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A B S T R A C T

Sharing Internet of Things (IoT) data across different sectors, such as in smart cities, becomes complex due to
heterogeneity. This poses challenges related to a lack of interoperability, data quality issues and lack of context
information, and a lack of data veracity (or accuracy). In addition, there are privacy concerns as IoT data
may contain personally identifiable information. To address the above challenges, this paper presents a novel
semantic technology-based framework that enables data sharing in a GDPR-compliant manner while ensuring
that the data shared is interoperable, contains required context information, is of acceptable quality, and is
accurate and trustworthy. The proposed framework also accounts for the edge/fog, an upcoming computing
paradigm for the IoT to support real-time decisions. We evaluate the performance of the proposed framework
with two different edge and fog–edge scenarios using resource-constrained IoT devices, such as the Raspberry
Pi. In addition, we also evaluate shared data quality, interoperability and veracity. Our key finding is that the
proposed framework can be employed on IoT devices with limited resources due to its low CPU and memory
utilization for analytics operations and data transformation and migration operations. The low overhead of
the framework supports real-time decision making. In addition, the 100% accuracy of our evaluation of the
data quality and veracity based on 180 different observations demonstrates that the proposed framework can
guarantee both data quality and veracity.
1. Introduction

The Internet of Things (IoT) ecosystem continues to expand along-
side other newer computing paradigms, such as edge/fog computing,
leading to exponential growth in data. With the IoT ecosystem, we refer
to the integrated layer of IoT hardware, software, and connectivity [1].
The term ‘‘big data’’ is used to refer to these massive amounts of data
generated by the IoT [2]. For example, IoT connections are expected to
reach 83 billion by 2024, rising from 35 billion in 2020 [3]. As the IoT
ecosystem expands, so do the associated complexities and challenges
arising from heterogeneity, such as data interoperability, accuracy, and
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quality. These issues must be addressed as the IoT is implemented in
crucial sectors, such as healthcare for remote robot surgery [4].

Fig. 1 provides a high-level overview of the use of IoT in different
environments by integrating recent edge/fog computing paradigms
and highlights the corresponding challenges. The first challenge is
associated with data quality and accuracy. The term ‘‘accuracy’’ is
also referred to as ‘‘data veracity’’. Data quality issues occur due to
reasons, such as sensor calibration inaccuracies and environmental
effects that cause erroneous observations [5–7]. With data quality,
we refer to the suitability of data (or fitness to use) for a specific
vailable online 27 March 2024
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Fig. 1. IoT data sharing environment with an edge/fog scenario and the associated challenges.
application or task [8]. More than 50 studies have been conducted
using advanced statistical and machine learning techniques to ensure
that the observation values are not erroneous [7]. This is because
poor-quality data can lead to poor or flawed decisions. However, such
post-hoc approaches as anomaly and outlier detection are expensive
and not suitable for real-time. Data integrity is also important and
is a key challenge [6,9]. Therefore, there is a need for a scalable
solution that intrinsically addresses the data quality challenge and also
addresses the data veracity problem. Furthermore, there is a need for
understanding data veracity in the context of edge/fog that will enable
decision making in smart cities and autonomous driving.

Interoperability and the lack of context are other challenges [2,5,6,
9]. Interoperability is the ability of heterogeneous systems to exchange
and consume data [10]. Interoperability, for example, accounts for
40% of the potential benefits of the IoT, which is anticipated to have
a yearly economic impact of $11.1 trillion by 2025 [11]. Interop-
erability is essential to enable the exchange and use of information
across heterogeneous systems. Context (or contextual information) in
the case of data sharing is the set of interrelated conditions describing
the data, such as sensor information, units of measurement, and the
observed property. This is extremely crucial as the heterogeneity of
the IoT grows and its use in automated decision making increases.
In addition, the availability of context facilitates accurate decision
making. Temperature, for instance, can be measured on a variety of
scales; if the unit of measurement, for example, is not specified, the
likelihood of errors increases. This is because the same measurement
value on different scales represents different meanings. For example,
if 53.6 on the Celsius scale is a high temperature, in Fahrenheit it
is not, as it would just mean 12 on the Celsius scale. A recent study
on data quality and trust in the IoT by Byabazaire et al. [5] found
that, despite its importance, context information is often disregarded.
According to Byabazaire et al. [5], context is a component of data
quality, and no solutions have considered context information while
assessing data quality.

Data sharing in the IoT presents additional challenges related to
privacy and trust [12,13]. For example, the privacy concern has led
to the implementation of legislation to safeguard privacy, such as the
General Data Protection Regulation (GDPR) in 2018 [14], which has
165
added an additional layer of complexity. GDPR aims to improve privacy
and transparency in data sharing and processing through the notion
of informed consent from the data subject (i.e., a natural person)
which must be obtained prior to sharing and processing data containing
personally identifiable information (PII) concerning the data subject.
Non-compliance with GDPR can result in a maximum fine of up to 20
million euros or 4% of the firm’s global annual revenue for the preceding
financial year, whichever is greater (Article 83). Consequently, privacy is
also a concern in the IoT [15] where applications such as smart cities,
vehicle data sharing, and healthcare generally involve PII data.

Trust has been extensively studied [5,12]. Over fifty studies have
been done on IoT trust management using methods like statistical
approaches and also the blockchain, similar to works on data qual-
ity [12]. However, they are primarily concerned with the composition
and management of IoT services and have not addressed issues such
as heterogeneity [12]. Studies on trust focusing on IoT data, such as
those by Byabazaire et al. [16], have also been conducted, proposing
a framework to derive the trust metric from the shared IoT data.
However, Byabazaire et al.’s [16] framework focuses on deriving trust
from shared data, as opposed to trust as an intrinsic metric of real-
time data sharing. In addition, as pointed out by Byabazaire et al. [16],
their work does not address memory or computational costs, which are
essential in the case of the IoT due to its resource-constrained nature.
Fortineo et al. [13], in their survey on trust and reputation in the
IoT, further highlights the need to consider the resource constrained
nature of IoT and the newer edge/fog computing paradigms. There is
a need for a privacy-aware solution for data sharing that incorporates
an intrinsic trust metric.

Therefore, the proposed framework introduces a trust metric in-
trinsic to the shared. In addition, the proposed framework includes
consent checking to ensure privacy and compliance with GDPR. This is
because the integration of the trust metric (or score) helps determine
the extent to which one should rely on shared data. The same, i.e., the
significance and necessity of the trust metric (or score), is emphasized
by Byabazaire et al. [5] in their survey on data quality and trust in IoT
for secure end-to-end data sharing, along with the difficulties such as
how to securely propagate the trust metric. Additionally, trust metrics
have been implemented in other contexts, such as Google search [17],
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where trustable sources are ranked highly. This further emphasizes the
significance of the trust metric.

The proposed framework, which addresses the aforementioned chal-
lenges (or problems), such as interoperability, quality, privacy, and
trust issues in IoT data sharing in a heterogeneous environment, uses
semantic technology. Semantic technology, specifically ontologies and
knowledge graphs (KGs), which are based on the linked-data concept,
can represent real-world relationships, be used to build knowledge, and
can also provide reasoning, interoperability, data enrichment, and data
variety handling capabilities [18]. In addition, the proposed approach
makes use of the blockchain, which provides properties such as tam-
perproofness [19] and makes the proposed solution suitable even for
an untrustworthy environment.

The proposed framework supports real-time (or near real-time) deci-
sion making and utilizes low resources, as evidenced by the following
findings: (i) an average CPU utilization at the edge and fog, respec-
tively, of 33.61% and 15.62% for analytics operations and 12.35% and
1.24% for data transformation and migration operations; (ii) an average
time to perform analytics operations at the fog layer of 1.1 s and the
edge of 7.2 s; and (iii) 51 MB of memory utilization.

The paper is organized as follows. Section 2 provides background
information, the motivation for our work, and the contributions. Sec-
tion 3 provides an overview of the related work. Section 4 provides an
overview of methodology used in our study for ontology modeling as
well as for weighted trust metric. Section 5 details the proposed system
(or framework). Section 6 provides information on the experimental
setup and implementation. Section 7 provides details on the experiment
and evaluation of our work. Finally, Section 8 provides the conclusion.

2. Background, motivation & contribution

Data sharing and integration are vast and extremely important in
today’s connected world. However, despite the importance of data
sharing, the number of works in this area is limited [20]. Additionally,
with the rise of new technology and industrial and legal requirements,
the data sharing and integration landscape continuously evolves, intro-
ducing new opportunities and obstacles. One such instance is the imple-
mentation of the GDPR, which has altered the data sharing paradigm.
For example, our previous work [21] that the proposed framework in
this paper extends established a data pipeline framework for secure
and accurate data migration and does not cover GDPR. Moreover, Yang
et al. [20] recently proposed an edge data sharing framework named
EdgeShare for industrial IoT data sharing using blockchain. However,
as with other works, the other important aspects, such as data quality
and legal regulations, still need to be covered to provide a holistic data
sharing solution.

