
        

Citation for published version:
Tan, J, Wang, Z & Gursul, I 2023, 'Post-stall flow control on aerofoils by leading-edge flags', Journal of Fluid
Mechanics, vol. 972, A4. https://doi.org/10.1017/jfm.2023.678

DOI:
10.1017/jfm.2023.678

Publication date:
2023

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND
This article has been published in Journal of Fluid Mechanics https://doi.org/10.1017/jfm.2023.678. This version
is free to view and download for private research and study only. Not for re-distribution, re-sale or use in
derivative works. © The Author(s), 2023. Published by Cambridge University Press.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. May. 2024

https://doi.org/10.1017/jfm.2023.678
https://doi.org/10.1017/jfm.2023.678
https://researchportal.bath.ac.uk/en/publications/dddc7729-93c9-4efb-8bf4-d63242bdab88


1 

 

Post-stall flow control on aerofoils by leading-edge flags 

 

Junchen Tan, Zhijin Wang and Ismet Gursul 

Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK 

 

Abstract 

Self-excited oscillations of flags attached at the leading-edge of aerofoils have been 

investigated at post-stall angles of attack at a chord Reynolds number of 100,000. Significant 

increases in the time-averaged lift coefficient and stall angle have been observed for three 

aerofoils: one symmetric, one cambered and one with a sharp leading-edge. The aerodynamic 

improvement is due to the periodic formation of vortices caused by the flag oscillations. When 

the flag is near the aerofoil surface, it is lifted upwards by the induced velocity of the growing 

vortex. As the flag moves up, the vortex grows in strength and reaches maximum circulation 

when the flag is furthest from the aerofoil surface and subsequently sheds. Flags with large 

stiffness exhibit better spatial and temporal coherence of flag oscillations than the compliant 

flags, resulting in a larger maximum lift coefficient and higher stall angle. For all aerofoils 

tested, the best lift enhancement with respect to the clean aerofoils is found when the angle of 

attack is 6 to 10 above the stall angle of the clean aerofoil. High lift is observed when the 

flags are locked-in with the wake instability in a narrow frequency band, depending on the flag 

mass ratio and length. 
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1. Introduction 

The stall of wings and blades when the angle of attack exceeds the stall angle is a viscous flow 

phenomenon which limits the maximum lift force that can be achieved. This is highly 

undesirable for fixed-wings, rotorcraft, and wind turbines regardless of the size and Reynolds 

number range in which they operate. Typically flow separation and stall start suddenly near the 

leading-edge for low Reynolds numbers based on the chord length (Rec < 106) (Mueller & 

DeLaurier, 2003). Fully separated flows for thin aerofoil sections may also occur during high-

angle-of-aircraft flight at high Reynolds numbers (Rom, 1992). In the post-stall regime, the 

separated shear layer from the leading-edge region contains small-scale shear layer instabilities 

and rolls-up into large scale wake vortices further downstream. Hence, the leading-edge region 

becomes a natural choice to introduce excitation for active flow control applications. In this 

article we report self-excited oscillations of flags attached to the leading-edge (see figure 1), 

resulting in the enhancement of lift force.  

 

 

 

 

 

 

 

 

Figure 1: (a) Schematic of an oscillating flag attached to the leading-edge of an aerofoil; (b) 

the main parameters of the flag. 

 

1.1. Post-stall flow control 

As flow separation and separated shear layer originate from the leading-edge region, most 

active flow control methods are applied near this region. These include steady (continuous) 

blowing or suction (Schlichting, 1979; Lachmann, 1961; Chen et al., 2013; Wang & Gursul, 

2017), periodic blowing and suction (Wu et al., 1998; Seifert et al., 1993; Seifert et al., 1996; 

Greenblatt & Wygnanski, 2000), plasma actuators (Corke et al., 2010), and mechanically 

oscillated flaps (Miranda et al. 2005). Increased time-averaged lift force at post-stall angles of 
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attack and delay of the stall angle have been observed in these studies.  In addition to the above 

methods in which the excitation is introduced locally, there are other studies that use globally 

introduced periodic excitation such as acoustic forcing in the test section of the wind tunnel 

(Zaman, 1992) and small-amplitude plunging oscillations of aerofoils (Cleaver et al. 2011), 

which also produce similar aerodynamic benefits. We note that all these are active flow control 

methods and require external power to achieve the aerodynamic benefits. 

 

Generally, unsteady periodic excitation proved to be more efficient than steady actuation in the 

above studies. The same performance benefits could be achieved by much smaller amplitude 

of periodic excitation compared to steady actuation. Various instabilities with different length 

scales and frequencies in the stalled flow may be targeted for unsteady excitation. The 

dimensionless frequency fc/U of these instabilities varies from order of unity O(1) for the 

wake instability to one order of magnitude higher O(10) for the separated shear layer. (Here f 

is the excitation frequency, c is the chord length and U is the freestream velocity). There are 

examples of excitation of the shear layer instability (Glezer et al. 2005) and the wake instability 

(Wu et al. 1998; Miranda et al. 2005; Cleaver et al. 2011) as well as the instability of the 

separation bubbles depending on the Reynolds number and aerofoil cross-section (Raju et al. 

2008). In this paper we show that, for the aerofoil sections and the chord Reynolds number 

studied, the lift enhancement and the fluid-flag interactions are strongly coupled to the wake 

instability. 

 

The excitation of the wake instability by periodic forcing appears to be effective in the studies 

discussed above, resulting in optimal dimensionless frequencies on the order of unity. This 

range of forcing frequencies produces large-scale leading-edge vortices, which significantly 

contribute to the increased time-averaged lift. Similar effects are observed when the stationary 

aerofoils and wings are placed in an unsteady freestream that has time-periodic unsteadiness. 

Examples include the cases of harmonic variations of freestream (Gursul & Ho 1992; Gursul 

et al. 1994; Choi et al. 2015) and wings in the wakes of bluff bodies or flags (Zhang et al. 2020, 

2022a; 2022b). In the latter examples, quasi-periodic coherent vortices that exist in the 

turbulent wakes may promote formation of leading-edge vortices. In the above studies the 

excitation frequency (in the freestream or in the wake) is similar to those optimal frequencies 

in the active flow control studies and is related to the wake instability of the stalled aerofoil 

flow. The wake of an aerofoil at post-stall angles of attack has many similarities to those of 
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bluff bodies. The most well-known feature is the universal Strouhal number based on the wake 

width (Fage & Johansen 1927). The modified Strouhal number for an aerofoil is defined based 

on the projection of the aerofoil chord length St* = fc sin()/U, and is little affected by the 

cross-section or the aspect ratio of the wing (St* = 0.17 to 0.19, Abernathy 1962; Rojratsirikul 

et al. 2011 for   30). Next, we review the wake dynamics and its response to external 

excitation. 

 

1.2. Wake resonance 

Koch (1985) has been the first to suggest that self-excited vortex shedding occurs due to a 

resonance-like mechanism in the wakes. Subsequent studies confirmed that wake flows can 

support absolute instability that leads to the self-excited limit-cycle oscillations (Huerre & 

Monkewitz 1990). For laminar wakes behind circular cylinders, Karniadakis & Triantafyllous 

(1989) have investigated the effect of external periodic excitation on a wake by varying the 

amplitude and the frequency. If the excitation frequency is equal or close to the natural 

frequency of vortex shedding, the wake “locks-in” and has periodic oscillations. If the 

amplitude of the excitation is increased, the lock-in behaviour can still be observed even for 

excitation frequencies that are not so close to the natural frequency. This means an increasing 

frequency band in which lock-in is possible as the excitation amplitude is increased. Outside 

of this band (for lower or higher frequencies) the wake can be described as “non-lock-in” state, 

and both the excitation and the natural frequencies are found in the wake. The borders between 

the lock-in and the non-lock-in regions are referred to as “resonant horn” (also called “Arnol’d 

tongue”) in the amplitude versus frequency plot. For the wake of a NACA0012 aerofoil set at 

angle of attack of  = 0 in plunging motion at a chord Reynolds number of 20,000, Young & 

Lai (2007) have presented a similar Arnol’d diagram to describe the resonance around the 

natural wake frequency. In an experimental study of the near-wake of a plunging aerofoil for 

the same angle of attack and Reynolds number, Turhan et al. (2022a) have found that the 

spanwise coherence (two-dimensionality) of the wake is significantly increased in the lock-in 

region reported by Young & Lai (2007). This suggests that lock-in phenomenon is essentially 

two-dimensional because their simulations were two-dimensional. 

  

Unlike wakes of a cylinder and a symmetric aerofoil at zero angle of attack, the wakes of 

aerofoils at nonzero angles of attack also exhibit the lock-in behaviour around the subharmonic 

of the natural wake frequency in addition to the resonance at the fundamental frequency. This 
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has been predicted first by Wu et al. (1998), who have also showed that excitation at the 

subharmonic of the natural frequency may even be more effective than the excitation at the 

fundamental natural frequency. Later this was experimentally confirmed for plunging aerofoils 

by Cleaver et al. (2011), who also showed more synchronised flow at the fundamental, 

subharmonic and first harmonic of the natural vortex shedding. Similarly, base pressure 

fluctuations on a bluff-body become more synchronised in the spanwise direction in the lock-

in conditions (Bearman 1984). Recently Choi et al. (2015) have reported the existence of lock-

in around the subharmonic and the fundamental frequency for plunging motion as well as 

surging motion (oscillations in the streamwise direction) of aerofoils. This results in the local 

maximum of the time-averaged lift force near the resonant conditions.  

 

1.3. Fluid-structure interactions in separated wing flows 

The possibility of exploiting the fluid-structure interactions to enhance aerodynamic 

performance has been first suggested by Gursul et al. (2014). Making use of wing flexibility 

may be considered a passive flow control method that relies on unsteady effects and yet 

requires no external power. For membrane wings, Song et al. (2008) reported complex 

membrane oscillations (with several structural modes excited) near the stall angle of attack and 

attributed this to the vortex shedding from the leading-edge. A similar experiment on a two-

dimensional membrane aerofoil has revealed that the wake in the post-stall regime is smaller 

due to the membrane vibrations, suggesting a smaller drag force compared to the rigid aerofoils 

(Rojratsirikul et al. 2009). Flexible delta wings can have increased maximum lift coefficient 

and stall angle (Taylor et al. 2007) because the self-excited vibrations of the wing surface (and 

the leading-edge) promote the reattachment of the otherwise separated shear layer inboard on 

the wing surface. 

