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A B S T R A C T

Computational cognitive modeling is an important tool for understanding the processes supporting human and
animal decision-making. Choice data in decision-making tasks are inherently noisy, and separating noise from
signal can improve the quality of computational modeling. Common approaches to model decision noise often
assume constant levels of noise or exploration throughout learning (e.g., the 𝜖-softmax policy). However, this
assumption is not guaranteed to hold – for example, a subject might disengage and lapse into an inattentive
phase for a series of trials in the middle of otherwise low-noise performance. Here, we introduce a new,
computationally inexpensive method to dynamically estimate the levels of noise fluctuations in choice behavior,
under a model assumption that the agent can transition between two discrete latent states (e.g., fully engaged
and random). Using simulations, we show that modeling noise levels dynamically instead of statically can
substantially improve model fit and parameter estimation, especially in the presence of long periods of noisy
behavior, such as prolonged lapses of attention. We further demonstrate the empirical benefits of dynamic
noise estimation at the individual and group levels by validating it on four published datasets featuring diverse
populations, tasks, and models. Based on the theoretical and empirical evaluation of the method reported in
the current work, we expect that dynamic noise estimation will improve modeling in many decision-making
paradigms over the static noise estimation method currently used in the modeling literature, while keeping
additional model complexity and assumptions minimal.
. Introduction

Computational modeling has helped cognitive scientists, psychol-
gists, and neuroscientists to quantitatively test theories by trans-
ating them into mathematical equations that yield precise predic-
ions (Palminteri, Wyart, & Koechlin, 2017; Wilson & Collins, 2019).
ognitive modeling often requires computing how well a model fits
o experimental data. Measuring this fit – for example, in the form of
odel evidence (Kass & Raftery, 1995) – enables a quantitative com-
arison of alternative theories to explain behavior. Measuring model fit
o the data as a function of model parameters helps identify the best-
itting parameters for the given data, via an optimization procedure
ver the fit measure (typically negative log-likelihood) in the space
f possible parameter values. When fitted as a function of experi-
ental conditions, model parameter estimation can help explain how

ask manipulations modify cognitive processes (Eckstein et al., 2022);
hen fitted at the individual level, estimated model parameters can
elp account for individual differences in behavioral patterns (Lee &

∗ Corresponding author at: Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, 94720, CA, United States.
E-mail address: annecollins@berkeley.edu (A.G.E. Collins).

Webb, 2005). Moreover, recent work has applied cognitive models
in the rapidly growing field of computational psychiatry to quantify
the functional components of psychiatric disorders (Huys, Browning,
Paulus, & Frank, 2021). Importantly, cognitive modeling is particularly
useful for explaining choice behavior in decision-making tasks – it
reveals links between subjects’ observable choices and putative latent
internal variables such as objective or subjective value (Tversky &
Kahneman, 1992), strength of evidence (Bitzer, Park, Blankenburg, &
Kiebel, 2014), and history of past outcomes (Dayan & Niv, 2008). This
link between internal latent variables and choices is made via a policy :
the probability of making a choice among multiple options based on
past and current information.

An important feature of choice behavior produced by biological
agents is its inherent noise, which can be attributed to multiple sources
including inattention (Esterman & Rothlein, 2019; Warm, Parasura-
man, & Matthews, 2008), stochastic exploration (Wilson, Geana, White,
Ludvig, & Cohen, 2014), and internal computation noise (Findling &
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Fig. 1. Dynamic noise estimation computes the noise levels in choices trial-by-trial. A: Example noise levels in choice behavioral data estimated by static and dynamic noise
estimation methods. Background shading indicates the block design of the experiment; black line is smoothed accuracy; orange circles and green dots represent estimated static
and dynamic noise levels, respectively. Data is an example subject from Eckstein et al. (2022), Master et al. (2020). B: Static noise estimation is a special case of dynamic noise
estimation subject to an additional constraint – the static noise model space is included in the dynamic noise model space. C: Hidden Markov models representing the static and
dynamic noise estimation frameworks with transition probabilities between latent states.
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Wyart, 2021). Choice randomization can be adaptive, as it encourages
exploration, which is essential for learning (Sutton & Barto, 2018).
Exploration can come close to optimal performance if implemented
correctly (Chapelle & Li, 2011; Thompson, 1933; Wang & Wilson,
2018). However, the role of noise is often downplayed in computational
cognitive models, which usually emphasize noiseless information pro-
cessing over internal latent variables – for example, in reinforcement
learning, how the choice values are updated with each outcome (Daw
& Tobler, 2014). A common approach to modeling noise in choice
behavior is to include simple parameterized noise into the model’s
policy (Wilson & Collins, 2019). For example, a greedy policy, which
chooses the best option deterministically, can be ‘‘softened’’ by a lo-
gistic or softmax function with an inverse temperature parameter, 𝛽,
such that choices among more similar options are more stochastic than
choices among more different ones. Another approach is to use an 𝜖-
greedy policy, where the noise level parameter, 𝜖, weighs a mixture
of a uniformly random policy with a greedy policy. This approach is
motivated by a different intuition: that lapses in choice patterns can
happen independently of the specific internal values used to make
decisions. Multiple noise processes can be used jointly in a model when
appropriate (Collins & Frank, 2012).

Failure to account for a noisy choice process in modeling could
lead to under- or over-emphasis of certain data points, and thus inap-
propriate conclusions (Nassar & Frank, 2016; Schaaf, Jepma, Visser, &
Huizenga, 2019). However, commonly used policies with noisy decision
processes share strong assumptions. In particular, they typically assume
that the level of noise in the policy is fixed, or ‘‘static’’, with regards
to some learning variable (e.g., trial for 𝜖-greedy and value difference
between choices for softmax), over the duration of the experiment, with
some exceptions reviewed by Schulz and Gershman (2019), Yechiam
and Busemeyer (2005) further described in Discussion. This static
assumption could hold for some sources of noise, such as computation
and some exploration noise, but many other sources are not guaranteed
to generate consistent levels of noise. For instance, a subject might
2

t

disengage during some periods of the experiment, but not others.
Therefore, existing models with static noise estimation might fail to
fully capture the variance in noise levels, which can impact the quality
of computational modeling.

