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A B S T R A C T

Rotating Synthetic Aperture (RSA) technology is one of the distinctly advantageous Earth geostationary orbit
optical remote sensing technologies. However, the continuous rotation of the RSA system’s rectangular primary
mirror results in a discernible drop in resolution along the shorter side of the mirror. Additionally, the captured
images exhibit periodic and time-varying characteristics. To improve the image quality to meet interpretation
needs, we first delineate the imaging process of the rotating primary mirror and analyze the characteristics of
image degradation based on the system’s imaging mechanism. Then, we propose a dual super-resolution (SR)
framework based on Swin Transformer and introduce a self-supervised learning method for jointly training
the unified SR network using wavelet fusion. The self-supervised learning method effectively utilizes the
spatiotemporal correlation of the information contained in images captured at different rotation directions
of the rectangular pupil. Moreover, the attention mechanism in Transformer can adopt a global perspective
and utilize content-based interactions between image content and attention weights to model strong long-range
dependencies in remote sensing images. This approach significantly enhances image quality along the pupil’s
shorter side, consequently yielding superior results. Extensive digital and semi-physical imaging experiments,
involving six aspect ratios of the primary mirror, demonstrate that our SR method surpasses state-of-the-art
methods. The work in this paper can serve as a valuable reference for future space applications of the RSA
technology.
. Introduction

Optical remote sensing satellites have significant advantages, such
s wide area coverage, fixed-point monitoring, and high temporal reso-
ution. Obtaining high spatial resolution images depends primarily on a
arge-aperture primary mirror. In geostationary orbit, optical apertures
arger than 10 m are theoretically necessary to achieve optical imaging
ith a spatial resolution of 1–2 m [1–3]. Traditional optical systems
ith large aperture single mirrors are limited by weight, volume,

omplexity, and the rocket’s carrying capacity, making it difficult to
eet the requirements of low-cost applications and lightweight designs.
o achieve a large aperture while meeting the rocket’s carrying ca-
acity, several new imaging technologies have emerged. These include
parse aperture imaging technology, membrane diffraction imaging
echnology, and rotating synthetic aperture (RSA) imaging technology.
he technique of sparse aperture imaging can reduce the aperture by
plicing small-aperture mirrors into one larger aperture primary mirror
o some extent. However, it requires a precise on-orbit deployment
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structure and real-time detection and correction of the overall surface
error, resulting in a significant increase in technical complexity [4–
7]. The membrane diffraction imaging technique has the benefits of
being lightweight and foldable, but due to the coupling effect of thin
film material and diffraction mechanism, the imaging quality is un-
predictable and often unable to meet the high-quality optical imaging
standards [8–10]. The RSA technique, as shown in Fig. 1, employs
a rectangular primary mirror. The mirror achieves a resolution and
image quality comparable to that of a system with a circular aperture
of equivalent caliber during rotation. The system offers numerous
advantages, including a lightweight primary mirror and eliminates the
need for splicing or maintaining surface shape. These advantages sig-
nificantly reduce the difficulty of overall system design, manufacturing,
and detection [11,12]. The RSA technique stands out as a leading
system design in contemporary high-resolution space optical imaging,
emerging as a pivotal development direction for future geostationary
orbit high-resolution optical cameras. Nevertheless, during the imaging
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Fig. 1. Imaging principle of RSA. In contrast to traditional imaging methods, the key distinction lies in its use of a continuously rotating rectangular mirror as the primary mirror.
process, the continuous rotation of the rectangular primary mirror
causes unique degradation characteristics in image quality. Thus, it
is necessary to combine image processing methods to enhance the
imaging quality [13,14].

The modulation transfer function compensation technique has al-
ways been an important component of practical applications in optical
remote sensing satellite systems. In earlier years, a series of high-
resolution remote sensing satellites, such as IKONOS, QuickBird, Geo-
Eye, and WorldView, have all adopted this method to enhance the
quality of image products [15,16]. Deep learning has the ability to
adaptively learn the mapping relationship between high-resolution and
low-resolution information. This feature renders image super-resolution
(SR) methods based on deep learning significantly superior to tradi-
tional approaches, thereby establishing them as the prevailing methods
in recent years. It can provide a reference for remote sensing image SR.
The single-image super-resolution (SISR) methods based on deep learn-
ing can be roughly divided into two categories [17]: the first category is
explicit methods based on classic degradation models or their variants.
Examples include SRGAN [18], ELAN [19], Omni-SR [20], HAT [21],
and Real-ESRGAN [22] that utilize external datasets, as well as Kernel-
GAN [23], DualSR [24], and DBPI [25] that exploit internal statistics
of patch recurrence. The second category is implicit methods that learn
the data distribution within external datasets, such as CinCGAN [26]
and FSSR [27]. However, the RSA system possesses unique imaging
characteristics, and its image degradation mechanism is more complex
compared to traditional systems. Therefore, directly applying generic
SISR methods would encounter the following challenges: (1) During
the imaging process, the anisotropic point spread function (PSF) of the
system continuously changes with rotation, resulting in images exhibit-
ing temporal periodicity and spatial asymmetry. Existing SR methods
do not consider this unique imaging characteristic, which may lead
to suboptimal performance. (2) Deep learning is generally known as a
data-driven approach. In other words, the effectiveness of deep learning
methodologies is strongly tied to both the quantity and quality of the
available data. However, constructing a suitable large external dataset
for the RSA system, which has not yet been implemented for in-orbit
applications, is relatively challenging. (3) The above SR methods are
mostly based on convolutional neural networks (CNN), but strong long-
range dependencies of remote sensing images makes the effectiveness
of CNNs with local inductive bias difficult to meet application require-
ments. Therefore, we aim to investigate image SR methods tailored
2

