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ABSTRACT

Model testing is common in coastal and offshore engineering. The design of such model tests is
important such that the maximal information of the underlying physics can be extrapolated with
a limited amount of test cases. The design of experiments also requires considering the previous
similar experimental results and the typical sea-states of the ocean environments. In this study, we
develop a model test design strategy based on Bayesian sampling for a classic problem in ocean
engineering – nonlinear wave loading on a vertical cylinder. The new experimental design strategy
is achieved through a GP-based surrogate model, which considers the previous experimental data
as the prior information. The metocean data are further incorporated into the experimental design
through a modified acquisition function. We perform a new experiment, which is mainly designed
by data-driven methods including several critical parameters such as the size of the cylinder and all
the wave conditions. We examine the performance of such a method when compared to traditional
experimental design based on manual decisions. This method is a step forward to a more systematic
way of approaching test designs with marginally better performance in capturing the higher-order
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force coefficients. The current surrogate model also made several ‘interpretable’ decisions which can
be explained with physical insights.

Keywords Fluid-Structure Interaction, Machine learning, Hydrodynamics

1 Introduction

Offshore wind turbine foundations are exposed to the hazardous ocean environment and must be designed to survive
the ultimate loads. For the wave loading on the monopile foundations, the relatively small Keulegan-Carpenter (KC)
number indicates that for non-breaking waves, inertial loading tends to dominate the total inline forcing and it is
common to neglect the drag force effect. Nonlinear physics further introduces higher-frequency components, which
could contribute significantly to the total inline force for very steep and nonlinear waves. The linear part of the inertial
loading has the same frequency as the incoming wave field, which by design is away from the typical structural
natural frequency of monopile foundations (around two or three times the frequency of severe storm waves (1)). These
higher-frequency harmonics, however, can be much closer or even overlap with the structural natural frequency. This
overlap is of concern to the structural and geotechnical design of the monopile foundations and can potentially lead to
the excitation of a structure resonance, which is usually referred to as ‘ringing effect’ (2; 3; 4).

Various theoretical works have looked at these higher order harmonics (5; 6; 7; 8). Experiments and numerical
simulations (9; 10) are also used to further explore the underlying physics of these higher-order harmonics, including
our recent work, where a phase decomposition method is applied to further separate the higher frequency components
from the linear loading and Stokes type force expansion is used to predict the higher frequency forces as a nonlinear
function of the linear loading in time (11; 12; 13).

In addition to the theoretical derivations, various numerical and experimental works have also investigated wave
interaction with a vertical cylinder (14; 15; 2; 9; 3; 16). Marino et. al. investigated the nonlinear wave loads for irregular
waves (17), and Schløer et. al. further considers the aero-hydro-elastic calculations (18). Ghadirian and Bredmose (18)
investigated the ‘strong’ nonlinear physics beyond higher order harmonics.

With the increasing number of experiments and numerical datasets produced at various laboratories and research groups,
the new experiential design should be based on various pieces of information together to further explore the underlying
nonlinear physics. This includes a consistency check against previous experimental data and suggestions for new
experimental cases to explore the parameter combinations that are not covered by previous experimental cases, aiming at
improving the overall model accuracy over a wide range of sea states. Additionally, new cases should be representative
of real sea-state conditions in the operational wind farm.

Rather than relying on physical intuition or past experience, a systematic experimental design strategy is preferred to
address these challenges. In this study, we take a data science approach to design our new experiment and use Bayesian
interference as a small step forward. The Bayesian interference is a widely used optimisation tool in computer science
and machine learning (19). Recent studies in ocean engineering (20; 21; 22) also further utilised this technique to design
numerical simulations based on previous results, which can lead to a significant saving of computational resources with
a properly designed sequential sampling strategy.

In this study, we performed an experiment that is primarily designed by machine learning at the University of Strathclyde.
A surrogate model based on Gaussian Process is used to interpolate previous experimental results and a new acquisition
function is proposed to integrate metocean data from the ECWMF dataset. The proposed design strategy allows the
integration of different types of information: experiments, and metocean data to assist the decision-making process in
the design of new experiments. This model provides information to assist the choice of several critical experimental
parameters including the size of the cylinder and all the wave conditions. We compare the performance of the proposed
model against the traditional experimental design strategy and observed some improvement in the final predictions of
nonlinear loading on a vertical cylinder.

