
R E S E A R CH AR T I C L E

Footprint of publication selection bias on meta-analyses in
medicine, environmental sciences, psychology, and
economics
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Abstract

Publication selection bias undermines the systematic accumulation of evi-

dence. To assess the extent of this problem, we survey over 68,000 meta-

analyses containing over 700,000 effect size estimates from medicine

(67,386/597,699), environmental sciences (199/12,707), psychology

(605/23,563), and economics (327/91,421). Our results indicate that meta-

analyses in economics are the most severely contaminated by publication selec-

tion bias, closely followed by meta-analyses in environmental sciences and psy-

chology, whereas meta-analyses in medicine are contaminated the least. After

adjusting for publication selection bias, the median probability of the presence
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Foundation (DFG), Grant/Award
Number: 405039391 of an effect decreased from 99.9% to 29.7% in economics, from 98.9% to 55.7%

in psychology, from 99.8% to 70.7% in environmental sciences, and from 38.0%

to 29.7% in medicine. The median absolute effect sizes (in terms of standard-

ized mean differences) decreased from d = 0.20 to d = 0.07 in economics, from

d = 0.37 to d = 0.26 in psychology, from d = 0.62 to d = 0.43 in environmental

sciences, and from d = 0.24 to d = 0.13 in medicine.
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Highlights

What is already known
• Publication selection bias, where studies with significant or positive results

are more likely to be reported and published, distorts the available scientific
record.

What is new
• This study surveyed over 68,000 meta-analyses from medicine, environmen-

tal sciences, psychology, and economics to assess the extent of publication
selection bias. As a result, it underscores the importance of addressing publi-
cation bias in evidence synthesis.

• Results suggest that meta-analyses in economics are the most affected by
publication selection bias, followed by environmental sciences and psychol-
ogy. In contrast, meta-analyses in medicine are suggested to be the least
affected. Yet, notable biases are found across all of these scientific disciplines.

Potential impact for readers
• This study documents the potential extent of publication bias in different

fields, which could help researchers and the public better understand the
limitations of research and the potential biases of research synthesis.

1 | INTRODUCTION

Publication selection biases (PSB) are defined as the
selective reporting of results in ways that deviate from
the objective, complete scientific record. PSB may entail
the suppression of “negative” findings or the conversion
of “negative” results into more “positive” ones (e.g., those
with more favorable p-values and/or with larger effect
sizes) and might represent a problem in all scientific disci-
plines, for example, References 1–5. Studies that examine
the self-reported behavior of researchers show that 78% of
researchers failed to report all dependent measures of a
study6 (however, see,7 for a response that suggests a lower
proportion). Some studies also suggest that PSB might be
modestly increasing in some areas, although the exact
nature, prevalence, and impact of PSB is unknown and
likely to be variable across scientific fields.8,9

To gauge the extent of the PSB, one would need to
have access to the complete scientific record or a

representative and wide-coverage sample of it. However,
this is infeasible as much of the relevant data is not
publicly recorded. Instead, the footprint of PSB is indi-
rectly probed by re-analyzing meta-analyses in several
specific fields with different statistical techniques9–14

and focusing on patterns in the published results that
would herald the presence of PSB. All these available
methods try to identify the footprint of PSB, and thus
their results need to be interpreted with caution since
these patterns (e.g., correlations of effect sizes and stan-
dard errors) may sometimes be due to factors other
than PSB (e.g., genuine heterogeneity across studies).
However, when large numbers of meta-analyses show
the same patterns, this constitutes a probable footprint
of PSB, which can be used to estimate its relative mag-
nitude across different fields.

Previous field-wide assessments of PSB suggested that
the prevalence of over-reporting positive results and
other possible symptoms of bias increased moving from
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the physical to the biological and the social sciences, and
even suggested that problems might be worsening over
time in the latter.9,15–20 However, these estimates were
based on proxy measures of PSB that have several
limitations.

To our knowledge, no previous survey of the potential
footprint of PSB has used state-of-the-art methods. Our
proposed approach is more comprehensive than past sur-
veys: employing different strategies to identify potential
PSB, using new measures of PSB, and analyzing a much
larger number of research studies covering the fields of
medicine, environmental sciences, psychology, and
economics.

