony behavioural states affecting building ac-
tivity rates. In both states, the best statistical model assumes that
stone density at building sites is positively correlated with depo-
sition rate at low values and negatively correlated with deposition
rate at high values (see below).

Building activity showed alternating periods of slow rate in-
crease with periods of slow decrease (Appendix, Fig. A2). Deposi-
tion and pick-up activity had similar rates at the same time points
(Fig. 4), suggesting changes in the overall activity of the colony.

We reiterate here our proposed explanations for these patterns
(already detailed in the Introduction), for which we identified two
possible, nonmutually exclusive causes. First, T. rugatulus displays
high segregation in worker task groups and partial specialization
within tasks and workers that take care of nest building and repair are
also foragers (Charbonneau & Dornhaus, 2015a). Alternatively, or
additionally, T. rugatulus colonies may undergo periodic activity shifts
between high and low activity phases. The trend that we observe does
not show regular oscillations, but there might be a hidden periodic
component that only becomes evident when the appropriate math-
ematical analysis is applied. A previous study has shown that
T. rugatulus displays periodic oscillations in activity (Doering et al.,
2019). In addition, we note that the activity pattern observed does
not appear to be affected by the time of day (Appendix, Fig. A3).

Based on the observed patterns, and independently from the
cause behind activity shifts, we built our statistical models
assuming that the time sequence of rates is the product of two
combined distributions: one corresponding to the phase of high
building activity and one to the phase of low activity. The building
behaviour underlying each of the two distributions is assumed to
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Table 3
Model selection
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Model One-state HMM Two-state HMM
Model 1 -116.6049 —177.3058
Model 2 —134.6801 —190.9976
Model 3 124.8332 —173.9603
Model 4 —139.6240 —187.6706

Comparison of models using Akaike's information criterion. The one-state HMM is a
classical GLM with gamma-distributed dependent variable. The value in bold is the
lowest AIC form the eight models.

be generated by the same process (a worker rule set encoding
response to environmental cues; i.e. a behavioural model) but to
reflect a quantitative change in individual behaviour that is caused
by colony state: the distributions differ in their mean and standard
deviation. The sequence of states, which determines the distribu-
tion from which each observation in a time series arises, can be
inferred from a fitted hidden Markov model.

In Table 2, we list the relationship between the mean of the
distributions and the predictors analysed for each behavioural
model. Note that each behavioural model corresponds to a distinct
statistical model. In Table 3, we show the Akaike's information
criterion (AIC; Akaike, 1974) value of each fitted model.

For each model formulation, we fitted a one-state HMM, i.e. a
standard generalized linear model (GLM) with gamma-distributed
dependent variable (deposition rate) and log link function. For each
model specification, a two-state HMM was preferred over the GLM,
indicating that there is some evidence that the dynamics of the
deposition process are driven by different states. Among the four
candidate formulations, with different covariates included on the
mean deposition rate, the model favoured by AIC was a two-state
HMM with a quadratic relationship of stone density. The model
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Figure 4. Relationship between rates of different building activities across building time. Building activity rates of each colony were normalized by their mean value and plotted
against each other. Colour scale shows the time point (min) from the start of building activity to the end of data collection. Rates were calculated as the total number of events across
the three colony sites, divided by the time interval (events/min). Observations began with the start of building, defined as the first deposition event in the colony, and ended when at
least 60 stones had been deposited at all three building sites under observation. Each rate value was calculated over a 15 min interval.
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with distance as an additional covariate only had a marginally
higher (worse) AIC, but that model suffered from more numerical
instability due to the greater number of estimated parameters, so
we decided to work with the simpler model.

Fig. 5 shows the transition parameters of the hidden Markov
chain generating the state sequence and the estimated state dis-
tributions assuming mean predictor values. The estimated depo-
sition probability distributions seem to support the interpretation
of the two states: state 1 tended to capture periods of lower activity
and state 2 tended to capture periods of higher activity (Fig. 5b).
This interpretation is also consistent with the state sequence esti-
mated for each colony, shown in the Appendix, Fig. A4.

