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Abstract— Why do Recurrent State Space Models such as
PlaNet fail at cloth manipulation tasks? Recent work has
attributed this to the blurry prediction of the observation,
which makes it difficult to plan directly in the latent space. This
paper explores the reasons behind this by applying PlaNet in
the pick-and-place fabric-flattening domain. We find that the
sharp discontinuity of the transition function on the contour
of the fabric makes it difficult to learn an accurate latent
dynamic model, causing the MPC planner to produce pick
actions slightly outside of the article. By limiting picking
space on the cloth mask and training on specially engineered
trajectories, our mesh-free PlaNet-ClothPick surpasses visual
planning and policy learning methods on principal metrics
in simulation, achieving similar performance as state-of-the-
art mesh-based planning approaches. Notably, our model ex-
hibits a faster action inference and requires fewer transitional
model parameters than the state-of-the-art robotic systems in
this domain. Other supplementary materials are available at:
https://sites.google.com/view/planet-clothpick.

I. INTRODUCTION

Deep reinforcement learning methods based on the Re-
current State Space Model (RSSM), such as PlaNet [1] and
Dreamer [2], [3], [4] have achieved state-of-the-art (SoTA)
asymptotic performance and data efficiency in both continu-
ous control dm control [5] and discrete-action Atari 2600
[6] benchmark environments. However, many authors have
noted that RSSM-based models struggle with a canonical
task in cloth-shaping: fabric flattening, where one or more
end-effectors operate on a piece of square fabric to unfold it
on a surface [7], [8], [9], [10].

Most successful data-driven methods, such as imitation
learning [8], [11] and reinforcement learning [12], [9], [13],
[14], [15] for fabric-flattening focus on quasi-static pick-and-
place (P&P) manipulation. Despite pick-and-fling and pick-
and-blow primitives being operationally more effective than
quasi-static P&P primitives [16], [17], P&P is cost-effective
as it only requires one robot arm and a camera.

Deep Planning Network (PlaNet) [1] is a model-based
reinforcement learning algorithm that uses model-predictive
control (MPC) to plan on a latent dynamic model (LDM)
trained based on the RSSM. However, PlaNet keeps failing
on fabric flattening [13], [18], [19]; it has been argued that
this may be due to the blurry observation reconstruction of
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Fig. 1: Flattening trajectories of ClothMaskPick-MPC (ours)
and MPC with cross entropy method (MPC-CEM). The head
and end of the green arrows represent each step’s pick and
place positions. The fundamental reason PlaNet fails in cloth
flattening is that the latent dynamic model cannot accurately
model the transition function’s sharp discontinuity on the
cloth’s contour. By limiting the first picking sampled actions
to fall inside the cloth mask, PlaNet-ClothPick achieves
SoTA performance in this domain.

the LDM [9], [14]. In this paper, we investigate PlaNet’s per-
formance on the domain in simulation benchmark SoftGym
[19] to understand the causes of poor performance on this
task. We note four contributions of this paper:

(1) We propose a new reward function for fabric flatten-
ing, which leads to better performance than the normalised
coverage and the reward adopted by Hoque et al. (2022) [9].

(2) Inspired by Lin et al. (2022) [14] and Hoque et al.
(2022) [9], we suggest a domain-specific planning method
ClothMaskPick-MPC that samples the first pick action on
the cloth-mask to improve planning accuracy and efficiency
(Figure 1); this helps to overcome the difficulty in accurately
modelling the sharp discontinuity on the article’s contour.

(3) LDMs need a large amount of data to overcome
the enormity and complexity of the cloth’s dynamic. Apart
from the expert, random, corner-biased trajectories [9], we
collect trajectories where the policy samples small dragging
actions on an almost flattened fabric. This helps to boost the
robustness and performance of the ClothMaskPick-MPC on
the LDM. Besides, we employ data augmentation techniques,
such as rotation [20] and flipping, to upsample the training
trajectories to improve the robustness of the model.

(4) We also observe that PlaNet’s LDM cannot learn
a good latent prior distribution due to the complex non-
linear behaviour of cloth-like deformable objects (CDOs),
so we adopt KL balancing [3] to improve both posterior
and prior learning quality. We further improve the planning
performance by incorporating prior reward learning.

https://sites.google.com/view/planet-clothpick


We demonstrate that these four improvements lead to
PlaNet-ClothPick achieving SoTA performance compared to
mesh-based planning methods regarding primary metrics –
normalised coverage (NC) and normalised improvement (NI)
against action steps, and it outperforms visual planning and
policy learning methods (Figure 4). It also showcases a one-
order-of-magnitude advantage regarding the action inference
time and transitional model parameters compared to the
previous SoTA robotic systems in this domain (Figure 5).
The strong inductive biases of our method are introduced
in ClothMaskPick-MPC and the specially engineered offline
dataset, hence the name PlaNet-ClothPick. This paper shows
that RSSM-based algorithms can play an important role in a
wider range of application domains.

