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ABSTRACT 

Recently, a new technology known as the brain-

computer interface (BCI) has received a substantial 

amount of interest among various research groups 

worldwide. The human brain can be represented by 

self-organising and complex biochemical states. Due to 

continuous neuronal activity in the brain, chaotic 

electric potential waves are observed in 

Electroencephalogram (EEG) recordings of the brain.  

A BCI involves extracting information from the highly 

complex EEG. This is achieved by obtaining the 

dominant discriminating features from different EEG 

signals recorded during specific thought processes. A 

class of features is usually obtained from each thought 

process and subsequently a classifier is trained to learn 

which feature belongs to which class. This ultimately 

leads to a system that can determine which thoughts 

belong to which set of EEG signals. This work outlines 

a novel method which utilises cybernetic intelligence in 

the form of Neural Networks (NN). Three NNs are 

coalesced to perform simplified simulations of a 

number of the characteristic and complex processes that 

are sub-consciously performed in the human brain. 

These include prediction, feature extraction and 

classification. These processes are combined in this 

system to produce a pattern recognition system which 

distinguishes between similar complex patterns from a 

noisy environment with classification accuracy which 

compares satisfactorily to current reported results. The 

classification accuracy is achieved by increasing the 

separability between the features extracted from two 

EEG signals recorded from subjects during imagination 

of left and right arm movement. 

1. INTRODUCTION 

Nearly two million people in the United States [1] are 

affected from neuromuscular disorders. A conservative 

estimate of the overall prevalence is that 1 in 3500 of 

the worlds population may be expected to have a 

disabling inherited neuromuscular disorder presenting 

in childhood or later life (1991) [2]. In many cases 

those affected may have no control over any of their 

muscles. Brain-Computer Interface (BCI) technology  

may help improve the standard of living for these  

people by offering an alternative communication  

 

channel which does not depend on the peripheral nerves 

or muscles [3]. A BCI replaces nerves and muscles and 

the movements they produce with electrophysiological  

signals in conjunction with the hardware and software 

that translate those signals into actions [1]. 

This paper proposes a novel approach for human 

computer interaction utilising computational models 

which are based on the architecture of the human brain 

and inspired by the way neuronal information 

processing is carried out. A system is developed that 

can learn to recognise features of complex signals 

generated by the human brain. Researchers utilizing 

systems which exhibit cybernetic intelligence hope to 

obtain a better understanding of the dynamics of the 

EEG signal in relation to brain function. The EEG 

signal can provide information about the state of 

complex neuronal networks often considered as 

nonlinear dynamical systems. Greater understanding of 

the brain has helped to develop new technologies that 

reproduce brain-like operations; an example being 

artificial neural networks, as well as progressing 

towards the development of more biologically inspired 

intelligent systems in the form of spiking NNs. 

The underlying generator of EEG is neuronal 

activity of large numbers of neurons communicating 

and interacting through low voltage electrical signaling. 

The highly non-stationary EEG signal is produced by 

the temporal and spatial summation of electrical 

currents that arise from pre and postsynaptic potentials 

[4] of parallel and synchronously active neurons. The 

normal geometry of synaptic distributions over the 

pyramidal cells makes it impossible to know whether an 

EEG event at the scalp (i.e. frequency or amplitude 

change) is due to an inhibitory or excitatory 

postsynaptic potential and which specific neuron is 

firing. In general the EEG can be considered as an 

information-carrying neural signal that is not used 

internally as a neural code [5].  

A BCI normally involves a feature extraction 

procedure (FEP), a translation algorithm (TA), and a 

feedback mechanism. The FEP extracts the dominant 

discriminating features from the EEG activity during 

two or more specific thought processes. The TA 

translates these features into specific control signals 

which can be used for cursor control, menu selection, 

letter typing or for control of prosthetic devices. The 

optional feedback mechanism helps the user become 
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more efficient in controlling his/her EEG for specific 

tasks [6][7][8].         

Various approaches for the FEP and TA have been 

reported. These include using classical techniques such 

as Auto-Regression (AR) and Linear Discriminant 

Analysis [9], Neural Networks [10] and Fuzzy 

ARTMAP [11]. Many statistical methods and artificial 

intelligent processing techniques have been 

experimented with, each with varying degrees of 

accuracy and complexity. Depending on the subject 

utilizing the system, classification accuracy between 

70-95% for two and three class (mental tasks) BCIs 

with information transfer rates between 10-25 bits/min 

have been reported. Features from the time domain, 

frequency domain or both can be utilized. NNs, 

regarded as the universal approximator, provide a well 

established framework for pattern recognition problems 

[10] and are very adaptable to solving nonlinearly 

separable problems. Because the EEG signals result 

from the summation of the action potentials of millions 

of neurons the EEG signals have deterministic features 

that are intertwined with noise to produce a wide 

variety of behaviours, including chaotic behaviour. 