specifically for the RSA system, based on its degradation mechanism
and imaging characteristics. Building upon this foundation, our objec-
tives encompass two main aspects: firstly, employing self-supervised
learning techniques to utilize the high-resolution information inherent
in images to guide the reconstruction of the low-resolution direction
of the images without the need for large external training datasets;
secondly, exploring model architectures based on Vision Transformer
to enhance the effective utilization of internal long-range dependen-
cies within remote sensing images. Moreover, for innovative imaging
systems like the RSA, additional physical or semi-physical imaging
experiments are required to further validate the performance of the SR
methods.

In order to address the issue, we first conduct an analysis of the
asymmetric spatial distribution characteristic and time-varying char-
acteristic of the PSF, in accordance with the imaging mechanism of
the system. Subsequently, we propose a SISR method based on Swin
Transformer [28]. Finally, digital simulation and semi-physical imaging
experiments demonstrate that our proposed method can enhance image
resolution while correcting spatial anisotropy and improving texture
detail clarity. Under conditions where the aspect ratio of the rectangu-
lar primary mirror ranges from 3 to 7, the performance of our method
surpasses that of state-of-the-art generic SISR methods across various
target scenes such as residential areas, harbors, forests, storage yards,
and airports.

The contributions of this study can be succinctly outlined as follows:

1. Analysis of the degradation characteristics of image quality in
the RSA imaging system, specifically focusing on temporal peri-
odicity and spatial anisotropy.

2. Proposal of a self-supervised learning method based on wavelet
fusion that corresponds to the phenomenon of image resolution
being significantly higher in the long edge direction of the
rectangular primary mirror than in the short edge direction. This
eliminates the need for large external datasets in model training.

3. Introduction of a dual SR framework to utilize content-based in-
teractions between attention weights and image content unique
to the Swin Transformer. This enhances the ability to exploit
internal long-range dependencies within remote sensing images,
compensating for the significant information loss along the
shorter side direction.
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4. Verification of our approach through digital simulation and
semi-physical imaging experimentation to illustrate its superior-
ity.

The paper is organized as follows: Section 2 provides an overview of
he current research status. In Section 3, the imaging mechanism of the
ystem is examined, with an analysis of its characteristics leading to im-
ge quality degradation. Subsequently, we introduce a self-supervised
R method tailored for the RSA system. The efficacy of our approach is
ubstantiated through digital simulation and semi-physical simulation
xperiments in Section 4. Finally, our conclusions are summarized in
ection 5.

. Background

The task of SISR involves the recovery of a high-resolution image 𝐼𝐻
rom its corresponding low-resolution counterpart 𝐼𝐿. The relationship
etween these two variables is defined by the classical degradation
odel, which can be expressed as:

𝐿 =
(

𝐼𝐻∗𝑘
)

↓
+ 𝑛, (1)

here 𝑘 represents the blur kernel, ∗, 𝑛, and ↓ denote the convolution
perator, additive noise, and the down-sampling operator, respectively.

Existing SISR methods can be broadly categorized into two groups:
xplicit methods, which rely on classic degradation models or their
ariations, and implicit methods, which utilize data distribution from
xternal datasets. The fundamental concept of explicit methods is to
earn the blur kernel 𝑘 and additive noise 𝑛 in the classical degradation
odel directly from the training data. The representative approaches

nclude SRGAN [18], Omni-SR [20], HAT [21], and Real-ESRGAN [22],
hich exploit external datasets. Another set of approaches suggests
xploiting the internal statistics of patch recurrence, like DualSR [24],
BPI [25], and KernelGAN [23]. However, the RSA system’s unique

imeseries imaging mode makes it difficult for a single deep neural net-
ork to accurately estimate the asymmetric kernel with time-varying

haracteristic, that is, the method based on estimating explicit param-
ters such as blur kernel is no longer applicable to the system. Implicit
ethods, on the other hand, do not rely on explicit parameteriza-

ion. Instead, they typically learn the underlying SR model implicitly
rom the data distribution within external datasets. The representative
pproaches include CinCGAN [26] and FSSR [27]. However, implicit
ethods rely on external datasets and may not produce satisfactory

esults for images with degradations beyond their training sets [29,30].
his is particularly challenging for new imaging systems like the RSA
ystem, which has not been deployed in orbit yet, making it harder to
reate a sufficiently large and relevant external dataset. In addition,
xternal information is subject to a higher degree of uncertainty com-
ared to internal information. As a result, methods that rely solely on
xternal datasets for full supervision more commonly generate signif-
cant artifacts in the SR results compared to self-supervised methods
ased on the specific internal information of the image itself. These
rtifacts pose a significant disadvantage to the space application of the
SA imaging technology.

