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Abstract—The current research explores the capabilities of
Rayleigh and Van der Pol equations from the standpoint of
accuracy of vortex-induced vibrations (VIV) modelling for low
mass ratio cases. The two degree-of-freedom rigid structure
model suggested by Postnikov et al. [1] is used as the base
case, and the fluid equations are modified to create 7 options
as alternatives to this model. The considered options constitute
variation in damping terms, including introduction of additional
damping coefficients (as different Van der Pol or Rayleigh
parameters). Then the calibration is performed to identify the
best set of coefficients to provide accurate match with the
experimental data. The main aim is to predict correctly the
development of the super-upper branch [2]. Experimental results
by Stappenbelt and Lalji [3] for mass ratio 2.36 are utilised for the
model calibration. Then the obtained models are validated using
data from the series of experiments by Stappenbelt and Lalji
[3] and published experimental data from other sources [2, 4].
The obtained results demonstrate the advantages of changes in
damping terms. Overall, it is concluded that Rayleigh oscillator
can be recommended to approximate the lift coefficient for low
mass ratios.

Keywords— elastically-mounted cylinder, low mass ratio, wake
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I. INTRODUCTION

Vortex-induced vibrations (VIV) develop as a result of in-
teraction between slender structure and fluid flow. Experienced
by risers, free spans of pipelines in water, and by antennas,
suspension bridges in the air, they can lead to increased fatigue
and shorter service life of the structures. Accurate estimation
of the oscillations of such structures due to pressure variations
caused by the vortex formations in the flow is the main
concern in the design process. To ensure their safe and reliable
operations, displacements of the structure, applied fluid forces
and probability of failure need to be modelled appropriately.

The highest safety risks appear when the resonance condi-
tion (or so-called ”lock-in”, or synchronization state) develops
between the fluid and the structure. In the case of increasing
flow velocity, the amplitude of displacement significantly in-
creases at lock-in, reaches its peak value and then reduces back
to very small values. This phenomenon is observed when the
frequency of vortex formation matches the natural frequency
of the structure. It also manifests in peak values of fluid force
fluctuations.

Govardhan and Williamson in 2001 [5], Jauvtis and
Williamson in 2004 [2] collected the evidence to distinguish
development of the resonance in cases with low and high

mass ratio. Figure 1a illustrates the displacement amplitudes
observed for mass ratio below 6 (low): the start of amplitude
increase constitute initial branch, the peak values form super-
upper branch, and the resonance decays as a lower branch.
Figure 1b represents development of the resonance state for
mass ratio higher than 6 (high), characterised by much lower
maximum amplitudes of displacement, and smaller jump from
the upper to the lower branch. Overall, their series of experi-
ments demonstrate an apparent difference between the shapes
of peak tops: low mass ratio provides an ”angular” top, with
sudden drop from the highest values to the lower branch; and
high mass ratio implies a more ”circular” top.

This well known classification of cases has a significant
meaning not only for experimental branch of VIV studies,
but also for modelling. The existing experimental evidence
of different development of resonance for low and high mass
ratio suggests that it might be essential to apply either different
models for these cases, or different modifications of the same
model, or different sets of empirical coefficients, instead of
one model with the same coefficients. The attempt to develop
the most accurate modifications of the same model for low
mass ratio is performed by authors of the current study
using existing model for 2DOF rigid structure developed by
Postnikov et al. [1] as a starting point.

The paper is organised as follows. Section II gives a brief
overview of wake oscillator method. Section III illustrates the
influence of fluid damping terms on the accuracy of prediction
utilising the original model for 2 degrees-of-freedom rigid
structure [1], and provides the details of the considered fluid
equations. Section IV discusses the conducted calibration
for all the suggested versions of the model. Results of the
following validation with the data from different experimental
set-ups are given in Section V. The main research outcomes
are summarised in Section VI.

II. WAKE OSCILLATOR METHOD

The current study is performed using wake oscillator ap-
proach. This semi-empirical method allows to evaluate fluid
forces acting on the structure directly without calculating char-
acteristics of the fluid flow around the structure. Phenomenon
of VIV is three-dimensional, but most of the early models of
this type, like Hartlen and Currie [6], Iwan and Blevins [7]
and others, were able to describe 1 degree-of-freedom systems
where the only oscillations of the structure in the direction



Fig. 1. Development of the resonance state with low (a) and high (b) mass ratio according to Govardhan and Williamson [5].

perpendicular to the flow were considered. Modern models are
able to predict behaviour of the structure with 2 or 3 degrees-
of-freedom, as it is given in Ge et al. [8], Bai and Qin [9],
Zanganeh and Srinil [10], to name a few.