We structure this paper as follows. We first introduce the experimental setup in section 2 and provide a brief introduction
of the metocean and experimental data used in this study in sections 3 and 4. We then provide details of the machine
learning models in sections 5 and 6 and present results in section 7.

2 Experimental setup

In this paper, we aim at designing a new set of experiments in the large flume (76 m long, 4.6 m wide with a constant
water depth of 1.8 m) at the Kelvin Hydrodynamics Laboratory, the University of Strathclyde. We are primarily
interested in the nonlinear wave loads on a single bottom-mounted surface-piercing vertical cylinder placed 35.3 m
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away from the wavemaker. There is a parabolic beach at the far end of the flume away from the wavemakers for wave
absorption. Reflections from the beach are expected, however, the reflected wave packets reach the cylinder at a later
time and are excluded from the analysis. Hinged-flap type wavemakers are installed at the other end of the flume.
Linear wave generation theory was applied, and the impact of second-order error waves on the overall wave loading
was analysed carefully. We can also confirm that the second-order error wave packet is separated from the main group
at the time of interaction with the cylinder.

In this study, we are primarily interested in focused wave groups, which are also interconnected with the averaged
shape of the largest events in the random time series (according to NewWave theory (23; 24)). The focus point of
these wave groups is at the centre of the cylinder. In the experiments, the waves are generated based on the JONSWAP
spectrum (25) with peak enhancement factor, γ = 3.3. As the wave group propagates along the wave tank, significant
nonlinear evolution is expected for steep wave groups (26; 27; 28). Local properties of wave group profiles at focus are
measured without the presence of the cylinder and are used for further analysis. Wave breaking occasionally occurs
before the wave group arrives at the position of the cylinder and these cases are excluded from our analysis. The
Keulegan-Carpenter number for most of the experimental cases for the current study is less than 5, which means the
load is inertial load dominated. The KC number is computed by KC = πA/R, where A to be the linear focused wave
amplitude, R is the cylinder radius.

3 Previous experiments

Datasets obtained from the previous three experiments are used as the prior information for guiding the design of this
new experimental campaign (details are given in (12; 13; 11)). Similar focused wave group profiles were generated
during these experiments with the same JONSWAP spectrum (γ = 3.3) but with different peak periods and amplitudes.
The relative water depths and the cylinder sizes also vary due to the physical constraints in the experimental facilities.
The detailed design of these experiments in terms of three non-dimensional parameters (kA, kpd and kpR) is given in
Figure 7, where k is the peak wavenumber, A is the wave group amplitude at the focus point if the wave evolves linearly,
d is the water depth of the flume and R is the radius of the cylinder. The similar experimental setup and wide range
coverage of these previous experimental data provide the basic information to start the design of our new experimental
campaign.

All the experiments including the previous and current cases are primarily focused on the unidirectional wave conditions
(except for (11) where spreading sea states are also considered), which is different for the directionally spread waves in
the open ocean (29).

4 Metocean data

Realistic environmental data is critical to the design of new experiments as these data provide information on the typical
sea-states which are representative of ocean environments where offshore wind turbines are and will be constructed in
the near future. The design of new experiments should be tailored to metocean data to avoid any cases that are unlikely
to occur in realistic sea states.

In this study, we obtain the metocean data from the ERA5 dataset from ECWMF (30). We have downloaded the
sea-states parameters at 36 current and potential locations of offshore wind farms around UK, as shown in Figure 1.
The use of all past locations of offshore wind farms may introduce a bias towards smaller monopile sizes and shallower
water depths compared to the next phase of installations, which can be further mitigated when more information about
the next generation of offshore wind turbine installation information is available. The resolution of ocean wave data
is 0.5◦ x 0.5◦ and the nearest node to the location of the wind farm is used for the analysis herein. Rigorous data
quality control and validation of this dataset has been done previously in (30) and missing entries are carefully checked
throughout. In this study, we are primarily interested in three metocean parameters: significant wave height (Hs), hourly
maximum wave height (Hmax) and peak period (Tp). We have collected the hourly variation of these three data at all
36 wind farm locations between the period of 2004 and 2024, which contains a total of 87600 hourly sea-states. We
have also collected the monopile size information and the averaged water depth of the wind farm from the company
official or project website for these 36 UK based wind farms.