The aforementioned SR methods are mostly based on CNNs. How-
ver, recently, Transformer has emerged as a new possibility for com-
uter vision, thanks to its exceptional ability to model long-range
ependencies. Remote sensing images, in contrast to natural images,
end to be larger in size and have more objects with varying sizes and
rientations. Moreover, remote sensing images have a higher informa-
ion density. Vision Transformer can achieve global dependencies by fa-
ilitating interactions among arbitrary pixels in remote sensing images.
urthermore, the hierarchical Vision Transformer, which combines the
ierarchical idea in CNNs, can maintain modeling power while reduc-
ng the computational cost to complexity linearly proportional to the
mage size [31,32]. Consequently, the general paradigm of network
esign has gradually shifted from CNNs to Transformer. Transformer-
ased visual models have not only achieved results comparable to
3

or even surpassing CNNs in tasks such as image super-resolution,
image restoration, semantic segmentation, point cloud analysis, ob-
ject detection, and recognition in natural images [33–44], but their
applications in remote sensing images are also becoming increasingly
widespread. [45] conducted an empirical study on remote sensing
pretraining and obtained Transformer-based pretrained backbones that
have demonstrated promising performance in processing remote sens-
ing images. The study also investigated the impact of these pretrained
backbones on representative downstream tasks. Subsequently, [46]
introduced a large vision model customized for remote sensing tasks, in-
corporating a rotated varied-size window-based attention mechanism.
This model excels not only in computational complexity and data
efficiency during transfer but also demonstrates competitive perfor-
mance in downstream tasks. For research on remote sensing image
SR, [47] utilizes the self-attention mechanism to design a module for
single-scale self-similarity exploitation, enabling the computation of
feature correlations within the same scale. Additionally, to capture
repetitive structures across different scales, it incorporates a cross-
scale connection structure. The combination of these two components
allows for the simultaneous utilization of both single-scale and cross-
scale similarities. [48] enhances the SR performance of remote sensing
images further by employing a Transformer-based multistage enhance-
ment structure. This structure integrates multi-scale high-dimensional
and low-dimensional features and captures long-range dependencies
between them.

3. Methodology

3.1. Overview

The RSA system, as shown in Fig. 1, is an imaging system that
uses a large aspect ratio primary mirror to rotate during operation.
Firstly, we conduct a thorough analysis of the spatial asymmetry and
temporal periodicity characteristic of the PSF specific to the system. In
light of this unique imaging mechanism, we present a self-supervised
learning method that employs wavelet fusion. Additionally, we intro-
duce a dual SR network based on Transformer. The network leverages
the content-based interactions between attention weights and image
content exclusive to Swin Transformer, thereby improving the ability
to utilize the internal information of remote sensing images. Further,
the attention mask module is removed to enhance the residual Swin
Transformer block’s ability to model stronger long-range dependencies
of remote sensing images. Fig. 2 illustrates the overall process.

3.2. Mechanism analysis of the RSA system’s imaging characteristics

The imaging quality of the acquired image at any time in the
direction of the long side of the primary mirror is comparable to that
of the single circular primary mirror with the same caliber. As the
primary mirror rotates, the high-quality imaging produced by the long
side covers all directions over time, effectively achieving the equivalent
of a larger-caliber single primary mirror through time division.

The rectangular pupil function is shown in Fig. 3. The PSF at the
same time (as shown in Fig. 4) can be obtained by taking the Fourier
transform of the rectangular pupil function and then taking the square
of the modulus:
𝑃𝑆𝐹rect (𝑥, 𝑦, 𝑡) = 𝑎𝑏 ⋅ sinc(𝑎(𝑥 cos(𝑤𝑡 + 𝜑0) − 𝑦 sin(𝑤𝑡 + 𝜑0)))

× sinc(𝑏(𝑥 sin(𝑤𝑡 + 𝜑0) + 𝑦 cos(𝑤𝑡 + 𝜑0))),
(2)

where 𝑎 and 𝑏 are, respectively, the length and width of the rectangular
pupil, 𝑤 is the rectangular primary mirror rotation angular velocity,
and 𝑤𝑡 + 𝜑0 is the rotation phase.

Referring to Eq. (2), the PSF at time 𝑡 is determined by the rotation
angle and aspect ratio of its rectangular pupil, exhibiting the following

characteristics:
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Fig. 2. Overview Flow Chart: The image super-resolution reconstruction part consists of a dual SR frame, which comprises a wavelet fusion module and a Transformer-based
network. Validation experiments include digital simulation and semi-physical imaging experiments.
Fig. 3. 3D schematic of the rectangular pupil function.

Fig. 4. 3D schematic of the point spread function (PSF).
4

1. The PSF of a rectangular aperture approximates an elliptical
shape when the secondary diffraction effects are disregarded.
This elliptical form is determined by the aspect ratio of the
rectangular aperture.

2. The PSF of the rectangular pupil undergoes temporal variations,
with the short axis aligning in the direction of the long side of
the pupil.

For instance, when the aspect ratio is 3, the PSFs at various rotation
angles are shown in Fig. 5, and the corresponding degraded images are
presented in Fig. 6. It is apparent that there is a significant variation
in image resolution across different directions, with notably lower
resolution observed on the shorter side compared to the longer one.

Specifically, due to the continuous rotation of the rectangular mirror
during the imaging process, the PSF changes over time. The PSF is
different at each time, which leads to complex nonuniform degradation
of the acquired images, and the resolution is influenced by both the as-
pect ratio and the rotation speed of the rectangular mirror. Finally, due
to the influence of detector sampling, the resolution decreases further.
Therefore, it is imperative to develop an SR model tailored to enhance
the resolution of images obtained through the RSA system, aligning
with the system’s imaging characteristics. This model should leverage
the spatial correlation inherent in the image to enhance resolution in
its low-resolution direction.

