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On Optimal Regularization Parameters via Bilevel Learning

Matthias J. Ehrhardt, Silvia Gazzola, and Sebastian J. Scott *

Department of Mathematical Sciences, University of Bath, Claverton Down, BA2 7AY, UK

Abstract
Variational regularization is commonly used to solve linear inverse problems, and involves

augmenting a data fidelity by a regularizer. The regularizer is used to promote a priori infor-
mation, and is weighted by a regularization parameter. Selection of an appropriate regularization
parameter is critical, with various choices leading to very different reconstructions. Existing strate-
gies such as the discrepancy principle and L-curve can be used to determine a suitable parameter
value, but in recent years a supervised machine learning approach called bilevel learning has
been employed. Bilevel learning is a powerful framework to determine optimal parameters, and
involves solving a nested optimisation problem. While previous strategies enjoy various theoret-
ical results, the well-posedness of bilevel learning in this setting is still a developing field. One
necessary property is positivity of the determined regularization parameter. In this work, we pro-
vide a new condition that better characterises positivity of optimal regularization parameters than
the existing theory. Numerical results verify and explore this new condition for both small and
large dimensional problems.

Keywords: Inverse problems; Machine learning; Variational regularization; Bilevel learning;
Imaging; Regularization parameter

1 Introduction

Inverse problems are a class of mathematical problems where one is tasked to determine the input
to a system given the output of the system, along with some knowledge about the properties of
said system. Such problems arise in many important science and engineering applications such
as biomedical, astronomical, and seismic imaging [5, 8, 24, 32].

We consider the class of linear inverse problems wherein we are interested in retrieving the
ground truth input x⋆ ∈ Rn given a matrix A ∈ Rm×n, and corrupted measurement y ∈ Rm

satisfying
y ≈ Ax⋆. (1)

The challenge with inverse problems such as (1) is that almost all interesting applications are
ill-posed in the sense of Hadamard [30], in that at least one of the following conditions regarding
solutions is violated: existence; uniqueness; continuity with respect to the observed measurement
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y. A classical approach to remedy the ill-posedness of (1) is via variational regularization [8, 15],
wherein one solves a minimisation problem such as

min
x∈Rn

{
1
2
∥Ax − y∥2 + αR(x)

}
. (2)

In (2) we consider the popular squared Euclidean distance data fidelity, which can be statistically
motivated by considering the negative log likelihood of an additive Gaussian noise corruption
[5]. The regularizer R : Rn → R is used to encourage a priori information of the solution x⋆ in
reconstructions. In recent years a popular non-smooth choice has been total variation (TV) [43]
which encourages sharp edges in reconstructions. While naturally smooth regularizers are explic-
itly used [40], one may be interested in a non-smooth regularizer [5, 8], such as TV, but, be it for
computational or theoretical reasons [44], require a smooth approximation instead which can be
achieved for example by the Huber norm [34]. The balance between the data fidelity and regular-
izer in (2) is controlled by the regularization parameter α ≥ 0. It is crucial to determine a suitable
value of α, as a poor choice could lead to a noise dominated or oversmoothed reconstruction [31].

There are a variety of existing techniques to determine an appropriate parameter value, such
as the discrepancy principle [31], generalised cross validation [29], or L-curve [31]. In particular,
there is no one-method-fits-all and rather each method works under different assumptions to
varying degrees of success [4, 6, 9, 24, 28, 31].

An alternative is machine learning, wherein an optimal parameter is found by minimising
some appropriate loss function. This can achieved via bilevel learning - a popular data-driven
approach to determine hyperparameters [5, 17, 21, 38] which sits in the wider class of bilevel
optimisation [16, 45]. In this work, we put emphasis on the following class of bilevel learning
problems:

α̂ ∈ arg min
α∈[0,∞]

{
J (α) :=

1
2

E
[
∥xα(y)− x⋆∥2

]}
(3a)

subject to xα(y) = arg min
x∈Rn

{
Φα(x) :=

1
2
∥Ax − y∥2 + αR(x)

}
, (3b)

where we assume A and R are such that the solution to (3b) is unique - more details given later.
Minimisation problem (3a) is referred to as the upper level problem, and (3b) the lower level
problem.

Although the bilevel learning problem (3) is phrased to optimise over a scalar α, the general
framework extends to the multi-parameter setting. For example: to find the weights of a sum
of different regularizers [20]; the sampling of the forward operator for MRI [44]; the weights in
the field of experts model [14]; the parameters of an input-convex neural network acting as the
regularizer [2, 39]. In this work we are interested in bilevel learning as a regularization parameter
choice rule, so remain in the scalar setting.

We consider minimising the expected Mean Squared Error (MSE) in (3a) which is the most
popular choice of loss function in bilevel learning [17], though other choices have been explored
[21, 25]. By minimising the expected MSE, the determined parameter is expected to perform well
on average. The expectation in (3a) is simply the total expectation and, unless specified otherwise
in which case it will be denoted by a subscript, can be taken with respect to, say, some underlying
distribution of the ground truth, noisy measurement, or the noise itself. We do not require any
properties of these distributions other than the expectations being well defined.
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While it is of theoretical importance to study the expected MSE upper level cost function, in
practice we instead have a finite number of training data (x⋆k , yk), k = 1, . . . , K. In this scenario the
upper level cost function is the empirical risk

1
2K

K

∑
k=1

∥xα(yk)− x⋆k∥
2,

and the bilevel learning problem would be solved to determine a single regularization parameter
α̂ that performs well across the entire training dataset. Then, given some unseen measurement
data which is similar to the training data, we can expect α̂ to be a reasonable choice of parameter
and the variational problem (3b) can be solved. From now on, we suppress the dependence of the
reconstruction on the observed measurement, that is, we denote xα(y) simply as xα.

A critical theoretical issue of (3) is the well-posedness of the learning and the characterisation
of solutions, which can be used to inform the design of numerical methods. In recent years,
literature has been developed to address these issues [19, 20, 33, 38]. One example is [33], where
optimal parameters are assumed to live in an interval [α, ᾱ] for 0 < α ≤ ᾱ < ∞ chosen a priori.
In this setting it is possible to prove stability of the lower level problem and existence of solutions
to the upper level problem under certain assumptions. However, in imposing solutions lie in a
bounded interval determined a priori, it is possible that for a given training dataset the determined
parameter is suboptimal.