 

Recently, Tan et al. (2021) reported that the limit cycle oscillations of a short compliant flag 

attached to the surface of an aerofoil near the leading-edge can produce a remarkable 34% 

increase in the maximum lift coefficient and delay the stall by about 8° at Reynolds numbers 

(based on the chord length) of Rec = 33,000 and 100,000. The quasi-periodic oscillations of the 

flag induce the formation of leading-edge vortices, which in turn produce increased time-

averaged lift force. Reynolds numbers of Rec = 33,000 and 100,000 resulted in flag oscillations 

with the modified Strouhal numbers of St* = 0.13 and 0.19, raising the possibility of the 

oscillations being coupled with the wake instability at the fundamental frequency and its 

subharmonic. One of the main aims of the present paper is to understand under which 
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conditions a coupling of flag oscillations with flow instabilities occurs and how this results in 

the enhanced time-averaged lift force. First, we briefly discuss oscillations of flags in uniform 

freestream before presenting the results for flags attached to the aerofoil surface. 

 

1.4. Flags in uniform freestream  

The three nondimensional parameters that govern the flag-fluid interactions are the structure-

to-fluid mass ratio μ, the dimensionless bending stiffness KB and the Reynolds number based 

on the flag length ReL. They are defined as: 

𝜇 =
𝜌𝑠ℎ

𝜌𝑓𝐿
, 𝐾𝐵 =

𝐸𝐼

𝜌𝑓𝑈∞
2 𝐿3

, 𝑅𝑒𝐿 =
𝑈∞𝐿

𝜈
  

where ρs is the density of flag structure, h is the thickness (see figure 1(b)), L is the length, EI 

is the bending stiffness of the flag; ρf is the density of fluid and ν is the kinematic viscosity of 

the fluid. Flag oscillations can be observed over a wide range of mass ratio (Shelley & Zhang, 

2011), while the spectral features of the oscillations depend on all three parameters.  

 

For flags with fixed leading-edge and free trailing-edge in freestream, Taneda (1968) reported 

that flag oscillations become more irregular but still have a dominant frequency as the 

freestream velocity is increased (decreasing dimensionless stiffness and increasing flag 

Reynolds number). Generally, frequency spectra become more broadband with increasing mass 

ratio (Connell & Yue, 2007) and decreasing dimensionless stiffness (Alben & Shelley, 2008). 

We note that broadening of the spectra is attributed to the nonlinear fluid-structure interactions 

but may also be contributed by the three-dimensionality of the flag deformation in the 

experiments (Eloy et al. 2008). We note that Tan et al. (2021) have reported significant three-

dimensionality of the oscillations of a flag attached to the aerofoil leading-edge. 

 

For inverted flags (free leading-edge and fixed trailing-edge), flow separation at the leading-

edge and formation of vortices can couple with the dynamics of flag motion and cause self-

excited large-amplitude flag oscillations (Goza et al. 2018). In our case the flags are fixed at 

the leading-edge and free to move at the trailing-edge. However, Tan et al. (2021) have reported 

the formation of a strong vortex at the trailing-edge of the flag due to the flag motion. We 

expect a coupling between the strong vortex and the flag motion; however, details remain to 

be understood better. The fluid-flag interactions become more complex when flags are placed 

in shear flows (Allen & Smits, 2001) or close to rigid walls (Shoele & Mittal, 2016). Both the 

(1) 
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existence of the shear flow and the proximity to rigid surfaces are highly relevant to the study 

reported in this paper. 

 

1.5. Objectives 

In this paper we investigate the effectiveness of short flags attached to the leading-edge of 

aerofoils for post-stall flow control. By using measurements of lift force, flag oscillations, and 

velocity field, we examine the mechanisms of self-excited flag oscillations, leading-edge 

vortex formation, and increased lift force. We reveal how the self-excited flag oscillations 

develop in separated flows near an aerofoil surface, the nature of coupling between the flow 

instabilities, vortex roll-up and flag motion, the spatial and temporal characteristics of the flag 

oscillations, as well as the effects of the main flag parameters, aerofoil angle of attack, and 

aerofoil leading-edge shape.  

 

2. Methodology 

2.1. Experimental setup 

The experiments were conducted in a low-speed, closed-circuit, open-jet wind tunnel with a 

circular nozzle of 0.76 m in diameter located at the University of Bath. The maximum operating 

speed of the wind tunnel is 30 ms-1 and the freestream turbulence intensity is 0.1% at the 

maximum operating speed. The wind tunnel and the placement of the aerofoil models in the 

test section, the laser and the cameras in the setup are shown schematically in figure 2. The 

aerofoils were mounted vertically to an aluminium binocular strain-gauge force balance 

beneath the lower end-plate. The aerofoil profiles tested included a symmetric one 

(NACA0012), a cambered one (NACA6409), and a flat-plate aerofoil with a sharp leading-

edge. The cross-section of each aerofoil is shown in figure 2(c). The flat-plate aerofoil has a 

thickness-to-chord ratio of t/c = 0.12 and a 30° bevel at both sharp leading-edge and trailing-

edge. Each aerofoil has a chord length of c = 100 mm and a span of b = 400 mm that runs the 

whole span of the test section between the two end-plates. A small gap of around 2 mm was 

left between the aerofoil and the endplate. The freestream velocity was fixed at U∞ = 15 ms-1 

for all tests, corresponding to a Reynolds number based on the chord length of Rec = 100,000.  

 

The location of the fixed-end of the flags is selected to be at the leading-edge of the aerofoil in 

this study as the initial experiments proved it to be the best location for increased lift force. The 

flags were attached to the leading-edge of the aerofoil with 10 mm of latex sheet glued to the 
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lower surface of the aerofoil. The other end of the flags was free to move as sketched in figure 

3. The flags extend along the entire span. Initially only compliant flags made of a black latex 

natural rubber sheet were used in the experiments (see figure 3(a)). For attached flows over 

aerofoil, compliant flags remain attached to the surface, however they generally exhibit 

oscillations between the surface and a location above the surface in the separated flow in the 

post-stall regime. These flags had a thickness of hm = 0.2 mm, and measured values of Young’s 

modulus of E = 1.78 MPa (for strain ratios less than 1%) and density of ρm = 940 kgm-3. The 

length of the flag L was varied in the range of L/c = 0.05 to 1.0, although most of the flags had 

a small length (L/c  0.2). Combinations of length and thickness resulted in a range of structure-

to-fluid mass ratio μ from 1.5 to 30.7 and bending stiffness KB from 4.3×10-6 to 3.4×10-2 for 

the compliant flags in our experiments. 

 

 

Figure 2: Schematics of the experimental setup for (a) Particle Image Velocimetry 

measurements, and (b) Digital Image Correlation measurements, (c) different aerofoil profiles 

tested. 

 

In later stages of the investigation, we fabricated nearly-rigid flags to improve the two-

dimensionality of the flag oscillations and to increase the spanwise coherence. This was done 



9 

 

by gluing plastic shims of different thicknesses to the latex sheets (see figure 3(b)). The length 

of the plastic-reinforced section was kept smaller than the length L of the flag, unavoidably 

introducing some inhomogeneity in the material properties. The intention was to help the flag 

to conform to the aerofoil surface as much as possible, although this is not entirely possible 

due to the stiffness of the plastic shims. The 5 mm portion of the flag without plastic 

reinforcement close to the fixed end (the leading-edge) worked effectively as a hinge to allow 

free flapping motion of the flag. The plastic shims have thicknesses ranging from hp = 0.05 to 

0.19 mm, and the densities vary from ρp = 1,250 to 1,470 kgm-3. Various combinations of 

plastic shims allow us to test a range of two key nondimensional parameters: the structure-to-

fluid mass ratio μ from 4.5 to 34.1, and the bending rigidity KB from 0.58 to 28.6.  

 

 

Figure 3: Schematic of the aerofoil-flag assembly for (a) compliant flags, and (b) nearly-rigid 

flags. 

 

2.2. Lift force measurements 

The lift force measurements were conducted over a range of angles of attack α from 0° to 30° 

with a 2° increment. The main aim of this investigation was to study the increase of the lift 

force and stall angle; hence the drag force was not measured; however, time-averaged velocity 

field generally suggest accompanying drag reduction (Tan et al. 2021). The lift force signal 

from a strain-gauge force balance was amplified through an Analog Devices AD624 amplifier, 

and a NI6009 DAQ was used to log data to a personal computer at a sampling frequency of 1 

kHz. In each measurement the force signal was recorded for 20 s which is sufficiently long 

enough for the mean and the root-mean-square (RMS) of the signal to reach a steady-state. The 

force balance used in this study is not suitable to reliably measure the fluctuations. This is 
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because the frequency response of the force balance is not suitable for measuring the lift 

oscillations caused by flags that are on the order of 100 Hz, whereas it does not affect the time-

averaged lift force. Nevertheless, we present typical values of the RMS value of the lift 

coefficient to give an idea about the degree of unsteadiness as a function of angle of attack. 

The uncertainty in the force measurement is estimated to be δCL = ± 0.03. Uncertainties are 

calculated based on the methods of Moffat (1985). 