2.1. Motivation

The major motivation for this work is the existing challenges, such
as data quality and their impact in supporting decision making tasks in
domains like healthcare and smart cities. For example, three-quarters of
IoT projects fail solely because of the data quality issue [6,7]. In a man-
ner analogous to data quality, the other motivations include challenges,
lack of context awareness, trust, accuracy, and interoperability, all of
which affect decision making. For example, one can only imagine the
repercussions of having data, even a simple temperature measurement,
without appropriate context or an interoperability issue in patient mon-
itoring systems. In addition, the limited work in data sharing [20] and
the need for a comprehensive solution that addresses the previously-
mentioned challenges, a lesson learned from our previous work [22]
and the smashHit1 project, serve as additional motivation.

1 https://smashhit.eu.
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Moreover, it is just as essential to understand the implications of
the new technological solutions, particularly with regard to supporting
real-time (or near real-time) decision making in edge/fog scenarios, as
it is to address the previously mentioned challenges. The reason is the
growing use of IoT in industries such as healthcare and manufacturing,
which require real-time (or near real-time) decision making. It is the
same reason, i.e., the need to support the real-time requirements and to
reduce the latency caused by cloud–IoT communication, the edge/fog
paradigms were introduced [23]. Understanding the suitability of the
proposed solution to support real-time decision making constitutes the
another motivation for our work.

In line with the motivations, this research seeks to answer the
following research questions:

1. How can we assure accurate and trustworthy data sharing in an
interoperable manner in a complex, heterogeneous environment
such as a smart city to support data-driven decision making?

2. Can we assure the need for real-time (or near real-time) deci-
sion making, i.e., support analytics operation in a constrained
environment while addressing other challenges such as interop-
erability and data veracity?

2.2. Contribution

Based on the motivation of our work, we make the following
contributions.

1. The design and implementation of a privacy-aware interoperable
IoT data sharing framework based on semantic technology and
blockchain that intrinsically guarantees data quality based on
predefined criteria and also ensures data veracity.

2. An introduction of the weighted trust metric (see Section 4.2)
that is intrinsic to shared data and considered within an edge/fog
scenario.

3. Assessing context information as a component of data quality,
for which, according to [5], there are currently no solutions.

4. The design and implementation of the framework to provide
data analytics capability to support real-time decision making
requirements at edge/fog, along with interoperable and quality
data sharing.

5. Finally, the performance evaluation of the proposed framework
in terms of memory and CPU (Central processing unit) over-
head and execution time with two different edge and fog–edge
scenarios utilizing resource-constrained IoT devices such as the
Raspberry Pi.

3. Related work

In this section, we provide an overview of related works focusing
on IoT data sharing. The summary of related works includes studies
that address issues such as interoperability, data quality, and accuracy.
Additionally, our review includes studies that examine GDPR-compliant
IoT data sharing and excludes studies that do not focus on privacy from
a GDPR perspective. Similarly, studies that do not directly address the
sharing and processing of IoT are excluded from the review of related
works. The related works are grouped into two categories: (i) semantic-
based studies, which utilize semantic technology (Section 3.1), and (ii)
non-semantic technological studies (Section 3.2), which do not utilize
semantic technology in their work. The other section, Section 3.3,
provides a summary of the related works.

3.1. Semantic technology-based study

Rubí et al. [24] focuses on environmental data sharing in smart

cities. The work uses the semantic technology, as in our study, to enable

https://smashhit.eu
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interoperability and also takes into account the changing computing
landscape, such as fog computing. The work of Rubí et al. [24], how-
ever, does not focus on other aspects, such as ensuring data veracity and
GDPR. Loukil et al. [25] present a privacy-preserving blockchain-based
platform, PATRIoT, for IoT data sharing. The work is GDPR-focused and
makes use of semantic technology, specifically the LIoPY ontology [26],
which models the privacy requirements. Moreover, the work takes into
consideration the limited computing capability of IoT devices. The
work, however, does not consider other aspects such as interoperability
and accuracy (or veracity) of shared data, which are very important in
sectors such as healthcare. Strassner et al. [27] proposed a semantic
technology based architecture for interoperable IoT data sharing and
also considered fog computing. However, as highlighted by Strassner
et al. [27], the implementation and performance evaluation are left
for future work. Reda et al. [28], likewise, conducted research on
the integration and sharing of heterogeneous healthcare wearable data
using semantic technology. Reda et al. [28] developed a web portal
for integrating, sharing and analyzing IoT data. The proposed approach
has been verified using IoT data collected in RDF (Resource Description
Framework)2 format. Reda et al. [28], similar to our study, also applied
the SWRL (Semantic Web Rule Language) rule to detect the vital signs
of health conditions like a cardiac event. The other aspects of the data,
such as veracity, were not the focus of the work. Zappatore et al. [29]
conducted a study using semantic technology for IoT in healthcare
(or wellness). In their work, Zappatore et al. [29] proposed a new
ontology, the FitBit API ontology, for interoperability. Moreover, it also
proposed an architecture platform named App4Health and considered
the edge/fog tier. However, the interoperability layer only exists at the
cloud tier (or in the cloud), and further implementation is planned as
a future work.

3.2. Non-semantic technological study

Makhdoom et al. [30] present a privacy-preserving and blockchain-
based framework for IoT data sharing. The work by the use of the
blockchain addresses the security issue and also covers GDPR require-
ments such as data sharing based on consent. This study, like ours, only
stores the transaction hash in the blockchain. However, the study does
not address the interoperability challenge and also does not provide
analytics capability as in our work. Moreover, integration of fog (or
fog nodes) is left as a future work.

Abdullah et al. [31] propose a privacy-aware framework, the
PRISED tangle, for IoT data sharing in healthcare. The work of Abdullah
et al. [31] uses IOTA Tangle, which is a zero-fee, zero-miner, zero-
block distributed ledger technology (DLT) for the IoT [32]. The IOTA
Tangle uses a new data structure based on directed acyclic graphs.
Moreover, the authors have also considered GDPR in their framework,
enabling GDPR-compliant health data sharing. With the use of the DLT,
the authors have addressed privacy issues. However, issues such as
interoperability and data quality remain unresolved. Bai et al. [33],
similar to the previous studies, proposed a framework for the sharing
and storage of healthcare data using blockchain. However, unlike
previous work, the framework of Bai et al. [33] supports the GDPR’s
‘‘right to be forgotten’’ rule and uses IPFS3 (the InterPlanetary File
System) for data storage. The framework, as the authors point out,
is computationally intensive, necessitating the use of systems with
greater computational capacity, and thus is unsuitable for the edge/fog
scenario. Additionally, other aspects of data, such as quality, have not
been considered.

Similar to Makhdoom et al. [30], Alamri et al. [34] present a frame-
work to enable interoperable and GDPR-compliant IoT-based personal
health record data sharing using blockchain. The work considers the

2 https://www.w3.org/RDF/.
3 https://ipfs.tech/.
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privacy aspect, as in our study from the GDPR perspective, and also
interoperability following HL7 FHIR.4 However, the work does not
ensure data veracity, and also, implementation is left as future work.
Tsiouris et al. [35] propose an interoperable telehealth platform that
enables the sharing of IoT data with a remote cloud for data storage
and analytics. As with Alamri et al. [34], Tsiouris et al. [35] also
relies on HL7 FHIR4 standards for interoperability. The edge unit,
which constitutes one of the key component of Tsiouris et al.’s [35]
work, is responsible for managing IoT devices and tasks and enabling
data exchange with the cloud. However, the work does not deal with
issues such as data veracity (or accuracy) and privacy, which are even
more critical in the health sector. Additionally, interoperability can
be achieved only after data is processed in the remote cloud, as the
cloud is the repository for the core interoperable technologies. Halim
et al. [36] proposed a general framework for interoperable IoT data
sharing. The proposed framework stores the metadata information,
such as ownership, in a SQL (Structured Query Language) database
and the IoT data in a NoSQL database. The framework consists of three
key components: a device management layer for the abstraction of IoT
devices, a data management layer for handling data, and a service layer
that provides services to applications such as access to data. However,
as with other studies, data veracity and quality aspects are not the
focus.

Poojara et al. [37] propose a serverless data pipeline for IoT data
sharing in the fog and cloud computing. The work of Poojara et al. [37]
also evaluates the trade-offs of the proposed serverless data pipeline
for different types of fog computing workloads, such as Anenas [38]
and custom video processing. However, the work does not consider the
interoperability and legal regulations such as GDPR.

3.3. Summary

In short, the review highlights that related works are devoted to
specific aspects of IoT data sharing requirements such as interoper-
ability but lack coverage of all the critical aspects: privacy, accuracy
(or data veracity), and data quality, which are required for end-to-
end IoT data sharing. Table 1 shows a comparison of our work to the
state-of-the-art works, highlighting the current research gaps. For the
comparison, we have considered the following criteria: (i) privacy from
a GDPR perspective; (ii) interoperability; (ii) data quality; (iv) data
veracity; (v) trust metric (or score); (vi) analytics operation indicated
by analytics; (vii) considerations for the edge/fog scenario; and (viii)
finally, the performance evaluation. The data quality in Table 1 reflects
both the evaluation of the context information and the data themselves.
In the case where a study covers either one of these data quality
aspects, they are indicated with a check mark. Similarly, the analytics
in Table 1 represent if the study has implemented any kinds of analytics
(or reasoning) operations to support real-time decision making with an
edge-and-fog scenario. The check mark (✓) indicates that the compared
criteria were incorporated into the study’s design, implementation,
or both. The cross (×), on the other hand, indicates that either the
compared criteria were not considered or there was no information
in the study. As can be observed from Table 1, our study covers the
needed aspects of data, such as quality, veracity, and privacy, that are
required in an end-to-end data sharing scenario, thereby demonstrating
the benefits of our work. Furthermore, several works on IoT privacy
have been conducted, such as the one by Liu et al. [39], which do
not address GDPR and have not been considered in our related works.
However, such works can be regarded as relevant for future work as
they can be integrated into our framework, which already enables
GDPR-compliant data sharing and processing.