We also performed a data pre-filtering to these collected sea-states, where only 50% of sea-states with large (based
on Hmax) and 50% sea-states with long waves (based on Tp) are considered (see Figure 2 for details). The threshold
for this pre-filtering is arbitrary and we do not account explicitly for the correlation between Hmax and Tp but is a
compromise based on the limited availability of experimental facilities. More sophisticated pre-filtering can be easily
adapted into the framework depending on the source of the field data. We focus on long waves due to their importance
in ultimate loading calculations on monopile design (31), and among these long waves, sea-states with higher amplitude
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waves are considered as the nonlinear wave-wave interactions are more pronounced for steeper wave groups (12). These
cases are favoured given limited tank time in terms of both scientific interests and the importance of extreme loading
conditions during severe winter storms. Additionally, the wavemaker also struggles for high frequency wave groups,
where the accuracy of the wave generation is more of a concern. We also note that such pre-filtering is not critical for
the current proposed experimental design method and potential improvements will be further discussed in section 7.3.
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Figure 1: Site map for 36 locations of UK-based wind farms.

5 Gaussian Process as a surrogate model

To separate the nonlinear loading on a vertical cylinder from the linear components, we use a four-phase harmonic
extraction method (32). This method is also used in previous studies (12; 13), which decomposes nonlinear forces into
different harmonics in frequency by repeating the experiments with four different phases (see Eqn 2 in (13) for details).
These decomposed higher-order frequency components can be further fitted based on the linear force envelope raised to
the appropriate power. The fitted amplitude and phase coefficients can be used to predict the nonlinear force inertial
loading on a vertical cylinder based on linear wave force only.

Further to the four-phase decomposition method, we use the Stokes-type force model to predict these higher-order
forces following (12). Under the narrow-banded spectrum assumption, the waves can be assumed to be associated with
a slowly varying wave envelope F̂1, and the total wave force up to the 4th harmonic can be expressed as:

F = F̂1 cos(φ) + F̂2
1F2 cos (2φ+Φ2) + F̂3

1F3 cos (3φ+Φ3)+

F̂4
1F4 cos (4φ+Φ4) +O

(
F̂5

1

)
(1)

where F1 is the envelope, φ is the phase of the higher order forces, and Fn is the amplitude coefficients for the nth

order of force harmonics and Φn is the corresponding phase coefficients.

The force amplitude coefficients F (x) depend on three non-dimentionalised parameters kA, kpd and kpR. Previous
experiments only cover part of the parameter space, leaving some of the area uncovered. As such, new experiments are
required to further explore the force amplitude coefficients variation in the parameter space to improve the nonlinear
inline forces prediction accuracy.

We model the variation of these coefficients with a Gaussian Process (GP) using a mean function m(x) and a covariance
function k(x, x∗):

F (x) ∼ GP (m(x), k (x, x∗))

m(x) = E[F (x)]

k (x, x∗) = cov (F (x), F (x∗))

(2)
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Figure 2: An example of sea-state metocean data obtained from EAR5 dataset from ECWMF for (a): significant wave
height, (b): hourly most probable maximum wave height, and (c): peak period. The two red lines indicate the threshold
for data pre-filtering, where only 50% of sea-states with large (based on Hmax) and 50% sea-states with long waves
(based on Tp) are considered.

where x ∈ (kpA, kpd, kpR) ≡ R is a parameters space input vector with three dimensions, F (x) and F (x∗) are force
amplitude coefficients response indexed by x and x∗. Generally, k (x, x∗) is also referred to as a kernel function, which
is further parameterised by a hyperparameter θ.

GP is a common Bayesian non-parametric model used for both regressions and parameterisation purposes. This method
is particularly suitable in our prediction model because of its strong resistance to under-fitting the problems. In this
study, one of the key challenges for the accurate prediction of force coefficients is the limited data available from
previous experiments. A GP’s expressiveness in proportion to the size and complexity of the growing dataset avoids the
under-fitting problem (33) for small datasets. Additionally, the ability to provide uncertainty quantification also favours
the wide application of the GP model in many engineering problems, such as system identification (34), control (35)
and forecasting (36).