II. RELATED WORK

Model-based reinforcement learning (MBRL) applications
in P&P cloth-flattening are mainly Type I [21]: planning or
trajectory optimisation algorithms, where the agent needs
access to the dynamic model of the environment for gen-
erating imaginary rollouts. The dynamic model can be either
a known dynamic or a learned dynamic. Planning algo-
rithms used in fabric-flattening are mainly based on model-
predictive control (MPC), which can be further categorised
into goal-conditioned MPC [9], [18] and reward-based MPC
systems [13], [14], [15].

Visual Foresight (VSF) [9] by Hoque et al. (2022) and the
Contrastive Forward Model (CFM) [18] by Yan et al. (2020)
are the two example applications of goal-conditioned MPC to
fabric flattening, where the cost function is calculated based
on the difference between the current and goal states. Note
that VSF’s cost function is calculated according to Visual
MPC [22] framework, while the one of CFM is the distance
of the two states at the latent space.

reward-based MPC, on the other hand, selects top tra-
jectories based on reward prediction from the prior rollout
trajectories [1], [13], [14]. In contrast to goal-conditioned
MPC, the application domain of reward-based MPC is lim-
ited by the reward prediction function given to the algorithm.
DefOrmable Object Manipulation (G-DOOM) is a latent
reward-based MPC method that generates the prior rollout
trajectories in the latent space trained with unsupervised-
keypoint graph dynamics [13]. In contrast, Visible Connec-
tivity Dynamics (VCD) by Lin et al. (2022) [14] is a mesh-
based reward-based MPC method that applies rollout on
the reconstructed mesh representation using a learned mesh
dynamic [23]; they also proposed VCD Graph Imitation
(VCD-GI), where a teacher dynamic model learns with the
complete information of the cloth and distil the knowledge
to the vision-based student.

Mesh-based reward-based MPC methods, such as VCD,
VCD-GI [14], and MEDOR [15], outperform goal-
conditioned MPC and latent reward-based MPC methods
in cloth-flattening. Although they are invariant to the cloth
shape, colour and camera pose, these methods cannot be
easily applied to manipulating other kinds of objects, since
the dynamic model is specially trained for CDOs. Most

recent robotic systems focus on closing the simulation-to-
reality gap of the mesh-based planning methods on garment-
flattening tasks [24], [25], [26] by improving the mesh
tracking accuracy in real-world trials.

Deep Planning Network (PlaNet) [1] is a latent reward-
based MPC method that employs a learned latent dynamic
based on a Recurrent State Space Model (RSSM). While
it performs well on continuous control benchmark environ-
ments like the dm control suite [5], numerous experi-
ments have found it unsuitable for fabric flattening [18], [13],
[19]. A possible reason is that the reconstructed observation
from the visual model is fuzzy, which makes planning based
on reconstructed vision hard due to the lack of precision
around the edges and corners of the article [14].

Dreamer [2], [3], [4] is a model-based actor-critic (AC)
reinforcement learning algorithm that uses RSSM [1] for
representation learning. It shows significant data efficiency
and performance improvement compared to the PlaNet and
AC baselines, and Dreamer V2 [3] is the first MBRL
algorithm to achieve super-human performance with a single
GPU in discrete-action Atari benchmarks. The architecture
and objective of the LDM of Dreamer are directly inherited
from PlaNet’s [1]. Dreamer V2 [3] leverages categorical
latent state space representation and KL balancing to learn
the LDM.

Stochastic Latent Actor-Critic (SLAC) [27] combines the
Soft Actor-Critic’s (SAC) [28] maximum-entropy RL objec-
tive [29], [30] with latent dynamic representation learning
to solve Partially Observable Markov Decision Processes
(POMDP) [31]. In contrast to RSSM-based algorithms such
as PlaNet and Dreamer, it only learns stochastic latent
representation. It exhibits stability, data efficiency and im-
proved performance compared to SAC and PlaNet in several
benchmarks [32] but has never been tested on CDO manipu-
lation tasks. We evaluate the performance of SLAC’s policy
learning and planning on the LDM in this paper.

Note that we did not examine imitation learning ap-
proaches because we mainly focus on reinforcement learning
methods in this paper. Nevertheless, Hoque et al. (2022)
[9] have shown that VSF outperforms the behaviour-cloning
approach DAgger [8] regarding primary metrics.