Typical wake oscillator equations are constructed to estimate
lift and drag forces FL and FD which are functions of their
dimensionless parts, or lift coefficient CL and drag coefficient
CD, and according to Green [11]:

FL = F (C̈L, ĊL, CL); FD = F (C̈D, ĊD, CD). (1)

And the fluid forces are commonly defined as:

FL =
1

2
ρfDCLU

2; FD =
1

2
ρfDCDU

2, (2)

where ρf is the fluid density, D is the structure diameter, and
the velocity of the flow is U .

The basic idea of wake oscillator method is that fluctuations
of fluid coefficients CD and CL can be evaluated using
oscillators which can generate self-excited limit cycle, for
example, using Rayleigh or Van der Pol equations. These
fluctuations are presented in many studies as wake coefficients
w and q :

w =
2Cfl

D

Cfl
D0

=
2(CD − CD0)

Cfl
D0

; q =
2CL

CL0
, (3)

where CD0, Cfl
D0 and CL0 are drag, fluctuating drag and lift

coefficients of stationary structure. Thereby, wake oscillator of
Van der Pol type for the transversal direction reads as [12]:

q̈ + εΩF (q2 − 1)q̇ + Ω2
F q = Ay ÿ. (4)

This equation contains the coupling coefficient Ay; transver-
sal acceleration ÿ; dimensional vortex shedding frequency

ΩF ; and fluid damping (Van der Pol) parameter ε. In wake
oscillator method, fluid equation is applied for each direction
and they are coupled with the structural equations. Motion of
the structure, for example, in transversal direction, contains a
transversal projection of the fluid force vector (Ffl)y in the
RHS:

mÿ + rsẏ + hy = (Ffl)y. (5)

In this simplified equation of motion of the rigid structure,
m∗ represents the sum of mass of the structure and mass of the
displaced fluid; y is transversal displacement; rs is structural
damping, and h is structural stiffness. Equations for in-line
motion of the structure and drag fluctuations are designed in
the similar way.

The current research is focused on modification of damping
terms in two fluid equations in already developed model for
2 degree-of-freedom rigid structure [1], detailed in the next
section.

III. VAN DER POL VS. RAYLEIGH DAMPING

The model by Postnikov et al. [1] was derived for the case of
the rigid bare cylinder fixed on elastic supports. The structure
is capable to oscillate in the direction of the flow (in-line) and
perpendicular to the flow (cross-flow), and, therefore, it has
2 degrees-of-freedom. Thereby, the initial model employs two
structural equations for non-dimensional displacements X and
Y with combination of the fluid forces in the RHS, and two
wake equations. Van der Pol damping is applied in the original
model in both in-line and cross-flow fluid equations as terms



TABLE I
WAKE OSCILLATOR EQUATIONS EMPLOYED IN THIS RESEARCH

Option Equations

Van der Pol - Van der Pol (Original model) ẅ − 2εxΩRẇ + 2εxΩRẇw2 + 4Ω2
Rw = AxẌ;

q̈ − εyΩRq̇ + εyΩRq̇q2 + Ω2
Rq = AyŸ ;

Rayleigh - Rayleigh ẅ − 2εxΩRẇ + 2 εx
ΩR

ẇ3 + 4Ω2
Rw = AxẌ;

q̈ − εyΩRq̇ +
εy
ΩR

q̇3 + Ω2
Rq = AyŸ ;

Rayleigh - Van der Pol ẅ − 2εxΩRẇ + 2 εx
ΩR

ẇ3 + 4Ω2
Rw = AxẌ;

q̈ − εyΩRq̇ + εyΩRq̇q2 + Ω2
Rq = AyŸ ;

Van der Pol - Rayleigh ẅ − 2εxΩRẇ + 2εxΩRẇw2 + 4Ω2
Rw = AxẌ;

q̈ − εyΩRq̇ +
εy
ΩR

q̇3 + Ω2
Rq = AyŸ ;