Removing this restriction and instead working on a domain more naturally associated with
the parameter, namely,

[0, ∞] := {α ∈ R : α ≥ 0} ∪ {∞}, (4)

is therefore natural and the focus of this paper. A consequence of this setting is that qualitative
changes in reconstructions may occur for those associated with parameters at the boundary. Ad-
ditionally, for an optimal parameter to reside at the boundary of [0, ∞] can be an indication that
the chosen regularizer is not well suited for the problem setting. Determining natural conditions
which guarantee optimal parameters reside in the interior is therefore crucial to exclude these
degenerate cases. Various works have contributed towards conditions that yield optimal parame-
ters in the interior [19, 20, 38] and, while primarily considering the case A = I, have considered
regularizers such as generalized Tikhonov [38], TV-like and their huberised counterparts [20], and
more recently a broad class of lower semicontinuous regularizers [19].

Since the optimised parameter in (3) is the regularization parameter of a variational model,
positivity of the determined solution is also necessary for regarding bilevel learning as a well-
posed parameter choice rule [24]. Parameter choice rules enjoy a rich amount of existing theory
[4, 6, 9, 24, 28, 31] so determining conditions for when bilevel learning is a valid parameter choice
rule will allow access to a vast amount of well studied results.

In this work we will also consider the sets (0, ∞] and [0, ∞), defined in a similar fashion to (4).
Furthermore, we will refer to case α̂ ∈ (0, ∞] as α̂ being strictly positive. In particular, we focus
on conditions that guarantee α̂ is strictly positive, that is, non-zero and possibly infinite. This is in
alignment with the setting of existing works [20]. We remark that we do not demand uniqueness
of the solution to the upper level problem (3a). Indeed, uniqueness is not guaranteed in general.

1.1 Our contribution

In this work we provide a new sufficient condition to deduce positivity of the solution to the
bilevel learning problem (3) that, not only is satisfied whenever the condition commonly used
in existing theory [19, 20, 38] is satisfied, but is applicable to inverse problems with a general
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forward operator, rather than just the denoising setting. We provide an example illustrating that
our condition can completely characterise positivity for certain applications. Furthermore, we
show that our condition will always be satisfied in a very realistic denoising setting.

The class of regularizers that we consider is very general, with a full statement of the as-
sumptions given in Section 2. While not a focus of this work, we briefly describe how the bilevel
learning problem (3) can be solved in practice, as that will in part motivate the class of smooth
regularizers that we consider.

1.2 Solving the bilevel learning problem

We first remark that the bilevel learning problem (3) optimises over a scalar parameter α, the
regularization parameter. Because of the low dimensional parameter space, one can easily explore
how α affects the upper level cost J and, for example, consider a finite number of values and select
the one that achieves the lowest upper level cost or perform an interval search [1]. Indeed, this
will be the approach taken in this report for the numerics. In the general multi-parameter case, a
brute force grid search is not computationally feasible and other strategies must be developed, of
which we discuss a few here.

Most approaches assume that the lower level cost function Φα is sufficiently smooth [26, 44]
- with operations involving the Hessian of Φα being utilised. This limits the choice of lower
level cost function and thus regularizer that can be considered. However, should the original
cost function be non-smooth, smooth approximations are possible [34] and so the demand for a
smooth Φα is not unreasonable.

One common approach is to rephrase the bilevel learning problem as a single level problem
[44]. A main challenge towards this strategy is that, for a general lower level cost function Φα, the
minimiser xα is not differentiable with respect to the parameters that the upper level is optimising
over, in our case the regularization parameter α. However, provided that the lower level cost
function is sufficiently smooth, the gradient to the upper level cost function J can be derived
using the implicit function theorem [37]. An issue with the approach of [44] is that exact solutions
of the lower level problem are required - but are often computed numerically in practice. While
results are still promising in spite of this, methods that acknowledge this inexactness have also
been developed and studied [23, 22, 46].

1.3 Structure of the paper

The paper is organised as follows. In Section 2 we motivate and state the main results regarding
positivity of solutions to the bilevel learning problem. Some useful properties of the lower level
problem are covered in Section 3, and we prove the main results in Section 4. Finally, numerous
numerical experiments are performed in Section 5 to validate the derived theory.

2 Main result

The choice of regularizer is problem specific, as what constitutes as a suitable reconstruction
varies between applications. In general, R should attain a large evaluation for an x that exhibits
undesirable properties. For the denoising application, we are trying to improve upon the noisy
measurement y and in particular R should deem y less desirable than the ground truth x⋆. Thus,
it is natural to assume that

R(x⋆) < R(y). (5)

4
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Table 1: Examples of Bregman distances for different regularizers, see [10] for details. Here sgn denotes the
sign function.

Regularizer R Bregman distance DR(x, z) Regularization name
1
2∥x∥2 1

2∥x − z∥2 Tikhonov
1
2∥Kx∥2 1

2∥K(x − z))∥2 Generalised Tikhonov
∥x∥1 ∑n

i=1(sgn(xi)− sgn(zi))xi Lasso

Indeed, condition (5) has been considered in recent works [19, 20] to deduce positivity of solutions
to the bilevel learning problem.

While we do not demand it here, typically the regularizer involves a norm and in particular
is an even function. Consequently, for a fixed x⋆, condition (5) is inherently circular around the
origin and as such may underestimate the region of y for which solutions to (3) are strictly positive.
While our condition will encompass applications with a very general forward operator, to give an
intuition of how it compares to (5), in the denoising setting our condition will read as requiring
the linearisation of R around y evaluated at x⋆ to be smaller than R(y) to conclude positivity of
α̂. To represent this linearisation, we will find it useful to work with Bregman distances, which are
defined as follows.

Definition 1 (Bregman distance). For a differentiable convex function ψ : Rn → R with gradient ∇ψ,
the Bregman distance is defined as

Dψ(x, x̃) := ψ(x)− ψ(x̃)− ⟨∇ψ(x̃), x − x̃⟩.

Bregman distances can be considered a generalisation of the squared Euclidean norm, and
have nice properties such as convexity in the first argument and non-negativity [10]. We remark
that while some definitions demand ψ be strictly convex [12], we do not require that here as
convexity provides all the properties we need for the scope of this paper. Table 1 gives examples
of Bregman distances for various functions. From the definition of the Bregman distance, it is clear
that, when viewed as a function of x, it represents the distance between ψ(x) and the linearisation
of ψ around x̃ evaluated at x. To this end, we introduce the following definition.