Table 4 shows the effect sizes of the best model and Fig. 6 dis-
plays the relationship between the stone density covariate and the
mean value of deposition rate. For any value of the stone density
and for all four colonies, the estimated mean deposition rate is al-
ways higher in state 2 than in state 1 (Fig. 6).

DISCUSSION
Summary of Results

In this study, we have used an HMM approach to distinguish
between building activity measurements taken during periods

(@)
State 1  State 2
State1 0.96 0.04
State 2 0.06 0.94

when this task is prioritized and periods where workers are either
inactive or engaged in other tasks. Building activity does therefore
not occur at a constant pace up to wall completion, but rather de-
pends on other colony level factors. We also show that stone den-
sity found at building sites has a two-fold role as a behavioural cue:
it increases nearby deposition activity at low and intermediate
value and it decreases deposition (relative to the peak rate) at high
values. This latter effect is a new finding that constitutes an
extension to the original behavioural model (Franks & Deneubourg,
1997; Franks et al., 1992).

We wish to discuss two limitations of our analysis here. First, our
sample size was relatively small (four colonies) given the
complexity of the statistical models used. Sample size does not
affect state sequence inference, which occurs at the level of the
single observation in HMMs. It can lead to large uncertainty in
covariate effects, but in our case the confidence intervals of the
relationship between stone density and deposition activity were
narrow and the AIC comparison supported a quadratic rather than a
linear relationship between covariates. Small sample size also
negatively affects the stability of estimated parameters (that is,
convergence of the likelihood cannot be achieved). While this
problem means that we can provide no guarantee that the best
model fit we have identified is a global rather than local maximum,
yet, given the high number of trials used in the fitting process, we
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Figure 5. Hidden Markov chain parameters and observation distributions of each colony as estimated from model 2. (a) Transition probabilities between states; that is, the
probability of a colony being in each state at time point ¢ given its state at time point t — 1. (b) Estimated gamma distribution of deposition rate associated with each activity state
(state 1, state 2) against the density histogram of the observed distribution, for each colony. Distribution plots were generated from the model parameters shown in Table 4, with the
assumption that the covariate was fixed to the mean observed stone density in the whole data set.
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Table 4
Fitted parameters of model 2

Intercept (Colony 1) Covariate effect

Mean SD Stone density (Stone density)? Colony 2 Colony 3 Colony 4
State 1 -1.764 -1.895 2.051 —2.776 -0.279 -0.187 —-0.256
State 2 —-0.662 —1.000 1.040 —1.046 -0.373 -0.157 —-0.062

Model parameter values by state.

believe that the estimated parameters are close to if not identical
with those of the global maximum and the uncertainty around
these estimates is captured by the provided confidence intervals.
Second, the shifts in activity levels measured in our analysis might
be caused by changes in the energy level of workers. We did not
provide food during our experiments, but colonies were moved to
the arena directly from the housing box, where food was available
ad libitum, and the activity data analysed correspond to the first
10 h of the experiment only. Starvation has been shown to increase
forager activity, but only after several days (Franks et al., 1990);
consequently, we believe that our colonies were unlikely to be
affected. Some species of ants preferentially perform certain ac-
tivities depending on time of day (Gordon, 1983), but building ac-
tivity in T. rugatulus does not seem to be one such case.

In our Introduction to this article, we discussed ant activity
states as colony level phenomena, in which the whole worker
population synchronizes into either a high or a low activity state.
Our results show that the three building sites that we tracked
within each colony were most commonly found in different states
(Appendix, Fig. A4). This could mean that the two states picked up
by our analysis correspond to shifts in task priority within the
colony, rather than periodic changes in overall colony activity rates.
There are, however, other explanations. Activity state synchroni-
zation at the colony level is achieved through worker physical

interactions (Cole, 1991c). Temnothorax rugatulus colonies are small
(Table 1) and only a subset of the workers engages in building. It is
possible that interactions at the edge of the colony (where building
occurs) are rarer and synchronization is often only achieved at a
local level, between neighbouring sites (Cole and colleagues
showed that borderline periodicity starts with a group size of 5—7
workers in L. allardycei). However, because only a few workers
build, some periods of low activity detected at a site may simply be
periods during which no worker was active at that specific site
(perhaps being instead active at a neighbouring site just outside our
observation area). Future studies that look at building activity
across a larger number of sites and perhaps measure activity levels
for other tasks, with individual worker tracking, will be able to tell
us which one among these explanations is correct.