In light of the existing research challenges, we present our work
which enables privacy-aware IoT data sharing and processing while

4 http://hl7.org/fhir/.
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Table 1
Comparison with state-of-the-art.

Study Privacy Interoperability Data quality Data veracity Trust metric Analytics Edge/Fog Performance
evaluation

Rubí et al. (2021) [24] × ✓ × × × ✓ ×/✓ ✓

Loukil et al. (2020) [25] ✓ × × × × × ×/× ✓

Strassner et al. (2016) [27] × ✓ × × × × ×/✓ ×
Reda et al. (2022) [28] × ✓ ✓ × × × ×/× ×
Zappatore et al. (2023) [29] × ✓ × × × ✓ ✓/✓ ×
Makhdoom et al. (2020) [30] ✓ × × × × × ×/× ✓

Abdullah et al. (2022) [31] ✓ × × × × ✓ ×/× ✓

Bai et al. (2022) [33] ✓ × × × × × ×/× ✓

Alamri et al. (2021) [34] ✓ ✓ × × × × ×/× ×
Tsiouris et al. (2020) [35] × ✓ × × × × ✓/× ✓

Halim et al. (2022) [36] × ✓ ✓ × × × ✓/× ✓

Poojara et al. (2022) [37] × × × × × ✓ ✓/✓ ✓

Our study ✓ ✓ ✓ ✓ ✓ ✓ ✓/✓ ✓
c
t
t

simultaneously providing interoperability and assures both quality and
accuracy (or veracity). In addition to privacy, interoperability, accu-
racy, and quality aspects, our work also considers the intelligence at
the edge or fog levels to support real-time (or near real-time) decision
making. For example, the increasing use of IoT for monitoring, such
as in power plants, necessitates real-time decision making. This can
be accomplished by the use of edge or fog computing. However, the
reviewed studies fail to take into account this essential factor that our
work does.

4. Methodology

This section provides details about the methodology that is adopted
for ontology modeling and the trust metric (also referred to as the trust
score or trustworthiness score). The methodology that is employed in
our work is applicable in other contexts. Furthermore, the ontology en-
ables the integration of heterogeneous data sources, such as in the case
of smart cities [40]. Moreover, this section also provides an overview
of the functional and non-functional requirements. The preliminaries of
the concepts are available as supplementary material (see Appendix A).

4.1. Ontology modeling

The ontology is the core of our systems, as it facilitates interop-
erability and further enables reasoning capabilities. We followed the
standard ontology modeling practice [41], wherein the first step is
to define the scope of the ontology (or ontology requirements), such
as what the ontology should model (or cover). Since this research is
concerned with the sharing of IoT data, the ontology’s scope should be
established in a similar manner. The scope of our ontology is outlined
below. The ontology as well as the source code can be accessed at [42].

1. The ontology should be able to represent sensor information
and observation results, as well as context such as units of
measurement describing observation results.

2. Based on what the sensors see, the ontology should be able to
support reasoning (or analytics) operations, like creating an alert
in our case.

According to our scope (i.e., ontology requirements), the ontology must
be able to answer the competency questions (CQs) listed below. These
CQs are derived from our proposed framework, which is aimed at
addressing the challenges of IoT data sharing, such as data quality
issues.

CQ 1. What is making an observation?
CQ 2. What is the sensor observing, such as temperature (i.e., ob-

served property), and in what units?
CQ 3. When was the observation made?
168

a

CQ 4. How can we ensure the reliability and accuracy (i.e., data
veracity) of data?

CQ 5. What type of edge reasoning is carried out?

Fig. 2 shows the ontology used in our study that was developed
following our CQs. The ontology used in our study is small, i.e., it
only includes a limited number of concepts pertaining to sensors and
their observation. Our study’s small ontology is due to the different
focus of our work, which is to demonstrate the use of ontology to
address challenges such as interoperability, as opposed to ontology
engineering that focuses on creating large ontologies. However, the
methodology adopted for our ontology modeling can be used to model
larger ontologies in a collaborative setting or extend the scope of the
ontology used in our study. The ontology used in this study reuses
the concepts from the two different ontologies, namely SOSA [43] and
the OM (Ontology of units of Measure) [44]. We consider SOSA [43]
ontology compared to other ontologies like DogOnt [45] due to its wide
adoption. In Fig. 2, the reused classes and properties from the OM and
SOSA ontologies are denoted by the prefixes om and sosa, respectively.
The prefix sricats shows that the concepts are unique to this study.

With CQ 1, CQ 2, and CQ 3, the ontology captures information about
the sensor observation result and also context information describing
the observation, such as units in which observation was made and the
time when observation was made. The sosa:Sensor class and property
sosa:madeBySensor provides an answer to CQ1, while sosa:Observation
class and sosa:-resultTime property provides an answer to CQ3. In a
similar manner, classes sosa:Observation, sosa:ObservableProperty and
om:Unit, as well as their respective properties om:hasUnit,
sosa:-hasSimpleResult, and sosa:-observedProperty provides an answer
to our CQ 2. Moreover, the ontology can be easily expanded to in-
clude additional context information, such as location, based on the
requirements. In addition, this incorporation of context information
into the ontology enables us to validate using SHACL (Shapes constraint
language) as part of the data quality, which is one of the limitations
highlighted by [5] and one of our contributions.

The properties sricats:hasTrustabilityScore and sricats: hasBlockchain-
Hash provides an answer to our CQ 4 and the property sricats:
hasEdgeReasoningType as well as the classes sricats:TemperatureAlert and
sricats:HumidityAlert answers CQ 5. The sricats:TemperatureAlert and
sricats:HumidityAlert are classes representing alert operations specific
to the humidity and temperature observations, respectively. The rea-
son for this separation is to make concepts explicit and follows the
ontology definition. These concepts, namely sricats:TemperatureAlert
and sricats:HumidityAlert, can be thought of as target labels in the
ase of machine learning and are used in SWRL reasoning to perform
he classification task. For instance, we wish to predict, based on
he temperature observation value, whether or not the temperature

lert should be triggered. Thesricats:-hasEdgeReasoningType provides
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Fig. 2. Ontology used in our study.

information on the types of reasoning to perform, such as temperature
or humidity in our case.

The prefix rdfs in Fig. 2 represents the RDF schema,5 which provides
a vocabulary for RDF. sricats:hasBlockchainHash, on the other hand,
contains the blockchain transaction hash value, which is subsequently
used to verify data veracity (or accuracy), and sricats:
hasTrustabilityScore stores the trustworthiness score.

4.2. Trust metric

Eq. (1) illustrates the weighted trust metric (or score) that we
employ in our research. The trust score (or metric) is a function of the
trust factor 𝐹 and its weight 𝑊 . The trust score ranges from 0 to 1, with
higher numbers indicating greater trustworthiness. The trust factor 𝐹
defines the criteria for trust. It can be either 0 or 1, indicating whether
the trust criteria have been met. W, which sums to 1, represents
the weight that has been assigned to each of the established trust
criteria. This weighted approach accounts for the subjectivity of trust
by permitting individuals to assign weights to each of the defined trust
criteria based on their level of trust.

𝑡𝑟𝑢𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 (𝑡𝑠) =
𝑛
∑

𝑖=1
𝐹𝑖 ×𝑊𝑖, 𝑤ℎ𝑒𝑟𝑒 𝐹𝑖 ∈ {0, 1}, 0 ≤ 𝑊𝑖 ≤ 1 𝑎𝑛𝑑

∑

𝑊𝑖 = 1

(1)

In our study, we considered three social trust criteria (or factors):
manufacturer, location where IoT is deployed, and deployment by,
i.e., who deployed the IoT. The weights assigned were 0.5, 0.3, and
0.2 for manufacturer, location, and deployment, respectively. The con-
siderations for these trust factors derive from [46,47]. For instance,
if an IoT device manufactured by Texas Instruments is deployed, the
level of trust would be high. This is because of their reputation, and
studies [46,47] have already demonstrated the relation between social
factors such as reputation and trust in the case of the IoT. However,
these criteria can be easily expanded to incorporate additional criteria;
doing so is a trivial task.

4.3. Functional and non-functional requirements

In this section, we describe the system’s functional and non-
functional requirements. These requirements are derived from our
research questions and are consistent with other research. For instance,
Gupta [48] has also highlighted the non-functional requirement of
performance efficiency, one of the key challenges in edge (or edge
computing) due to its resource-constrained nature. The below-described
functional and non-functional requirements serve as the premise for
designing the proposed system.

