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Abstract
1. Ecologists and evolutionary biologists are regularly tasked with the comparison of 

binary data across groups. There is, however, some discussion in the biostatistics 
literature about the best methodology for the analysis of data comprising binary 
explanatory and response variables forming a 2 × 2 contingency table.

2. We assess several methodologies for the analysis of 2 × 2 contingency tables 
using a simulation scheme of different sample sizes with outcomes evenly or un-
evenly distributed between groups. Specifically, we assess the commonly recom-
mended logistic (generalised linear model [GLM]) regression analysis, the classical 
Pearson chi- squared test and four conventional alternatives (Yates' correction, 
Fisher's exact, exact unconditional and mid- p), as well as the widely discouraged 
linear model (LM) regression.

3. We found that both LM and GLM analyses provided unbiased estimates of the 
difference in proportions between groups. LM and GLM analyses also provided 
accurate standard errors and confidence intervals when the experimental design 
was balanced. When the experimental design was unbalanced, sample size was 
small, and one of the two groups had a probability close to 1 or 0, LM analysis 
could substantially over-  or under- represent statistical uncertainty. For null hy-
pothesis significance testing, the performance of the chi- squared test and LM 
analysis were almost identical. Across all scenarios, both had high power to de-
tect non- null effects and reject false positives. By contrast, the GLM analysis was 
underpowered when using z- based p- values, in particular when one of the two 
groups had a probability near 1 or 0. The GLM using the LRT had better power to 
detect non- null results.

4. Our simulation results suggest that, wherever a chi- squared test would be recom-
mended, a linear regression is a suitable alternative for the analysis of 2 × 2 con-
tingency table data. When researchers opt for more sophisticated procedures, 
we provide R functions to calculate the standard error of a difference between 
two probabilities from a Bernoulli GLM output using the delta method. We also 
explore approaches to compliment GLM analysis of 2 × 2 contingency tables with 
credible intervals on the probability scale. These additional operations should 
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1  |  INTRODUC TION

From sex differences in survival rates (e.g. Teder & Kaasik, 2023) to 
taxonomic bias in publications (e.g. Rosenthal et al., 2017), assessing 
categorical differences in discrete variables is central to many ques-
tions in ecology and evolution. A legitimate concern among biolo-
gists is how to correctly analyse this type of data. In particular, what 
statistical tests produce an unbiased estimate of group differences, 
what assumptions need to be satisfied, and how should one inter-
pret and present the results?

Here, we consider a simple but commonly encountered situation 
where two samples of binary data are compared. Such data are often 
presented in a 2 × 2 table, also called a contingency table since the 
key question is whether there is a contingency between the row and 
column variables. For example, given a set of sampled rodents, an in-
dividual's sex and whether they showed symptoms of some specific 
disease may be recorded. The natural set of questions to then ask 
are whether sex and disease status are linked and, if so, what is the 
strength and direction of the effect. We would also generally like to 
quantify how confident we can be in our answers to these questions.

Given such a 2 × 2 contingency table of count data, the Pearson 
chi- squared test (Pearson, 1900) is widely viewed as a reasonable 
way to test for differences between groups (Albert, 2017; Altman 
& Krzywinski, 2017; Crawley, 2012; Dytham, 2011; Fagerland 
et al., 2017; Seltman, 2018; Whitlock & Schluter, 2009). Variations 
on the chi- squared test depending on data structure are also 
commonly discussed. For example, to account for small sam-
ple sizes, Yates' correction for continuity (Yates, 1934) or Fisher's 
exact test (Fisher, 1934) are sometimes recommended (Altman & 
Krzywinski, 2017; Crawley, 2012) although not without some dis-
sention (Fagerland et al., 2017; Ruxton & Neuhäuser, 2010). The use 
of Fisher's exact test, in particular, is controversial given that both 
margins of the contingency table are rarely naturally fixed (see e.g. 
Agresti, 1992; Berkson, 1978; Kempthorne, 1979), leading to unnec-
essarily conservative estimates. The Fisher mid- p (Lancaster, 1961) 
test is therefore often suggested to better represent evidence against 
the null hypothesis (Fagerland et al., 2017; Hwang & Yang, 2001; 
Routledge, 1994). Alternatively, Lydersen et al. (2009) recommend 
the exact unconditional test (Barnard, 1945; Boschloo, 1970) with a 
Berger and Boos correction (Berger & Boos, 1994) as the ‘gold stan-
dard’ for testing association in 2 × 2 tables.

There are, however, two major disadvantages of using the chi- 
squared test (or its alternatives and refinements discussed above) 
to analyse contingency tables. First, these test statistics only assess 
the distribution of the response variable under the null hypothesis 

that there is no difference between groups. They do not provide 
any information on the strength or direction of association among 
variables. This is a particularly relevant criticism as ecologists and 
evolutionary biologists shift away from principally relying on null 
hypothesis significance testing (NHST) and p- values (Stephens 
et al., 2007). Second, these test statistics are somewhat limited in 
application. When testing for an association between two categor-
ical variables, both the explanatory and response variables must be 
dichotomous. While this type of data is very common in ecology and 
evolution, it limits the expansion of the analysis to more complex 
datasets. For example, if the hypothetical rodent study above also 
recorded the mass of each individual, this continuously distributed 
factor cannot be easily incorporated into any of the methods dis-
cussed above.