III. METHOD

We aim to investigate the failure of PlaNet in fabric flatten-
ing to develop a model capable of handling this domain. A la-
tent dynamic model (LDM) for pick-and-place (P&P) fabric-
flattening must accurately predict future states based on a
sequence of future action trajectories. This allows a planning
algorithm to generate a trajectory of candidate actions that
minimises a cost function. We can formulate the model
learning problem as a partially observable Markov decision
process (POMDP). Our environment is built on SoftGym’s
[19] cloth-flattening task with P&P action extension, which
comprises 4 parameters (xpick,ypick,xplace,yplace) defined on
continuous pixel space [-1, 1] for a single-picker operation
[12], [13]. We did not use pick-and-drag action primitive [9],



(a) Training of RSSM (b) Action Inference of ClothMaskPick-MPC

Fig. 2: PlaNet-ClothPick. We use I2O to denote the different variants; for example, D2Mask represents the model’s input as
a depth image and the output as a cloth-mask image. The red line depicts training data flow, the purple line represents action
optimization in planning, the black line signifies internal state updates, and the yellow line illustrates environment-agent
input/output. In training, PlaNet-ClothPick applies batch-wise rotation and vertical flipping on the input/output observations
and actions before feeding them into the RSSM model; observation noise is only applied if the observations are RGB and/or
depth images. During the inference time, ClothMaskPick-MPC samples pick-and-place actions from a normal distribution
(initialised with mean as 0 and standard deviation as 1), then it filters them through an estimated cloth mask, which can
be obtained in two different ways: (1) thresholding from the depth image of the environment or (2) predicting from the
RSSM model if the decoding includes mask prediction. Then, it selects the top 10% candidates based on the reward the
RSSM predicted from the last-step posterior latent state and the sampled actions to update the normal distribution for the
next optimisation iteration. After the planning, the method uses the mean of the distribution as an action to execute.

[18], [14] for bounding the place position of the fabric on
the observation space.

A. Deep Planning Network (PlaNet)

Recurrent State Space Model (RSSM) [1] is defined under
the POMDP setting with the following latent state dynamic:
(1) recurrent dynamic model hhht = f (hhht−1,zzzt−1,aaat−1), (2)
representation model ẑzzt ∼ q(ẑzz | hhht ,xxxt), and (3) transition
predictor z̃zzt ∼ p(z̃zz | hhht), where xxx represents observation,
aaa represents action, hhh represents the deterministic latent
representation, and ẑzz and z̃zz represent the prior and posterior
stochastic latent states.

PlaNet learns the RSSM to generate accurate observa-
tions and rewards from a prior latent distribution for MPC
planning. The dynamic model is trained by minimising the
KL-divergence between prior and posterior latent states as
well as maximising the maximum likelihood of reconstruc-
tion of the observation and reward, where it includes an
observation predictor x̂xxt ∼ p(xxx | hhht ,zzzt) and a reward predictor
r̂t ∼ p(r | hhht ,zzzt):

LPlaNet =
T

∑
t=1

(
− E

q(zzzt |xxx1:t ,aaa1:t )

[
log p(xxxt |zzzt)+ log p(rt |zzzt)

]
+ E

q(zzzt−1|xxx1:t−1,aaa1:t−1)

[
KL
[
q(zzzt |xxx1:t ,aaa1:t−1)||p(zzzt |zzzt−1,aaat−1

]])
(1)

PlaNet adopts mean-square-error (MSE) to learn observa-
tion reconstruction and reward prediction from the Gaussian
posterior latent space and Kullback–Leibler (KL) divergence
for prior learning.

Model predictive control (MPC) is a set of advanced con-
trol methods that usually require a learned/known dynamic
model to predict the future behaviour of the controlled sys-
tem and a cost function to optimise the sampled trajectories.
MPC with Cross-Entropy Method (MPC-CEM) is a common
variation that samples actions from a multivariate Gaussian
distribution and iteratively optimises the distribution’s mean
and variance from the top trajectories determined by the cost
function. PlaNet employs MPC-CEM to produce the policy
at run time by unrolling and maximising the accumulative
future rewards from the latent prior distributions. It iteratively
refines its LDM by exploring the environment and collecting
new trajectories generated by the planner.



B. PlaNet-ClothPick

Our PlaNet-ClothPick method is built upon the original
PlaNet and trained with our domain-specific reward function
(Section III-B.1). We train the LDM for cloth-flattening
offline using a special data collection script (III-B.4) so that
we bypass the exploration of reinforcement learning, which
is a hard problem to address for cloth-like deformable objects
[12], [18]. We also adopt KL balancing [3] (Section III-
B.2) to enhance latent prior and posterior learning quality. In
addition, we apply data augmentation — observation noise,
rotation [20], and vertical flipping — to improve the learning
efficiency and robustness of the method. Finally, we adopt
the prior reward learning and the domain-specific planning
method ClothMaskPick-MPC (Section III-B.3) to further
improve manipulation performance. Figure 2 illustrates the
further details of the method with its different input/output
(I/O) variants.

