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Abstract

The square G2 of a graph G is the graph on V (G) with a pair of vertices uv
an edge whenever u and v have distance 1 or 2 in G. Given graphs G and H, the
Ramsey number R(G, H) is the minimum N such that whenever the edges of the
complete graph KN are coloured with red and blue, there exists either a red copy
of G or a blue copy of H.

We prove that for all sufficiently large n we have

R(P 2
3n, P 2

3n) = R(P 2
3n+1, P 2

3n+1) = R(C2
3n, C2

3n) = 9n − 3
and R(P 2

3n+2, P 2
3n+2) = 9n + 1.

We also show that for every γ > 0 and ∆ there exists β > 0 such that the
following holds: If G can be coloured with three colours such that all colour classes
have size at most n, the maximum degree of G is at most ∆, and G has bandwidth
at most βn, then R(G, G)  (3 + γ)n.
Mathematics Subject Classifications: 05D10

1 Introduction

In this paper we want to study Ramsey numbers of squares of graphs. For k a positive
integer, the power Gk of a graph G is the graph on V (G) with a pair of vertices uv an
edge whenever u and v have distance at most k in G. The case with k = 2 is of interest
here, and we define the square of G as G2.

Given graphs G and H, the Ramsey number R(G, H) is the minimum N such that
whenever the edges of the complete graph on N vertices KN are coloured with red and
blue, there exists either a red copy of G or a blue copy of H.

The study of Ramsey numbers has a long history, and in general it is hard to find
even good upper and lower bounds on R(G, H). In this paper, we are interested in the
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case that G and H are sparse graphs. In this case, if G is connected and v(G)  σ(H),
one has the lower bound

R(G, H) 

χ(H) − 1


v(G) − 1


+ σ(H). (1)

Here v(G) denotes the number of vertices of G, χ(H) is the chromatic number of H,
and the chromatic surplus σ(H) is the minimum, over all χ(H)-colourings of H, of the
smallest colour class size. This lower bound is due to Burr [5], with the corresponding
construction being χ(H)−1 vertex-disjoint red cliques each on v(G)−1 vertices, plus one
further red clique on σ(H) − 1 vertices, and all other edges blue. When this construction
gives the Ramsey number (i.e. when we have an equality in (1)), we say that G is H-good.

For fixed graphs H, the class of graphs G which are H-good is quite well understood;
see Allen, Brightwell and Skokan [3] and Nikiforov and Rousseau [10]. However much less
is known about the case when H grows with v(G), or when H = G. Burr [5] conjectured
that for fixed ∆, every connected graph G with ∆(G)  ∆ and v(G) large enough is G-
good. This statement holds for G = Pn [7] and G = Cn [4, 11]. However it was disproved
by Graham, Rödl and Ruciński [8], who showed that it fails badly for expander graphs,
and again in [3], where a lower bound on R(P k

n , P k
n ) better than (1) is shown for each

k  2. In the latter paper, however, it is shown that Burr’s conjecture is off by at most a
factor (roughly) 2 when G has bounded maximum degree and sublinear bandwidth. Here
the bandwidth of G is the smallest k such that G is a subgraph of P k

v(G).
In [3], a value for the Ramsey numbers of squares of paths, and squares of cycles on a

number of vertices divisible by 3, is conjectured. We observe that the conjectured value
is wrong by one, and prove the modified conjecture.

Theorem 1. There exists n0 such that for all n  n0 we have:

R(P 2
3n, P 2

3n) = R(P 2
3n+1, P 2

3n+1) = R(C2
3n, C2

3n) = 9n − 3 and R(P 2
3n+2, P 2

3n+2) = 9n + 1.

The lower bound part of this theorem is the following construction from [3]. We take
disjoint vertex sets X1, X2, Y1, Y2 each with 2n − 1 vertices, plus Z with n − 1 vertices.
We colour edges within each Xi blue and within each Yi red. We colour edges in the
bipartite graphs (X1, X2) and (Xi, Z) red, and in (Y1, Y2) and (Yi, Z) blue. We colour
(X1, Y1) and (X2, Y2) blue, and (X1, Y2) and (X2, Y1) red. Finally, we add a single vertex
z, which sends blue edges to X1 ∪ X2 and red to Y1 ∪ Y2. The edges within Z ∪ {z} may
be coloured arbitrarily, as illustrated in Figure 1. A quick case analysis, part of our proof
of Theorem 1, demonstrates that this construction does not contain a monochromatic
P 2

3n. Furthermore, we can add one extra vertex to each of X1, X2, Y1, Y2 and still have no
P 2

3n+2.
It is natural to ask for the Ramsey numbers R(C2

3n+1, C2
3n+1) and R(C2

3n+2, C2
3n+2).

Observe that (for large n) both these graphs have chromatic number 4 and chromatic
surplus respectively 1 and 2, so Burr’s construction shows R(C2

3n+1, C2
3n+1)  3(3n) + 1

and R(C2
3n+2, C2

3n+2)  3(3n + 1) + 2 respectively. These numbers are matched by the
construction of Figure 1 exactly (with X1, X2, Y1, Y2 having respectively 2n and 2n + 1
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2n − 1X1

2n − 1X2

n − 1Z

2n − 1 Y1

2n − 1 Y2

z

Figure 1: Lower bound construction

vertices); it seems reasonable to believe that this is the correct value for the Ramsey
number, but we do not prove it; our approach requires 3-colourability of H.

In addition, we give a general upper bound on Ramsey numbers for 3-colourable
graphs with bounded maximum degree and sublinear bandwidth, which P 2

3n demonstrates
is asymptotically tight.

Theorem 2. Given γ > 0 and ∆, there exist β > 0 and n0 such that for all n  n0 the
following holds. Suppose that H is a graph with ∆(H)  ∆, with bandwidth at most βn,
and with a proper vertex 3-colouring all of whose colour classes have at most n vertices.
Then R(H, H)  (9 + γ)n.

We recall from [3] that the bandwidth restriction in this theorem is necessary. Graham,
Rödl and Ruciński [8] constructed n-vertex graphs H such that R(H, H)  2c∆n where
∆ = ∆(H); from this it can be shown that for each given β > 0, if ∆ is large enough
there are n-vertex graphs H with bandwidth at most βn and maximum degree at most
∆ for which the theorem statement is false.

Our proof method uses the stability-extremal paradigm. Using the Szemerédi Reg-
ularity Lemma and the Blow-up Lemma, we will argue that to find a monochromatic
square of a path (or cycle, or 3-colourable sparse graph as in Theorem 2) it is enough to
find in the cluster graph (which has roughly 9t vertices) a monochromatic triangle factor
which is ‘triangle-connected’ (which we will define later). This standard reduction leaves
us looking, in a nearly complete edge-coloured graph, for a large monochromatic triangle-
connected triangle factor (TCTF). The main technical work of the paper (Lemma 3) is
then to prove that a 2-edge-coloured near complete graph on nearly 9t vertices will either
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contain a monochromatic TCTF on a little more than 3t vertices, or alternatively the
graph must be close to the extremal example.

To prove the main lemma, we use a second partitioning method, as in [3]: by an
iterative use of Ramsey’s theorem, we partition most of the 9t vertices into a collection
of bounded size (but quite large) monochromatic cliques. Obviously, it is easy to find a
large red triangle factor in a collection of red cliques: in addition, we will see that two
triangles in (or even using one edge of) the same red clique are ‘triangle-connected’ in
red, and that if two red cliques are not red triangle-connected, then almost all the edges
between them have to be blue. These observations were previously made in [3]. Where we
improve compared to that paper is that we are able to deal with the interaction between
cliques of different colours (whereas in [3] the minority colour cliques are thrown away).

2 Notation, main lemmas and organisation

Our graph notation is mainly standard. We will often write |G| for the number of vertices
in a graph G, and similarly |M | for the number of vertices covered by a matching M (i.e.
twice the number of edges of M); we also write G \ M for the graph G[V (G) \ V (M)] and
similarly for sets. We will often want to refer to edges (of a given colour) between two or
three vertex sets. We write (A, B) or (A, B, C) for respectively {ab : a ∈ A, b ∈ B} and
(A, B) ∪ (A, C) ∪ (B, C), the graph we refer to will always be clear from the context. We
will work with 2-edge-coloured graphs, and refer to the two colours as ‘red’ and ‘blue’.

Given a graph G, we say that edges uv and uw of G are triangle-connected if vw is an
edge of G, we extend this to an equivalence relation on edges by transitive closure. We refer
to the equivalence classes of this relation as triangle components. We will generally want
to talk about monochromatic triangle connection. Thus, if the edges of G are 2-coloured,
we say that two red edges are red triangle-connected if they are triangle-connected in the
subgraph of G consisting only of red edges, we define red triangle component similarly.
We also, slightly abusing notation, will say two red cliques (each with at least two vertices)
are red triangle-connected if an edge (and so all edges) in one is red triangle-connected
to an edge (so all edges) of the other. When the colour is clear from the context (as with
red cliques) we will often just say that the two cliques are triangle-connected.

A triangle factor in a graph G is a collection of vertex-disjoint triangles of G. It is a
triangle-connected triangle factor (TCTF) if all its edges lie in a single triangle component.
Again, we will usually want to talk about monochromatic TCTFs in a 2-edge-coloured
graph G, and as above a red TCTF means a TCTF in the subgraph of red edges of G.

At this point, we are in a position to give the case analysis proving the lower bound
part of Theorem 1.

Proof of Theorem 1, lower bounds. We begin by describing the red triangle components of
the lower bound construction for P 2

3n, P 2
3n+1 and C2

3n. The edges in Y1 and in (Y1, X2∪{z}),
form a red triangle component. Similarly, the edges in Y2 and (Y2, X1 ∪ {z}) form a red
triangle component. The edges (X1, X2, Z), together with all red edges in Z and all red
edges from z to Z which lie in a red triangle, form a red triangle component. Finally,
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each red edge from z to Z which is not in a red triangle forms a triangle component. The
blue components are analogous.

If the lower bound construction contains a red P 2
3n, then in particular it has a red

triangle component which contains a red triangle factor with n triangles. Checking each
entry in the list above, observe that removing Y1 from the first leaves an independent set:
X2 ∪ {z} contains no red edges. But Y1 contains only 2n − 1 vertices, so there cannot
be a 3n-vertex triangle factor in this component. The symmetric argument deals with
the symmetric second red triangle component. For the third case, removing Z leaves
a bipartite graph: the only red edges are those in (X1, X2). But Z contains only n − 1
vertices, so this component too contains no 3n-vertex red triangle factor. Finally, trivially
the single-edge components contain no red triangle factor. The argument to exclude a
blue P 2

3n is symmetric.
For the modification for P 2

3n+2, adding one vertex to each of X1, X2, Y1, Y2, the descrip-
tion of triangle components above, and the explanation that the red triangle component
containing (X1, X2, Z) does not contain P 2

3n continues to work. Observe that P 2
3n+2 has

independence number n + 1, so removing any 2n vertices leaves at least one edge. This
observation shows that the red component consisting of edges in Y1 and (Y1, X2 ∪ {z})
does not contain a red P 2

3n+2, and the other cases are symmetric.

The main work of this paper is to prove the following stability lemma, which states
that a 2-edge-coloured nearly complete graph G on almost 9t vertices either contains
a monochromatic TCTF on a little more than 3t vertices, or is close to the extremal
example. To state it, we need one further definition.

Given an edge-coloured graph G, let A ⊆ V (G) and v a vertex of G not in A. For
r ∈ R, we say that v is r-blue to A if va is a blue edge of G for all but at most r vertices
a ∈ A. Similarly, given A, B ⊆ V (G) disjoint, we say that (A, B) is r-blue if all but at
most r vertices in A are r-blue to B and vice versa. We define similarly r-red.

We will generally use this notation with r much smaller than the sets A and B, so
the reader can think of r-blue as meaning ‘almost all blue’. Our main lemma is then the
following.
Lemma 3. There exists δ0 > 0 such that for every 0 < h, λ < δ0 there exist ε0 > 0
and t0 ∈ N such that for every t  t0 and 0 < ε < ε0 the following holds. Let G be a
2-edge-coloured graph on (9 − ε)t vertices with minimum degree at least (9 − 2ε)t. Then
either G contains a monochromatic TCTF on at least 3(1 + ε)t vertices or V (G) can be
partitioned in sets B1, B2, R1, R2, Z, T such that the following hold.

(a) (2 − h)t  |B1| , |B2| , |R1| , |R2|  (2 + h)t,

(b) (1 − h)t  |Z|  (1 + h)t,

(c) all the edges in G[B1] and G[B2] are blue, and all the edges in G[R1] and G[R2] are
red,

(d) all the edges between the pairs (B1, R1), (B2, R2), (R1, Z) and (R2, Z) are blue, and
those between the pairs (B1, R2), (B2, R1), (B1, Z) and (B2, Z) are red,
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(e) the pair (B1, B2) is λt-red, and the pair (R1, R2) is λt-blue, and

(f) |T |  ht.

We will prove this lemma in Sections 4–7.
By applying the Regularity Method in a standard way, we are able to upgrade Lemma 3

to the following superficially similar statement, in which we replace TCTF with the square
of a path and cycle. We could generalise the following lemma to nearly-complete graphs
easily (as in Lemma 3), but we do not need it for the proof.

Lemma 4. For every α > 0 there exists δ > 0 and n0 ∈ N such that for every n > n0 the
following holds. Let N  (9 − δ)n, and let G be a 2-edge-colouring of KN . Then either G
contains both a monochromatic copy of P 2

3n+2 and of C2
3n, or we can partition V (G) into

sets X1, X2, Y1, Y2, Z and R such that the following hold.

(a) (2 − α)n  |X1| , |X2| , |Y1| , |Y2|  (2 + α)n,

(b) (1 − α)n  |Z|  (1 + α)n,

(c) |R|  αn,

(d) Vertices in the following pairs have at most αn red neighbours in the opposite part:
(X1, Y1), (X2, Y2), (Y1, Y2), (Y1, Z) and (Y2, Z),

(e) Vertices in the following pairs have at most αn blue neighbours in the opposite part:
(X1, X2), (X2, Y1), (X1, Y2), (X1, Z) and (X2, Z),

(f) Vertices in X1 and X2 have at most αn red neighbours in their own part,

(g) Vertices in Y1 and Y2 have at most αn blue neighbours in their own part.

We deduce this lemma from Lemma 3 in Section 8.
To complete the proof of Theorem 1, we need to show that a complete graph which

can be partitioned as in the above Lemma 4 and which has 9n − 3 vertices necessarily
contains both a monochromatic P 2

3n+1 and C2
3n; and 9n + 1 vertices suffices for P 2

3n+2. We
do this in Section 9.

Finally, to prove Theorem 2 it suffices to observe that if G satisfies the conditions of
Lemma 3 and can be partitioned as in that lemma, then it contains a monochromatic
TCTF on nearly 3t vertices. Together with a standard application of the Regularity
Method, which we sketch in Section 8, this completes the proof of Theorem 2.

3 Preliminary lemmas

In this section we prove some basic Ramsey-theoretic results which we will need to prove
Lemma 3, but for which we do not assume the conditions of Lemma 3.
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Lemma 5. There exist ε0 > 0 and t ∈ R such that the following holds for every 0 < ε < ε0
and t > t0. Let G be a graph on at least 2(1 + 3ε)t vertices with minimum degree at least
|G| − εt. Any 2-edge-colouring of the edges of G contains a red matching on 2(1 + ε)t
vertices or a blue connected matching on min {|G| − (1 + 2ε)t, 2 |G| − 4(1 + 2ε)t} vertices.

Proof. Let M be the largest red matching in G and let Y = V (G) \ M . We may assume
that M has at most 2(1 + ε)t vertices. Since M is maximal, every edge in M has one
endpoint with at most one red neighbour in Y . Indeed, if xy ∈ M and both x and y have
at least two neighbours in Y we can take x′ in Y adjacent to x and y′ distinct from x′

adjacent to y in Y , and obtain a red matching which is larger than M by substituting xy
with x′x and y′y.

Let S be the set of vertices in M with at most one red neighbour in Y . We can now form
a blue matching P (that we are going to show is connected) by greedily matching vertices
in S with blue neighbours in Y . We claim that P has at least min {|S| , |G| − |M | − 2εt}
edges. Indeed, since the process is greedy we stop only by finishing all the vertices of S
or when S \ P is not empty, but no vertex in S \ P has a blue neighbour in Y \ P , and
this means that there are less than 2εt vertices not yet covered by P in Y .