Therefore, the choice of translation algorithm and 

feature extraction procedure is crucial and must be 

robust enough to distinguish specific EEG patterns 

from a multitude of patterns as well as being adaptable 

to different users. The BCI operation depends on the 

interaction of two adaptive controllers: the user’s brain, 

which produces the signals measured by the BCI, and 

the BCI itself, which translates these signals into 

specific commands [1].  

The proposed BCI approach using NN-based time 

series prediction allows a highly adaptable system 

which does not require subject specific frequency 

analysis and focuses on features extracted from the time 

domain only. The authors believe that a time series 

prediction approach to extract features using NNs has 

not been reported in BCI research yet. EEG is recorded 

from two electrodes (channels) attached to the scalp. 

The EEG data is uniquely configured so that data from 

both channels can be processed by a single network. 

Two NNs are used to predict a value of EEG signals at 

point t, in the future, using past values. The system is 

configured in three stages. The first stage involves 

training two NNs separately to perform one-step-ahead 

prediction using each successive four previous values 

of each time series. These NNs are labelled ‘left’ and 

‘right’ corresponding to the type of EEG data on which 

they are trained (i.e. either left or right arm movement 

EEG data). The next stage involves inputting each type 

of training data into both NNs. Each ‘prediction’-NN 

provides a one-step-ahead prediction for the data that is 

input. The MSE of the prediction measured over a 

segment of the prediction provides a feature for the 

signal that is input to the NN. Because each NN is 

trained to predict the values of two channels of EEG 

data there can be two or more features extracted from 

each NN. Also, each type of data is fed into both 

prediction-NNs therefore from the FEP there can be 

four or more features extracted for each type of data 

(i.e. two from each channel prediction of the left NN 

and two from the right NN). Measuring the MSE of the 

prediction over a number of segments from each 

channel provides the option of extracting more than one 

feature for each channel. Combining the features 

obtained from left data input to both NNs forms a left 

feature vector and similarly, for right data, a right 

feature vector is obtained. Thus, performing this 

procedure for a number of training signals a class of 

features is obtained for left EEG data and class of 

features is obtained for right EEG data. The third stage 

is classification. This involves training a linear or 

nonlinear classifier on the features obtained. When 

applying the system the unknown data is fed into both 

prediction-NNs and a feature vector is extracted. 

Subsequently these features are fed into the classifier 

and a class prediction is made. The following section 

provides a rationale for the development of this 

particular process.  

Section 3 describes the data acquisition and section 

4 outlines the data configuration. Section 5 explains the 

choice of architecture and training parameters for the 

prediction-NNs. Sections 6 and 7 detail the FEP and 

classification procedure. Section 8 is a discussion of the 

results and section 9 concludes the paper.  

2. SIGNAL ANALYSIS (ERS/ERD)  

A frequency domain analysis of EEG recorded from 

electrodes C3 and C4 can provide insight as to why 

there are discriminative properties between the EEG of 

the two thought processes. The frequency components 

are obtained using a Fast Fourier Transform (FFT) and 

a temporal resolution is employed by sliding a window 

along the data sequence with a certain overlap on each 

window. Usually during a left arm movement imagery 

there is a desynchronization of the µ (8-12Hz) rhythm 

observed from the spectral plot of the C4 signal and 

synchronization on the C3 spectral plot. These changes 

are referred to as Event Related Synchronisation/ 

Desynchronization (ERS/ERD). Usually an ERD is 

observed over the contralateral (opposite) hemisphere 

and an ERS is observed on the ipsilateral (same side) 

hemisphere. Many BCIs use the power of the frequency 

spectrum in subject specific frequency bands as features 

for maximal discrimination [10][11]. 

There are clearly discriminative components 

between the two thought images, in the frequency 

domain although the synchronization and 

desynchronization of the signals does have implications 

in the time domain. During testing of the prediction 

accuracy of the right network it was observed that in 

most cases the MSE of the prediction on the C4 output 

of the network was less than that of the C3 output 

prediction. It is postulated that this is due to the fact 

that the right network is trained to predict a 



Cybernetic Intelligence – Challenges and Advances 17 September 2003, Reading, UK 

 

synchronized signal for the C4 output (ipsilateral) and a 

desynchronized signal on the C3 output (contralateral).  