Definition 2 (Linearisation around a point). For a differentiable convex function ψ : Rn → R with
gradient ∇ψ, the linearisation of ψ around x̃ evaluated at x is denoted

Lψ(x, x̃) := ψ(x)− Dψ(x, x̃).

Rather than requiring (5), we merely require

LR((AT A)−1x⋆, x0) < LR((AT A)−1x0, x0) (6)

to deduce positivity of α̂. If we are in the denoising setting and condition (5) is satisfied, we im-
mediately get that (6) is also satisfied by the non-negativity of the Bregman distance and noticing
that LR(x, x) = R(x). Figure 1a illustrates the linearisation for a simple choice of regularizer.
Figure 1b compares, for a fixed x⋆, how the regions of x0 for which condition (5) and condition
(6) are satisfied differ.

We now provide a motivating example illustrating that condition (6) can completely charac-
terise positivity of optimal parameters.

5
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(a) (b)

Figure 1: The case n = 1, R(x) = 1
2∥x∥2, and A = c ≥ 1. Pane (a): Illustration of the linearisation of the

regularizer around x0. Pane (b): Regions of x0 for which (5) and (6) are satisfied, indicated by the dotted
and shaded regions on the horizontal axis respectively.

Example 1. Consider the denoising setting with Tikhonov regularization, R = 1
2∥·∥

2, and a single data
sample. In this setting the lower level solution is given analytically as xα = y/(1 + α). Further, assume
that ∥y∥ ̸= 0 and ⟨y, x⋆⟩ ̸= 0. Now, solutions will occur either at boundary points of [0, ∞], or in the
interior. Evaluation of the upper level at the left boundary point yields

J (0) =
1
2
∥y − x⋆∥2.

Notice that optimal solutions ᾱ in the interior will satisfy 0 = J ′(ᾱ), from which one can show that

ᾱ =
∥y∥2

⟨y, x⋆⟩ − 1. (7)

It follows from (7) that ᾱ is strictly positive if and only if

1
2
∥x⋆∥2 − 1

2
∥y − x⋆∥2 <

1
2
∥y∥2,

that is, condition (6) is satisfied. Moreover, one can show that the associated upper level cost is

J (ᾱ) =
1
2
∥x⋆∥2 − 1

2
⟨y, x⋆⟩2

∥y∥2 .

We claim that whenever condition (6) is satisfied, we also have that J (ᾱ) < J (0). Indeed, using that in
this problem setting (6) is equivalent to ᾱ > 0, it follows that

0 <
1
2

(
⟨y, x⋆⟩
∥y∥ − ∥y∥

)2

⇐⇒ 1
2
∥x⋆∥2 − 1

2
⟨y, x⋆⟩2

∥y∥2 <
1
2
∥y − x⋆∥2

and so the claim is true. To summarise, for Tikhonov denoising, condition (6) is satisfied if and only if the
solution to the bilevel learning problem is strictly positive.
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We now state the precise assumptions that we make on the choice of regularizer.

Assumption 1. We assume the regularizer R : Rn → [0, ∞) is convex and differentiable with continuous
gradient ∇R.

Remark 1. We assume the regularizer is non-negative and claim this can be done without loss of generality
provided R is bounded below. Indeed, should R take negative values then, since R is assumed bounded
below by, say, C < 0, one can instead consider a new regularizer R̃ := R− C, which is non-negative by
construction and otherwise inherits the properties of R. In particular, the solution to the associated lower
level problem is unchanged.

We have two main results regarding positivity of α̂. The first regards a pointwise condition
while the second considers an expectation but requires additional assumptions.

Theorem 1 (Positivity of the pointwise bilevel learning problem solution). Fix x⋆ ∈ Rn and y ∈ Rm.
Let A be injective and R satisfy Assumption 1 and be such that

LR((AT A)−1x⋆, x0) < LR((AT A)−1x0, x0).

Then solutions α̂ to the bilevel learning problem (3) are strictly positive.

Remark 2. For the specific case of A = I and R(x) = 1
2∥Kx∥2 where K ∈ Rp×n, Theorem 1 is proven in

Proposition 3.1 of [38] where an equivalent condition is assumed. Said choice of regularizer admits a closed
form solution to the lower level problem, which can be inserted into the upper level and further analysed.
The result of Theorem 1 covers a wide class of regularizers, and we only demand uniqueness of solutions to
the lower level problem, rather than an analytic form.

Theorem 2 (Positivity of the bilevel learning problem solution). Let A be injective and R satisfy
Assumption 1 and be such that

E
[
LR((AT A)−1x⋆, x0)

]
< E

[
LR((AT A)−1x0, x0)

]
,

E
[
R((AT A)−1x⋆)

]
< ∞,

and for any α > 0
∇R((AT A)−1xα) = ∇R(xα).

Then solutions α̂ to the bilevel learning problem (3) are strictly positive.

Remark 3. The assumption that for any α > 0, ∇R((AT A)−1xα) = ∇R(xα) is most restrictive to the
A that are applicable to Theorem 2. While this condition is not required in Theorem 1, we note that it is
clearly satisfied should A = I.

We prove both results in Section 4. Before this, we first cover in Section 3 some fundamental
results and properties of the lower level problem.

3 Preliminaries

We start by stating relevant definitions and properties of the lower level cost function. In particular,
we require properties that are sufficient for existence and uniqueness of solutions to the lower level
problem, as well as continuity of reconstructions with respect to the regularization parameter. The
following definitions are taken from [7] and [13].

7
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Definition 3 (Minimiser). We say that x̂ is a global minimiser of ψ : Rn → R if ψ(x̂) ≤ ψ(x) for all
x ∈ Rn.

Definition 4 (Bounded below). A function ψ : Rn → R is bounded below if there exists C ≥ 0 such that

ψ(x) ≥ −C for all x ∈ Rn.

Definition 5 (Coercive). A function ψ : Rn → R is coercive if

ψ(x) → ∞ as ∥x∥ → ∞.

Definition 6 (Convex function). A function ψ : Rn → R is said to be convex if for all x, z ∈ Rn,

Dψ(x, z) ≥ 0. (8)

Moreover, ψ is said to be strictly convex if for x ̸= z, inequality (8) is strict.

Remark 4. The classical definition of (strict) convexity [41] is different to the one we use, however it can
be easily recovered by the definition of the Bregman distance (e.g. see Propoisition 3.10 in [41]).

We can now state a classical result regarding existence and uniqueness of minimisers to the
lower level problem.

Lemma 1. Let ψ : Rn → R be bounded below, coercive, continuous, and strictly convex. Then ψ has a
unique global minimiser.