If we stopped for the first reason (if |S| < |G|− |M |−2εt) we can extend P to a larger
blue matching P ′: the induced graph over Y contains only blue edges by maximality of
M and there are some edges left in Y \ P . This extension of P can continue at least until
all but εt vertices in Y are covered: we stop only when all edges in Y have one vertex
covered by P ′. Therefore we have

|V (P ′)| 
in P  
2 |S| +

in Y  
|Y | − |S| − εt

2|S||M |

 |G| − |M |

2 − εt

 |G| − (1 + 2ε)t ,

as desired.
If on the other hand we stopped because no vertex in S \ P has a blue neighbour in

Y \ P (but S \ P is not empty). In particular, by definition of S this means that every
vertex in S \P has at most one neighbour in Y \P . This can only happen if |Y \ P | < 2εt
and hence all but at most 2εt vertices of Y are covered by P . This means that the size of
P is at least

|P |  2(|Y | − 2εt)
 2(|G| − |M | − 2εt)
 2(|G| − 2(1 + ε)t − 2εt)
= 2 |G| − 4(1 + 2ε)t ,

as desired.
In order to conclude, we must now argue that the matching P (or P ′) we obtained

is blue connected. But this is the case, indeed, every edge of P (or P ′) has at least one
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vertex in Y . Indeed |Y | = |G| − |M |  4εt and all edges in Y are blue. By the minimum
degree of G each vertex of Y is non-adjacent to at most εt vertices of Y , so any pair of
vertices of Y has a common neighbour in Y , and therefore Y is blue-connected.

Lemma 6. Let G be a graph with minimum degree strictly greater than 2
3 |G|. Then all

the edges of G are triangle-connected. Moreover, there exists a TCTF on all but at most
2 vertices of G.

Proof. We may notice that every three vertices of G share a common neighbour by the
minimum degree condition and the pigeonhole principle. As any pair of adjacent edges
spans three vertices, and these three vertices would have a neighbour in common outside
of themselves by our previous claim, we get that any pair of adjacent edges is triangle-
connected. This observation implies that connected components and triangle components
coincide in G (because of the minimum degree condition we have that G is connected and
therefore every pair of edges is triangle-connected). The existence of the TCTF is given
by a theorem of Corradi and Hajnal [6].

Lemma 7. There exist ε0 > 0 and t ∈ R such that the following holds for every 0 <
ε < ε0, and every t > 0. Let G be a graph on at least (5 + 100ε)t vertices with minimum
degree at least |G| − εt. Any 2-edge-colouring of the edges of G contains a red connected
matching over 2(1 + ε)t vertices or a blue TCTF on 3(1 + ε)t vertices.

Proof. Without loss of generality, we may assume G has (5+100ε)t vertices. We separate
cases.

Case 1: G has a maximal red connected component A that spans at least (4 + 5ε)t
vertices.

Let M be the largest red matching in A. Since A is a red connected component, we
may assume |M | < 2(1 + ε)t (recall that we use |M | for the number of vertices in M).
Since M is a maximal red matching in A, we know that every edge in A \ M is blue.

Because of our assumption on the size of A, we have that |A \ M | > (2 + 3ε)t. We
construct a matching P of size 2(1+ε)t in A\M greedily, which is possible by the minimum
degree of G. By Lemma 6, every pair of edges in A \ M is blue triangle-connected. In
particular P is blue triangle-connected.

We now greedily extend the edges of P to blue triangles by taking vertices in X =
V (G) \ (P ∪ M). We have no red edges from vertices of X to vertices of P : if x ∈ X is
not in A, this is since A is a red component, while if x ∈ X ∩ A then it is by maximality
of M . We have |X|  (1 + 96ε)t, and by the minimum degree of G any edge of P makes
a triangle with all but at most 2εt vertices of X, so the greedy extension succeeds.

Case 2: G has a maximal red connected component A that spans at least 3(1 + 2ε)t
but less than (4 + 5ε)t vertices.

If G has a red connected matching over 2(1 + ε)t vertices we are done, so we assume it
does not. By Lemma 5 applied to A, we obtain a blue connected matching P in A of size
at least 2(1 + ε)t. Now as in the previous case, we can greedily extend all the edges of P
to a blue triangle factor using vertices of V (G) \ A. Observe that every two blue adjacent
edges in A share a neighbour in V (G) \ A, therefore every blue connected component in
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A is also blue triangle-connected. In particular, P , and hence the blue triangle factor
containing it, are triangle-connected.

Case 3: G has two maximal red connected components A1 and A2 covering at least
(5 + 12ε)t vertices in total, and we are not in Cases 1 or 2.

Because we are not in Cases 1 or 2, A1 and A2 both span less than 3(1+2ε)t vertices and
hence at least (2 + 6ε)t vertices. In addition, neither component contains a red matching
on 2(1 + ε)t vertices, because otherwise we would be done. Therefore, each Ai contains a
blue connected matching Pi on precisely min


2 |Ai|−4(1+2ε)t, 2t


vertices by Lemma 5.

Indeed, for the possible values of |Ai|, we have 2 |Ai| − 4(1 + 2ε)t < |Ai| − (1 + 2ε)t.
Observe that every edge between A1 and A2 is blue and therefore P1 ∪ P2 is a blue
connected matching. We have |P1| , |P2|  4εt and hence if |P1| = 2t we see that P1 ∪ P2
has at least (1 + 2ε)t edges. Similarly if |P2| = 2t. If |P1| , |P2| < 2t then we have at least
|A1| + |A2| − 4(1 + 2ε)t  (1 + 4ε)t edges, in any case we have in P1 ∪ P2 at least (1 + 2ε)t
edges. Let Yi = Ai\Pi. We extend greedily the edges of P1 to a set of disjoint blue triangles
T1 using vertices of Y2, and in the same way we greedily extend the edges of P2 to a set of
disjoint blue triangles T2 using vertices of Y1. Note that |Yi| = 4(1+2ε)t− |Ai| > (1+2ε)t,
and therefore we are able to extend the edges of P1 ∪ P2, so we obtain a blue triangle
factor with at least (1 + ε)t triangles.

It now suffices to show that the triangle factor T1 ∪ T2 is triangle-connected. Because
every two blue incident edges in A1 share a neighbour in A2 and vice versa, we have that
both T1 and T2 are TCTFs. Without loss of generality we assume that |P1|  |P2|. We
know that |P1| = 2 |A1| − 4(1 + 2ε)t > 4ε. Let xy be an edge in P2, because every edge
between A1 and A2 is blue, and because of the minimum degree condition we have that
x and y share at least |P1| − 2εt blue neighbours in P1. Because P1 has a blue matching,
every set in P1 of size strictly bigger than |P1|

2 has an edge from P1. Therefore we have
that there exists zw in P1 such that G[{x, y, z, w}] is a blue clique with xy in P2 and zw
in P1. Because both P1 and P2 are triangle-connected, we are done.

Case 4: G is not in any of cases 1–3, i.e. there is no red component of size 3(1 + 2ε)t
or bigger, and no two red components cover (5 + 12ε)t or more vertices.

Let A1, A2, . . . be the maximal red connected components, ordered by decreasing car-
dinality. We have |A1| < 3(1 + 2ε)t and |A1| + |A2| < (5 + 12ε)t, and we can assume that
G does not have a red connected matching over 2(1 + ε)t vertices since otherwise we are
done.
Claim 8. The set of blue edges of G is triangle-connected.

Proof. Every blue edge in a component Ai is in a blue triangle with some vertex in a
different component Aj, so it suffices to prove that the edges between distinct components
all lie in the same triangle component. In particular, it is enough to show that for any
j, k  2 distinct, any a1aj an edge between A1 and Aj, and any bjbk an edge between Aj

and Ak, then a1aj and bjbk are triangle-connected. This last equivalence is due to the fact
that there are at least three red components (indeed, |V (G)| − |A1 ∪ A2| > 88εt).

Given a1, aj, bj, bk as above, let c be a common blue neighbour of a1, aj, bj not in
A1 ∪ Aj. This exists by minimum degree condition and by considering that a1, aj, bj are
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all in A1 ∪ Aj and there are at least 88εt vertices not in A1 ∪ Aj. Now let us take d a
common blue neighbour of c, aj, bj, bk in A1: this exists since c, aj, bj, bk are not in A1, and
using the minimum degree condition. We can now conclude since (a1ajc, ajcd, cdbj, dbjbk)
is a sequence of blue triangles that proves that a1aj and bjbk are triangle-connected. □

Because we showed that every blue edge is triangle-connected, it is sufficient to find
(1 + ε)t disjoint blue triangles. We are in one of the following cases.

Case A: Both A1 and A2 are larger than 2(1 + 20ε)t.
By Lemma 5 we can find blue matchings Mi ⊆ Ai on 2 |Ai| − 4(1 + 2ε)t vertices for

i = 1, 2. Indeed, because Ai < 3(1+2ε)t we have 2 |Ai|−4(1+2ε)t  |Ai|− (1+2ε)t. We
can greedily extend the matching M1 to a blue triangle factor using vertices in A2 \ M2:
because |A2 \ M2| = (4 + 8ε)t − |A2| > |A1| − (2 + 4ε)t + 2εt = |M1|

2 + 2εt we are able to
extend every edge in M1 to a blue triangle. Similarly we can extend all the matching M2
to a blue triangle factor using vertices in A1 \ M1. This two triangle factors are disjoint
and therefore they form a unique triangle factor that we denote with T . We can observe
that |T | = 3

2 |M1| + |M2| = 3(|A1| + |A2|) − 12(1 + 2ε)t.
Let us now denote U1 = A1 \ T , U2 = A2 \ T and W = V (G) \ (A1 ∪ A2). We have

|U1| = |A1| − |M1| − |M2|
2

= |A1| − 2 |A1| + 4(1 + 2ε)t + 2(1 + 2ε)t − |A2|
= 6(1 + 2ε)t − (|A1| + |A2|)  t .

Similarly we have |U2|  t. We can also notice that |W | = (5+100ε)t−(|A1|+ |A2|) 
88εt. Finally, let us observe that |U1| , |U2| > |W | + 4εt by our assumption on |G|.
Therefore we can find a blue triangle factor on (U1, U2, W ) covering 3 |W | vertices. Adding
this triangle factor to T we get a TCTF on

3(5 + 100ε)t − 3(|A1| + |A2|) + 3(|A1| + |A2|) − 12(1 + 2ε)t = (3 + 276ε)t

vertices.
Case B: A1 is larger than 2(1+3ε)t but all the other red components are smaller than

2(1 + 3ε)t.
Let M1 be a blue matching in A1 on 2 |A1| − 4(1 + 2ε)t vertices. Let U1 = A1 \ M1

and notice |U1|  4(1 + 2ε)t − |A1|. Because all the other red components are smaller
than 2(1 + 3ε)t, we claim there exists j such that (1 + 3ε)t <


j

i=2 Ai

  2(1 + 3ε)t,
and write U2 = j

i=2 Ai. Indeed, if |A2| > (1 + 3ε)t we can take j = 2, while if not
then we can increase j sequentially until the lower bound is satisfied. Since in the latter
situation we have |Aj|  |A2|  (1 + 3ε)t the upper bound is not exceeded. Finally, let
W = V (G) \ (A1 ∪ U2) and note that |W |  (3 + 94ε)t − |A1|.

Because of the size of U2, we can extend edges of the blue matching M1 to form a
triangle factor T in M1 ∪ U2 over 3 |A1| − 6(1 + 2ε)t vertices. We have that |U2 \ T | 
3(1 + 2ε)t − |A1|. Because |W | , |U1| > |U2 \ T | + 4ε, we can find a blue triangle factor
on (U1, U2 \ T, W ) covering at least 3 |U2 \ T | vertices. Therefore combining this triangle

the electronic journal of combinatorics 31(2) (2024), #P2.11 10



factor with the one previously obtained over M1 ∪ T we have a TCTF over at least
3 |A1| − 6(1 + 2ε)t + 3(3(1 + 2ε)t − |A1|) = 3(1 + 2ε)t vertices.

Case C: Assume all connected components are smaller than 2(1 + 2ε)t. This means
that we can partition V (G) in three sets U1, U2 and W such that (1 + 3ε)t < |U1| , |U2| 
2(1+3ε)t by choosing unions of components as in the previous case to get U1 and U2, and
let W be the union of the remaining components. Thus there are no red edges between
any two of U1, U2 and W . Because |W | = 5(1 + 100ε)t − |U1| + |U2| we have that all
three sets U1, U2 and W have size at least (1 + 3ε)t and that the largest of the three
has at least (1 + 6ε)t vertices. We can find a blue matching between the smallest two of
U1, U2, W greedily of size (1 + 2ε)t, and extend this to a blue TCTF of size 3(1 + 2ε)t
vertices greedily, using the largest component.

Lemma 9. For n ∈ N sufficiently large, let G be a tripartite graph over 3n vertices with
partition sets of the same size. Assume that every vertex has at least 3n

4 neighbours in
each of the two partition sets of which it is not part of. There exists a TCTF that covers
every vertex of G.

Also, every pair of edges in G is triangle-connected.

Proof. Let m = 3n
4 and X, Y and Z denote the sets which partition G. We first use Hall’s

theorem to prove that there exists a perfect matching M between X and Y . Indeed, let
S be a subset of X. If |S|  m, because every vertex in S has at least m neighbours
in Y we have that the neighbourhood of S in Y has size not smaller than the size of S
itself. If |S| > m observe that by inclusion-exclusion principle we have that every vertex
in Y has a neighbour in S. We shall now define a bipartite support graph H over the sets
M, Z. We add an edge between xy and z if the vertices xyz form a triangle in G. We can
observe that the existence of a perfect matching in H gives us a triangle factor that covers
all vertices of G. Let xy be in M , we can notice that since both x and y have at least m
neighbours in Z we have that at least n

2 of the vertices of Z are neighbours of both x and
y. Therefore every edge of M has minimum degree at least n

2 in H. Also, every vertex in
Z has minimum degree at least n

2 in H, since in G it has minimum degree at least m in
both X and Y . We can then repeat the above piece of proof and use Hall’s theorem to
prove that we can find a perfect matching in H and therefore a perfect triangle factor in
G.

Let us now show that every pair of edges in G is triangle-connected. Let us first observe
that if xy and xy′ are both edges with x ∈ X and y, y′ ∈ Y then we have that x, y, y′

share a neighbour in Z and therefore they are triangle-connected. This implies that the
set of edges between X and Y is in the same triangle component. We can easily conclude
noticing that every triangle has one edge in each of the components (X, Y ), (Y, Z) and
(Z, X) which are therefore all the same triangle component.

Corollary 10. For n ∈ N sufficiently large let k, r ∈ N such that 6r + 4k < n, let also G
be a tripartite graph over 3n vertices with partition sets X, Y and Z of the same size n.
Moreover, assume every vertex in G is adjacent to all but at most k of the vertices in each
of the two partition sets it is not a part of. Let us fix a 2-edge-colouring of G such that
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(X, Y ), (Y, Z) and (X, Z) are r-red. We can find a red TCTF formed by at least n − 2r
red triangles.

Also, all but at most 3r2 red edges of G are in the same red triangle component.

Proof. Let X ′ ⊆ X, Y ′ ⊆ Y and Z ′ ⊆ Z of size exactly n′ = n − 2r such that every vertex
in X ′ ∪ Y ′ ∪ Z ′ has at most r blue vertices in each of the other two parts. We can apply
Lemma 9 to G′ = GRed[X ′ ∪ Y ′ ∪ Z ′] considering that each vertex in G′ is adjacent to all
but at most r + k < 3

4n′ vertices in each of the two partitioning sets.

Lemma 11. There exists ε0 ∈ R such that for all 0 < ε < ε0 there exists t0 such that
for every t > t0 we have the following. Let G be a graph of minimum degree at least
|G| − εt whose edges are 2-edge-coloured. If there exist in G two disjoint sets X and Y
of size respectively (1 + 5ε)t and (5 + 200ε)t such that (X, Y ) is εt-red, then G contains
a monochromatic TCTF on at least 3(1 + ε)t vertices.

Proof. Let Y ′ be the set of vertices in Y that have at least |X| − εt red neighbours
in X. We have that |Y ′|  (5 + 100ε)t and also G[Y ′] has minimum degree at least
|Y ′| − εt. By Lemma 7 applied to Y ′, we find either a blue TCTF of size 3(1 + ε)t or a
red connected matching on 2(1 + ε)t vertices. In the first case we are done, so we can
assume we have a red connected matching on 2(1 + ε)t vertices, let us denote it by M .
By Lemma 9 we can extend M to a triangle factor T of size at least 3(1 + ε)t. We claim
that this triangle factor is triangle-connected. Indeed, every adjacent pair of red edges in
Y ′ is triangle-connected since any three vertices in Y ′ share a red neighbour in X. Since
being triangle-connected is a transitive property and because M is red connected, we can
conclude that T is triangle-connected.