 

2.3. Particle Image Velocity measurements 

Two-dimensional particle image velocimetry (PIV) measurements were carried out using a TSI 

2D-PIV system. A schematic diagram of the experimental setup of the PIV measurements is 

shown in figure 2(a). A NewWave Solo 120-15 Hz double-pulse laser with a maximum energy 

of 120 mJ/pulse was used to illuminate the spanwise plane at the mid-span of the aerofoil and 

focused on the suction surface of the aerofoil. A TSI 9307-6 multi-jet atomiser was used to 

produce oil droplets to seed the flow. The atomiser worked best using olive oil and the mean 

size of the oil droplets was 1 μm. Flow fields were captured by a PowerView 8MP camera with 

a Nikon AF Nikkor 50 mm f/1.8D lens located above the tunnel test section. A TSI LaserPulse 

610063 synchroniser was used to synchronise the laser pulses and the camera. For each 

measurement, 2,000 instantaneous flow fields were captured at a rate of 1 Hz. The commercial 

software package TSI Insight4G and a Hart cross-correlation algorithm were used to analyse 

the images captured. The interrogation window was 32×32 pixels, producing velocity vectors 

with an effective grid size of around 1% of the chord length. The proper orthogonal 

decomposition (POD) analysis of the flow fields was performed using the open-source 

OPENPIV POD TOOLBOX (Gurka et al. 2006). The uncertainty for velocity measurements is 

estimated to be within 2% of the freestream velocity. 

 

2.4. Digital Image Correlation measurements 

Flag deformation was measured by means of the digital image correlation (DIC) method, which 

is based on capturing consecutive images of the speckling patterns on the flag surface and 

applying a correlation method to produce the surface displacement. This method has been 

previously used for membrane wings (Rojratsirikul et al. 2011) and for a compliant flag 

attached to an aerofoil (Tan et al. 2021). The main advantage of this method is the capability 

to obtain time-accurate three-dimensional deformation fields. The spanwise coherence of the 

flag oscillations may be important for the fluid-structure interactions investigated in this paper. 

We note that the three-dimensionality of the flag surface also prevents the use of a much 



11 

 

simpler method of the direct measurements of the flag deformation in a spanwise plane by 

illuminating the flag surface with a laser sheet. The flag three-dimensionality often does not 

allow the capture of the flag surface completely. In our experiments, we could only identify 

the complete flag surface in some images. Simultaneous use of the DIC and PIV is difficult 

due to the reflections from the flag surface. In some other applications it was possible to avoid 

the interference by taking the flow measurements away from the wing and in the wake 

(Bleischwitz et al. 2018) or limiting the PIV measurements to a spanwise plane of the surface, 

which was made of a different translucent membrane (Bleischwitz et al. 2017). In the latter 

case the change of the material and gluing may cause additional challenges (such as differences 

in stiffness in the spanwise direction). Any intrusive change of the flag properties may result 

in significant effects on the frequency and the nature of the flag oscillations. Because of these 

concerns, we have not attempted simultaneous measurements of the flag deformation and 

velocity field. Instead, we used a phase-averaging method to correlate the deformation field 

and the velocity field as explained later. 

 

Two Photron FASTCAM SA3 high-speed cameras with a Nikon AF Nikkor 24-85 mm 1:2.8-

4 D lens were mounted normal to the flag and looking from different viewing angles. A 

schematic diagram of the DIC arrangement is shown in figure 2(b). Two LED floodlights were 

used to illuminate the speckling patterns on the flag. The slave camera was synchronised with 

the master camera capturing images at a rate of 500 or 1,000 frames per second (fps). The 

exposure time was set to be much shorter than 1/fps to avoid blurred images. For each 

measurement, about 2,700 image pairs (limited by the built-in camera memory) containing the 

instantaneous deformation fields were recorded. The captured images were processed by the 

commercial software package VIC3D8, and a custom-developed MATLAB code was used to 

calculate the mean and the fluctuations of the flag surface displacement fields, as well as the 

POD modes of the deformation field. The effective grid size was around 1.6% of the chord 

length of the aerofoil. We have taken DIC measurements for smaller number of flags compared 

to the total number of flags for which lift measurements were carried out, due to the simplicity 

of the latter. 
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Figure 4: (a) Ensemble-averaged amplitude of flag oscillations normalised by the aerofoil 

chord length as a function of flag bending stiffness 𝐾𝐵 and structure-to-fluid mass ratio 𝜇; (b) 

variation of flag Strouhal number as a function of mass ratio and length L/c; for 𝛼 = 20° and 

NACA0012.  

 

 

3. Results and discussion 

3.1. Self-excited flag oscillations 

Most of the experiments were carried out for the NACA0012 aerofoil and at the post-stall 

angles of attack of α = 20° at which the largest lift increases were observed. Almost all flags 

exhibited self-excited oscillations. Other post-stall angles of attack and aerofoil profiles also 

had self-excited flag oscillations and will be presented later. In figure 4(a), we present the 

ensemble-averaged amplitude of the flag oscillations A, which is defined as the projection of 

the difference between the maximum and minimum flag locations in the cross-stream direction 

(see the inset in the figure), for the NACA0012 aerofoil and α = 20°. We note that these are the 

flags for which the deformation data have been obtained and represent a smaller subset of all 

flags for which the lift force has been measured. The data symbols were coloured according to 

the magnitude of the bending stiffness KB. We note that the nearly-rigid flags have larger mass 

ratio and several orders of magnitude larger bending stiffness compared to the compliant flags, 

however both types of flags can exhibit large amplitude oscillations depending on the length 

and the material properties. The normalised amplitude A/c decreases with increasing mass ratio 

for compliant flags whereas there is large scatter for the nearly-rigid flags. This is because the 

flags in this graph had a range of normalised length of L/c = 0.1 − 0.375, which also affects the 

amplitude A.  
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In figure 4(b), the variation of the flag Strouhal number fA/U∞ (where f is the dominant 

frequency of the flag oscillations) is shown as a function of the mass ratio and normalised flag 

length L/c for the same parameters as in part (a). The Strouhal number represents the ratio of 

the flag-tip velocity to the freestream velocity, which can be considered as an amplitude 

parameter for the excitation of the separated shear layer over aerofoil. The Strouhal number 

generally decreases with increasing mass ratio and is larger for the nearly-rigid flags, but less 

than 0.1. Shorter flags can equally produce similar magnitude of intensity of excitation as 

longer flags. 

 

For two flags with the same length (L/c = 0.2) and similar mass ratios (a compliant flag of μ = 

7.7 and a nearly-rigid flag of μ = 10.0), the power spectral density of the displacement of the 

flag-tip (x = L, where x is the flag-chordwise distance) at mid-span (z = 0) for α = 20° are 

compared in figure 5. The dominant frequencies of the limit-cycle oscillations of the flags are 

f = 56 Hz and 78 Hz. The most noticeable difference between the spectra of the two flags is 

that the compliant flag has a broader dominant peak whereas there is a narrower peak for the 

nearly-rigid flag. The dominant frequencies of the two flags correspond to the modified 

Strouhal numbers based on the projection distance of the aerofoil fc sin(α)/U∞ = 0.13 and 0.18. 

For rigid aerofoils the natural vortex shedding frequencies are approximately in the range of fc 

sin(α)/U∞ ≈ 0.17 – 0.19 (Rojratsirikul et al. 2011), hence there is a good possibility that the 

flag oscillations and the natural wake instability of the aerofoil may have been coupled. A 

previous study on membrane wings also suggested that membrane vibration frequencies lock-

in with the wake instability (Rojratsirikul et al. 2011). 

 

Figure 6 presents the location of the ensemble-averaged maximum displacement of the flag-tip 

for the NACA0012 aerofoil at α = 20°. The blue dashed line shows the location of the time-

averaged shear layer (location of the maximum time-averaged vorticity) for the baseline case 

(no flag attached). It is seen that the oscillations of the compliant flags are almost bounded 

between the time-averaged separated shear layer and the aerofoil surface, whereas the nearly-

rigid flags can have excursions further into the outer flow regardless of their mass ratio. 
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Figure 5: Power spectral density of displacement of the flag tip (x/L = 1) at mid-span (z/c = 0) 

as a function of frequency for 𝛼 = 20°, NACA0012, and (a) compliant flag, 𝜇 = 7.7, L/c = 0.2, 

and (b) nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2. 

 

 

 

Figure 6: Location of the ensemble-averaged maximum displacement of flag-tip for 𝛼 = 20° 

and NACA0012 profile. 

 

3.2. Lift enhancement 

The variation of the time-averaged lift coefficient CL as a function of angle of attack α for the 

NACA0012 aerofoil for compliant flags and nearly-rigid flags are shown in figure 7(a) and (b), 

respectively. The compliant flags have virtually no adverse effect on the mean lift force at small 

angles of attack if the length of the flag L is smaller than 0.5c. In the post-stall regime, 

significant lift enhancement and delay of stall can be achieved for 0.05 < L/c < 0.5. For the 

compliant flags, we used membranes with the same density and thickness. Therefore, the mass 

ratio is inversely proportional to the flag length L. Figure 7(a) suggests that there is a wide 

range of flag length (or mass ratio) that provides significant lift enhancement. However, for 
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very short or very long flags (very large and very small mass ratios), there is some deterioration. 

This suggests that both the mass ratio μ and the normalised flag length L/c affect the degree of 

lift enhancement. The compliant flag with L/c = 0.1 and a mass ratio of μ = 15.4 has a maximum 

lift coefficient of CL,max = 1.29 and a stall angle of αs = 20°. The changes are extraordinary as 

these represent a 34% increase in the maximum lift coefficient compared to the baseline case 

(equivalently a 73% increase in the lift coefficient at the same angle of attack) and an 8° delay 

of the stall angle.  

 

For the nearly-rigid flags, we have the capability to vary the mass ratio for a fixed length of 

flag length by adjusting the mass of the plastic reinforcement. Most of the flags in figure 7(b) 

have the same length of L/c = 0.2 with varying mass ratio. The lift curves have a slightly lower 

gradient in the pre-stall regime than the baseline case. This is likely to be due to the large 

stiffness of the nearly-rigid flags which modifies the aerofoil shape (see also figure 3(b)). In 

the post-stall angles of attack, again most flags were able to produce significant lift 

enhancement and stall delay. The highest lift coefficient recorded was for the μ = 24.6, L/c = 

0.2 nearly-rigid flag with CL,max = 1.51 at α = 30° (which is the largest angle of attack measured) 

and the stall angle is expected to be at or beyond α = 30°. These represent a 57% increase in 

the CL,max and a 42% lift enhancement at the same angle of attack. We note that there is a trend 

of increasing CL,max  with increasing mass ratio for L/c = 0.2. Nearly-rigid flags can reach to 

higher stall angles and larger maximum lift coefficients compared to compliant flags. 

