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Abstract This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-6

dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the7

Component Mode Synthesis (CMS) method with the Approximate Invariant Manifold Method (AIMM), and allows the8

obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed9

approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity10

comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical11

cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method,12

the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option.13
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1 Introduction16

The complexity of rotating machines makes their design and analysis a challenging subject. One of several complicating17

factors is the interaction between the rotor and its supporting structure. This interaction has been shown to affect18

the critical speeds of rotor systems [1,2], which need to be avoided for a safe operation of the machines. Additionally,19

foundation flexibility is very relevant to the design of fluid-film bearings, which are commonly used in many rotating20

machinery applications [3]. These types of bearings are known to have unstable regions, denoted as ”oil-whirl” and21

”oil-whip” [4,5], and the inclusion of the foundation flexibility is also known to affect the onset speed of this instability22

[6]. Aside from affecting the onset speed, the nonlinear dynamic behavior of the rotor when considering the foundation23

may be greatly affected during the oil-whip [7,8]. These works highlight the importance of including the flexibility of24

the foundation in rotor dynamic analyses.25

The foundation of large rotating machines, such as turbine-generator systems for example, are often very complex26

structures [9,10]. For this reason, a classical approach is to introduce the foundation in the receptance matrix of27

the rotor system, after the equations have been transformed into the frequency domain [11,12,13,14]. In this case,28

experimentally obtained parameters of the foundation, such as modal masses, damping and natural frequencies, can29

be used, making the dynamic analysis in the frequency domain very accurate. These parameters can be obtained from30

run-down analysis [15] or Operation Modal Analysis (OMA) [16]. This method, however, is not suited for nonlinear31

dynamic analysis in rotor-foundation systems, mainly because of the evaluation of the nonlinear forces. Thus, in32

these cases, the procedure is to model the foundation by means of the Finite Element Method (FEM), and study33

the complete rotor-foundation system [17,18,19], which demands considerable computational power, and a reduction34

method is often required.35

One well-known method used to reduce high-dimensional models obtained by means of the FEM is the Component36

Mode Synthesis (CMS), also known as substructuring [20,21]. The basis of the CMS is to divide the system into37

subcomponents or substructures. After this, a model reduction technique is applied in each subcomponent. The global38

system is obtained by assembling the substructures, leading to a reduced number of Degrees of Freedom (DOFs).39

Many different methods have been proposed to perform this subcomponent reduction and the subsequent assembly,40

such as the Craig-Bampton (CB) [22], MacNeal [23], and Rubin [24] methods. Substructuring is still an active field of41

research, and more information on the many different approaches can be consulted in the book by Allen et al. [21],42

and the reviews by Craig [20], Seshu [25] and de Klerk et al. [26].43
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Another approach to obtain reduced models is using the so-called Nonlinear Normal Modes (NNMs), also known44

as Invariant Manifold Method (IMM) [27,28]. The idea of the IMM is to extend the invariance property of eigenspaces45

of linear systems in the nonlinear range. This property states that any motion that starts on the eigenspace, remains46

on it as time tends to infinity. When nonlinearities are considered, however, the linear eigenspaces tend to be no longer47

invariant. The idea put forward by Shaw and Pierre [27] relies on constructing curved surfaces, or manifolds, that are48

tangent to the linear eigenspace and allows one to regain the invariance property for nonlinear systems. These are the49

Invariant Manifolds (IMs), which Shaw and Pierre also labeled as the NNMs of the system. However, the IMs obtained50

by the IMM are in general not unique, as discussed by Haller and Ponsioen [29]. The literature on IMs and NNMs is51

vast, and one may find more information in the reviews by Touzé et al. [30], Renson et al. [31], Mazzilli et al. [32],52

Avramov et al.[33], and Albu-Schäffer and Santina [34].53

There are several ways to construct IMs for nonlinear systems. A common approach is to enforce a functional54

relation between a set of coordinates, labeled as master coordinates, of the system to another set, the slave coordinates.55

This functional relation, when substituted in the equations of motion, leads to nonlinear Partial Differential Equations56

(PDEs), which solutions give the IMs. Some other ways to obtain the IMs are through shooting methods, harmonic57

balance, or numerical continuation (see [31] for a review on the computation of IMs). Several methods have been58

developed to solve these PDEs. Taylor expansions are the most common way [35,36,37]. In this case, the relationships59

between the master and slave coordinates are expanded into polynomial series, and the coefficients of the polynomials60

are obtained from the PDEs. Here, one can also make use of the parameterization method [38], which is a powerful61

technique to obtain IMs. The three main parameterization styles are the graph style, the normal form style, and62

the mixed style. In the first case, one has the already mentioned functional relationship between master and slave63

coordinates. In the normal form style, one has an additional nonlinear transformation in the equations of motion of64

the master modes, which is done in order to simplify them by removing resonant monomials and non-essential terms.65

This makes the method applicable to cases in which the IMs fold [39]. The mixed style is simply a combination of66

the two previously mentioned styles (one is referred to Touzé et al. [30], for more details). Alternatively, one may use67

numerical methods to solve for the IMs, such as the Galerkin method [40,41,42], FEM [43], or the Finite Difference68

Method (FDM) [44]. Since the manifolds obtained from such numerical procedures are an approximation of the true69

IM of the system, one might label this approach as Approximate Invariant Manifold Method (AIMM).70
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This paper introduces a model reduction procedure applied to high-dimensional rotor-foundation systems. The71

method combines the use of CMS and the AIMM to obtain fast and accurate solutions when considering nonlinear72

bearing models. The CMS method used was the CB [22], which divides the rotor and foundation into the so-called73

superelements. The AIMM, based on [41], is then applied in the system reduced by the CMS, leading to a single pair74

of equations for the master coordinates. The main contribution of the work is the introduction of a method that allows75

nonlinear dynamic analysis to be performed in high-dimensional rotor-foundation systems.76

The remaining of this paper is divided as follows: Section 2 presents the model of the rotor-foundation adopted.77

The source of nonlinearities comes from the fluid-film bearings, which are introduced in Section 3. The first reduction78

by the CMS is given in Section 4, and the subsequent application of the AIMM in Section 5. After this, Section 679

presents the results and the paper is finished by some conclusions in Section 7.80

2 Rotor-foundation model81

The rotor-foundation system is modeled by means of the Finite Element Method (FEM). Figure 1 depicts the system82

considered, where x̄r and x̄f denote the nodal displacements and rotations of the discretized mesh of both rotor and83

foundation, respectively. The form of these nodal vectors depend on the type of finite element utilized. For example,84

for the 3D finite element, one has, x̄i = [ūix, ū
i
y, ū

i
z, ψ̄

i
x, ψ̄

i
y, ψ̄

i
z], where u and ψ denote the displacement and rotation,85

respectively; and i denote the ith node in the mesh. Throughout this work, the bars denotes that the displacements are86

not measured from the equilibrium position, which means that they denote the absolute displacements of the system.87

The equation of motion of the system can be written in general form as [13,14,19],88

Mr 0

0 Mf

¨̄xr(t)

¨̄xf (t)

+

Cr +ΩGr 0

0 Cf

+R(Ω)

 ˙̄xr(t)

˙̄xf (t)


+

Kr 0

0 Kf

+ S(Ω)

x̄r(t)

x̄f (t)