4 General setting

To prove Lemma 3, we will use a decomposition of V (G) into red and blue cliques, and
some associated notation. In this section, we describe the decomposition, define the
notation, and prove that the decomposition exists under the assumptions of Lemma 3.

Setting 1. Given ε, t > 0, let m = 1
4 |log ε|.

Given a graph G with (9 − ε)t vertices and minimum degree at least (9 − 2ε)t, suppose
that E(G) is 2-edge-coloured and that there is no monochromatic TCTF with at least
3(1 + ε)t vertices.

We fix a partition of V (G) into a set Vbin of size at most ε1/2t + 40t√
m

and a collection
of at most 9t

m
monochromatic cliques each of size between 2 and m such that the following

holds.
For each vertex u which is in a blue clique C of the partition, we assume that at

most 20t√
m

blue edges go from u to vertices in blue cliques of the partition which are not
blue triangle-connected to C. We assume a similar statement replacing red with blue.
Moreover, for every positive integer k, the number of cliques of size less than (1 − 1

k
)m is

at most 400k
| log ε|3/2 t.
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We write B1 for a blue triangle component of blue cliques of the partition covering the
largest number of vertices, B2 for the next largest, and so on. We break ties arbitrarily,
and define similarly R1 for the largest red triangle component of red cliques of the partition
and so on. We write B3 := B3 ∪ B4 ∪ . . . , and R3 := R3 ∪ R4 ∪ . . . .

It is important to note that while we will care about which vertices contain the triangles
of a TCTF, we will not care which vertices are used for the triangle connections between
these triangles: when we ask whether two (say red) edges are red triangle-connected, we
will always mean red triangle-connected in the entire graph G. Thus ‘there is a red TCTF
in X of size 3s’ means that there is a set of s vertex-disjoint red triangles contained in
the set X, which are all in the same red triangle component of G. In particular, the set
B1 is a collection of blue cliques which are blue triangle-connected in G, the connections
might well use vertices outside B1.

In the following sections, we will often state lemmas referring to a ‘decomposition as in
Setting 1’. When we do this, we intend to fix a specific decomposition which will remain
unchanged in the proof, and statements we make refer only to this decomposition. Thus
‘there is no red TCTF of size 3s contained in the red cliques’ should be understood as
meaning that the union of the red cliques of the fixed partition do not contain such a
TCTF. It might be that there is a different partition which does contain such a TCTF.

The idea of our proof of Lemma 3 is now roughly as follows. We suppose that G
contains no large monochromatic TCTF. Our initial aim is then to show that each of
B1, B2, R1, R2 has roughly 2t vertices, while B3 ∪ R3 has roughly t vertices, these give us
the five large sets of the partition of Lemma 3. We will see that once the size bounds are
obtained, it is not too hard to show that the edge colours are as claimed. Our proof for
the claimed size bounds will go over several steps of finding increasingly strong upper and
lower bounds on these sizes.

We obtain Setting 1 by iterative application of Ramsey’s theorem followed by removing
a few vertices to Vbin. The following Lemma 13 states that this is always possible, provided
ε is small enough and t large enough.

Claim 12. For n sufficiently large, let G be a graph over 2n vertices, and let A, B be
disjoint cliques of size n in G. If there are more than 2(n − 1) edges between A and B,
the graph is triangle-connected.

Proof. Equivalently, we can show that if H is subgraph of Kn,n without a path of length
three, then H has at most 2(n − 1) edges. Assume H is a subgraph of Kn,n without paths
of length three. In particular this means that every edge has one endpoint with degree
exactly one. Therefore the number of edges in H is at most equal to the number of vertices
in H with degree one. If we have less than 2n − 2 vertices of degree one we are done. If
we have 2n vertices with degree exactly one we know that H is a perfect matching. It
cannot be the case that 2n − 1 vertices have degree exactly one. Therefore we covered all
cases and we can conclude that the number of edges in H is at most 2(n − 1).
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Lemma 13. There exists ε0 ∈ R such that for all 0 < ε < ε0 there exists t0 such that
for every t > t0 the following holds. Given a graph G with at least (9 − ε)t vertices, with
minimum degree at least |G| − εt, whose edges are 2-edge-coloured, there exist sets R1, . . .
and B1, . . . of monochromatic red and blue cliques respectively satisfying the properties of
Setting 1.

Proof. Let us start by proving that we can find disjoint monochromatic copies of Km

covering all but at most ε
1
2 t vertices of G.

First, notice that we do not want all cliques to be of the same colour, we just want
monochromatic cliques. Let us start by selecting greedily as many monochromatic copies
of Km as possible in G, this means that we start by selecting an arbitrary monochromatic
Km, then we remove its vertices and we repeat the process over the remaining vertices of
G.

Let us assume by contradiction that when this process stops more than ε
1
2 t vertices

of G remain. Let W be a set of size ε
1
2 t not containing any monochromatic clique of

size m. Because of the minimum degree condition over G, we have that each vertex
of G[W ] has degree at least (ε 1

2 − ε)t and therefore G[W ] contains at least ε
1
2 (ε 1

2 −
ε)t2 =


1 − 1

ε− 1
2


(ε 1

2 t)2 edges. By Turán’s theorem, we have that G[W ] contains a (not

necessarily monochromatic) clique K of size ε− 1
2 . By a Ramsey’s upper bound on diagonal

Ramsey numbers we have that R(m, m)  4m, this value is smaller than ε− 1
2 for ε small

enough. Indeed, for ε < 1 we have ε = e−4m and hence we can rewrite the inequality as
R(m, m)  4m  e2m = ε− 1

2 which holds for m large enough. Therefore we can find a
monochromatic clique K ′ of size m in W . This contradicts the stopping of our greedy
algorithm.

We can now focus on the number of vertices in blue cliques that witness more than
20t√

m
blue edges that have endpoints in distinct triangle components of blue Km.

• There are at most 9t
m

disjoint copies of Km in G. This, combined with Claim 12 gives
us that at most (10t)2

m
blue edges have endpoints in distinct triangle components of

blue Km.

• At most (20t)2

m
vertices in blue cliques of G witness a blue edge with its two extremities

in two distinct triangle components of blue Km. Therefore at most 20t√
m

vertices in
blue cliques witness more than 20t√

m
such edges.

• We can do the same for red and obtain again at most 20t√
m

vertices in red cliques
that witness more than 20t√

m
edges with their two extremities in two distinct triangle

components of red cliques.

We denote with Vbin the set of vertices that were not in the original partition of cliques,
together with the at most 40t√

m
vertices that we selected in the previous point.

For each positive integer k, we want to count how many monochromatic cliques in
V (G) \ Vbin can have less than (1 − 1

k
)m vertices. In other words, we want to bound the
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number of cliques of G with more than m
k

vertices in Vbin. It is not difficult to see that
this number is less than 40t√

m
· k

m
 400k

|log ε|
3
2
t. Therefore at most 100k

|log ε|
1
2
t vertices are in cliques

of size at most (1 − 1
k
)m.

5 First upper bounds on the component size

In this section, we prove that |Bi|, |Ri| cannot be much bigger than 7
3t (Lemma 14) and

that we cannot have both B1 and B2 (or R1 and R2) much bigger than 2t (Lemma 15).
Lemma 14. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let
G be a 2-edge coloured graph with (9 − ε)t vertices and minimum degree at least (9 − 2ε)t.
Fix a collection of red and blue cliques as in Setting 1 with parameters ε and t. If G has a
set of blue triangle-connected cliques covering more than (7

3 +h)t vertices, then G contains
a monochromatic TCTF with (1 + ε)t triangles. The same holds replacing blue with red.
Proof. Let A be a triangle-connected set of blue cliques that covers more than (7

3 + h)t
vertices. If |A|  3(1 + 50

|log ε|)t then we greedily construct a blue TCTF within A that
leaves out at most two vertices from each clique and obtain a blue TCTF covering at least
3(1 + ε)t vertices as desired, so we may now assume |A| < 3(1 + 50

|log ε|)t.
Because of this bound on the size of A, and the condition of Setting 1 there are at

most 40000
|log ε|

3
2
t cliques with less than 99

100m vertices, we have that there are at most

3(1 + 10ε)t
99
100m

+ 40000
|log ε|

3
2
t  16t

|log ε|

blue cliques in A and at least |V (G)| − 3(1 + 50
|log ε|)t vertices in V (G) \ A. In succession

for each blue clique in A, we greedily construct a blue triangle factor T using one edge in
the selected clique and one vertex outside of A. There are two possible cases.

Case A: The greedy construction provides us with a set T of 2
3(1 + ε)t triangles.

We can extend T to a triangle factor T ′ by adding triangles from within the cliques in
A. When we stop, at most two vertices for each cliques are being unused and hence we
obtained a blue TCTF covering at least

3 · 2
3(1 + ε)t +


7
3 + h


− 2 · 2

3(1 + ε) − 2 · 16
|log ε|



t

vertices. Note that this means that T ′ covers at least 3(1 + ε)t vertices.
Case B: The greedy construction stops before we get 2

3(1 + ε)t triangles.
Let Y = V (G) \ (A ∪ T ). We have that

|Y |  (9 − ε)t − 3(1 + 50
|log ε|)t − 2

3(1 + ε)t

 (5 + h)t 


5 + 20000


|log ε|


t .
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Let us denote by X the set of all the vertices in A \ T which are in cliques that have at
least three vertices in A \ T . At most 4

3(1 + ε)t + 2 · 16
|log ε|t vertices are in A but not in X.

Therefore we have that

|X| 


1 + 100


|log ε|



 t .

Because we stopped the greedy procedure, we cannot extend T using an edge in a clique
of X and a vertex in Y , therefore each vertex in Y has at most one blue neighbour in each
clique of X. This means that there are at most 16t

|log ε| · |Y | < 16t
|log ε| ·


9 − 7

3


t  202t2

|log ε| blue
edges between X and Y . Hence we have that (X, Y ) is 20√

|log ε|
t-red. We can now apply

Lemma 11 with input 20√
|log ε|

. We conclude that G contains a monochromatic TCTF on
at least

3


1 + 20


|log ε|


t > 3(1 + ε)t

vertices.

Lemma 15. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following.
Let G be a 2-edge coloured graph with (9 − ε)t vertices and minimum degree at least
(9 − 2ε)t. Fix a collection of red and blue cliques as in Setting 1 with parameters ε and t.
If G contains two disjoint sets of blue triangle-connected cliques, with each set of cliques
covering more than (2+h)t vertices, then G contains a monochromatic TCTF with (1+ε)t
triangles. The same holds replacing blue with red.

Proof. Let A and B be disjoint sets of triangle-connected blue cliques, each covering at
least (2 + h)t vertices. We may suppose h0  1

30 . Let C denote the collection of all the
remaining vertices in blue cliques, if any exist. By Lemma 14, either we have the desired
monochromatic TCTF or both A and B are smaller than


7
3 +h


t. Therefore by Setting 1

with k = 100 they both contain at most the following number of blue cliques:
71
30t

99
100 · 1

4 |log ε| + 40000t

|log ε|
3
2
 10t

|log ε| .

Moreover, by Claim 12 there are less than 2m blue edges between any blue clique in A and
any clique in B. Therefore, between A and B there are less than 2m · 10t

|log ε| · 10t
|log ε| 

50
|log ε|t

2

blue edges. Hence, (A, B) is 8√
|log ε|

t-red. Let us set λ = 8√
|log ε|

.
Let us greedily build a blue triangle factor TA by extending blue edges in blue cliques

of A to blue triangles using vertices outside of A. Let YA be the set of vertices in V (G)\A
used in this way and A′ the set of remaining vertices in A . We can independently do the
same construction with B and obtain a triangle factor TB and some similar sets YB and
B′. Finally, let us denote Z = V (G) \ (A ∪ YA ∪ B ∪ YB).

Because we can extend TA to a blue TCTF that covers all but at most two vertices for
each clique of A (and similarly for B), we have that |A ∪ YA| , |B ∪ YB|  (3 + 3ε + 8

m
)t.
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This implies

|Z|  |V | − (|A ∪ YA| + |B ∪ YB|)  (9 − h)t − 2(3 + h)t = 3(1 − h)t .

We also have that |YA| , |YB|  (1 + ε)t, which implies that |A′| , |B′|  (h − 2ε)t.
Each vertex of Z has at most one blue neighbour per clique in each of A′ and B′, since

we cannot further extend TA or TB. Since |Z|  5t and there are at most 10t
|log ε| cliques in

each of A′ and B′ we have that both (A′, Z) and (B′, Z) have at most 50
|log ε|t

2 blue edges
and hence they are both λt-red.
Claim 16. We claim that all red edges in Z are triangle-connected. Moreover, if |C∩Z| 
1
3t then we can find a TCTF in (A, B, C ∩ Z) on |C ∩ Z| − ht triangles that is triangle-
connected to the red triangle component of Z.

Proof. Let xy and uv be two red edges in Z, let NA be the set of vertices in A′ red adjacent
to all vertices x, y, u and v and let NB be defined similarly. To prove that xy and uv are
triangle-connected it suffices to show that there exists a red edge between NA and NB.
Because of the lower bound on the size of A′ and B′, because of the minimum degree
condition and because every vertex in Z is adjacent in red to all but at most 10t

|log ε| of its
neighbours in A′ and B′, we have that |NA| , |NB|  (h−2ε)t−4 ·εt−4 · 10t

|log ε| 
3h
4 t. Since

(A, B) is λt-red, there is a red edge between NA and NB. Therefore all the red edges in
Z are in the same triangle component.

Let us now create a red TCTF ∆ in (A, B, C ∩ Z) as follows. We first find a largest
TCTF ∆′ in (A′, B′, C ∩ Z). By Corollary 10, we have that ∆′ has at least h

2 t vertices,
since we have a lower bound on both |A′| and |B′|.

We can now use Corollary 10 to find a red TCTF in (A \ ∆′, B \ ∆′, (C ∩ Z) \ ∆′) that
covers almost all (C ∩ Z) \ ∆′. Let us call ∆ the union of the two triangle factors. By
Lemma 9 that ∆ is triangle-connected.

It now suffices to show that ∆′ is triangle-connected to the red triangle component of
Z. Let xy be a red edge in Z, let NA be the set of vertices in A′ ∩ ∆′ red adjacent to
both x and y, and let NB be defined similarly in B′ ∩ ∆′. To prove that xy and ∆′ are
triangle-connected it suffices to show that there exists an edge of ∆′ between NA and NB.
Because every vertex in Z is adjacent in red to all but at most 10t

|log ε| of its neighbours in
A′ and B′, we have that |NA| , |NB|  99h

100 t. Since ∆′ is a matching in (A′, B′) of large
size, some of its edges are between NA and NB. □

Z \ C can be extended to a set of triangle-connected red cliques of G, possibly adding
vertices from YA and YB. Therefore, we have |Z \ C| 


7
3 + h


t and this in particular

implies that |C ∩ Z|  (2
3 − 4h)t. We form a red TCTF as follows. We start by using

our last claim to construct a TCTF TC over at least |C ∩ Z| − ht  (2
3 − 5h)t triangles

between A, B and C ∩ Z that is also triangle-connected to the red triangle component of
Z. We then extend this TCTF by taking triangles in cliques of Z \ C. This is enough to
conclude.
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6 Colours and connection, and the sharp upper bound

In this section we begin by proving two lemmas which show that certain patterns of
edges between triangle components imply triangle connections, which we need in both this
section and the next. We then establish several inequalities about sizes of the components
(Lemma 21), most of which imply that various components cannot be too small. In
particular, we establish the useful inequality |B2|  |B3|, and similarly for red. Building
on this, we finally prove the sharp upper bound we want: none of the components can
contain much more than 2t vertices (Lemma 22). These are the two statements we need
to complete the proof of Lemma 3 in the next section.

6.1 Colours and connection

Claim 17. For every h > 0 there exists ε > 0 such that if we use that ε for Setting 1 we
have the following. Let A, B be two disjoint sets of vertices in blue cliques such that there
are no blue triangle components with some vertices in A and some vertices in B. Then
the pair (A, B) is ht-red. The same works for red.