Both these limitations of the chi- squared test can be overcome 
by instead adopting regression analyses. Not only does a regression 
analysis provide more informative insights into the relationship be-
tween explanatory and response variables (describing strength and 
direction of effects), the precision of an estimate is also easily as-
sessed. Results can thus be more intuitive, that is, offering an ef-
fect size and uncertainty (mean ± SE). A regression analysis is also 
more versatile and can be expanded beyond the 2 × 2 contingency 
table. Using this single methodology, a biologist can investigate 
combinations of quantitative and categorical explanatory variables 
hypothesised to have an important influence on the response vari-
able. Despite these obvious advantages, there seems to be some 
confusion and discussion in the literature about the appropriateness 
of regression analyses to assess the association between binary 
variables.

Foremost, biologists are widely discouraged from using linear re-
gressions to analyse contingency tables. The most commonly cited 
cause of concern is that, for the analysis of data comprising binary 
response and categorical explanatory variables, the assumptions of 
normality and homogeneity of variance are violated (Kaplan, 2017; 
Seltman, 2018; Tutz, 2012). Using a linear regression is thus re-
garded by some as ‘unsatisfactory’ (Tutz, 2012) at best and ‘com-
pletely unreliable’ (Seltman, 2018) at worst. By contrast, the logistic 
regression is largely accepted as an appropriate method to estimate 
probabilities of categorical explanatory variables, compensating 
for the aforementioned problems with linear regressions (Dunn 
& Smyth, 2018; Fagerland et al., 2017; Lever et al., 2016; Orme & 
Combs- Orme, 2009; Ramos et al., 2015; Tutz, 2012). Nonetheless, 
a clear advantage of linear over logistic regression is the often more 
straightforward interpretation of model coefficients (without re-
quiring conversion).

support researchers to make valid assessments of both statistical and practical 
significances.

K E Y W O R D S
2 × 2 contingency table, chi- squared test, linear models, logistic GLMs, uncertainty estimates
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When assessing the possible differences between groups in 
dichotomous variables, biologists tend to ask about differences in 
probabilities between groups. In the linear regression of a binomial 
outcome on a group variable, a one- unit increase in the explana-
tory x increases the conditional expectation of the response y by β 
units. By contrast, the coefficients of logistic regressions are given 
in log- odds, which will often be a less intuitive unit for researchers 
asking biological questions. Even after converting the coefficient for 
the explanatory variable back to an ordinary scale, this odds ratio 
does not represent a constant increase or decrease in the response 
y given the explanatory variable x. This can make results difficult to 
contextualise (Gallis & Turner, 2019; Halvorson et al., 2021), even 
more so by non- experts who might be unfamiliar with odds as a sta-
tistical measure of the probability of one outcome versus the other 
(Grant, 2014; Schwartz et al., 1999).

Here, we assess the appropriateness of different statistical tests 
for the analysis of data comprising binary explanatory and response 
variables (both coded as 0,1). In contrast to many previous works 
on this subject, we focus on different goals of statistical analysis 
beyond p- values, namely estimation and statements about uncer-
tainty in differences in probabilities. Odds, odds ratios and log- odds 
ratios are all valid ways of presenting results and are well treated in 
many works. We focus specifically on differences in probabilities, in 
extension of typical considerations, because this is the scale most 
relevant and intuitive to biologists and the scale that will frequently 
map onto how biologists formulate research questions. Using a sim-
ulation scheme of different sample sizes with n outcomes evenly or 
unevenly distributed between groups, we assess the biasedness of 
inferences of (a) the difference in proportions between groups and 
(b) estimates of statistical uncertainty (standard errors and confi-
dence intervals) when using linear and logistic regressions. We also 
assessed and compared (c) the false- positive rate and (d) the consis-
tency of p- values for the Pearson chi- squared test and its alterna-
tives, linear regression and logistic regression.

2  |  METHODS

2.1  |  Simulation scheme

Each simulation generated data for two groups. These groups 
could represent control vs. treatment, male vs. female, etc. Sample 
size in each group was determined according to four schemes. In 
the first, the total sample size of nt was divided evenly between 
the two groups (nt/2). In the second, nt was apportioned between 
groups following a binomial distribution with probability 0.5. In 
the third scenario, the groups had sample sizes 0.8 nt and 0.2 nt. 
Finally, the total of nt samples was partitioned between groups fol-
lowing a binomial distribution with probability 0.2 for group x = 0. 
When data were distributed randomly between groups, if a group 
had fewer than two observations, we modified the values of x so 
that there were at least two cases in each group. This was done 

on the grounds that most researchers would not look to explore 
contingency between groups when one of the groups had such a 
small sample size.