To resolve this issue, we introduce a dynamic noise estimation
method that estimates the probability of noise contamination in choice
behavior trial-by-trial, allowing it to vary over time. Fig. 1A illustrates
examples of static and dynamic noise estimation on human choice
behavioral data from Eckstein et al. (2022), Master et al. (2020). The
probabilities of noise inferred by models with static and dynamic noise
estimation are shown in conjunction with choice accuracy. In this
example, choice accuracy drops steeply to a random level (0.33) around
Trial 350, indicating an increased probability of noise contamination.
This change is captured by dynamic noise estimation but not the static
method.

Our dynamic noise estimation method makes specific, but looser
assumptions than static noise estimation, making it suitable to solve a
broader range of problems (Fig. 1B). Specifically, a policy with dynamic
noise estimation models the presence of random noise as the result of
switching between two latent states – the Random state and the Engaged
state – that correspond to a uniformly random, noisy policy and some
other decision policy assuming full task engagement (e.g., an attentive,
softmax policy). We assume that a hidden Markov process governs
transitions between the two latent states with two transition probability
parameters, 𝑇𝐸

𝑅 and 𝑇𝑅
𝐸 , from the Random to Engaged state and vice

ersa. Note that static noise estimation can be formulated under the
ame binary latent state assumption, with the additional constraint that
he transition probabilities must sum to one, making it a special case
f dynamic noise estimation (see Materials and methods for proof).
he hidden Markov model of dynamic noise estimation captures the
bservation that noise levels in decision-making tend to be temporally
utocorrelated, which may be a reflection of an evolved expectation of
emporally autocorrelated environments (Group et al., 2014).
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We show that noise levels can be inferred dynamically trial-by-trial
in multi-trial decision-making tasks, using a simple, step-by-step algo-
rithm (Algorithm 2). On each trial, the model estimates the probability
of the agent being in each latent state using observation, choice, and
(if applicable) reward data. It estimates the choice probability as a
weighted average of decisions generated by the Random policy and
the Engaged policy, which is then used to estimate the likelihood.
Therefore, dynamic noise estimation can be incorporated into any
decision-making models with analytical likelihoods. Model parame-
ters can be estimated using procedures that optimize some likelihood
metric, including maximum likelihood estimation (Fisher, 1922) and
hierarchical Bayesian methods (Piray, Dezfouli, Heskes, Frank, & Daw,
2019).

2. Modeling framework

In a multi-trial decision-making task, the agent’s data include
observation-action pairs (𝑜𝑡, 𝑎𝑡) over the learning trajectory for trial 𝑡 =
1, 2,… , 𝑇 . In a reinforcement learning task, reward 𝑟𝑡 is additionally ob-
served on each trial. We assume that choices are generated by a Markov
decision process (Puterman, 2014). The decision-making model leads to
a policy 𝜋(𝑎|𝑜) that the agent uses to choose between discrete actions
given the observation. The policy may include noise mechanisms, such
as using the softmax function for action selection, and it is conditional
on the model’s latent variables and parameters (e.g., learned values
and learning rates for reinforcement learning models). We describe
two extensions of such a decision model: the static noise estimation
method that implements the classic 𝜖-mechanism (or 𝜖-softmax) (Nassar
& Frank, 2016) and the new dynamic noise estimation method. The
parameters 𝜃 of both extended models can be optimized by maximizing
the likelihood of the data given the model parameters, denoted as (𝜃).
In this section, we focus only on the policy part of the models; all other
model equations (such as reinforcement learning value updates) are
taken from the published models and described in the supplementary
materials.

2.1. Static noise estimation

Static noise policies assume that decision noise is at a constant
level 𝜖 throughout the learning trajectory. At any time 𝑡, from the
set of available actions 𝐴, the agent samples an action uniformly at
random (with probability 𝜖) or based on the noiseless policy (with
probability 1 − 𝜖). Static noise estimation can be incorporated into
likelihood estimation according to Algorithm 1. Thus, any model that
can be fitted with likelihood-dependent methods can incorporate static
noise into its policy.

Algorithm 1: Static noise estimation likelihood computation
Initialize 𝐿(𝜃) = 0;
for 𝑡 = 1, 2, ..., 𝑇 do

Calculate the action probability 𝜋𝑡(𝑎𝑡|𝑜𝑡) ;
𝐿(𝜃) ← 𝐿(𝜃) + log[𝜖 ⋅ 1

|𝐴| + (1 − 𝜖) ⋅ 𝜋𝑡(𝑎𝑡|𝑜𝑡)] ;
Update the policy with (𝑜𝑡, 𝑎𝑡, 𝑟𝑡).

end

2.2. Dynamic noise estimation

Our dynamic noise estimation method provides a computationally
lightweight procedure to estimate the trial-by-trial latent state occu-
pancy and likelihood of the hidden Markov model described in Fig. 1C.
Dynamic noise estimation can be implemented according to Algorithm
2: on trial 𝑡, the likelihood 𝑙𝑡 and latent state occupancy probabilities,
𝑝𝑡(𝑅𝑎𝑛𝑑𝑜𝑚) and 𝑝𝑡(𝐸𝑛𝑔𝑎𝑔𝑒𝑑), can be estimated using the observation,
3

action, and reward data, (𝑜𝑡, 𝑎𝑡, 𝑟𝑡), and some engaged policy 𝜋.
Algorithm 2: Dynamic noise estimation likelihood computation

Initialize 𝐿(𝜃) = 0 and 𝑝0(ℎ) for ℎ ∈ {𝑅,𝐸} ;
for 𝑡 = 1, 2, ..., 𝑇 do

Calculate the action probability 𝜋𝑡(𝑎𝑡|𝑜𝑡) ;
𝑙𝑡(𝜃) = log[ 1

|𝐴| ⋅ 𝑝𝑡−1(𝑅) + 𝜋𝑡(𝑎𝑡|𝑜𝑡) ⋅ 𝑝𝑡−1(𝐸)] ;

𝐿(𝜃) ← 𝐿(𝜃) + 𝑙𝑡(𝜃) ;

𝑝𝑡(ℎ) ←
1
|𝐴| ⋅𝑝𝑡−1(𝑅)⋅𝑇

ℎ
𝑅+𝜋𝑡(𝑎𝑡|𝑜𝑡)⋅𝑝𝑡−1(𝐸)⋅𝑇 ℎ

𝐸
exp(𝑙𝑡(𝜃))

for ℎ ∈ {𝑅,𝐸} ;
Update the policy with (𝑜𝑡, 𝑎𝑡, 𝑟𝑡).

nd

The full details of our dynamic noise estimation framework, which
can be added to any standard decision models with analytical likeli-
hoods, can be found in the Materials and methods section, including
the derivation of relevant mathematical equations. Here, we briefly
highlight the core assumptions made by dynamic noise estimation:

1. The agent fully occupies one latent state on any given trial.
2. Latent state occupancy is temporally autocorrelated and gov-

erned by a hidden Markov process: the latent state that the agent
occupies on trial 𝑡 conditionally depends on the latent state it
occupied on trial 𝑡 − 1.