Functional requirements:

1. Upon receiving (or reading) the sensor data, the system must
check for consent before further processing.

5 https://www.w3.org/TR/rdf-schema/.
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2. Given the successful consent check, the system should compute
the trust score, generate the hash of the data for the data veracity
check, and store the generated hash in the blockchain.

3. After successfully calculating the trust score and storing the hash
in the blockchain (or blockchain hash) the system should convert
the sensor data, the trust score, and the blockchain hash into the
KG representation according to the ontology.

4. Upon data migration to a new location, the system should be
able to reconstruct the hash from the KG and conduct a data
veracity check. In addition, the system should be able to perform
data quality tests using SHACL after data veracity checks have
been completed successfully.

Non-functional requirements:

1. The proposed system should be resource-efficient, i.e., suitable
for deployment on resource-constrained IoT devices, with mini-
mal CPU and memory usage.

2. To support scalability, the system should permit the disintegra-
tion of its components similar to microservices architecture.

3. The system should be lawfully compliant; for instance, data
processing should only occur with explicit consent, and the use
of blockchain should not violate GDPR.

4. The system should support real-time (or near real-time) decision
making.

5. The system should support interoperability and ensure the data’s
accuracy and trustworthiness.

5. Proposed system

This section provides a conceptual high-level architecture descrip-
tion designed after reviewing the existing works. Fig. 3 shows the
architecture of the proposed system (or framework). Additionally, the
design of the proposed system is governed by the functional and
non-functional requirements outlined in Section 4.3. The following
subsections provide detailed information about the proposed system’s
components, consistent with other studies [21,22,24,25,36].

5.1. Data source

The data source comprises various sources that generate data
through IoT devices. These sources include smart cities, smart vehicles,
smart homes, wearable health devices, and hospitals, such as using en-
vironmental sensors in smart cities to monitor noise levels, air quality,
and pollution and smart inhalers in hospitals to monitor patients.

5.2. Smart contract

The smart contract in the framework represents a blockchain smart
contract. In our case, it represents the Ethereum blockchain smart
contract. The smart contract in our study contains the smart contract
definitions (i.e., code), such as to store the hash. The reason for using

https://www.w3.org/TR/rdf-schema/


Future Generation Computer Systems 157 (2024) 164–179T.R. Chhetri et al.

t
f
t
f
c
1
𝑠
(
g
i
t
i
f

the blockchain to store hashes is because generated hashes can be
compromised by exploiting flaws [49]. The storage of hashes in the
blockchain ensures that the hashes are tamper-proof and can be relied
upon while performing a data veracity check.

5.3. Data receiver

The data receiver is the first component to interact with the data
from the sensor and is the one upon which the other components of
the proposed systems depend, such as the analytics engine, to perform
tasks such as data analytics in order to enable intelligence. The received
sensor data is processed, such as by enriching it with additional context
information like observation units, prior to being transformed into the
KG representation for interoperability. Algorithm 1 shows the steps for
data processing by the data receiver component.

Algorithm 1: Algorithm for sensor data processing
Input: Sensor observation value and data subject consent
Output: Data in KG representation

1 sensorSetup ← Sensor configuration information such as name and trust factors;
2 if 𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑠𝑒𝑛𝑡 = 𝑇 𝑟𝑢𝑒 then
3 data ← get_sensor_observation_value();
4 trust_score ← compute_trust_score(sensorSetup);
5 data_hash ← generate_hash(data, trust_score, timestamp);
6 blockchain_hash ← store_data_in_blockchain(data_hash);
7 data_in_kg_format ← transform_to_kg(data, blockchain_hash, trust_score,

sensorSetup);
8 return data_in_kg_format;
9 else
10 No processing;
11 end

As the aim is also to enable GDPR-compliant data sharing, first
he consent is checked to ensure that there is appropriate consent
rom data subject (or natural person) to process sensor data. For
his data receiver component interacts with the legal engine of the
ramework. After that, the sensor data is read, and the trust score is
omputed (see Section 4.2). The trust score calculation in Algorithm

is indicated by the function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑟𝑢𝑠𝑡_𝑠𝑐𝑜𝑟𝑒(𝑠𝑒𝑛𝑠𝑜𝑟𝑆𝑒𝑡𝑢𝑝). The
𝑒𝑛𝑠𝑜𝑟𝑆𝑒𝑡𝑢𝑝 contains information about the sensors and the trust factors
or criteria). Following the computation of the trust score, a hash is
enerated, which is later used for data veracity purposes. The hash
s generated using a timestamp (date and time) value together with
he trust score and the actual data. The computation of the hash is
ndicated by 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_ℎ𝑎𝑠ℎ(𝑑𝑎𝑡𝑎, 𝑡𝑟𝑢𝑠𝑡_𝑠𝑐𝑜𝑟𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝). sha256 is used
or hash generation. The generated hash, represented by 𝑑𝑎𝑡𝑎_ℎ𝑎𝑠ℎ

variable in Algorithm 1, is then stored in a blockchain smart contract,
ensuring the integrity of the hash because of the immutability of the
blockchain. The blockchain hash (i.e., 𝑏𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛_ℎ𝑎𝑠ℎ in Algorithm 1)
is a hash of a blockchain transaction that was generated while storing
the data hash in blockchain, which in our case is the Ethereum. This
is especially important because it enables data sharing in untrusted
environments with the assurance that data veracity can be verified.
The reason for only storing hashes instead of complete data in the
blockchain is because of the contradiction of the blockchain with the
GDPR’s right to erasure (Article 17), as data stored in the blockchain
cannot be deleted. Finally, the data is transformed into a KG rep-
resentation, using the data, blockchain hash, trust score, and sensor
configuration information, and by interacting with the transforma-
tion engine. 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚_𝑡𝑜_𝑘𝑔(𝑑𝑎𝑡𝑎, 𝑏𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛_ℎ𝑎𝑠ℎ, 𝑡𝑟𝑢𝑠𝑡_𝑠𝑐𝑜𝑟𝑒, 𝑠𝑒𝑛𝑠𝑜𝑟 −
𝑆𝑒𝑡𝑢𝑝) in Algorithm 1 represents this transformation stage. In the
absence of consent, no processing, not even reading the sensor data,
is performed.

5.4. Data transformation engine

The data transformation engine is one of the core components, its
tasks include the conversion of raw data to their respective semantic
170
representations, namely, KG, thereby enabling interoperability. The
interoperability occurs through the use of the ontology that defines
concepts with a shared meaning (see evaluation Section 7.2.4) [50,51].
The following steps summarize the data transformation process.

1. The first step is to define the namespaces6 by reusing the existing
ontology where possible.

2. The subsequent step involves extracting the relevant information
from the input data.

3. The third (or final) step is to perform a mapping of the extracted
information from the input data as per the concepts (i.e., class,
object properties, and data properties) defined in an ontology.
The descriptions of the ontology used in our study are presented
in Section 4.1.

Additionally, the data transformation engine converts the generated KG
into a format compliant with SPARQL7 for data migration. SPARQL is
a query language for KG (or RDF graphs).

5.5. Legal engine

The legal engine is responsible for checking if there is valid consent
for the requested data processing activity, thereby ensuring that the
processing is GDPR-compliant. The steps involved in checking the con-
sent are shown in Algorithm 1. First, consent is obtained from the data
subject (or natural person) and is checked against the data processing
operations that is intended to be carried out. This is to ensure that
the data processing activities adhere to the consent provided. The data
processing information is obtained from other components of the frame-
work at different stages, such as during initial sensor data processing
and during validation and analytics operations. For example, one can
deploy multiple sensors at home but may consent to share or process
certain sensor data, and that too for a specific purpose. Following the
check, the final status represented by true or false is returned. The
status indicates that everything is fine and data processing activities
can be carried out, while the false status indicates that there is no
consent. ‘‘No consent’’ here could mean either no consent at all or
not for the requested processing activity or sensor. In Algorithm 1
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛() and 𝑜𝑏𝑡𝑎𝑖𝑛_𝑐𝑜𝑛𝑠𝑒𝑛𝑡_𝑓𝑟𝑜𝑚_𝑑𝑎𝑡𝑎_𝑠𝑢𝑏𝑗𝑒𝑐𝑡() are used
to obtain the data processing and consent information, respectively.
Algorithm 2: Algorithm for checking consent

Input: Data and consent from data subject
Output: Status indicating whether or not to continue data processing activities

1 consent ← obtain_consent_from_data_subject();
2 dataProcessing ← processing_information();
3 if 𝑐ℎ𝑒𝑐𝑘(𝑐𝑜𝑛𝑠𝑒𝑛𝑡, 𝑑𝑎𝑡𝑎𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔) = 𝑇 𝑟𝑢𝑒 then
4 return status True;
5 else
6 return status False;
7 end

5.6. Validation engine

The validation engine performs the data validation tasks to ensure
the following: (i) data accuracy (or veracity); and (ii) data quality. The
accuracy (or veracity) of the data ensures that it has not been altered
and that the data at the destination is the same as at the source where
it originated. The data quality, on the other hand, ensures that the
shared sensor data meets the predefined quality criteria. For the quality
criteria, the following were considered: (i) the existence of the proper-
ties sosa:observedProperty, sosa:observes, and sosa:madeBySensor with
type IRI; (ii) the existence of the sosa:resultTime with data type date-
time; (iii) the presence of the blockchain with a minimum length of 60
with data type string; (iv) the presence of the sensor observation result

6 https://www.w3.org/TR/2004/REC-owl-guide-20040210/#Namespaces.
7 https://www.w3.org/TR/sparql11-overview/.

https://www.w3.org/TR/2004/REC-owl-guide-20040210/#Namespaces
https://www.w3.org/TR/sparql11-overview/
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of type double and the range between 0–100; and (v) the occurrence
of the trustability score of type float. These quality criteria can be ex-
tended easily to include additional context and data sources by defining
them in the SHACL, and doing so is trivial. Algorithm 3 outlines the
steps to perform the validation.