2 | METHODS

2.1 | Data sets

We used five large data sets from medicine, environmen-
tal sciences, psychology, and economics. The data set
from medicine comprises meta-analyses of continuous
and dichotomous outcomes obtained from the Cochrane
Database of Systematic Reviews published between 1997
and 2020. The data set from environmental sciences com-
prises the meta-analyses of mean differences, odds ratios,
and correlation coefficients by Deressa et al.21 published
between 2010 and 2020. The data sets from psychology
comprise the meta-analyses of mean differences and cor-
relation coefficients by Stanley et al.12 published between
2011 and 2016 combined with a random sample of meta-
analyses published in psychological journals by Slade-
kova et al.22 published in 2008 and 2018. Finally, the data
set from economics comprises the extended data set of
meta-analyses of regression and correlation coefficients
by Ioannidis et al.10 published between 1967 and 2021.
Eighty-four meta-analyses were part of both the
Ioannidis et al.10 and Stanley et al.12 data set. Since each
of the meta-analyses could be classified in both fields
(psychology or economics), we did not remove them from
either of the data sets. From each data set we only used
meta-analyses with at least three estimates reported using
standardized effect size metrics such as log odds
ratios, standardized mean differences, and (partial)
correlation coefficients that can be transformed to a com-
mon standardized mean difference effect size metric,
Cohen's d.

2.1.1 | Medicine

The data set from medicine comprises meta-analyses of
continuous and dichotomous outcomes obtained from

the Cochrane Database of Systematic Reviews (CSDR)
published between 1997 and 2020. We identified system-
atic reviews in the CDSR through PubMed, limiting
the period to Jan 2000–May 2020. For that, we used the
NCBI's EUtils API with the following query: “Cochrane
Database Syst Rev”[journal] AND (“2000/01/01” [PDAT]:
“2020/05/31” [PDAT]). For each review, we downloaded
the XML meta-analysis table file (rm5-format) associated
with the review's latest version. We extracted the tables
with continuous and dichotomous outcomes from these
rm5 files with a custom Javascript and R programs
(https://github.com/wmotte/cochrane2022).

We selected meta-analysis tables based on the highest
aggregation reported in the CSDR. For each meta-
analysis, we removed estimates based on one or fewer
participants in the control or treatment group and used
all meta-analyses with at least three effect size estimates.

2.1.2 | Environmental sciences

The environmental sciences data set consists of meta-
analyses of mean differences, correlation coefficients, and
odds ratios published between 2010 and 2020. The litera-
ture search was performed in the Scopus database using
the query: “TITLE-ABS-KEY (“meta analy*” OR “meta-
analy*” OR “metaanaly*” OR “meta reg*” OR “meta-
reg*” OR “metareg*”) AND SUBJAREA (envi)” on July
21, 2020. Detailed information about the sampling strat-
egy and inclusion/exclusion criteria used can be found in
Deressa et al.21

2.1.3 | Psychology

The data set from psychology comprises the data set of
meta-analyses of mean differences and correlation coeffi-
cients of Stanley et al.12 published between 2011 and
2016 combined with data from Sladekova et al.,22 a ran-
dom sample of 433 meta-analyses from 90 articles pub-
lished in 2008 and 2018. See Stanley et al.12 and
Sladekova et al.22 for more details about the collected
data sets. None of the meta-analyses by Sladekova et al.22

were published in Psychological Bulletin, precluding
overlap with Stanley et al.12 data set.

2.1.4 | Economics

The data set from economics comprises the extended data
set of meta-analyses of regression and correlation coeffi-
cients of Ioannidis et al.10 published between 1967 and
2021. The meta-analyses were identified using various

BARTOŠ ET AL. 3

 17592887, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1703 by T
est, W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/wmotte/cochrane2022


search engines (e.g., Econlit and Scopus), publisher sites
(e.g., Science Direct, Sage, and Wiley), webpages of
researchers known to publish meta-analyses, and by
searching all volumes of individual journals that are
known to publish meta-analyses. We also emailed
109 research teams (associated with either sole-authored
or co-authored meta-analyses) for data, with a 67%
response rate. The search for data ended on May
30th, 2021.