3. Any learning involved in either latent state occurs regardless of
latent state occupancy.

Additionally, the simulations and analyses below include the fol-
lowing non-core assumptions that can be easily modified for extended
applications of our modeling framework: we assume that there are only
two possible latent states, as well as that one (‘‘engaged’’) follows the
standard policy and the other (‘‘disengaged’’) follows a uniformly ran-
dom policy. Both core and non-core assumptions are further discussed
and explored in Discussion.

3. Results

3.1. Theoretical benefits of dynamic noise estimation

We first performed a simulation study to demonstrate the benefits
of our dynamic noise estimation approach. By definition, we expected
dynamic noise estimation to explain choice data better than static
noise estimation when noise levels are highly variable across trials in a
temporally autocorrelated fashion. To illustrate it, we compared models
implemented with static and dynamic noise estimation mechanisms on
simulated data in a two-alternative, probabilistic reversal learning task
widely used to assess cognitive flexibility (Izquierdo, Brigman, Radke,
Rudebeck, & Holmes, 2017), in which the correct action switched every
50 trials (Fig. 2). In the simulations, we used the model with static noise
to generate choice data, in which we simulated periods of lapses into
random behavior (e.g., due to inattention) by forcing the agent choose
randomly between the actions.

After fitting the models to the data, we simulated behavior using the
best fit parameters of both models and compared their learning curves
to the data as a validation step. Fig. 2A shows the learning curves
of two example subjects and their best fit models. In both cases, the
simulated subjects performed at chance level (accuracy = 0.5) during
lapses and better than chance otherwise. The phasic fluctuations of
choice accuracy were synchronized to the reversals (dashed vertical
lines). The learning curves generated by the dynamic model matched
the data substantially better than the learning curves of the static
model. Critically, this is true both during and outside of lapses: having
to account for the lapse periods, the static noise model estimated too
much noise overall, which contaminated the engaged periods. Thus, the

static noise model overestimated performance in disengaged periods
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Fig. 2. Dynamic noise estimation outperforms static noise estimation when subjects lapse into random behavior. A: Example learning curves of two simulated subjects and their
best fit models with static and dynamic noise estimation; since the noise levels are fixed in the static model, the model overestimates performance in disengaged periods and
underestimates it in engaged ones. B: The deviations of the best fit models’ learning curves from the data quantified by the mean squared error per trial, as a function of lapse
duration. C,D: The absolute differences between the true and fitted model parameters, over true parameter value (C) and lapse duration (D).
and underestimated it in engaged ones; by contrast, the dynamic noise
model accurately captured behavior in both situations.

To further understand how the duration of lapse interacts with the
effectiveness of static and dynamic noise estimation, we varied the
lapse duration in the simulations. Fig. 2B shows how the amounts of
deviation between the learning curves of the models and data (mea-
sured by the mean squared error between the curves per trial) changed
as the duration of lapse increased. Overall, the model with dynamic
noise estimation was able to reproduce behavior better than the static
model, as the learning curves of the former matched the data more
closely. Although lapses only weakly affected the fit of the dynamic
noise model, the static model fitted worse in the presence of lapses,
4

especially when lapse and non-lapse periods were intermixed in the
learning trajectory.

Next, we tested how well the true parameters used to generate the
data could be recovered by the static and dynamic models (Fig. 2C).
Both learning parameters (learning rate and choice stickiness) were
better recovered by the dynamic model, as measured by the absolute
amounts of differences between the true and recovered (best fit) pa-
rameters. The advantage of the dynamic model in parameter recovery
persisted over the whole range of parameter values sampled in the
simulations and various lengths of lapses, with weaker effects when
lapses were short relative to the duration of the experiment (less
than 20%). Additionally, we performed the same set of analyses using
Fig. 3. The dynamic noise estimation model validates and recovers robustly. A: Validation of best fit models with static and dynamic noise estimation against simulated data
using learning curves around switches for both Engaged and Random trials. B: The recovered occupancy probability of the Engaged state, 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑), over the true occupancy
probability used to simulate the data. C: The distribution of the recovered occupancy probability. D: Recovered model parameters against their true values. In each plot, the black
line is the least squares fit of the points and the gray line is the identity line for reference.
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the static model as the ground truth (Fig A.7). As expected, overall,
the static model outperformed the dynamic model, even though both
models could accurately capture behavior and recover true parameter
values, since the dynamic model space fully includes the static models.

To verify that including dynamic noise estimation would not un-
dermine a model’s robustness, we performed validation and recovery
analyses on data simulated with the dynamic noise model in the same
probabilistic reversal task environment used in the previous simulations
(Fig. 3). In model validation, the dynamic model reproduced behavior
more closely than the static model in both the Engaged state and the
Random state: the dynamic noise model showed much more sensitivity
to the latent state than the static noise model (Fig. 3A). This suggests
that fitting a model with static noise estimation when the underlying
noise mechanism of the data is dynamic could lead to inaccurate
interpretations of the behavior and model.

Furthermore, we confirmed that the occupancy probabilities of
the latent states and model parameters were recoverable by fitting
the dynamic model to the simulated data to infer the quantities of
interest. The occupancy probability of the Engaged state, 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑),
was perfectly recovered across its range of values (Fig. 3B). The inferred
or recovered values of 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑) formed a symmetric, bimodal distri-
bution with peaks near 0 and 1, suggesting that both latent states were
visited equally frequently and that the model was confident, for the
majority of the time, that the agent was in either latent state (Fig. 3C).
The true values of all model parameters were recoverable through
fitting (Fig. 3D).