Proof. By Setting 1, in G there are at most 9t
m

 40t
|log ε| cliques. Therefore, by Claim 12

we can have at most 2m · 20t
|log ε| · 20t

|log ε| 
200t2

|log ε| blue edges between A and B. In particular
this means that the pair (A, B) is


200

|log ε|t-red. For ε small enough we have the result we
wanted.

Lemma 18. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following.
Let G be a 2-edge coloured graph with (9 − ε)t vertices and minimum degree at least
(9 − 2ε)t. Fix a collection of red and blue cliques as in Setting 1 with parameters ε and
t. Let Y1, Y2, Y3 be subsets of the red cliques of size at least 10ht in distinct red triangle
components, and let X be a set of size at least ht of vertices in blue cliques which all
have more than 2ht blue neighbours in each of two of the Yis. Then at least one of the
blue edges in a clique of X is triangle-connected to the large blue TCTF in (Y1, Y2, Y3).
Everything still works if we invert red and blue.

Proof. First, note that for ε small enough and by Claim 17 we have that each pair in
Y1, Y2, Y3 is h3

2 t-blue. Let Ri be the set of vertices in Yi with more than h3t-red edges in
one of the other Yj. Without loss of generality let us assume that the set S of vertices in
X with more than 2ht blue neighbours in both Y1 and Y2 has size at least ht

3 . Then each
vertex in S has at least (2h − h3)t blue neighbours in both Y1 \ R1 and Y2 \ R2. Then we
have a vertex y1 in Y1 \ R1 which is incident in blue to at least (2h − h3)t · ht

3 · 1
9t
 1

15h2t
vertices in S. So for t large enough y1 is incident in blue to at least two vertices of S
that lie in the same clique, let us call two such vertices x1 and x2. Since y1 has at least
|Y2| − (ε + h + h3)t  |Y2| − (2h + h3)t blue neighbours in Y2 \ R2, we have that y1 and
x1 have a common blue neighbour y2. This implies that x1x2 is blue-triangle-connected
to y1y2 and this by minimum degree condition means that x1x2 is triangle-connected to
the large blue TCTF over (Y1, Y2, Y3) given by Lemma 9.
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Lemma 19. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let
G be a 2-edge coloured graph with (9 − ε)t vertices and minimum degree at least (9 − 2ε)t.
Fix a collection of red and blue cliques as in Setting 1 with parameters ε and t, and let
Y1, Y2 be subsets of size at least 10ht of vertices in red cliques in distinct red triangle
components, and let X1, X2 be subsets of size at least 10ht of vertices in blue cliques in
distinct blue triangle components. Finally, assume that X1 is ht-red to each of Y1 and Y2.
Then at most 2ht vertices in X2 have more than 2ht red neighbours in both Y1 and Y2.
Everything still works if we invert red and blue.

Proof. First, note that for ε small enough and by Claim 17 we have that (X1, X2) is ht-
red. Let S be the set of vertices in X2 which have more than 2ht red neighbours in both
Y1 and Y2. Assume by contradiction |S|  2ht. Note that there is a vertex x1 in X1 which
has at most ht blue neighbours in each of X2, Y1 and Y2, so x1 is red-adjacent to some
vertex x2 ∈ S. Now x1 and x2 have at least h

4 t common red neighbours in each Yi and
therefore they have at least two common red neighbours from the same clique in each of
the Yi. But this is absurd because it would mean that a clique in Y1 is triangle-connected
to a clique in Y2.

6.2 Some lower bounds

Claim 20. Let k be a positive integer and let b1  . . .  bk > 0 be positive reals such that
i>1 bi > b1. Then we can partition {1, . . . , k} into two sets A, B such that if α := 

i∈A bi

and β := 
i∈B bi we have 2α  β  α.

Proof. We can construct such a partition greedily in two steps.
If b1 + b3  2(b2 + b4) we set 1, 3 ∈ B and 2, 4 ∈ A. Otherwise we set b1 ∈ B and

2, 3, . . . , ℓ ∈ A with an ℓ such that b1 >
ℓ

i=2 bi > b1
2 (such an ℓ exists because of the

hypotheses and because b1 > b2 + b3).
We now proceed by induction. Assume we already partitioned 1, . . . , i − 1 such that

the requests of the lemma are satisfied and let α and β be as in the statement of the
lemma. If 2α  β + bi we can add i ∈ B. Otherwise, we have β > 2α − bi  α + bi,
where the last inequality is given by the fact that the bi are ordered in decreasing order
and |A|  2. In this second case we can add i to the set A.

Lemma 21. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let
G be a 2-edge coloured graph with (9 − ε)t vertices and minimum degree at least (9 − 2ε)t.
Fix a collection of red and blue cliques as in Setting 1 with parameters ε and t, and define
B1, B2, . . . and R1, R2, . . . as in Setting 1.

(i) If |B1|  7
6t then |i Bi| 


7
2 + h


t.

(ii) If |B1|  7
6t and |B2|  7

6t then



i ∕=1 Bi

 


7
3 + h


t.

(iii) If |B1| , |B2|  7
6t then |∪iBi|  (16

3 + h)t.
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(iv) We have 43
12t  |∪iBi| , |∪iRi|  (16

3 + h)t. We also have |B1| > 7
6t.

(v) If |B2| < |∪i3Bi| then we can find a red TCTF in ∪iBi of size at least 3
2 |∪i2Bi|−ht.

(vi) If |B2|  8
7t then |∪iBi| < (9

2 − h)t.

(vii) We have |B2|  |∪i3Bi|.

The corresponding results also hold for red and R1, R2, R3, . . . . Moreover, by (vi) we have
that at most one of B2 or R2 can be smaller than 8

7t.

Proof. We are going to prove these results in order, and we are sometimes going to use
previous points already proved.

Proof of 21(i): Suppose for a contradiction that |B1|  7
6t and |i Bi| >


7
2 + h


t.

Observe that by Setting 1 with k = 100, all but at most 40000
|log ε|

1
2
t vertices of G are in cliques

fixed in Setting 1 with at least 99
100m vertices. We let for each i the set B′

i consist of all
vertices in blue cliques of Bi with at least 99

100m vertices.
We want to study how many edges have endpoints in two distinct B′

i. For each fixed i,
the maximum number of blue edges that have one endpoint in B′

i and the other in some
B′

j with j ∕= i, is less than

2m · |B′
i|

99
100m

·




j ∕=i B′
j


99
100m

 3
|B′

i| ·



j ∕=i B′
j



m
 27

m
t |B′

i| .

Let us now observe that the number of vertices in B′
i that have more than h

100t blue
neighbours outside of B′

i is at most 27
m

t |B′
i| · 100

ht
 104

mh
|B′

i|.
Let us remove from each B′

i all the vertices with more than h
100t blue neighbours in

j ∕=i B′
j, let us call the result B′′

i . By the last observation, we have that



i

B′′
i

 

1 − 104

mh




i

B′
i





1 − 104

mh




i

Bi

 − 40000
|log ε|

1
2
t




1 − 104

mh


·


7
2 + 3h

4


t




7
2 + 3h

4 − 4·104

mh
− 104

m


t




7
2 + h

2


t .

In GRed
 

i B′′
i


every vertex has red degree at least |i B′

i| − (7
6 + ε + h

100)t which is more
than 2

3 |i B′′
i |. So by Lemma 6, GRed[∪iB

′′
i ] contains a red TCTF of size 7

2t.
Proof of 21(ii): Let B∗

1 be a set of the fixed blue cliques in B1 covering between 7
6t−m

and 7
6t vertices. We may assume |B2|  |B∗

1 |, by swapping these two sets of cliques if
necessary.
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Repeating what we did in Lemma 21(i) to the sets B∗
1 , B2, B3, . . . , we obtain

B∗
1 ∪


i2 Bi

 


7
2 + h


t. Since |B∗

1 |  7
6t, we have




i2 Bi

 


7
3 + h


t as desired.

Proof of 21(iii): By Corollary 10 we have that |∪i3Bi|  (1 + h
3 )t because otherwise

we can find a red TCTF over more than 3(1 + ε)t vertices. By Lemmas 14 and 15 we
have that |B1|  (7+h

3 )t and |B2|  (6+h
3 )t. Summing these bounds completes the proof.

Proof of 21(iv): By Lemmas 21(i), (ii), (iii) we have that for any possible size of B1

and R1 we always have |∪iBi| , |∪iRi|  (16
3 + h)t. Because |∪iBi| + |∪iRi|  (9 − h)t we

therefore must have 43
12t  |∪iBi| , |∪iRi|. By Lemma 21(i) this implies that |B1| , |R1| >

7
6t.

Proof of 21(v): Let us take a set of vertices B′
1 ⊆ B1 such that |B′

1| = 1
2 |∪i2Bi|− 1

100ht

(we know that B1 is large enough, indeed we know |B1|  7
6t and it cannot be the case

that |B2|  7
6t because otherwise we would find a large red TCTF over (B1, B2, ∪i3Bi)).

By Claim 17 all but at most 1
100ht vertices of B′

1 have red degree in G[B′
1 ∪ 

i2 Bi]
at least |∪i2Bi| − 1

100ht. Let B′′
1 be a subset of size 1

2 |∪i2Bi| − 2
100ht such that every

vertex in B′′
1 has red degree in G[B′′

1 ∪
i2 Bi] at least |∪i2Bi|− 1

100ht  2
3 |B′′

1 ∪ 
i2 Bi|.

Because every vertex in ∪i2Bi is in a triangle component of size significantly smaller
than 2

3 |B′′
1 ∪ 

i2 Bi| we can conclude by Lemma 6 that we can find a red TCTF over all
but at most two vertices of B′′

1 ∪ 
i2 Bi. Which is, we can find a red TCTF over at least

3
2 |∪i2Bi| − ht vertices.

Proof of 21(vi): Fix some h > 0 arbitrarily small, depending on which we can choose
our ε. By Lemma 21(i) we can assume |B1|  7

6t. Remember also that we have by
Lemma 14, (7

3 + h)t  |B1|. Assume by contradiction |B2|  8
7t and |∪iBi|  (9

2 − h)t.
Then we would have |∪i3Bi|  (9

2 − h)t − (7
3 + h)t − 8

7t = (43
42 − 2h)t. By Corollary 10

and Claim 17 it cannot be the case that |B2|  (43
42 − 2h)t because otherwise we would

find a large red TCTF over (B1, B2, ∪i3Bi). Therefore we must have |B2| < |B3|, and
therefore by Lemma 21(v) we must have that 3

2 |∪i2Bi| − ht < (3 + h)t which is to say
that |∪i2Bi| < 25

12t. We can conclude that |∪iBi| < (7
3 + h)t + 25

12t < (9
2 − h)t.

Proof of 21(vii): First, let us note that we cannot have both |B2| < |∪i3Bi| and
|R2| < |∪i3Ri|. Indeed, by 21(vi) at least one between B2 and R2 has cardinality
at least 8

7t. Let us say without loss of generality that |R2|  8
7t, then it cannot be

|∪i3Ri| > |R2| because of Corollary 10.
Let us now assume by contradiction that |∪i3Bi| > |B2|. By Lemmas 14 and 15

we have that |R1|  (7
3 + h)t and |R2|  (2 + h)t. Moreover, by Corollary 10 we have

|R3|  (1 + h)t. Therefore we have |B2
 ∪i3Bi|  (4

3 − 5h)t.
By Claim 20, since both B3 and B4 are non-trivial (by our contradiction hypothesis),

we can partition the sets Bi into collections B′
1, B′

2 and B′
3 such that B′

1 = B1 and
|B′

2|  |B′
3| and also |B′

2|  2
3 |∪i2Bi|. In particular this means 2 |B′

3|  |B′
2|  |B′

3| and
|B′

2|  (2
3 − 5h)t and |B′

3|  (4
9 − 5h)t.

Notice that by Lemma 21(v) we have |B2
 ∪i3Bi|  (2 − 2h)t. We claim that

no blue clique in B′
1 is triangle-connected to the blue TCTF in (R1, R2, R3). Indeed

the electronic journal of combinatorics 31(2) (2024), #P2.11 21



we have that this would create a blue TCTF of size at least 3 |R3| + |B1| and we have
|R3|  9t − |B1| − |B2

 ∪i3Bi| − |R1| − |R2|  (1
3 − 5h)t and |R3| + |B1|  (8

3 − 4h)t.
Which implies that 3 |R3| + |B1| > (3 + h)t.

In particular, by Lemma 18 this implies that all but at most ht vertices in B′
1 have less

than 2ht blue neighbours in two of the R1, R2 or R3. This means that there is a set T ⊂
B′

1 of size at least 1
3


|B′

1| − ht


such that (T, Ri), (T, Rj) are ht-red and i, j ∈ {1, 2, 3}.
Let us assume that (T, R2) is ht-red (if not, then we have (T, R1) is ht-red and this is
strictly better in the following computations). We claim that (R2, B′

2) and (R2, B′
3) are

ht-blue. Indeed by Lemma 21(v) and by the lower bound |B2
 ∪i3Bi|  (4

3 − 5h)t we
got earlier, we have a red TCTF in B′

1 ∪B′
2 ∪B′

3 of size at least (2−10h)t, since |R2|  8
7t

we must have that each clique in R2 is not triangle-connected to the large TCTF between
the Bi components. By Lemma 18 and since (T, R2) is red, we get that (R2, B′

2) and
(R2, B′

3) are ht-blue.
We now claim that there is a Bi in B′

2 such that (Bi, R3) is ht-red, in particular, this
means that each red clique in R3 is in the same triangle component of (B′

1, B′
2, B′

3). There
exists such a Bi because B′

2 is formed by at least two distinct blue triangle components,
which cannot therefore be triangle-connected among themselves. But we also know that
(B′

2, R2) is ht-blue, so if we had that more than one blue component in B′
2 has blue

neighbours in R3 we would get that these blue components are triangle-connected.
Now we claim that we must have |R3|  (1−20h)t. As observed above, there is a red

TCTF in B′
1 ∪ B′

2 ∪ B′
3 of size at least 3

2 |B′
2 ∪ B′

3|, and its triangles are triangle-connected
in red to R3, we have a red TCTF of size 3

2 |B′
2 ∪ B′

3| + |R3| − ht, moreover, we have
|R3 ∪ B′

3 ∪ B′
2|  9 − |B′

1 ∪ R1 ∪ R2|  (7
3 − 10h)t which gives us a red TCTF over more

than (3 + h)t vertices, unless |R3|  (1 − 20h)t.
In particular, we can say that we can find a blue TCTF in (R1, R2, R3) of size at

least 3(1 − 20h)t. Since we have already that (R2, B′
2) and (R2, B′

3) are ht-blue, and
since we cannot extend the blue TCTF in (R1, R2, R3) at all, this means that (R1, B′

2)
and (R1, B′

3) must be ht-red, but this is absurd since it would create a red TCTF in
(B′

1, B′
2, B′

3) ∪ R1 of size at least 3
2 |B′

3 ∪ B′
2| + |R1| − ht > 3(1 + h)t.

6.3 The sharp upper bound

Lemma 22. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let
G be a 2-edge coloured graph with (9 − ε)t vertices and minimum degree at least (9 − 2ε)t.
Fix a collection of red and blue cliques as in Setting 1 with parameters ε and t, and define
B1, B2, . . . as in Setting 1. We have that |B1| , |R1|  (2 + h)t.

Proof. Let us denote with B3 the set ∪i3Bi and similarly for red. By Lemmas 14 and
15 we can assume |B1| , |R1|  (7

3 + h)t and |B2| , |R2|  (2 + h)t. Let us assume by
contradiction that |B1|  (2 + h)t. We construct greedily a blue TCTF TB as follows.
Select an edge in a blue clique of B1, and extend it (if possible) to a blue triangle using a
vertex outside of B1 not used yet in the process. We can repeat greedily until there are
no blue edges in cliques of B1 that can be extended outside of TB. Let us denote with YB
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the set of vertices TB \ B1 used to extend the edges in B1, and let us denote with B′
1 the

set B1 \ TB of remaining vertices.
Because TB is triangle-connected, we have that the size of TB is smaller than 3(1 + ε)t

and therefore in particular |B′
1| = |B1| − |B1 ∩ TB| > h

2 t. Let h′ := min
 |B′

1|
200t

, h

 h

3
2 .

Because we stopped the greedy construction of TB only when we could not extend TB

anymore, we have that every vertex in V \ (B1 ∪YB) has at most as many blue neighbours
in B′

1 as the number of cliques with at least two vertices that are in B′
1. This means that

the number of blue edges in (B′
1, V \ (B1 ∪ YB)) is at most 7t · (7

3
1

99
100 m

+ k

|log ε|
3
2
)t  ( 5√

m
t)2.