We selected meta-analyses of standardized mean
differences, (partial) correlation coefficients, and mean
differences (if enough information was available to com-
pute the standardized mean differences).

2.1.5 | Effect size calculation

In cases where the data set did not already feature stan-
dardized effect size (Cohen's d, correlation coefficient r,
log(OR), or Fisher's z), we used the metafor R package23

to calculate the standardized effect sizes. For dichoto-
mous outcomes with zero cell counts, we used the default
empty cell correction, adding 1=2 to empty cells. Finally,
we converted all standardized effect sizes to Fisher's z by
using the formulas in Borenstein et al.24

2.2 | Publication bias adjustment with
Bayesian model-averaging

We used the PSB detection and correction technique
RoBMA-PSMA.25,26 RoBMA employs Bayesian
model-averaging27,28 and combines the best of two
well-performing publication bias adjustment methods:
selection models with six different weight functions that
adjust for publication selection across a combination of
statistical significance and direction of the effect29 and
PET-PEESE, which adjusts for the relationship between
effect sizes and standard errors or standard errors
squared.30 Bayesian model-averaging allows us to com-
bine these publication bias adjustment methods based on
their predictive adequacy, such that models that predict
well have a larger impact on the inference. In that way,
we can evaluate the evidence in favor or against the
hypothesis of PSB and its impact without committing to
any single estimation or correction method.27

We used the default RoBMA parameterization which
was shown to achieve better performance in both simula-
tion studies and real data examples than either of publi-
cation bias adjustment methods alone.26 It gives equal
prior model probabilities to models assuming the pres-
ence vs. absence of an effect, heterogeneity, and publica-
tion selection bias. RoBMA employs a standard normal

distribution on the effect size, μ�Normal 0,1ð Þ, empiri-
cally informed Inverse-gamma distribution on the hetero-
geneity, τ� Inverse-Gamma 1,0:15ð Þ,31 cumulative unit
Dirichlet prior distributions on publication probabilities, and
Cauchy prior distributions on the PET-PEESE regression
coefficients, PET�Cauchyþ 0,1ð Þ, PEESE�Cauchyþ 0,5ð Þ.

InfoBox 1: Bayes factors
The Bayes factor is the key inference criterion for
much of Bayesian statistics, for example Refer-
ence 32,33. It compares the relative predictive
accuracy (i.e., likelihood of the data) under com-
peting hypotheses e:g:,ℋ1 vs:ℋ0ð Þ and it can also
be expressed as the ratio of prior and posterior
model odds,

p datajℋ1ð Þ
p datajℋ0ð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Bayes factor

¼ p ℋ1jdatað Þ
p ℋ0jdatað Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Posterior odds

=
p ℋ1ð Þ
p ℋ0ð Þ|fflfflffl{zfflfflffl}
Prior odds

:

Although the Bayes factor is a continuous
measure of strength of evidence, the following
rules of thumb may aid interpretation: Bayes fac-
tors between 1 and 3 are commonly regarded as
weak evidence, Bayes factors between 3 and
10 as moderate evidence, and Bayes factors larger
10 as strong evidence for the alternative (or the
hypothesis at the top of Equation (1)). When the
evidence for the null is considered, the Bayes fac-
tor is simply inverted. In other words, a Bayes
factor between 1/3 and 1 is considered weak evi-
dence, a Bayes factor between 1/10 and 1/3 mod-
erate and smaller 1/10 strong evidence for the
null (e.g., References 34, 35).

2.3 | Measures

For each meta-analysis, we used RoBMA to calculate the
(PSB) adjusted posterior model-averaged effect size
assuming it is present (i.e., without averaging over the
point null models to reduce shrinkage toward zero),
μadj,k; publication bias adjusted posterior probability of
the presence of the effect, padj,k ℋ1jdatakð Þ; and the poste-
rior probability of the presence of PSB, padj,k ℋpsbjdatak

� �
.

To isolate the effect of PSB adjustment, we compare the
Bayesian, PSB unadjusted, model-averaged meta-analysis
by dropping the PSB adjustment and thereby estimating
the unadjusted posterior probability of the presence of
the effect assuming it is present, punadj,k ℋ1jdatakð Þ.