3.2. Empirical evaluation of dynamic noise estimation

The above analyses based on controlled simulations showed that,
theoretically, dynamic noise estimation could substantially improve
model fit and parameter estimation, especially in the presence of
prolonged lapses. We next tested the method on empirical datasets to
verify whether and to what extent this conclusion stands when the
data is collected from real animal and human subjects while the true
generative model is unknown. To help set fair expectations for the
applications of dynamic noise estimation in practice, we thoroughly
evaluated the method on four published datasets featuring diverse
species, age groups, task designs, behaviors, cognitive processes, and
computational models. Table 1 summarizes the population, task, and
model information about these datasets.

For each dataset, we used either the winning model in the original
research article or an improved model from later work. We imple-
mented and compared two versions of each model: one with static
noise estimation and one with dynamic noise estimation. The models
were fitted on each individual’s choice data using maximum likelihood
estimation for simplicity, although the noise estimation methods are
both also compatible with more complex likelihood-based fitting proce-
dures. The fitted models were compared using the Akaike Information
Criterion (AIC) (Akaike, 1974), since it yielded better model identifi-
cation than the Bayesian Information Criterion (BIC; Fig A.8). Fig. 4
shows the model-fitting results at both the individual and group levels,
as well as the absolute percentage of fit improvement, using the fit
5

measure of negative log-likelihood (NLLH), made by applying dynamic
noise estimation instead of static noise: NLLH(dynamic)−NLLH(static)
NLLH(static) . To

compare the models at the group level, we report the p-values of
one-tailed Wilcoxon signed-rank tests with the alternative hypothesis
that the AIC values of the dynamic model were lower than those of
the static model. Additionally, we report the protected exceedance
probability (pxp) (Rigoux, Stephan, Friston, & Daunizeau, 2014) of
the dynamic model. At the group level, dynamic noise estimation
significantly improved model fit compared to static noise estimation on
the Dynamic Foraging (𝛥AIC = −8.31, p = 0.0002, pxp = 0.96) and IGT
𝛥AIC = −2.79, p = 3.48× 10−12, pxp = 1.00) datasets. This populational

difference was present but not statistically significant on the RLWM
(𝛥AIC = −1.43, p = 0.83, pxp = 0.38) and 2-step (𝛥AIC = −3.04, p = 0.47,
pxp = 0.44) datasets. While the absolute percentage of fit improvement
is small for most subjects, it can be very high for some, which may
enable researchers to still include ‘‘noisy’’ subjects in their analyses
without biasing results (median = 0.29% for Dynamic Foraging, 1.21%
for IGT, 0.16% for RLWM, and 0.3% for 2-step). Since static noise
estimation is fully nested in dynamic noise estimation, the absolute fit
improvement by dynamic noise estimation is strictly positive.

As detailed in Materials and methods, the likelihood of the dynamic
noise estimation model should not be worse than that of the static
model, since the latter is equivalent to a special case of the former. This
relationship was confirmed by the fitting results on all four empirical
datasets: for individuals whose data were better explained by the static
model, the 𝛥AIC values were upper-bounded by 2, which corresponded
to the penalty incurred by the extra parameter in the dynamic model.
In other words, the dynamic model did not impair likelihood estimation
in practice, which aligned with our prediction.

We additionally validated both models against behavior and found
no significant differences between the static and dynamic noise models
(Fig A.9). We verified that the quantities specific to dynamic noise
estimation, including the occupancy probability and noise parameters,
were recoverable (Fig A.10). The distributions of the estimated oc-
cupancy probability of the Engaged state, 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑), were heavily
right-skewed and long-tailed. This indicates a scarcity of data in the
Random state overall, which likely led to a lack of transitions from
the random state to the engaged state and, thus, under-powered the
recovery of 𝑇𝐸

𝑅 , causing it to be noisier than the recovery of 𝑇𝑅
𝐸 .

Knowing that likelihood favors the dynamic model over the static
model, the remaining questions are: how does this improvement man-
ifest, and does it impact the insights we can gain from computational
modeling? To address these questions, we compared the values of
best fit parameters between both models (Fig. 5). On the Dynamic
Foraging dataset, the values of the positive learning rate and forgetting
rate parameters, which govern the value updating rate of rewarded
actions and the forgetting rate of unchosen actions (see supplementary
materials for the full model description), increased at the group level
(two-tailed Wilcoxon signed-rank test p = 7.56 × 10−7 for positive
learning rate and p = 2.66 × 10−5 for forgetting rate). We speculate
his may suggest that dynamic noise estimation helped the model
apture faster learning dynamics in the task, which may have led to
he improved fit. On the RLWM dataset, the distributions of the bias
p = 0.0016) and stickiness (p = 0.0022) parameters, which represent
the bias in learning rate for unrewarded actions compared to rewarded
Table 1
Summary of empirical datasets.

Dataset Population Task Model

Dynamic Foraging (Grossman,
Bari, & Cohen, 2022)

Mice Two-armed bandits with probabilistic
reversal

Reinforcement learning with dynamic
learning rates

IGT (Steingroever et al., 2015) Young and old adult humans Iowa gambling task A hybrid of exploitation and exploration
processes (Ligneul, 2019)

RLWM (Collins, 2018) Adult humans Reinforcement learning and working
memory

A hybrid of reinforcement learning and
working memory processes

2-step (Nussenbaum, Scheuplein,
Phaneuf, Evans, & Hartley, 2020)

Developing and adult humans Two-step task A hybrid of model-based and model-free
learning processes



Journal of Mathematical Psychology 119 (2024) 102842J.-J. Li et al.
Fig. 4. Dynamic noise estimation can improve model fit on empirical data. A: Evaluation of model fit on four empirical datasets based on the AIC. In each panel, the plot shows
the difference in AIC for each individual between the models with static and dynamic noise estimation mechanisms. A positive value (orange) indicates that the static model is
favored and a negative value (green) means that the dynamic model is preferred by the criterion. The inset shows the mean difference in AIC between the models at the group
level. Significance levels are defined as ∗∗∗ if p < 0.001, ∗∗ if p < 0.01, ∗ if p < 0.05, and n.s. otherwise. B: The absolute percentage of improvement on fit, measured by the
negative log-likelihood, by dynamic noise estimation from static noise estimation.
actions and the choice stickiness (see supplementary materials for
the full model description), both shifted in the positive direction. On
the 2-step dataset, the softmax inverse temperature parameter for the
second-stage choice was also estimated to increase after incorporating
dynamic noise estimation into the model (p = 8.8 × 10−6). Similarly, on
the IGT dataset, the softmax inverse temperature parameter increased
significantly (p = 2.78 × 10−7). An increase in the inverse temperature
parameter can be interpreted as capturing a policy that is less noisy
and more sensitive to internal variables. These results highlight the
success of the dynamic noise model in identifying noisy time periods
and decontaminating on-task periods from their influence.