 = fnl(x̄r − x̄f , ˙̄xr − ˙̄xf ) + fh(t) + fg, (1)

where the subscripts r and f denote the rotor and foundation terms, respectively, M is the mass matrix, C is the89

damping matrix, G is the gyroscopic matrix, K is the stiffness matrix, and Ω is the shaft speed. The matrices R and90

S are the linearized damping and stiffness matrices of the bearings, while fnl are the purely nonlinear components of91

the bearing force. Also, the term fg denote the gravity force, which is a constant vector acting at the center of mass92
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of the system; and fh is the excitation due to mass unbalance, and it is given as,93

fh(t) = fhymunΩ
2 cosΩt+ fhzmunΩ

2 sinΩt, (2)

where fhy and fhz are horizontal and vertical Boolean vectors that define which node in the mesh the force is acting94

on (generally they act on the rigid disks), and mun is the unbalance moment.95

It is convenient to rewrite Eq. (1) with respect to the equilibrium position. This can be done by a change of96

variables as,97

x(t) = x̄(t)− xe, (3)

being x(t) = {xr(t) xf (t)}T , x̄(t) = {x̄r(t) x̄f (t)}T , and xe = {xer xef}T the equilibrium position, which has the98

equilibrium displacements of both rotor (xer) and foundation (xer). The equilibrium position is obtained by assuming99

¨̄xr = ¨̄xf = ˙̄xr = ˙̄xf = fh = 0 in Eq. (1), which gives,100

Kr 0

0 Kf

+ S(Ω)

xer

xef

 = fnl(xer − xef ,0) + fg. (4)

Equation (4) is a nonlinear algebraic equation, and its solution provides the equilibrium position xe of the system. It101

is noted that the solution depends on the speed of the shaft Ω. By using (3), Eq. (1) is rewritten as,102

Mẍ(t) +Dẋ(t) +Kx(t) = fnl(x+ xe, ẋ) + fh(t) + fg −Kxe = f(x, ẋ, t), (5)

where,103

M =

Mr 0

0 Mf

 , D =

Cr +ΩGr 0

0 Cf

+R(Ω), K =

Kr 0

0 Kf

+ S(Ω). (6)

rotor

foundation

bearing

xf(t)

xr(t)

ground 
supports

y

uz

ψz
ψy

uy

z

ux

ψx
x

Fig. 1 Coordinate system and depiction of the rotor-foundation model.
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Also, it is worth noting that the inputs for the nonlinear force fnl are the relative displacements and velocities of the104

rotor and foundation.105

3 Hydrodynamic bearing model106

The bearings considered in this work are hydrodynamic. These types of bearings have many advantages, such as high107

load capacity and low friction, and are largely used in rotordynamics applications [7]. The dynamics of the fluid-film108

in the hydrodynamic bearing is commonly modeled using the Reynolds equation, which is given as [45,46],109

1

R2

∂

∂θ

(
h3
∂p

∂θ

)
+

∂

∂x

(
h3
∂p

∂x

)
= 6µΩ

∂h

∂θ
+ 12µ

∂h

∂t
, (7)

being p the pressure distribution, h the oil-film thickness, R the journal radius, µ the fluid viscosity (assumed con-110

stant), and θ and x denote the angular and axial coordinates. The bearing considered in this work is cylindrical, and111

its geometry is depicted in Fig. 2. The fluid film thickness is given by,112

h = cr(1 + ε cos θ), (8)

with,113

ε =
1

cr

√(
ūry − ūfy

)2
+
(
ūrz − ūfz

)2
, (9)

where cr is the radial clearance, ε = e/cr is the dimensionless eccentricity, and ūry, ū
r
z, ū

f
y and ūfz are the horizontal and114

vertical displacements of the rotor and foundation at the bearings. To obtain the bearing force, the Reynolds equation115

Ob

Oj
y

z

h(θ)

α

e

Ωbearing

journal

θ

fr

ft

Fig. 2 Geometry of the hydrodynamic bearing.
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is solved based on the short bearing theory, which neglects the pressure gradient in the circumferential direction116

(∂p/∂θ = 0). Thus, the pressure from the oil film can be obtained as [45],117

p(θ, x) =

(
3µL2

b

c2r

)
ε(Ω − 2α̇) sin θ − 2ε̇ cos θ

(1 + ε cos θ)3

((
x

Lb

)2

− 1

4

)
, (10)

where Lb is the bearing length and α̇ denotes the whirl speed. In order to obtain the radial (fr) and tangential (ft)118

components of the fluid-film force, the pressure field has to be integrated over the axial and circumferential direction,119

that is,120 frft
 =

∫ θ2

θ1

∫ Lb/2

−Lb/2

p(θ, x)

cos θ

sin θ

 dxdθ. (11)

The integration limits θ1 and θ2 define the type of pressure distribution assumed. Here, the widely used Gümbel or121

half-Sommerfeld condition is used, where θ1 = 0 and θ2 = π. Thus, the integration above can be performed analytically,122

leading to,123

fr = −µRL
3
b

2c2r

[
2ε2(Ω − 2α̇)

(1− ε2)2
+
π(1 + 2ε2)ε̇

(1− ε2)5/2

]
, (12)

124

ft =
µRL3

b

2c2r

[
π(Ω − 2α̇)ε

2(1− ε2)3/2
+

4εε̇

(1− ε2)2

]
. (13)

To express the force in cartesian components, one can apply the transformations (see Fig. 2),125

fy = fr cosα+ ft sinα, (14a)
126

fz = fr sinα− ft cosα, (14b)

with,127

α = tan−1

(
ūry − ūfy

ūrz − ūfz

)
. (15)

The expressions above model the hydrodynamic force in cylindrical bearings under the short bearing assumption, and128

it is widely used in the literature due to its simplicity [7,47,48].129

3.1 Linearized Bearing Force130

The linearized force can be obtained from a Taylor expansion of Eq. (14) around the equilibrium of the journal inside

the bearing, that is,

f ly = fy0 +
∂fy
∂∆uy

∣∣∣
∆uy=0

∆uy +
∂fy
∂∆uz

∣∣∣
∆uz=0

∆uz +
∂fy
∂∆u̇y

∣∣∣
∆u̇y=0

∆u̇y +
∂fy
∂∆u̇z

∣∣∣
∆u̇z=0

∆u̇z

= fy0 + kyy∆uy + kyz∆uz + cyy∆u̇y + cyz∆u̇z, (16a)
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f lz = fz0 +
∂fz
∂∆uy

∣∣∣
∆uy=0

∆uy +
∂fz
∂∆uz

∣∣∣
∆uz=0

∆uz +
∂fz
∂∆u̇y

∣∣∣
∆u̇y=0

∆u̇y +
∂fz
∂∆u̇z

∣∣∣
∆u̇z=0

∆u̇z

= fy0 + kyz∆uy + kzz∆uz + cyz∆u̇y + czz∆u̇z, (16b)

being ∆ui and ∆u̇i the relative displacements and velocities (i = y, z), kij and cij the stiffness and damping coefficients131

(i, j = yy, zz, yz, zy), and fy0 and fz0 the static forces. In the present case, fy0 = 0 and fz0 = F0, where F0 denotes132

the vertical force on the bearings due to gravity alone. Note that, due to the change of coordinates (3), the equilibrium133

position is at the origin of the coordinate system. By performing the differentiations above, one arrives at [45,49],134

kij =
F0

cr
γij , cij =

F0

Ωcr
βij , i, j = yy, zz, yz, zy (17)

with,

γyy = −
4 ε2

(
π2 − 16

)
− 8π2

(π2 − ε2 (π2 − 16))
3/2

, γyz =
π
((
π2 − 16

)
ε4 − 2π2 ε2 + π2

)
ε
√
1− ε2 (π2 − ε2 (π2 − 16))