Therefore we have that the pair (B′
1, V \ (B1 ∪ YB)) is λt-red for λ = 5√

m
.

We now separate four cases.
Case A: We already have |B1|  (2 + h)t, and |B1| , |R1|  (7

3 + h)t, and |B2| , |R2| 
(2 + h)t. Assume now |R3|  ht.

It follows that |∪iRi|  (13
3 + 3h)t, and from this it follows that |∪Bi|  (14

3 − 4h)t
and therefore |B2 ∪ B3|  (7

3 − 5h)t. Since |B2|  |B3| by 21(vii), we have that
|B2| > (1 + h)t and therefore by 9 we have |B3| < (1 + h)t. By what stated above, we
also get:

we get the following:

|B3| 






(8
3 − 5h)t − |R1|

(7
3 − 5h)t − |R2|  (1

3 − 6h)t
(14

3 − 4h)t − |B1| − |R2|

Since |B3| < (1 + h)t, we must have |R2| > (4
3 − 6h)t. Let us call CB the red triangle

component in (B1, B2, B3) that by Corollary 9 contains almost all red edges of (B1, B3)
and (B2, B3).
Claim 23. No red edge in a clique of R1 or R2 is red triangle-connected to CB.

Proof. If R1 were red triangle-connected to CB we could extend a large red TCTF of size
3 |B3| − ht (which is given us by Corollary 9) using vertices of R1 and obtain a TCTF
over

3 |B3| + |R1| − 2ht  3((8
3 − 5h)t − |R1|) + |R1| − 2ht

= (8 − 17h)t − 2 |R1| > 3(1 + ε)t

vertices. It is also absurd that R2 is red triangle-connected to CB. Indeed we would have:
Case 1 : If |R2|  17

9 t then we have a red TCTF over 3 |B3|+ |R2|−ht  (7−16h)t−
2 |R2| > 3(1 + ε)t vertices.

Case 2 : If |R2|  17
9 t, we can greedily construct a TCTF T as follows. We select

edges in red cliques of R2 \ YB and we extend them to disjoint triangles using vertices
of B′

1. Because (R2 \ YB, B′
1) is λt-red we have that we can continue this process until

we almost finish red edges in red cliques of R2 \ YB (we can have at most ht vertices
remaining in R2 \ YB) or vertices in B′

1 with enough red neighbours in R2 \ YB (if we
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stopped because of this we have that at most h′t vertices in B′
1 are not used, because

otherwise we would have vertices with high red degree in R2 \ YB and because |R2 \ YB|
would be at least h′t we could find an edge in a clique between two neighbours of the
same vertex of B′

1). At this point we can extend T with triangles from cliques of R2

and obtain a TCTF over at least min

|R2| + |B′

1| , 3
2 |R2 \ YB| + |R2 ∩ YB|


− 3ht ver-

tices. T intersects B1 in at most t vertices, therefore we can again extend T using the
tripartition (B1 \ T, B2, B3), in this way we are adding at least 3 |B3| − ht vertices
since |B3|  (1 + h)t, |B2| > 7

6 and |B1|  (2 + h)t. Therefore we end up with a
red TCTF over min


|R2| + |B′

1| , 1
2 |R2 \ YB| + |R2|


+ 3 |B3| − 4ht = 3 |B3| + |R2| +

min

|B′

1| , 1
2 |R2 \ YB|


− 4ht vertices. We can notice at this point that

|B′
1| + |B3|  |B1| + |B3| − (2 + h)t

 14
3 t − 4ht − |B2| − (2 + h)t

 (2
3 − 6h)t .

Since |B3|  (1
36h)t and |R2 \ YB|  5

6t, we are done. Indeed we have 3 |B3| + |R2| +
min


|B′

1| , 1
2 |R2 \ YB|


− 4ht  3(1

36h)t + 17
9 t + 1

3t > 3(1 + h)t. □

Now we know that neither R1 nor R2 are triangle-connected to the large triangle
component of the tripartition (B1, B2, B3). In order to use Lemma 18 efficiently, we first
need to remember that B′

1, R1 \ YB and R2 \ YB are all non-trivial and that (B′
1, R1 \ YB)

and (B′
1, R2 \ YB) are both λt-red. Now we can use Lemma 18 to conclude that at most

2λt vertices in (R1 ∪ R2) \ YB can have more than 2λt red neighbours in each of B2 and
B3. But this is absurd because of Lemma 19.

Case B: We already have |B1|  (2 + h)t, and |B1| , |R1|  (7
3 + h)t, and |B2| , |R2| 

(2 + h)t. Assume now that |B3|  ht.
We can also assume that |R1|  (2 + h)t because otherwise we would be in the same

situation as case A under switching colours. By Corollary 21(iv) we have |∪iBi|  43
12t

and this implies |B2|  6
5t. We can consider that |R2 ∪ R3|  (9 − h)t − |R1| − |∪iBi| 

(8
3 − 5h)t, which gives us |R3|  (2

3 − 6h)t. By Lemma 21(vii) we have |R2|  (4
3 − 3h)t.

By Corollary 10 this also implies that there is a red TCTF on (R1, R2, R3) covering at
least 3 |R3| − ht  (2 − 19h)t vertices. This gives us the upper bound |R3|  1+h

t
. This

also implies that |R2|  (5
3 − 6h)t.

Since both B1 and B2 are bigger than 8
7t we have that neither B1 nor B2 can be blue

triangle-connected to the large TCTF over (R1, R2, R3).
By Lemma 18 this means that at most ht vertices from each of B1 and B2 can be blue

adjacent to more than 2ht vertices in any two of R1, R2 or R3. But we know also that B′
1,

R1\YB and R2\YB are non trivial, and therefore (B′
1, R1\YB) and (B′

1, R2\YB) are λt-red.
Hence, by Lemma 19 it can not not be the case that there are more than 2ht vertices of
B2 with more than 2ht red neighbours in both R1 \ YB and R2 \ YB. Therefore by Lemma
18 there are at most 3ht vertices in B2 which have more than 2ht blue neighbours in R3.
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This means that we can find a set S1 of at least 1
2 |B2| − 10ht vertices in B2 such that

every vertex in S1 has at most 2ht blue neighbours both in R3 and one of R1 \ YB or
R2 \ YB (say R2, it is the same if it was R1). Therefore by applying Lemma 19 with S1
and B′

1 on one side and R2 and R3 on the other side, we get that there are at most 6h′t
vertices in B′

1 which have more than 3h′t red neighbours in R3, and this means that
(B′

1, R3) is 6h′t-blue. By Lemma 18 we know that (B′
1, R1) and (B′

1, R2) are 9h′t-red,
and in the same way we know that almost all the vertices of B2 are 2h′t-red to one of R1
or R2. As an example, we are going to assume that we have a subset S2 of B2 of size at
least |B2|−20h′t

2 such that every vertex in S2 has at most 2h′t blue neighbours to R2.
Therefore (S2, R3) and (S2, R2) are 2h′t-red. Because (B′

1, R1) and (B′
1, R2) are both

9h′t-red, by Lemma 19 we have that (B1, R1) is 9h′t-red. By Lemma 18 as above, at most
6h′t vertices in B1 can have more than 2h′t blue neighbours in any two of R1, R2 and
R3. We can find S ′ ⊆ B1 of size at least |B1|−20h′t

2 that is either 10h′t-red to R3 or to
R2. In the first case, we find a large red TCTF using triangles in (S ′, S2, R3) and then
triangles in B1. In the latter case, we can find a red TCTF on (S2, S ′, R2) over at least

2 · min {|S2| , |S ′| , |R2|} + |R2| − 20h′t

vertices. We claim that this is enough, indeed we have |R3|  (1 + h′)t, and therefore
we get the lower bound (5

3 − 10h′)t for |R2| and t − 10h′t for |S ′|.
Case C: We already have |B1|  (2 + h)t, and |B1| , |R1|  (7

3 + h)t, and |B2| , |R2| 
(2 + h)t. Assume now |R1|  (2 + h)t and |B3| , |R3|  ht.

We have two cases.
Case C.1 : Let us assume |R2|  8

7t.
Claim 24. Neither B1 nor B2 is blue connected to the TCTF over (R1, R2, R3). Also,
R1 is not triangle-connected to (B1, B2, B3).

Proof. By Corollary 21(iv) we have that |R1 ∪ R2 ∪ R3|  43
12t and hence |R2 ∪ R3| 

(19
12 − h)t.

By Lemma 21(vii) we have |R2|  |R3| and by Lemma 21(vi) we have |B2|  8
7t and

since R1, . . . , B3 form a partition of G, we have |R3|  (9− 7
3 −1−2− 8

7 −3h)t− |B2| >
(5

2 + h)t − |B2|. By Corollary 9 we can find a blue TCTF over (R1, R2, R3) of size
at least 3 |R3|  15

2 t − 3 |B2|. In particular this implies that both B1 and B2 are not
triangle-connected to the blue TCTF over (R1, R2, R3).

We now prove that R1 is not triangle-connected to (B1, B2, B3).
If |R2 ∪ R3| > (8

7 + 1 + h)t, then by Lemma 21(vii) we have |R2| > |R3|, since
|R2|  8

7t we have |R3|  (1 + h)t and by Corollary 10 we again obtain a blue TCTF of
size (3 + h)t.

If on the other hand we have |R2 ∪ R3|  (8
7 + 1 + h)t, it follows that |B3| 

(9 − 7
3 − 2 − 8

7 − 1 − 4h)t − |R1| which means 3 |B3| + |R1|  24
7 t. Therefore it cannot be

that R1 is red triangle-connected to the large TCTF over (B1, B2, B3). □

Since R1 is not connected to (B1, B2, B3) we have by Lemma 18 that at most h5t
vertices in R1 have more than 2h5t red neighbours in two of the Bi. Since R1 \ YB
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is nontrivial we have that (B′
1, R1 \ YB) is λt-red. Therefore we must have that (R1 \

YB, B2), (R1 \ YB, B3) are h2t-blue. We can now apply Lemma 18 again knowing that
B2 is not blue triangle-connected to the blue triangle component over (R1, R2, R3) and
therefore at most h5t vertices of B2 have more than 2h5t blue neighbours in two of the
Ri. Hence, (B2, R2) and (B2, R3) are h2t-red.

Since they are not red triangle-connected among themselves, we have that either R2
or R3 is not red triangle-connected to the red triangle component over (B1, B2, B3).
Let R2 the one not red triangle-connected, and R3 the other one (if the situation is
reversed we get better bounds). Then by Lemma 18 we have that R2 is h2t-blue to
B1 and B3, and therefore by the same Lemma we have that (B1, R3) is h2t-red. Then
(B1, B2, B3∪R3) is a dense red tripartition with |B1| , |B2|  8

7t. We have |B3 ∪ R3| 
(9 − 7

3 − 2 − 2 − 8
7 − 3h)t  3

2t which is enough to conclude by Corollary 9.
Case C.2 : Let us now assume |R2|  8

7t.
Then both R1 \ YB and R2 \ YB are non trivial and λt-red to B′

1. We cannot have
that both R1 and R2 are red triangle-connected to (B1, B2, B3) (because otherwise they
would be red triangle-connected among themselves). By Lemma 18 this means that one
between R1 \ YB and R2 \ YB must be h2t-blue to both B2 and B3, we are going to work
with the example in which R1 \ YB is h2t-blue to both B2 and B3 (it would be the same
if we had R2).

We cannot have both B2 and B3 to be blue triangle-connected to (R1, R2, R3) (oth-
erwise they would be in the same connected component) and therefore we split our case
depending on whether or not B2 is blue triangle-connected to (R1, R2, R3).

Let us assume that it is so. Then B3 is not blue triangle-connected to (R1, R2, R3)
and so (B3, R2) and (B3, R3) are h2t-red. By Lemma 18 this implies that R2 is red
triangle-connected to (B1, B2, B3) and therefore R3 is not. Therefore (R3, B1) and
(R3, B2) are h2t-blue. Therefore (B1, R1) and (B1, R2) must be h2t-red. Therefore we
can find a blue TCTF over 3 |R3| + |B2| vertices by taking triangles from (R1, R2, R3)
and B2. We can also find a red TCTF over 3 |B3| + 3

2 |R2| vertices by taking triangles
from (B1, B2, B3) and by taking edges from R2 and extending them with vertices from
B1. We conclude by taking the average of the size of these two TCTFs.

Let us now assume that B2 is not blue triangle-connected to (R1, R2, R3). Then
(B2, R2) and (B2, R3) are h2t-red, since (R1 \ YB, B2) is ht -blue, and this implies that
R2 is red triangle-connected to (B1, B2, B3). Therefore R3 is h2t-blue to B1 and B3
and so B3 is blue triangle-connected to (R1, R2, R3). This also means that B1 must be
h2t-red to both R1 and R2 in order not to be blue triangle-connected to (R1, R2, R3) but
this leaves us with a dense red (B1, B2, B3 ∪ R2).

Case D: We already have |B1|  (2 + h)t, and |B1| , |R1|  (7
3 + h)t, and |B2| , |R2| 

(2 + h)t. Let us assume that |R1|  (2 + h)t and both B3 and R3 contain more than
ht vertices (otherwise without loss of generality we are in case B). We can also assume
without loss of generality that |B2|  |R2| and therefore by Lemma 21(vi) we also have
|B2|  8

7t.
We can greedily extend blue edges in cliques of B1 to a blue TCTF TB by using

vertices outside of B1. Since |B1|  (2 + h)t we can either create a TCTF over more than
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3(1 + ε)t vertices or we have to stop at some point. Since |B1|  (2 + h)t, this means that
B1 \ TB is non trivial. We can do the same with a red TCTF TR extending red edges in
R1 (since we are assuming |R1|  (2 + h)t). Let us call B′

1 := B1 \ TB and R′
1 := R1 \ TR.

Since the TCTFs TR and TB are maximal, we have that (B′
1, V (G) \ TB) is ht-red, while

(R1, V (G) \ TR) has to be ht-blue. In particular, there are non-trivial subsets SB1 ⊆ B1
of size at least (1 + h

2 )t, SB2 ⊆ B2 of size at least (1
7 + h

2 )t and SR1 ⊆ R1 of size at least
(1 + h

2 )t such that (SB1 , R′
1) and (SB2 , R′

1) are ht-blue and (SR1 , B′
1) is ht-red.

There are two cases:
Case D.1: B1 is blue triangle-connected to the large TCTF in (R1, R2, R3). Then we

know that B2 and B3 are not triangle-connected to the same TCTF. In particular, since
(SB2 , R′

1) is ht-blue, we must have that both (SB2 , R2) and (SB2 , R3) are ht-red. Now,
either R1 is red triangle-connected to the large TCTF in (B1, B2, B3) or not.

In the first case, we have that both R2 and R3 are not triangle-connected to the
large TCTF in (B1, B2, B3). Because (SB2 , R2) and (SB2 , R3) are ht-red, this means
that (R3, B3), (R3, B1) and (R2, B3), (R2, B1) are ht-blue, which is absurd because it
would mean that B1 and B3 are in the same blue-connected component.

If R1 is not red triangle-connected to the large TCTF in (B1, B2, B3), then (SR1 , B3)
and (SR1 , B2) have to be ht-blue. But now we get a contradiction since (B3, R3) and
(B3, R2) need to be ht-red or otherwise B3 is going to be triangle-connected to the blue
TCTF in (R1, R2, R3), and also (B2, R3) and (B2, R2) need to be ht-red or otherwise
B2 is going to be triangle-connected to the blue TCTF in (R1, R2, R3). This is enough
to say that R2 and R3 are in the same red-connected component.

Case D.2: B1 is not blue triangle-connected to the large TCTF in (R1, R2, R3) but
R1 is red triangle-connected to the large TCTF in (B1, B2, B3). Since B1 is not blue
triangle-connected to the large TCTF in (R1, R2, R3) and because (SB1 , R′

1) is ht-blue,
we have that (SB1 , R2) and (SB1 , R3) are ht-red. Now, since R1 is red triangle-connected
to the large TCTF in (B1, B2, B3) we have that R2 and R3 are not, because (SB1 , R2)
and (SB1 , R3) are ht-red this implies that (B2, R2), (B3, R2) and (B2, R3), (B3, R3)
are ht-blue, which is absurd because it implies that both B2 and B3 are connected to
the large TCTF in (R1, R2, R3).