4 BARTOŠ ET AL.
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k¼ 1,…,K to denotes the individual meta-analyses. Each
meta-analysis is based on Nk estimates that are character-
ized with data describing the effect size yk,n and standard
error sek,n.

2.3.1 | Evidence for the effect

We used the change in the posterior probability of the
effect and the (standardized) evidence inflation factor to
quantify the effect of PSB on meta-analytic evidence.

The posterior probability of the effect is an intuitive
way of quantifying the evidence in favor of the alterna-
tive hypothesis of the presence of an effect. Under the
assumption of equal prior probability of the presence and
the absence of the effect, p ℋ1ð Þ¼ p ℋ0ð Þ, posterior proba-
bilities larger than 0.5 indicate that the data are more
likely under the presence of the effect. On the other
hand, posterior probabilities lower than 0.5 indicate that
the data are more likely under the absence of the effect.
The ability to quantify evidence for both the null and the
alternative is a key benefit of Bayesian methods over null
hypothesis significance testing..36,37

A corresponding way of quantifying the evidence of
an effect is via Bayes factors (see InfoBox 1 for more
detail). Bayes factors quantify the change from prior to
posterior odds for the presence of the effect. The advan-
tage of Bayes factors is that they are independent of the
prior odds for the presence of the effect. In other words,
Bayes factors isolate the evidence for the presence of the
effect contained in the data. In our settings, the assump-
tion of equal prior probabilities leads to an equivalence
between Bayes factors and posterior odds.

The change from the PSB unadjusted posterior proba-
bility of the effect, punadj,k ℋ1jdatakð Þ, to the PSB adjusted
posterior probability of the effect, padj,k ℋ1jdatakð Þ, quan-
tifies the amount of evidence introduced by PSB. The
larger the impact of PSB, the larger the difference
between the PSB unadjusted and PSB adjusted posterior
probabilities of the effect. If there was no PSB, we would
observe no change in the posterior probability of the
effect after PSB adjustment.

Evidence inflation factor (EIF) quantifies the degree
to which the evidence in favor of the presence of the
effect was inflated due to PSB. EIFk quantifies
the amount of evidence in favor of the effect in the PSB
unadjusted meta-analysis, BF10,unadj,k, to the amount of
evidence in favor of the effect in the PSB adjusted meta-
analysis BF10,adj,k,

EIFk ¼BF10,unadj,k

BF10,adj,k
: ð1Þ

An evidence inflation factor larger than one indicates
inflated evidence in favor of the effect due to PSB.

However, the amount of evidence contained in each
meta-analysis, and the corresponding evidence inflation,
is dependent on the number of meta-analyzed estimates,
Nn, that is, more estimates lead to more evidence. To
facilitate the comparison of evidence inflation due to PSB
in meta-analyses with different numbers of estimates, we
also compute the standardized, per-estimate, evidence
inflation factor in each meta-analysis, sEIFk, by standard-
izing the EIF by the number of estimates,

sEIFk ¼EIF
1
Nk
k , ð2Þ

where sEIF represents each estimate's marginal contribu-
tion, on average, to the evidence inflation due to PSB.
The sEIF also partially mitigates the potential issue of
dependent estimates within a meta-analysis. In the most
extreme case, e.g., identical estimates, the same data is
conditioned upon multiple times, which leads to overesti-
mation of evidence. Taking only a fraction of each esti-
mate's likelihood, proportional to the number of
estimates, then ensures that the data are not conditioned
upon more than once, although data producing multiple
estimates are still weighted more heavily.

2.3.2 | Effect size estimates

Absolute bias (bias) quantifies the degree to which the
average effect sizes in each meta-analysis,

byk ¼ 1
Nk

XNk

n¼1

yk,n,

overestimates the PSB-adjusted meta-analytic effect size
estimate assuming the presence of the effect μadj,k,

biask ¼byk�μadj,k: ð3Þ

Absolute bias larger than zero indicates that PSB
leads to inflated effect size estimates. We compare the
average effect sizes to the PSB-adjusted effect sizes
assuming the presence of the effect (conditional effect
size estimates) rather than averaging across all models.
Excluding models assuming the absence of a mean
effect mitigates the pooling toward 0 in meta-analyses
more consistent with the null hypothesis. Tables 5 and 6
in the Supplementary Materials use the PSB-adjusted
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effect sizes model-averaged across all models, including
models assuming the absence of a mean effect. These
estimates, which are model-averaged also over the null,
indicate stronger absolute bias compared to the condi-
tional estimates presented in the main manuscript
(Table 2).