Proof. Existence follows by the direct method in the calculus of variations [18]. Uniqueness follows
by strict convexity.

In particular, by the assumptions on A and R, the lower level problem (3b) admits a unique
minimizer, justifying our choice of notation.

Proposition 1 (Properties of the lower level cost function). Fix α ≥ 0. Let A be injective and R satisfy
Assumption 1. Then the lower level cost function

Φα(x) =
1
2
∥Ax − y∥2 + αR(x)

is bounded below, coercive, continuous, and strictly convex. Moreover, it admits a unique global minimizer.

Proof. The properties of Φα follow from standard results in convex analysis. Existence and unique-
ness of a minimizer then follows from Lemma 1.

We require continuity of the reconstruction map α 7→ xα at α = 0. This is proven in [20], which
we include here for completeness.

Lemma 2 (Convergence of reconstructions at the boundary (Lemma 8 in [20])). Suppose {αk} ⊂
(0, ∞) satisfies limk→∞ αk = 0. Then limk→∞ xαk = x0.

Proof. Pick arbitrary δ > 0. By the choice of datafit F (x) = 1
2∥Ax − y∥2, and injectivity of A, x0 is

the unique minimiser of F . By the minimality of xαk = arg minx Φαk (x) and non-negativity of R,
we have

F (xαk ) ≤ Φαk (xαk ) = F (xαk ) + αkR(xαk )

≤ F (x0) + αkR(x0).

8
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Since R(x0) is fixed and αk → 0, we may choose k large enough such that

F (xαk ) ≤ F (x0) + δ.

Letting δ → 0+, we see that limk→∞ F (xαk ) ≤ F (x0). By the minimality of x0, necessarily
limk→∞ F (xαk ) = F (x0). By continuity of the datafit and uniqueness of its minimiser, it follows
that limk→∞ xαk = x0 and we are done.

4 Proof of main result

We aim to show that, under very natural conditions, α = 0 is not a minimum of the upper level
cost function J . There are two main problems towards this: firstly, the reconstruction map α 7→ xα

is in general non-differentiable [35] and consequently, without stronger assumptions on the choice
of regularizer R [44], the upper level cost function J is non-differentiable; secondly, the value we
are interested in is on the domain boundary of J . To this end, we work with a generalisation of
the derivative known as Dini derivatives [3, 27, 36]. More precisely, we consider the upper right
Dini derivative.

Definition 7 (Upper right Dini derivative). Let J be any real valued function defined on [0, ∞] and let
α̃ ∈ [0, ∞). We define the upper right Dini derivative of J evaluated at α̃ as

J ′
+(α̃) := lim sup

α→α̃+

J (α)−J (α̃)

α − α̃
,

where α → α̃+ denotes the right-hand limit.

We remark that the we allow infinite limits in the above definition and so the upper right
Dini derivative is always well defined. Dini derivatives follow some standard calculus rules and
generalisations of the mean value theorem and Rolle’s theorem can be stated [3, 27, 36].

Definition 8 (Local minimum). Let J be any real valued function on [0, ∞]. We say that α⋆ ∈ [0, ∞) is
a local minimum of J if there exists δ ∈ (0, ∞] such that

J (α⋆) ≤ J (α) for all α ∈ Bδ(α
⋆) ∩ [0, ∞],

where Bδ(α
⋆) := {α ∈ R : ∥α − α⋆∥ ≤ δ}.

We now use Dini derivatives to determine behaviour of J at the domain boundary.

Lemma 3. Let J : [0, ∞] → [0, ∞) be any function. If the upper right Dini derivative at 0 satisfies
J ′
+(0) < 0, then 0 is not a local minimum of J .

Proof. Assume J ′
+(0) < 0. We then have existence of δ > 0 such that

J (α)−J (0)
α

< 0

for all α ∈ (0, δ). It immediately follows that J (α) < J (0) in (0, δ) and so J is locally strictly
decreasing at the domain boundary. In particular, 0 is not a local minimum of J .

9



On Optimal Regularization Parameters via Bilevel Learning

Remark 5. The condition in Lemma 3 is sufficient but not necessary for the solution of the bilevel learning
problem (3) to be strictly positive. Indeed, we will see in Section 5 that the upper level cost function J (α)
is non-convex and in particular 0 may actually be a local minimum, and yet the global minimum of (3a) is
achieved at a strictly positive parameter value (possibly infinity).

The proof of the main results involves find an upper bound of J (α)−J (0) of the form αh(α)
and showing that lim supα→0+ h(α) < 0. We now justify that such a manipulation will also show
that J ′

+(0) < 0.

Proposition 2. Let f , g : [0, ∞] → R be functions such that f (α) ≤ g(α) for all α ∈ [0, ∞]. Then

lim sup
α→0+

f (α)
α

≤ lim sup
α→0+

g(α)
α

.

Proof. Let {αn} ⊂ (0, ∞) be a sequence such that limn→∞ αn = 0. We need to show that

lim sup
n→∞

f (αn)

αn
≤ lim sup

n→∞

g(αn)

αn

or more precisely limn→∞ un ≤ limn→∞ vn where

un := sup
{

f (αn)

αn
,

f (αn+1)

αn+1
, · · ·

}
, vn := sup

{
g(αn)

αn
,

g(αn+1)

αn+1
, · · ·

}
.

Indeed, since each αk > 0 we have that f (αk)/αk ≤ g(αk)/αk and so for all n, un ≤ vn. It follows
that limn→∞ un ≤ limn→∞ vn and we are done.

We aim to show that the upper right Dini derivative of J at 0 can be expressed in terms of
the linearisation of the regularizer, LR. We now state some useful results that will go towards
showing this.

Proposition 3. Let A be injective and R satisfy Assumption 1. Then

(i) α∇R(xα) = AT Ax0 − AT Axα

(ii) For any x, x̃ ∈ Rn, LR(x, x̃) = R(x̃) + ⟨∇R(x̃), x − x̃⟩

(iii) For any x ∈ Rn, LR(x, x) = R(x)

(iv) If u, v : [0, ∞] → Rn are such that limα→0+ u(α) = u(0) and limα→0+ v(α) = v(0), then

lim
α→0+

LR(u(α), v(α)) = LR(u(0), v(0)).