Stone Density as a Behavioural Cue

In the past two decades, the application of advanced techniques
(such as x-ray tomography) to the study of nest structures has led to
remarkable developments in the field (Perna & Theraulaz, 2017),
giving us data that had previously been hard or even impossible to
obtain. Temnothorax nests are simple structures, but these types of
tools can add considerable value, allowing us, for example, to
observe the internal structure of a nest without disrupting its
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Figure 6. Relationship between stone density and mean deposition rate in each colony for each state in model 2. Shaded areas show the 95% confidence interval.
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external structure (Varoudis et al., 2018). Below, we discuss what
insights on building behaviour we can draw from our study and
how the application of advanced tools, or simply future studies, can
help elucidate some aspects that are still open to interpretation.

The observed response of workers to stone density is a case of
stigmergic feedback. Stigmergy is a well-known concept in social
insect building and can be defined as the effects that changes in the
architecture created by past building activity have on current
worker building behaviour. This phenomenon has been discovered
in several eusocial insect species (Ireland & Garnier, 2018; Khuong
etal., 2016; Perna & Theraulaz, 2017). For example, in the Formosan
subterranean termite, workers use depressions in the ground,
including those left by other excavating workers, as stigmergic cues
promoting further excavation (Bardunias & Su, 2009). The use of
stone density is a case of material density, in particular, being used
as a stigmergic cue, which is not uncommon (Buhl et al., 2005;
Fouquet et al., 2014; Khuong et al., 2016).

Does the relationship between stone density and deposition rate
that we detected unequivocally point to this cue as the direct
modulator of the behaviour (i.e. what the worker perceives and
responds to)? Certainly not so. Temnothorax rugatulus workers
might be responding to stone density directly (i.e. through quan-
titative or qualitative evaluation of stone pile conformation), or
indirectly, through changes in an environmental cue that is affected
by stone deposition. For example, the intensity of air currents and
the amount of light penetrating the nest from the sides are alter-
native factors whose change is foreseeably correlated to changes in
stone density. Air currents, in particular, have been shown to
modulate ant behaviour in a similar deposition and pick-up
context: that of corpse disposal (Jost et al., 2007). Recent studies
(Khuong et al., 2016; Petersen et al., 2015), moreover, indicate that
pheromones are sometimes used by termites as a cue modulating
building or general labour, and similar mechanisms might be
important in ants. We would like to stress, however, that close
observations of laden ants who carry a stone by dragging shows
that they seemingly pull their load against the pre-existing heap,
stopping when the stone encounters a lot of resistance. Thus, at
least when dragging, T. rugatulus builders appear to actively use
stone density to guide their activity, through mechanical contact.
Similarly, Franks et al. (1992) reported that T. albipennis workers
bulldoze the stone they are carrying into existing piles. Both spe-
cies, therefore, appear to be using contact with stone piles for
building, even if in slightly differing ways.

Experimental manipulation is necessary to determine what cues
the ants respond to in this case of nest building. Close observation
or manipulation of individual ant behaviour, for example, might
shed some light on what cues the worker responds to, while the
observation of building behaviour in more natural environments,
such as acorns or crevices, will also grant us more information on
how other potential cues, beside stone density, change during
building.