3/2
,

γzy = −
π
((
32− 2π2

)
ε4 +

(
π2 + 32

)
ε2 + π2

)
ε
√
1− ε2 (π2 − ε2 (π2 − 16))

3/2
, γzz = −

4 ε2
(
π2 + 32

)
− 4 ε4

(
2π2 − 32

)
+ 4π2

(ε2 − 1) (π2 − ε2 (π2 − 16))
3/2

,

βyy =
2π

√
1− ε2

((
2π2 − 16

)
ε2 + π2

)
ε (π2 − ε2 (π2 − 16))

3/2
, βyz = βzy = −

4 ε2
(
4π2 − 32

)
+ 8π2

(π2 − ε2 (π2 − 16))
3/2

,

135

βzz =
2π

(
π2 ε4 +

(
48− 2π2

)
ε2 + π2

)
ε
√
1− ε2 (π2 − ε2 (π2 − 16))

3/2
. (18)

The eccentricity ε denotes the position of the journal inside the bearing, and it is dependent on the speed Ω, which136

in turn makes the coefficients above also dependent on Ω. One can solve the following nonlinear equation to obtain137

the eccentricity [45,49]138

F0 −
(
µL3ΩR

2cr

)
π

2

ε

(1− ε2)2

√
1− ε2 +

(
4

π
ε

)2

= 0. (19)

The zeros of Eq. (19) gives the locus of the journal center as the speed increases.139

The global bearing matrices R and S that are used in Eq. (5), can be obtained in the following way. Firstly, one140

can separate the rotor and foundation parts as,141

S(Ω) =

Srr(Ω) Srf (Ω)

Sfr(Ω) Sff (Ω)

 , R(Ω) =

Rrr(Ω) Rrf (Ω)

Rfr(Ω) Rff (Ω)

 . (20)

Secondly, one writes the sub-matrices Srr, Srf , and so on, as,142

Srr(Ω) =

nb∑
i=1

Br
T
i

kiyy(Ω) kiyz(Ω)

kizy(Ω) kizz(Ω)

Bri

 , Srf (Ω) =

nb∑
i=1

Br
T
i

kiyy(Ω) kiyz(Ω)

kizy(Ω) kizz(Ω)

Bf i

 , (21a)

Sfr(Ω) =

nb∑
i=1

Bf
T
i

kiyy(Ω) kiyz(Ω)

kizy(Ω) kizz(Ω)

Bri

 , Sff (Ω) =

nb∑
i=1

Bf
T
i

kiyy(Ω) kiyz(Ω)

kizy(Ω) kizz(Ω)

Bf i

 ,
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143

Rrr(Ω) =

nb∑
i=1

Br
T
i

ciyy(Ω) ciyz(Ω)

cizy(Ω) cizz(Ω)

Bri

 , Rrf (Ω) =

nb∑
i=1

Br
T
i

ciyy(Ω) ciyz(Ω)

cizy(Ω) cizz(Ω)

Bf i

 , (21b)

Rfr(Ω) =

nb∑
i=1

Bf
T
i

ciyy(Ω) ciyz(Ω)

cizy(Ω) cizz(Ω)

Bri

 , Rff (Ω) =

nb∑
i=1

Bf
T
i

ciyy(Ω) ciyz(Ω)

cizy(Ω) cizz(Ω)

Bf i

 ,

being nb the number of bearings, and Br and Bf Boolean matrices that indicate which rotor and foundation DOFs144

the bearings are acting, respectively. For an example, consider that the bearings act in the first node of both rotor145

and foundation meshes, and they are modeled using 3D finite elements. Recall that for 3D elements the ith nodal146

displacement is x̄i = [ūix, ū
i
y, ū

i
z, ψ̄

i
x, ψ̄

i
y, ψ̄

i
z], and the bearings act in the y and z direction. Thus, the Boolean matrices147

will be,148

Br =

0 1 0 0 · · · 0
0 0 1 0 · · · 0

 , Bf =

0 1 0 0 · · · 0
0 0 1 0 · · · 0

 . (22)

In addition, the nonlinear part of the bearing force, fnl, can be obtained in a similar way, as149

fnl =

frnl

f fnl

 =

nb∑
i=1

Br
T
i 0

0 −Bf
T
i

(fy − f ly)i

(fz − f lz)i

 , (23)

where one subtracts the full hydrodynamic forces fy and fz given by Eq. (14) to the linear part f ly and f lz given by150

Eq. (16) to obtain the purely nonlinear contribution.151

4 Component Mode Synthesis152

The first reduction applied in the system given by Eq. (5) is performed using Component Mode Synthesis (CMS). Since153

rotor-foundation systems modeled by the FEM can reach very high numbers of DOFs [17,18,19], the purpose of the154

CMS is to reduce this number for the application of the method presented in Section 5. The CMS approach selected155

was the Craig-Bampton (CB) method [22,21]. This method is well established in the literature and it is commonly156

used in the obtention of Reduced Order Models (ROMs) for large systems modeled by the FEM. Some examples of157

the application of the CB method can be found in [50,51,52].158

The basis of the CB method is the separation of the DOFs into internal and boundary or interface nodes, creating159

the so-called superelements. The boundary nodes are kept into physical form, while the internal nodes are reduced using160

fixed-interface modes. This makes the method very applicable to localized nonlinearities, such as friction interfaces [53].161

In the present case, the boundary nodes correspond to the DOFs where the bearings are located at both the shaft and162

the foundation. Thus, Eq. (5) is rewritten as,163
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Mii Mib

Mbi Mbb

 ẍi(t)

ẍb(t)

+

Dii Dib

Dbi Dbb

 ẋi(t)

ẋb(t)

+

Kii Kib

Kbi Kbb

xi(t)

xb(t)

 =

 fi(x, ẋ, t)

fb(x, ẋ, t)

 , (24)

where i and b denote the internal and boundary DOFs. The relation between the boundary and the internal DOFs is164

obtained by performing a static reduction, which gives the following reduction basis,165

ψψψ =

−Kii
−1Kib

I

 . (25)

The basis ψψψ has a size N ×nB , being N the total number of DOFs in Eq. (24) and nB the number of boundary DOFs.166

Equation (25) is obtained by performing a unit displacement in each of the boundary DOFs and fixing all remaining167

DOFs. In order to improve the dynamic analysis, the static reduction is augmented by the use of the vibrating modes168

of the structure with all boundary DOFs fixed. These modes are obtained from the solution of the following eigenvalue169

problem:170

(
Kii − λCMS

r Mii

)
ϕϕϕr = 0, r = 1, 2,· · · , nI (26)

where nI denotes the number of modes retained. The eigenvectors ϕϕϕr and eigenvalues λCMS
r correspond to the vibrating171

modes of the system when the boundaries are considered fixed. The basis with the fixed vibrating modes will be given172

as,173

ϕϕϕ =

[ϕϕϕ1 ϕϕϕ2 · · · ϕϕϕnI ]

0

 . (27)

Thus, the complete CMS basis is obtained as,174

T =
[
ψψψ ϕϕϕ

]
, (28)

boundary nodes

xi(t)

xi(t) xb(t)xb(t)

xb(t) xb(t)

(a)

qi(t)

qi(t) xb(t)xb(t)

xb(t) xb(t)

(b)