Case D.3: B1 is not blue triangle-connected to the large TCTF in (R1, R2, R3) and
R1 is not blue triangle-connected to the large TCTF in (B1, B2, B3). In which case we
notice that the blue cliques in B1 are not triangle-connected to the large blue TCTF in
(R1, R2, R3) and similarly the red cliques in R1 are not triangle-connected to the large
red TCTF in (B1, B2, B3). In particular, this implies that (SB1 , R3) and (SB1 , R2) are
ht-red, because we have that (SB1 , R′

1) is ht-blue and (R′
1, ∪i2Ri) is ht-blue. Likewise,

we have that (SR1 , B3) and (SR1 , B2) are ht-blue. But this leaves us in a contradiction,
indeed, neither B2 nor B3 can be triangle-connected to (R1, R2, R3). Since (SR1 , B3)
is ht-blue this means that (R2, B3) and (R3, B3) are ht-red. This is enough to get a
contradiction, since we have (R2, B3) and (R3, B3) are ht-red but also (SB1 , R3) and
(SB1 , R2) are ht-red.
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7 The colours of edges

In this section we complete the proof of Lemma 3. We first deduce an approximate
version, proving that B3 ∪ R3 cannot have much more than t vertices (which implies
all components have roughly the correct size) and that most edges in various pairs have
the ‘correct’ colour. We then prove Lemma 3 by arguing that any edges with the ‘wrong’
colour lead to triangle components which are much larger than they should be. The
following is our approximate version.

Lemma 25. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let
G be a 2-edge coloured graph with (9 − ε)t vertices and minimum degree at least (9 − 2ε)t.
Fix a collection of red and blue cliques as in Setting 1 with parameters ε and t, and define
B1, B2, . . . as in Setting 1. Then it holds:

• (2 − h)t  |B1| , |B2| , |R1| , |R2|  (2 + h)t,

• (1 − h)t  |B3 ∪ R3|  (1 + h)t,

• |G \ ∪i(Bi ∪ Ri)|  ht,

• The following pairs are h2t-blue: (B1, R1), (B2, R2), (R1, R2), (R1, B3 ∪ R3) and
(R2, B3 ∪ R3),

• The following pairs are h2t-red: (B1, B2), (B1, B3 ∪R3), (B2, B3 ∪R3), (B1, R2)
and (B2, R1).

Proof. By Lemma 22 we know that for ε > 0 small enough we have |B1| , |B2| , |R1| , |R2| 
(2 + h

3
2 )t and therefore we have |B3 ∪ R3|  (1 − 5h

3
2 )t. Without loss of generality, let

us assume |B3|  |R3|.
Claim 26. We have that R1 and R2 are not red triangle-connected to (B1, B2, B3).
Moreover, without loss of generality, we have (R1, B1), (R1, B3) and (R2, B2), (R2, B3)
are h2t-blue.

Proof. Notice that |B1|  (1−5h
3
2 )t

2 . Let us consider first that R1 and R2 are not red
triangle-connected to (B1, B2, B3). Indeed, assume this is not the case and we have
3 |B3| + |Ri| < (3 + h)t for some i ∈ {1, 2}. Then we have |R1| + |R2| + |B3| < (3 + h +
2+h

3
2 )t−2 |B3| < (4−3h)t which is clearly absurd because it implies |B1|+|B2|+|R3| 

(5 + 2h)t.
We now claim that there is an ordering i, j, k of {1, 2, 3} such that (R1, Bi), (R1, Bj)

and (R2, Bk), (R2, Bj) are h2t-blue. Indeed, by Lemma 18 we know that up to removing
at most h5t vertices from each of R1 and R2, every vertex in R1 ∪ R2 has many blue edges
in at least two among {B1, B2, B3}. This means that we can partition (not in a unique
way) almost all the vertices of R1 among the sets SR1

Bh
, where the vertices in SR1

Bh
have

their red neighbour in ∪ℓBℓ contained in Bh. We define similarly SR2
Bh

. We claim that just
one of the SR1

Bh
is not trivial.
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Assume by contradiction that SR1
Bi

and SR1
Bj

have size at least ht. We cannot have that
SR2

Bi
or SR2

Bj
have size at least ht, because otherwise we would have that Bj and Bk or Bi

and Bk are connected respectively. Therefore we must have that SR2
Bk

contains almost all
the vertices of R2 and in particular is not trivial. Therefore we have that SR1

Bi
, SR1

Bj
and SR2

Bk

are not trivial, which gives us that both Bi and Bj are in the same triangle component.
This implies that just one of the SR1

Bh
is nontrivial, and by symmetry the same is true for

R2. Moreover, we have that SRi
B3

is trivial, because otherwise we would find a large blue
TCTF in (B1, B2, Ri ∪ B3).

Finally, since by Lemma 19 we cannot have that R1 and R2 are h2t-blue to the same
pair, we know that each of R1 and R2 is h2t-blue to B3 and one between B1 and B2. We
are going to assume without loss of generality that (R1, B1) and (R1, B3) are h2t-blue,
and that (R2, B2) and (R2, B3) are h2t-blue, as we wanted.

□

By the claim, we have that (R1, B1), (R1, B3) and (R2, B2), (R2, B3) are h2t-blue. In
particular, this means that we can find a blue TCTF in (R1, R2, B3 ∪R3). This gives us
immediately that |B3 ∪ R3|  (1+h

3
2 )t and in particular |B1| , |B2| , |R1| , |R2|  (2−h)t.

Also, we get that (B1, R2) and (B2, R1) are h2t-red. This holds because otherwise we
would have both B3 and B2 are in the same connected component, indeed, (B3, R1),
(B3, R2) and (B2, R2) are h2t blue.

Assume now that |R3|  h
3
2 t. We have that (R1, B1), (R1, xx 3) and

(R2, B2), (R2, B3) are h2t-blue, this gives us that B3 is blue triangle-connected to
(R1, R2, R3) (which is a non-trivial TCTF) which in turn gives us that B1 and B2 are
not. From this last fact we can conclude that (B1, R3) and (B2, R3) are all h2t-red.

So we have the construction that we wanted up to change the indices between B1, B2
and R1, R2 respectively.

Let us now prove Lemma 3 that we restate for convenience.

Lemma 27. There exists δ0 > 0 such that for every 0 < h, λ < δ0 there exist ε0 > 0
and t0 ∈ N such that for every t  t0 and 0 < ε < ε0 the following holds. Let G be a
2-edge-coloured graph on (9 − ε)t vertices with minimum degree at least (9 − 2ε)t. Then
either G contains a monochromatic TCTF on at least 3(1 + ε)t vertices or V (G) can be
partitioned in sets B1, B2, R1, R2, Z, T such that the following hold.

(a) (2 − h)t  |B1| , |B2| , |R1| , |R2|  (2 + h)t,

(b) (1 − h)t  |Z|  (1 + h)t,

(c) all the edges in G[B1] and G[B2] are blue, and all the edges in G[R1] and G[R2] are
red,

(d) all the edges between the pairs (B1, R1), (B2, R2), (R1, Z) and (R2, Z) are blue, and
those between the pairs (B1, R2), (B2, R1), (B1, Z) and (B2, Z) are red,
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(e) the pair (B1, B2) is λt-red, and the pair (R1, R2) is λt-blue, and

(f) |T |  ht.

Proof of Lemma 3. We are going to refine Lemma 25 to obtain an exact result.
By Lemma 25 we have that there exists δ0 > 0 such that for δ0 > h, λ > 0 there

exists ε0 > 0 and t0 ∈ N such that for every t > t0 and ε0 > ε > 0 if G is a 2-edge-
coloured graph over (9 − ε)t vertices with minimum degree at least (9 − 2ε) and without
a monochromatic TCTF on at least 3(1 + ε)t vertices, then we can partition V (G) in
the sets B1, B2, R1, R2, Z, T (where the Bi and Ri are as in Setting 1 and where where
Z = B3 ∪ R3 and T is the set of vertices which are not already counted) such that the
following holds:

• (2 − h)t  |B1| , |B2| , |R1| , |R2|  (2 + h)t,

• (1 − h)t  |Z|  (1 + h)t,

• |T |  ht,

• The following pairs are λt-blue: (B1, R1), (B2, R2), (R1, R2), (R1, Z) and (R2, Z),

• The following pairs are λt-red: (B1, B2), (B1, Z), (B2, Z), (B1, R2) and (B2, R1).

We first need to slightly prune our sets. We start by removing from B1 (and putting in
T ) the vertices with more than 1

8λ red neighbours to R1 and the vertices with more than
λ blue neighbours to either B2, R2 or Z. We do the same to B2, R1 and R2 accordingly
to the colour of the pairs we are considering.

Up to reducing ε0, we are still respecting all the bounds on the sizes that we need
for Lemma 3, but we have a slightly better result on the state of the “problematic”
edges. Indeed, we know that there are no vertices outside T that witness more than λ
“problematic” edges.

We now just need to prove that G[B1], G[B2], G[R1], G[R2] and (B1, R1), (B2, R2),
(R1, Z), (R2, Z), (B1, Z), (B2, Z), (B1, R2), (B2, R1) are entirely monochromatic.

The proofs to show that G[B1], G[B2], G[R1], G[R2] are monochromatic have the
same structure. Therefore without loss of generality we show that G[B1] is entirely blue.
Assume by contradiction that we can find u, v in B1 such that uv is red. By our earlier
pruning we know that both u and v have at most 1

8λ blue neighbours in R2. Therefore uv
is triangle-connected to one of the red cliques of R2 (and therefore to all red cliques of R2).
Let us now prove that uv is also triangle-connected to the large red TCTF in (B1, B2, Z)
(which is enough to conclude since we would then be able to find a large triangle-connected
triangle component). Almost all the red edges in ({u} , B2) are triangle-connected to uv,
indeed, all but at most 1

8λ of them are in a red triangle with uv, the same holds for
the red edges in ({u} , Z). This means that there are at most λ vertices in either B2 or
Z that witness a red edge in (B2, Z) which is not triangle-connected to uv. But this is
absurd, as we mentioned before, since it implies that a large red TCTF in (B1, B2, Z) is
triangle-connected to uv.
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Let us now prove that (B1, R1), (B2, R2), (R1, Z), (R2, Z), (B1, Z), (B2, Z), (B1, R2),
(B2, R1) are entirely monochromatic. The structure of these proofs is always the same,
so without loss of generality we prove that (B1, R1) is monochromatic. Assume it is
not, and let uv be a red edge between B1 and R1 (with u ∈ B1). We prove that uv is
triangle-connected both to one clique of R1 (and therefore all cliques of R1) and to the
large red triangle component in (B1, B2, Z), which is absurd since this would give a large
red TCTF.

We first show that uv is triangle-connected to R2, let w1 ∈ R2 such that vw1 is an
edge (which has to be red by our previous proof that G[R1] is entirely red). Then by our
pruning we know that u, v and w1 share a red neighbour in B2. We now observe that if
w2w3 is a red edge between B2 and Z (with w2 ∈ B2) such that w2 is a red neighbour of
both u and v and w3 is a red neighbour of w2 and u, then w2w3 is triangle-connected to
uv. By the pruning we did earlier, we can say that most of the red edges between B2 and
Z are triangle-connected to uv, which is what we wanted.

Up to changing the roles of the clusters, the other proofs have the same structure.

8 Regularity Method: proofs of Lemma 4 and Theorem 2

In this section we state the Regularity Lemma and Blow-up Lemma, and use them to
deduce Lemma 4 and Theorem 2 from Lemma 3.

Definition 28 (density, ε-regular). Let G be a graph and let X, Y be disjoint subsets in
V (G). We define the density d(X, Y ) between X and Y to be:

d(X, Y ) := e(X, Y )
|X| |Y | .

Given ε > 0, we say that (X, Y ) is ε-regular if for every X ′ ⊆ X, Y ′ ⊆ Y such that
|X ′| > ε |X| and |Y ′| > ε |Y | we have |d(X ′, Y ′) − d(X, Y )| < ε.

We use the following version of the Regularity Lemma. We will apply this to the graph
of red edges within Kn, and observe that if (X, Y ) is ε-regular in red edges then, since
the blue edges are the complement of the red edges, it is also ε-regular in blue.

Lemma 29 (Regularity Lemma). For every ε ∈ (0, 1) there are M, N0 ∈ N such that the
following holds. Let G be a graph on n  N0 vertices, then there is a partition {V0, . . . , Vm}
of V (G) such that the following conditions hold. We have |V0|  ε−1 and ε−1  m  M .
We have |V1| = · · · = |Vm|. Finally, for any given i ∈ [m], for all but at most εm choices
of j ∈ [m] the pair (Vi, Vj) is ε-regular in G.

This version follows from the original version of Szemerédi [12] (which is similar but
bounds the total number of irregular pairs by εm2 rather than the number of irregular
pairs meeting a part) applied with parameter 1

8ε2, followed by removing parts incident
to more than 1

2εm irregular pairs (of which there are at most 1
2εm) to V0; we leave the

details to the reader.
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Given ε, d > 0, a 2-edge-coloured complete graph G and a partition obtained by
applying Lemma 29 with parameter ε to the subgraph of red edges, we define the (ε, d)-
reduced graph of G (with respect to the partition) to be the graph H on vertex set [m],
in which an edge ij is present if it is ε-regular, and assigned the colour red if its density
in red is at least 1 − d, blue if its density in blue is at least 1 − d, and otherwise purple.

We will see that for the purposes of embedding a graph into G, we can treat purple
edges as being either red or blue as we desire, so that a large TCTF in (red ∪ purple)
edges, or in (blue ∪ purple) edges in the reduced graph implies the existence of the square
paths and cycles in G we need. In order to apply Lemma 3 in this setting, we deduce the
following consequence, which roughly says that either we are done or we get essentially
the same partition as in Lemma 3, in particular there are very few purple edges.

Lemma 30. For every δ > 0 there exists ε > 0 such that for all t  1
ε
, if G is a

{red, blue, purple}-edge-coloured graph on (9 − ε)t vertices with minimum degree at least
(9 − 2ε)t, then either there is a choice of a colour between blue and red such that if we
colour all the purple edges of that colour we can find a monochromatic TCTF on at least
3(1 + ε)t vertices in G or V (G) can be partitioned in sets {B1, B2, R1, R2, Z, T} such that
the following hold.

(a) (2 − δ)t  |B1| , |B2| , |R1| , |R2|  (2 + δ)t,

(b) (1 − δ)t  |Z|  (1 + δ)t,

(c) all the edges in G[B1] and G[B2] are blue, and all the edges in G[R1] and G[R2] are
red,

(d) the pairs (B1, R1), (B2, R2), (R1, Z) and (R2, Z) are entirely blue. Moreover, the
pairs (B1, R2), (B2, R1), (B1, Z) and (B2, Z) are entirely red,

(e) the pair (B1, B2) is δt-red, while the pair (R1, R2) is δt-blue, and

(f) |T |  δt.

Proof. Let ε be given by Lemma 3 for input h = λ = 1
1000δ; without loss of generality we

may suppose δ is sufficiently small for this application.
Let G be a coloured graph satisfying the conditions of the lemma, and suppose there is

neither a red-purple TCTF over 3(1 + ε)t vertices nor a blue-purple TCTF over 3(1 + ε)t
vertices.

Let Gr be the graph obtained from G by recolouring the purple edges red, and similarly
Gb by recolouring them blue. Let Rr

1, Rr
2, Br

1, Br
2, Xr, T r be the partition obtained by

applying Lemma 3 to Gr, and define similarly the partition for Gb replacing r with b.
Observe that if we swap R1

r and R2
r , and also B1

r and Br
2, we still have a partition satisfying

the conclusion of Lemma 3. If
Rr

2 ∩ Rb
1

 >
Rr

1 ∩ R1
b

, we perform this swap (and in an
abuse of notation continue to use the same letters for the swapped classes).

We define Ri := Rr
i ∩ Rb

i and Bi := Br
i ∩ Bb

i for each i = 1, 2, and Z := Zr ∩ Zb and
finally T := V (G) \ (B1 ∪ B2 ∪ R1 ∪ R2 ∪ Z). We will now prove this partition satisfies
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the conclusions of the lemma. Observe that the statements in (c), (d) and (e) about sets
or pairs being entirely red, or δt-red, follow directly from the same statements for the
partition of Gb, and the corresponding ones about being blue from the partition of Gr;
what remains is to prove these sets have the correct sizes.

