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A B S T R A C T   

Polymeric syntactic foams are used in aerospace and marine applications requiring low density and low moisture 
absorption together with high specific strength and stiffness. Their mechanical response is highly sensitive to 
temperature and strain rate and such sensitivity must be modelled accurately. In this study, the uniaxial 
compressive response of a polymeric syntactic foam is measured at strain rates in the range [10− 3, 2.5⋅103] /s 
and temperatures varying between − 25◦C and 100◦C. The resulting dataset is used to train a neural network to 
predict the compressive response of the foam at arbitrary strain rates and temperatures. It is found that the 
surrogate model is highly effective in predicting the material response at temperature and rates not included in 
its training set. Finally, a stochastic version of the data-driven model to allow predictions of the variability in the 
stress versus strain response is proposed.   

1. Introduction 

Polymer syntactic foams are a composite of polymer and glass mi
crospheres. The inclusion of hollow glass micro-balloons enhances their 
mechanical properties and specific energy absorption while reducing the 
moisture intake due to their closed-cell moisture-impermeable structure 
[1]. These attributes make this class of materials well suited for appli
cations in the submarine, automotive, and aerospace industry. The 
mechanical behaviour of these reinforced foams depends strongly on the 
rate of deformation and the temperature, owing to the inherent strain 
rate and temperature dependency of the polymer matrix as well as the 
energy-dissipating nature of deformation and breakage of the micro
spheres [2–4]. 

Numerous research efforts have investigated the dynamic response 
of syntactic foams under ambient conditions [5–9]. However, syntactic 
foams are used in a diverse environmental settings, including extreme 
temperatures, owing to their thermal insulation properties [10,11]. The 
effect of temperature on the compressive response and failure mecha
nisms of zinc syntactic foams with different particle fillers were inves
tigated in [12]. The rate dependent compressive response of Aluminium 
syntactic foams with matrices of different composition and heat treat
ment was studied in [13]. More recently, Movahedi et al. [14] examined 

the response of functionally graded aluminium syntactic foams under 
compressive impact loading. 

Given the temperature-dependent nature of the polymer matrix [15], 
the physical and mechanical properties of polymer syntactic foams 
exhibit considerable sensitivity to variations in temperature [16]. Tan 
et al. [17] explored the temperature and strain rate dependence of an 
epoxy syntactic foam under tensile and shear load. The interplay be
tween the influence of strain rate and temperature on the compressive 
and tensile response of three different polymer syntactic foams was 
analysed in [18]. 

In this study, supervised machine learning is employed to model the 
behaviour of an epoxy syntactic foam under compression, considering 
variations in strain rate and temperature. Machine learning has found 
numerous applications in the field of solid mechanics with the purpose 
to accelerate or enable complex material design and optimisation. These 
applications include, among the others, the development of constitutive 
models for metallic materials [19,20], reverse engineering [21], struc
ture generation [22] of additively manufactured materials as well as 
modelling and design of composite materials [23]. However, the exist
ing literature does not include any application of machine learning 
aiming at predicting the mechanical characteristics of syntactic foams 
considering their dependence on temperature and strain rate. 

* Corresponding authors. 
E-mail addresses: v.tagarielli@imperial.ac.uk (V.L. Tagarielli), ap3551@bath.ac.uk (A. Pellegrino).  

Contents lists available at ScienceDirect 

Materials Today Communications 

journal homepage: www.elsevier.com/locate/mtcomm 

https://doi.org/10.1016/j.mtcomm.2024.108790 
Received 21 January 2024; Received in revised form 12 March 2024; Accepted 29 March 2024   

mailto:v.tagarielli@imperial.ac.uk
mailto:ap3551@bath.ac.uk
www.sciencedirect.com/science/journal/23524928
https://www.elsevier.com/locate/mtcomm
https://doi.org/10.1016/j.mtcomm.2024.108790
https://doi.org/10.1016/j.mtcomm.2024.108790
https://doi.org/10.1016/j.mtcomm.2024.108790
http://creativecommons.org/licenses/by/4.0/


Materials Today Communications 39 (2024) 108790

2

This study focuses on an epoxy-based syntactic foam and presents 
measurements of its uniaxial compressive response at strain rates and 
temperatures in the ranges [10− 3, 2.5⋅103] /s and [-25, 100] ◦C, 
respectively. The measurements are used to train a surrogate able to 
predict the mechanical response of the material at arbitrary temperature 
and strain rate within the testing ranges. A second model that can also 
predict the uncertainty in the compressive response at arbitrary rate and 
temperature is then implemented. A flowchart illustrating the general 
process employed in this study is illustrated in Fig. 1. The proposed 
technique can be applied to any solid material; however, a syntactic 
foam is chosen for this study due to its wide availability, extensive in
dustrial usage, and significant dependence on temperature and strain 
rate. 