Fig. 3 Application of CMS: division of the system into boundary and internal nodes (a), and reduction by means of the CB method (b).
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which has size N × (nB + nI). Using the CMS basis, the displacements are written as,175 xi(t)

xb(t)

 ≈ T

qi(t)

xb(t)

 , (29)

being qi the modal (generalized) coordinates of the fixed-interface modes. By substituting the expansion (29) into176

Eq. (24), and multiplying by TT , one obtains the reduced set of equations for the rotor and foundation, that is,177

M̂

 q̈i(t)

ẍb(t)

+ D̂

 q̇i(t)

ẋb(t)

+ K̂

qi(t)

xb(t)

 = TT

 fi(Tx,Tẋ, t)

fb(Tx,Tẋ, t)

 , (30)

where,178

M̂ = TTMT, D̂ = TTDT, K̂ = TTKT. (31)

Equation (30) is the equation of motion of the rotor-foundation system after the reduction into superelements. Thus, qi179

consists of the internal coordinates of both the rotor and foundation, and xb the boundary coordinates at the bearings,180

which is where the rotor is connected to the supporting structure. Figure 3 depicts the CMS reduction process in the181

rotor-foundation system.182

5 Approximate Invariant Manifold Method183

The next step in the present approach is the application of the Approximate Invariant Manifold Method (AIMM).184

The basic idea of the AIMM is to estimate the IM of the dynamical system, allowing one to obtain the response of185

it by only solving a selected set of master coordinates. To this end, the equations reduced by the CMS are projected186

into the eigenspace, that is, the space spanned by the vibrating modes of the coupled structure.187

Here, it is important to note that one could bypass the application of the CMS presented in Sec. 4 and apply the188

modal analysis directly into the full system given by Eq. (5). However, if the model has a very high number of DOFs189

(which is common in systems modeled by the FEM), the solution of the eigenvalue problem may be too computationally190

expensive. Hence, the use of CMS can be very useful in such cases [21]. Alternatively, the computational burden can191

be avoided by using the direct computation of IMs [37,39], which only requires the computation of the master modes192

instead of all the eigenvectors of the system.193

Due to the damping of the bearings and gyroscopic effect of the shaft, a complex modal analysis is necessary to194

fully decouple the equations at linear order [54]. One first writes the equations in the state-space form as,195

ẇ(t) = Aw(t) +G(w, t), (32)
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where,196

A =

 0 I

M̂−1K̂ M̂−1D̂

 , (33a)

197

w(t) =
{
qi(t) xb(t) q̇i(t) ẋb(t)

}T

, (33b)

198

G(w, t) =
{
0 M̂−1TT fi(w, t)) M̂

−1TT fb(w, t))
}T

, (33c)

Next, the state vector is expanded in terms of the eigenvectors of the matrix A as follows,199

w(t) =

2n∑
i=1

ηηηiqi(t) = [ηηη1 ηηη2 · · · ηηη2n]q(t) = ηηηq(t), (34)

where n are the modes retained, ηηη is the modal matrix of size 2N × 2n that has the eigenvectors ηηηi on its columns,200

and q(t) are the modal (generalized) coordinates. Here, one has the opportunity to perform a second reduction in the201

equations. In the CMS, the system is reduced from N to (nB + nI). In some cases, specially in highly discretized 3D202

finite element models, the number of boundary DOFs nB may still be large. Thus, one can further reduce the system203

by choosing n in Eq. (34), such that 2n < (nB + nI). The eigenvectors and adjoints are the solution of,204

Aηηηi = λiηηη
i, for i = 1, 2, . . . , 2n (35a)

205

AH η̃̃η̃ηi = λ∗i η̃̃η̃η
i, for i = 1, 2, . . . , 2n (35b)

being λi the eigenvalues, which are generally complex conjugate pairs, η̃̃η̃ηi the ith adjoint eigenvector, and H and ∗206

denote the hermitian (complex conjugate) transpose and complex conjugation, respectively. The adjoint eigenvectors207

are the complex conjugate of the left eigenvectors, and they are necessary here due to the non-symmetric nature of208

A, which in turn is due to the gyroscopic effect and anisotropy of the bearings. The relation between the eigenvectors209

and its adjoint is given as,210

(η̃̃η̃ηj)Hηηηi = δij ,

(η̃̃η̃ηj)HAηηηi = λjδij ,
for i = 1, 2, . . . , 2n (36)

being δij the Kronecker delta. Note that the previous relations assumes that the vectors have been normalized. By211

substituting the expansion (34) in the equation of motion (32), and multiplying by the adjoint matrix η̃̃η̃ηH , one has,212

q̇i(t) = λiqi(t) + (η̃̃η̃ηi)HG(q, t), for i = 1, 2, . . . , 2n (37)

which are 2n, first-order, complex equations uncoupled at linear order. By separating the modal coordinates into its213

real and imaginary parts as qi = p2i−1 + jp2i, with j =
√
−1, Eq. (37) can be written using real numbers. The result214
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is,215

ṗ2i−1(t) = σip2i−1(t)− ωip2i(t) + Re
{
(η̃̃η̃ηi)HG(q, t)

}
,

ṗ2i(t) = σip2i(t) + ωip2i−1(t) + Im
{
(η̃̃η̃ηi)HG(q, t)

}
,

for i = 1, 2, . . . , n (38)

with σi = Re{λi} and ωi = Im{λi}. Note that the procedure above assumed that the mode i is a vibrating mode, that216

is ωi ̸= 0. In case, ωi = 0, one has a ith overdamped mode, and its equation of motion is simply,217

ṗi(t) = σipi(t) + (η̃̃η̃ηi)TG(q, t), (39)

where the eigenvector η̃̃η̃ηi is now purely real as well. The solution manifold corresponding to Eq. (38) is 2D while the218

ones given by Eq. (39) is 1D [29].219

To apply the AIMM, one chooses one mode, or a pair of coordinates, from the 2n used to express the displacements220

in Eq. (34). These are then used as a basis to describe the remaining 2n − 2 slave modes of the system. It is worth221

mentioning that the approach could be easily extended to multiple master modes, and there is no loss of generality222

here. Let u = p2k−1 and v = p2k denote the selected master coordinates. The relation between the remaining modes223

with the master coordinates can be expressed as,224

p2i−1 = Pi(u, v, ϕ), p2i = Qi(u, v, ϕ), for i = 1, 2, . . . , n; i ̸= k (40)

where Pi and Qi can be seen as the coordinates that compose the ith manifold. Since the system is non-autonomous225

(forced) due to the unbalance force, one needs to introduce a third generalized coordinate ϕ = Ωt, which is the phase226

of the external excitation. Since Pi and Qi depend on three quantities, one can think of the manifold as a 2D surface227

with time-varying coordinates due to the external excitation [41]. The procedure followed in the AIMM is depicted in228

Fig. 4. In the traditional direct integration, the solution of Eq. (38) gives the trajectories in phase space (depicted in229

blue). In the AIMM, instead of integrating the full equations, one only solves for the master coordinates u and v, and230

uses the relations in Eq. (40) to obtain the trajectories of the full system.231

By differentiating Eq. (40) with respect to time one arrives at,232

ṗ2i−1 =
∂Pi

∂u
u̇+

∂Pi

∂v
v̇ +

∂Pi

∂ϕ
ϕ̇,

ṗ2i =
∂Qi

∂u
u̇+

∂Qi

∂v
v̇ +

∂Qi

∂ϕ
ϕ̇,

for i = 1, 2, . . . , n; i ̸= k (41)
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p2k−1

p2k

pi

u

v

Pi(u,v)

pi

(a) (b)

full trajectory

master trajectory

Fig. 4 In the direct numerical integration, the solution is obtained as a trajectory in phase space (a). In the AIMM (b), one obtains the

trajectory of the master mode only, and uses the shape of the manifold to obtain the full trajectories.