To begin with, observe that all edges in Rb
1 are red in Gb and so also in G. It follows

that Rb
1 intersects Br

i in at most one vertex for each i = 1, 2, since otherwise Br
i would

contain a red edge. Thus Rb
1 has at least (2 − 1

100δ)t − 2 vertices which are not in Br
1 ∩ Br

2.
These vertices cannot all be in T r ∪ Zr, which is too small, so Rb

1 has a vertex in at least
one of Rr

1 and Rr
2. Now R1

b cannot have vertices in Zr, since all edges from Zr to Rr
1 ∪ Rr

2
are not red. It follows that all but at most 1

1000δt + 2 vertices of R1
b are in Rr

1 ∪ Rr
2, and

by the observation above there are at least as many vertices in Rr
1 as Rr

2. Since (Rr
1, Rr

2)
is 1

1000δt-blue, and all edges in R1
b are red, we see R1

b has at most 1
1000δt vertices in Rr

2.
Finally, we conclude |R1|  (2 − 1

100δ)t. We also have |R1|  |Rr
1|  (2 + 1

1000δ)t. By a
similar argument (noting that Rb

1 and Rb
2 are disjoint) we obtain

(2 − 1
100δ)t  |Ri|  (2 + 1

1000δ)t

for each i = 1, 2.
We make a similar argument for Br

1. As above, we can conclude that all but at most
1

1000δ)t + 2 vertices of Br
1 are in Bb

1 ∪ Bb
2. However we can now observe that all edges from

Br
1 to R1 ⊂ Rr

1 are blue, while the edges from Bb
2 to R1 ⊂ Rb

1 are red. It follows that Br
1

is disjoint from Bb
2, and we obtain

(2 − 1
100δ)t  |Bi|  (2 + 1

1000δ)t

for i = 1, and, by the similar argument, for i = 2.
Now Zr and Zb are two sets of size at least (1 − 1

1000δ)t in V (G) \ (R1 ∪ R2 ∪ B1 ∪ B2),
which has size at most (9 − ε)t − 4(2 − 1

100δ)t  t + 2
50δt. It follows their intersection Z

has size at least (1 − 1
10δ)t, and at most |Zr|  (1 + 1

1000δ)t. Finally, putting these size
bounds together we have (a), (b) and an upper bound on |T | giving (f).

To go with the above lemma, we state the following two embedding lemmas. The
first is a corollary of [1, Lemma 7.1], though one could use the original Blow-up Lemma
of Komlós, Sárközy and Szemerédi [9] with some extra technical work in the proof of
Theorem 2. To deduce the following statement from [1, Lemma 7.1], we take R′ to be the
graph with zero edges and ∆R′ = 1, we take κ = 2, and we add to H for each i ∈ R a set
of |Vi| − |φ−1(i)| isolated vertices which (extending φ) we map to i and let be the buffer
vertices X̃i.

Theorem 31. Given d, γ > 0 and ∆ ∈ N, there exists ε > 0 such that for each given T ,
the following holds for all m  m0. Let R be any graph on [t], where t  T . Let V1, . . . , Vt

be disjoint vertex sets with m  |Vi|  2|Vj| for each i, j ∈ [t], and suppose that G is a
graph on V1 ∪ · · · ∪ Vt such that (Vi, Vj) is an ε-regular pair of density at least d for each
ij ∈ E(R). Suppose that H is any graph with ∆(H)  ∆ such that there exists a graph
homomorphism φ : H → R satisfying

φ−1(i)
  (1 − γ)|Vi|. Then H is a subgraph of G.
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The next is a consequence of the (original) Blow-up Lemma derived in [2].

Lemma 32 (Embedding Lemma, Allen, Böttcher, Hladký [2]). For all d > 0 there exists
εEL > 0 with the following property. Given 0 < ε < εEL, for every mEL ∈ N there
exists nEL ∈ N such that the following holds for each graph G on n > nEL vertices with
(ε, d)-reduced graph R on m  mEL vertices. Let ξ(R) be the size of the largest TCTF in
R, then for every ℓ ∈ N with 3ℓ  (1 − d)ξ(R) n

m
we have C2

3ℓ ⊂ G.

We are now in a position to prove Lemma 4, which we restate for convenience.

Lemma 33. For every α > 0 there exists δ > 0 and n0 ∈ N such that for every n > n0
the following holds. Let N  (9 − δ)n, and let G be a 2-edge-colouring of KN . Then
either G contains both a monochromatic copy of P 2

3n+2 and of C2
3n, or we can partition

V (G) into sets X1, X2, Y1, Y2, Z and R such that the following hold.

(a) (2 − α)n  |X1| , |X2| , |Y1| , |Y2|  (2 + α)n,

(b) (1 − α)n  |Z|  (1 + α)n,

(c) |R|  αn,

(d) Vertices in the following pairs have at most αn red neighbours in the opposite part:
(X1, Y1), (X2, Y2), (Y1, Y2), (Y1, Z) and (Y2, Z),

(e) Vertices in the following pairs have at most αn blue neighbours in the opposite part:
(X1, X2), (X2, Y1), (X1, Y2), (X1, Z) and (X2, Z),

(f) Vertices in X1 and X2 have at most αn red neighbours in their own part,

(g) Vertices in Y1 and Y2 have at most αn blue neighbours in their own part.

Proof. Given α > 0, let d be such that 10000α−2d is returned by Lemma 30 when
we use as input α2

10000 . Let εEL be returned by Lemma 32 for input d, and let ε =
min( 1

10d, εEL, 1
10000α2). Let now N0 and M be returned by Lemma 29 with input ε. We

let nEL be returned by Lemma 32 for input d, ε and mEL = M . Finally, let δ = d and
n0 = max(100ε−1, N0, N1) be the constants returned by the lemma..

Let us now fix some n > n0 and, for N > (9 − δ)n, a 2-edge-colouring G of KN .
We apply Lemma 29 with parameter as above to the red subgraph of G to get a

partition V0, . . . , Vm of V (G), with ε−1  m  M , as in Lemma 29. Let H be the
(ε, d)-reduced graph of G. Since each cluster Vi is in at most εm irregular pairs, we have
δ(H)  (1−ε)m−1. Let t = m

9−10α−1d
, so that H has (9−10α−1d)t vertices and, by choice

of ε, minimum degree at least (9 − 20α−1d)t. By Lemma 30 with constants as above, one
of the following occurs.

It could be that H contains a red-purple TCTF over 3(1 + 10d)t = 3(1+10d)
9−10α−1d

m 
1
3(1 + 10d)m vertices. Applying Lemma 32 with constants as above, we conclude that G
contains a red C2

3s for each s  (1 − d) · 1
3(1 + 10d) · (9 − d)n  3(1 + d)n. But then

in particular G contains a red copy of C2
3n and P 2

3n+2 and we are done. Similarly, if H
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contains a blue-purple TCTF over 3(1+10d)t vertices then G contains a blue copy of C2
3n

and P 2
3n+2 and we are done.

Alternatively, by Lemma 30 we get a partition of V (H) in sets B1, B2, R1, R2, Z ′′

and T . We obtain from this a partition of V (G), setting X ′
j = 

i∈Bj
Vi and Y ′

j = 
i∈Rj

Vi

for j = 1, 2, setting Z ′ := 
i∈Z′′ Vi, and letting R′ be the remaining vertices. Since we

applied Lemma 30 with input α2

10000 and by choice of ε, we have properties (a) and (b) of
Lemma 25 with 1

1000α2 instead of α.
Since (B1, B2) is 1

10000α2t-red, the number of blue edges in G between X ′
1 and X ′

2 is at
most

d|X ′
1||X ′

2| + 1
1000α2n|X ′

2| + 1
1000α2n|X ′

1|  1
200α2n2 ,

where the inequality uses d  1
10000α2. In particular there are less than 1

200αn vertices in
X ′

1 which have more than αn blue neighbours in X ′
2, and similarly swapping X ′

1 and X ′
2.

By the identical calculation, an analogous statement holds for Y ′
1 and Y ′

2 in red.
We now claim that at most ε|X ′

1| vertices in X ′
1 send αn or more red edges to Y ′

1 .
Suppose for a contradiction this statement is false. By averaging, there is a cluster Vi

with i ∈ B1 such that a set S of ε|Vi| vertices of Vi all send αn or more red edges to
Y ′

1 . Since Vi is in irregular pairs with at most εm other clusters, at most 2εn red edges
from each s ∈ S go to clusters of R1 that make irregular pairs with Vi. The remaining
at least 1

2αn|S| edges from S therefore go to the remaining less than 3m clusters Vj with
j ∈ R1, which all form ε-regular pairs with Vi that have density at most d in red. Again
by averaging, there is a cluster Vj with j ∈ R1 such that (Vi, Vj) is ε-regular and has red
density at most d, but also receives at least αn|S|

6m
> 2d|Vj||S| red edges from S. But this,

since ε < d and |S|  ε|Vi|, is a contradiction to regularity of (Vi, Vj).
By a similar argument, at most ε|X ′

i| vertices in X ′
i send edges of the ‘wrong’ colour

to each Y ′
j or to Z ′ or vice versa. We can modify the argument slightly to show that at

most ε|X ′
1| vertices of X ′

1 have more than αn red neighbours in X ′
1: again we can find a

set S in a cluster Vi with i ∈ B′
1 whose vertices all have more than αn red neighbours in

X ′
1, but we need to discard both red edges in irregular pairs at Vi and also edges within

Vi. Since |Vi|  m
n

 εn, there are in total at most 2εn such edges, which is the same
bound we used above and from this point the proof above works as written.

We now let X1 be obtained from X ′
1 by discarding all vertices which have more than

αn edges of the ‘wrong’ colour to any of X ′
i or Y ′

i or Z ′. By the above calculations, in
total we discard at most 4ε|X ′

1| + 1
200αn  1

100αn vertices of X ′
1. We define similarly

X2, Y1, Y2, Z, and similarly remove at most 1
100αn vertices in each case. Finally, we let R

denote the set of all vertices not in X1 ∪X2 ∪Y1 ∪Y2 ∪Z. By construction, each Xi, Yi and
Z has the claimed size; and |R|  αn follows since each vertex of R was either in V0, or Vi

for some i ∈ T , or removed from X ′
i or Y ′

i or Z ′. There are at most εn + α2

10000n + 5 · 1
100αn

such.
Finally, by definition each vertex of X1 has at most αn edges of the ‘wrong’ colour

to any of X ′
i, Y ′

i or Z ′, which are supersets of Xi, Yi, Z respectively, giving the required
bounds on ‘wrong’ coloured edges at X1. The same holds for X2, Y1, Y2, Z by the similar
argument.
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Finally, we prove Theorem 2. First, we deduce from Lemma 3 that if G satisfies the
conditions of Theorem 2, then the reduced graph R of G is an m-vertex graph which
contains a monochromatic TCTF on nearly 1

3m vertices. Suppose this is red. We then
show how to construct a homomorphism from any given H satisfying the conditions of
Theorem 2 to the red subgraph of R which does not overload any vertex i of R, i.e. map
too many vertices to i, and finally apply Theorem 31 to find the desired monochromatic
copy of H in G.

The only tricky step of this sketch is to construct the required homomorphism. We
split up V (H) into chunks and fragments, which are intervals in the bandwidth ordering,
alternating between chunks and fragments. Each fragment is of equal length and their
total size is tiny compared to the size of a cluster, and the chunks are of equal length and
much bigger than the fragments (but still much smaller than the size of a cluster). Given
our TCTF in R, we put an order T1, . . . , Tk (arbitrarily) on the triangles of the TCTF,
and fix for each 1  i  k − 1 a tight walk from Ti to Ti+1. We assign each chunk of H
to some Ti where i is chosen uniformly and independently from [k]. We claim that it is
possible to now construct a homomorphism where each chunk will be mapped entirely to
its assigned triangle, using the fragments to connect up along the fixed tight walks, and
that this homomorphism will with positive probability not overload any vertex of R: the
point here will be to analyse the assignment of chunks, since the total size of all fragments
is tiny.

Proof of Theorem 2. Given γ > 0 and ∆, we fix h  γ
1000 and λ > 0 (which will play

no further rôle in this proof) sufficiently small for Lemma 3, and let 2ε′ and t0 be the
returned constants. We let ε > 0 be returned by Theorem 31 for input d = 1

2 , γ
100 and

∆. Without loss of generality, we may presume ε < 1
10 min(t−1

0 , ε′, γ). We input ε and
d = 1

2 to Theorem 29 and let M, N0 be the returned constants. We input T = M to
Theorem 31, with the other parameters as above, and choose N1 such that the returned
constant m0  N1/M .

We set ρ = 1
60000M−3γ2 and β = 1

100M−4γ.
Suppose now n  max(N0, N1).
Let N = (9+γ)n. Given a 2-edge-coloured KN , we apply Lemma 29 with constants as

above, to the graph of red edges in KN , to obtain a partition V (KN) = V0 ∪ V1 ∪ · · · ∪ Vm,
where ε−1  m  M . By construction, the number of vertices in each part Vi with
1  i  m is at least (9+γ/2)n

m
.

Let R be the corresponding coloured reduced graph on [m], in which we colour a pair
ij red if (Vi, Vj) is ε-regular and has density in red at least 1

2 , blue if it is ε-regular and
has density in blue strictly bigger than 1

2 , and otherwise (i.e. if the pair is irregular) we
do not put an edge ij. By construction, we have δ(R)  (1 − ε)m.

Let t = m/(9 − ε′), so that R has (9 − ε′)t vertices and minimum degree at least
(9 − 2ε′)t. By Lemma 3, either R contains a monochromatic 3(1 + ε′)t-vertex TCTF, or
we obtain a partition of V (R) as described in that lemma. In particular, there is a set B1
of at least (2 − h)t vertices and a disjoint set R1 of at least (2 − h)t vertices, such that
any triangle with two vertices in B1 and one in R1 is monochromatic blue (and so all such
triangles are in a blue triangle component). It follows that choosing (1 − h)t disjoint such
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triangles greedily we obtain a monochromatic TCTF with 3(1 − h)t vertices. We see that
in all cases R contains a monochromatic TCTF on at least 3(1 − h)t  1

3(1 − h)m =: 3k
vertices.

Fix such a TCTF, let its triangles be T1, . . . , Tk and suppose without loss of generality
that it is red. By definition of red triangle-connectedness, for each 1  i  k − 1 there is
a red triangle walk in R from Ti to Ti+1, and we fix for each i one such Wi chosen to be
of minimum length. Thus Wi is a sequence of triangles, starting with Ti and ending with
Ti+1, in which each pair of consecutive triangles shares two vertices. Finally, we assign
labels 1, 2, 3 to the vertices of all these triangles as follows: we label the vertices of T1
in an arbitrary order, then assign labels to the successive triangles of W1, W2, . . . , Wk−1
in order as follows: when we assign labels to the next triangle, we keep the labels of the
two vertices it shares with the previous triangle, and give the missing label to the third
vertex. Note that a given vertex, or a given edge, might receive different labellings for
different triangles, and indeed if a triangle appears in two different walks it might receive
different labellings in the different walks.

Let H be a graph with maximum degree at most ∆, bandwidth at most βn, and a
fixed 3-vertex colouring in which no colour class has more than n vertices. We split V (H)
into consecutive intervals C1, F1, C2, F2, . . . , Fs−1, Cs as follows: we let each Ci (except
perhaps the last two, which can be of any size) consist of ρn vertices, and each Fi be of
size M2βn. For each 1  i  s we pick π(i) ∈ [k] uniformly and independently at random.
We now define a homomorphism ψ : H → R as follows. If x is a vertex of the chunk Ci

for some i, and its colour in the fixed 3-colouring of H is j ∈ [3], then we set ψ(x) equal
to the vertex of Tπ(i) with label j. We now describe how to construct ψ on the fragment
F1; the same procedure is used for each subsequent fragment with the obvious updates.
We separate F1 into intervals of length βn. If x is in the ith interval, and has colour j in
the 3-colouring, then we set ψ(x) equal to the vertex of the ith triangle after T1 in W1
with label j. If there is no such triangle (i.e. the walk has already reached T2) then we
set ψ(x) equal to the vertex labelled j in T2. We claim that this last event occurs for the
final interval. Indeed, if two triangles of W1 both contain a given edge e of R, then by
minimality they are consecutive triangles in the walk, so W1 has less than M2 triangles.