 

In Figure 7(c), for one compliant and one nearly-rigid flag with similar mass ratios, the peak-

to-peak variations of the lift fluctuations are represented by adding the RMS value to and 

subtracting the RMS value from the mean value. The lift fluctuations at pre-stall angles of 

attack are small for both flags as well as for the baseline (clean) aerofoil. At post-stall angles 

of attack, the lift fluctuations are larger for all three cases. With the flags, the amplitude of the 

lift fluctuations is much larger compared to the clean aerofoil as strong leading-edge vortices 

advect over the aerofoil surface. The largest fluctuations are observed around the stall angle of 

the aerofoil with flags. 
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Figure 7: Time-averaged lift coefficient for NACA0012 as a function of angle of attack 𝛼 for, 

(a) compliant flags, (b) nearly-rigid flags, (c) RMS lift coefficient versus angle of attack. 
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Figure 7: continued. 

 

 

An example of instantaneous vorticity field is shown for the baseline NACA0012 aerofoil at α 

= 20° in figure 8(a). The instantaneous vorticity fields for the two flags with the same length 

(L/c = 0.2) and similar mass ratios (compliant flag of μ = 7.7 and nearly-rigid flag of μ = 10.0) 

are also shown in figure 8(b) and 8(c) when the flags are close to the maximum displacement 

from the aerofoil surface. For these two cases, it was possible to identify the flag shapes directly 

in the PIV images. Note that the flag-tip spectra for the two flags were presented in figure 5. 

Both vorticity fields in figures 8(b) and 8(c) show that a leading-edge vortex is formed when 

the flag is away from the aerofoil surface. Vorticity shedding from the flag and subsequent roll-

up into a coherent vortex are similar to the dynamic stall process reported for unsteady aerofoils 

(McCroskey 1982) and unsteady freestream discussed in the Introduction.  

 

Corresponding contours of the time-averaged velocity magnitude superimposed on the 

streamline patterns for the three cases are shown in figure 9. For the baseline case, the mean 

flow is seen to separate near the leading-edge, and the centre of the recirculation region is just 

downstream of the trailing-edge. When there is a leading-edge flag attached, a large separation 

bubble above the aerofoil is observed, which appears to reattach near the trailing-edge. The  
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Figure 8: Instantaneous vorticity contours for 𝛼 = 20° and NACA0012 for (a) baseline, (b) 

compliant flag, 𝜇 = 7.7, L/c = 0.2, and (c) nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2. 

 

 

 

Figure 9: Time-averaged velocity magnitude contours for 𝛼 = 20° and NACA0012 for (a) 

baseline, (b) compliant flag, 𝜇 = 7.7, L/c = 0.2, and (c) nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2. 
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large separation bubble in the time-averaged sense produces highly curved mean streamlines 

over the aerofoil, resulting in the substantial increase in the mean lift. Interestingly, the nearly-

rigid flag produces a separation bubble that is larger than that of the compliant flag. However, 

the time-averaged lift of the two flags is not very different at this angle of attack (see figure 7). 

The instantaneous flag shapes obtained from the DIC measurements are also superimposed 

onto the velocity field. In both cases the flag tip appears to have excursions into the outer flow 

 freestream whereas the minimum tip displacement remains close to the aerofoil surface. As 

the self-excited oscillations of the flags are the source of the excitation of the separated shear 

layer at the post-stall angles of attack, we examined the unsteady characteristics of the flag 

oscillations next. 

 

3.3. Unsteady characteristics of flag oscillations 

The instantaneous displacement of the flag-tip at mid-span (z = 0) (left) and the cross-stream 

component of the velocity of the flag-tip (right, obtained by differentiating the displacement) 

are shown in figure 10 for the same two flags and at the same angle of attack. These flags have 

equal length and similar mass ratio, but very different stiffness, and were discussed in figures 

5, 8, and 9. The displacement of the flag-tip is presented as the coordinates of the flag-tip in 

the x-y plane in figure 10 (left column). The red data points mean the flag is moving up. The 

tip velocity (right column) is presented as a function of the cross-stream coordinate of the flag-

tip in a phase plot. The compliant flag shown in figure 10(a), for μ = 7.7, L/c = 0.2, exhibits 

more scattered data points, indicating the less repeatable and less periodic nature of the 

oscillations, compared to the nearly-rigid flag shown in figure 10(b), for μ = 10.0, L/c = 0.2.  

 

The phase plot for the tip velocity of the compliant flag (top right) indicates that the maximum 

upward and downward tip-velocity are similar in magnitude, but the tip trajectory and velocity 

are much less periodic compared to the nearly-rigid flag. The maximum magnitudes of the tip-

velocity during the upward and downward parts of the cycle are different for the nearly-rigid 

flag. It moves up slowly but comes down very rapidly. The trajectory of the flag-tip is more 

repeatable and periodic, and revealing some hysteresis. The less repeatable nature of the flag-

tip oscillations for the compliant flag is mostly caused by the three-dimensional nature of the 

flag oscillations as demonstrated next.  
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Figure 10: Instantaneous displacement of the flag-tip at mid-span (z = 0) (left) and the cross-

stream component of the velocity of the flag-tip (right) for (a) compliant flag, 𝜇 = 7.7, L/c = 

0.2, and (b) nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2; NACA0012 aerofoil at 𝛼 = 20°. 

 

Figure 11 presents the results of the POD analysis of the flag displacement for the compliant 

flag μ = 7.7, L/c = 0.2 and the nearly-rigid flag μ = 10.0, L/c = 0.2 at α = 20° for the NACA0012 

aerofoil. The fraction of energy of the POD modes is shown as a function of mode number in 

figure 11(a). For mode numbers larger than three, the energy of each mode becomes very small. 

For the nearly-rigid flag the energy of the first mode alone exceeds 80%. The sum of the first 

three modes is around 96% of the total energy. In contrast, the first mode has an energy fraction 

just above 40%, and the sum of the first three modes is around 70% for the compliant flag. For 

both flags, the first mode is like a “first beam mode”, whereas the higher modes are spanwise 

modes of the first beam mode. Figure 11 confirms that the nearly-rigid flag has much better 

two-dimensionality. 
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Figure 11: POD analysis of flag displacement for NACA0012 and 𝛼 = 20°, (a) percentage of 

energy of each mode; mode shapes for the first three modes for (b) compliant flag, 𝜇 = 7.7, L/c 

= 0.2, and (c) nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2.  

 

The degree of two-dimensionality can be quantified by examining the two-point cross-

correlation coefficient of the flag tip displacement as a function of spanwise distance z/c. The 

cross-correlation coefficient can be defined using the fluctuations at two locations (Bendat & 

Piersol 2000). For the flag displacements in our case, it becomes 
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𝐶 =
𝑦𝐴

′ 𝑦𝐵
′

√𝑦𝐴
′ 2√𝑦𝐵

′ 2

 

where 𝑦𝐴
′  is the fluctuating flag displacement at a reference point A, and 𝑦𝐵

′  is the fluctuating 

flag displacement at any arbitrary location B on the flag surface. In figure 12, the reference 

point A is chosen at z/c = 0 and at the flag tip (x/L = 1). The two-point cross-correlation 

coefficient for the compliant flag decays fast in the spanwise direction to around zero at about 

0.5c (about 2.5L) from the midspan, indicating the spanwise length scale of the flag vibrations 

to be less than one chord length of the aerofoil for this flag. In contrast, for the nearly-rigid flag, 

the cross-correlation coefficient decays to around 0.9 at one chord length, indicating that the 

two-dimensionality of the nearly-rigid flag is significantly better. The improvement of the two-

dimensionality of the flag displacement in the spanwise direction may lead to a more coherent 

flow in the spanwise direction. It is seen in figure 7 that nearly-rigid flags can produce higher 

maximum lift coefficient (depending on the mass ratio), which can be attributed to their 

improved two-dimensionality of the flag oscillations.   

 

 

Figure 12: Two-point cross-correlation coefficient of the flag displacement at x/L = 1 as a 

function of spanwise distance z/c for 𝛼 = 20° and NACA0012 aerofoil. 

 

 

As discussed previously the nearly-rigid flags have large stiffness over most of the flag length, 

but smaller stiffness near the fixed-end (leading-edge of the aerofoil). This results in some 

(2) 
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differences in the flag motion compared to the compliant flags. The comparison of the phase-

averaged flag shapes is presented in figure 13 for the two flags under discussion (the compliant  

flag of μ = 7.7, L/c = 0.2 and the nearly-rigid flag of μ = 10.0, L/c = 0.2) for the NACA0012 

aerofoil at α = 20°. The phase-averaging process involves examination of the flag-tip 

displacement obtained by the DIC measurements, identification of the local maxima and 

marking them as the beginning of each cycle, and then calculation of the ensembled-averages 

at equally divided phases. In figure 13 these are presented at sixteen phases, and the flag shapes 

are presented in different colours and line type according to the direction of the flag movement 

– a red flag indicates that the flag is moving upwards, whereas a black flag indicates the flag is 

moving towards the aerofoil surface. The excursions into the outer flow are more evident for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Phase-averaged flag shapes for 𝛼 = 20° and NACA0012 aerofoil, (a) compliant flag, 

𝜇 = 7.7, L/c = 0.2, and (b) nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2. 
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the nearly-rigid flag. This is a more general conclusion as seen for other nearly-rigid flags in 

figure 6. For both flags in figure 13, the maximum flag-tip velocity during the downward 

motion has a larger magnitude compared to the upward motion, but this is more pronounced 

for the nearly-rigid flag. The biggest qualitative difference in the flag shapes is observed when 

the flag tip is close to the aerofoil surface. Unlike the compliant flag, the nearly-rigid flag 

displays a hump near the leading-edge region of the aerofoil. This is due to the flexible hinge 

of the flags. At this phase of the flag oscillations the hump is likely to cause flow separation 

near the fixed-end of the flag. The interaction of the flow with the flag as well as the mechanism 

of the upward motion of the flag are examined next.  