3.3. Self-supervised learning method based on wavelet fusion

In most studies on learning-based image SR, the paired training
dataset is created by downscaling high-resolution images with a prede-
termined operation (e.g., bicubic) [49]. However, estimating the blur
kernel of the RSA imaging system is too complex and kernel mis-
match may produce unwanted artifacts. To address this issue, the self-
supervised method utilizes the internal statistics of an image as a useful
prior for solving unconstrained problems like image SR [50]. Wavelet
transform is a space-frequency domain analysis method used to decom-
pose an image into a combination of average and detail images, each
representing distinct structures of the image. This facilitates the extrac-
tion of both the overall structure and intricate details, enabling the
construction of high-resolution-low-resolution (HR-LR) image pairs for
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Fig. 5. PSFs at various rotation angles. (a) 0◦, (b) 45◦, (c) 90◦, (d) 135◦.
Fig. 6. Image degradation with varying rotation angles. (a)–(b) Example image scene. (c)–(f) Degraded images at various rotation angles.
self-supervised training. The formula of the two-dimensional discrete
wavelet transform is:

𝐷𝑊 𝑇 (𝑗, 𝑚, 𝑛) = 2𝑗
∑

𝑥

∑

𝑦
𝐼(𝑥, 𝑦)𝜓(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛), 𝑥, 𝑦 ∈ 𝑍, (3)

where 𝐼 represents the input image to be decomposed, 𝑗 is the scale of
wavelet decomposition, 𝜓 is the wavelet basis function, and 𝑚 and 𝑛
represent the translation parameters that determine the position of the
wavelet function 𝜓 in relation to the image position 𝐼(𝑥, 𝑦).

Fig. 7 exhibits the wavelet decomposition outcomes of the resolu-
tion target image, acquired by semi-physical imaging experiments. The
outcomes are categorized into four sections: Region A corresponds to
the subsampling of the primary image, representing the low-frequency
part. Regions H, V, and D represent the details (high-frequency) of the
original image’s rows, columns, and diagonal directions, respectively.
It is apparent that the resolution in the long side direction varies from
that in the short side direction.

Drawing on the aforementioned analysis, as shown in Fig. 8, we
adopt a self-supervised learning approach relying on wavelet fusion,
which follows the subsequent steps:

1. Decompose the sequence images 𝐼1, 𝐼2,… , 𝐼𝑛 which acquired in
one rotation cycle of the pupil.

2. Take the weighted average of the wavelet coefficients of the
low-frequency part of the sequence images 𝐼 , 𝐼 ,… , 𝐼 as the
5

1 2 𝑛
Fig. 7. Wavelet decomposition results of the resolution target image obtained by semi-
physical imaging experiments. (a) The results with the rotation angle of 0◦. (b) The
results with the rotation angle of 90◦.
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Fig. 8. The architecture of the self-supervised learning method based on wavelet fusion. The wavelet fusion module can fuse the information of high/low resolution in different
directions of the images obtained during one rotation cycle to obtain fusion images, which are then used to construct HR-LR image pairs.
wavelet coefficients of the low-frequency part of the fusion
image.

3. Compare the wavelet coefficients of the three high-frequency
components of the sequence images 𝐼1, 𝐼2,… , 𝐼𝑛, then take the
wavelet coefficients with the largest (or smallest) absolute value
as the wavelet coefficients of the fusion image 𝐹HR (or 𝐹LR).

4. After determining the wavelet coefficient, take the inverse
wavelet transform to obtain the fusion image, then upsample (or
downsample) the fusion image 𝐹HR (or 𝐹LR).

We choose the Haar wavelet and use the 2-D fast wavelet trans-
form [51]. By taking the wavelet coefficient with the largest/smallest
absolute value of the high-frequency parts, the information of high/low
resolution in different directions can be respectively fused by the
wavelet to obtain fusion images. These fusion images are then com-
bined with the original images captured by the RSA system to construct
HR-LR image pairs, which will be used to train the SR network.

3.4. Dual self-supervised learning-based image SR framework

The self-supervised method, relying on the internal statistics of
remote sensing images themselves, obviates the need for an extensive
collection of external training datasets, and it is not prone to producing
‘‘hallucinations’’ or ‘‘artifacts’’ out of nothing. Therefore, we propose
a unified self-supervised remote sensing image SR framework that
comprises a wavelet fusion module for constructing HR-LR image pairs
and an SR network. As shown in Fig. 9, on one side of the framework,
the wavelet fusion module is utilized to combine the low-resolution
information of the images obtained within one rotation cycle of the
pupil, producing the LR image in the HR-LR pair. This LR image is
then restored by the SR network, with the original single-frame image
acquired by the RSA system acting as HR for supervision. In other
words, on this side, the loss functions used for backpropagation include
pixel loss and edge loss, calculated between the super-resolved image
obtained through the SR network’s processing of the input LR image
(𝐹𝐿𝑅) and a single-frame image acquired by the system (𝐼𝑡). The pixel
loss 𝐿1 uses L1 distance, defined as:

𝐿1
(

𝐹𝐿𝑅, 𝐼𝑡
)

= |

|

|

𝑆
(

𝐹𝐿𝑅
)

− 𝐼𝑡
|

|

|1
, (4)

where 𝑆 ⋅ represents the SR network.
6

( )
The edge loss 𝐿𝑒𝑑𝑔𝑒 is defined as:

𝐿edge
(

𝐹𝐿𝑅, 𝐼𝑡
)

=
√

‖

‖

‖

𝛥
(

𝑆
(

𝐹𝐿𝑅
))

− 𝛥(𝐼𝑡)
‖

‖

‖

2

2
+ 𝜀2, (5)

where 𝛥 represents the Laplacian operator and the constant 𝜀 is empir-
ically set to 0.001.