We then simulated data to represent a Bernoulli response vari-
able for all the observations in both groups. This variable y took val-
ues of 1 and 0, which could represent outcomes such as survived vs. 
died, mated vs. unmated, etc. Observations from group x = 0 were 
assigned a probability p0 of success (i.e. of y = 1, rather than y = 0), 
and the n values for y were drawn as independent samples from a 
Bernoulli distribution with probability p0. The probability of success 
for observations in group x = 1 was defined by p1 = p0 + �, and val-
ues of y for individuals in group x = 1 were drawn from a Bernoulli 
distribution with probability of success of p1. Formally, the simula-
tion of the y data can be described according to

where yi represents success or failure (e.g. survived vs. died) coded as 
1 and 0, respectively, with xi coding the group membership (e.g. male 
vs. female; 0, 1) of individual i. p0 is the probability of success in the 
first group (x = 0). � is the difference in success probability between 
the two groups.

2.2  |  Variable ranges and replication

For each simulation scheme, we simulated a range of sample sizes 
of nt (the total number of samples across both groups) from [10, 20, 
30, 50, 70, 100]. We considered two sets of values of p0 in combina-
tion with �. First, we considered a value of p0 of 0.5 and values of � 
between −0.5 and +0.5 in increments of 0.1. Second, we considered 
a value of p0 of 0.1 and values of � from −0.1 to +0.9, also in incre-
ments of 0.1.

2.3  |  Analyses

For every simulated dataset of values of x and y, we conducted a 
range of analyses focused on estimation of the parameter �, that is, 
of the difference in the underlying probability of success (of y = 1) 
in the two groups coded x = 0 and x = 1. First, we conducted linear 
model (LM) analyses of the dependence of y on x. We fitted the 
model

where yi is the outcome (0, 1) for individual i, from group xi (0, 1). �LM 
is the intercept and �LM is the slope of the linear regression of y on x, 
which estimate p0 and �, respectively. We use the standard ordinary 
least squares (OLS) standard error (SE) of �LM as the standard error 
of �, and use a Wald- type confidence interval (estimate ± 1.96 SEs) as 
our LM- based confidence interval (CI) for �. We use the t- test- based 
p- value for �LM from the summary.lm() function in base R as our LM- 
based p- value for �.

(1)yi ∼ Bernoulli
(
p0 + �xi

)
,

(2)yi = �LM + �LMxi + ei ,
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4  |    NAGEL et al.

Secondly, we conducted a generalised linear model (GLM) analy-
sis with a logit link function and a Bernoulli response, also known as 
a logistic regression. This model was constructed as

where the data are modelled as a linear function on the scale of a latent 
variable �, related to expected probabilities via the inverse link function 
g−1() (i.e. the inverse of the logit link function), defined g−1(a) = ea

1+ ea
. 

Bernoulli sampling of the data yi was performed given the probabilities 
g−1

(
�i
)
. As such a GLM- based estimator of � is

�̂GLM is thus a somewhat complex quantity, depending not only 
on the GLM parameter that describes the difference between the 
groups (�GLM) but also on the model intercept (�GLM). This renders its 
interpretation more difficult than the estimate from the LM analy-
sis. While biological inferences on the logit data scale are possible, 
it would be useful if estimates of differences in probabilities (as in 
Equation 4) were used more widely. Being able to put uncertainty 
on the probability scale would be useful as well. A standard error 
for the �̂GLM estimator, constructed by the delta method (Lynch & 
Walsh, 1998; Ver Hoef, 2012), is

where ��̂GLM
��̂GLM

 and ��̂GLM
��̂GLM

 are the derivatives of �̂GLM in Equation 4 with re-
spect to the logistic intercept and contrast estimated by the GLM (as 
specified in Equation 3a,b), evaluated at their estimated values. T is the 
transpose operator. Σ�� ,GLM is the covariance matrix of the GLM's pa-
rameter estimates. The square roots of the diagonal elements are the 
standard errors of the logistic intercept and contrast terms.

It is relatively straightforward to generate a CI from a binomial 
GLM on the probability scale for a conditional probability (e.g. for 
one group or the other, in the present context). One would typically 
generate a Wald- type CI on the linear predictor scale and transform 
its upper and lower limits to the probability scale with the inverse 
logit function. However, this strategy is not generally possible for 
differences in conditional probabilities. Consequently, similarly to 
how SEs for differences on the probability scale are not generally 
considered—useful as they would be—CIs for differences or data- 
scale effects in GLMs are not routinely generated by biologists.

There are many methods for setting CIs, and our aim was not 
to provide a comprehensive overview. We did, however, investigate 
the utility of the three most commonly accepted ways of construct-
ing CIs for statistical models (Alan, 2013; Fagerland et al., 2017; 
Newcombe, 1998). First, we tested the simple probability scale 
Wald- type CIs constructed as 1.96 times the delta- SE (Equation 5) 

above and below the estimated difference (Equation 4). Second, we 
assessed the Wilson or score CIs (Wilson, 1927), making use of an 
adapted z2stat function from the R package PropCIs for our calcu-
lations (Scherer, 2018). Finally, we used profile likelihood- based CIs 
(Venzon & Moolgavkar, 1988) of �. To generate the profile likelihood 
CI, we fixed � to a range of values between [−0.99 and 0.99] and 
found the value of p0 that maximised the likelihood of observing 
the data, given the fixed value of �. We then recorded the upper 
and lower values of � for which twice the log- likelihood difference 
from the unconstrained model was less than the 95% quantile of a 
chi- squared distribution with one degree of freedom. We assessed 
significance of the �GLM using both the standard z- test output from 
the summary.glm() function in base R and the likelihood ratio test 
(LRT). To implement the LRT, we generated a p- value under the as-
sumption that twice the difference in the log- likelihood of the GLM 
in Equation 3a,b with the log- likelihood of an intercept- only GLM is 
chi- squared distributed with one degree of freedom.