The opposite occurs for the left network. Considering 

these observations, it appears that both NNs should be 

different and can produce significantly different 

prediction accuracy when input with the opposite data. 

This also led to the hypothesis that training each 

network to predict the next value of both channels 

simultaneously would make each network unique and 

be more specific to each type of movement imagination 

data. Therefore, each network would predict the data 

type which it was trained on more accurately than the 

opposite data. 

An observation of the time evolution of the 

frequency components (ERD and ERS) from the 

beginning of each signal led to the hypothesis that an 

increase in the classification accuracy may be possible 

if the error was measured using a segment of the 

prediction error instead of using the total MSE of the 

entire prediction. This deduced that if only the MSE of 

the prediction accuracy of a small segment of data or 

the MSE of a number of small segments of data was 

used then BCI classification would not only be more 

accurate but a faster BCI could be established. 

Classification accuracy and speed are crucial 

requirements of the BCI. 

3. DATA AQUISITION 

The EEG data used to demonstrate this approach was 

recorded by a research group at the Institute for 

Biomedical Engineering, University of Technology 

Graz, Austria [9][10][11]. The Graz research group has 

developed a BCI which uses µ (8-12Hz) and central β 

(18-26Hz) EEG rhythms recorded over the 

sensorimotor cortex. Several factors have suggested 

that µ and/or β rhythms could be good signal features 

for EEG based communication. These signals are 

associated with those cortical areas most directly 

connected to the brain’s normal motor output channels 

[1]. 

 The data is recorded from two different subjects in 

an explicit experimental paradigm where each subject is 

instructed to think about left and right arm movement in 

accordance to a cue stimulus displayed on a computer 

monitor. In each recording session a number of EEG 

patterns relating to the imagined right or left arm 

movement thought process are produced by a subject 

over a number of trials. All signals are amplified and 

digitized for storage and manipulation on computer. 

The EEG in this experiment is recorded using 

electrodes C3 and C4 which are positioned over the left 

and right hand sides of the motor cortex (movement 

related area of the brain), respectively, according to the 

American Electroencephalographic society standard 

(10/20 system) electrode positioning nomenclature [4]. 

A detailed description of the experimental setup for 

recording these EEG signals is available in [9]. 

4. DATA CONFIGURATION 

In this study the recorded EEG data is structured so that 

the values of every successive four time points in the 

time-series from each channel are used to predict the 

value of the next time point in the series from that 

channel. Each training data input sequence contains 

four values from the data recorded from C3 and four 

from C4. This forms an 8 element input vector for each 

training sample. The training data output contains every 

subsequent value from each of the training input data 

vectors of C3 and C4. Thus each training output vector 

corresponding to each training input vector is a 2 

element vector.  

The data is sampled at 128 Hz and each trial 

consists of approximately 5 seconds of relevant data. 

The data was recorded from two subjects (S1 and S2) 

during two different sessions. For the subject S1 a total 

of 280 trials were executed, 140 of which were of right 

arm movement imagery and 140 left arm movement 

imagery. For the subject S2 there were 320 trials, 160 

of which were of right arm movement imagery and 160 

left. One session provides a substantial amount of data 

for training and testing, and a validation set if required. 

Each trial consists of 640 samples (5/128-1 = 640) 

therefore, the training input/output data for each trial 

consists of 636 samples (data points 636  639 are 

used to predict 640).  

5. PREDICTION - NNs ARCHITECTURE AND 

TRAINING PROCEDURE     

Two feed-forward multilayered perceptron NNs are 

used for prediction. One NN is trained on the left EEG 

data and the other on the right EEG data. For training 

purposes 50% of the trials are concatenated to form the 

training data set. By using separate NNs for each type 

of data, each trained NN has certain uniqueness, in that 

it is more apposite to each type of time-series data. 

Combining the data from both electrode channels (C3 

and C4) also enhances each NN’s expediency to the 

type of data on which it is trained.  

The architecture of each set of NNs was adjusted 

each time the NNs were trained. It was observed that 

the size of the NN (i.e. no. of hidden layers and no. of 

neurons in each layer) did not have a huge effect on the 

overall prediction error. For this reason the prediction 

was not used as criterion for the choice of NN 

architecture but instead the overall classification 

accuracy of the complete system was used as the 

criterion for selecting the best NN architecture. It was 

found that NNs with different numbers of hidden layers 

and the different numbers of neurons in each layer 

resulted in significant changes in the classification 

accuracy. The NN weights were updated using 

Levenberg-Marquardt method. This method allowed 

fast convergence to a global minimum error but has the 

disadvantage of being computationally expensive.  