where the functional dependence of the variables has been omitted for better clarity. Substituting Eq. (38) above, and233

considering ϕ̇ = Ω, one has,234

σiPi − ωiQi + g2i−1 =
∂Pi

∂u

(
σku− ωkv + g2k−1

)
+
∂Pi

∂ϕ
Ω

+
∂Pi

∂v

(
σkv + ωku+ g2k

)
,

σiQi + ωiPi + g2i =
∂Qi

∂u

(
σku− ωkv + g2k−1

)
+
∂Qi

∂ϕ
Ω

+
∂Qi

∂v

(
σkv + ωku+ g2k

)
,

for i = 1, 2, . . . , n; i ̸= k (42)

where g2i−1 = Re
{
(η̃̃η̃ηi)HG(u, v, ϕ)

}
and g2i = Im

{
(η̃̃η̃ηi)HG(u, v, ϕ)

}
. Note that the external vector G depends now235

only on u, v and ϕ due to Eq. (40). The above equations are partial differential equations (PDEs), and they can only236

be solved approximately by means of numerical methods. Their solution gives the coordinates of the manifolds Pi and237

Qi, for the ith mode. In the AIMM, the coordinates are assumed as,238

Pi(u, v, ϕ) =

Nu∑
l=1

Nv∑
m=1

Nϕ∑
r=1

Clmr
i Ul,m(u, v)Sr(ϕ), for i = 1, 2, . . . , n; i ̸= k (43)

239

Qi(u, v, ϕ) =

Nu∑
l=1

Nv∑
m=1

Nϕ∑
r=1

Dlmr
i Ul,m(u, v)Sr(ϕ), for i = 1, 2, . . . , n; i ̸= k (44)

being Clmr
i and Dlmr

i the unknown coefficients, Ul,m and Sr known shape functions, and Nu, Nv and Nϕ the number240

of shape functions assumed. For the expansion in u and v, the shape functions were assumed standard Chebyshev241

polynomials, which are known to be very accurate in a wide range of applications [55,56]. In this case, the 2D shape242

functions are obtained through the tensor product of two 1D polynomials in the u and v directions. For the expansion243

in ϕ, a Fourier series expansion was performed, taking advantage of the periodicity of this coordinate [41].244
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The coefficients of Eqs. (43) and (44) are obtained from a Weighted Residual Method, namely the Galerkin method.245

Firstly, the form assumed in Eqs. (43) and (44) are substituted in (42), leading to,246

Nu∑
l=1

Nv∑
m=1

Nϕ∑
r=1

[
σi
(
Clmr

i Ul,mSr

)
− ωi

(
Dlmr

i Ul,mSr

)
+ g2i−1

]
=

Nu∑
l=1

Nv∑
m=1

Nϕ∑
r=1

[
Clmr

i Sr
∂Ul,m

∂u

(
σku− ωkv + g2k−1

)
+ Clmr

i Ul,m
∂Sr

∂ϕ
Ω

+Clmr
i Sr

∂Ul,m

∂v

(
σkv + ωku+ g2k

)]
,

for i = 1, 2, . . . , n; i ̸= k (45)

247

Nu∑
l=1

Nv∑
m=1

Nϕ∑
r=1

[
σi
(
Dlmr

i Ul,mSr

)
+ ωi

(
Clmr

i Ul,mSr

)
+ g2i

]
=

Nu∑
l=1

Nv∑
m=1

Nϕ∑
r=1

[
Dlmr

i Sr
∂Ul,m

∂u

(
σku− ωkv + g2k−1

)
+Dlmr

i Ul,m
∂Sr

∂ϕ
Ω

+Dlmr
i Sr

∂Ul,m

∂v

(
σkv + ωku+ g2k

)]
,

for i = 1, 2, . . . , n; i ̸= k (46)

The next step is to perform a Galerkin projection. Thus, one multiplies the residue above by the same shape functions

and integrate the result, that is,∫ u2

u1

∫ v2

v1

∫ 2π

0

Up,q(u, v)Ss(ϕ)R1i(u, v, ϕ)dudvdϕ = 0,∫ u2

u1

∫ v2

v1

∫ 2π

0

Up,q(u, v)Ss(ϕ)R2i(u, v, ϕ)dudvdϕ = 0, (47)

for i = 1, 2, . . . , n− 1; p = 1, 2, . . . , Nu; q = 1, 2, . . . , Nv; r = 1, 2, . . . , Nϕ.

where R1i and R2i are the residues of Eqs. (45) and (46), respectively, and [u1, u2] and [v1, v2] are the integration limits;248

they denote the region of validity, in the phase space, of the approximate manifolds. The integrations in Eq. (47) were249

performed using the roots of the Chebyshev polynomials in Up,q(u, v), also known as Gauss points [55]. The number250

of points used were Nv + 1 and Nu + 1. In addition, in the integration for the ϕ variable, the number of points must251

be at least 2Nϕ in order to minimize aliasing errors [56].252

Equation (47) consists of integro-algebraic equations that need to be solved for the coefficients Clmr
i and Dlmr

i .253

The total number of equations will be NuNvNϕ(2n− 2). One may note that this number may be very high, and thus254

the method is useful mainly when the system can be described with a small number of vibrating modes n. It is also for255

this reason that a spectral method, instead of a finite difference or finite element approach, was chosen for the solution256

of (42). Spectral methods allows accurate solutions for boundary-value problems with less computational costs [55].257

Since the idea of the AIMM is to find an approximation of the manifolds defined in (40), there may exist multiple258

solutions to the Galerkin equations (47). In order to obtain fast and accurate solutions, one is advised to use the259
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solution of the underlying linear system as an initial condition for the nonlinear solver. This linear solution is obtained260

by neglecting the nonlinearities of the bearings in Eqs. (45)-(47). The integration limits [u1, u2] and [v1, v2], can also261

be estimated based on the solution of the linear system.262

With the functions Pi and Qi, for i = 1, 2, . . . , n, at hand, the equations of motion for the master coordinates can263

be solved, which are given by,264

u̇(t) = σku(t)− ωkv(t) + Re
{
(η̃̃η̃ηi)HG(u, v,Ωt)

}
,

v̇(t) = σkv(t) + ωku(t) + Im
{
(η̃̃η̃ηi)HG(u, v,Ωt)

}
.

(48)

The physical displacements and velocities are then obtained by,265

w(t) =

n∑
i=1

(
Re{ηηηi}p2i−1(t) + Im{ηηηi}p2i(t)

)
= Re{ηηηk}u(t) + Im{ηηηk}v(t) +

n∑
i=1,i̸=k

(
Re{ηηηi}Pi(u, v,Ωt) + Im{ηηηi}Qi(u, v,Ωt)

)
= W(u, v).