1) Reward Function: We extend the reward function
presented by Hoque et al. (2022) [9], which is based on
the relative coverage improvement between two consecutive
states. We impose penalties as -0.5 for mispicking, large
absolute action values (when any equal to or greater than
0.7), and steps that lead to unflattening. Conversely, we
assign bonuses as 0.5 to steps that lead to states with high
coverage.

2) KL balancing: In Equation 1, the KL-divergence term
aims to learn the prior from the posterior representation
and regularises the posterior representation with the prior.
To avoid regularising the posterior representation towards
poor priors, Dreamer V2 [3] proposes KL balancing that
prioritises learning of the prior over regularising the pos-
terior. Combining the two components with an interpolation
factor α = 0.8, KL balancing achieves the former by stopping
the gradient on the posterior representation and the latter
by stopping the gradient on the prior representation. KL
balancing is a significant factor for improving the asymptotic
performance and learning efficiency of Dreamer [3], [4].

3) ClothMaskPick-MPC: Building upon original MPC-
CEM planning, we restrict the sampling of the first picking
action to the cloth mask, which can be extracted from the
depth observation of the environment or estimated from the
RSSM model if the decoding includes mask prediction. We
set the planning horizon to 1, the population of the samples
to 5000, and optimisation iterations to 100.

4) Data Collection: We generate 1,000 random fabric
instances in the SoftGym [19] environment to cover a wide
range of shapes and positions. We reserve 100 episodes
for assessing the manipulation system; the rest are for
developing the method. We also produce 56,100 episodes
of 20-step trajectory data from the developing settings for
training the LDMs. We delegate 100 episodes for testing the
LDM and 56,000 episodes (1.12 million transitional steps)
for training the models.

To cover a wide range of scenarios of P&P actions on
fabrics, we heuristically generate 10% purely random policy,
10% corner-biased random policy [9], [33], 40% Oracle
expert flattening and various folding policies, 30% noisy

TABLE I: Difficulty tiers regarding normalised coverage
of initial states. We allocate 57 of the instances to the
corresponding tiers regarding the generated distribution.

Tier NC mean ± std NC (min, max) No. Eps
0 97.64 ± 0 % (97.49%, 97.93%) 5
1 87.78 ± 9.78% (73.12%, 93.50%) 4
2 56.47 ± 3.97% (51.82%, 62.75%) 15
3 40.88 ± 1.58% (38.28%, 43.50%) 25
4 28.39 ± 0.92% (27.12%, 29.53%) 8

(a) Reward Study (b) Ablation Study

Fig. 3: Normalised coverage of PlaNet-ClothPick at step
10 among different tiers. Each constituent element of
PlaNet-ClothPick is essential for avoiding unflattening
high-coverage articles and reaching higher final coverage.
ClothMaskPick-MPC and the specially engineered large
dataset are critical for achieving effective flattening in gen-
eral. Our method even beats the Oracle expert policy used
to generate the dataset.

expert policies and 10% mix policy for the first 50,000
trajectories. The remaining 6000 trajectories are generated
from a highly flattened initial state (above 85% coverage),
where 20% of the data are produced from expert flattening
policy, 20% from noisy expert flattening policy and 60%
from cloth-mask small-random-dragging policy.

The manipulation outcome is extremely sensitive to the
pick signal relative to the fabric. Oracle expert flattening,
expert folding policies and the corner-biased policy are
introduced to guide the pick action operating on the corner of
the fabric. Noisy expert policies are designed to account for
situations where the picking occurs slightly inside or outside
the fabric’s corners – within 5% of errors. The purely random
policy addresses picking actions outside of the fabric, while
the cloth-mask small-dragging policy is specifically designed
for picking on the fabric surface. While most of these policies
accommodate a wide range of fabric dragging scenarios, the
cloth-mask small-dragging policy is particularly crucial for
emphasising small-dragging actions.

The condition of the fabric itself is another crucial factor
affecting the operation’s outcome. We employ expert folding,
noisy expert folding, random folding, and mix policies to
include scenarios where the fabric becomes crumpled from
a flattened state. The mixed policy is also introduced for
diversifying the action types in a single trajectory.



TABLE II: Numerical principal metrics of PlaNet-ClothPick’s input/output variants across different tiers; we also include
the performance of Oracle expert and heuristic method Wrinkle [7], [8] at the bottom of the table; and the best performance
among different steps for all tiers is highlighted with bold text and an asterisk. By default, all these variants use cloth
masks fetched from the environment, and we use fm to denote the ones estimated from the model. The depth-to-depth
(D2D) variant performs worst, while other variants perform similarly. Fetching the accurate estimation of the cloth mask
for ClothMaskPick-MPC is important for selecting the most effective picking position on the fabric.