Algorithm 3: Algorithm for performing validation
Input: Data in KG format
Output: Status and validated data in KG in the case of successful validation in a

dictionary format
1 if 𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑠𝑒𝑛𝑡 = 𝑇 𝑟𝑢𝑒 then
2 sensor_observation ← get_observation_result(input KG);
3 trust_score ← get_trust_score(input KG);
4 timestamp ← get_timestamp(input KG);
5 constructed_hash ← reconstruct_hash_from_data(sensor_observation, trust_score,

timestamp);
6 blockchain_hash ← get_stored_hash_from_blockchain(input KG);
7 hasDataVeracity ← check_data_veracity(blockchain_hash, constructed_hash);
8 if ℎ𝑎𝑠𝐷𝑎𝑡𝑎𝑉 𝑒𝑟𝑎𝑐𝑖𝑡𝑦 = 𝑇 𝑟𝑢𝑒 then
9 shacl_rules ← get_shacl_rules(input KG);
10 meetsDefinedDataQuality ←validate_for_quality(transformed_kg,

shacl_rules);
11 if 𝑚𝑒𝑒𝑡𝑠𝐷𝑒𝑓𝑖𝑛𝑒𝑑𝐷𝑎𝑡𝑎𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑇 𝑟𝑢𝑒 then
12 return status True along with RDF representation of KG;
13 else
14 return status False;
15 end
16 else
17 return status False;
18 end
19 else
20 No processing;
21 end

As with the case of sensor data processing (see Section 5.3), first
he consent check is performed by interacting with the legal engine
omponent of the framework. This method of checking consent prior
o each processing activity is intended to enable GDPR-compliant data
haring or processing at the granular level. After the successful consent
hecks, the relevant information from the data, i.e., KG, is extracted.
his includes getting the sensor observation value, the trust score, and
he time stamp information, as indicated by steps 2–4 in Algorithm 3.
fter that, using the sensor observation value (𝑠𝑜𝑠𝑎 ∶ ℎ𝑎𝑠𝑆𝑖𝑚𝑝𝑙𝑒𝑅𝑒𝑠𝑢𝑙𝑡
alue in KG), timestamp (𝑠𝑜𝑠𝑎 ∶ 𝑟𝑒𝑠𝑢𝑙𝑡𝑇 𝑖𝑚𝑒 value in KG), and trust
core (𝑠𝑟𝑖𝑐𝑎𝑡𝑠 ∶ ℎ𝑎𝑠𝑇 𝑟𝑢𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 value in KG), the hash value
s reconstructed in order to verify its veracity. Following the recon-
truction of the hash, the original hash stored in the blockchain is
etrieved using the transaction hash information from KG (i.e., 𝑠𝑟𝑖𝑐𝑎𝑡𝑠 ∶
𝑎𝑠𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛𝐻𝑎𝑠ℎ).

In Algorithm 3, step 5 is the step of reconstructing the hash, and
tep 6 is the step of getting the original hash from the blockchain.
eracity is determined by comparing the original and recomputed (or
econstructed) hashes. This aids in the detection of tampered data,
hich is crucial in industries such as healthcare. Additionally, the

torage of the original hash in the blockchain guarantees the tamper-
roof nature of the stored hash value due to the immutability of the
lockchain, thereby further guaranteeing the veracity of the shared
ata.

Steps 7–8 of the algorithm show the data veracity check. The data
uality test is conducted after the data veracity test has been passed. For

quality test, we begin by getting the SHACL rules
𝑔𝑒𝑡_𝑠ℎ𝑎𝑐𝑙_𝑟𝑢𝑙𝑒𝑠(𝑖𝑛𝑝𝑢𝑡 𝐾𝐺)), which contain the predefined quality cri-
eria based on the sensor data observation, such as temperature and
umidity. Once the necessary SHACL rules have been obtained, the
G is validated against the SHACL rules (𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒_𝑓𝑜𝑟_𝑞𝑢𝑎𝑙𝑖𝑡𝑦

(𝑖𝑛𝑝𝑢𝑡𝐾𝐺, 𝑠ℎ𝑎𝑐𝑙𝑟𝑢𝑙𝑒𝑠)) to determine if it meets the quality requirements.
The evaluation of quality also test context information, such as the
observation units, which is one of our contributions. If the quality test
is passed, both the status and the KG are returned, whereas in the case
of failure, only the status 𝐹𝑎𝑙𝑠𝑒 is returned, indicating that the defined
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quality criteria is not met.
5.7. Analytics engine

The analytics engine is the intelligence-enabling component of the
proposed system and provides analytics capabilities to facilitate data-
driven decision making. For instance, activating the cooling system
(or taking other appropriate action) in the event of a high temper-
ature in the data center. This is because a high temperature can
cause performance degradation and also system failures that result
in outages. Moreover, the analytics engine facilitates the data-driven
decision making capabilities at various layers. For example, in the fog
and edge layers to enable latency-aware decision making. The analyt-
ics engine, however, can also be extended to the cloud to facilitate
data-driven decision making in situations where real-time require-
ments are not necessary (or latency is not a problem). In our study,
to facilitate data-driven decision making, the analytics engine imple-
ments KG-based reasoning techniques like SWRL reasoning. The SWRL
reasoning is used to perform the classification task, i.e., classifying
sricats:TemperatureAlert and sricats:HumidityAlert based on the observed
values of temperature and humidity. The capability of the analytics
engine can easily be extended further beyond SWRL reasoning to
machine learning techniques, taking advantage of the KG for improved
prediction, as shown by studies such as [52]. Similar to the initial
sensor data processing and validation of the veracity of the data, the
consent is checked prior to performing analytics operations.

5.8. Data migration engine

The data migration engine, as the name suggests, performs data
migration (or transfer) operations, an essential operation in data shar-
ing. The data migration engine performs the migration (or transfer)
of the data from source to destination. The IoT sensor represents the
source, and the remote storage, a graph database, represents the final
destination.

6. Implementation

This section provides information about the system setup that is
used for implementation and experimentation. In addition, this section
also provides details on the implementation. Section 6.1 provides sys-
tem setup information and Section 6.2 describes the implementation in
detail.

6.1. System setup

In this section, we describe the libraries used to implement the
proposed system as well as the experimental system. Table 2 sum-
marizes the list of libraries used for the implementation. Python8 is
sed for the implementation due to its popularity in the data sci-
nce community and its usability. The libraries RDFLib,9 pySHACL10

and Owlready211 were used to deal with the semantic technology,
namely, KG and ontology. The library RDFlib is used for parsing and
serialization of the KG represented in RDF format, while pySHACL
is used to perform the validation and Owlready2 for reasoning. The
library Pika12 is used to interact with RabbitMQ,13 while PyYAML14 is
used to manage YAML15 configuration files and Adafruit-DHT16 is used
to interact with the DHT11 sensor. Docker17 is used for deployment
of systems such as RabbitMQ. Solidity and py-solc-x18 are used to

8 https://www.python.org.
9 https://rdflib.readthedocs.io/en/stable/.

10 https://github.com/RDFLib/pySHACL.
11 https://owlready2.readthedocs.io/en/v0.37/.
12 https://pika.readthedocs.io/en/stable/intro.html.
13 https://www.rabbitmq.com.
14 https://pyyaml.org/wiki/PyYAML.
15 https://yaml.org.
16 https://pypi.org/project/Adafruit-DHT/.
17 https://www.docker.com.
18
 https://solcx.readthedocs.io/en/latest/.

https://www.python.org
https://rdflib.readthedocs.io/en/stable/
https://github.com/RDFLib/pySHACL
https://owlready2.readthedocs.io/en/v0.37/
https://pika.readthedocs.io/en/stable/intro.html
https://www.rabbitmq.com
https://pyyaml.org/wiki/PyYAML
https://yaml.org
https://pypi.org/project/Adafruit-DHT/
https://www.docker.com
https://solcx.readthedocs.io/en/latest/
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Table 2
Information about the libraries that were used in the implementation.

Libraries/Software Version

Python 3.8
RDFLib 6.1.1
PyYAML 6.0
pySHACL 0.19.0
Pika 1.2.1
Owlready2 0.30
Adafruit-DHT 1.4.0
Docker 20.X
Web3 5.31.1
Ganache-cli 2.13.2
Solidity 0.8.12
py-solc-x 1.1.1

Table 3
Information about the system and its configuration used in the experiment.