One Cue to Modulate Them All

The identified quadratic relationship between stone density and
deposition rate meets the hypothesis that nest size regulation de-
pends on a local amplification—long-range inhibition (LALI) process
driven by building sites and their stigmergic role. This is similar to
the mechanism underlying nest excavation in other ant species
(Buhl et al., 2005; Halley et al., 2005; Rasse & Deneubourg, 2001). In
some species (Messor sancta, Linepithema humile and Lasius niger),
the coupling of a positive and a negative feedback effect is achieved
through the use of one cue, building site density. Site density in-
creases with the ratio between colony and nest size, because sto-
chastic initiation-of-excavation events become clustered in time

and space, triggering a positive feedback loop. Once the nest has
sufficiently expanded, this ratio decreases, eventually leading to
behavioural termination through lack of sufficient cues. When a
wall is first built by T. albipennis or T. rugatulus, the template
component of the building algorithm (if it exists) limits nest
expansion. The negative feedback effect is caused, as we have seen,
by a direct or indirect response to stone density. Only in the addi-
tional case of nest enlargement after an increase in colony size (or
before a prospective increase in colony size), removal and reloca-
tion of stones from the old wall might be triggered by the template
shifting outwards (here, the hypothesis of a single cue being used
breaks down), as cluster size increases, while the same mechanism
guiding termination during initial wall building also leads to
termination here.

Is the existence of a LALI mechanism guiding nest size regula-
tion in many ant species a case of convergence or of common
origin? When considering common origin, we must remind our-
selves of the fact that Temnothorax are capable of nest excavation,
beside the occupation of empty cavities coupled with wall building.
The process of excavation in these species has not yet been studied.
Should it be discovered that it shares common rules with the
species already listed, it is possible that the LALI mechanism found
in wall building derives from this shared mechanism, through step-
by-step change (e.g. the switch to air currents as a cue, the emer-
gence of a template).

Conclusion

Our results confirm that stone density at building sites is
involved in a feedback loop with deposition activity and is suffi-
cient, as a cue, for both increasing building activity rates and
inducing building termination later in the process. We have shown
here that HMMs are an effective statistical approach for separating
the data into phases associated with different colony level states,
thus accounting for fluctuations in worker activity. The use of
HMMs can help address similar questions in other colony tasks, as
well as in other eusocial systems, thus enhancing our under-
standing of division of labour and task organization. If incorporated
into mathematical and simulation models, these studies can also
help address ecological and evolutionary questions on the ecolog-
ical properties and evolution of self-organized behaviour in euso-
cial species.
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Appendix

To check how stable agent-based model results are to a change
in parameters, we conducted a sensitivity analysis using Sobol's
method (Cariboni et al., 2007; Sobol, 1993). We used circular spread
as the output variable.

Methods

The Sobol's method enables us to identify the contribution of
variation in each model parameter to the total output variance,
both on its own and in combination with other parameters. Briefly,
the variance in the measured output, V(Y), is decomposed as

VY)=Vi+Vo+...+Vy+K (A1)
where V; is the contribution of parameter i to the variance, M is the
number of parameters and K is the residual. From this decompo-
sition, it is possible to calculate the proportion of output variance
contributed by each parameter without accounting for its in-
teractions with other parameters, its first-order effect or S;:

Si=rrie (A2)
The output variance of a simulation model is estimated by

running the model across parameter space, spanning the entire
parameter distribution.

We used Saltelli's computational optimization of the Sobol's
method (Saltelli, 2002; Saltelli et al., 2010), across the parameter
space shown in Table A1l. We used a sample size of 1000, which,
through Saltelli's sampling method, generates 16 000 unique
parameter combinations (Saltelli's sampling method starts from
the given sample size to generate Z = N x (2M +2) parameter
combinations, where N is sample size and M the number of pa-
rameters). For each parameter combination, we ran the model once
and measured distance and circular spread over the last 1000 time
steps. Note that running a single simulation per combination causes
some simulation noise to be incorporated into the parameter effect
estimates. This is taken into account by looking at the confidence
interval for the effect value. Simulations were run with 3000 stones
and for a number of rounds T = 5000, as are the results for the
‘intermediate stone availability’ condition presented in the main
text.

The SALib library was used for the analysis (run in Python 3.7.9).