Finally, we conducted four classical contingency table analyses 
on the 2 × 2 contingency tables of x and y values. These analyses do 
not estimate the value of �, but can be interpreted as tests of statis-
tical significance of �, that is, of whether its value differs from a (null) 
hypothetical value of zero (no difference between p0 and p1). The 
first two such tests were chi- squared tests, without (Pearson, 1900) 
and with Yates' continuity correction (Yates, 1934). The third test 
was a Fisher's exact test (Fisher, 1934). In addition to the exact test's 
ordinary p- value, we calculated the mid- p (Lancaster, 1961) using 
the R package epitools (Aragon, 2020). The final test was an exact 
unconditional test (Barnard, 1945; Boschloo, 1970) with the Berger 
and Boos correction (Berger & Boos, 1994), implemented using the 
R package exact2x2 (Fay & Hunsberger, 2021).

2.4  |  Evaluation of estimates and 
uncertainty statements

We first assessed results of linear and logistic regression analyses 
in terms of biasedness. Bias is the difference between the average 
value of an estimate and the true value of the quantity it is estimat-
ing. Formally,

where � is the true value of the difference in probabilities and E
[
�̂
]
 is 

the expected value of the estimator of the difference. As such, in un-
biased analyses, the average value of the estimator � applied to repli-
cate simulated datasets would not differ from the true value in those 
simulations.

While bias is typically defined as a difference between the ex-
pected value of an estimator and the true value of the estimand (as in 
Equation 6), we expressed (un)biasedness in a proportional sense for 
our assessment of different methods for generating standard errors 
of differences in probability. Specifically, we divided the average SE 
for any given method by the empirical SD of the estimator,

(3a)�i = �GLM + �GLMxi

(3b)yi ∼ Bernoulli
(
g−1

(
�i
))
,

(4)�̂GLM = g−1
(
�GLM + �GLM

)
− g−1

(
�GLM

)
.

(5)SE
�
�̂GLM

�
≈

����������

⎡⎢⎢⎢⎢⎣

��̂GLM

��̂GLM
��̂GLM

��̂GLM

⎤⎥⎥⎥⎥⎦

T

Σ�� ,GLM

⎡⎢⎢⎢⎢⎣

��̂GLM

��̂GLM
��̂GLM

��̂GLM

⎤⎥⎥⎥⎥⎦
,

(6)bias
[
�̂
]
= E

[
�̂
]
− �,
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    |  5NAGEL et al.

where E
[
SE

[
�̂
]]

 is the average standard error across replicate simula-
tions, and SD

[
�̂
]
 is the standard deviation of the estimated differences 

in probabilities across replicate simulations in any given scenario. As 
such, a value of one for the proportional bias measure for the standard 
error indicates ideal behaviour.

Similarly, we assessed confidence intervals by considering their 
coverage properties. For a given scenario, a 95% CI has the correct 
or unbiased (nominal) coverage when estimates fall within its bounds 
in 95% of replicate simulations.

All analyses were done in R (R Core Team, 2023). Code for the 
simulations, analyses, and figures presented in this manuscript can 
be found on GitHub and Zenodo (Nagel et al., 2024a; https:// github. 
com/ rebeb ba/ ProbU ncert ainty_ MSCode).

3  |  RESULTS

All results were very similar among the four data- generating 
schemes. In other words, whether the distribution of the predictor 
variable was fixed or random, or whether the data were balanced 
or not between the two groups, most results were very similar. 
Therefore, except when notable differences occur, we report on re-
sults for the simulations with fixed and equal proportions of the data 

between the two groups. Results for the other three scenarios are 
presented in the Supplementary Materials.

3.1  |  (Un)biasedness of direct estimators of �

The two main analyses that generate estimates of � are the LM anal-
ysis, which estimates � directly, and the GLM analysis, from which an 
estimator of � can be recovered using Equation 4. Both the LM and 
the GLM returned unbiased estimates of � in the sense that the aver-
age value of the estimator was equal to the true value (Figure 1; also 
see Figures A1–A3) across all parameter value combinations that we 
considered.

3.2  |  Performance of standard errors of LM-  and 
GLM- based estimators of �

Providing that observations were reasonably evenly divided among 
groups and that sample sizes were not extremely small (i.e. >5 ob-
servations per group and nt > 10) standard errors of � from LM and 
GLM analyses were good reflections of the uncertainty in the es-
timation process (Figure 2; also see Figure A4). However, when ob-
servations were extremely unevenly distributed between groups, 
standard errors from the LM analysis could substantially over-  or 
under- represent statistical uncertainty (Figure 3; also see Figure A5).