The paper is structured as follows. Section 2 outlines the studied 
material and experimental methods; Section 3 presents the measured 
results, the data-driven surrogate models and discusses their accuracy. 

2. Material and methods 

2.1. Material and specimens 

The material investigated is an epoxy-based syntactic foam, made of 
glass microspheres of diameter from 15 to 60 μm, a mean wall thickness 
of 0.8 μm, and a volume fraction of 0.5. The employed glass micro- 
balloons were made of soda-lime borosilicate glass, surface treated for 
enhanced coupling with epoxy resins. The investigated syntactic foam is 
a structural 2-part void filling compound commercialised under the 
name of EC-3524 B/A produced by 3 M Scotch Weld. The two parts were 
weighted and mixed manually for approximately 15 seconds after a 
uniform colour was obtained. The mixture was slowly stirred until a 
uniform compound was obtained. The compound was cast in stainless 
steel moulds to obtain syntactic foam slabs. The slabs were then cured 
for 48 hours at room temperature. The foam was produced and provided 
by an external company and received in the form of cylinders od 
diameter 22.5 mm and length 150 mm. The overall material density was 
measured as 500 kg/m3. 

The microstructure of the foam was visualized by observing portion 
of unstable fracture surfaces, as shown in the micrograph of Fig. 2. 
Microbubbles of varying sizes are visible, of size distribution consistent 
with that reported in the manufacturer’s datasheet. 

Circular cylindrical samples, measuring 5 mm in diameter and 
2.5 mm in height, were employed in high-rate and quasi-static 
compression experiments. This choice was informed by prior research, 
which suggested that the ideal aspect ratio (height to diameter ratio) for 
compression specimens falls within the range of 0.5–1 [24]. The lower 
bound of this range is adopted to favour of the attainment of force 
equilibrium and to increase the achievable strain rates. 

The specimens were speckled to enable for the Digital Image Cor
relation (DIC) analysis of quasi static experiments. The suitability of the 
speckle pattern was verified evaluating the mean intensity gradient 
(MIG), a widely used evaluation parameter based on the intensity 
variation characteristics of the speckle, defined in [25]. The obtained 
MIG values were between 35 and 37, ensuring a mean bias error of 
displacement of under 1% [25,26]. 

2.2. Test methods 

2.2.1. Quasi-static tests 
The quasi-static experiments were filmed by a high-resolution cam

era (JAI BM-500GE monochrome progressive scan camera) to measure 
deformation. The specimens were loaded by a screw-driven testing 
machine (Zwick Z250) via compression fixtures. A lubricant was used to 
minimize the effects of friction between the anvils and the sample. The 
uniaxial compression experiments were conducted under displacement 
control at a nominal strain rate of 10− 3 s− 1 in all experiments. The 
compressive force was measured by a 20 kN load cell. The strain his
tories were analysed using the GOM Aramis DIC software [27]. 

The temperature was varied from 0℃ to 100℃. These temperatures 
were chosen based on the typical service and glass transition (54 ℃) 
temperatures of the selected syntactic foam. The ambient temperature 
was regulated using a feedback-controlled environmental chamber, 
while lower than ambient temperatures were achieved by connecting a 
liquid nitrogen dewar to the inlet of the chamber. The flow rate of the 
liquid nitrogen was controlled automatically, and the temperature was 
monitored using a built-in thermocouple and an additional type-K 
thermocouple placed near the specimen. Once the target temperature 
was reached the sample was left in the chamber for an additional 
20 minutes to reach temperature equilibrium prior to testing. 

2.2.2. Dynamic tests 
The high-rate response of the foam was measured using a Split 

Hopkinson Pressure Bar apparatus (SHPB) [28] which can produce 
stress pulses longer than 1 ms and therefore large compressive strains. 
The incident and transmitted bars, each with circular cross-section, had 
a diameter of 16 mm and were made of Ti64. The striker, input bar and 
output bar, were all 2.7 m in length and were supported by low-friction 
bearings. The stress waves in the bar were analysed as in [29] to 
construct the time history of strain and strain rate in the specimen and of 
the forces at the specimen’s ends. A 1 mm thick cardboard disk 
(436 g/m2) was used as a pulse shaper between the striker and the input 
bar. A schematic of the setup, similar to that in [18–30], is shown in  

Fig. 1. Flowchart of the research process utilised in this study.  