In this study, the variation function of force amplitude coefficients F (x) in parameters space x ∈ (kpA, kpd, kpR)
is assumed to be a complex system without existing expert domain knowledge. For systems without any accurate
description of the dynamics model, a GP model is commonly initialised with a zero mean function, which leads to the
prior in GP is solely dependent on the choice of the covariance function k(x, x∗). Although the covariance functions
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k(x, x∗) are fully customisable for any function, which can provide a positive definite covariance matrix, the selection
of this function determines the periodicity and smoothness of the trained GP model. Hence, a suitable covariance
function type and hyperparameter θ initial values are required during the initialisation of a GP.

In this study, we follow the most common covariance function: squared exponential, which is also noted as Radial Basis
Function:

k (xi, xj) = h2
1 exp

[
−
(
xi − xj

λ

)2
]
, (3)

which can be further optimised by using a loss function based on the log marginal likelihood function following (37).

Now we consider the training dataset S =
{(

x(i), F(i)

)}m
i=1

, where m is the number of observations and the testing

dataset T =
{(

x∗
(i), F

∗
(i)

)}m∗

i=1
, where m∗ is the number of prediction points, for notational convenience, we define

X =


− (x1)

T −
− (x2)

T −
...

− (xm)
T −

 ∈ Rm×n F⃗ =


F1

F2

...
Fm

 ∈ Rm,

X∗ =


− (x∗

1)
T −

− (x∗
2)

T −
...

− (x∗
m)

T

 ∈ Rm∗×n F⃗∗ =


F ∗
1

F ∗
2
...

F ∗
m∗

 ∈ Rm∗.

(4)

where n = 3 is the number of features. The trained GP model can make the prediction F ∗ for a new given input X∗

based on the extended joint distribution as:

[
F⃗ ∗

F⃗

]
∼
([

m (X∗)
m(X)

]
,

[
K (X∗, X∗) K (X∗, X)
K (X,X∗) K (X,X) + σ2I,

])
(5)

where K (X∗, X) = K (X,X∗)
T
= [k (X1, X

∗) , · · · , k (Xm, X∗)], σ2 is the noise variance, and I is the identity
matrix, and K (X,X) is expressed

K (X,X) =

 k (x1, x1) · · · k (x1, xm)
...

. . .
...

k (xm, x1) · · · k (xm, xm)

 , (6)

where m is the size of the training dataset (i.e. observations), and the rest co-variance matrix can be expressed in a
similar manner as:

K (X,X∗) ∈ Rm×m∗ such that (K (X,X∗))ij = k
(
x(i), x

∗
(j)

)
K (X∗, X) ∈ Rm∗×m such that (K (X∗, X))ij = k

(
x∗
(i), x

(j)
)

K (X∗, X∗) ∈ Rm∗×m∗
such that (K (X∗, X∗))

ij
= k

(
x∗
(i), x

∗
(j)

)
.

(7)

According to the properties of joint Gaussian distributions, the prediction results for the outputs can be obtained as:

µ
(
F⃗ ∗
)
= m (X∗) +K (X∗, X)

[
K + σ2I

]−1
(Y −m(X))

var
(
F⃗ ∗
)
= K (X∗, X∗)−K (X∗, X)

[
K + σ2I

]−1
K (X,X∗) ,

(8)

where µ (F ∗) is the predicted force amplitude coefficients and var (F ∗) is the variance of the predicted force amplitude
coefficients (see an example of GP prediction in Figure 3).
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Figure 3: An illustration of prediction from GP as a surrogate model for second order force coefficients for (a) prediction
residual and (b) confidence interval. Blue circles represent the previously acquired sampling points via experiments.

For a limited size of dataset, the random split of the training and validation data may also introduce bias in the prediction
results. To minimise the impact of this split, a bootstrapped k-fold cross-validation process (38) is applied to further
examine the accuracy of our GP model. In this study, the dataset is uniformly divided into n subsets and n − 1
uniform-sized subsets are used for GP model training. The performance of the currently trained GP model can be
evaluated by validating against the out-of-bag sample. After repeating the training and validation process covering
all the data points as the out-of-bag sample, the overall performance measurements can be calculated as the average
of across the k-folds. The k-folds validation is a common cross-validation method that repeats model training with
different parts of data, which can maximize both training and testing data and also give a better idea of how well the
model will perform on unseen data (38).