Cybernetic Intelligence – Challenges and Advances 17 September 2003, Reading, UK 

 

To determine which sets of NNs provide features 

which allow the best classification accuracy a 

comparative analysis was performed for the NNs 

trained on data recorded from subject S1. Many types 

of NN architectures were experimented with, of which 

three are presented in this work. Each set of NNs were 

trained a number of times, each time each set of NNs 

were trained for 50 epochs. Usually the NNs would 

converge and reach a global minimum error in less than 

20 epochs. It was thought that if each NN was allowed 

to reach a global minimum error and then continue 

training for a certain number of epochs then each NN 

would become over-generalized to the type of data on 

which it was trained and that this would be 

advantageous to this method (i.e. that each NN would 

be more specific to the data on which it was trained). 

Over generalization in most applications is not regarded 

as advantageous because the networks don’t generalize 

well to new unseen data. There is much similarity in the 

magnitude of change in the signal from point to point in 

certain data sequences for all channels and for both 

types of data. Therefore, a substantial amount of 

training data can be representative of all the data as a 

whole. It was postulated that if each NN was over 

trained on the data on which it was trained then each 

NN would still generalize well to the testing data and 

any unseen data. Three sets of NNs were trained, one 

with one hidden layer containing 10 neurons, one with 

two hidden layers with 6 and 8 neurons in the first and 

second hidden layers, respectively, and another with 3 

hidden layers with 8, 10 and 6 neurons in the first, 

second and third hidden layers, respectively.   

Three sets of NNs with the same architectures as 

those just previously described were also trained, this 

time using a validation data set to stop the training 

early. After each training epoch the NN is tested using 

the validation data. If the NN does not reduce the 

validation data prediction error further for a specified 

number of epochs during training, training is stopped. 

This prevents the NNs becoming over-generalized. This 

meant that if there were significant differences in the 

test data which were similar to those in the validation 

data, the NNs trained using validation would generalize 

well to the test data, thus produce a smaller prediction 

error and perhaps provide features which are more 

specific to the signals being predicted.  

6. FEATURE EXTRACTION PROCEDURE 

After each NN has been trained the training data is 

configured so that it can be input to both the NNs again. 

This time the data is input to each NN trial by trial. 

After the data for a trial is fed into both NNs each 

predicted output for C3 is subtracted from the actual C3 

data. The MSE of the difference between the actual and 

the predicted output, for a segment of the trial, is 

calculated. This is a measure of the prediction accuracy. 

This procedure is repeated for the C4 prediction also. 

The data from each training trial is input to both the left 

and right NNs. Each NN provides a prediction result for 

both channels. When left data is fed into both NNs then 

there are four features obtained. Equations (1) to (4) 

show the equations for obtaining the four left features 

where the index ll=left data left NN and lr=left 

data right NN. The right features are obtained by 

inputting the right data to both NNs. In this case the 

variable indexes are replaced in equations (1) to (4) 

with rl=right data left NN and rr=right data right 

NN. M is the number of prediction samples the MSE is 

calculated over. Therefore for each trial of left data a 

four element feature vector of errors is obtained and 

similarly for the right data. Figure 1 illustrates the FEP. 

7. CLASSIFICATION  

In addition to feature extraction, the most crucial step in 

the process of pattern recognition is classification. The 

operation of the classification step can be simplified as 

being that of a transform of quantitative input data to 

qualitative output information [13]. For initial 

classification it was assumed that the features from both 

classes were linearly separable. Fisher’s linear 

discriminant analysis (LDA) was used to obtain a linear 

function which can separate the two classes. Even 
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though LDA is not considered a universal approximator 

or classifier it has the ability to find the line of 

maximum separability between the two classes very 

quickly and efficiently. For classes which have very 

similar features LDA may not be as successful as a NN. 

There are few disadvantages of NNs with comparison 

to LDA. If the application involves a lot of parameter 

tuning or feature selection then any changes made to 

the training features or data requires that the NN has to 

be retrained and in some cases this can be time 

consuming especially if a lot of parameter tuning is 

involved in the FEP. An LDA classifier can be 

retrained very quickly.  

It is suggested that for applications which do 

involve a lot of adjustment to the parameters of the 

FEP, thus a lot of classification accuracy testing, then 

LDA is an efficient approach. When the maximum 

classification accuracy is obtained using LDA (i.e. the 

features from all classes have maximum separability 

linearly), if there is possibility for improvement a NN 

may be used to increase the accuracy. For this approach 

the LDA proved to have the ability to classify the 

features quickly and efficiently and at the same time 

achieve a good accuracy. A NN classifier was also 

trained and comparison of both classifiers is provided. 