Normalised Coverage ↑ Normalised Improvement ↑
input/output steps tiers: 0 1 2 3 4 all 0 1 2 3 4 all

RGB2RGB
5 1.0 ± 0.01 0.93 ± 0.1 0.77 ± 0.16 0.76 ± 0.14 0.63 ± 0.12 0.78 ± 0.16 1.1 ± 0.36 -0.12 ± 1.47 0.48 ± 0.34 0.59 ± 0.25 0.49 ± 0.17 0.54 ± 0.5*

10 1.0 ± 0.01 1.0 ± 0.01 0.95 ± 0.11 0.89 ± 0.14 0.84 ± 0.18 0.92 ± 0.14 1.1 ± 0.36 1.01 ± 0.03 0.89 ± 0.26 0.82 ± 0.24 0.77 ± 0.26 0.87 ± 0.26*
20 1.0 ± 0.01 1.0 ± 0.01 1.0 ± 0.01 0.99 ± 0.02 0.96 ± 0.06 0.99 ± 0.03 1.1 ± 0.36 1.01 ± 0.03 1.0 ± 0.02 0.99 ± 0.04 0.95 ± 0.09 1.0 ± 0.11

D2D
5 0.99 ± 0.01 0.95 ± 0.07 0.69 ± 0.15 0.69 ± 0.15 0.65 ± 0.16 0.73 ± 0.17 0.48 ± 0.5 0.26 ± 0.77 0.3 ± 0.34 0.47 ± 0.25 0.52 ± 0.22 0.42 ± 0.35

10 0.98 ± 0.02 0.94 ± 0.07 0.84 ± 0.15 0.8 ± 0.15 0.78 ± 0.14 0.83 ± 0.15 0.23 ± 0.73 0.15 ± 0.87 0.62 ± 0.33 0.67 ± 0.25 0.7 ± 0.2 0.59 ± 0.41
20 0.99 ± 0.02 0.96 ± 0.09 0.93 ± 0.12 0.92 ± 0.12 0.86 ± 0.15 0.92 ± 0.12 0.35 ± 0.78 0.51 ± 1.05 0.84 ± 0.25 0.87 ± 0.19 0.8 ± 0.22 0.78 ± 0.41

RGBD2RGBD
5 0.98 ± 0.04 0.84 ± 0.21 0.75 ± 0.18 0.74 ± 0.19 0.68 ± 0.08 0.76 ± 0.18 0.37 ± 1.58 -0.02 ± 0.53 0.42 ± 0.4 0.57 ± 0.31 0.56 ± 0.11 0.47 ± 0.55

10 1.0 ± 0.01 0.98 ± 0.02 0.87 ± 0.19 0.92 ± 0.14 0.87 ± 0.15 0.91 ± 0.15 1.01 ± 0.52 0.74 ± 0.3 0.68 ± 0.47 0.86 ± 0.24 0.82 ± 0.21 0.81 ± 0.35
20 1.0 ± 0.01 0.99 ± 0.01 0.99 ± 0.03 0.99 ± 0.04 0.98 ± 0.04 0.99 ± 0.03 1.01 ± 0.52 0.87 ± 0.18 0.99 ± 0.06 0.99 ± 0.07 0.98 ± 0.05 0.98 ± 0.16

RGB2Mask
5 0.99 ± 0.01 0.95 ± 0.03 0.78 ± 0.19 0.76 ± 0.17 0.68 ± 0.19 0.79 ± 0.18* 0.46 ± 0.47 0.32 ± 0.53 0.51 ± 0.41 0.6 ± 0.29 0.56 ± 0.26 0.54 ± 0.35*

10 0.99 ± 0.01 0.96 ± 0.06 0.94 ± 0.1 0.92 ± 0.11 0.93 ± 0.08 0.94 ± 0.1* 0.39 ± 0.62 0.45 ± 0.92 0.88 ± 0.22 0.87 ± 0.19 0.91 ± 0.11 0.81 ± 0.36
20 1.0 ± 0.01 0.98 ± 0.04 1.0 ± 0.04 1.0 ± 0.02 0.99 ± 0.03 1.0 ± 0.03* 1.04 ± 0.37 0.66 ± 0.57 1.0 ± 0.09 1.0 ± 0.04 0.98 ± 0.04 0.97 ± 0.19

RGB2Mask-fm
5 0.99 ± 0.02 0.94 ± 0.07 0.8 ± 0.18 0.7 ± 0.16 0.67 ± 0.1 0.77 ± 0.17 0.34 ± 0.84 0.15 ± 1.07 0.55 ± 0.41 0.5 ± 0.27 0.53 ± 0.14 0.48 ± 0.45