(7)biasproportional

[
�̂
]
=

E
[
SE

[
�̂
]]

SD
[
�̂
] ,

F I G U R E  1  Unbiasedness of linear 
model (LM)-  and generalised linear model 
(GLM)- based inferences of the difference 
in proportions between two groups (�). 
In each simulation, one group has a true 
probability of p0 such that in (a) and (b), 
p0 = 0.1, while in (c) and (d), p0 = 0.5. The 
other group has a probability of p1 = p0 + 
� , where � takes values such that p1 lies 
between 0 and 1. Simulated differences 
(black dotted lines) and true differences 
(grey solid lines) match closely for all 
simulation scenarios and all values of �
. Each parameter combination was 
simulated 1000 times and results given 
are means across replicate simulations. 
Simulations had fixed and equal 
proportions of the data between the two 
groups.

(a) (b)

(c) (d)
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3.3  |  Coverage properties of confidence intervals for �

For the LM analysis, coverage properties largely reflected the be-
haviour of standard errors. Performance was good providing a 

reasonable sample size (nt ≥ 20), and only deteriorated appreciably 
when data were highly unequal across groups and there were large 
differences in the true probabilities between groups (Figure 4a,e; 
also see corresponding plots in Figures A6–A8). The Wald- type CIs 

F I G U R E  2  Validity of standard errors 
of linear model (LM)-  and generalised 
linear model (GLM)- based inferences of 
the difference in proportions between 
groups (�) when data are evenly 
distributed between the two groups. The 
standard error for the �̂GLM estimator was 
constructed using the delta method. In 
(a) and (b), at least one group always has a 
probability of p0 = 0.1, while in (c) and (d) 
at least one group always has a probability 
of p0 = 0.5.

(a) (b)

(c) (d)

F I G U R E  3  Validity of standard errors 
of linear model (LM)-  and generalised 
linear model (GLM)- based inferences of 
the difference in proportions between 
groups (�) when data are unevenly 
distributed between the two groups. The 
standard error for the �̂GLM estimator 
was constructed using the delta method. 
In (a) and (b), the group with 20% of the 
observations always has a probability of 
p0 = 0.1, while in (c) and (d) the group with 
20% of the observations always has a 
probability of p0 = 0.5.

(a) (b)

(c) (d)
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    |  7NAGEL et al.

we generated based on the delta- SEs from the GLM analysis were 
generally conservative (Figure 4b,f), indicating greater uncertainty in 
the GLM estimates of differences between groups than was actually 
achieved. The score (Figure 4c,g) and profile likelihood (Figure 4d,h) 
methods for generating CIs for � performed reasonably well across 
all scenarios that we simulated (also see corresponding plots in 
Figures A6–A8).

3.4  |  Control of type 1 error rate

Under a balanced experimental design, the chi- squared test, mid- p, 
exact unconditional and LM analysis had a type 1 error rate very 
close to the conventionally accepted 5% threshold (Figure 5 at � = 0; 
also see corresponding plots in A10). Yates' correction, Fisher's 
exact and the GLM analysis with z- test p- values were generally most 
conservative. When p0 = 0.1, observations were very unevenly dis-
tributed between groups, and sample sizes were small (nt ≤ 20) the 
type 1 error rate for both the chi- squared test and LM analysis was 
closer to 10% (Figure A9). Across most scenarios, the highest type 1 
error rate was realised using a GLM analysis with p- values generated 

using the LRT (Figure 5 at � = 0; also see corresponding plots in 
Figures A9–A11).

3.5  |  Power of null hypothesis statistical tests for �

Across the range of scenarios considered, the chi- squared test, LM 
analysis and GLM analysis with p- values generated using the LRT 
generally gave the best performance, with the highest power to 
detect non- null effects (Figure 5; also see corresponding plots in 
Figures A9–A11). The poorest performance was realised in the GLM 
analysis with default p- values (z- test based) from the summary.glm() 
function in base R.

3.6  |  Comparison of p- values for LM analyses and 
chi- squared tests

The underlying p- values generated from the linear models and chi- 
squared tests were nearly equivalent, both across the full dataset 
and at the α = 0.05 level (Figure 6; also see Figures A12–A14).

F I G U R E  4  Coverage properties for 95% confidence intervals of differences between proportions in two groups for a range of analyses 
and true differences between groups. In the top row (a–d), at least one group has a probability of p0 = 0.1 and in the bottom row (e–h), at 
least one group has a probability of p0 = 0.5. Note that in (a), the proportion of estimates within 95% CI for � = −0.1 (yellow) and � = 0.9 (blue) 
at nt = 10 are outside the y- axis range; the respective values are 0.404 and 0.398.

(a) (b) (c) (d)

(e) (f) (g) (h)
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8  |    NAGEL et al.

F I G U R E  5  Power to reject false null hypotheses and false- positive rates in the case of no effect (� = 0) of different tests. All lines depict 
the proportion of significant results at the α = 0.05 level. In (a) at least one group always has a probability of p0 = 0.1, and in (b) at least one 
group has a probability of p0 = 0.5. Note the different y- axis scale in plots with no effect (� = 0), where we scale from [0:0.1] rather than [0:1] 
to focus on behaviour relative to the idealised false- positive rate of 0.05 (grey dotted line). Note that in (b), plots with equal values of ∣ � ∣ 
should be identical, noise from finite numbers of simulations notwithstanding.