System information System configuration

Raspberry Pi 3 B+ (or
Edge)

1 GB RAM, 4 core Cortex-A53 processor, 16
GB storage, Raspbian GNU/Linux 10
(Buster) OS

MacBook Pro (or Fog) 16 GB RAM, 2,8 core 3 GHz Quad-Core
Intel Core i7 processor, 500 GB storage,
macOS Monterey version 12.3.1

RabbitMQ messaging
server and Ganache-CLI

64 GB RAM, 16 core Intel Core Processor
(Broadwell), Ubuntu 20.04 LTS (GNU/Linux
5.4.0-80-generic x86_64) OS, 32 GB with
additional 2 TB shared storage

GraphDB server 64 GB RAM, 16 core Intel Core i9-9900K
processor, 1 TB storage, Debian GNU/Linux
10 (buster) OS

implement the Ethereum smart contract. Ganache-cli19 is the Ganache
command line interface. Ganache is a personal blockchain for Ethereum
that enables the safe and deterministic development, deployment, and
testing of decentralized applications.20

Table 3 summarizes the configuration of the system used in our
experiment. In our experiment, the Raspberry Pi 3 B+ serves as the
edge (or edge device), emulating a real-world scenario in which edge
devices are typically those with the lowest system capabilities (or are
usually the resource-constrained devices). The fog (or the fog layer),
which is one step up in the hierarchy, contains the systems with higher
configurations than that of the edge. In our case, the system MacBook
Pro represents the fog, the configuration of which is shown in Table 3.
Moreover, Table 3 also shows the system configuration of the servers
used for GraphDB and RabbitMQ.

6.2. Implementation

In this section, we provide an overview of the implementation of the
proposed system. The source code for the implementation is available
at [42]. All of the implementations of the framework components are
performed using Python.

6.2.1. Smart contract
The Ethereum smart contract used in our study is implemented

in Solidity. Solidity is a high-level language for implementing smart
contracts. However, as our framework is implemented in Python, our
implementation of the smart contract uses py-solc-x, a Python wrapper
for the Solidity compiler. The smart contract is implemented in Solidity
version 0.8.12 and deployed using Ganache-cli.

19 https://docs.nethereum.com/en/latest/ethereum-and-clients/ganache-
li/.
20 https://trufflesuite.com/docs/ganache/.
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Fig. 4. Generated KG after performing a data transformation operation on the humidity
observation from DHT11 sensor.

6.2.2. Data receiver
The data receiver components implement Algorithm 1, outlined in

Section 5.3, in order to read and process sensor data. In scenarios such
as fog–edge, the data receiver also implements the functionality to read
data from the messaging server. In our research, we utilized the DHT11
sensor. Thus, the data receiver reads the DHT11 sensor data. In the
fog–edge scenario, the DHT11 sensor data represented in KG format
at the fog layer is retrieved from the publish–subscribe model mes-
saging server RabbitMQ via the topic secure_interoperable_data_sharing.
The messaging server, RabbitMQ, is implemented using Docker on
four cluster nodes to provide fault tolerance. The Docker configuration
details are available at [42]. For the computation of the trust score,
a separate rest service is implemented. It can, however, be computed
without additional rest implementations. The reasons for this are that
trust factors change over time and that more transparency is desired.
For example, if the manufacturer improved their IoT product safety and
obtained certification like ISO (International Organization for Standard-
ization) security certification, then one may want to update the trust
score computation. If the computation does not follow our approach
and is done locally, updating in the case of large scale IoT is extremely
inefficient. The second reason is that it enables transparency, i.e., the
sharing of the factors used to calculate the trust score, which is essential
because trust is subjective and different deployments may take into
account different factors.

6.2.3. Data transformation engine
The implementation of the data transformation engine, following

the procedures mentioned in Section 5.4, transforms the data into the
KG. The KG representation of the humidity sensor data following the
data transformation procedure is shown in Fig. 4. As shown in Fig. 4,
the data (or KG) has been enriched with additional context information,
including observation units and observed property. The KG shown in
Fig. 8 is in a Turtle format. The data in KG representation is shared
using JSON-LD. JSON-LD is a lightweight JSON (JavaScript Object
Notation)-based format to serialize linked data.21

6.2.4. Legal engine
In general, the legal engine implementation consists of consent

verification, as described in Section 5.5. In our investigation, however,
we simulated consent checking by passing the boolean value true to
represent the consent scenario and false to represent the absence of
consent or invalid consent scenarios. The reasons are as follows: (i)
there are already studies, such as [22], that perform consent checking
and other complex consent-related operations; and (ii) integrating such
systems is trivial. Fig. 5 shows the response when there is no consent
for the requested processing, indicating that the data processing (or
sharing) action cannot be executed.

21 https://www.w3.org/TR/json-ld11/

https://docs.nethereum.com/en/latest/ethereum-and-clients/ganache-cli/
https://docs.nethereum.com/en/latest/ethereum-and-clients/ganache-cli/
https://trufflesuite.com/docs/ganache/
https://www.w3.org/TR/json-ld11/
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Fig. 5. Response when no consent is available for request processing.

6.2.5. Validation engine
The validation engine implementation is the realization of the vali-

dation algorithm, Algorithm 3, described in Section 5.6. In our imple-
mentation, we defined the following quality criteria for both context
and the actual sensor data as SHACL rules: (i) the sosa:hasSimpleResult
must have a value of type xsd:double with a maximum value of 100,
(ii) sricats:hasBlockChainHash must have a value of type xsd:string with
he minimum length of 60 characters, (iii) the om:hasUnit must have

value of a defined type based on sensor (e.g., om:degreeCelsius for
emperature sensor and om:percent for relative humidity), (iv) sri-

cats:hasTrustabilityScore must have the value of type float and (v) the
property sosa:madeBySensor, sosa:observes should be of type IRI and
must have a value. Fig. 6 shows the SHACL validation result. Evidently,
both validations (see Fig. 6(a) and Fig. 6(b)) fail the predetermined
quality criterion, resulting in the return of the false status. In the event
of a successful validation, the KG and the status true are returned.

6.2.6. Analytics engine
As discussed in Section 5.7, the analytics engine facilitates data-

driven decision making. The analytics engine in our study employs
SWRL reasoning using Pellet22 reasoner to facilitate data-driven deci-
sion making. Fig. 7 illustrates the SWRL rules utilized in this study to
demonstrate data-driven decision making. Our study’s data-driven task
is a classification task (i.e., whether or not to classify TemperatureAlert
and HumidityAlert) based on observations of humidity and temperature.
The ?result in the SWRL rules contains sensor data, whereas the ?reason-
ingType gives information regarding the type of reasoning based on the
observation made. For example, the ?reasoningType for a temperature
observation is the value temperature. Fig. 8 shows the snippet of
edge analytics result indicating the high-temperature alert. However,
if no alert condition is met, the reasoning result, i.e., alert value, is
none, indicating everything is fine. When the analytics operation is
performed in the fog, the results are published to the messaging server
(see Section 7.1.2) and consumed at the edge.

6.2.7. Data migration engine
As stated in Section 5.8, the data migration engine migrates data

from one location to another. This migration also encompasses the
transfer of data to intermediary phases, such as messaging servers.
The implementation consists of the following: (i) migrating the data
(i.e., KG) to the messaging server from edge, which will later be
used at the fog layer for further processing (see Section 7.1.2); (ii)
migrating data (i.e., KG) to the remote storage; and (iii) migrating the
analytics result to the edge in the case when the analytics are per-
formed at layers such as fog (see Section 7.1.2). The publish/subscribe
model is used for data and result migration when processing, such as
when analytics are conducted in the fog. The topic secure_interoperable-
_data_sharing is used for the data migration. Similarly, the topic reason-
ing_result_secure_interoperable_data_sharing for the result (i.e., analytics
result), which in our study is to issue a warning (or alert). SPARQL is
used for migrating the KG data to the remote storage. GraphDB, which
is a W3C23 compliant enterprise-ready semantic graph database,24 is
used as the remote storage. Table 4 shows the KG in triples repre-
sentation (i.e., subject, predicate and object format) in GraphDB after
migration.

22 https://www.w3.org/2001/sw/wiki/Pellet.
23 https://www.w3.org.
24
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https://graphdb.ontotext.com.
7. Experiment and evaluation

This section describes the experiment in detail. In addition, this sec-
tion provides information about the evaluations conducted. Section 7.1
discusses the experiment and Section 7.2 discusses the evaluation.

7.1. Experiment

In this section, we will describe our experimental scenario. Sec-
tion 7.1.1 describes the edge experimental scenario and Section 7.1.2
describes the edge–fog experimental scenario.

7.1.1. Edge experiment scenario
Fig. 9 shows the overview of the edge experiment scenario that

we considered in our study. As shown in Fig. 9, sensor data is read
and processed on the edge device, performing tasks such as data
transformation and edge analytics to enable edge intelligence. Below
are the specifics regarding the operations performed at each step.

1. The initial step (step 1) checks for consent to ensure that there
is permission to read and process the sensor data. The consent
check is performed to ensure that the data sharing and process-
ing complies with GDPR. If there is consent, then the sensor
data is read and processed (step 2), i.e., transformed into the KG
representation. In our case, we utilize the DHT11, a temperature-
humidity sensor. If the consent check is unsuccessful, no further
processing occurs.