Proof. For (i), by the choice of the data fidelity and differentiability of R, we have that

0 = ∇Φα(xα) = AT Axα − ATy + α∇R(xα). (9)

Since A is injective, x0 is the unique least squares solution and in particular satisfies the normal
equations

AT Ax0 − ATy = 0. (10)

Combining (9) and (10) yields (i). (ii) is immediate by the definition of both LR and the Bregman
distance DR. (iii) follows from (ii). By the continuity of both R and ∇R and assumption on u and
v, (iv) also follows from (ii).

10
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While the result of Theorem 2 involves the expectation, we will find it useful to work with the
quantity that we are taking the expectation of, and to this end define

J̃ (α) :=
1
2
∥xα − x⋆∥2.

We now state the form of J̃ (α)− J̃ (0) that will be utilised in the main proofs.

Proposition 4. Let A be injective R satisfy Assumption 1. Then

J̃ (α)− J̃ (0) = α
(
LR((AT A)−1x⋆, xα)−LR((AT A)−1xα, xα)

)
− 1

2

∥∥∥x0 − xα
∥∥∥2

. (11)

Proof. By the definition of J̃ we have

J̃ (α) =
1
2
∥xα − x⋆∥2 =

1
2
∥xα∥2 − ⟨xα, x⋆⟩+ 1

2
∥x⋆∥2

and in particular

J̃ (α)− J̃ (0) =
1
2
∥xα − x⋆∥2 − 1

2

∥∥∥x0 − x⋆
∥∥∥2

=
1
2
∥xα∥2 − 1

2

∥∥∥x0
∥∥∥2

+ ⟨x0 − xα, x⋆⟩

=
1
2
∥xα∥2 − 1

2

∥∥∥x0
∥∥∥2

+ ⟨x0 − xα, x⋆ − xα⟩+ ⟨x0, xα⟩ − ⟨xα, xα⟩

= ⟨x0 − xα, x⋆ − xα⟩ − 1
2

∥∥∥x0
∥∥∥2

+ ⟨x0, xα⟩ − 1
2
∥xα∥2

= ⟨x0 − xα, x⋆ − xα⟩ − 1
2

∥∥∥x0 − xα
∥∥∥2

.

It remains to show that

⟨x0 − xα, x⋆ − xα⟩ = α
(
LR((AT A)−1x⋆, xα)−LR((AT A)−1xα, xα)

)
. (12)

In order to phrase the inner product in (12) in terms of LR, we must first introduce Bregman
distances and consequently gradients of R. Recall that by Proposition 3 (i), α∇R(xα) involves
AT A, which we can freely introduce since it is invertible by the injectivity of A. Indeed,

⟨x0 − xα, x⋆ − xα⟩ = ⟨(AT A)−1(AT A)(x0 − xα), x⋆ − xα⟩

by the symmetry of AT A

= ⟨AT A(x0 − xα), (AT A)−1(x⋆ − xα)⟩
= ⟨AT A(x0 − xα), (AT A)−1x⋆ − xα − (AT A)−1xα + xα⟩
= ⟨AT A(x0 − xα), (AT A)−1x⋆ − xα⟩ − ⟨AT A(x0 − xα), (AT A)−1xα − xα⟩

by Proposition 3 (i)

= α
(
⟨∇R(xα), (AT A)−1x⋆ − xα⟩ − ⟨∇R(xα), (AT A)−1xα − xα⟩

)

11
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by Proposition 3 (ii)

= α
(
LR((AT A)−1x⋆, xα)−R(xα)−LR((AT A)−1xα, xα) +R(xα)

)
= α

(
LR((AT A)−1x⋆, xα)−LR((AT A)−1xα, xα)

)
and we are done.

In calculating the upper right Dini derivative of J at 0, we see from Proposition 4 that the
quantity

lim inf
α→0+

1
α

∥∥∥x0 − xα
∥∥∥2

(13)

will be encountered. We now show that (13) vanishes.

Proposition 5. Let A be injective and R satisfy Assumption 1. Then

lim
α→0+

1
α

∥∥∥x0 − xα
∥∥∥2

= 0.

Proof. By the non-negativity of
∥∥x0 − xα

∥∥2/α, we immediately have

0 ≤ lim inf
α→0+

1
α

∥∥∥x0 − xα
∥∥∥2

≤ lim sup
α→0+

1
α

∥∥∥x0 − xα
∥∥∥2

and so the result will follow if we can show that

lim sup
α→0+

1
α

∥∥∥x0 − xα
∥∥∥2

≤ 0. (14)

Since A is injective, we immediately have that∥∥∥x0 − xα
∥∥∥2

≤ 1
σ2

min

∥∥∥A(x0 − xα)
∥∥∥2

,

where σmin > 0 is the smallest singular value of A. Thus, with Proposition 2 in mind, it suffices to
show that

lim sup
α→0+

1
α

∥∥∥A(x0 − xα)
∥∥∥2

≤ 0. (15)

Indeed, by Proposition 3 (i) and convexity of R,

α(R(x)−R(xα)) ≥ ⟨AT Ax0 − AT Axα, x − xα⟩
= ⟨AT Ax0 − AT Ax + AT Ax − AT Axα, x − xα⟩
= ⟨AT Ax0 − AT Ax, x − xα⟩+ ∥A(x − xα)∥2.

It follows that
α(R(x0)−R(xα)) ≥

∥∥∥A(x0 − xα)
∥∥∥2

.

By Proposition 2

lim sup
α→0+

1
α

∥∥∥A(x0 − xα)
∥∥∥2

≤ lim sup
α→0+

(
R(x0)−R(xα)

)
= 0,

where the equality follows by the convexity (and hence continuity) of R and Lemma 2. In partic-
ular we have shown (15) and by Proposition 2 we have (14) and we are done.
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Remark 6. In the proof of Proposition 5 we implicitly assume that R(x0) < ∞ to deduce the final equality.
Indeed, the indeterminate form ∞ − ∞ would otherwise be encountered. Regarding extending the result of
this work to a more general class of regularizers, such as indicator functions, either this property must be
assumed or an alternative strategy found.

We now prove that under the pointwise condition, the upper right Dini derivative of J̃ at 0 is
strictly negative; this is a crucial result for the proof of both Theorem 1 and Theorem 2.

Lemma 4. Fix x⋆ ∈ Rn and y ∈ Rm. Let A be injective and R satisfy Assumption 1 and be such that

LR((AT A)−1x⋆, x0) < LR((AT A)−1x0, x0).

Then J̃ ′
+(0) < 0.