(a)

(b)
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    |  9NAGEL et al.

4  |  DISCUSSION

Many biological phenomena have binomial outcomes: diagnostic tests 
may be passed or failed, individuals may survive or die, sites may or 
may not be occupied. Consequently, many biological questions boil 
down to investigating differences in probabilities. Here, we have in-
vestigated a range of approaches to characterise differences between 
groups. Our primary focus was on the estimation of the difference in 
probability between two groups and the ability to make reasonable 
statements about uncertainty in those differences. To this end, we first 
considered the performance of LMs and Bernoulli GLMs to produce 
unbiased estimates and meaningful standard errors and confidence 
intervals. Secondly, given that widely recommended approaches for 
the analysis of binary data (e.g. GLMs) do not directly generate stand-
ard errors or confidence intervals for differences in probabilities, we 
developed and tested methods to do so. Finally, we compared model- 
based approaches and classical tests for 2 × 2 contingency table analy-
sis in terms of the performance of p- values associated with the null 
hypothesis of no difference between two groups. We discuss the 
main observations from these exercises in terms of what they mean 
for practicing scientists, and how analysing differences in probabilities 
might fit into the process of learning practical statistics.

4.1  |  Estimation of differences in probability and 
assessment of uncertainty

A post- doc is looking over a study area with the long- term PI on their 
new project:

New post- doc: Do the unicorns in the valley have higher survival than 
those on the hills?

Experienced PI: Hmm, yes. Their log- odds of survival probably differs 
by 1.5.

New post- doc: As much as 1.5 on the log- odds scale?
Experienced PI: Indeed; maybe as much as 2!

A conversation that definitely never happened.
Almost certainly, the underlying interests of both participants in 
this fanciful conversation would have been about survival proba-
bility and the difference in those probabilities between habitats—
not about differences in log- odds ratios. This is not to discount 
the fact that the log- odds are a statistically convenient scale, and 
not without biological importance. Rather, we think it likely that 
most biologists prefer to consider their data and results in terms 
of probabilities, finding them a more intuitive and illustratable sta-
tistic (Gallis & Turner, 2019; Halvorson et al., 2021). That, in the 
above example, the post- doc made a judgement about biological 
effect size and the PI made a statement about uncertainty, both 
on the log- odds ratio scale, is pretty improbable. We therefore 
consider how best to support this inclination and focus on the es-
timation of differences in probabilities between groups and what 
we can say about uncertainty in those estimates.

First, we focus on the linear regression, which gives estimated dif-
ferences in probabilities and its standard errors directly as a model 
output. While many biostatistics texts give the impression that using 
a linear model to analyse binomial data would be dangerously naïve 
(Kaplan, 2017; Lever et al., 2016; Seltman, 2018; Tutz, 2012), we found 
that a linear model with a binary outcome (0, 1) regressed on a binary 

F I G U R E  6  Correspondence between p- values from linear model (LM)- based inferences and the Pearson chi- squared test. For the LM 
analysis, response variables were regressed on groups, both coded as 0/1 data, such that the model slope estimated the difference between 
groups. In (a), results for all 1000 replicates of each of the 132 combinations of simulation parameters are shown. The same dataset is shown 
in (b), but values are restricted to p ≤ 0.1 so that the correspondence between statistical significance at the α = 0.05 level (grey dotted lines) 
can be more directly assessed. p- values from simulations with the smallest total samples sizes (nt = 10) are plotted with closed black circles, 
sample sizes nt = 20 are plotted with open black circles, and the largest sample sizes (nt ≥ 30) are plotted with open grey circles.
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10  |    NAGEL et al.

explanatory variable (0, 1) gave unbiased estimates of differences in 
probabilities. More specifically, the LM accurately estimated the true 
difference between the means of two groups (Figure 1). Standard errors 
from the LM did not, however, perfectly reflect the true uncertainty in 
estimated differences (Figures 2 and 3). Basic Wald- type confidence 
intervals (estimate ± 1.96 SEs) performed well under a broad range of 
circumstances but were compromised when sample size was small 
and data distributions were very skewed (Figure 4). Nonetheless, SEs 
and CIs from the LM analysis were generally of the correct order of 
magnitude. Furthermore, the conditions under which the LM- based 
SEs and CIs performed poorly are the same conditions under which 
a chi- squared test is generally discouraged (Crawley, 2012; Fagerland 
et al., 2017; Kang et al., 2006; Ruxton & Neuhäuser, 2010).

Where linear regression is discouraged for the analysis of con-
tingency tables, logistic regression is widely recommended as an 
ideal means of modelling binomial data (Dunn & Smyth, 2018; 
Lever et al., 2016; Orme & Combs- Orme, 2009; Ramos et al., 2015; 
Tutz, 2012). While a binomial GLM analysis does not directly return 
inference of differences in probabilities, the conversion of predictions 
to the probability scale is reasonably commonplace. Calculating stan-
dard measures of uncertainty (SEs and CIs) on the probability scale is, 
however, less common. For this reason, we investigated a method that 
is standard in some areas of statistics, but not routinely utilised by bi-
ologists, to derive SEs of differences in probabilities: the delta method. 
We find that this linear approximation of the transformation from the 
log- odds scale to the difference in probabilities (Equation 5) performs 
reasonably well. It gave accurate SEs of differences in probabilities and 
was outperformed by the OLS- SEs only in a few circumstances involv-
ing the smallest sample sizes, and then only modestly so (Figure 2). The 
GLM delta- SEs also performed well in some scenarios where the LM 
analysis performed poorly, namely when differences between groups 
were large and one group had a true value very near 0 or 1 (Figure 3).