(49)

To summarize the present approach: the full equations, Eq. (1), obtained after finite elements discretization, is266

firstly reduced using CMS, Eq. (29). This reduced set is then written in terms of the normal modes of the structure267

(and possibly further reduced), Eq. (34). Lastly, the equation of motion for the modal coordinates is reduced to a268

single master mode, Eq. (48). Therefore, the proposed method reduces a N degree of freedom system, with N ≫ 1, to269

a single pair of equations. Provided the solutions of the manifolds are precise, Eq. (47), the AIMM can provide very270

accurate and fast solutions for high dimensional dynamical systems.271

6 Results and Discussion272

This section presents applications of the method proposed in the previous sections. The method will be studied in two273

systems: a simple rotor on a spring-mass foundation, and a realistic model of a turbomachine on a plate-like elastic274

foundation. In all subsequent simulations, the results were obtained using MATLABTM. Numerical integrations were275

performed using the ode15s integrator, which is ideal for numerically stiff systems [57], with standard options and276

zero initial conditions. The Galerkin equations (47) were solved by means of the fsolve function, with the initial277

conditions being the solution of the underlying linear system.278
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Fig. 5 Mesh and geometry of the simple rotor-foundation studied: front (a) and lateral view (b).

Table 1 Parameters used in the simple rotor-foundation system.

Parameter Value

Shaft length (L) 600 mm

Shaft diameter (d) 12 mm

Disk diameter (D) 90 mm

Disk thickness (hd) 47 mm

Young’s modulus (E) 207 GPa

Poisson’s ratio (ν) 0.3

Density of the material (ρ) 7850 kg·m3

Rotor mass (Mr)* 3.1 kg

Foundation mass (Mf ) 0.1Mr

Foundation support stiffness (Kf ) 105 N/m

Foundation support damping (Cf ) 0.1
√

KfMf

Bearing length (Lb) 20 mm

Fluid viscosity (µ) 0.028 Pa·s
Radial clearance (cr) 90 µm

Journal radius (R) 15.5 mm

*Mr is the mass of the shaft plus the disk.

6.1 Simple rotor-foundation system279

This first example is dedicated to show how the proposed method works, and hence a simple system was chosen for280

the study. The rotor system is depicted in Fig. 5, and it consist of a shaft with a disk positioned at its midspan and281

two identical bearings at its extremities. In contact with the bearings is also the foundation, which is considered to282

be two spring-mass-damper systems, as depicted in the figure. The supporting stiffness and damping are considered283

isotropic. The shaft is modeled by Timoshenko beam elements, in both the y and z directions. Only bending motion284

is considered, thus torsion and axial displacements are neglected. The mesh has a total of 24 elements and 25 nodes,285
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Fig. 6 Eigenvalues of the simple rotor-foundation system: imaginary (a) and real part (b).

each with 4 DOFs (two displacements and two rotations in y and z). All the relevant data of the model is listed in286

Tab. 1.287

The total number of DOFs in the system is N = 104. The first reduction consist in applying the CMS in the rotor.288

The boundary DOFs are the displacements and rotations of nodes 1 and 25 (8 in total) together with the foundation289

displacements (4 in total), while the remaining DOFs are labeled as internal. To construct the CMS basis given by290

Eq. (28), the first six fixed-interface vibrating modes were considered in the matrix ϕϕϕ. This leads to a reduction from291

N = 104 to nB + nI = 18, being nB = 12 and nI = 6.292

Next, the AIMM is applied to the equations reduced by means of the CMS. The number of modes retained in293

the modal expansion in Eq. (34) was 2n = 20. From these retained modes, 4 are highly overdamped modes, while 16294

are vibrating modes coming in complex conjugate pairs. The inclusion of the overdamped modes makes the modal295

equations, Eq. (37), stiff, but they are necessary for the nonlinear analysis. Figure 6 shows the eigenvalues of the296

6 vibrating modes considered, where FW and BW denote forward (shaft whirl in the same direction as rotation)297

and backward (shaft whirl in the opposite direction as rotation) modes, respectively. A distinct characteristic of298

rotating shafts is that the natural frequencies change with the increase in speed, due to the gyroscopic effect and299

the hydrodynamic bearings. The line ω = Ω in Fig. 6a indicates where the speed equals the natural frequencies and300

are denoted the critical speeds of the system [45,49]. The first backward and forward critical speeds are found to be301

ωB
c = 1092.2 rpm and ωF

c = 1102.1 rpm (Fig. 6a).302
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Fig. 7 Comparison between the reference solution with the AIMM considering different number of shape functions for Ω = ωF
c and

mun = 0.05 kg·mm: radial displacement (a) and orbit (b) of the rotor at the bearing.

A crucial step in the application of the AIMM is the selection of a master mode to enslave the remaining modes of303

the system. The procedure to follow here is to choose the slowest mode, that is, the mode with the smallest absolute304

value of the real part of the eigenvalue. This is frequently called slow-manifold reduction [29], and it is a common305

choice in model reduction. From Fig. 6b, it is clear that the 2 FW mode has the smallest real part up to around306

2000 rpm, where the 2 BW mode actually becomes positive, making the system unstable. This phenomenon is the307

so-called ”oil-whip” and is very well documented in the literature [4,5]. Since this instability is commonly avoided in308

the operation of actual rotating machines, the analysis was restricted to speeds below 2000 rpm and the master mode309

is considered to be the 2 FW. Another approach would be to choose two modes to serve as master modes, in this case310

2 FW and 2 BW. This is known as multi-mode invariant manifolds [58]. This is not performed here, however, as the311

present approach only allows one master mode to enslave the remaining ones.312

With the master mode chosen, one needs to set the number of shape functions used in the expansions (43)-(44). In313

order to define these numbers, convergence tests are necessary. Figure 7 presents one of the tests performed, where the314

displacements at the bearing is shown. The reference solution correspond to the integration of Eq. (30). This result is315

obtained for the rotor at the critical speed, Ω = ωF
c , and with an unbalance moment of mun = 0.05 kg·mm. As one316

can note from the figure, a convergence is reached for Nu = Nv = 3, which correspond to quadratic base, and Nϕ = 5,317

which correspond to four harmonics plus the constant term in the Fourier series. Therefore, these numbers are used318

in the following analysis.319
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Fig. 8 Radial displacements and orbits of the rotor at the bearing for Ω = 0.9ωF
c and varying unbalance moments: mun = 0.05 kg·mm

(a)-(b), mun = 0.1 kg·mm (c)-(d) and mun = 0.5 kg·mm (e)-(f).
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Fig. 9 Radial displacements and orbits of the rotor at the disk for Ω = 0.9ωF
c and varying unbalance moments: mun = 0.05 kg·mm

(a)-(b), mun = 0.1 kg·mm (c)-(d) and mun = 0.5 kg·mm (e)-(f).
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Fig. 10 Radial displacements and orbits of the foundation for Ω = 0.9ωF
c and varying unbalance moments: mun = 0.05 kg·mm (a)-(b),

mun = 0.1 kg·mm (c)-(d) and mun = 0.5 kg·mm (e)-(f).