Fig. 2. Optical micrograph of the syntactic foam.  
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Fig. 3. 
The temperature dependence of the high-rate response was exam

ined across a temperature range of − 25℃ to 100℃. The specimen 
temperature was regulated using a bespoke feedback-controlled envi
ronmental chamber (schematic in Fig. 3) following a procedure analo
gous to that employed during the quasi-static experiments. The 
projectile speed was adjusted to have strain rates varying in a narrow 
range, specifically [2200,2700] /s. The employed environmental 
chamber comprises a thermal unit, in which air is conditioned to higher 
or lower than ambient temperatures, a temperature controller, a spec
imen enclosure and two thermally insulated umbilical sleeves connect
ing the specimen enclosure to the air conditioning unit. The heated or 
refrigerated air is transferred to the enclosure by means of a suitable fan, 
embedded in the thermal unit. The temperature in the enclosure is fed 
back to the temperature controller by means of a type K thermocouple 
positioned inside the enclosure, in proximity to the sample. 

The specimen enclosure is installed on the SHPB apparatus by 
enabling the incident and transmitted bars to be partially inserted within 
the specimen enclosure using low friction, thermally insulated bar 
supports (Fig. 4). 

3. Results and discussion 

3.1. Experimental results 

A total of twelve high-rate and nine quasi-static experiments were 
conducted over a temperature range of − 25◦C to 100◦C, as given in  
Table 1, detailing the number of repetitions. Two experiments were 
conducted for each loading case except for the quasi-static experiments 
conducted at temperatures of − 25◦C and 75◦C due to limited material 
availability. 

The influence of temperature on the quasi-static and high-rate 
compressive behaviour of the material is depicted in Fig. 5(a) and (b), 
respectively. The experiments show the typical response of a polymer 
foam with a prominent dependence of the compressive response on 
temperature and strain rate, with the stiffness and flow stress reducing 
with increasing temperature at both low and high strain rates. Fig. 5(c) 
illustrates the mechanical responses measured at room temperature, to 
highlight the strain rate sensitivity of the material, with the dynamic 
plateau stress more than double of its static counterpart. 

Fig. 5(d) shows the detail of the data measured in a typical dynamic 
test at room temperature. The plot illustrates the incident (Finp) and 
transmitted (Fout) force histories at the interfaces between the sample 
and the bars, as well as the evolution of the strain rate during the 
experiment. During dynamic experiments, a significant mismatch be
tween the two forces indicates a non-uniform deformation along the 
sample. On the contrary, when the two forces are approximately equal it 
can be assumed that strains along the sample are uniform and, therefore, 
that the measured stress-strain characteristic is representative of the 
behaviour of the studied material [24]. It is clear that the specimen’s 
incident and transmitted forces equalise in the early stages of the 
deformation, giving valid measurements of the stress history. After 
equilibrium and prior to densification the strain rate was approximately 
constant. 

Fig. 3. Schematic of the Split Hopkinson pressure bar apparatus.  

Fig. 4. Details of the experimental apparatus used for the high strain rate experiments.  

Table 1 
Number of tests performed for quasi-static and high-rate experiments.   

-25 ◦C 0 ◦C 25 ◦C 50 ◦C 75 ◦C 100 ◦C 

Quasi-static  0  2  2  2  1  2 
High-rate  2  2  2  2  2  2  
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Fig. 5(e) and (f) analyse and compare the densification strain and the 
absorbed energy density at densification measured at different temper
atures and strain rates. The absorbed energy density in Fig. 5(f) is 
calculated as the integral of each of the measured stress-strain curves in 
the strain interval included between zero and the densification strain 
[18]. Syntactic foams are typically used in protective structures for their 
capacity to dissipate significant mechanical energy while limiting the 
transmitted force. The densification strain is therefore chosen as the 
upper bound in the determination of the energy absorption, as beyond 
this limit stresses increase rapidly with the increase of strain. 

The experimental findings suggest that the densification strain does 
not exhibit any noticeable dependence on temperature or strain rate. In 
contrast, the absorbed energy density displays a clear dependence on 
both temperature and strain rate. The experimental results indicate that 
the absorbed energy density in high-rate experiments is nearly twice 
that of quasi-static experiments, and it exhibits a decreasing trend with 
increasing temperature for both high-rate and quasi-static loading. 