Proof. By Proposition 4,

J̃ ′
+(0) = lim sup

α→0+

J̃ (α)− J̃ (0)
α

= lim sup
α→0+

(
LR((AT A)−1x⋆, xα)−LR((AT A)−1xα, xα)− 1

2α

∥∥∥x0 − xα
∥∥∥2

)
. (16)

The last term in (16) will vanish in the limit by Proposition 5. With the choice of u(α) = (AT A)−1x⋆

and v(α) = (AT A)−1xα, it follows from Lemma 2 and Proposition 3 (iv) that

J̃ ′
+(0) = LR((AT A)−1x⋆, x0)−LR((AT A)−1x0, x0),

which is strictly negative by assumption.

We are now ready prove the first main result.

Theorem 1 (Positivity of the pointwise bilevel learning problem solution). Fix x⋆ ∈ Rn and y ∈ Rm.
Let A be injective and R satisfy Assumption 1 and be such that

LR((AT A)−1x⋆, x0) < LR((AT A)−1x0, x0).

Then solutions α̂ to the bilevel learning problem (3) are strictly positive.

Proof. Since x⋆ and y are fixed, we have that J = J̃ . By Lemma 4, J ′
+(0) < 0. It follows from

Lemma 3 that 0 is not a local minimiser of J and in particular cannot be a global minimiser. Thus
the global minimum is achieved at some α̂ ∈ (0, ∞], that is, α̂ is strictly positive.

We now prove an analogous result of Lemma 4 for when we are taking expectations.

Lemma 5. Let A be injective and R satisfy Assumption 1 and be such that

E
[
LR((AT A)−1x⋆, x0)

]
< E

[
LR((AT A)−1x0, x0)

]
, (17)

E
[
R((AT A)−1x⋆)

]
< ∞, (18)

and for any α > 0
∇R((AT A)−1xα) = ∇R(xα). (19)

Then J ′
+(0) < 0.
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Proof. The main challenge is to justify swapping the expectation and lim sup in

J ′
+(0) = lim sup

α→0+
E

[
J̃ (α)− J̃ (0)

α

]
.

This can be justified (up to inequality) by the Reverse Fatou Lemma (see Corollary 5.3.2 in [42]).
We now show that the conditions of the Reverse Fatou Lemma are satisfied, which in this setting
requires showing that (J̃ (α)− J̃ (0))/α ≤ Z for some random variable Z independent of α and
with finite expectation.

By Proposition 4 we have

J̃ (α)− J̃ (0) = α
(
LR((AT A)−1x⋆, xα)−LR((AT A)−1xα, xα)

)
− 1

2

∥∥∥x0 − xα
∥∥∥2

≤ α
(
LR((AT A)−1x⋆, xα)−LR((AT A)−1xα, xα)

)
by the definition of LR

= α
(
R((AT A)−1x⋆)− DR((AT A)−1x⋆, xα)−R((AT A)−1xα) + DR((AT A)−1xα, xα)

)
.

Since R, and DR are non-negative it follows that

J̃ (α)− J̃ (0)
α

≤ R((AT A)−1x⋆) + DR((AT A)−1xα, xα).

By the definition of the Bregman distance (see also Proposition 2.4 in [10]), assumption (19) is
equivalent to DR((AT A)−1xα, xα) vanishing. Thus we have found an upper bound of (J̃ (α) −
J̃ (0))/α independent of α which by assumption (18) has finite expectation. It follows from the
Reverse Fatou Lemma that

J ′
+(0) ≤ E

[
lim sup

α→0+

J̃ (α)− J̃ (0)
α

]
= E

[
J̃ ′
+(0)

]
. (20)

By assumption (17) and Lemma 4, (20) is strictly negative and we are done.

Theorem 2 (Positivity of the bilevel learning problem solution). Let A be injective and R satisfy
Assumption 1 and be such that

E
[
LR((AT A)−1x⋆, x0)

]
< E

[
LR((AT A)−1x0, x0)

]
, (21)

E
[
R((AT A)−1x⋆)

]
< ∞

and
∇R((AT A)−1xα) = ∇R(xα)

for all α > 0. Then solutions α̂ to the bilevel learning problem (3) are strictly positive.

Proof. By the assumptions we have from Lemma 5 that J ′
+(0) < 0. It follows from Lemma 3 that

0 is not a local minimiser of J and in particular cannot be a global minimiser. Thus the global
minimum is achieved at some α̂ ∈ (0, ∞], that is, α̂ is strictly positive.
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We now show that in the denoising setting where the measurement has been corrupted by
additive noise of mean zero, if the regularizer is strictly convex then we are guaranteed α̂ > 0.

Corollary 1. If A = I, x⋆ is fixed and y = x⋆ + ϵ where Eϵ[ϵ] = 0, then condition (21) reads

0 < Eϵ [DR(y, x⋆) + DR(x⋆, y)] , (22)

which we recognise to be the symmetric Bregman distance (e.g. see [11]). Moreover, if R is strictly convex,
then α̂ > 0.

Proof. By definition of the Bregman distance, condition (21) is also given by

0 < Eϵ [⟨∇R(y), y − x⋆⟩]
= Eϵ [⟨∇R(y)−∇R(x⋆) +∇R(x⋆), y − x⋆⟩]
= Eϵ [⟨∇R(y)−∇R(x⋆), y − x⋆⟩+ ⟨∇R(x⋆), y − x⋆⟩] . (23)

In the denoising setting we have that y − x⋆ = ϵ. Since x⋆ is fixed and Eϵ[ϵ] = 0, it follows that
(23) is given by

Eϵ [⟨∇R(y)−∇R(x⋆), y − x⋆⟩] + ⟨∇R(x⋆), Eϵ[ϵ]⟩ = Eϵ [⟨∇R(y)−∇R(x⋆), y − x⋆⟩] .

By definition of the Bregman distance, we have

Eϵ [⟨∇R(y)−∇R(x⋆), y − x⋆⟩] = E [DR(y, x⋆) + DR(x⋆, y)]

and we have shown (22). Since ϵ is a continuous random variable we have that x⋆ ̸= y almost
surely. From the definition of strict convexity it immediately follows that DR(y, x⋆) > 0 and so
condition (22) is always satisfied. Since A = I and x⋆ is fixed, the other conditions of Theorem 2
are always satisfied and so α̂ > 0 by Theorem 2.