Modified Van der Pol - Modified Van der Pol ẅ − 2εx2ΩRẇ + 2εx1ΩRẇw2 + 4Ω2
Rw = AxẌ;

q̈ − εy2ΩRq̇ + εy1ΩRq̇q2 + Ω2
Rq = AyŸ ;

Modified Rayleigh - Modified Rayleigh ẅ − 2εx1ΩRẇ + 2 εx2
ΩR

ẇ3 + 4Ω2
Rw = AxẌ;

q̈ − εy1ΩRq̇ +
εy2

ΩR
q̇3 + Ω2

Rq = AyŸ ;

Modified Rayleigh - Modified Van der Pol ẅ − 2εx1ΩRẇ + 2 εx2
ΩR

ẇ3 + 4Ω2
Rw = AxẌ;

q̈ − εy2ΩRq̇ + εy1ΩRq̇q2 + Ω2
Rq = AyŸ ;

Modified Van der Pol - Modified Rayleigh ẅ − 2εx2ΩRẇ + 2εx1ΩRẇw2 + 4Ω2
Rw = AxẌ;

q̈ − εy1ΩRq̇ +
εy2

ΩR
q̇3 + Ω2

Rq = AyŸ ;

Fig. 2. Influence of the damping terms with the same set of coefficients onto in-line (a) and cross-flow (b) displacements: - system with Van der Pol
in-line and Van der Pol cross-flow equations; - system with Rayleigh in-line and Van der Pol cross-flow equations; - system with Rayleigh in-line and
Rayleigh cross-flow equations; - system with Van der Pol in-line and Rayleigh cross-flow equations.



TABLE II
SELECTED CALIBRATED VERSIONS OF THE MODEL APPLICABLE AT LOW MASS RATIO (FROM 2 TO 5) ON THE SET-UP BY STAPPENBELT AND LALJI [3] TO

PREDICT BOTH IN-LINE AND CROSS-FLOW RESPONSE

Option CL0 CD0 Cfl
D0 εx εy Ax Ay CA K

Van der Pol - Rayleigh 1.87 2.30 0.47 2.1276 0.0644 12.24 3.78 4.06 0.94

Modified Van der Pol - Modified
Rayleigh

1.01 2.03 0.22 0.6584, 0.6651 0.1130, 0.0326 11.97 4.51 2.42 1.19

Modified Rayleigh - Modified
Rayleigh

0.77 2.12 0.20 0.7270, 0.7046 0.0042, 0.0125 11.95 5.27 1.84 1.04

2εxΩR(w2 − 1)ẇ and εyΩR(q2 − 1)q̇. Full basic model in
non-dimensional form reads as:

Ẍ + 2ζẊ + ω2
stX =

a

2πSt
Ω2

R +
b

4πSt
Ω2

Rw − (6)

−2aΩRẊ +
c

2
ΩRqẎ + aπStẎ Ẏ +

+2aπStẊẊ − bΩRwẊ;

Ÿ + 2ζẎ + ω2
stY =

cΩ2
R

4πSt
q − aΩRẎ + (7)

+2aπStẊẎ − b

2
wẎ ΩR − cqẊΩR;

ẅ + 2εxΩR(w2 − 1)ẇ + 4Ω2
Rw = AxẌ; (8)

q̈ + εyΩR(q2 − 1)q̇ + Ω2
Rq = AyŸ . (9)

Symbol ΩR denotes dimensionless vortex shedding fre-
quency; and ζ is damping ratio. The dimensionless coefficients
a, b and c depend on the Strouhal number St, which is
assumed 0.2 in this research:

a =
CD0ρfD

2

4πm∗St
; b =

Cfl
D0ρfD

2

4πm∗St
; c =

CL0ρfD
2

4πm∗St
. (10)

Original damping terms of Van der Pol type in fluid equa-
tions can be modified in the way given in the Table I, forming
alternative damping couples. For example, option Rayleigh -
Van der Pol from the Table I means that Rayleigh damping is
applied in in-line direction, and Van der Pol damping is applied
in cross-flow direction. Modified Rayleigh and Modified Van
der Pol dampings are suggested by the authors of this research
to investigate if there are benefits in separate calibration
of fluid damping coefficients εx1, εx2, εy1, εy2 versus classic
εx, εy .