Overestimation factor (OF) quantifies the degree to
which the average effect sizes in meta-analyses overesti-
mate the PSB-adjusted effect size estimates assuming the
presence of the effect,

OF¼
1
K

PK
k¼1

byk
1
K

PK
k¼1

μadj,k

: ð4Þ

An overestimation factor larger than one is evidence
of PSB. We use the delta method to obtain the confidence
interval of the overestimation factor. In the Supplemen-
tary Materials, we also report medians and interquartile
ranges of per meta-analysis overestimation factors,

OFk ¼
byk

μadj,k
: ð5Þ

However, note that OFk can lead to non-sensible
results as a meta-analysis with a positive mean effect and
very small negative PSB-adjusted effect sizes estimate
results in an extremely large negative OFk.

2.3.3 | Evidence for publication
selection bias

Posterior probability of PSB is an intuitive way of quanti-
fying the evidence in favor of PSB. Similarly to the poste-
rior probability of the presence of the effect, under the
assumption of equal prior probability of the presence and
the absence of PSB, p ℋPSBð Þ¼ p ℋNoPSBð Þ, a posterior

probability larger than 0.5 indicates that the data are
more likely under the presence of PSB. On the other
hand, a posterior probability lower than 0.5 indicates that
the data are more likely under the absence of PSB. As
before, the Bayes factor for the presence of PSB, BFpsb,

1

quantifies the change from prior to posterior odds for the
presence of PSB. A Bayes factor in favor of the presence
of PSB larger than one provides evidence in favor of the
presence of PSB and lower than one provides evidence
against the presence of PSB.

Relative publication probabilities quantify the rela-
tive probability of an estimate being published for a
given p-value interval compared to estimates with sta-
tistically significant p-values. We use one-sided p-values,
resulting in p-values larger than 0.5 corresponding to
estimates in the opposite direction. To facilitate the
interpretation we visualize a weight function that shows
the change of relative publication probabilities across
the range of p-values. We report the results only in
Supplementary Materials.

Effect size inflation in imprecise estimates quantifies
the relationship between the effect sizes and their stan-
dard errors. To facilitate the interpretation of the funnel
asymmetry test, we visualize the bias in effect sizes as a
function of standard errors (incorporating the quadratic
term from the RoBMA model). We report the results only
in Supplementary Materials.

3 | RESULTS

3.1 | Descriptives

Table 1 compares the characteristics of the meta-analyses
from each field. Medical meta-analyses contain the smal-
lest number of estimates per meta-analysis, followed by
psychology and environmental sciences with five to six
times the number of estimates compared to medicine.
Finally, economics meta-analyses contain over 12 times
the median number of estimates compared to medicine.
Contrary to a naive expectation that more estimates may

TABLE 1 Summary of the data sets from each field.

Field Meta-analyses Estimates Estimates/MA Effect sizes dð Þ Prop. significant

Medicine 67,386 597,699 5 (4, 10) 0.24 (0.09, 0.47) 0.39

Environmental 199 12,707 26 (11, 59) 0.62 (0.31, 0.95) 0.85

Psychology 605 23,563 18 (9, 40) 0.37 (0.18, 0.61) 0.78

Economics 327 91,421 66 (30, 283) 0.20 (0.09, 0.37) 0.82

Note: The number of estimates per meta-analysis (Estimates/MA) and the unweighted simple mean effect size of estimates within each meta-analysis (Effect
Sizes) are reported as medians with the interquartile range (in parentheses). The proportion of the statistically significant (Prop. Significant) meta-analytic
effect size estimates is based on a random-effect meta-analysis estimated via restricted maximum likelihood with α¼ 0:05 (removing one environmental

sciences and 275 medical meta-analyses that did not converge).