 

3.4. Mechanism of self-excited flag oscillations 

In figure 14, three representative instantaneous vorticity contours over a magnified region near 

the flag are presented for (a) the compliant flag, μ = 7.7, L/c = 0.2, and (b) the nearly-rigid flag, 

μ = 24.6, L/c = 0.2 for the NACA0012 aerofoil at α = 20°. The three instants in each case are 

selected to demonstrate the flow over the flag and the aerofoil. The left column is representative 

of the flow when the flag is closest to the aerofoil surface. For both flags, the flow is separated 

near the fixed-end of the flag. In contrast, when the flag is at the farthest location from the 

aerofoil surface (right column), the flow over the flag appears nearly attached for both flags. 

At the maxima of the flag displacement, the flow separates from the free-end of the flag and a 

large vortex appears to have shed from the flag. At this instant the combination of the attached 

flow over the upper surface of the flag and the totally separated flow below the lower surface 

of the flag (with negative pressure region) gives rise to the clockwise moment about the fixed-

end of the flag, resulting in the flag motion towards the aerofoil surface. 

 

For both flags, the downward motion of the flag ends with totally separated flows over the flag 

at the minima of the flag displacement. Around this instant, however, vorticity continues to 

shed, rolling into a growing vortex. The flag appears to be in totally separated flows over both 

the upper and lower surfaces. As a first approximation the pressure acting on both surfaces of 

the flag can be assumed to be roughly constant and equal. The flag starts to move up again due 

to the induced velocity of the growing vortex. As the flag moves away from the aerofoil surface 

the vortex becomes larger in size and stronger in circulation. This continues until the flag 

reaches the maximum displacement and the vortex sheds.  

 



25 

 

 

 

Figure 14: Examples of instantaneous vorticity contours of a magnified region when the flag-

tip is near minimum, mean and maximum displacement from the aerofoil surface (from left to 

right) for NACA0012 at 𝛼 = 20° for (a) compliant flag, 𝜇 = 7.7, L/c = 0.2, (b) nearly-rigid flag, 

𝜇 = 24.6, L/c = 0.2; (c) schematic of vortex- flag interaction at the extrema of the flag-tip. 

 

 

In summary, for both the compliant and the nearly-rigid flags, flow over the flag and motion 

of the flag have similarities in spite of some details of the motion being different. We suggest 

two different mechanisms at play for the upward and downward motions of the flag. 

Schematics of the vortex-flag interaction at the extrema of the flag-tip are shown in figure 14(c). 

When the flag-tip is near its maxima, the fully separated flow at the free-end of the flag and 

the wake of the flag have some similarities to the free-streamline theory for a flat plate inclined 

to the freestream (Kirchhoff 1869; Rayleigh 1876). This flow produces a clockwise moment 

about the fixed-end of the flag. In contrast, when the flag-tip is at its minima, the flag is 

immersed in mostly separated flow and the restoring force and moment can be attributed to the 

induced velocity of the vortex. 
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3.5. Phase-averaged flow over aerofoil 

As explained previously, we did not attempt to measure the flow and flag shape simultaneously. 

The instantaneous images for which the flag is between the extrema of the flag-tip (such as 

those in the middle column in figure 14(a) and (b)) are difficult to interpret as we do not 

precisely know whether the flag is moving upward or downward. We used a phase-averaging 

method based on the proper orthogonal decomposition (POD) of the velocity field, and then 

we synchronised the phase-averaged flow with the phase-averaged flag deformation as 

explained below. Using the POD analysis we can obtain a reduced order model of the unsteady 

flow (Sirovich 1987; Berkooz et al. 1993). Instantaneous streamwise velocity component can 

be written as: 

 

𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝑥, 𝑦) + 𝑢′(𝑥, 𝑦, 𝑡) = 𝑈(𝑥, 𝑦) + ∑ 𝑎𝑛(𝑡)𝑛(𝑥, 𝑦)𝑀
1 , 

where U and 𝑢′ are the mean and fluctuating velocity components; 𝑛  and an are the POD 

modes and the corresponding time-dependent coefficients, and M is the number of snapshots. 

Figure 15 shows the POD analysis of the flow field over the aerofoil with the μ = 7.7, L/c = 0.2 

compliant flag and the μ = 10.0, L/c = 0.2 nearly-rigid flag for α = 20° and NACA0012 aerofoil. 

These two flags are the same ones for which deformation characteristics were discussed earlier 

in figures 10 and 11. The relative energy of the POD modes is shown in figure 15(a) as a 

function of the mode number. The total energy of the first two most energetic modes of the 

nearly-rigid flag case has more than half of the total energy, which is almost twice the energy 

for the compliant flag case (59.4% and 32.8%, respectively). As expected, more coherent flag 

oscillations cause more coherent and periodic flow fields for the nearly-rigid flag. 

 

Next, we use the method proposed by van Oudheusden et al. (2005) for wake flows and vortex 

shedding. This method and its modified versions were successfully applied to the wakes of 

stationary bluff-bodies (van Oudheusden et al. 2005; Zhang et al. 2022a), flags in uniform 

freestream (Zhang et al. 2022b), and oscillating aerofoils (Turhan et al. 2022a, 2022b). The 

method assumes that the unsteady periodic flow can be approximated by the first two POD 

modes and the corresponding coefficients are found as: 

 

𝑎1 = √2𝜆1𝑠𝑖𝑛(𝜙𝑓𝑙𝑜𝑤),      𝑎2 = √2𝜆2cos(𝜙𝑓𝑙𝑜𝑤)          

 

 

(3) 

(4) 
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Figure 15: POD analysis of flow field for NACA0012 and 𝛼 = 20°, (a) fraction of energy as a 

function of mode number; the first two dominant vorticity modes for (b) compliant flag, 𝜇 = 

7.7, L/c = 0.2 and (c) nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2. 

 

Here λ1 and λ2 are the eigenvalues of the two-point cross-correlation matrix, 𝜙𝑓𝑙𝑜𝑤 is the vortex 

shedding phase angle, assumed to increase linearly with time according to d𝜙𝑓𝑙𝑜𝑤/dt = 2f, 

where f is the fundamental frequency of vortex shedding from the flag. This method works well 

only if the first two modes have relatively high energy fraction (60% or higher) as reported by 

van Oudheusden et al. (2005). However, for some flags in our case, the first two modes have 

less energy fraction (see for example the case of the compliant flag in figure 15). In these cases, 

a phase-averaging method based on the POD analysis can be adapted (Zhang et al. 2022a, 

2022b). In this method, a smaller PIV measurement domain just downstream of the flag is 

analysed by the POD method to obtain a periodic reference signal. In a smaller domain close 
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to the oscillating flag the POD analysis provides much higher energy fraction of the first two 

modes as the periodicity of the flow is much higher. In the present study we used a 

measurement domain with a typical size of 0.5c by 0.4c just downstream of the flag-tip. The 

sum of the first two modes had energy fraction varied between 52% and 76%. Once the phase 

information 𝜙𝑓𝑙𝑜𝑤 for each instantaneous flow field is determined, this phase information is 

used to carry out phase-averaging in the whole flow field. The instantaneous PIV data are sorted 

according to their phase angles in a bin size of ± 5° and then ensemble-averaged to obtain the 

phase-averaged flow fields.  

 

The final step is the synchronisation of the phase-averaged flow fields and the flag shapes. The 

phase-averaged flag shapes were obtained by ensemble-averaging of oscillation cycles as 

explained in the discussion of figure 13. The phase of the flag oscillations was defined by 

taking the instant of the maximum flag-tip displacement as zero: at t = 0 and 𝜙𝑓𝑙𝑎𝑔= 0, yflag,tip 

is maximum. This is illustrated in figure 16(a) where the phase-averaged flag-tip location at 

mid-span is plotted as a function of 𝜙𝑓𝑙𝑎𝑔 and t/T. Typically more than 150 cycles were used 

to produce the phase-averaged displacement. The flow phase angle 𝜙𝑓𝑙𝑜𝑤 obtained from the 

POD analysis of the flow field (d𝜙𝑓𝑙𝑜𝑤/dt = 2f) is not the same but related to 𝜙𝑓𝑙𝑎𝑔. The 

process of finding the phase angle between 𝜙𝑓𝑙𝑜𝑤 and 𝜙𝑓𝑙𝑎𝑔 is explained in figure 16(b), which 

uses the information from the measured flow fields. It is assumed that, when the flag-tip reaches 

the maximum displacement from the aerofoil surface, the flow separates from the flag-tip as 

shown in the example in figure 16(c). We monitored the maximum vorticity along a vertical 

line (dotted line in figure 16(c)) placed slightly downstream of the flag-tip and located at 0.2c 

downstream of the leading-edge. When the cross-stream coordinate of the location of the 

maximum vorticity becomes maximum, we assume that the flag-tip also reaches its maximum 

distance from the aerofoil surface. As we do not have time-resolved PIV data, the location of 

the maximum vorticity was calculated for each instantaneous flow, sorted according to their 

phase angle 𝜙𝑓𝑙𝑜𝑤 , and then ensemble-averaged in phase angle intervals to obtain phase-

averaged location of maximum vorticity. The location of maximum vorticity is shown in figure 

16(b) with the red curve. As the maximum of this curve marks the instant at which the flag 

reaches its maximum displacement, the phase-averaged flag-tip curve in figure 16(a) is shifted 

by Δt in time or Δ𝜙 in phase so that the peaks of the curves match in figure 16(b): at t = t + Δt 

and 𝜙 flow = 𝜙 flag + Δ𝜙. This assumption is validated in figure 16(c), in which the phase-
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averaged flag shape obtained by this approach is compared with the instantaneous flag shape 

identified from the PIV images when the flag is at the maximum displacement from the surface. 