The total loss function 𝐿 is as follows:

𝐿
(

𝐹𝐿𝑅, 𝐼𝑡
)

= 𝜆1 ⋅ 𝐿1 + 𝜆2 ⋅ 𝐿edge, (6)

where 𝜆1 and 𝜆2 are set as 1 and 0.05 empirically.
In parallel, on the opposite side of the framework, the wavelet

fusion module is employed to merge the high-resolution information
from the images acquired within one rotation period, producing the
HR image in the HR-LR pair. Subsequently, the SR network is utilized
to restore the original single-frame image obtained by the system.
Accordingly, the loss is as follows:

𝐿
(

𝐼𝑡, 𝐹𝐻𝑅
)

= 𝜆1 ⋅
|

|

|

𝑆
(

𝐼𝑡
)

− 𝐹𝐻𝑅
|

|

|1
+ 𝜆2 ⋅

√

‖

‖

‖

𝛥
(

𝑆
(

𝐼𝑡
))

− 𝛥(𝐹𝐻𝑅)
‖

‖

‖

2

2
+ 𝜀2.

(7)

It is noteworthy that the HR images on both sides of the framework
have a higher resolution than the LR images in certain directions. This
indicates that the SR network on both sides can be trained jointly using
the HR-LR pairs.

The SR network, denoted as 𝑆, is constructed based on SwinIR [52],
as illustrated in Fig. 10. The network utilizes only a small number of
convolutional layers in both the shallow feature extraction and high-
quality image reconstruction modules. Specifically, for a low-resolution
input image 𝐿𝑅, the shallow feature extraction process employs a 3 × 3
convolutional layer, denoted as 𝐸𝑆𝐹 (⋅), to extract the shallow feature
𝐹𝑆𝐹 as follows:

𝐹𝑆𝐹 = 𝐸𝑆𝐹 (𝐿𝑅) . (8)

Next, the deep feature extraction module 𝐸𝐷𝐹 (⋅) is employed to
extract the deep feature 𝐹𝐷𝐹 as follows:

𝐹𝐷𝐹 = 𝐸𝐷𝐹
(

𝐹𝑆𝐹
)

. (9)

Finally, the reconstruction module 𝑅𝐻𝑄 (⋅) utilizes a single convolu-
tion layer to aggregate shallow and deep features. It also employs a sub-
pixel convolution layer to upsample the features. The reconstruction
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Fig. 9. Overall framework of the proposed dual SR Framework. Each side of the framework includes a wavelet fusion module and a Transformer-based SR network. The SR
networks on both sides can be trained jointly.
Fig. 10. The SR network structure.
process is performed as follows:

𝑆 (𝐿𝑅) = 𝑅𝐻𝑄
(

𝐹𝑆𝐹 + 𝐹𝐷𝐹
)

. (10)

CNNs do not process information about every pixel in the input im-
age but instead perceive local regions due to their local inductive bias.
This property of convolution makes it ineffective for establishing long-
range dependencies in space, so convolutional layers occupy a minimal
proportion in our SR network. On the contrary, the Transformer-based
deep feature extraction module utilizes content-based interactions be-
tween attention weights and image content, differing from convolution
and enabling better modeling of long-range dependencies. More specif-
ically, in the deep feature extraction module, only the final layer is a
7

3 × 3 convolutional layer. The preceding layers consist of 𝑃 Swin Trans-
former blocks (RSTB). These blocks are used to extract intermediate
features 𝐹1, 𝐹2,… , 𝐹𝑃 , block by block, as follows:

𝐹1 = 𝑅𝑆𝑇𝐵1
(

𝐹𝑆𝐹
)

,

𝐹𝑖 = 𝑅𝑆𝑇𝐵𝑖
(

𝐹𝑖−1
)

,

𝐹𝐷𝐹 = 𝐶𝑜𝑛𝑣
(

𝐹𝑃
)

,

(11)

where 𝑖 = 2, 3,… , 𝑃 and 𝐶𝑜𝑛𝑣 denotes the last convolutional layer.
RSTB comprises Swin Transformer layers (STL) [28] integrated

with convolutional layers. The shifted window mechanism of STL is
conducive to modeling long-range dependencies, aiding in the recon-
struction in the lower resolution direction by utilizing high-resolution
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Fig. 11. Long-range dependencies: The recurrence frequency of a patch remains high even at greater spatial distances in remote sensing images.
information retained from other directions in the image itself. Ad-
ditionally, for remote sensing images, as illustrated in Fig. 11, the
recurrence frequency of a patch remains high even at a greater spatial
distance. Therefore, to effectively leverage this characteristic of remote
sensing images, we remove the attention mask during the computa-
tion of self-attention in the shifted window-based attention module of
STL, capturing the stronger long-range dependencies present in remote
sensing images.

The proposed SR framework is inspired by CycleGAN [53] and
DBPI [25], but there are two significant differences. Firstly, the core
of the SR framework is the self-supervised Swin Transformer, not the
generator and discriminator in a generative adversarial network. One
reason for this is that remote sensing images have a lot of internal
information redundancy (e.g., recurrence of small patches), which can
produce useful specific image priors [50]. Additionally, image patches
exhibit a higher frequency of occurrence within a single remote sensing
image, thereby enhancing the potency of internal image-specific statis-
tics compared to generic external statistics. Unlike the local inductive
bias in convolution, Transformer can take a global perspective and
exploit correlations between pixels, making it possible to effectively
utilize high-resolution information in different directions of the target
scene. Secondly, the training set is obtained through wavelet fusion,
rather than being generated by a deep neural network. Using a network
to generate training data presents two challenges: the blur kernel
is time-varying, and the network may be trained to generate easily
downscale and recoverable images, such as linear interpolation. By
creating the paired training dataset through wavelet fusion, a trivial
solution is avoided.