Figures 8-10 show the radial displacements and orbits of the rotor at the bearings and disk positions and the320

displacements of the foundation, respectively, for different unbalance moments and for a speed close to the critical321

speed Ω = 0.9ωF
c . Due to the symmetry of the system (see Fig. 5), only the displacement of one bearing and foundation322

spring-mass system is shown. The linear solution is also shown to assess the degree of nonlinearity. For mun = 0.05323

kg·mm, one sees in Figs. 8a, 9a and 10a that the difference between the nonlinear response and linear is small, indicating324

a weak nonlinearity. As the unbalance is increased, this difference grows, and for mun = 0.5 kg·mm, the linear response325

gives discrepant results. One also notes that the nonlinearity is stronger in the bearings and the major effect of the326

nonlinear fluid-film force is to distort the orbits, which are ellipses in the linear case. By comparing the reference327

solutions with the AIMM, one notes good agreement, in both rotor and foundation responses, even at highly nonlinear328

cases. To obtain the reference solutions, 2(nB +nI) = 36 equations are numerically integrated (as the system needs to329

be in state-space form to apply the numerical integrator), while in the AIMM only 2 equations are solved. Therefore,330

the method provides a great reduction while giving good accuracy in the responses.331

Figures 11-12 show the approximate manifold for the first (first overdamped) and fifth (first vibrating) modes in332

the case of strong nonlinearity. These manifolds are obtained from the solution of the Galerkin equations (47), and333
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Fig. 11 Approximate invariant manifold P1(u, v, ϕ) (first overdamped mode) for Ω = 0.9ωF
c , mun = 0.5 kg·mm, and varying phase: ϕ = 0

(a), ϕ = π/8 (b) and ϕ = π/4 (c).
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c , mun = 0.5 kg·mm, and varying phase: ϕ = 0
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need to be obtained prior to the solution of the master equations of motion (48). Indeed, it is the correct obtention of334

these manifolds that allows good accuracy in the responses presented previously. As one notes from these figures, the335

manifolds are curved surfaces that move about with the phase of the unbalance ϕ. Also, this motion is not simple, as336

shown mainly in Fig. 11, where beside the translation of the surface, one notes additional ”wobbles” (i.e, the shape337

of the surface changes with time), as described in [59]. In spite of this, it is clear that the translating motion of the338

surfaces has a more prominent effect than the change in their shape, which indicates that the expansion in ϕ bears a339

higher degree of importance in the obtention of the manifolds.340
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Fig. 13 Full simulation time of the radial displacement at the bearing for Ω = 2000 rpm and mun = 0.1 kg·mm. The AIMM gives the

steady-state solutions directly, while in the reference system the full simulation time is required.

Table 2 Computation time comparison for the obtention of Figs. 8-10* (results are in the format hours : minutes : seconds).

Case CMS solution AIMM: solution AIMM: manifold obtention (offline)

mun = 0.05 kg·mm 00:03:30 00:00:02 00:06:04

mun = 0.1 kg·mm 00:03:23 00:00:02 00:07:13

mun = 0.5 kg·mm 00:03:41 00:00:02 00:11:03

*Results obtained with a laptop with an Intel(R) Core(TM) i7-7500U CPU @ 2.90 GHz processor.

It is also worth mentioning that the AIMM only gives the steady-state solutions of the system. This fact makes341

the AIMM ideal for the obtention of steady-state solutions of rotors with low damping, where the transients take in342

general very long to die out, requiring a long simulation time. Figure 13 illustrate this by showing the full simulation343

time of the displacement at the bearing for Ω = 2000 rpm and mun = 0.1 kg·mm. It is clear that only a single cycle is344

enough for the obtention of steady-state solution with the AIMM, while in the full system, the whole simulation time345

is required, which in this case was 400 cycles.346

The computation time required to obtain the results in Figs. 8-10 is listed in Table 2. The application of the AIMM347

is in general more costly than the direct integration when one takes into account the solution for the manifolds. The348

numerical integration of the master equations, however, is very cheap, since they are only two equations, and it takes349

only seconds to complete.350

6.2 Realistic rotor-foundation system351

In this example, in order to evaluate the applicability of the proposed method, a more complex rotor system is studied.352

The mesh of the rotor is shown in Fig. 14a, and it consist of a multi-stepped shaft with three disks and two bearings.353

The rotor has a total length of L = 2.5 m, weights Wr = 17.94 kN, and it is discretized into 26 elements and 27354
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nodes, where two 1D beams are used in both orthogonal directions (torsional and axial motions are neglected). Thus,355

each node has 4 DOFs, being two translations and two rotations. The mesh data can be consulted in [60] or [61]. The356

rotor is connected to the foundation through the bearings, positioned at nodes 6 (bearing 1) and 23 (bearing 2). The357

bearings are cylindrical with diameters db1 = 160 mm and db2 = 180 mm, lengths Lb1 = 88 mm and Lb2 = 98 mm,358

radial clearances cr1 = 0.12 mm and cr2 = 0.135 mm, and fluid viscosity µ = 0.027 Pa·s.359

The foundation consist of a steel plate of size 120 × 1200 × 3000 mm3, weighting Wf = 33.27 kN. It is modeled360

using 3D linear hexahedral elements, with 8 nodes per element and 3 DOFs per node (three translations in x, y and361

z) [62]. The mesh consist of 208 elements and 350 nodes, and it is shown in Fig. 14b. The rotor is connected to two362

nodes of the plate at the top surface, as shown in the figure. Also, the plate is held in place by isotropic supports with363

stiffness Kf = 1010 N/m and damping Cf = 5.8× 105 Ns/m at its four lower surface vertices. The material properties364

of the rotor and foundation are the same as listed in Table 1.365

The total number of DOFs in the system is N = 1158. Prior to the application of the AIMM, the system is reduced366

by means of the CMS. The boundary DOFs in the rotor are the nodes with bearings (8 DOFs), while in the foundation367

they are the DOFs with elastic supports (12 DOFs) and the connection with the rotor (6 DOFs). The number of fixed368

interface modes retained for the rotor and foundation are 6 and 4, respectively. These numbers were obtained through369

nonlinear dynamic analysis, and provided satisfactory results. With the CMS, the system is reduced to nB + nI = 36370

DOFs, with nB = 26 and nI = 10.371

Figure 15 shows a comparison between the first 7 eigenvalues of the full system and the reduced one. One can372

note good accuracy with the reduced system up to mode 6. Figure 16 shows the first 6 vibrating modes of the373

rotor-foundation system at Ω = 4000 rpm, where the displacements were rescaled for better clarity. Also, only the374
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Fig. 14 Realistic rotor-foundation system: rotor (a) and foundation (b) meshes.
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displacements of the upper surface of the foundation is shown. From these figures, one notes that the first two modes,375

(a)-(b), correspond to the conical and cylindrical modes of the rotor, and the fourth and fifth, (d)-(e), the elastic376

modes. The third (c) and sixth (f) modes are foundation-dominant, and, in the latter mode, the amplitude of the377

foundation is much higher than that of the rotor, as its displacement is weakly seen.378

The next step consist in applying the AIMM to the system reduced by the CMS. Firstly, one needs to choose a379

master mode to enslave the remaining modes. The best strategy is to find the mode with the lowest absolute value in380

the real part in the eigenvalues [29]. By looking at Fig. 15b, it is clear that the best candidate is mode 6, which is the381

slowest mode up to around 5000 rpm, where the system becomes unstable due to oil-whip. Since this instability is not382

considered here, the master mode chosen is the sixth mode. Here, it is also worth mentioning that the rotor-foundation383

system has 8 overdamped modes. As discussed in the previous example, these modes must be included in the nonlinear384

dynamic analysis. Due to the complexity of the system, no further reduction, without losing accuracy, was possible385

in Eq. (34). Thus the number of modes considered was 2n = 2(nB + nI) = 72, being 8 of these overdamped and 32386

vibrating modes. Additionally, the number of shape functions used in expansions (43)-(44) where Nu = Nv = 3 and387

Nϕ = 5, which were obtained from a convergence study similar to the previous example (Fig. 7).388

From the Campbell diagram, Fig. 15, one notes that a safe operating range for the rotor system, that is, with no389

critical speeds, is between 3000 rpm and 4000 rpm. Thus, this was the range studied. In addition, the unbalance of390

the real turbomachine in which the model is based upon is estimated as mun = 0.0213 kg·m, and it is placed at disk 2391

(node 15 in Fig. 1a).392
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Fig. 15 Comparison between the first seven eigenvalues of the full and the CMS-reduced system: imaginary (a) and real part (b).
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Fig. 16 First six vibrating modes of the rotor-foundation system at Ω = 4000 rpm (Note: the displacements of both rotor and foundation

were rescaled by 1000× for the sake of clarity, and only the upper surface of the plate is shown).
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Fig. 17 Radial displacements and orbits of the rotor at bearing 1 for: Ω = 3000 rpm (a)-(b) and Ω = 4000 rpm (c)-(d).