6 BARTOŠ ET AL.
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be conducted to establish smaller effects, economic and
medical effect sizes are approximately the same magni-
tude (measured as a mean effect size per meta-analysis).
Effect sizes in psychology are roughly twice as large as
those in economics, and effect sizes in the environmental
sciences are approximately three times larger than those
in economics. Differences in the number of estimates per
meta-analysis are most closely reflected in the proportion
of statistically significant random-effects estimates. Nota-
bly, random-effects estimates in economics, psychology,
and environmental sciences are statistically significant
approximately twice as often as in medicine. This dispar-
ity in the proportion of statistically significant meta-
analyses is consistent when comparing meta-analyses
with a matched number of estimates across the disci-
plines, although the difference in mean effects is some-
what smaller (see Table 1 in the Supplementary
Materials).

We summarize results from all meta-analyses, apart
from seven medical meta-analyses that did not converge.
See Supplementary Materials for analyses showing that
matching meta-analyses based on the number of primary
estimates within each meta-analysis does not meaning-
fully affect the conclusions.

3.2 | Evidence for the effect

Figure 1 shows medians, interquartile ranges, and distri-
butions of the posterior probability of an effect before

and after adjusting for PSB. These distributions reveal
several patterns. First, meta-analyses in economics, psy-
chology, and environmental sciences predominantly
show evidence for an effect before adjusting for PSB
(unadjusted); whereas meta-analyses in medicine often
display evidence against an effect. This disparity between
the fields remains even when comparing meta-analyses
with equal numbers of effect size estimates (see
Supplementary Materials). After correcting for PSB, the
posterior probability of an effect drops much more in eco-
nomics, psychology, and environmental sciences
(medians drop from 99:9% to 29:7%, from 98:9% to
55:7%, and from 99:8% to 70:7%, respectively) compared
to medicine 38:0%to 29:7%ð Þ. The pattern is especially
striking in economics, where the median posterior proba-
bility of an effect drops by more than seventy percentage
points after PSB correction. Mean decreases in posterior
probabilities show a similar pattern but with somewhat
smaller reductions (Tables 9 and 10 in Supplementary
Materials). In all four disciplines, adjusting for PSB
resulted in a substantial decrease in the strength of evi-
dence for the effect: the proportion of meta-analyses with
at least strong evidence for the presence of an effect
i:e:,BF10 > 10ð Þ decreased from 20.2% to 5.3% in medi-
cine, from 72.4% to 30.7% in environmental sciences,
from 59.8% to 27.3% in psychology, and from 72.8% to
19.6% in economics. A comparable decrease was also pre-
sent when comparing the proportion of meta-analyses
with at least moderate evidence for the presence of an
effect (i.e., BF10 > 3; from 28.9% to 12.3% in medicine,
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from 80.4% to 47.3% in environmental sciences, from
67.4% to 38.39% in psychology, and from 76.8% to 27.6%
in economics).

Furthermore, we quantify the inflation of evidence in
favor of an effect in meta-analyses via the evidence infla-
tion factor—the increase in Bayes factor in favor of the
effect due to the PSB. We find that meta-analyses in eco-
nomics inflate the evidence by a median factor of 11,369,
whereas the meta-analyses in environmental sciences
and psychology inflate the evidence by “only” 45:9 and
30:0, respectively, and medicine by a median factor of
1:33. These extreme differences between the fields are
largely driven by the disparity in the typical numbers of
estimates per meta-analysis across the disciplines
(Table 1). After standardizing the evidence inflation fac-
tor (sEIF) by the number of estimates per meta-analysis,
we find that per estimate evidence inflation is the largest
in psychology with a median factor of 1:27, followed by
environmental sciences with a median factor of 1:22, eco-
nomics with a median factor of 1:15, and medicine with a
median factor of 1:05. Again, the strong evidence infla-
tion in economics (11,369) is largely due to having many
more estimates per meta-analysis than psychology and
medicine. However, even after adjusting for different
numbers, meta-analyses in medicine still show the least
inflated evidence due to PSB.