We claim that this construction gives a homomorphism from H to the red subgraph
of R. Indeed, suppose xy is an edge of H. Then x and y have different colours in
the 3-colouring, and they are separated by at most βn in the bandwidth ordering. By
construction, x is assigned to a vertex of some triangle T according to its colour. The
vertex y is assigned to a triangle T ′ according to its colour; and either T = T ′ or T and T ′

are consecutive triangles on one of the fixed walks, in particular they share two vertices
and their labels are consistent on those two vertices. Either way, x and y are mapped to
a red edge of R (the only non-edge is if T ∕= T ′ and it goes between the two vertices of
the symmetric difference of T and T ′, which both have the same label: but x and y have
different colours).

We still need to justify that with high probability ψ does not overload any vertex of
R. To begin with, observe that the total number of vertices in the fragments is at most
M · M2βn = M3βn  γn

100m
, which is much smaller than the size of any cluster Vi. In

the electronic journal of combinatorics 31(2) (2024), #P2.11 37



particular, if i is not in any triangle of the TCTF, then |ψ−1(i)| < 1
2 |Vi| as desired. Now

consider the vertex u of Ti with label j. Apart from the at most M3βn vertices of the
fragments, the vertices of ψ−1(u) are vertices of chunks with colour j. There are at most
n vertices in chunks of colour j in total, and each such chunk has probability 1/k of being
assigned to Ti. We see that the expected number of chunk vertices in ψ−1(u) is at most
n/k. The probability that the actual number of such vertices exceeds n/k by s is by
Hoeffding’s inequality at most

exp


− s2

2·3ρ−1·(ρn)2


= exp


− s2

6ρn2


,

where we used that there are at most 3ρ−1 chunks, and the maximum contribution of
a given chunk to |ψ−1(u)| is at most ρn. Choosing s = 1

100γM−1n, by choice of ρ the
probability that |ψ−1(u)|  n/k + s + M3βn (the last term accounts for vertices in
fragments) is at most exp(−M). In particular, with positive probability we have

|ψ−1(u)|  n
k

+ 1
100γ n

M
+ M3βn

for every u ∈ V (R). Suppose this event occurs. Substituting our values for β, k and
finally h, we get

|ψ−1(u)|  9n
(1−h)m + 1

100γ n
m

+ 1
100γ n

m
 9n

m
(1 + 2h) + 1

10γ n
m

 (9 + γ
5 )n

m
.

Since |Vu|  (9+γ/2)n
m

, as observed at the start of this proof, we have |ψ−1(u)|  (1− γ
100)|Vu|

for every u ∈ V (R). This is the required condition to apply Theorem 31.
Finally, by Theorem 31 we conclude that there is a red copy of H in the 2-coloured

KN .

9 Proof of Theorem 1

We are now ready to prove the main result of this paper, which we restate for convenience.
Recall that we established the lower bound in Section 2, and what remains is to prove the
corresponding upper bound. We give the full details for the square of a path, the square
of a cycle case is similar.
Theorem 1. There exists n0 such that for all n  n0 we have:

R(P 2
3n, P 2

3n) = R(P 2
3n+1, P 2

3n+1) = R(C2
3n, C2

3n) = 9n − 3 and R(P 2
3n+2, P 2

3n+2) = 9n + 1.

Proof of Theorem 1, upper bound for P 2
3n+1. Let n0 and δ be given by Lemma 4 when we

set α = 1
1000 (we are not trying to optimise this value) and then let us fix n > max(n0,

3
δ
)

and N  9n−3. Let now G be any 2-edge-colouring of KN . We suppose for a contradiction
that G does not contain a monochromatic P 2

3n+1. By Lemma 4, since G does not contain a
monochromatic P 2

3n+1, we have a partition X1, X2, Y1, Y2, Z, R of V (G) with the conditions
(a)-(g), which we fix.

We now want to refine these conditions by adapting repeatedly a greedy procedure.
Since we are going to apply multiple times the same method, we will explain the greedy
procedure and the arguments for existence only in the first instance.
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Claim 34. X1 and X2 are entirely blue, while Y1 and Y2 are entirely red.

Proof. Assume by contradiction that there is a red edge x1x
′
1 in X1. Since x1 and x′

1 have
at most αn blue neighbours in Z and (1 − α)n  |Z|, we have that x1 and x′

1 have a
common red neighbour z ∈ Z. Similarly, by considering the common red neighbour of x1
and x′

1 in Y2, we can find y2, y′
2 ∈ Y2 such that y2y

′
2, x1y2, x′

1y
′
2, x′

1y2, x1y
′
2 are all red.

We are now ready to extend the red path P0 = y2, y′
2, x1, x′

1, z (whose square is also
monochromatic red) to a path P of length bigger than 3n+2 such that P 2 is also monochro-
matic red. The idea is to greedily add to P0 at least 3

2n vertices from Y2 (using the fact
that almost all the edges in Y2 are red) and 2n vertices from (X1, X2, Z).

In order to do that, it suffices to show that we can find a path PY2 of length at least
3
2n in Y2 that starts with y2y

′
2 and such that P 2

Y2 is monochromatic red. Assume we have
built already a path PY2 = y2, y′

2, . . . , pℓ with the aforementioned conditions, provided
ℓ < 3

2n, we can extend PY2 simply by appending a vertex pℓ+1 that is in the common red
neighbour of pℓ and pℓ−1 in Y2 \ PY2 . But this is possible, indeed all but at most 2

1000n
vertices in Y2 have red edges to both pℓ and pℓ−1.

We do a very similar procedure by greedily extending P(X1,X2,Z). Given a red path
P(X1,X2,Z) = x′

1, z, . . . , pℓ of length smaller than 2n, we can extend it by taking a vertex in
the common red neighbour of pℓ and pℓ−1 and in the right component.

Since P 2
0 is monochromatic red, and since we showed how to extend the endpoints to

form a long path whose square is also monochromatic, we are done.
The arguments for X2, Y1 and Y2 are symmetric. □

Claim 35. The pairs (X1, Z) and (X2, Z) are entirely red, while the pairs (Y1, Z) and
(Y2, Z) are entirely blue.

Proof. Assume by contradiction that there is a blue edge x1z between X1 and Z. Let
y1 ∈ Y1 be in the common blue neighbourhood of x1 and z (which exists by arguments
similar to the ones above).

Take x′
1 ∈ X1 \ {x1} in the common blue neighbourhood of y1 and x1 and let P0 =

z, y1, x1, x′
1. We have that P 2

0 is blue monochromatic. Also, we can greedily extend P0 to
a path P such that P 2 is also blue monochromatic and |P | > 3n by extending x1, x′

1 to a
path of length at least 3

2n in X1 and extending the zy1 end in (Y1, Y2, Z) by at least 2n
vertices.

The argument for the other pairs is symmetric. □

Claim 36. The pairs (X1, Y1) and (X2, Y2) are entirely blue, while the pairs (X1, Y2) and
(X2, Y1) are entirely red.

Proof. Assume by contradiction that there is a red edge x1y1 in (X1, Y1). The vertices
x1 and y1 share a red neighbour x2 in X2. We can also find in Y1 \ {y1} a common red
neighbour y′

1 of y1 and x2.
We can start with the path P0 = x1, x2, y1, y′

1, and then extend it using vertices in Y1
on one side and vertices of (X1, X2, Z) on the other, until we get a path P such that P 2

is monochromatic red and covers at least 3n + 2 vertices.
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The argument for the other pairs is symmetric. □

Claim 37. The pair (X1, X2) has no blue P4, while the pair (Y1, Y2) has no red P4.

Proof. Assume x1x2x
′
1x

′
2 formed a blue P4 in (X1, X2). Since X1 and X2 are entirely blue,

the edges x1x
′
1 and x2x

′
2 are blue. Each of these edges is the beginning of a square of a

path covering the respective part. These join together to form a square of a path that is
longer than allowed.

The argument for the other pair is symmetric. □

From the claims above we can see that in the situation depicted by Lemma 4 we have
|X1| , |X2| , |Y1| , |Y2|  2n − 1. We can now partition the vertices of the remainder set R
depending on their neighbourhoods as follows.

1) Let us denote with RZ the set of vertices in R with more than n
4 red neighbours

both in X1 and X2,

2) for i = 1, 2 let Ri be the vertices in R with more than n
4 blue neighbours in both Xi

and Yi,

3) let R12 denote the vertices in R with more than n
4 red neighbours in both X1 and

Y2,

4) let R21 denote the vertices in R with more than n
4 red neighbours in both X2 and

Y1,

5) let R∗ denote any vertices in R that are not in any of the above sets.

Claim 38. Vertices in R∗ have at least 3
2n blue neighbours in each Xi and at least 3

2n red
neighbours in each Yi. Moreover, |R∗|  1.

Proof. The first part of the claim is true by construction. Let us now assume that there
are two vertices u and v in R∗. Then u and v have more than n

2 common blue neighbours
in each Xi and at least n

2 common red neighbours in each Yi. Therefore if uv is blue it
will create a blue square of a path with vertices from X1 and X2, while if it is red it will
join long red squares of paths in Y1 and Y2. □

Claim 39. We have the following bounds: |X1 ∪ R1| , |X2 ∪ R2| , |Y1 ∪ R21| , |Y2 ∪ R12| 
2n − 1.

Proof. Assume by contradiction that |X1 ∪ R1|  2n. Recall that in previous claims we
proved that all the edges in X1 and (X1, Y1) are blue. Let us label the vertices in R1 by
r1, . . . , rℓ. Recall that ℓ = |R1|  |R|  αn.

Since every vertex in R1 has at least n
4 blue neighbours in both X1 and Y1 we can

find disjoint blue triangles T1, . . . , Tℓ where triangle Ti contains the vertices ri, xi, yi with
xi ∈ X1 and yi ∈ Y1. We next find for each i ∈ [ℓ] vertices ai, bi, ci, a′

i, b′
i, c′

i as follows. We
let ci be a blue neighbour of ri in Y1, and ai, bi ∈ X1, we let a′

1 be a neighbour in X1 of
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r1, b′
1 be in X1, and c′

1 be in Y1. Observe that since ℓ  αn, we can ensure that all these
vertices are different.

By construction, the vertex ordering P0 = (a1, b1, c1, x1, r1, y1, a′
1, b′

1, c′
1, . . . ), where we

repeat the same letter ordering for i = 2 and so on afterwards, is a blue square path. We
extend P0 further by choosing distinct vertices from X1, X1 and then Y1 in this order,
until no unused vertices remain in X1. As |X1 ∪ R1|  2n, what we obtain is a blue square
path with at least 3n vertices, if |X1 ∪ R1|  2n + 1 we obtain at least 3n + 1 vertices.
We can extend P0 by one more vertex by adding a so far unused vertex of Y1 at the start
of the ordering. This gives the required 3n + 1-vertex square path (and 3n + 2 vertices if
|X1 ∪ R1|  2n + 1). The arguments for the other pairs of sets are the same. □

Claim 40. We have that |Z ∪ RZ |  n − 1.

Proof. Let as assume that |Z ∪ RZ |  n and let us label the vertices in RZ by r1, . . . , rℓ.
Since (X1, X2) has no blue path on 4 vertices, there are at most 40 vertices in X1 ∪ X2
with more than n

20 blue neighbours in the opposite part. Call the set of these vertices
Xbad. Since each vertex in RZ has more than n

4 red neighbours in each Xi, we can find
disjoint red triangles T1, . . . , Tℓ such that each Ti uses ri, a vertex x1

i ∈ X1 \ Xbad and a
vertex x2

i ∈ X2 \ Xbad.
The idea is now to find for each i ∈ [ℓ] vertices ai, a′

i ∈ X1, bi, b′
i ∈ Z, ci, c′

i ∈ X2 such
that for every i ∈ [ℓ − 1] we have that (x1

i , ri, x2
i , ai, bi, ci, a′

i, b′
i, c′

i, x1
i+1, ri+1, x2

i+1) is a red
square of a path. But this can be done greedily since ℓ  αn. We now build the path
P0 = (x1

1, r1, x2
1, a1, b1, c1, a′

1, b′
1, c′

1, x1
2, . . . , x2

ℓ) which by construction has the property that
P 2

0 is red.
We can extend P0 by choosing distinct vertices from X1, Z and then X2 in this order,

until no unused vertices remain in Z. As |Z ∪ RZ |  n, what we obtain is a red square
path with at least 3n vertices. □

Putting the bounds from the last three claims together, we see |G|  1 + 4(2n − 1) +
n − 1 = 9n − 4, which contradiction completes the proof.

The proof for P 2
3n+2 is almost verbatim as above (we actually worked with P 2

3n+2 in
most of the claims), with the exception that in Claim 39 we obtain the upper bound
|X1 ∪ R1|  2n, as explained in the proof of that claim, and consequently a final upper
bound |G|  1 + 4(2n) + n − 1 = 9n for a contradiction.

Sketch proof of cycle case of Theorem 1. In order to prove that for n large enough we have
R(C2

3n, C2
3n) = 9n − 3, is suffices to modify our previous proof. We start by constructing

the same partition we built at the beginning of the proof of Theorem 1 to get the sets
X1, X2, Y1, Y2, Z, R. Now, by using the same technique introduced in Claim 34 we can
prove some weakened for of Claims 34, 35, 36, 37. Which is, we can prove that in X1
we cannot find two disjoint red edges (the same holds for X2), in Y1 we cannot find two
disjoint blue edges (the same holds for Y2). Similarly, we cannot find two disjoint edges
of the wrong colours in none of the following pairs: (X1, Z), (X2, Z), (Y1, Z), (Y2, Z),
(X1, Y1), (X2, Y2), (X1, Y2), (X2, Y1). Moreover, we cannot find two vertex-disjoint P4 of
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the wrong colour in (X1, X2) nor in (Y1, Y2).
To From these results and the previously proved Lemma 4, we can see that also in this
case we have |X1| , |X2| , |Y1| , |Y2|  2n − 1. Now we can define the same partition of R
in sets RZ , R1, R2, R12, R21 and R∗. Let us point out that from this modified version of
Claim 34 we have that there are two vertices a, b ∈ X1 such that all edges in G[X1 \{a, b}]
are blue. In particular, from Claims 34, 35, 36, 37 we get that up to moving at most 10
vertices from X1 to R1 (and similarly from X2 to R2, from Y1 to R21, from Y2 to R12 and
from Z to RZ) all the vertices in X1 (and similarly in X2, Y1, Y2, Z) are incident only to
edges of the right colour in G[X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ Z], with the possible exception of edges
in (X1, X2) and (Y1, Y2).
We now aim to explain how to modify Claim 38 to hold for cycles and how to modify
the proof of Claims 39, 40. The first part of Claim 38 holds by construction without
any modifications. The second part of Claim 38 needs to be modified to state that we
cannot find two parallel edges of the same colour in R∗. Indeed, otherwise we could find
a long monochromatic blue cycle C such that C2 is also blue by using vertices from X1,
X2 and the two blue edges in R∗. In particular, this implies that |R∗|  4. As a guide to
show how to modify the proofs of Claim 39 and 40, we give a sketch of the modifications
needed for Claim 39. If we assume by contradiction that |X1 ∪ R1|  2n we can almost
verbatim repeat the same proof, having care of extending our path P0 in both directions
and making sure that the two endpoints of P0 and their neighbours are adjacent in blue
to each other. This is possible because G[X1] is entirely blue as claimed above.
Claim 41. If R∗ contains a blue edge, then |X1 ∪ R1| , |X2 ∪ R2|  2n − 2 (same holds
for red, Y1 ∪ R21 and Y2 ∪ R12).

Proof. Assume R∗ contains a blue edge uv, then |X1 ∪ R1|  2n − 2 (the arguments for
the other cases are the same). In order to prove this, it suffices to show that there exists
a maximal matching T in X1 such that we can build a blue cycle C that covers all the
edges of X1, the two vertices u, v ∈ R∗ and, for each edge in T , an extra vertex in Y1.
This can be done because by Claim 34 and Lemma 4 there is a vertex w ∈ X1 such that
the red neighbourhood of w in X1 has size at most αn, but G[X1 \ w] has at most one
red edge and because u and v have both at least 3

2n blue neighbours in X1. Therefore, it
is possible to build a cycle by replicating the construction in Claim 39 and by carefully
adding the edge uv to the cycle. □

This suffices to conclude. Indeed, if |R∗|  3 then we still have

|X1 ∪ R1 ∪ R∗ ∪ X2 ∪ R2|  4n − 1 ,

while if |R∗| = 4 then we have both a red and a blue edge in R∗ (since we cannot
have two vertex-disjoint edges of the same colour). In this case we have the following
inequalities: |X1 ∪ R1| , |X2 ∪ R2| , |Y1 ∪ R21| , |Y2 ∪ R12|  2n − 2, which are enough to
obtain the wanted bound.
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