Model Reduction of Rotor-Foundation Systems Using the Approximate Invariant Manifold Method 27

1.94 1.95 1.96 1.97 1.98 1.99 2
0.01

0.015

0.02

0.025

0.03

0.035

0.04

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(a)
1.46 1.47 1.48 1.49 1.5

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

-0.05 -0.025 0 0.025 0.05

-0.05

-0.025

0

0.025

0.05

(c)

(b) (d)

Fig. 18 Radial displacements and orbits of the rotor at disk 2 for: Ω = 3000 rpm (a)-(b) and Ω = 4000 rpm (c)-(d).

Figures 17-19 show the radial displacements and orbits at several points of the rotor-foundation system for Ω =393

3000 rpm and Ω = 4000 rpm: of the rotor at bearing 1 (node 6 in Fig. 1a), disk 2 (node 15 in Fig. 1a), and of the394

foundation at the connection with bearing 1 (Fig. 1b). Similarly to the previous example, the linear solution is also395

shown to illustrate the degree of nonlinearity. For Ω = 3000 rpm, the nonlinear effect is weak, and the linear response is396

very similar to the nonlinear one. At this speed, the highest excited mode correspond to a foundation-dominant mode,397

namely mode 3 (See Fig. 16), and this is seen in the response by the higher vertical than horizontal displacements398

(due to the foundation bending). This highlights the importance of considering the flexibility of the foundation in the399

response. When Ω = 4000 rpm, the nonlinearity is apparent, specially at bearing 1, Fig. 17c-d. The main mode excited400

here is mode 6. By comparing the results of the reference solution with the AIMM ones, one notes good agreement.401

The AIMM provides accurate solutions for the high dimensional system by the integration of 2 equations, leading to402

a great reduction in numerical cost, as the total number of DOFs of the system is N = 1158.403

Figures 20-21 show the approximate manifolds for the first overdamped and first vibrating modes of the system for404

different unbalance phases ϕ. These manifolds are obtained from the solution of the Galerkin equations (47). There405

are a total of 70 manifolds, which correspond to the slave modes of the system. Similar to the previous example, one406
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Fig. 19 Radial displacements and orbits of the foundation at connection with bearing 1 for: Ω = 3000 rpm (a)-(b) and Ω = 4000 rpm

(c)-(d).
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Fig. 20 Approximate invariant manifold P1(u, v, ϕ) (first overdamped mode) of the realistic rotor-foundation for Ω = 4000 rpm and

varying phase: ϕ = 0 (a), ϕ = π/4 (b) and ϕ = π/2 (c).

notes that the manifolds are curved surfaces in motion. This motion, and the shape of the surfaces, is what allows a407

good agreement between the solution of the pair of equations (48) and the full high-dimensional system.408
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Fig. 21 Approximate invariant manifold P9(u, v, ϕ) (first vibrating mode) of the realistic rotor-foundation for Ω = 4000 rpm and varying

phase: ϕ = 0 (a), ϕ = π/4 (b) and ϕ = π/2 (c).

Table 3 Computation time comparison for the obtention of Figs. 17-19* (results are in the format hours : minutes : seconds).

Case CMS solution AIMM: solution AIMM: manifold obtention (offline)

Ω = 3000 rpm 00:36:05 00:00:02 02:46:28

Ω = 4000 rpm 00:37:01 00:00:02 03:26:13

*Results obtained with a laptop with an Intel(R) Core(TM) i7-7500U CPU @ 2.90 GHz.

Table 3 lists the computation time required to obtain the solutions shown in Figs. 17-19. Due to a high number of409

slave modes, the solution of the manifolds is computationally expensive and often takes longer than direct numerical410

integration. One can reduce the number of slave modes, sacrificing some accuracy, to decrease computational cost. It411

is important to note that integrating the master equations is fast as they consist of only a pair of equations.412

6.3 Discussion413

It is worth mentioning here some numerical aspects of the AIMM. The main disadvantage of the method lies in the414

solution of the manifold equations, Eq. (42), which are highly nonlinear PDEs. Different methods were employed in the415

literature to solve these equations [31]. Here, the Galerkin method is used, which presented accurate solutions. However,416

this approach still requires a large computational cost, as the number of equations to be solved are (2n− 2)NuNvNϕ,417

making the method applicable mainly to systems that can be reduced with a small number of modes. In the first418

example, since the system was simple, the solution of the manifold equations was very fast as shown in Table 2. In the419

second example, with the more complex rotor system, the solution took a bit longer, since the number of equations420
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was larger, as Table 3 shows. Moreover, when the initial conditions are obtained from the underlying linear system,421

the convergence is very fast, taking 4 to 5 iterations using the fsolve function of MATLABTM.422

One should bear in mind that the numerical cost associated with the solution of the manifold equations is an423

offline cost, which means that they do not affect the actual solution of the system. Similar numerical costs exists424

for reduction methods based on the Proper Orthogonal Decomposition (POD), for example, which is a well-known425

method to obtain reduced order models [63,64]. Given that the manifolds were solved, the reduction provided by the426

AIMM is simply astonishing: with just two equations the response of the whole system is accurately predicted. Not427

only this, but the solution gives the steady-state responses directly (see Fig. 13). Thus, since the cost of numerical428

integration is negligible, the only cost in the AIMM is the solutions of Eqs. (42).429

The nonlinearity considered in this work was due to the fluid-film bearings. However, the method proposed is430

very general, and can be applied in a wide range of nonlinearities. Some possible applications are rotor-stator rubbing431

[65], geometric nonlinearities from large displacements [66,67], forces from seals [68], from magnetic bearings in the432

nonlinear regime [69], and from friction joints [53].433

7 Conclusions434

This work presents a method to obtain fast solutions for high-dimensional rotor-foundation systems subjected to435

nonlinear forces. The basis of the method consist in, firstly, projecting the system (reduced by the CMS) in the linear436

eigenspace, and then selecting a master mode to enslave all remaining modes. The master mode should be the one with437

the smallest absolute value of the real part of the eigenvalue (the slowest mode). The approximate manifolds gives the438

relation between the master and the slave modes, and they are obtained from the solution of nonlinear PDEs. With439

these relations at hand, the equations of motion for the master modes can be solved, and one can obtain the global440

responses by solving a single pair of equations.441

The method was studied in two different systems: a simple and a complex rotor-foundation system. In both cases,442

the nonlinearity considered comes from fluid-film forces of the bearings. The AIMM was then compared with the443

responses obtained with the direct numerical integration of the equations. The results show a great capability of444

reducing the numerical cost and still retaining good accuracy. Therefore, the AIMM is established as a reliable method445

to perform nonlinear dynamic analysis in rotor-foundation system.446
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