Similar to SEs of differences in probabilities, generating CIs of 
differences in probabilities from binomial GLMs is not standard 
practice in the fields of ecology and evolution. We tested three 
methods to do so. First, we applied the standard Wald- type method 
(estimate ± 1.96 SEs) using the delta- SEs. This generated CIs that 
were typically overly conservative, that is, that depicted greater 
ranges of uncertainty in the estimate of differences than actually 
occurred (Figure 4). This is undesirable since excessive conserva-
tism can equate to wasting sample size, money and effort. We then 
tested the score and profile likelihood- based methods for generating 
CIs. Neither are directly linked to LM-  or GLM- based inferences, but 
both focus on estimated differences in probabilities and make state-
ments about uncertainty of those differences. Both methods gener-
ated CIs with approximately correct coverage properties across the 
range of scenarios investigated (Figure 4).

4.2  |  Power and performance under H0

While our primary focus was on the estimation of differences in 
probabilities and the generation of statements about uncertainty to 

accompany these estimates, we also considered two p- value- based 
assessments of model performance: power to reject false null hy-
potheses and false- positive rates in the case of no effect. Given that 
most classical approaches for analysing contingency tables gener-
ate p- values but not estimates or uncertainty statements about dif-
ferences in probabilities, this also allowed us to compare regression 
model outputs with four commonly recommended alternatives and 
refinements to the chi- squared test. We offer some general conclu-
sions drawn from this comparison.

4.2.1  |  LM and chi- squared are basically identical 
from a NHST perspective

The power and false- positive rates from the LM analysis and the 
Pearson chi- squared test were nearly identical (Figures 5 and 6). 
This is inevitable, given that the underlying p- values generated by 
the two approaches are also nearly identical. The p- values from the 
LM analysis assume that estimation errors follow a t- distribution, 
which rapidly converges on a normal distribution when sample size 
≥10 (Seltman, 2018). The p- values from the chi- squared test arise 
from a normal approximation to deviations from the null model of 
equal probabilities (Lydersen et al., 2009).

4.2.2  |  GLM is good for H0 testing, but 
requires care

The GLM- based approach was the most powerful NHST when H0 
was false; it was not outperformed under any combination of simu-
lation parameters assessed (Figure 5). Also, the GLM false- positive 
rate most closely reflected the nominal rate at α = 0.05, except in 
some cases with the smallest sample size. However, these proper-
ties are only true for GLM p- values generated from the LRT. The de-
fault statistical hypothesis test for GLMs, the z- test (i.e. the standard 
summary.glm() output in base R), can severely lack power when one 
or both groups have observed rates near 0 or 1; it can also be ex-
cessively conservative under the null hypothesis. This is a known 
phenomenon (Bolker et al., 2009). It is thus widely recommended 
to apply the LRT to binomial GLMs, especially when some cells of 
an experiment have very high or low probabilities (Agresti, 2007; 
Hauck & Donner, 1977). It is worth noting, however, that the LRT 
is not perfect. It gives modestly inflated type 1 error rates (i.e. p- 
values <0.05 when the true difference between groups is 0) in a 
range of circumstances and is sometimes excessively conservative.

4.2.3  |  The behaviour of classical tests

All chi- squared test refinements and alternatives (Yates' correction, 
Fisher's exact test, mid- P and exact unconditional; see Section 2.3) 
produced results either more conservative than or comparable to the 
LM and Pearson chi- squared analyses (Figure 5). More specifically, 
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they were excessively conservative when the null hypothesis was 
true and generally less powerful when the null hypothesis was false. 
Being excessively conservative or aiming to never conduct a test 
that might have a false positive rate slightly above the stated rate 
may initially seem laudable. However, conservatism when the null 
hypothesis is true is inevitably linked to lower power when the null 
hypothesis is false, and it could be argued that employing tests that 
underestimate the power and precision of an estimate is an inef-
ficient use of resources.

Broadly speaking, across the range of circumstances that we 
simulated, p- values from the LM analysis (or very nearly equiva-
lently, from the Pearson chi- squared test) were more often near the 
nominal value of α = 0.05 than any other test, including the often- 
recommended GLM- LRT approach. However, marginal differences 
between tests under most simulated circumstances suggest that 
adopting the GLM- LRT approach on this basis risks adding unnec-
essary confusion to the analysis of contingency tables. While rigor-
ously avoiding excessive false positives is of course desirable, it can 
be taken to extremes. These results also highlight the problems with 
expressing results only in terms of p- values (Stephens et al., 2007): 
None of the methodologies we assessed proved perfect for NHSTing 
under all simulated conditions.