3.5. Computational complexity analysis

For an RGB image of size ℎ×𝑤×3, wavelet transform first requires
log2ℎ and log2𝑤 iterations for each row and column of the image.
Each iteration divides the row/column into sub-rows/columns with
half the original length, and performs wavelet transform on each sub-
row/column. The subsequent fusion process requires iterating through
all the elements of the coefficient matrix one by one. Finally, consider-
ing the input channel is 3, the total computation complexity of wavelet
fusion is:

𝛺WF = 3ℎ𝑤(log2ℎ + log2𝑤 + 1). (12)

Swin Transformer performs self-attention computation within a set
of local windows. Initially, the input features X ∈ Rℎ×𝑤×𝐶 are divided
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into non-overlapping windows, with each window containing 𝑀×𝑀
patches. The computational complexity of window-based self-attention
is:

𝛺WMSA = 4ℎ𝑤𝐶2 + 2𝑀2ℎ𝑤𝐶. (13)

4. Experiments

4.1. Experimental configuration

To assess the efficacy of the proposed SR method, we carry out
digital simulation as well as semi-physical imaging experiments. The
digital simulation experiment is conducted with high-resolution remote
sensing images using a full-link digitization mode to simulate the
system’s image quality degradation process [54,55]. According to the
analysis in Section 3, taking the target scene image 𝐼0(𝑥, 𝑦) as input, the
degraded image can be represented as follows:

𝐼(𝑥, 𝑦, 𝑡) = 1
𝑇 ∫

𝑡

0
𝐼0(𝑥, 𝑦) ∗ 𝑃𝑆𝐹linkd𝑡,

𝑃𝑆𝐹link = 𝑃𝑆𝐹ele ∗ 𝑃𝑆𝐹det ∗ 𝑃𝑆𝐹opt ∗ 𝑃𝑆𝐹rect ∗ 𝑃𝑆𝐹atm,
(14)

where 𝑃𝑆𝐹rect is the PSF of rectangular pupil in Eq. (2), 𝑃𝑆𝐹ele, 𝑃𝑆𝐹det ,
𝑃𝑆𝐹opt , and 𝑃𝑆𝐹atm represent the PSF of electronic system, detector,
optical system defocusing, and atmospheric disturbance respectively.
Table 1 displays the pertinent simulation parameters.

For the semi-physical imaging experiment, an imaging experiment
platform is constructed to simulate the RSA imaging process, as illus-
trated in Fig. 12. A rotating rectangular pupil optical element is added
to the front of a high-quality optical lens to mimic the dynamic imaging
process. A spectral filter is included to simulate the influence of vary-
ing spectral widths. The data acquisition, processing, and analysis of
images are carried out by a computer. High-resolution images are used
in the experiments, and these images are produced by sophisticated
cartographic equipment [56]. Fig. 13 presents some of the experimental
components.

We conducted a quantitative evaluation of the proposed SR method
using the HRRSD dataset [57]. HRRSD comprises a total of 21,761 im-
ages acquired from Google Earth and Baidu Map. Additionally, we also
utilized images from the WorldView-3 (WV3) satellite. These images
contain target scenes with varying texture richness, including airports,
ports, residential areas, forests, and farmlands, as shown in Fig. 14. This
additional dataset was employed for further evaluation of the proposed
method.
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Table 1
Simulation parameters.
Operation Name Value

Scene and atmospheric
transmission

Scene High-resolution radiance images
Atmospheric path radiation Standard atmospheric model
Atmospheric transmittance Standard atmospheric model
Aerosol Standard atmospheric model
Scattering and absorption Standard atmospheric model

Camera

Aspect ratio of the rectangle primary mirror 3∼8
Focal length 50 m
Equivalent diameter of the primary mirror 6 m
Center wavelength 500 nm
Rotational angular velocity 0.01∼0.05 rad/s

Signal transmission and
conversion

Pixel size 9 μm
Depletion width 5 μm
Diffusion length 2 μm
Integration time 0.01 s
Fig. 12. Design scheme of the imaging experiment platform.
Fig. 13. Experimental components. (a) The primary mirror. (b) The rectangular pupil optical elements.
According to the configuration in SwinIR [52], the RSTB number,
STL number, window size, channel number, and attention head number
are set to 6, 6, 8, 180, and 6, respectively.

4.2. Experimental results

The proposed SR method is compared with representative and state-
of-the-art techniques, including SRGAN, ELAN, Omni-SR, HAT, and
RealESRGAN, which are explicit methods utilizing external datasets.
9

Additionally, DualSR, a representative explicit method relying on in-
ternal image statistics, and FSSR, a representative implicit method, are
included in the comparison. For the HRRSD dataset, the quantitative
assessment of these methods using two quality metrics, image structural
similarity (SSIM) [58] as well as peak signal-to-noise ratio (PSNR), is
presented in Table 2 and Fig. 15. Bicubic interpolation results are also
included in the table for comparison. For the test images obtained from
the WV3 satellite, Table 3 showcases SR results for six different scenes,
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Fig. 14. The dataset used in the experiments, comprised the following scenes: airport, harbor, residential, yard, farmland and forest.
Table 2
SR results for images from HRRSD. The unit of PSNR is decibel (dB). The best and second-best results are indicated in red and blue, respectively.