6 Acquisition function

Uncertainty sampling is a common active sampling method, which locates the next best sampling point (x̂) to be the
position where the predictive variance achieves a maximum value:

x̂ = argmaxx∈(kpA,kpd,kpR) var[(F
∗)]. (9)

This acquisition function is easy to use and particularly useful when limited data are available (20). However, for this
particular engineering problem, the acquisition function requires further modification as the largest uncertainly will
inevitably occur at the parameter space x ∈ (kpA, kpd, kpR) where the test case can not be physically achieved (i.e.
too steep waves locally exceeded the breaking limits), as shown in Figure 3 (b) as an example.

Hence, we further modify the likelihood-weighted acquisition functions proposed in (39) to incorporate the conditional
statistics calculated from Section 4 as:

x̂ = argmaxx∈(kpA,kpd,kpR) var[(F
∗)w(x)], (10)

where the w(x) is the conditional statistics estimated from the probability of such a combination of parameters occurring
at the location of UK-based wind farms, which can be visualised in the bin scatter plot in Figure 4. This acquisition
function allows direct assimilation and integration of the field data into the experimental design, which provides realistic
oceanographic conditions.

We note that the current experimental campaign also benefits from batch sampling as the automated wave generation
system allows performing experiments overnight. The data analysis and surrogate model training, however, still require
manual supervision. Batching the experimental design for running overnight provides more observations over a limited
tank time slot. As such, we follow the batching procedure suggested in (40) in searching for sub-optimal sampling
points at multiple local minima of the acquisition function.
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To find multiple regions with local optima from the acquisition function, a condition that no Bayesian sample may occur
closer than a specified distance is introduced (40) as:

rmin = rl

(
ND∑
d=1

(xd,+ − xd,−)
2

)2

, (11)

where xd,+ and xd,− are the maximal and minimal domain bounds (i.e. the maximum and minimum value of
kpA, kpd, kpR that is achievable with the current experimental setup), and rl is a user-defined percentage, where we
choose a static value of rl = 0.05 and ND is the batch size which is 45 due to the physical constraints of the current
experimental setup. Trading marginally reduced performance with more completed experiments is beneficial to the
experimental campaign overall.

7 Results

In this section, we will first summarise the typical sea-states at 36 locations of UK-based offshore wind farms. We will
then reveal the ML interpretation of the best design of the current experimental campaign and compare the performance
against the traditional grid search method.

7.1 Metocean data

We present the distribution of hourly sea-states parameters (i.e. Hs, Hmax and Tp) for all 36 locations of UK offshore
wind farms in Figure 4. We have also calculated the peak wavenumber kp based on the finite depth dispersion
relationship with the averaged water depth information of the local wind farm. We also approximate the amplitude (A)
of the hourly maximum wave as the half of the maximum wave height (Hmax), as the wave height distributions are less
affected by the second order bound waves (41).

From Figure 4, we found that the majority of sea-states for UK-based wind farms are in finite water depth with the
relative water depths kpd < 3. This is expected as other configurations of wind turbines such as the floating turbines
would be preferred for deeper water locations. The striped pattern is also clear from the kpd vs. kpR plot, which is
primarily due to the fixed water depth (d) to the monopile radius (R) ratio. Apart from 4 wind farm sites with a large
d/R ratio on the top left corner, the majority of the wind farms tend to have a similar d/R ratio and cluster towards the
right bottom corner. This indicates there is a correlation between the monopile radius and relative water depths, which
is expected as larger monopile foundations would be required for wind farms in deeper water.
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Figure 4: Bin scatter for sea-state parameters distributions between 2004 and 2024 for 36 locations of UK offshore
wind farms.
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7.2 Bayesian interference-based design

It is of interest to investigate how the GP model will design a new experiment based on previous experimental results.
In this study, we assume that the peak wavenumber of these wave groups during experiments has a comparable
wavenumber value to those extreme waves rising from the random sea-state with the same peak wavenumber. We
have visualised the acquisition function for second order force coefficients for three water depths in Figure 5. As the
acquisition function is assembled based on three parts: prediction residual, variance and conditional statistics from the
metocean data (see details in section 6), a larger value in the acquisition function indicates a more important sampling
region in the parameter space suggested by the GP model. This could be due to either less accurate predictions during
cross-validation, uncertain predictions from the confidence interval or important sea-states that commonly occur in
these wind farms (or maybe a combination).

Figure 5: Visualisation of an example acquisition function for second order coefficients at different water depths. A
moving average smooth function is applied herein with a smoothing window size of 4 data points.