10 1.0 ± 0.01 0.96 ± 0.04 0.94 ± 0.1 0.88 ± 0.16 0.94 ± 0.1 0.92 ± 0.13 0.9 ± 0.42 0.68 ± 0.32 0.85 ± 0.23 0.8 ± 0.27 0.92 ± 0.13 0.83 ± 0.26
20 1.0 ± 0.01 0.98 ± 0.03 0.98 ± 0.06 0.98 ± 0.05 1.0 ± 0.02 0.98 ± 0.05 0.9 ± 0.42 0.77 ± 0.33 0.95 ± 0.13 0.96 ± 0.09 1.0 ± 0.03 0.94 ± 0.17

D2Mask
5 0.8 ± 0.27 0.91 ± 0.09 0.76 ± 0.2 0.72 ± 0.18 0.69 ± 0.25 0.75 ± 0.2 -7.12 ± 11.33 -0.29 ± 1.17 0.44 ± 0.49 0.52 ± 0.31 0.57 ± 0.35 -0.22 ± 3.75

10 0.89 ± 0.25 0.88 ± 0.25 0.83 ± 0.18 0.83 ± 0.21 0.85 ± 0.2 0.84 ± 0.2 -3.37 ± 9.89 -0.53 ± 3.1 0.61 ± 0.43 0.71 ± 0.35 0.8 ± 0.29 0.25 ± 3.0
20 1.0 ± 0.01 0.99 ± 0.04 1.0 ± 0.02 0.98 ± 0.08 1.01 ± 0.01 0.99 ± 0.06 0.99 ± 0.62 0.8 ± 0.44 1.0 ± 0.05 0.96 ± 0.14 1.01 ± 0.01 0.97 ± 0.22

D2Mask-fm
5 0.87 ± 0.15 0.94 ± 0.1 0.65 ± 0.17 0.63 ± 0.18 0.69 ± 0.15 0.69 ± 0.19 -5.03 ± 7.15 0.13 ± 1.57 0.18 ± 0.42 0.37 ± 0.31 0.57 ± 0.22 -0.14 ± 2.5

10 0.74 ± 0.26 0.97 ± 0.08 0.84 ± 0.14 0.81 ± 0.18 0.81 ± 0.18 0.82 ± 0.17 -10.5 ± 10.75 0.46 ± 1.13 0.63 ± 0.35 0.68 ± 0.3 0.74 ± 0.25 -0.32 ± 4.31
20 0.97 ± 0.06 1.01 ± 0.01 0.94 ± 0.12 0.9 ± 0.16 0.92 ± 0.11 0.93 ± 0.13 -0.25 ± 3.07 1.08 ± 0.07 0.85 ± 0.28 0.83 ± 0.28 0.89 ± 0.15 0.77 ± 0.91

D2RGB
5 0.96 ± 0.06 0.95 ± 0.06 0.77 ± 0.19 0.69 ± 0.17 0.59 ± 0.16 0.74 ± 0.19 -0.55 ± 2.75 0.27 ± 0.83 0.47 ± 0.43 0.47 ± 0.28 0.43 ± 0.23 0.36 ± 0.87

10 0.99 ± 0.03 1.0 ± 0.01 0.91 ± 0.14 0.89 ± 0.14 0.83 ± 0.12 0.9 ± 0.13 0.73 ± 1.13 0.94 ± 0.08 0.79 ± 0.32 0.82 ± 0.24 0.76 ± 0.17 0.8 ± 0.38
20 1.0 ± 0.01 1.0 ± 0.01 1.01 ± 0.01 0.98 ± 0.08 1.0 ± 0.01 1.0 ± 0.05* 1.2 ± 0.45 0.95 ± 0.08 1.01 ± 0.02 0.97 ± 0.13 1.01 ± 0.02 1.01 ± 0.16*

Oracle Expert
5 0.98 ± 0.0 0.82 ± 0.23 0.73 ± 0.25 0.62 ± 0.2 0.52 ± 0.14 0.68 ± 0.23 -0.03 ± 0.18 -1.3 ± 3.12 0.4 ± 0.55 0.35 ± 0.35 0.34 ± 0.2 0.21 ± 0.92

10 0.98 ± 0.0 0.86 ± 0.25 0.85 ± 0.24 0.77 ± 0.24 0.81 ± 0.25 0.82 ± 0.23 -0.01 ± 0.17 -0.77 ± 3.27 0.66 ± 0.53 0.61 ± 0.4 0.73 ± 0.35 0.49 ± 0.94
20 0.98 ± 0.0 0.98 ± 0.01 0.92 ± 0.19 0.89 ± 0.22 0.97 ± 0.05 0.92 ± 0.18 0.03 ± 0.17 0.81 ± 0.13 0.82 ± 0.4 0.81 ± 0.38 0.96 ± 0.07 0.77 ± 0.4