Besides the policy parameters, the noise parameters also showed
distributional differences that were correlated with improved fit. Fig. 6
illustrates the relationship between the static noise parameter, 𝜖, and
the dynamic noise parameter, 𝑇𝑅

𝐸 , on all four empirical datasets. For
individuals whose data were better explained by the static noise model
according to the AIC, 𝑇𝑅

𝐸 and 𝜖 were estimated to take on comparable
and highly correlated values (Dynamic Foraging: Kendall’s 𝜏 = 0.84,
p = 5.67 × 10−5; IGT: 𝜏 = 0.82, p = 1.23 × 10−67; RLWM: 𝜏 = 0.89, p =
6.78 × 10−23; 2-step: 𝜏 = 0.84, p = 1.42 × 10−26). This observation was
in line with our expectation: when the static model was favored by the
AIC, the difference in likelihoods between both models must be smaller
than the penalty incurred by the extra parameter in the dynamic model
(2 for AIC), which means both models fitted similarly to the data.
6

On the other hand, when the dynamic model outperformed the static
model, 𝑇𝑅

𝐸 was estimated to be lower than 𝜖 (Dynamic Foraging: one-
tailed Wilcoxon signed-rank test p = 0.031; IGT: p = 4.90×10−8; RLWM:
p = 0.0072; 2-step: p = 0.0017). A similar, though noisier, relationship
between 𝑇𝐸

𝑅 and 1 − 𝜖 was also observed on all empirical datasets
(Fig A.11). No consistent strong correlations were found across datasets
between the noise parameters of the dynamic model (softmax inverse
temperature, 𝑇𝑅

𝐸 , and 𝑇𝐸
𝑅 ; Fig A.12). The lower values of the dynamic

noise parameter than the static noise parameter, which is the average
noise level, indicate that the dynamic model successfully separated
noisy trials from engaged trials.

To demonstrate the behavioral relevance of the latent state occu-
pancy predicted by dynamic noise estimation, we investigated whether
behavior differed between the putatively engaged and lapsed trials
(as identified by our approach) on four empirical datasets: Dynamic
Foraging (Grossman et al., 2022), IGT (Steingroever et al., 2015), 2-
step (Nussenbaum et al., 2020), and RLWM (Eckstein et al., 2022;
Master et al., 2020) (Fig A.13). In general, we found that behavior
shifted towards random patterns from engaged trials to lapsed trials.
Interestingly, some components of behavior regressed to randomness
more than others. For example, on the IGT dataset, behavioral changes
were driven by decks A and D, but not decks B and C. On the RLWM
dataset, the win-stay probability decreased more than the lose-shift
probability across set sizes. Lapses identified by dynamic noise estima-
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Fig. 5. Dynamic noise estimation can lead to shifted parameter fit. Changes in best fit parameter values between the models with static (larger colored dots) and dynamic (smaller
black dots) noise estimation mechanisms for each individual. Data points are color-coded according to the winning model by AIC: orange if the static model and green if the
dynamic model fitted better.

Fig. 6. Improved fit by dynamic noise estimation is correlated to decreased noise parameter estimates. The dot plots in the center illustrate the relationship between the best fit
dynamic and static noise parameters (𝑇 𝑅

𝐸 and 𝜖) on log scale, with each dot representing an individual. The violin plots on the sides show the differences between the best fit
dynamic noise parameter, 𝑇 𝑅

𝐸 , and static noise parameter, 𝜖, at the individual and group levels.
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tion varied in lengths and occurred throughout learning, with no strong
evidence for consistently more frequent lapses in specific parts of the
experiments across datasets (Fig A.14).

Furthermore, we related the estimated latent state occupancy to an
independent measure of behavior – reaction time – using regression
analyses on both the group and individual levels on two empirical
datasets with published reaction time data: RLWM (Collins, 2018)
and 2-step (Kool, Cushman, & Gershman, 2016). On both datasets,
we found significant inverted-U relationships between reaction time
and 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑) both between- and within-individual (Fig A.15). The
squared average reaction time inversely predicted the average 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑
cross participants (RLWM: 𝛽𝑅𝑇 2 = −3.59, 𝑝 = 0.0016; 2-step: 𝛽𝑅𝑇 2 =

−0.94, 𝑝 = 0.0085). We found a similar relationship within-participant
across trials while accounting for a random effect of participant identity
(RLWM: 𝛽𝑍(log(𝑅𝑇 ))2 = −0.0036, 𝑝 = 1.04 × 10−15; 2-step: 𝛽𝑍(log(𝑅𝑇 ))2 =
−0.0052, 𝑝 = 0.0018). These results suggest that low task-engagement
estimated by dynamic noise estimation is more likely to occur in trials
with unusually short and long reaction time, which potentially includes
when participants answer excessively fast due to boredom or very
slowly due to external distraction, such as multi-tasking.

4. Discussion

Our results show that dynamic noise estimation can improve model
fit and parameter estimation both theoretically and empirically, qual-
ifying it as a candidate alternative to static noise estimation, despite
one additional model parameter. Our approach is especially powerful
and effective in the presence of lapses, since it explains more variance
in the noise levels of choice behavior. Additionally, it is generalizable
and versatile: it can be applied to any decision policies with analytical
likelihoods and be incorporated into any likelihood-based parameter
estimation procedures, making it an accessible and computationally
lightweight extension to many decision-making models.