 

 

 

Figure 16: Process of synchronization of flow field and flag displacement fields; (a) phase-

averaged flag-tip displacement as a function of flag oscillation phase angle 𝜙𝑓𝑙𝑎𝑔  obtained 

from DIC; (b) location of ensemble-averaged maximum vorticity as a function of flow phase 

angle 𝜙𝑓𝑙𝑜𝑤 and shifted phase-averaged flag-tip; and (c) comparison between an instantaneous 

(obtained from PIV measurements) and phase-averaged flag shape (obtained from DIC 

measurements); 𝑡 = 𝑡′ + Δ𝑡  and 𝜙𝑓𝑙𝑜𝑤 = 𝜙flag + Δ𝜙 ; at 𝑡 = Δ𝑡 , 𝑦𝑓𝑙𝑎𝑔,𝑡𝑖𝑝 = 𝑦𝑚𝑎𝑥 ; the data 

presented are for nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2, and NACA0012 aerofoil at 𝛼 = 20°. 

 

 

For the compliant flag (μ = 7.7, L/c = 0.2) and the nearly-rigid flag (μ = 10.0, L/c = 0.2) at α = 

20° for the NACA0012 aerofoil, the phase-averaged vorticity fields are compared in figures 17 

and 18. The phase-averaged vorticity fields are presented at equal intervals in the cycle starting 

at t/T = 0, which corresponds to the phase when the phase-averaged flag-tip reaches its 
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maximum (see also figure 16(a)). For the compliant flag case, a newly formed leading-edge 

vortex (LEV) is first seen between t/T = 0.25 and 0.375 as the flag moves down. The growth 

of the vortex continues during the rest of the period as the flag moves down and then up, 

reaching the maximum displacement at t/T = 0, and then until shedding from the flag at a later 

instant. Mostly attached flow when the flag is away from the aerofoil surface and mostly 

separated flow when the flag is closer to the aerofoil surface can be identified in the phase-

averaged flows.  

 

Similarly, for the nearly-rigid flag case, vortex shedding from the flag occurs during the 

downward motion of the flag around t/T = 0.25. Indications of a new vortex developing are 

also observed when the flag is closer to the aerofoil surface. The vortex grows during the 

upward motion of the flag because of continuous feeding of vorticity. The comparison of 

figures 17 and 18 reveals that not only the size of the vortices is different, but also the distance 

between two successive vortices shed from the flag and the distance of the centre of the vortex 

from the aerofoil surface. The vortex for the nearly-rigid flag is much stronger. As discussed 

in figure 15, the POD analysis also confirms that the flow is more coherent for the nearly-rigid 

wing. However, the time-averaged lift force differs little for the two flags as noted earlier (see 

figure 7). For the nearly-rigid flag, the reattachment line on the aerofoil surface appears to pass 

the trailing-edge when the flag is near the aerofoil surface. In this case, there is also a clear 

indication of formation and shedding of a trailing-edge vortex as the flag moves up.  

 

The circulation of the LEVs was calculated as line integral of velocity around the contours 

marked with dashed lines in figures 17 and 18. The leading-edge vortex grows in size and 

strength as it advects over the aerofoil. As the vortex grows in size and advects, the circulation 

contours are adjusted to include all vorticity in the enclosed regions. The time history of the 

circulation normalised by the freestream velocity and the chord length of the aerofoil is plotted 

in figure 19(a) as a function of t/T for the two flags discussed above. There are also two other 

cases for different flags in the same figure, which will be discussed later. Depending on the 

normalised flag length L/c and the mass ratio μ, the maximum circulation differs for each case. 

The maximum LEV circulation occurs when the vortex detaches from the flag and before the 

new vortex forms (see also figures 17 and 18).  
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Figure 17: Phase-averaged vorticity fields superimposed with phase-averaged flag shapes for 

compliant flag, 𝜇 = 7.7, L/c = 0.2, NACA0012 aerofoil at 𝛼 = 20°. 
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Figure 18: Phase-averaged vorticity fields superimposed with phase-averaged flag shapes for 

nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2, NACA0012 aerofoil at 𝛼 = 20°. 
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Figure 19: Time- history of leading-edge vortex circulation for NACA0012 aerofoil at 𝛼 = 20°: 

(a) circulation normalised by freestream velocity and chord length versus t/T; (b) circulation 

normalised freestream velocity and flag oscillation frequency versus 𝜙𝑓𝑙𝑎𝑔. 

 

For each case, the magnitude of the circulation starts to increase around t/T = 0.5 (when the 

flag-tip is near the aerofoil surface) and almost linearly as a function of t/T, but with different 

rates (figure 19 was plotted for two cycles for clarity). The linear increase of the circulation in 

figure 19(a) can be understood if it is assumed that all vorticity shed from the flag during the 

upward motion rolls into the leading-edge vortex. Furthermore, we assume that the velocity of 

the shear layer at the separation point is proportional to the freestream velocity U. Then the 

vorticity flux from the separated shear layer is related to the magnitude of circulation of the 

leading-edge vortex as follows: 

𝑑𝛤

𝑑𝑡
 ∝  

𝑈∞
2

2
 

If we assume that the circulation starts to increase when the flag is closest to the aerofoil surface, 

and this instant is roughly at the middle of the cycle (𝑡′ = 0.5𝑇), then 

𝛤 ∝ 𝑈∞
2 (𝑡′ − 0.5𝑇) 

which is consistent with the linear increase of the circulation with time. This can be rearranged 

as 

𝛤 ∝ 𝑈∞
2 (𝑡′ − 0.5𝑇)  =

𝑈∞
2

𝑓
(

𝑡′

𝑇
− 0.5) ∝

𝑈∞
2

𝑓
 (𝜙flag − 𝜋) 

(5) 

(6) 
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and suggests a new nondimensionalisation: 

𝛤𝑓

𝑈∞
2

∝ (𝜙flag − 𝜋) 

which predicts a collapse of the data. This is confirmed in figure 19(b) by plotting the new 

nondimensionalisation for different flags of varying mass ratio, length, and stiffness. There is 

a reasonable collapse of the experimental data. This also suggests that the maximum circulation 

of the flag vortices is inversely proportional to the flag oscillation frequency. A curve fit in the 

form of a straight line suggests that the constant of the proportionality in Equation (7) is 

approximately 0.14 rad−1, which implies that the velocity of the shear layer at the separation 

point is roughly 1.3U. There is some subjectivity in choosing the enclosed regions in the 

calculations of the circulation. However, when properly nondimensionalised, the circulation 

data collapse well in figure 19(b) for different flags and fit the simple model developed 

(Equation (7)). This suggests that the choice of the enclosed regions is reasonable.  

  

3.6. Effect of mass ratio 

The mass ratio is the main parameter affecting the frequency of the flag oscillations. The flag 

that produces the highest CL,max, i.e., the nearly-rigid flag, μ = 24.6, L/c = 0.2 (see figure 7(b)), 

will be compared with the nearly-rigid flag (μ = 10.0, L/c = 0.2) shown in figure 18. The 

dominant frequency of the flag oscillations is f = 39 Hz for μ = 24.6, which is half of that of 

the μ = 10.0 nearly-rigid flag. Hence, for the fixed flag length, mass ratio can be used as a 

controlling parameter for the flag oscillation frequency. Equation (7) predicts that the 

maximum circulation will be larger for the heavier flag with the lower frequency of oscillations. 

This is confirmed in figure 19 in which the nearly-rigid flag with μ = 24.6, L/c = 0.2 has the 

largest maximum circulation. 

 

Figure 20 shows the phase-averaged vorticity contours superimposed with the phase-averaged 

flag shapes for the NACA0012 aerofoil with the nearly-rigid flag, μ = 24.6, L/c = 0.2 attached 

to the leading-edge at α = 20°. The comparison of figures 18 and 20 reveals that, for the same 

flag length, the flag with the larger mass ratio produces larger vortices. Unlike the case in figure 

18, two consecutive LEVs cannot be seen in the same field of view at any phase in figure 20. 

Otherwise, the main features remain similar between the two cases. The vortex shedding occurs 

during the downward motion of the flag and the growth of the vortex is noticeable during the 

upward motion of the flag. During the upward motion of the flag the flow over the flag appears  

 

(7) 
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Figure 20: Phase-averaged vorticity fields superimposed with phase-averaged flag shapes for 

nearly-rigid flag, 𝜇 = 24.6, L/c = 0.2, NACA0012 aerofoil at 𝛼 = 20°. 
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Figure 21: Variation of normalised lift increase as a function of (a) flag mass ratio and flag 

length, (b) flag Strouhal number, for NACA0012 aerofoil at 𝛼 = 20°. 

 

to remain totally separated, while the reattachment line on the aerofoil moves downstream. The 

counter-rotating trailing-edge vortex is also visible in figure 20. 

 

The variation of the normalised lift change is shown as a function of the mass ratio and 

normalised flag length L/c in figure 21(a) for the NACA0012 aerofoil at 𝛼  = 20°. The 

normalised lift change is defined as (CL − CL,c)/CL,c, where CL,c is the lift coefficient of the clean 

aerofoil at a given angle of attack. For small mass ratios, there is a trend of increasing 

normalised lift change with increasing mass ratio, followed by a levelled increase of lift for 

larger mass ratios. Both the compliant and nearly-rigid flags can produce high lift. For the best-

performing flags, extensive deformation measurements were carried out to measure the 

dominant flag frequency and peak-to-peak amplitude. The variation of the normalised lift 

change is shown as a function of the Strouhal number in figure 21(b). For all these effective 

flags, the Strouhal number varies approximately between 0.02 and 0.1, yet the lift increase is 

roughly saturated. Even for very small values of the Strouhal number, regardless of the stiffness 

of the flag, high lift can be produced. Increasing the flag Strouhal number does not necessarily 

increase the lift. The lack of sensitivity of the lift to the magnitude of the Strouhal number can 

be considered as a consequence of the resonance and the lock-in of the flag with the wake.  
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3.7. Effect of angle of attack 

The nearly-rigid flag, μ = 24.6, L/c = 0.2 was investigated further at a different angle of attack 

of α = 30°, at which the aerofoil-flag assembly produces a remarkable 42% increase in the lift 

coefficient and a stall-delay of  at least 18°. At α = 30°, the vibration frequency of this flag 

remains the same as that at α = 20°, i.e., f = 39 Hz. The phase-averaged vorticity contours 

superimposed with the phase-averaged streamlines and the flag shapes are presented in figure 

22. The LEVs at all corresponding times are larger than those at α = 20° (compare with figure 

20). The other essential aspects are similar. Like the case in figure 20, the growth of the vortex 

during the upward motion and subsequent shedding of the vortex during the downward motion 

are similar. 