Wrinkle
5 0.98 ± 0.0 0.87 ± 0.12 0.69 ± 0.16 0.58 ± 0.13 0.52 ± 0.14 0.65 ± 0.19 0.0 ± 0.0 -0.83 ± 2.08 0.29 ± 0.36 0.28 ± 0.22 0.33 ± 0.19 0.19 ± 0.61

10 0.98 ± 0.0 0.9 ± 0.09 0.75 ± 0.14 0.63 ± 0.17 0.58 ± 0.14 0.7 ± 0.19 0.0 ± 0.0 -0.37 ± 1.34 0.43 ± 0.32 0.37 ± 0.29 0.42 ± 0.2 0.31 ± 0.46
20 0.98 ± 0.0 0.92 ± 0.07 0.88 ± 0.12 0.7 ± 0.17 0.68 ± 0.2 0.78 ± 0.18 0.0 ± 0.0 -0.14 ± 1.02 0.73 ± 0.28 0.48 ± 0.3 0.55 ± 0.27 0.47 ± 0.43

(a) Policy Learning Baselines (b) Planning Baselines

Fig. 4: Normalised coverage of different deep reinforce-
ment learning algorithms on pick-and-place fabric flattening.
Planning baselines generally shows better performance than
policy learning methods on the principal metric, and Planet-
ClothPick beats all other state-of-the-art deep reinforcement
learning algorithms in fabric-flattening.

IV. EXPERIMENTS

We standardise the pick-and-place (P&P) fabric-flattening
simulated environment and conduct all experiments in Soft-
Gym [19], which originally provided the basic functionality
of the simulation and the performance benchmark on the ve-
locity control. We assess manipulation performance through
normalised coverage (NC) and normalised improvement (NI)
across the action steps up to 20 steps, as it is the standard
in the cloth-flattening literature. We additionally evaluate

(a) Normalised Improvement (b) Secondary Metrics

Fig. 5: Comparison of PlaNet-ClothPick against state-of-the-
art cloth-flattening robotic systems; the colour of the dots in
subfigure (b) corresponds to the colour bar for indicating the
size of the datasets. Our method achieves a similar level of
fabric-fattening as the mesh-based planning methods and sur-
passes visual planning on the principal metric in simulation,
and it showcases a one-order-of-magnitude advantage over
the action inference time and transitional model parameters
over these systems.

latent dynamic models (LDMs) through the observation
reconstruction from posteriors, which gives a good indication
of posterior representation learning, which is essential for
providing good initial latent states for the planning (see
Figure 6). Following VSF [9], we manually select a subset
of testing states and classify them into five tiers based on
initial coverage (see Table I). Note that all the methods in



(a) Depth and Mask Reconstruction of PlaNet-ClothPick (b) RGB2RGB Reconstruction of LDMs

Fig. 6: Reconstruction quality of latent dynamic models compared to ground truth (GT). By incorporating KL balancing,
PlaNet-ClothPick produces the best posterior and prior observation reconstruction quality.

this work are trained offline as other SoTA robotic systems
[9], [13], [14].

A. Comparison against SoTA methods

We benchmark PlaNet-ClothPick (Section III-B) on fabric
flattening with our reward function against SoTA policy
learning deep reinforcement learning (DRL) algorithms, such
as Curl-SAC [34], DrQ-SAC [35], Dreamer with normal
and categorical distributions, and SLAC (Figure 4(a)), as
well as ClothMaskPick-MPC (Section III-B.3) planning on
the LDMs from PlaNet, Dreamer with both variants and
SLAC (Figure 4(b)). Note that the policy learning DRL
baselines are trained with 500,000 update steps, and LDMs
with 100,000 update steps — we employ ClothMaskPick-
MPC to plan on these LDMs for consistency. Both sets of
baselines learn from our special dataset with the proposed
reward function and 64× 64 RGB images as input/output
(I/O) observation by rescaling the values within the range
of [-0.5, 0.5]. For controlling the variables while comparing
against PlaNet-ClothPick, only the LDM baselines apply our
data augmentation, as some of the policy learning methods
come with their own.

We also compare our method against the reported perfor-
mance of the previous SoTA cloth-flattening robotic systems
(Figure 5), such as VSF, VCD and VCD-GI, from Lin et
al. (2022) [14]. In addition, we experiment on the heuristic
method Wrinkle proposed by Sun et al. (2013) [7] via
integrating the corresponding implementation of Seita et al.
(2020) [8] to our environment. Note that this implementation
approximates the detection of wrinkles from the true particle
positions of the fabric rather than from the depth camera as
in the original method; hence, it only works in simulation.
Then, we examine the action inference time of all successful

methods on a GeForce RTX 3090 GPU with the systems’
default setting.