Another benefit of dynamic noise estimation is that it could help
avoid excluding whole individuals or sessions due to poor performance,
thus improving data efficiency. Dynamic noise estimation takes effect
by identifying periods of choice behavior that are better explained by
random noise than the learned policy (e.g., lapses). The likelihoods of
these noisy periods are lower-bounded by that of the random policy,
which limits the impacts of these trials on the estimation of the overall
likelihood and model parameters. Thus, dynamic noise estimation can
mitigate the effects of noise contamination on model-fitting. On the
contrary, static noise estimation does not provide a meaningful lower
bound to the likelihood of noisy data, such that relatively noisy parts
of the behavior may heavily bias parameter estimation. Thus, using
dynamic instead of static noise estimation could allow fewer individuals
to be excluded due to noisy behavior. For example, without dynamic
noise estimation, the last two blocks in Fig. 1A might lead to the ex-
clusion of this subject by some performance-based criterion. However,
dynamic noise estimation might allow fitting of the whole individual’s
data with minimal contamination due to the noisy blocks, even though
it may not improve modeling dramatically for most participants. This
outcome can be particularly desirable when data collection is chal-
lenging or expensive, such as in clinical populations, neuroimaging
experiments, and time-consuming tasks.

Although the putative lapses identified by dynamic noise estimation
may correlate with lower choice accuracy, dynamic noise estimation
has a number of advantages over approaches that rely solely on accu-
racy to identify lapses. First, when more than one action is available,
dynamic noise estimation can use information in both the correctness
and the choice identities to estimate lapse rates. As a result, it can
distinguish random behavior from non-random components of decision-
making such as learning and bias, which might drive the accuracy to
the random level. Second, dynamic noise estimation accounts for the
temporal autocorrelation of noise between trials, which is character-
istic of lapses, by factoring noise information from previous trials in
8

predicting the noise level of the next trial. Indeed, Fig A.16 shows
that the probability of lapsing is not directly related to the degree
of accuracy. Third, the application of dynamic noise estimation is
independent of the task design: it does not require task-specific tuning
of any hyper-parameters or criteria.

Other approaches have been proposed to consider non-static noise
or exploration, including models where noise parameters evolve trial-
by-trial. For example, some decision models with softmax policies allow
decision certainty to increase over learning, by defining the inverse
temperature parameter or the value difference between choices as a
parameterized function of time or certainty (Daw, O’doherty, Dayan,
Seymour, & Dolan, 2006; Luce, 2012; Wilson et al., 2014). While these
models may help capture the decrease in choice randomization over the
experiment, they can only account for decision noise that changes in
an incremental fashion (e.g., gradually decreasing), but not lapses that
could occur unexpectedly throughout the experiment. Our approach
instead relies on the assumption that participants may switch between
finite, discrete late states abruptly, which is supported by behavioral
findings for discrete policies (Collins & Koechlin, 2012; Donoso, Collins,
& Koechlin, 2014).

Biologically, our latent state assumption aligns with an established
literature on how norepinephrine modulates attention, a major contrib-
utor to varying noise levels: the phasic or tonic mode of activity of the
noradrenergic locus coeruleus system closely correlates to good or poor
task performance (Aston-Jones, Rajkowski, & Cohen, 1999; Berridge
& Waterhouse, 2003). It is worth noting that the binary assumption
of the latent states may not always be accurate. Nonetheless, it is
a less strict assumption than that of static noise estimation, which
additionally assumes that the probability of transitioning into each
latent state is independent of the current state. Thus, although dynamic
noise estimation may be limited by its binary latent state assumption,
it is still more suitable to solve a broader range of problems than static
noise estimation.

Compared to other recent work identifying discrete latent policy
states, namely the GLM-HMM model (Ashwood et al., 2022), dynamic
noise estimation has the advantages of simplicity, accessibility, and
versatility. Contrary to our method, GLM-HMM additionally assumes
that all decision policies can be described as generalized linear models,
which limits its applications to descriptive models rather than cog-
nitive process models. The parameter estimation procedure for GLM-
HMM does not generalize trivially when this assumption is challenged
(e.g., with process models such as reinforcement learning). On the other
hand, our likelihood estimation procedure for dynamic noise estimation
can be readily plugged into any existing likelihood-based optimization
procedure to fit both descriptive models and process models.

We recommend that the user keep in mind the assumptions outlined
in the beginning of the Results section when applying our modeling
framework to their data. Dynamic noise estimation can be applied
to any multi-trial decision-making tasks and models with analytical
likelihoods, especially when more than one action is available in the
task. Assumption 3 (the latent state only affects the policy, but not
the underlying process) imposes a limitation to our approach: in the
random state, information is still being processed (e.g., action value
updating), but not used for decision-making. Removing this assumption
can significantly complicate the inference process over the latent state
by making the likelihood intractable, and thus making the inference
process much less accessible. Addressing this limitation will be an
important direction for future work.

Other non-core assumptions of the method may appear as limita-
tions, but can be easily extended, such as the nature of the engaged and
disengaged policies and even the number of states itself. For example,
an extension to the likelihood estimation procedure derived in the
current work is to apply it on policy mixtures in a broader sense –
i.e., hidden Markov models that involve two or more latent states of
any eligible policies – rather than a fixed random policy and some other

decision policy (e.g., softmax) as presented in the current work. This
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extension allows us to fit mixture models between two or more decision
policies to capture the switching between different strategies. When
applying our framework to fit such mixture models, we recommend
that the user check Assumption 1 (the agent fully occupies a single
latent decision state), as it may not be appropriate for all mixture
models. For example, the RLWM model (Master et al., 2020) is a
mixture of a reinforcement learning process and a working memory
process, which could technically be modeled as two latent policy states.
However, Assumption 3 is biologically implausible here: participants
are unlikely to transition from fully occupying one policy state to the
other between trials since reinforcement learning and working memory
operate concurrently.

Future work should also further validate dynamic noise estimation
experimentally, for example, by comparing estimated occupancy prob-
abilities to an independent measure of attention or task-engagement
and testing whether inferred latent states capture this measure. Possi-
ble approaches include to measure task-engagement based on choice
behavior (Trach, DeBettencourt, Radulescu, & McDougle, 2022), re-
action time (Botvinick, Braver, Barch, Carter, & Cohen, 2001), pupil
size (Laeng, Sirois, & Gredebäck, 2012), and event-related brain po-
tentials (Polich, 2007). If the occupancy probability can indeed serve
as an objective measure of attention to the task, it could be ap-
plied to behaviorally characterize attentional mechanisms in compu-
tational psychiatry (Huys, Maia, & Frank, 2016), especially for pa-
tients with attention-deficit/hyperactivity disorder (ADHD) (Barkley,
1997). Another potential future direction is to explore whether dynamic
noise estimation changes the interpretations of behaviors and models
when applied to other decision policies than the softmax policy, such
as Thompson sampling (Thompson, 1933) and the upper confidence
bound algorithm (Auer, Cesa-Bianchi, & Fischer, 2002).