4.1 Extension to a forward operator in the upper level

The bilevel learning problem (3) and thus results of Theorem 1 and Theorem 2 are specific to
the MSE upper level cost. We now prove an analogous result for an alternative upper level cost
function, namely, the predictive risk,

J (α) = E

[
1
2
∥Ax⋆ − Axα∥2

]
,

where we will require that A is invertible.
For the predictive risk upper level cost, the associated bilevel learning problem is

α̂ ∈ arg min
α∈[0,∞]

E

[
1
2
∥Axα − Ax⋆∥2

]
, (24a)

subject to xα = arg min
x∈Rn

{
1
2
∥Ax − y∥2 + αR(x)

}
. (24b)

Using Theorem 2 and the invertability of A, positivity of the solution α̂ of the bilevel learning
problem (24) can be established.
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Theorem 3. Let A be invertible and R satisfy Assumption 1 and be such that

E
[
LR(x⋆, x0)

]
< E

[
R(x0)

]
, (25)

and
E [R(x⋆)] < ∞. (26)

Then solutions α̂ to the bilevel learning problem (24) are strictly positive.

Proof. Using the invertability of A, we intend to rephrase the bilevel learning problem (24) as a
denoising problem and apply Theorem 2.

We first remark that x0 = A−1y. Since A is assumed invertible, the solution xα to (24b) satisfies
Axα = zα, where

zα = arg min
z∈Rn

{
1
2
∥z − y∥2 + αR(A−1z)

}
. (27)

By the invertability of A and assumption on R it follows that R̃ := R ◦ A−1 also satisfies As-
sumption 1. Furthermore, notice that

LR(x⋆, x0) = LR̃(Ax⋆, Ax0) =: LR̃(z
⋆, y)

where we have defined z⋆ := Ax⋆.
Thus, assumption (25) reads

E [LR̃(z
⋆, y)] < E

[
R̃(y)

]
. (28)

and also assumption (26) reads
E
[
R̃(z⋆)

]
< ∞. (29)

Using the new notation, the upper level problem (24a) reads

α̂ = arg min
α∈[0,∞]

E

[
1
2
∥zα − z⋆∥2

]
. (30)

In particular, we have phrased the bilevel learning problem (24) as a denoising bilevel problem
(30) and (27) with regularizer R̃. By the properties of R̃ and inequalities (28) and (29), it follows
from Theorem 2 that α̂ is strictly positive.

5 Numerical Experiments

We now explore the presented theory with some numerical examples. Although in practice the
problem is high-dimensional, for a geometric and visual interpretation of the theory, we consider
in Section 5.1 the small dimensional case of n = 2 . Relevant large scale problems are provided in
Section 5.2.

5.1 Low dimensional problems

We explore how well the results of Theorem 1 and Theorem 2 characterise positivity. In the
following, we consider the area Ω := [−1.6, 1.6] × [−1.6, 1.6] ⊂ R2, discretised into a 100 × 100
grid. Since our results involve x0 and x⋆, we interpret Ω as the reconstruction space, rather than
the measurement space.
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Table 2: Key for the boundary colours used in numerical examples. The shorthand labels used in the
following legends are also indicated.

Associated result Condition satisfied outside the boundary Colour Label

[19, 20] R(x⋆) < R(y) Red Old
Theorem 1 LR((AT A)−1x⋆, x0) < LR((AT A)−1x0, x0) Blue New

– Numerical solution to (3) satisfying α̂ > 0 Black Numerical

We fix the ground truth x⋆ = [1, 0.5]T , which will be indicated by a yellow star in the upcoming
plots. Considering each point in the grid Ω as a candidate x0, we compute the boundary for when
the condition of Theorem 1 becomes satisfied. If we are in the case A = I, we may also compute the
boundary for when (5) becomes satisfied. Since the lower level problem requires a measurement
y, in order to have a well defined mapping between the x0 and y, we restrict ourselves to invertible
A in this section. We can then numerically compute the solution to the bilevel learning problem
with data (x⋆, Ax0) by considering parameters

[α1 = 0, α2 = 10−12, · · · , α99 = 103, α100 = 107],

where [log10(α2), · · · , log10(α99)] is a linear discretisation of 98 points between -12 and 3, and se-
lect the parameter that achieves the smallest upper level cost. With this, we compute the boundary
for which the numerical bilevel solution becomes strictly positive. A summary of the boundaries
and their represented colours and legend names is provided in Table 2.

We consider two forward operators corresponding to denoising and deconvolution. Namely,

A1 =

[
1 0
0 1

]
, A2 =

[
0.7274 0.2726
0.2726 0.7274

]
,

where A2 represents a Gaussian blur with standard deviation 0.8.
For each forward operator, we consider four different regularizers and see how the bound-

aries, detailed in the above and summarised in Table 2, change. In particular, we consider both
generalised Tikhonov and generalised Huber norm, given by

R(x) =
1
2
∥Kx∥2 and R(x) =

p

∑
i=1

hubγ([Kx]i)

respectively, where K ∈ Rp×n, not necessarily full rank, and

hubγ(s) =
{ |s| − γ

2 if |s| ≥ γ
1

2γ (s)
2 if |s| < γ.

Regarding the choice of K, we will consider both K = I ∈ R2×2, which will yield standard
Tikhonov and Huber norm respectively, and also K = [1 − 1] ∈ R1×2 which can be interpreted as
the discretisation of the first order finite difference operator for n = 2 [32]. For this latter choice
of K, we refer to the regularizer as ℓ2

2-grad and an n = 2 analogue of Huber TV respectively.
We and interested in how well Theorem 1 characterises positivity of the solution to the bilevel

learning problem (3). Using the approach outlined above, we can determine the area of the region
where the numerical solution to (3) is 0, and also the area where the condition of Theorem 1 is
violated. Should Theorem 1 perfectly characterise positivity, we would expect both these areas

17



On Optimal Regularization Parameters via Bilevel Learning

to be the same. We compute the ratio between these areas for the different A and R mentioned
above, and display the results in Table 3. In the denoising setting, we also compute the area where
condition (5) is violated, to see how the new condition compares. In Figure 2a we see that, for
Tikhonov denoising, Theorem 1 perfectly characterises positivity, as we would expect following
Example 1. From Table 3, Theorem 1 characterises the positivity of (3) well for the considered
problems, with many area ratios being around 1. Furthermore, we see in Figure 2 and Figure 3
that some instances where the ratio is close to but not exactly 1 is down to numerical error. For
the denoising setting, we see in Figure 2 that condition (5) overestimates the region where α̂ = 0
by a factor of 2 to 4. Compared to condition (5), Theorem 1 yields a better characterisation of
positivity, particularly for points far away from x⋆ - as demonstrated in Figure 2a and Figure 2c.