2. Similar to the initial step, the consent is checked again (step 3)
before performing other operations, such as validation, analysis,
and transformation.

3. After a successful consent check at step 3, the data is validated
by utilizing SHACL for quality and integrity, which is then
transformed into a format compliant with SPARQL and migrated
to the remote graph database (or GraphDB). This process is
indicated by steps 4, 5, and 6.

4. Similar to the migration case, the analytics operation (step 7)
is done after the consent check (step 3) and validation (step 4)
have been completed successfully.

The data transformation and migration step and the data analysis step
could be executed concurrently. In our study, we did not perform
concurrent implementations as it was not the main focus of our work.
However, such optimizations are important and can be regarded as
future work.

7.1.2. Fog–edge experiment scenario
Fig. 10, similar to Fig. 9 (i.e., edge scenario), shows the overview

of the experiment scenario that we considered in our study. In contrast
to Fig. 9, which only considers the edge scenario, we considered the
fog–edge scenario in this experiment. Unlike in the edge experiment
scenario, where all the tasks are performed at the edge, in this scenario,
the work is distributed between the fog and the edge. The descriptions
of the operations performed at each step are provided below.

1. The first two steps at the edge are similar to those in the edge
experiment: check consent and read and process the data, as
described in Section 7.1.1. The third step, consent checking, is
quite different from the case of the edge experiment, though
consent checks are performed at both steps. This is because the
consent check at this step in the fog–edge experiment checks to
see if the data can be migrated to the messaging server. In the
edge experiment (see Section 7.1.1), consent is checked to see if

the data can be processed, such as to perform validation.

https://www.w3.org/2001/sw/wiki/Pellet
https://www.w3.org
https://graphdb.ontotext.com
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Fig. 6. SHACL validation. (a) SHACL validation report for validation failure as a result of the observation value falling outside of the specified range. (b) SHACL validation report
for failed validation due to the KG not meeting the predefined quality criterion observation unit.
Table 4
A snapshot of the migrated KG instance to the remote storage GraphDB. 𝑥𝑠𝑑, 𝑠𝑟𝑖𝑐𝑎𝑡𝑠, 𝑠𝑜𝑠𝑎, 𝑜𝑚, and 𝑟𝑑𝑓 are the prefixes.

Subject Predicate Object

sosa:Observation/DHT11_202212020002 om:hasUnit om:percent
sosa:Observation/DHT11_202212020002 sricats:hasBlockChainHash ‘‘0x4078c7919896566330e95bf68f9106dcb

eec1ef7df19b6fda6e559347a933bd1’’
sosa:Observation/DHT11_202212020002 sricats:hasTrustabilityScore ‘‘0.8’’^^xsd:float
sosa:Observation/DHT11_202212020002 rdf:type sosa:Observation
sosa:Observation/DHT11_202212020002 sosa:hasSimpleResult ‘‘28.0’’^^xsd:double
sosa:Observation/DHT11_202212020002 sosa:madeBySensor sosa:Sensor/DHT11
sosa:Observation/DHT11_202212020002 sosa:observedProperty sosa:observedProperty/STI_W201_humidity
sosa:Observation/DHT11_202212020002 sosa:resultTime ‘‘2022-12-02T21:00:02’’^^xsd:dateTime
Fig. 7. SWRL rules for temperature (top) and relative humidity (bottom) alerts used
in our study.

Fig. 8. Snippet of results of the edge analytics are based on the temperature
observation indicating a high-temperature alert in accordance with the SWRL rule.

Fig. 9. High-level overview of edge experiment scenario.

Fig. 10. High-level overview of fog–edge experiment scenario.
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2. The data is migrated (steps 4 and 5) to the messaging server
after a successful consent check. This data migration is done
to delegate tasks, such as performing data analytics, to the fog.
However, if there is no consent, then no processing, which in
this case is the migration of data, is performed. The messag-
ing server collects and holds published data (or message) in a
messaging queue until it is consumed. Moreover, the messaging
server, which acts as an intermediary between fog and edge, also
facilitates communication and data exchange.

3. At this stage (step 6), the data from the messaging server is read
(or consumed). After reading the sensor data from the messaging
server, another consent check is performed (step 7). The consent
check at this step is similar to the case of the edge experiment
(see Section 7.1.1) consent check at step 3. This is because,
similar to the case of the edge experiment, the consent check
in step 7 of the fog–edge experiment scenario involves checking
consent to perform tasks such as validation.

4. Following the successful consent check at step 7, operations
similar to the edge experiment are performed. This included
performing validation for integrity and quality (step 8), as well
as transformation and migration (steps 9 and 10), and migrating
the data to the remote storage, GraphDB. The additional consent
check at the fog ensures that everything is compliant with the
GDPR. In addition, this helps ensure that privacy will be main-
tained even if the consent check has been compromised at the
edge.

5. As with the transformation and migration operations, the an-
alytics operation (step 11) is also performed. However, unlike
the case of the edge experiment, where the analytics results
are returned instantly, in this case the result is published (or
migration of analytics result) back to the messaging server from
the fog. Steps 12 and 13 in Fig. 10 indicate these processes.

6. The messaging server collects and holds the published results
from the fog, which is then consumed by edge (step 14) and
no further processing was performed. However, some control
actions, such as issuing alerts (or taking appropriate action), can
be performed based on the analytics outcomes.
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Fig. 11. Execution time. (a) Time required to execute analytics at the edge and fog layers. (b) Time required to execute data transformation and migration at the edge and fog
layers.
7.2. Evaluation

In this section, we provide details about the evaluation. Sec-
tion 7.2.1 provides details on the evaluation criteria and Section 7.2.2
provides details on the performance evaluation conducted following
our evaluation criteria. Similarly, Section 7.2.3 provides an overview
about data quality, assessment of the context information as component
of data quality and data veracity evaluation, while Section 7.2.4 pro-
vides information regarding interoperability evaluation. Section 7.2.5
provides detail on the evaluation of analytics operation.

7.2.1. Evaluation criteria
We evaluate the proposed work to determine its applicability in a

real-world setting and to address our research questions (or to deter-
mine whether our objective has been achieved). The following evalua-
tion criteria were utilized to assess the proposed work:

1. The first criterion is the resource utilization. IoT, by its very
nature, has limited resources, such as CPU and memory, so im-
plementing the proposed framework should utilize the minimum
(or reasonable) amount of resources. Section 7.2.2 presents the
evaluation of resource utilization.

2. The second evaluation criterion focuses on accessing the pro-
posed work’s capability to support real-time (or near real-time)
decision making in the edge/fog environment. It is determined
by the execution time to perform the analytics operation and is
presented in Section 7.2.2 and Section 7.2.5.

3. The third criterion is that the proposed system should sup-
port accurate (e.g., data veracity) and quality data sharing. The
fourth criterion is that the system should support interoperabil-
ity. Section 7.2.3 presents the evaluation of the third criterion.
Section 7.2.4 presents an evaluation of the fourth criterion.

7.2.2. Performance evaluation
We conducted the performance evaluation to analyze the feasibility

of the proposed system. We focused on the following in our perfor-
mance evaluation: (i) execution time to perform the operations such
as analytics, data transformation, and migration; (ii) resources such as
memory and CPU (central processing unit) utilization and (iii) latency
for analytics operations in the case of the fog–edge experiment. The
reason for focusing on memory and CPU resource utilization other
than the execution time is that the edge devices are typically resource-
constrained in nature. Evaluating resource use is therefore crucial to
understanding the feasibility of the proposed system in a real-world
deployment.

Fig. 11 illustrates the performance evaluation in terms of the exe-
cution time. Fig. 11(a) shows the execution time required to execute
analytics at the edge and fog levels, whereas Fig. 11(b) depicts the
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execution time required to do data transformation and migration at the
edge and fog layers. Overall, the execution time for doing the analytics
(see Fig. 11(a)) at the fog layer was an average of 1.1 s, whereas the
execution time at the edge was an average of 7.2 s. We observe a
similar tendency for doing analytics in both the fog and edge layers. For
example, a high execution time for the initial reasoning is followed by
a significant drop in execution time. In addition, the execution time for
both fog and edge layers exhibits a constant increase with intermittent
spikes. On closer inspection, particularly at the end (i.e., after 25
iterations), we can see that the execution time at the edge increases
while the fog decreases. The higher execution time at the edge can be
attributed to the limited availability of resources. As seen in Fig. 11(a),
for example, the fog, which has more available resources than the edge,
has a reduced execution time. Similar to the analytics scenario, the
execution time for data transfer and migration activities (see Fig. 11(b))
follows a similar pattern, with a high execution time, in the beginning,
followed by a fast decrease and gradual increase, with the occasional
spike in between. Unlike the analytics scenario, the execution time
exhibits a similar pattern even at the end. Data migration and transfer
procedures at the edge took approximately 0.65 s and 0.32 s in the
fog, respectively. Based on Figs. 11(a) and 11(b) (i.e., execution time),
we can conclude that data migration and transfer procedures are less
time-consuming than analytical processes. Moreover, the execution
time, both for the analytics and the transformation and migration
operations, also accounts for the time taken for intermediate steps, such
as performing validation checks.