 

For α = 30°, the corresponding modified Strouhal number St* = fc sin(α)/U∞ = 0.13, while for 

α = 20° it is St* = fc sin(α)/U∞ = 0.09 (case in figure 20). For other flags presented previously 

at α = 20°, the modified Strouhal number varies in a narrow range: St* = fc sin(α)/U∞ = 0.13 

(case in figure 17), 0.18 (case in figure 18), and 0.13 and 0.19 at two different Reynolds 

numbers (Tan et al. 2021). As discussed in the Introduction and proposed by Tan et al. (2021), 

resonance of the flag oscillations with the wake instability is a possibility. To understand 

whether this indeed occurs at other angles of attack, we measured the flag deformation for four 

different flags (two compliant and two nearly-rigid flags) with different mass ratio and flag 

length as a function of angle of attack. As the flag oscillations and the lift enhancement occur 

at post-stall angles of attack (see also figure 7), our measurements focussed on the post-stall 

regime of the clean aerofoil.  

 

Figure 23 shows the modified Strouhal number as a function of (𝛼 − 𝛼s,c) for the NACA0012 

aerofoil, where 𝛼s,c is the stall angle of the clean aerofoil. For the clean aerofoil, the modified 

Strouhal number is approximately constant for varying angle of attack, St* = 0.18  0.01 

(Rojratsirikul et al. 2011), with virtually no effect of Reynolds number in the range of 104 to 

105. The dashed lines represent the fundamental and subharmonic of the natural vortex 

shedding frequency for the NACA0012 aerofoil, fcsinα/U∞ = 0.18 and 0.09, respectively. 

Figure 23 reveals that there is some variation of the modified Strouhal number for some flags,  

and little variation for some other flags. Nevertheless, most of the data points fall into a band 

between the fundamental and subharmonic of the natural vortex shedding frequency, 
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suggesting there is some coupling between the flag oscillations and the natural vortex shedding 

of the aerofoil. Note that the degree of lift enhancement (normalised lift increase) is larger for  

 

 

 

Figure 22: Phase-averaged vorticity fields superimposed with phase-averaged flag shapes for 

nearly-rigid flag, 𝜇 = 24.6, L/c = 0.2, NACA0012 aerofoil at 𝛼 = 30°. 
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Figure 23: Modified Strouhal number based on the projection of the aerofoil chord length as a 

function of (𝛼 − 𝛼s,c) for NACA0012 aerofoil. Dashed lines correspond to the fundamental 

and subharmonic of the natural vortex shedding frequency for the clean aerofoil. 

 

the data points within the band as long as the post-stall angle of attack is not too small or too 

large.   

 

3.8. Effect of leading-edge geometry 

To understand the effect of the leading-edge shape, we extended the experiments to two other 

aerofoils: a NACA6409 and a flat-plate with a sharp leading-edge (see the cross-sections in 

figure 2(c)). We observed self-excited flag oscillations on the two aerofoils with similar 

magnitudes of amplitude for the NACA0012. As an example, figure 24 presents the phase-

averaged vorticity fields superimposed with the phase-averaged streamlines and the phase-

averaged flag shapes for the flat-plate aerofoil and the nearly-rigid flag (μ = 10.0, L/c = 0.2) 

attached to the leading-edge for α = 20°. This is the same flag shown in figure 18 with the 

NACA0012 aerofoil at the same angle of attack. The flag oscillations have a dominant 

frequency of f = 50 Hz (St* = 0.12) on the flat-plate aerofoil compared to f = 78 Hz (St* = 0.18) 

on the NACA0012 aerofoil. The main features of the flow and the flag motion are similar for 

both aerofoils. The strengthening of the vortex during the upward motion of the flag submerged 

in totally separated flow is followed by the shedding of the vortex during the downward motion.  



40 

 

 

 

Figure 24: Phase-averaged vorticity fields superimposed with phase-averaged flag shapes for 

nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2 attached to the flat-plate aerofoil with a sharp leading-

edge at 𝛼 = 20°. 
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The reattachment line on the aerofoil surface moves closer to the trailing-edge near t/T = 0.75. 

The vortex shedding appears to start between t/T = 0.125 and 0.25. 

 

A direct comparison of the phase-averaged flag shapes during the upward motion (red solid) 

and the downward motion (black dashed) as well as the location of the time-averaged shear 

layer for the corresponding clean aerofoil are shown in figure 25 for the NACA0012 and the 

flat-plate aerofoil. The flag behaves as if it has a flexible hinge at the leading-edge for the 

NACA0012 aerofoil and this becomes more pronounced when the flag-tip is near the aerofoil 

surface. In contrast, the flag behaves as if it is more like a rigid plate for the flat-plate aerofoil. 

The flag-tip does not get very close to the aerofoil surface compared to the case of the 

NACA0012 aerofoil. This is likely to be due to the shear layer of the flat-plate aerofoil being 

located further away from the surface at the same angle of attack. Nevertheless, both cases have 

qualitatively similar phase-averaged flows. 

 

 

Figure 25: Phase-averaged flag shapes for the nearly-rigid flag, 𝜇 = 10.0, L/c = 0.2 attached to 

the leading-edge of (a) NACA0012, and (b) flat-plate with a sharp leading-edge, at 𝛼 = 20°. 
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Lift force measurements were carried out for the compliant and nearly-rigid flags with varying 

mass ratio and flag length attached to the flat-plate aerofoil and the cambered NACA6409 

aerofoil, resulting in plots similar to those in figure 7 for the NACA0012 aerofoil. For brevity 

these lift curves will not be presented here. In figure 26(a), the variation of the normalised 

change of maximum lift coefficient CLmax with respect to the lift coefficient of the clean aerofoil 

CL,c at the same stall angle of attack of (𝛼𝑠) is shown as a function of (𝛼𝑠 − 𝛼s,c). Here 𝛼s,c is 

the stall angle of the clean aerofoil. The corresponding stall angles of the clean aerofoils are 

𝛼s,c = 12 (CLmax,c = 0.96 for the NACA0012), 14 (CLmax,c = 1.35 for the NACA6409), and 8 

(CLmax,c = 0.53 for the flat-plate) at this Reynolds number. The data were coloured according to 

the flag mass ratio 𝜇. For all three aerofoils, significant lift increase (up to about 100%) can be 

achieved. The best lift enhancement is found for the cambered aerofoil when (𝛼𝑠 − 𝛼s,c) = 6 

to 10, and the mass ratio does not appear to be significant in this range. The maximum lift 

enhancement decreases when the stall angle with the flag becomes increasingly larger than the 

stall angle of the clean aerofoil. 

 

 

 

Figure 26: (a) Variation of normalised change of maximum lift coefficient with respect to the 

clean aerofoil at the same angle of attack as a function of (𝛼𝑠 − 𝛼s,c), data were coloured 

according to the flag mass ratio 𝜇 , (b) variation of normalised change of maximum lift 

coefficient with respect to that of the clean aerofoil as a function of flag mass ratio 𝜇, data were 

coloured according to the change in stall angle (𝛼𝑠 − 𝛼s,c). 

 

 

In figure 26(b), the variation of the normalised change of the maximum lift coefficient CLmax 

with respect to that of the clean aerofoil CLmax,c (the stall angles of the clean aerofoil and that 

with the flag are not the same) is shown as a function of flag mass ratio 𝜇. The data were 
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coloured according to the change in the stall angle (𝛼𝑠 − 𝛼s,c) . For all three aerofoils, 

significant increase of the maximum lift coefficient (up to about 60%) can be achieved. The 

largest increases are observed for the NACA0012 aerofoil with the nearly-rigid and heavy flags, 

resulting in an increase in the stall angle by nearly 20. We note that there are many more data 

points for the NACA0012 aerofoil than for the other two aerofoils. Nevertheless, with 

increasing mass ratio, there is a trend of increasing maximum lift coefficient and stall angle 

that can be achieved for the NACA0012 aerofoil, whereas the effect of the mass ratio is not 

apparent for the other aerofoils. The magnitude of the increase in the maximum lift coefficient 

is comparable for the flat-plate aerofoil to that of the NACA0012 aerofoil. The increase in the 

maximum lift coefficient is generally smaller for the cambered NACA6409 aerofoil. 

 

We note that the leading-edge radii may have some effect on the wake evolution. This 

parameter also affects the flag/outer-flow interaction and the dynamics of the flag. However, 

the angle between the outer flow and aerofoil surface also depends on the angle of attack and 

the location of the fixed-end of the flag in addition to the leading-edge radii. Therefore, it is 

difficult to isolate the effect of each parameter. However, we show in the next section that the 

coupling with the wake instability is the same for the three aerofoils at different angles of attack. 

 

3.9. Coupling of flags with wake  

We summarise the present data for all three aerofoils by plotting the modified Strouhal number 

based on the projection distance of the chord length fcsinα/U∞ as a function of the flag mass 

ratio in figure 27(a) and as a function of (α – αs,c) in figure 27(b). Again, the dashed lines 

represent the fundamental and subharmonic of the natural vortex shedding frequency for the 

clean aerofoils (taken from Rojratsirikul et al. 2011). The data symbols were coloured 

according to the magnitude of the normalised lift increase. In both graphs the modified Strouhal 

number remains in a band between the fundamental and subharmonic frequency of the wake 

of the clean aerofoil. Therefore, all these data suggest that there is a coupling between the flag 

motion and the wake instability. This coupling or resonance with the fundamental and 

subharmonic of the wake instability and increased lift force are consistent with the mechanism 

of post-stall flow control proposed by Wu et al. (1998), wake resonance and lock-in reported 

(Karniadakis & Triantafyllous 1989; Young & Lai 2007) and other related investigations. 
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The mass ratio of the best flags that provide the largest normalised lift increase is spread onto 

the whole range of the flag mass ratio tested. On the other hand, the best post-stall angles of 

attack that provide the largest normalised lift change are found at an optimal increment from 

the stall angle of the clean aerofoils. The darkest data symbols are found between 6° < (α – αsc) 

< 12°, which seems to be the optimum range of angles of attack. Interestingly this suggests that 

angle of attack is more important than flag mass ratio in producing high lift. With increasing 

angle of attack, one expects increasing distance between the leading-edge vortices and the 

aerofoil surface as well as increasing distance between the shear layer of the clean aerofoil and 

the surface. These factors are likely to contribute to the modifications of the flag-shear layer 

interaction and affect the lift produced by the leading-edge vortices. The relationship between 

excitation frequency, effective wake width and natural frequency of the flag in the wake reveals 

the lock-in mechanism that results in larger lift enhancement. 