In conclusion, our dynamic noise estimation method promises po-
tential improvements over the static noise estimation method cur-
rently used in the modeling literature of decision-making behavior.
Dynamic noise estimation enables us to capture different degrees of
task-engagement in different task periods, limiting contamination of
model-fitting by noisy periods, without requiring ad-hoc data curating.
Based on the theoretical and empirical evaluation of the method re-
ported in the current work, we expect that dynamic noise estimation in
modeling choice behavior will strengthen modeling in many decision-
making paradigms, while keeping additional model complexity and
assumptions minimal.

5. Materials and methods

5.1. Mathematical formulation of dynamic noise estimation

The dynamic noise estimation method models decision noise by
assuming that the agent is in one of two latent states at any given
time: the Random state in which the agent chooses actions uniformly at
andom or the Engaged state in which decisions are made according to
he true model policy. The transitions between both states are governed
y two parameters: 𝑇𝐸

𝑅 and 𝑇𝑅
𝐸 , the probabilities of transitioning from

he Random state to the Engaged state and vice versa. From these
ransition probabilities, we can calculate the stay probability for each
atent state: 1 − 𝑇𝐸

𝑅 for the Random state and 1 − 𝑇𝑅
𝐸 for the Engaged

state.
The state is composed of an observation 𝑜𝑡, often encoding the

stimulus, and unobserved, latent variables including the learned policy
and ℎ𝑡, where ℎ𝑡 ∈ {𝑅,𝐸} indicates whether the agent is in the Random
state or Engaged state at time 𝑡. It is further assumed that 𝑟𝑡 and 𝑜𝑡
are conditionally independent of the latent states up to time 𝑡 given
the observed data history, since rewards and future observations in
behavioral experiments do not depend on subjects’ unobserved mental
9

states.
Our goal is to maximize the following log-likelihood:

(𝜃) =
𝑇
∑

𝑡=1
log IP(𝑎𝑡|𝑜𝑡, 𝑜̄𝑡−1; 𝜃)

=
𝑇
∑

𝑡=1
log IP

(

∑

𝑖
IP(𝑎𝑡|𝑜𝑡, ℎ𝑡 = 𝑖; 𝜃) ⋅ IP(ℎ𝑡 = 𝑖|𝑜̄𝑡−1; 𝜃)

)

,

(1)

here 𝑜̄𝑡−1 denotes the observation-action-reward triplets up to time
−1. The probability on the right of Eq. (1), the occupancy probability of
he latent state 𝑖 ∈ {𝑅,𝐸} at time 𝑡, is not trivial to compute. Denoting
t as 𝑝𝑡(𝑖), we have

𝑡(𝑖) = IP(ℎ𝑡 = 𝑖|𝑜̄𝑡−1; 𝜃)

=
∑

𝑗
IP(ℎ𝑡 = 𝑖|ℎ𝑡−1 = 𝑗, 𝑜̄𝑡−1; 𝜃) ⋅ IP(ℎ𝑡−1 = 𝑗|𝑜̄𝑡−1; 𝜃),

(2)

here 𝑗 ∈ {𝑅,𝐸} and

P(ℎ𝑡−1 = 𝑗|𝑜̄𝑡−1; 𝜃) =
IP(ℎ𝑡−1 = 𝑗, 𝑎𝑡−1, 𝑟𝑡−1|𝑜𝑡−1, 𝑜̄𝑡−2; 𝜃)

∑

𝑘 IP(ℎ𝑡−1 = 𝑘, 𝑎𝑡−1, 𝑟𝑡−1|𝑜𝑡−1, 𝑜̄𝑡−2; 𝜃)
. (3)

Notice that for any given 𝑘, each term in the denominator of the
ight-hand side of Eq. (3), as well as the nominator with 𝑘 = 𝑗, is equal
o

P(𝑟𝑡−1|𝑜𝑡−1, 𝑎𝑡−1, ℎ𝑡−1 = 𝑘, 𝑜̄𝑡−2; 𝜃) ⋅ IP(𝑎𝑡−1, ℎ𝑡−1 = 𝑘|𝑜𝑡−1, 𝑜̄𝑡−2; 𝜃),

he first term of which is independent of ℎ𝑡−1 and is, therefore, canceled
ut between the nominator and denominator in Eq. (3). Thus,

P(ℎ𝑡−1 = 𝑗|𝑜̄𝑡−1; 𝜃) =
IP(𝑎𝑡−1|ℎ𝑡−1 = 𝑗, 𝑜𝑡−1, 𝑜̄𝑡−2; 𝜃) ⋅ IP(ℎ𝑡−1 = 𝑗|𝑜̄𝑡−2; 𝜃)

∑

𝑘 IP(𝑎𝑡−1|ℎ𝑡−1 = 𝑘, 𝑜𝑡−1, 𝑜̄𝑡−2; 𝜃) ⋅ IP(ℎ𝑡−1 = 𝑘|𝑜̄𝑡−2; 𝜃)
. (4)

We can now compute 𝑝𝑡(𝑖) by plugging Eq. (4) into Eq. (2), which
hen allows us to calculate (𝜃) by plugging Eq. (2) into Eq. (1).
he probabilities needed to infer 𝑝𝑡(𝑖) and (𝜃) can be iteratively
pdated according to Algorithm 2 over the learning trajectory. These
alculations can be easily incorporated into fitting procedures based
n optimizing the model’s likelihood, including maximum likelihood
stimation and hierarchical Bayesian modeling.