3.3 | Effect size estimates

Table 2 summarizes the effect of PSB on effect sizes in
each field. The first column reveals that environmental
sciences, on average, suffer from as much as two and a
half times larger absolute bias as medicine, economics, or
psychology. The degree of absolute bias in environmental
sciences is so large that it is comparable to average unad-
justed effect sizes in other fields. Otherwise, medicine,

psychology, and economics share a comparable degree of
absolute bias. The median absolute bias in each field is
lower than the mean bias due to the right skew distribu-
tion of absolute biases (see Table 4 in the
Supplementary Materials).

The second column of Table 2 displays the relative
impact of PSB on meta-analytic estimates via the overes-
timation factor. On average, economics meta-analyses
are, relatively, the most PSB exaggerated, inflating effect
sizes by over two times; this corroborates a prior survey
on power and bias.10 Effect sizes in environmental sci-
ences and medical meta-analyses show smaller yet nota-
ble relative effect size inflation. Finally, effect sizes in
psychological meta-analyses are the least inflated with
the average effect size exaggerated by 40%. In each field,
the distribution of absolute biases is right-skewed; conse-
quently, the per meta-analysis overestimation factor
median is lower than the mean (see Table 4 in the
Supplementary Materials). The median overestimation
factor is relatively stable/decreasing with the increasing
number of effect size estimates per meta-analysis, sug-
gesting that the number of meta-analyses does not play a
role in the relative size of PSB.

3.4 | Evidence for publication
selection bias

Figure 2 shows medians, interquartile ranges, and distri-
butions of the posterior probability of the PSB in each
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absence of the publication selection bias. See the secondary y�axis

for Bayes factors in favor of the publication selection bias that are

independent of the assumed prior probability of the publication

selection bias.

TABLE 2 Summary of the footprints of publication selection

bias on the meta-analytic effect sizes in the form of absolute bias

(in Cohen's d) and overestimation factor.

Field
Absolute
bias dð Þ

Overestimation
factor

Medicine 0.13 [0.12, 0.13] 1.62 [1.60, 1.64]

Environmental 0.33 [0.24, 0.41] 1.78 [1.42, 2.13]

Psychology 0.13 [0.11, 0.14] 1.39 [1.24, 1.55]

Economics 0.15 [0.13, 0.17] 2.16 [1.69, 2.64]

Note: The results are based on the comparison of publication bias adjusted
meta-analytic effect size estimates assuming presence of the effect to the
mean effect sizes per meta-analysis. The table displays means and 95%
confidence intervals. (See Table 4 in the Supplementary Materials for

medians and interquartile ranges.)
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field. We find the most evidence for PSB in economics,
where the typical evidence of the presence of publication
bias is moderate, median BFPSB ¼ 7:27 corresponding to
87:9% posterior probability of publication selection bias.
Meta-analyses in environmental sciences and psychology
have weak evidence in favor of PSB; even though the pro-
portion of meta-analyses showing at least moderate evi-
dence for PSB is still considerable (32.2% and 27.4%,
respectively). Meta-analyses in medicine show the lowest
proportion of at least moderate evidence in favor of PSB
(12.9%). However, the proportion of meta-analyses con-
sistent with the evidence of absence of PSB
(i.e., BFPSB < 1=3) is also the lowest in medicine (2.6%),
indicating that the majority of medical meta-analyses is
not informative enough to provide compelling evidence
for or against publication bias. The proportion of meta-
analyses with at least moderate evidence against PSB is
somewhat higher in psychology (7.1%), economics
(12.2%), and environmental sciences (12.6%). Meta-
analyses with a larger number of effect size estimates pre-
sent slightly more evidence in favor of the PSB; however,
the overall disparity between the fields remains when
comparing meta-analyses with a matched number of
effect size estimates (Table 17 in Supplementary
Materials).

4 | CONCLUDING COMMENTS

We present a comprehensive assessment of publication
selection bias and its effects on meta-analyses across
medicine, environmental sciences, psychology, and eco-
nomics. Novel methods and measures allowed us to
quantify the evidence for the absence or presence of the
mean effect and publication selection bias, as well as
inflation of the evidence of the effect due to the publica-
tion selection bias. Furthermore, we estimated the bias
and overestimation factor of the effect sizes of average
estimates included in meta-analyses.