The influence of damping terms in the fluid equations on
the predicted development of the resonance state in terms of
displacement amplitudes in in-line and cross-flow direction is
illustrated in Figure 2. This figure shows that when applying
the same set of coefficients, Van der Pol damping allows to
obtain a more ”circular” shape of the top of the resonance
peak, while Rayleigh damping provides the peak with a more
abrupt drop. This influence can be observed in displacement
statistics for both directions.

8 alternative versions of the existing model listed in the Ta-
ble I are calibrated using the optimization algorithm described
in the next section.

IV. CALIBRATION RESULTS

Each modification of the model developed in the previous
section is calibrated using constrained nonlinear minimization
from Matlab Optimization Toolbox. Identification of the work-
ing sets of coefficients is performed utilising the empirical
data from [3] for low mass ratio 2.36 in cross-flow direction
only. The result for in-line direction is just printed out and
evaluated for the error. The displacement amplitudes provided
by the model are calculated using the standard deviation of the
generated displacement signal. The minimized error between
the model prediction and experimental data for cross-flow
direction is estimated as a sum of absolute squared differences.
The weighting coefficients are applied in calculation of the
error to emphasize the importance of correct prediction of the
super-upper branch with the abrupt drop from the highest peak
value to lower branch.

The resulting best sets of coefficients are listed in the Table
II, identified by the least delivered errors in both in-line and
cross-flow directions. Parameter K in the Table II constitutes
the calibrated shift in terms of reduced velocity of the flow
of the point of resonance start. Figure 3 demonstrates the
results of calibration of one of the identified options - system
of Modified Van der Pol - Modified Rayleigh equations. All
options listed in the Table II provide approximately the same
high quality of the fit for mass ratio 2.36.

V. VALIDATION RESULTS

After calibration, all the best fit options for mass ratio 2.36
have been tested on different sources of experimental data.
It was confirmed, that modifications of the original model
provide a decent fit with experimental data from the same
set-up [3] as the calibration was performed, and with the data
from other experiments conducted by Jauvtis and Williamson
[2] and by Blevins and Coughran [4].

Demonstration of the quality of prediction is given on ex-
ample of the system Modified Van der Pol - Modified Rayleigh
from the Table II. Figure 4 shows the results of comparison
between the model prediction and actual measurements for
mass ratio 3.68 [3] on the same experimental set-up for both
in-line and cross-flow direction. Figure 5 provides illustration
how the selected modification of the model is performing on
the experimental set-up utilised by Jauvtis and Williamson [2]
for mass ratio 2.6 for both in-line and cross-flow direction.
And Fig. 6 demonstrates the successful fit for cross-flow



Fig. 3. Modified Van der Pol - Modified Rayleigh system calibrated using the data for mass ratio 2.36 by Stappenbelt and Lalji [3]: a) obtained in-line
response; b) calibrated cross-flow response. is the model prediction, and denotes experimental measurements.

Fig. 4. Obtained in-line (a) and cross-flow (b) response for mass ratio 3.68 from [3] utilising the system of Modified Van der Pol - Modified Rayleigh
equations, calibrated with respect to mass ratio 2.36 from [3]. is the model prediction, and denotes experimental measurements.

direction only with the data collected in experiments by
Blevins and Coughran [4] for mass ratio 2.8.

Undertaken verification proves that the borders of applica-
tion of the selected calibrated modifications of the original
model are from mass ratio 2 to approximately mass ratio 5.

VI. CONCLUSIONS AND FUTURE WORK

The main conclusion from the conducted research is that
it is possible to develop a modification of the model for 2
degree-of-freedom rigid structure which will provide accurate
prediction throughout different experimental set-ups for cases
with mass ratio from 2 to 5 by improving wake equations.

The second outcome is that, for low mass ratio cases, all
successful combinations of oscillators, presented in the Table
II, contain cross-flow Rayleigh equation in original or modified
version. Hence, Rayleigh damping can be recommended as the

best option of damping term in cross-flow wake equation to
correctly model raise and fall of the super-upper branch.

The next stage of this research is to extended this analysis
for a wider range of available oscillators and mass ratios, and
explore different calibration algorithms.
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Fig. 5. Comparison of the model prediction and experimental data by Jauvtis and Williamson for mass ratio 2.6 [2] for: a) in-line, and b) cross-flow direction.
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and Coughran for mass ratio 2.8 [4] for cross-flow direction only. is the
model prediction, and denotes experimental measurements.
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