Fig. 5. Summary of the experimental results; (a) temperature dependence of the quasi-static response; (b) temperature dependence of the high-rate response; (c) rate 
dependence at room temperature; (d) force equilibrium and strain rate history; (e) sensitivity of the densification strain to temperature and strain rate; (f) sensitivity 
of the absorbed energy density to temperature and strain rate. 
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3.2. Implementation of the data-driven models 

3.2.1. Training data sets 
Data from eight quasi-static and eight high-rate experiments were 

used to assemble training datasets for two surrogate models. These ex
periments were repeated at low and high strain rates (10− 3 /s and 
approximately 2500 /s, respectively) and at temperatures of 0◦C, 25◦C, 
50◦C, and 100◦C; two repetitions were performed for each temperature 
and strain rate pair. The data from the remaining five experiments 
(carried out at − 25◦C and 75◦C, Table 1) was stored to perform a vali
dation of the predictions of the surrogate model. 

Two surrogate models were developed: model I provides stress as a 
function of temperature, strain, and strain rate; model II provides both 
average stress and the range of variation of the stress as a function of the 
same inputs. Fig. 6 illustrates the training datasets I and II, used to train 
model I and II, respectively. Quasi-static and high-rate experiments are 
shown separately for clarity of visualisation, but they were used together 
in the training process. 

Training dataset I in Fig. 6(a) and (c) was assembled from the stress- 
strain histories after smoothing (using the adjacent-averaging signal 
processing method with the point of window 20). It comprised 13600 
data points, with a similar amount of data points for each experiment. 

Training dataset II was assembled as a stochastic dataset to carry 
information on the uncertainty of the stress versus strain histories. The 
raw (unfiltered) stress/strain data was divided into strain intervals 
(bins) of width 0.01. For each bin, the mean of strain and the mean and 
range of stress were calculated, considering data from both repetitions of 
the experiments. The stochastic dataset was assembled to have as entries 
mean strain, mean stress and stress range in each of the strain intervals; 
it is shown in Fig. 6(b) and (d), with the error bars representing the stress 
range. The dataset comprised a total of 521 data points, with a similar 

amount of data points (60− 70) for each experiment. 

3.2.2. Surrogate models 
Feed forward neural networks (NNs) [31] were used to construct the 

surrogate models. Two different models are presented, and their archi
tecture is summarised in Fig. 7. Model I receives as inputs the 
compressive strain, temperature and strain rate, providing the value of 
the compressive stress, σ = NNI

reg(ε, ε̇, T). The inputs for Model II are 
again strain, temperature and strain rate, and the outputs are mean σ 
and range s of the stress, (σ, s) = NNII

reg(ε, ε̇,T). The architecture of both 
neural networks was determined through iterative experimentation; the 
networks comprised 2 hidden layers with 100 and 64 neurons. 

A more explicit mathematical representation of the two models is 
given below [31]. 

σ = wI[3]
ij f I[2]

i

(
wI[2]

jk f I[1]
k

(
wI[1]

kl xl + bI[1]
k

)
+ bI[2]

j

)
+ bI[3]

i (1)  

(σ, s) = wII[3]
ij f II[2]

i

(
wII[2]

jk f II[1]
k

(
wII[1]

kl xl + bII[1]
k

)
+ bII[2]

j

)
+ bII[3]

i (2)  

Where:  

• xl is the input vector, i.e. (ε, ε̇,T)
• wI[n] and wII[n] are the weight matrices of each layer ‘n’ for the first 

and for the second model, respectively. The weights determine the 
influence of the input on the output of each neuron; their value is 
optimised during the training process.  

• bI[n] and bII[n]are the bias vectors of each layer ‘n’, for the first and 
for the second model. The biases are adjusted during the training 
process and introduce a certain level of tendency towards specific 
outcomes or behaviours. 

Fig. 6. Experimental datasets utilised by the two data-driven models.  
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• f I[n] and f II[n] are the activation functions [31] of each layer ‘n’, for 
the first and for the second model.  

• The integer ’n’ indicates the layer, where n=1 and n=2 represent the 
two hidden layers, and n=3 refers to the output layer. 

The inputs and outputs values were rescaled to a range between 
0 and 1 using the Minmax() function [32]; the ReLU [33] function was 
selected as the activation function for the hidden layers, while the 
identity function was applied to the output layer (i.e. no activation). The 
selected loss function was the mean square error (MSE) [32]. The NN 
was trained in TensorFlow 2.6 [34] via backpropagation, employing the 

Adam optimiser [35] with a learning rate of 0.001. Model I was trained 
for 1000 epochs with a batch size of 400, whereas Model II was trained 
for 2500 epochs with a batch size of 26. The training datasets I and II 
were split into 90% and 10% subsets used for training and testing, 
respectively. 