The acquisition function from the GP model suggested low importance for the cases with kpA values greater than 0.23
regardless of the value for kpd and kpR. This is simply because such very steep wave groups are unlikely to happen
in the realistic water wave system, where wave breaking dissipates the energy and limits the maximum height. This
constraint primarily comes from the conditional statistics of the sea-states input to the GP model. Additionally, the GP
model also shows very limited importance for the cases with small kpA values below 0.1 regardless of the value for
kpd and kpR. This is expected as for these quasi-linear wave groups, the overall behaviour can be well captured very
simply with small nonlinearity. It seems that the prior information provided from previous experiments is self-consistent
based on cross-validation results and can provide sufficient data to make accurate predictions. GP model also shows
increasing importance for the cases with larger kpR values if the kpd value increases. This could be because of the
fact that for the wind farms in deeper waters, the radius of the monopile foundation is usually larger, and hence GP
model weights the cases with a larger relative radius as more important to explore. It is also interesting to find out that
the effect of kpd on the nonlinear wave loading seems to have an asymptotic behaviour, where the importance (i.e.
maximum of the acquisition function) shifts significantly from relatively shallow water to intermediate water depth
from Figure 5 (a) to 5 (b) compared to the shift from intermediate water depth to relatively deep water ((b) to (c) ).

Other physical constraints need to be considered in the design of such an experimental campaign. The first and foremost
constraint comes from the fixed d/R ratio available for the test in the Strathclyde flume. This is similar to the fixed d/R
ratio for the monopile foundations in UK-based wind farms. Varying the cylinder size simply requires replacing the
cylinder and re-calibrate the load cells, which takes about an entire day to finish. Varying water depth is also difficult to
achieve and further requires the re-calibration of wavemakers and wave probes. As such, instead of directly using the
location in the parameter space, where the acquisition function reaches the maximum, finding the optimal d/R ratio is
necessary. The final choice of cylinder radius is 0.2 meters as this is the maximum allowable size of the cylinder in the
wave tank.

9
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Figure 6: Integrated acquisition function for different values of cylinder radius based on the water depth of the flume
d = 1.8m. Values of acquisition function are normalised by the triple integral along kpA, kpd and kpR axis.

The final suggested Bayesian sampling points and the traditional grid search sampling points are shown in Figure 7.
The sampling points based on the grid search method are determined based on intuition. Due to the fixed cylinder radius
constraint, both experimental design approach results overlapped on the same d/R constant line in Figure 7 (c). We
have also presented the test matrix of three previous experiments as the prior information. It seems that the current
Bayesian sampling model focuses on a cluster region with less interest in exploring the short but steep wave region.
This could be due to fewer short but steep sea states being observed in metocean data. It is interesting to find that
during the experiments, some of the short but steep wave group designs shown in the top right corner of Figure 7 (a)
suggested by the grid search method are not achievable as the wave breaks before reaching the cylinder, whereas the
wave breaking causes less impact on the Bayesian sampled points.

7.3 Improvements in nonlinear load predictions

We now finally look at the sampling efficiency by comparing the novel metocean data integrated Bayesian sampling
strategy against the traditional grid search method in this classic nonlinear wave loading prediction problem.

We first present the final prediction of the higher frequency components of nonlinear forces from the GP model trained
from Bayesian sampling and from the traditional grid search design of the experiments in Figure 8. In general, both
GP models perform well in capturing high-frequency nonlinear loads on a vertical cylinder. This could be attributed
to the fact that the previous three experiments already provided a broad and sufficient sample. The GP model trained
with Bayesian sampling outperforms slightly over the one trained with grid search design. The advantage of training
with Bayesian sampling is more significant for the nonlinear force components with high frequencies as more noise is
expected in these signals.

The results are also consistent for the k-fold cross-validated error (see details in Section 5) when predicting the
second-order force amplitude coefficients shown in Figure 9. For both the Bayesian sampling method and the grid
search method, the overall error is reduced when more experimental cases (i.e. new samples) are input into the training
dataset. The Bayesian sampling strategy outperforms the traditional grid search sampling method based on purely
physics intuition.