Our result shows that PlaNet-ClothPick outperforms all
the general DRL algorithms in fabric flattening. It also
statistically surpasses SoTA NI-against-step performance of
VSF and VCD, reaching the same level of competence as
VCD-GI. Moreover, our method exhibits around 10× faster
action inference time and 10× fewer transitional model
parameters compared to the three baselines. However, it does
need 10× more data to train.

B. Study on PlaNet-ClothPick

(i) How significant are the different components of the
PlaNet-ClothPick?

We train our model on two other reward functions: nor-
malised coverage and the reward from Hoque et al. (2022)
[9]. Figure 3(a) indicates that our reward function is key
to achieving near-perfect performance, especially for cases
with low initial coverage. It also shows that PlaNet-ClothPick
outperforms the expert policy used for data generation.

Figure 3(b) presents the significance of the different
parts of the model during the training and inference time.
We observe that cross-entropy model predictive control
(MPC-CEM) often produces an action slightly outside the
cloth, which always misses the cloth and makes the algo-
rithm operationally inefficient (see Figure 1); the proposed
ClothMaskPick-MPC is critical for achieving effective flat-
tening in general. Sufficient data, data augmentation, KL
balancing and prior reward learning are all essential for
PlaNet-ClothPick to achieve near-perfect flattening.

(ii) How does KL balancing contribute to the success of
the PlaNet-ClothPick? Figure 8 shows that KL balancing
generates a latent space that leads to better observation and



Fig. 7: Normalised coverage of ClothMaskPick-MPC with
different hyperparameters. More optimisation iterations and
populations produce better and more effective planning re-
sults. However, the proposed planning method struggles with
multi-step horizons, as it cannot estimate the prior cloth mask
for further planning steps.

(a) Prediction Error (b) Latent Properties

Fig. 8: Effects of KL balancing. Although KL balancing
increases the entropy of the latent space and the divergence
between the posterior and prior representation, it produces
better latent space reflected by the better accuracy of the
observation and reward posterior prediction.

reward prediction accuracy, which provides a better initial
state estimate for planning.

(iii) How does the RSSM model’s input/output variants
affect the performance of PlaNet-ClothPick?

Table II indicates that the D2D variant performs worse
than the D2RGB and D2Mask variants; combining the re-
construction quality of the variants from Figure 6 suggests
that compressing the depth-only information cannot produce
good latent representation for achieving fabric-flattening.
Besides, the depth or RGB input of the RSSM model does
not affect the performance of PlaNet-ClothPick when the
output observation is informative enough for learning good
latent representation.

In addition, comparing the results of RGB2Mask to
RGB2Mask-fm and D2Mask to D2Mask-fm, we conclude
that fetching the accurate estimation of the cloth mask for
ClothMaskPick-MPC is important for selecting the most
effective picking position on the cloth.

(iii) How robust is ClothMaskPick-MPC?
We examine the hyper-parameters of ClothMaskPick-MPC

on the RGB2RGB variant of PlaNet-ClothPick. Figure 7
demonstrates that more optimisation iterations and larger
populations produce better and more effective planning re-
sults. However, the proposed planning method struggles with
multi-step horizons, as it cannot estimate the prior cloth mask
for further planning steps.

V. CONCLUSION

This paper investigates the failure of latent dynamic mod-
els (LDMs) on fabric flattening. To our knowledge, this is the
first time an Recurrent State Space Models (RSSM) based
model has shown state-of-the-art (SoTA) performance on the
fabric-flattening task. We find that the sharp discontinuity
of the transition function on the fabric’s contour makes
it difficult to learn an accurate LDM, causing the Model
Predictive Control (MPC) planner to produce pick actions
slightly outside of the cloth. We employ ClothMaskPick-
MPC, KL balancing, prior reward learning, data augmenta-
tion, and special data collection to improve the performance
and robustness of PlaNet in this domain.

Our mesh-free method PlaNet-ClothPick achieves SoTA
performance regarding primary metrics among all the re-
inforcement learning methods, an order-of-magnitude ad-
vantage over the action inference time and the number
of transitional model parameters compared to the previous
SoTA robotic systems in this domain.

In the future, we would like to investigate our method
in real-world trials and extend its application to garment
flattening. We also plan to reduce the inductive biases
we introduced in the data collection by applying SoTA
exploration strategies and those in planning algorithms by
combining policy learning and planning. Finally, we will
investigate the multi-step prediction ability of the RSSM
models and make the planning algorithm more robust with
multi-step planning, potentially making the flattening more
operationally effective.
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