Results and Discussion

The effect values calculated through the Sobol's method
(Table A2) show that the only parameter with a relatively strong
first-order effect (explaining 15% of the total variance) was Gp,. To
see how model results change in practice, we can take an in-detail
look at how wall quality changes across parameter space, by
examining the distribution of circular spread values (Fig. A1). The
distribution shows that the revised model produces very consistent
results. As a reminder (see Methods in the main article for details),
the possible range of circular spread values goes from 0 (stones are
perfectly evenly distributed in a circle, without gaps) to 1 (all stones
are deposited in the same spot). These results indicate that the wall
structure is clearly circular, with very few gaps, no matter what the
model parameters are. Moreover, across the parameter space, the
revised model tends to perform better than the original model
(noticeable from a comparison with Fig. 3c; note that some of the
simulations in Fig. 3c for the revised model and 3000 stones have
slightly higher circular spread values, albeit still close to the zero
end of the range — this is due to random variation).

Table A2
First-order effect and total effect of each parameter on circular spread

Parameter Si S; confidence interval
Py 0.098 0.064
Dy 0.072 0.066
Fy 0.030 0.068
Gm 0.022 0.067
Fn 0.092 0.053
Gm 0.144 0.095
T 0.030 0.075

First-order effects and total effects of model parameters as calculated with Sobol's
variance decomposition. The 95% confidence interval was used.

Table A1

Parameter range used for the sensitivity analysis
Parameter Description Boundaries
Py Maximum possible value of pick-up probability [0.01,1]
Dy Maximum possible value of deposition probability [0.01,1]
Fu Effect of number of stones on pick-up probability below a critical number of nearby stones Sc [0.11,1]
Gm Effect of number of stones on deposition probability above the critical number of nearby stones Sc [0.11,1]
Fm Effect of number of stones on pick-up probability above a critical number of nearby stones S¢ [0.001,0.1]
Gm Effect of number of stones on deposition probability below a critical number of nearby stones S¢ [0.001,0.1]
T Parameter regulating the slope of the decrease in deposition probability and increase in pick-up [0.01,0.03]

probability as we move away from the optimal building distance

The table contains a summary description of the parameters used in the model with the range explored in the sensitivity analysis. Table from Invernizzi (2022).
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Figure A1. Distribution of circular spread values across agent-based model parameter

space. Edges of the plot indicate the edges of the lower and upper quartile. Whiskers

Pt ' Figure A3. Deposition rate for each colony plotted against the corresponding time of
indicate the edges of the bottom and top quantile. Outliers are shown.

day. The first time point for each time series corresponds to 15 min from the start of
building activity, as in Fig. 4. All experiments started in the early morning and building
activity started after a length of time lasting between 7 min and 2 h, during which the
ants were initiating migration to the new nest.
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Figure A2. Activity rates of each colony from the start of building activity to the end of data collection: (a) deposition rate; (b) pick-up rate; (c) cumulative rate. Rates are at the
colony level, calculated as the total number of events across the three sites, divided by the time interval. The cumulative rate was calculated as deposition rate + pick-up rate. The
start of building was defined as the first deposition event in the colony and observation ended for a colony when at least 60 stones had been deposited at all three building sites
under observation. Black dots in (a) correspond to individual time points (same for each time series). Each rate value was calculated over a 15 min interval. Values are plotted at the
period's last minute time point; the first time point is therefore plotted at +15 min from the start of building and the rate value for that time point is calculated over minutes 0—14 of
the observation period.
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Figure A4. Change in deposition rate throughout building time for each colony, colour-coded by the estimated state sequence of each building site (stacked bars). The state
sequence was estimated from the best model (deposition rate ~ stone density + (stone density)?; Tables 2 and 3). The model assumes the existence of two behavioural states, high
activity and low activity, generating distinct deposition rate probability distributions. Two sites within the same colony can be in different states at the same time point, as discussed
in the main text. The two distributions are partially overlapping but clearly separate (Fig. 5), so that an observed sequence of higher rate values is likely to belong to a period of high
activity (state 2) and a sequence containing both high and low values is likely to belong to a period of low activity (state 1). For time points with only two stacked bars visible,
deposition rate was equal to zero at the third site.
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