Figs. 12 and 13 illustrate the resource use evaluation. Similarly,
Fig. 14 shows the latency in getting analytics results and the time
taken for creating blockchain transactions. Figs. 12(a) and 12(b) focus
on evaluating the memory utilization, while Figs. 13(a) and 13(b)
focus on evaluating the CPU utilization. We only consider the edge
for memory utilization for analytics and data transfer and migration
operations. This is because the edge, comparatively, is much more
resource-constrained than the fog. Therefore, the fog, which has more
available memory than the edge, will not experience memory-related
performance degradation. For CPU utilization, however, we consider
both the fog and edge similar to that of execution time. This is because,
unlike memory, CPU utilization can vary depending on the tasks, such
as SWRL reasoning for analytics operations, and has an impact on exe-
cution time. As can be observed in Figs. 12(a) and 12(b), the memory
utilization for both the data migration and transformation and ana-
lytics operations is nearly same, which is around 51 MB (megabytes).
Moreover, memory usage in both instances follows a similar pattern: a
sudden increase followed by a continuous increase. The sudden increase
in memory indicates the start of tasks such as analytics or data process-
ing and memory allocation. This low memory usage demonstrates the
practicality of the proposed framework for resource-constrained devices
such as the one in the edge layer, which is usually resource-constrained
in nature.
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Fig. 12. Memory utilization at the edge. (a) Memory consumption to perform data transformation and migration operations at the edge layer. (b) Memory consumption to perform
nalytics at the edge layer.
Fig. 13. CPU utilization. (a) Average CPU utilization to perform data transformation and migration operations at the edge and fog layers. (b) Average CPU utilization to perform
nalytics at the edge and fog layers.
Similar to the execution time, we can observe from Figs. 13(a) and
3(b) that the average CPU utilization for the analytics operation is
igher than that of the data migration and transformation operations.
he average CPU utilization for data migration and transformation
perations was around 12.35% at the edge and approximately 1.24%
n the fog, which can be observed from Fig. 13(a). On the other hand,
he average CPU utilization for analytics on the edge was approxi-
ately 33.61%, while it was around 15.62% in the fog, as observed

n Fig. 13(b). On a closer inspection of the CPU utilization for the
ata transfer and migration operations, we observe low CPU utiliza-
ion, indicating that data transfer and migration operations are not
esource-intensive compared to analytics operation. Moreover, the CPU
tilization in the case of the analytics operation is almost constant.
owever, in the case of data transformation and migration, particularly

or the edge layer, we see ups and downs in execution time. These
pikes are due to the data transformation operation performing the
ransformation of the sensor data into the KG representation. In general,
he overall CPU utilization for the analytics operation is less than 40%
nd therefore can be considered normal utilization. Similar to the study
f memory usage, the evaluation of CPU usage illustrates the feasibility
f the proposed framework.

Fig. 14(a), on the other hand, shows the latency in getting the
nalytics result at the edge after performing analytics operations in the
og. On average, it took around 1.45 s to get the analytics result at
he edge of the fog. The certain high spikes in Fig. 14(a) indicate a
igher delay, which could have been caused by network issues such
s congestion. This time is significantly less than the time required to
erform at the edge itself, highlighting that it is not always good to
erform all operations at the edge. Similarly, Fig. 14(b) shows the time
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aken to create the blockchain transactions, which on average is 0.22 s.
Similar to the spikes in Fig. 14(a), we can see that certain transaction
times are higher than average (green line), which is highlighted in red.

In summary, from our evaluation, we draw the following major
conclusion.

1. In comparison to data transmission and migration procedures at
the edge and in the fog, the analytics process is time-consuming.
Therefore, performance optimization should concentrate on an-
alytics rather than transfer and migration activities, especially at
the edge.

2. Memory use is minimal for both analytic and data transfer and
migration processes. Likewise, the CPU usage for the data trans-
fer and migration operations is low, while the CPU usage for the
analytics operation is normal. This low resource consumption
shows that the proposed framework can be deployed on devices
with limited resources.

3. The latency measurement shown in Fig. 14(a) indicates that it
is not always advisable to perform all operations at the edge;
rather, it is advantageous to delegate compute-intensive tasks
to the closest fog. In addition, Fig. 14(a) also highlights the
importance of the edge, fog, and cloud hierarchy.

4. Finally, the evaluation validates our claim that the proposed
framework is suitable for the edge and fog situation.

7.2.3. Data quality and veracity evaluation
We also conducted an evaluation of the data quality, data veracity

(or accuracy) and also an assessment of the context information as part
of the data quality. The data quality and also the context information
assessment are made using SHACL, and the data veracity (or accuracy)

is determined by comparing the generated data hash, as discussed
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Fig. 14. Execution time. (a) Time taken to send the data to fog and get the analytics result at edge. (b) Time taken to create the blockchain transaction.
in the implementation section (see Section 6.2). The evaluation and
assessment of the data quality were conducted manually by checking
the generated sensor observations and the shared data after perform-
ing the data quality check using SHACL. In particular, the following
criteria were checked: (i) the presence of context information such as
observation units and the property being observed (i.e., the 𝑠𝑜𝑠𝑎 ∶
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑦 value); (ii) the presence of an observation value with
a defined data type; and (iii) the presence of the blockchain hash value
and trust score with a defined data type. There were a total of 180
observations examined from our edge and edge/fog experiment, and
all of the shared data met the defined quality criteria, including the
evaluation of context information, resulting in 100 percent accuracy. A
similar assessment was made in the case of the data veracity check,
which involved comparing the hash of the original data. With this
evaluation result, we can confirm that our proposed framework allows
for the sharing of high-quality data and the verification of its veracity.

7.2.4. Interoperability evaluation
The interoperability evaluation is conducted qualitatively following

the study by Koo & Kim [50] and Cimmino et al. [51]. The interop-
erability was evaluated using the following criteria: if the proposed
system translates heterogeneous raw sensor data into a semantically
interoperable format using KG representations in RDF serialization
expressed according to ontology, derived based on [51]. This is because
ontology formalizes the definition of concepts and represents their
shared meaning. Moreover, an additional manual validation is also
performed, similar to Cimmino et al.’s [51] work. The evaluation con-
cludes with a verdict that the proposed system supports interoperability
following 180 observations (see Section 7.2.3) as the system can trans-
late the heterogeneous data into KG representation based on ontology.
In the case of context-dependent variability, interoperability will be
restricted, and addressing the issue of context-dependent variability of
concepts requires reusing the existing ontology rather than developing
a new one and adhering to ontology engineering best practices, such as
providing definitions for ambiguous concepts.

7.2.5. Evaluation of analytics operations
Aside from the performance evaluation (see Section 7.2.2), we

also evaluated the analytics result by inspecting the SWRL reasoning
outcome to determine whether the correct result was attained. A total
of 40 observations in the edge case and 14 in the fog–edge scenario
were inspected. In the case of the edge, it was anticipated that all 40
observations would activate the alert, i.e., qualify as a temperature or
humidity alert. In the case of the fog–edge scenario, seven observations
were within the threshold; therefore, only seven of the fourteen should
have triggered an alert. According to the results of our evaluation,
SWRL reasoning is executed accurately in every scenario.
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8. Conclusion

In this research, we investigate IoT data sharing problems and
proposed a novel framework that can IoT data sharing challenges of
interoperability, accuracy, and quality IoT data sharing in a privacy-
conscious manner i.e., adhering to legal restrictions such as GDPR. We
demonstrated how ontologies and KGs can address interoperability (see
Section 5.4) and support intelligence (see Section 5.7) in the edge/fog
scenario. Moreover, we demonstrated how we can ensure the quality
(see Section 5.6) of the data being shared through the use of SHACL,
enable trustworthiness (see Section 4.2) through the proposed intrinsic
trust metric, and achieve accuracy (or veracity) through the use of
blockchain in a GDPR-compliant manner.

In addition, we validated our claims, such as suitability for the fog
and edge, by implementing the proposed framework, conducting ex-
periments with two distinct scenarios (see Section 7.1), and evaluating
their practicality. Our evaluation (see Sections 7.2.2–7.2.5) supports
the applicability of the proposed framework (or framework), hence
providing support for our claims and answering our research questions
(see Section 2.1). Moreover, the comparison of our work to state-of-the-
art works (see Table 1) demonstrates additional benefits that our work
provides.

The true advantage of the proposed framework lies in its exten-
sibility to cover larger heterogeneous domains at scale, for example,
by extending the scope of the ontology used. The proposed frame-
work also ensures the accuracy and quality of the data (see Sections
7.2.3 and 6.2.5), which is an additional benefit and is essential when
making data-driven decisions and capitalizing on IoT data and enables
privacy-aware data sharing and processing following data protection
regulations such as GDPR–one of the limiting factor in IoT data sharing
and processing. This is another benefit of the proposed framework as
the framework addresses the hindrance posed by laws like GDPR. In
addition, the introduction of the trust metric allows one to determine
how much the data can be trusted, the other benefit of our work.
Using the proposed solution, future work would consist of investigating
interoperability and integration at scale in real-world deployments.
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