3.2.3. Assessment of the accuracy of the surrogate model 
To test the fidelity of the surrogate models, the data recorded in 5 

experiments (two high-rate conducted at − 25◦C, two high-rate at 75◦C, 
and one quasi-static at 75◦C), unseen by the training process, was used 
as a benchmark for the models’ predictions. It is worth emphasising that 

Fig. 7. Schematic of the two surrogate models.  

Fig. 8. Predictions of the stress/strain responses in experiments not included in the training dataset, by (a) Model I and (b) Model II.  
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assessing the models on unseen data provides a more accurate evalua
tion of their performance in real prediction scenarios. On the contrary, 
evaluating the models on data used during the training process generally 
yields optimistic performance metrics that may not represent how the 
models would perform when predicting new, unseen data. 

Data from the 5 unseen tests mentioned above was processed as 
described in 3.1 above. The surrogate models were used to predict the 
stress versus strain responses corresponding to these five experiments. 
Starting from the initial configuration ε = σ = 0, the strain was pro
gressively increased and the models used to compute σ, σ and s. 

3.3. Discussion 

Fig. 8 presents the predictions of the models for the 5 unseen tests. 
The surrogate models are found to be in good agreement with the ex
periments, accurately predicting the temperature and strain-rate 
dependent stress/strain responses of the material until densification. 
The models therefore show good generalisation capabilities, as 
demonstrated by their ability to perform well on unseen data; it is 
particularly noteworthy that accurate predictions are achieved by both 
models even for tests at − 25◦C, despite data at this temperature is not 
only unseen during the training, but also outside the range of the 
training dataset, and therefore the models are extrapolating. 

The densification strain of the foam as the strain at maximum energy 
absorption is calculated according to Eq. (3) [36,37]. 

η =
1

σ(ε)

∫ ε

0
σ(ε)dε. (3) 

This efficiency is plotted in Fig. 9(a) to illustrate the definition. Fig. 9 
(b) and (c) compare the predictions of densification strain and energy 
density (at densification) provided by the surrogate models with the 
ground truth represented by the experimental data. Both models give 
good predictions of both densification strain and energy density at 
densification. It is worth noting that the experimental data in Fig. 9(b) 
and (c) were not included in the neural networks training process. 

Fig. 8(b) showed that model II gives the highest errors in the 
elasticity-dominated early stages of deformation (0 ≤ ε ≤ 0.1) and in 
the densification regime (ε ≥ 0.5). This is likely because these defor
mation phases occupy narrow portions of the input space. To address 
this issue, binning of the data with a width of 0.01, as applied to the rest 
of the stress-strain curves, is not utilized in these regions. Instead, the bin 
size is progressively reduced to 0.001, as depicted in Fig. 10. The figure 
also demonstrates the enhanced predictions of the stress/strain curve for 
the previously unseen high-rate experiment conducted at 75 ◦C. 

To demonstrate the capability of the model, the stress/strain curve is 
predicted under the imposition of a temperature history during defor
mation. It is assumed that the temperature T varies according to T =

T0 + αε, where T0 = 25∘C, αis a parameter and εis the compressive 
strain. Fig. 11 shows the stress versus strain predictions of model I for 3 
selected values of α, representing a constant temperature of T0 = 25∘C, a 
temperature increasing from T0 = 25∘C to 100◦C at ε = 0.6, and a 

Fig. 9. (a) Definition of densification strain and energy absorption efficiency illustrated on a high-rate experiment conducted at 75◦C; (b), (c) comparisons between 
the predictions of the surrogate models and unseen experimental data. 
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temperature decreasing from T0 = 25∘C to − 25◦C at ε = 0.6. The pre
dictions are shown together with measurements at constant T and show 
the expected trends. 

4. Conclusions 

The stress-strain histories recorded in quasi-static and high-rate 
compression experiments on a syntactic foam at different tempera
tures were used to assemble a training dataset to develop data-driven 
surrogate models able to predict the stress history of a syntactic foam, 
and its variability, as a function of the imposed strain, temperature and 
strain rate. The surrogate models were tested on unseen experiments 
demonstrating high accuracy, and successful predictions even when 
extrapolating. A technique to manipulate the training database in order 
to improve the quality of the regression is also proposed and its effec
tiveness is demonstrated. The proposed data-driven surrogate models 
are informed exclusively by a relatively limited number of experiments. 
This approach eliminates the potential limitations of traditional 
phenomenological constitutive equations by learning directly from 
experimental data. Both models can capture the non-linear phase 
following the collapse stress without the need to calibrate complex 
constitutive equations. An additional advantage lies on the ability of the 
second surrogate model to preserve the information contained in the 
variability of the experimental data. 
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