When each classifier has been trained on the 

features extracted from the prediction errors the unseen 

test data is used to validate the effectiveness of the 

system i.e. the one step ahead prediction, feature 

extraction and subsequently the classification accuracy. 

The test data is fed into each NN trial by trial. The test 

data is configured the same as the training data.  

8. RESULTS AND DISCUSSION 

Figure 2 shows the prediction accuracy from one left 

trial input to the left NN. The classification technique 

described was tested on unseen data (140 trials) for 

subject S1 and 160 trials for subject S2. The best results 

obtained for subject S2 was 75% classification accuracy 

using an NN classifier. Table 1 shows various 

classification results obtained utilizing an LDA 

classifier as well as the results obtained utilizing the 

NN classifier for subject S1. The first and second 

columns specify the number of hidden layers and the 

number neurons in each layer, respectively. The third 

column specifies the training duration. The fourth 

column specifies the number of points the MSE of the 

prediction was calculated over and the number of 

features extracted for each channel. Using a 200 point 

MSE calculation the maximum number of features that 

can be used is 3 because each trial contains 640 data 

points. A 200 point MSE calculation was chosen after a 

number of tests because this appeared to provide the 

best classification accuracy. There are number of ways 

the features can be extracted and the results may be 

subject specific. For example, using a smaller number 

of points for the MSE calculation and a greater number 

of features from each channel may improve the 

classification accuracy. As can be seen from Table 1, in 

a number of experiments using 2 x 200 point MSE 

calculations for each channel helped improve the 

classification accuracy although this improvement is 

obtained at the expense of classification time. For 

example, if only one feature from each channel is used 

then the duration of the classification would be 

approximately 1.56 secs. (200*(1/128)) plus the time it 

takes to amplify and digitize the data, do the feature 

extraction and the classification. If two features from 

each channel are used then the classification would be         

approximately 3.1 secs. plus the time required for data 

processing. With a classification rate of approximately 

1.56 seconds and 85% accuracy, information transfer 

rates approach 15 bits/min. Information transfer rate is 

a standard method of measuring effectiveness of a BCI 

and the calculation is derived in [8].  BCI systems must 

have the ability to classify signals rapidly (ideally real-
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time) and accurately therefore a trade-off must be 

made. For example, the first and second prediction NNs 

of Table 1 can provide features which can be classified 

with 84% accuracy using LDA with only one feature 

from each channel, thus requiring shorter classification 

time. For the fifth and sixth NNs of Table 1 the 

classification accuracy is increased by using 2 features 

from each channel.  

The two smaller prediction NN architectures with 

validation-stop provided the best accuracy overall. This 

classification was obtained using a NN classifier. The 

fastest classification accuracy was obtained using the 

two largest prediction NNs with overgeneralization 

using an LDA classifier. The speed for this 

classification is twice as fast as that of the other two at 

the expense of losing a percentage in classification 

accuracy therefore, either of first two prediction NNs of 

Table 1 for prediction and feature extraction along with 

an LDA classifier would be the best choice as an 

outcome from this comparative analysis. Due to the 

random weight initialization of the NNs, there are 

always discrepancies in the results from the NNs with 

the same architectures so it is advisable to train the 

networks a number of times and compare results. 

9. CONCLUSION 

This paper has proposed a BCI system that has the 

ability to learn complex sequences and classify thought 

processes for a two class problem. This BCI can be 

easily adapted to different subjects, adaptability being a 

fundamental requirement for a BCI. This system also 

has potential to be fully adaptable online.  

A frequency analysis of the EEG for subject S2 

shows that there is a lot of activity in frequency bands 

other than the µ band thus suggesting that there is much 

more noise in this EEG. It is conjectured that this may 

be the cause of lower classification accuracy and that 

this method is not as robust for data that is heavily 

contaminated with noise. Future work will involve 

improvement of the classification accuracy to increase 

the information transfer rate. This may be achieved by 

preprocessing the data for artifact removal and noise 

reduction using Independent Component Analysis 

(ICA).  

Further development of the algorithm to enable it to 

be periodically adapted to maintain classification 

accuracy and learn in parallel with the progressively 

varying complexity of the human brain, is also 

intended. Prediction, feature extraction and 

classification are complex processes performed in the 

brain. This BCI system depicts these complex tasks in a 

highly simplified approach utilizing cybernetic 

intelligence.  
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