Dataset Method Aspect ratio 3 Aspect ratio 4 Aspect ratio 5 Aspect ratio 6 Aspect ratio 7 Aspect ratio 8

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HRRSD

Bicubic 28.20 0.8149 27.22 0.7779 26.41 0.7751 25.61 0.7517 25.21 0.7635 24.63 0.7469
SRGAN 32.14 0.8993 31.12 0.8872 30.23 0.8693 29.19 0.8437 28.76 0.8360 26.23 0.8271
ELAN 35.19 0.9553 33.20 0.9212 31.71 0.9048 30.08 0.8843 29.04 0.8635 27.92 0.8481
Omni-SR 34.50 0.9442 32.75 0.9158 31.35 0.8979 29.89 0.8771 28.97 0.8584 27.94 0.8474
HAT 35.26 0.9561 33.34 0.9239 31.79 0.9066 30.11 0.8862 28.98 0.8601 27.89 0.8456
Real-ESRGAN 31.27 0.8830 30.32 0.8595 29.55 0.8410 28.50 0.8213 27.78 0.8063 27.21 0.7805
DualSR 34.06 0.9482 32.01 0.9169 30.85 0.8968 29.65 0.8864 28.89 0.8632 28.01 0.8418
FSSR 32.16 0.9134 30.64 0.8934 29.96 0.8651 29.08 0.8630 28.47 0.8564 27.97 0.8400
Proposed 36.60 0.9693 34.66 0.9334 32.59 0.9160 30.62 0.8896 29.21 0.8665 28.01 0.8528
each with six various aspect ratios of the rectangular primary mir-
ror. Furthermore, for a comprehensive overview, Table 4 and Fig. 16
present average results for all test images from WV3.

The self-attention mechanism in Transformer enables the model
to more effectively leverage the internal information of images them-
selves. In the case of the RSA system, this refers to high-resolution in-
formation in different directions. Consequently, as can be seen from the
above quantitative evaluation results, for the HRRSD dataset, demon-
strated superior performance across all six primary mirror aspect ratios,
as evidenced by the highest scores achieved in both SSIM and PSNR
metrics. Specifically, when the aspect ratio is 3, the SSIM and PSNR
of our SR outputs reach 0.9693 and 36.60 dB, respectively, resulting
in a 1.38% improvement in SSIM and a 3.80% improvement in PSNR
over the second-best method, HAT. For the WV3 dataset, encompassing
a total of 36 sets of digital simulation test images with six scenes and
10
six aspect ratios, our proposed method surpasses other approaches in
terms of the SSIM metric in 35 sets, as detailed in Tables 3. In terms
of the PSNR metric, our method exhibits superior performance in 33
sets of test images. Especially in scenes with rich texture information
and high repetition rates, such as ports, residential areas, yards, and
forests, our method achieves the best performance under aspect ratios
of 3 to 8. Although DualSR outperforms our method in certain scenes
based on PSNR metrics, the proposed method achieves significantly
better average results for both PSNR and SSIM metrics. This is due
to its consideration of the characteristics of the RSA system, unlike
DualSR, which solely relies on the similarity of internal image patches.
Therefore, our method exhibits robustness to varying aspect ratios of
the primary mirror. For different aspect ratios of the primary mirror,
when the aspect ratio is 3, the SSIM and PSNR of our SR results reach
0.9714 and 37.49 dB, respectively, which is an 0.81% improvement
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Fig. 15. SR results for images from HRRSD. (a) PSNR. (b) SSIM.
Fig. 16. Average results for images from WorldView-3. (a) PSNR. (b) SSIM.

in SSIM and a 2.77% improvement in PSNR over HAT. When the
aspect ratio of the primary mirror is 4 or 5, the proposed method
obtains the best results and it is significantly higher than the other
methods. Even when the aspect ratio is 6, the SSIM and PSNR of our
SR results can still be greater than 0.9 and 31.5 dB, respectively, due
to the targeted design of the proposed method based on the image
degradation mechanism. When the aspect ratio is large (7 or greater),
the performance of our method decreases. This decline in performance
is attributed to a considerable reduction in image quality along the
shorter side of the mirror, leading to insufficient information for all
SR methods to yield satisfactory outcomes. Nevertheless, it is notewor-
thy that our method still achieves a performance not inferior to the
second-best value in terms of the SSIM metric. Additionally, based on
Table 4, our method’s performance still exceeds that of the second-best
method, ELAN, by approximately 0.7%.

Visual presentations are included alongside quantitative assess-
ments to provide qualitative evaluations. Specifically, examples are
taken from both the HRRSD dataset and WV3 scenes (as shown in
Fig. 6) under the condition of the mirror with an aspect ratio of 4. For
the primary mirror rotation angle of 0 degrees, the local enlargement
images are presented in Figs. 17(a), 18(a), and 19(a). The SR results
for SRGAN, ELAN, Omni-SR, HAT, real-ESRGAN, DualSR, FSSR, and
our method are shown in Figs. 17(b)–(i), 18(b)–(i), and 19(b)–(i),
respectively. Additionally, when the primary mirror rotation angle is
90 degrees, the local enlargement images are displayed in Figs. 20(a)
and 21(a). The SR results for the same methods are presented in
Figs. 20(b)–(i) and 21(b)–(i), respectively. The semi-physical imaging
experimental images with the primary mirror aspect ratio of 3 and
rotation angle of 90 are displayed in Fig. 22, where the processed
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results are depicted. Specifically, the original local enlargement image
is shown in Fig. 22(a), while the SR results using SRGAN, ELAN, Omni-
SR, HAT, real-ESRGAN, DualSR, FSSR, and our method are shown in
Fig. 22(b)–(i), respectively.