4.3  |  General considerations

The LM analysis robustly estimated differences of proportions 
between groups. Measures of statistical uncertainty (SEs and as-
sociated CIs) were largely correct representations of the true un-
certainty, although somewhat compromised when total sample size 
was small and strongly unbalanced between the groups. However, 
these are the same conditions under which a chi- squared test is 
generally discouraged (Crawley, 2012; Fagerland et al., 2017; Kang 
et al., 2006; Ruxton & Neuhäuser, 2010). As such, the LM analysis 
of 2 × 2 contingency table data is equivalent to (in power and per-
formance under the null) or superior to (easily generated estimates 
and uncertainty statements) the chi- squared analysis. This sug-
gests at least three broad benefits to more widespread application 
of the LM approach to 2 × 2 contingency table analysis.

First, instruction in biological statistics may be well served by 
shifting to a LM- based approach. However, given the ubiquity of ad-
vice that standard linear regressions are unsuited to data such as 
arises in a 2 × 2 contingency table analysis, biostatistics instructors 
face a quandary. One option is to teach LMs for everything except 
contingency tables and then cover all statistical procedures typically 
handled in introductory statistics (e.g. the chi- squared test and its 
alternatives). A second option has instructors teaching GLM analy-
ses. This would undoubtedly benefit students, but most curricula do 
not afford enough time to teach GLMs well and this leads to greater 
problems down the road. By one estimation, 58% of GLMs in ecology 
and evolution are inappropriate in some way (Bolker et al., 2009). 
Alternatively, our results show that the typical advice is wrong and 
LMs are reasonable alternatives to the chi- squared test. This should 

allow basic LMs to be used for model- based teaching covering the 
full range of classical tests (chi- squared, t- test, simple and multiple 
regression, ANOVA, ANCOVA, etc.).

Second, our results suggest that simple LMs provide a good bal-
ance between robustness and appropriateness of the methods, and 
ease of application and interpretation. LMs produce direct param-
eter estimates and unbiased uncertainty statements of differences 
in probabilities without common errors in application or interpre-
tation. While the modern biologist may opt for more sophisticated 
procedures (e.g. GLM), confidence that more straightforward meth-
ods are indeed quite robust is useful. Furthermore, researchers can 
take comfort in the fact that results from those who prefer simpler 
methods (e.g. LM) are likely reliable. This view may be particularly 
useful to meta- analysts, as inclusion of results from relatively simple 
analyses in synthetic works may be perfectly justified.

Third, while GLM analysis can generally be used to good effect 
for basic 2 × 2 contingency table analyses, it is only with substan-
tial additional effort that one can extract the basic biological infor-
mation that the LM analysis generates directly. To our surprise, no 
general biostatistics source that we consulted discussed how to gen-
erate a standard error for the difference in probability between two 
groups from a fitted GLM analysis. To this end, for those interested 
in implementing the linear approximation of the sampling error in 
the difference in probabilities (delta method SE) in the case of the 
2 × 2 contingency table analysis, we provide a function in the form 
of a GitHub R package named ProbUncertainty (Nagel et al., 2024b; 
https:// github. com/ rebeb ba/ ProbU ncert ainty ). We also provide 
functions to calculate the score and profile likelihood CIs.

5  |  CONCLUSIONS

We have confirmed the consensus in the biostatistics literature 
that GLMs are well suited to the analysis of 2 × 2 contingency 
table data. However, our results highlight that substantial care is 
needed for their application and interpretation. Little considera-
tion has previously been given to the fact that the GLM does not 
readily output uncertainty in differences between groups in terms 
of probabilities, despite the fact that such information might cor-
respond best to how biologists formulate research questions. We 
have illustrated ways to rectify this issue. Perhaps more surpris-
ing to many readers, we found that the direct inference of dif-
ferences in probability and associated uncertainly (SEs and CIs) 
generated by LM analyses perform well in all circumstances where 
the basic chi- squared test can be recommended. This realisation, 
that the LM analysis is generally reasonable and directly yields the 
kind of information most people want to know, should be helpful 
when designing instruction in introductory biostatistics courses 
and could be broadly useful to researchers. Finally, while statisti-
cians have been industrious in inventing alternatives to the basic 
Pearson chi- squared test, we found no circumstances where the 
commonly recommended alternatives unambiguously outper-
formed the classical test (or the LM analysis).
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Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure A1. As for Figure 1, but with an unbalanced design.
Figure A2. As for Figure 1, but with a type 3 experimental design.
Figure A3. As for Figure 1, but with an unbalanced type 3 
experimental design.
Figure A4. As for Figure 2, but with a type 3 experimental design.
Figure A5. As for Figure 3, but with a type 3 experimental design.
Figure A6. As for Figure 4, but with an unbalanced design.
Figure A7. As for Figure 4, but with a type 3 experimental design.
Figure A8. As for Figure 4, but with an unbalanced type 3 
experimental design.
Figure A9. As for Figure 5, but with an unbalanced design.
Figure A10. As for Figure 5, but with a type 3 experimental design.
Figure A11. As for Figure 5, but with an unbalanced type 3 
experimental design.
Figure A12. As for Figure 6, but with an unbalanced design.
Figure A13. As for Figure 6, but with a type 3 experimental design.
Figure A14. As for Figure 6, but with an unbalanced type 3 
experimental design.
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