In this study, the primary objective of performing a new experiment is to better understand the variation of force
amplitude coefficients in a given parameter space. A better understanding of force amplitude coefficient behaviours
can directly improve the nonlinear force model prediction accuracy. The comparison results shown in Figure 8 clearly
demonstrate the advantage of using a data-driven method to design a new experiment over the more classical ones,
where the prediction model provides more accurate predictions on higher order harmonic forces. When the number
of new experiments is fixed, following the wave group parameter suggested by the data-driven method can yield
over 20% further improvement in the final force prediction accuracy as shown in Figure 9, which indicates that these
experimental cases designed by the data-driven method provide better coverage of the parameter space with higher
sampling efficiency.
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Figure 7: The design of bayesian sampling points for the new experiment at kelvin hydrodynamics laboratory, the
University of Strathclyde. Three previous experimental data are obtained from (12; 13; 11) respectively. The constant
radius-water depths lines are calculated based on the new experimental conditions (i.e. d = 1.8m).

8. Discussion and conclusions

In this paper, we present a Bayesian sampling-based experimental design strategy, which also incorporates metocean
data as conditional statistics in a classic wave-structure interaction problem. Based on three previous experimental
datasets as the prior information, a GP-based surrogate model is trained to predict the higher frequency force amplitude
coefficients. An acquisition function is used to incorporate the metocean data into the experimental design. One of the
critical experimental parameters – the size of the cylinder is optimised based on the proposed acquisition function with
extra physical constrained imposed. New experiments are to be performed with wave group loads on a vertical cylinder
at the University of Strathclyde. The GP model trained with Bayesian sampled experimental data shows a slight edge
when compared to the traditional experimental design with grid search.

In this study, the modified acquisition function suggested by the machine learning model also helps us to rank the
non-dimensional parameters in their space, each according to its importance. We found that the machine learning
model can make interesting decisions which are compatible with physical intuition but in a more systematic way.
For example, the machine learning model gives less importance to quasi-linear cases as these wave groups exhibit
almost no nonlinear physics. The current machine learning model also gives less importance to strongly nonlinear
cases, which avoid very short but steep wave group profiles. These wave groups are found later in the experiment to be
impractical to investigate as the wave group will break before reaching the cylinder in the middle of the tank. It is worth
mentioning that neither previous experiments nor metocean data are actually aimed at investigating wave breaking, but
wave breaking occasionally affects both datasets.

Incorporating machine learning with metocean data is helpful in many aspects. Firstly, metocean data usually have a
large amount of information with hidden underlying physics, data-driven methods could potentially better utilise this
as an external source for experimental design (e.g. the current model avoids suggesting breaking cases). Secondly,
metocean data also provides machine learning with real engineering conditions, which allows the decision to be made
in a realistic way. The current model proposes increasing the monopile size in experiments when performed in deeper
water, which superficially agrees with the current trend in the offshore wind industry. As such, we believe that the
machine learning-assisted model could help to some extent with experimental design in a systemic manner.

In this study, we have also observed several challenges of implementing machine learning for a complete design of an
experiment. This is primarily because the simplified acquisition function cannot take all the physical constraints into
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Figure 8: The final prediction of higher frequency components of nonlinear forces from the gp model trained from
bayesian sampling suggested by surrogate model and grid search design of experiment.

consideration. For example, the GP model would suggest using 18 different sizes of cylinders for the optimal sampling
strategy without considering the difficulties of varying the sizes and also the time taken to reinstall the cylinders. Manual
modifications are still required for this study. However, it is possible to develop an improved acquisition function that
provides a penalty when the size of the cylinder varies. This could minimise manual input and automate experimental
design in the future. Additionally, the choice of experimental data is prior information and the metocean data could
potentially introduce bias that leads to the designed experiment being suitable for a specific area but of less scientific
interest (for example, less extreme conditions are considered for the GP model).

Finally, although these results need to be extrapolated with great care as limited data are available and from a single
experimental campaign, the present paper serves as a case study for utilising machine learning tools to help design
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Figure 9: Relative prediction error evolution after new experimental data points are included in the training dataset.

model tests in ocean engineering. The challenge we have herein is common in ocean engineering–we have a large
parameter space with various combinations of operating conditions to explore. However, the number of experimental
or numerical runs is usually limited. To make full use of these tests, determining the representative cases becomes
important for the design of model tests. Machine learning methods, as presented in this case study provide some useful
insights into the experimental design as it allows the incorporation of field data. This also yields more accurate force
predictions when compared to cases sampled using traditional approaches. The current data-informed model test design
approach can be potentially extended to other ocean engineering practices.
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