.1.1. The relationship between static and dynamic noise estimation
Static noise estimation can be formulated under the binary latent

tate assumption of dynamic noise estimation (Fig. 1B), with the addi-
ional constraint that the probability of transitioning into each latent
tate is independent from the current state:
𝐸
𝑅 + 𝑇𝑅

𝐸 = 1. (5)

n other words, the probabilities of transitioning to the Random state
rom the Engaged state must be equal to the probability of transitioning
o the Random state from the Random state:
𝑅
𝐸 = 𝜖 = 1 − 𝑇𝐸

𝑅 .

imilarly, the probabilities of transitioning into the Engaged state from
he Random state and the Engaged state must be equal:
𝐸
𝑅 = 1 − 𝜖 = 1 − 𝑇𝑅

𝐸 .

oth the above relationships can be summarized by Eq. (5).
Therefore, static noise estimation is a special case of dynamic

oise estimation with an additional assumption described by Eq. (5),
s illustrated in Fig. 1C. It can also be experimentally verified that
ynamic noise estimation converges to static noise estimation once
his constraint is added to the model-fitting procedure (results not
ncluded).

Theoretically, with optimal parameters, the likelihood estimates
ade by the dynamic noise estimation model must be no worse than

hose made by the static noise estimation model. In practice, this
elationship may not hold if the optimizer fails to converge to the global
inimum when fitting the dynamic model. However, this issue can
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9383.
be circumvented by initializing the parameter values of the dynamic
model to the best fit parameters of the static model (e.g., 𝑇𝑅

𝐸 as 𝜖 and
𝑇𝐸
𝑅 as 1 − 𝜖).

5.1.2. Initializing 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑)
In the above formulation, the starting points of the estimated la-

tent state occupancy probabilities, 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑) and 𝑝(𝑅𝑎𝑛𝑑𝑜𝑚) = 1 −
𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑), are undefined, since dynamic noise estimation is compat-
ible with any valid initial values of these probabilities. Therefore, the
user can choose the most appropriate initial 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑) for their data.
Some potential candidates, reflecting different assumptions, include:
1 (initially engaged), 0.5 (equal chance of either), 1 − 𝑇𝑅

𝐸 (staying

engaged), and 1−𝑇𝑅
𝐸 +𝑇𝐸

𝑅
2 (average noise level). Alternatively, the initial

𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑) value can be fitted as a free parameter, which may reduce
ias in the estimation of latent state occupancy, but at the cost of
ncreased model complexity. All models in the current work are fitted
ith initial 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑) = 1−𝑇𝑅

𝐸 , which ensures that the dynamic noise
odel fully includes the static model, since 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑) of the static

model is always 1 − 𝑇𝑅
𝐸 = 1 − 𝜖. For reference, in Figure A.16, we

show the estimated 𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑) trajectories for different initialization
methods on the RLWM dataset. This indicates that differences in initial-
ization lead to differences only in the very first few trials of a learning
block.

5.2. Analysis methods

5.2.1. Simulation setup
The task environment in which the data were simulated for the

theoretical analyses had two alternative choices with asymmetrical
reward probabilities (80% and 20%) that reversed every episode. Each
agent was simulated for 10 episodes with 50 trials per episode. The sim-
ulations with lapses included data from 3000 individuals generated by
the model with the static noise mechanism (Fig. 2). Model parameters
were sampled uniformly between reasonable bounds: learning rate ∼
Uniform(0, 0.6), stickiness ∼ Uniform(−0.3, 0.3), and 𝜖 ∼ Uniform(0, 0.2).
For each individual, we simulated a lapse into random choice behavior
whose duration was sampled uniformly at random between 0 and the
length of the experiment (500 trials). During the lapse, the agent was
forced to randomly choose between the two available actions. In the
analyses shown in Fig. 3, we simulated data of 1,000 individuals using
the model with the dynamic noise mechanism. The parameters were
sampled from the following distributions: learning rate ∼ Beta(3, 10),
stickiness ∼ Normal(0, 0.1), 𝑇𝑅

𝐸 ∼ Beta(1, 15), and 𝑇𝐸
𝑅 ∼ Beta(1, 15). Both

models were fitted to the simulated data per individual.

5.2.2. Empirical datasets and models
All empirical data were downloaded from sources made publicly

available by the authors of the corresponding research articles. The data
of all individuals were included except that for the IGT dataset (Stein-
groever et al., 2015), we selected for the studies that used the 100-trial
versions of the task. For the Dynamic Foraging (n = 48) (Grossman
et al., 2022) and 2-step (n = 151) (Nussenbaum et al., 2020) datasets,
the winning models from the original papers were used in our analyses.
Since the article containing the IGT dataset (n = 504) (Steingroever
et al., 2015) did not report modeling results, we tested the winning
model from later work (Ligneul, 2019) on the data from the same
individuals included in the current work. For the RLWM dataset (n
= 91) (Collins, 2018), we implemented the best known version of
the RLWM model (Master et al., 2020) with an additional stickiness
parameter, which improved model fit significantly. The mathematical
formulation of the models can be found in the supplementary materials.

5.2.3. Model-fitting
All models were fitted using the maximum likelihood estimation

procedure at the individual level using the MATLAB global optimization
10
toolbox with the fmincon function. Although hierarchical Bayesian
methods may have yielded better model fit, we chose to use maximum
likelihood estimation because it is simple, efficient, and suffices for
our purpose of demonstrating the comparison between the static and
dynamic noise models. In practice, we advise users of our dynamic
noise estimation method to apply the fitting procedure with the most
appropriate assumptions for the model and data.

5.2.4. Model validation and recovery
In model validation, we simulated choice behavior for each sub-

ject repeatedly (e.g., for 100 times) using the maximum likelihood
parameters obtained from model-fitting. For simulations with dynamic
noise estimation, we used the latent state probability – 𝑝(𝑅𝑎𝑛𝑑𝑜𝑚) and
𝑝(𝐸𝑛𝑔𝑎𝑔𝑒𝑑) – trajectories inferred from real data to simulate latent state
occupancy. To validate how well the models captured behavior, we
compared behavioral signatures (e.g., learning curves) between these
model simulations and the data (real or simulated) that the models
were fitted to.

The recovery of the occupancy probabilities of model latent states
was performed by simulating data 30 times per individual using best
fit parameters and inferring occupancy probabilities from these data.
Model parameters were recovered by first simulating behavior using
best fit parameters and re-fitting the model to the simulated behav-
ior to estimate parameter values. All recovery was performed at the
individual level.
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