Our analysis is based on all effect size estimates found
in these meta-analyses, regardless of the type of outcome
or how they were analyzed. One can classify outcomes
into three categories. First, some outcomes may have
been pre-specified as being of primary interest to show a
desirable effect (e.g., the effectiveness of a medication in
reducing the risk of death). Second, some other outcomes
are not pre-specified but may still be used to demonstrate
some preferred outcome; thus, they may have larger ana-
lytical flexibility (e.g., using alternative measures of effec-
tiveness) and thereby are potentially more affected by
publication selection bias. Third, still other outcomes
may have been collected and analyzed without any
strong interest to show some significant result, or even

with some incentive to show non-significant results
(e.g., outcomes on collected adverse events). Publication
selection bias is expected mostly in the second category,
while it may be less in the first category38 and may be
entirely absent in the third category.

Furthermore, we assumed independence of the
reported primary estimates within and between meta-
analyses; that is, each reported estimate is regarded to
provide the same amount of new information as every
other reported estimate. However, estimates may be
dependent between meta-analyses, e.g., a single estimate
might be used across multiple meta-analyses, and within
meta-analyses, e.g., multiple estimates obtained from a
single study/primary data set. As our data does not allow
us to tackle those dependencies directly, we discuss how
each independence violation might affect the results. The
between meta-analysis dependency of estimates is of
lesser importance as our inferences are concerned with
the population of meta-analyses. Consequently, between
meta-analysis dependency of estimates would only affect
descriptive summaries of the estimates themselves. The
within meta-analysis dependency of estimates is more
problematic and can lead to (1) the overestimation of the
strength of evidence, as the same primary data set is con-
ditioned upon more than once, and (2) placing more
weight on studies with multiple estimates. The first issue
is partially mitigated via the standardized evidence infla-
tion factor, which assesses the average evidence contribu-
tion of an estimate, that is, adjusting for the number of
data sets conditioned upon. However, the absolute mea-
sures of evidence (i.e., evidence for the presence of the
effect before and after publication bias adjustment or
the evidence for publication bias) can be susceptible to
overestimation, particularly in fields with relatively large
within meta-analysis dependencies such as economics or
environmental science (but see Supplementary Materials
for comparison of meta-analyses with a matched number
of effect size estimates). The second issue cannot be
directly addressed; however, all presented measures are
based on comparisons of two sets of models, both of
which should be affected to a similar degree, thus hope-
fully canceling most of the bias that is generated by over-
weighting studies with multiple estimates. Overall, we
cannot exclude that the observed between-field differ-
ences may at least partially result from systematic
differences in how meta-analyses themselves are
conducted.

The milder publication selection bias in medical
meta-analyses corroborates previous findings and might
have multiple concurring explanations.9,16,19 First, as in
other disciplines, a large share of those medical meta-
analyses with seemingly strong evidence no longer had
strong evidence when PSB adjustment was made.

BARTOŠ ET AL. 9
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However, a much lower proportion of medical meta-
analyses showed strong evidence of an effect compared to
the other disciplines. Therefore, the difference between
medicine and the other disciplines might be explained by
the higher proportion of meta-analyses in medicine that
showed weak evidence for an effect already before adjust-
ing for publication selection bias. Second, medical studies
may measure phenomena that are simpler and more sta-
ble, using methods that are more solidly and universally
codified, which reduces researchers' “degrees of freedom”
in generating and publishing evidence.9,16 Third, it is also
possible that the milder publication selection bias seen in
medical meta-analyses is reflecting a larger share of
meta-analyses that belonged to a category of outcomes
with less pressure for publication selection bias. Finally,
medical research makes wider use of research integrity
practices, such as clinical trial registration, which might
reduce the risk of publication selection bias.39 Perhaps,
medical research is, therefore, typically of a higher meth-
odological quality and less subject to bias.9

In this paper, we documented the considerable
impact of publication selection bias on meta-analyses
in a variety of disciplines. Even though we can probe
the footprint of these biases with the statistical tech-
niques employed here, science ultimately needs to
progress toward mitigating publication bias already
while conducting and publishing the research. While
the specific patterns of researchers' “degrees of free-
dom” and causes of publication selection bias are
likely to vary widely across fields, our results suggest
that the social sciences might especially benefit from
adopting practices to mitigate these, including: pre-
registration, greater transparency, and registered
reports.40–42
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