Table 3: Ratio between the area where 0 is the optimal parameter and area in the reconstruction space
where the (old or new) theory condition is violated. Values close to 1 mean the condition is close to fully
characterising positivity of (3). Since condition (5) is only valid for A = I, we cannot compare for theA ̸= I
case. As we only consider points in Ω, if the area where a condition is violated extends beyond Ω, we indicate
the case with an asterisk beside the provided number. All numbers are given to 3 decimal points.

Problem Condition
violated

Regularizer

Tikhonov ℓ2
2-grad Huber Huber TV

Denoising New 1 1.069* 1.171 1.129*
Denoising Old 3.979 2.071* 4.214 2.182*

Deconvolution New 1.028 1.020* 1.143 1.015*
Deconvolution Old — — — —

We now demonstrate the result of Theorem 3, where the upper level cost is the predictive risk
and A is invertible. In particular, we consider the same setup as above with forward operator
A2 and Tikhonov regularization. We plot the region for which α̂ = 0 and boundary for when
the condition of Theorem 3 holds in Figure 4. Since the upper level cost is different to the one
considered in the above numerics, the contour plot of the upper level cost looks very different.
We see that the condition of Theorem 3 characterises the positivity of α̂ well in this setting.

We now demonstrate the result of Corollary 1, where we are guaranteed positivity of α̂ pro-
vided that A = I, R is strictly convex, and the noise has zero mean. We fix ground truth
x⋆ = [1, 0]T and generate 1000 noisy realisations by perturbing x⋆ with Gaussian noise of mean
[0, 0]T , standard deviation [0.1, 0.1]T . A plot of the ground truth and noisy realisations is shown in
Figure 5a. To ensure the regularizer is strictly convex and differentiable, we consider

R(x) =
β

2
∥x∥2 +

n

∑
i=1

hubγ(xi),

for β = γ = 0.01. For regularization parameters in the linear discretisation of the interval [0, 0.1]
into 50 points, we plot the associated upper level cost in Figure 5b. We see that the optimal
parameter is achieved at a strictly positive value. We now show that if the assumption on the noise
is violated, we are not guaranteed positivity. For the same x⋆ we generate 1000 noisy realisations
by perturbing x⋆ with Gaussian noise of mean [−0.1, 0]T and standard deviation [0.1, 0.1]T . A plot
of the ground truth and noisy realisations is shown in Figure 5c, and the associated upper level
cost in Figure 5d. We see that 0 is the optimal parameter in this case.
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(a) Tikhonov regularization (b) ℓ2
2-grad regularization

(c) Huber regularization (d) Huber TV regularization

Figure 2: Plots of the reconstruction space Ω for the denoising (A1 forward operator) setting and various
choices of regularizer, with the condition boundaries as detailed in Table 2. The ground truth x⋆ = [1, 0.5]
is represented by a yellow star, and level sets of the upper level cost function are visible. The region where
α̂ = 0 is shaded yellow.

19



On Optimal Regularization Parameters via Bilevel Learning

(a) Tikhonov regularization (b) ℓ2
2-grad regularization

(c) Huber norm regularization (d) Huber TV regularization

Figure 3: Plots of the reconstruction space Ω for the deconvolution (A2 forward operator) setting and
various choices of regularizer, with the condition boundaries as detailed in Table 2. The ground truth
x⋆ = [1, 0.5]T is represented by a yellow star, and level sets of the upper level cost function are visible. The
region where α̂ = 0 is shaded yellow.
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Figure 4: Plots of the reconstruction space Ω for the deconvolution (A2 forward operator) setting, Tikhonov
regularization, and predictive risk upper level cost. The ground truth x⋆ = [1, 0.5]T is represented by a
yellow star, and level sets of the upper level cost function are visible. The region where α̂ = 0 is shaded
yellow.

(a) (b)

(c) (d)

Figure 5: Pane 5a: ground truth x⋆ = [1, 0]T indicated by a yellow star, and 1000 noisy realisations indi-
cated by red dots where the corruption was additive Gaussian noise of mean [−0.1, 0]T standard deviation
[0.1, 0.1]T . Pane 5b: MSE upper level cost corresponding to the data in Pane 5a. The optimal regularization
parameter is indicated by an orange star. Pane 5c: Similar plot as Pane 5a, but the noise has mean [−0.1, 0]T

instead. Pane 5d: MSE upper level cost corresponding to the data in Pane 5c. The optimal regularization
parameter is indicated by an orange star.
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(a) Ground truth x⋆ (b) Corrupted measurement y

(c) MSE upper level cost (d) Predictive risk upper level cost

Figure 6: Ground truth image, the 126 × 126 pixel image Shepp-Logan phantom, in Pane 6a, and the
observed blurry and and noisy measurement in Pane 6b. Plot of the MSE and predictive risk upper level
cost in Pane 6c and Pane 6d respectively. The optimal regularization parameter is indicated by an orange
star.

5.2 Large scale problems

We now consider the well known Shepp-Logan phantom of size the 128 × 128 pixels, and dis-
played in Figure 6a. The observed measurement, displayed in Figure 6b, has been affected by a
Gaussian blur with standard deviation 0.05 and then corrupted by Gaussian noise of mean zero
and standard deviation 0.1∥Ax⋆∥.

We consider R(x) = 1
2∥∇x∥2, where ∇ calculates both the horizontal and vertical gradient

of x and returns the vectorised concatenation of both results. The conditions of both Theorem 1
and Theorem 3 hold in this problem setup are so we are guaranteed that optimal regularization
parameters are strictly positive. Indeed, plots of the MSE and predictive risk upper level cost
are displayed in Figure 6c and Figure 6d respectively, and we see that the optimal regularization
parameters lie away from 0 for both upper level cost functions.
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6 Conclusion

In this work we determined a new sufficient condition involving the linearisation of the regularizer
to deduce positivity of solutions to the bilevel learning problem (3), applicable to settings where
the forward operator is injective and regularizer differentiable. In particular, a pointwise condition
is presented, along with a result in expectation. While primarily focused on the MSE upper level
cost, an extension to the predictive risk cost function was made. Furthermore, we showed that
in a very realistic denoising setting our condition will always be satisfied and we are guaranteed
positivity of optimal regularization parameters.

We have shown both analytically and empirically that the presented results characterise posi-
tivity well, and are an improvement on the condition used in existing theory.
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