 

 

 

Figure 27: Modified Strouhal number based on the projection of the aerofoil chord length as a 

function of (a) flag mass ratio 𝜇, and (b) (𝛼 − 𝛼sc). The data were coloured according to the 

normalised lift change. Dashed lines represent the fundamental and subharmonic of the natural 

vortex shedding frequency. 

 

3.10. Comparison with flags in uniform freestream 

The results so far suggest that wake instability acts as an excitation for the flag motion. A 

comparison of the measured flag frequency to the natural frequency of the flags in freestream 

would be interesting. In figure 28, we plot the dimensionless frequency of the flag (𝑓𝐿/𝑈∞) as 

a function of the flag mass ratio for the flags placed in uniform freestream with red symbols 
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(Taneda 1968; Akcabay & Young 2012; Goza & Colonius 2017; Alben 2022; Zhang et al. 

2022b). The data for the flags in uniform freestream has a wide range of the bending stiffness 

KB, which is similar to the range of KB for the compliant flags we tested (between 8.2 × 10−5 

and 3.4 × 10−2), however, much smaller compared to the nearly-rigid flags (KB = 0.29 to 28.6) 

in our experiments. The data for flags in uniform freestream show a reasonable trend with the 

flag mass ratio. We compare the dimensionless measured frequency of the flag (𝑓𝐿/𝑈∞) as a 

function of the flag mass ratio in figure 28 for the compliant and nearly-rigid flags attached to 

the three aerofoils. The data symbols were coloured according to the magnitude of the 

normalised lift increase. While some flags have closer measured frequency to the natural 

frequency in freestream, some others are much further away. Those flags whose oscillation 

frequency is closer to the natural frequency in freestream tend to have higher lift enhancement. 

This suggests that if the excitation frequency (of the wake instability) is close to the natural 

frequency of the flag, the resonance with the wake leads to higher lift enhancement. This 

implies that the flag properties, the aerofoil chord length, and the angle of attack determine the 

degree of resonance and coupling between the wake and the flag. This will be demonstrated 

with a simple reduced-order model below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Dimensionless flag frequency as a function of mass ratio 𝜇. The data were coloured 

according to the normalised change of the lift coefficient. 
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The dashed red line in figure 28 represents a reduced order model (Zhang et al. 2022b) for rigid 

flags that are placed in freestream and free-to-roll around its leading-edge. The natural 

frequency is predicted as:   

𝑓𝑛𝐿/𝑈∞ = 0.26/√𝜇 

The model assumes that the equation of the motion of a rigid flat-plate free-to-roll around its 

leading-edge can be written by considering the moment about the leading-edge and equating it 

to the moment of inertia times the angular acceleration:  

(
1

3
𝜌𝒔ℎ𝐿3) 𝜃̈ = 𝐶𝑀

1

2
𝜌𝑓𝑈∞

𝟐 𝐿𝟐 

where   is the angular displacement (see figure 29(a)) and CM is the pitching moment 

coefficient. For the fully separated flow behind the rigid flag in freestream, Zhang et al. (2022b) 

used the free-streamline theory first proposed by Kirchhoff (1869) and Rayleigh (1876). The 

linearised solution of Equation (9) provides the natural frequency of the rigid flag as in 

Equation (8). (We note that 𝜇−1/2 dependency of 𝑓𝑛𝐿/𝑈∞ was also proposed by Argentina & 

Mahadevan (2005) using the unsteady thin aerofoil theory for small flag displacements, which 

assumes that the flow remains attached to the flag). Separated flows over a flag in freestream 

and near the aerofoil surface have some similarities. Even though flows near the fixed-end of 

the flags are different, this appears to have smaller effect on the frequency of the flag 

oscillations. This is because the moment arm of the pressure near the fixed-end is smaller. We 

conclude that, at large displacements of the flag attached to an aerofoil, the dimensionless 

natural frequency of the flag scales as 𝜇−1/2. 

 

In contrast, at small displacements when the flag is closest to the aerofoil surface it is fully 

submerged in separated flows and the restoring counter-rotating moment is due to the 

strengthening vortex. Hence, we propose that the coupling between the flag and the leading-

edge vortex determine the flag dynamics when the flag is closer to the aerofoil surface. This is 

conceptualised in figure 29(b) as a vortex near the wall and its image vortex. In this case the 

induced velocity of the vortex pair replaces the freestream velocity in Equation (9). We assume 

a restoring moment per unit span in the form of: 

 

 

 

(9) 

(8) 
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(
1

3
𝜌𝒔ℎ𝐿3) 𝜃̈ = 𝐶𝑀

1

2
𝜌𝑓Γ𝟐 

which can be written as   

𝜃̈ =
3𝐶𝑀

2𝜇
(

𝑈∞
2

𝐿2
) (

𝛤

𝑈∞𝐿
)

2

 

 

In figure 29(c), for our experiments, we plot the variation of the dimensionless circulation 

(/U L) as a function of   (see the definition in the inset). This graph suggests a linear 

variation with , leading to a second order differential equation with constant coefficients if 

the pitching moment coefficient is assumed to be constant. It then follows that  

 

𝑓𝑛𝐿/𝑈∞ ∝  𝜇−1/2 

 

 

 

Figure 29: (a) Schematic of the Kirchhoff-Rayleigh flow; (b) conceptual model of flag and 

vortex for small 𝜃; and (c) circulation normalised by freestream velocity and flag length as a 

function of angular displacement 𝜃 for the upward-moving flag for compliant and nearly-rigid 

flags attached to the leading-edge of a NACA0012 aerofoil at 𝛼 = 20°. 

 

 

(12) 

(10) 

(11) 
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which is a similar functional variation to Equation (8) for large deflection angles. In summary, 

while the natural frequency of the flag is controlled by the flag length L and the mass ratio 𝜇, 

the excitation frequency of the wake instability is controlled by the effective wake width 

csin(). These parameters determine the degree of resonance and coupling between the wake 

and the flag. 

 

4. Conclusions  

Self-excited oscillations of flags with the fixed-end located at the leading-edge of the aerofoils 

were investigated. The interaction of flags with the separated flow over the aerofoil results in 

quasi-periodic oscillations of flags that produce leading-edge vortices. We present evidence 

that the flag oscillations are coupled with the wake instability at the post-stall angles of attack 

for three different aerofoils tested, including one with a sharp leading-edge. Previous 

computational and experimental studies suggest that the wakes of bluff bodies and post-stall 

aerofoils can resonate (or lock-in) and become more coherent and synchronised when excited 

at the fundamental and harmonics of the natural vortex shedding. Our findings reveal that flags 

of varying mass ratio and length oscillate at frequencies which fall in a narrow band, 

corresponding to the subharmonic and the fundamental frequency of the wake of the clean 

aerofoils.  

 

For a post-stall angle of attack of  = 20 for the NACA0012 aerofoil, both compliant and 

nearly-rigid flags can have high amplitude oscillations. The Strouhal number, which represents 

the ratio of the flag-tip velocity to the freestream velocity, generally decreases with increasing 

mass ratio and is larger for the nearly-rigid flags. However, both types of flags can achieve 

similar levels of percent increase in lift force at  = 20 for a wide range of the mass ratio and 

the Strouhal number. However, flags with large stiffness generally produce larger maximum 

lift coefficient and higher stall angle (approaching 30) compared to the compliant flags as the 

spatial and temporal coherence of the flag oscillations are much better. 

 

Regardless of the aerofoil profile and the leading-edge shape, there are common features of the 

coupling of the flag vortices with the flag motion. The circulation of the flag vortices increases 

linearly with time and becomes maximum when the flag-tip is near the maximum displacement 

from the aerofoil surface. Around this instant flow over the flag resembles the Rayleigh-

Kirchhoff flow over an inclined flat plate and provides the restoring moment for the flag. The 
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shedding of the flag vortices also takes place around this time or soon after. When the flag is 

closest to the aerofoil surface, the flow over the flag is fully separated above and below the 

flag. Around this instant, the restoring moment is produced by the induced velocity of the 

growing vortex. 

 

For all aerofoils tested, the best lift enhancement (up to about 100%) was found at an optimal 

increment from the stall angle of the clean aerofoils, (𝛼𝑠 − 𝛼s,c) = 6 to 10, for a wide range 

of the mass ratio. This is because the distance between the flag-generated vortices and the 

aerofoil surface increases with increasing angle of attack. An increase of the maximum lift 

coefficient (up to about 60%) and an increase of the stall angle by nearly 20 are possible. If 

the excitation frequency (of the wake instability) is close to the natural frequency of the flag, 

the wake lock-in results in larger lift enhancement. The natural frequency of the flag mainly 

depends on the flag length L and the mass ratio 𝜇 . The excitation frequency of the wake 

instability is controlled by the effective wake width csin(). These parameters determine the 

degree of resonance and coupling between the wake and the flag. 

 

Similar to any other flow control method, other aerodynamic forces and moments should be 

investigated. For operation in the post-stall regime, high-lift is the primary objective, while 

minimum drag is not typically a consideration (unlike cruise conditions). The drag force was 

not measured in this investigation. However, as discussed previously (Tan et al. 2021), 

substantial drag reduction is expected based on the time-averaged velocity measurements that 

reveal smaller velocity defect in the wake. Pitching moment should be investigated in future 

studies. Excitation near the leading-edge for other flow control methods (such as pulsed 

blowing or synthetic jets) produce periodic leading-edge vortices. The effect of these methods 

on the pitching moment is expected to be similar to that of the oscillating flags at the leading-

edge. 
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