As seen from the visual results above, each method tends to em-
phasize specific visual characteristics in the SR results, which can be
classified into two categories. One category, exemplified by SRGAN and
real-ESRGAN, tends to generate smoother outputs with clearer visual ef-
fects, making them more robust against noise. However, these methods
underperform on objective evaluation metrics. On the other hand, the
remaining methods tend to produce sharper edges. Nevertheless, the
image quality along the shorter side is notably reduced. These generic
SR methods are predominantly based on CNNs, making it challenging
to leverage long-distance dependencies and self-similarity in remote
sensing images. Additionally, the design of these methods often remains
independent of imaging system characteristics. Consequently, while
some details can be restored, their SR outcomes may still fall short
of meeting the resolution requirements of interpretation applications,
especially for resolution targets beyond the vertical direction illustrated
in Fig. 22. While the SR output obtained by FSSR (Fig. 22(h)) appears
to achieve slightly better contrast in the target of the vertical direction,
the proposed method can introduce more high-frequency information
in other directions to recover the target, which would have been almost
completely blurred in the SR results of other methods.

In scenes characterized by a high frequency of visual repetition,
such as fields and parking lots, our method demonstrates a more
robust capability to recover high-frequency information. As depicted
in Fig. 23, in the parking lot scene with a primary mirror aspect ratio
of 6 and a rotation angle of 135, the proposed method outperforms
ELAN. ELAN is quantitatively evaluated as the second-best in this
scene by objective metrics. The proposed method achieves this by
reconstructing sharper edges on the lines of parking spots and recov-
ering high-frequency details, which are nearly absent in low-resolution
images. Furthermore, in the field scene displayed in Fig. 24, with a pri-
mary mirror aspect ratio of 5 and a rotation angle of 45, real-ESRGAN
achieves a notable improvement in clarity. However, it erroneously
amplifies the spacing between the grass in the field and distorts various
shapes in the original image, resulting in undesirable visual artifacts.
In contrast, the proposed method utilizes a self-supervised learning
approach based on wavelet fusion. This approach yields more natural
and reliable SR results while effectively avoiding the generation of
‘‘hallucinations’’ or ‘‘artifacts’’, as illustrated in Figs. 23(d) and 24(d).

4.3. Ablation study

The results of ablating the shifted window mechanism are presented
in Table 5. In comparison to self-attention modules employing regular
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Table 3
SR results for images from WorldView-3. The unit of PSNR is decibel (dB). The best and second-best results are indicated in red and blue, respectively.

Scene type Method Aspect ratio 3 Aspect ratio 4 Aspect ratio 5 Aspect ratio 6 Aspect ratio 7 Aspect ratio 8

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Airport

Bicubic 28.63 0.8160 27.68 0.7992 26.87 0.7833 26.09 0.7677 25.73 0.7608 25.15 0.7505
SRGAN 32.46 0.9022 31.41 0.8802 30.46 0.8573 29.37 0.8358 28.82 0.8237 28.07 0.8084
ELAN 35.36 0.9581 33.96 0.9361 31.96 0.9107 30.47 0.8870 29.52 0.8739 28.35 0.8580
Omni-SR 34.66 0.9508 33.29 0.9300 31.60 0.9053 30.23 0.8821 29.46 0.8709 28.16 0.8556
HAT 35.74 0.9613 34.15 0.9384 32.01 0.9112 30.55 0.8877 29.50 0.8716 28.22 0.8559
Real-ESRGAN 32.68 0.9054 31.79 0.8829 30.77 0.8570 29.55 0.8273 28.89 0.8136 28.04 0.7952
DualSR 34.22 0.9517 32.68 0.9294 31.22 0.9044 30.02 0.8812 29.49 0.8709 28.66 0.8553
FSSR 32.28 0.9105 31.07 0.8926 30.13 0.8763 29.25 0.8603 28.85 0.8532 28.20 0.8427
Proposed 36.59 0.9706 35.22 0.9518 32.86 0.9221 30.95 0.8940 29.80 0.8809 28.18 0.8631

Harbor

Bicubic 27.98 0.8351 26.77 0.8193 26.05 0.8073 25.41 0.7982 24.99 0.7914 24.49 0.7847
SRGAN 31.37 0.9333 30.11 0.9156 29.27 0.8997 28.59 0.8891 28.06 0.8806 27.53 0.8732
ELAN 35.78 0.9710 33.37 0.9523 31.44 0.9282 30.04 0.9161 29.41 0.9050 28.53 0.8945
Omni-SR 34.80 0.9647 32.66 0.9462 30.97 0.9258 29.77 0.9133 29.11 0.9034 28.33 0.8938
HAT 36.16 0.9741 33.56 0.9552 31.52 0.9290 30.09 0.9166 29.39 0.9024 28.41 0.8927
Real-ESRGAN 30.65 0.9187 29.48 0.9015 28.72 0.8840 28.02 0.8723 27.60 0.8640 27.05 0.8560
DualSR 34.55 0.9668 31.89 0.9438 30.54 0.9252 29.45 0.9123 28.82 0.9028 28.12 0.8936
FSSR 32.65 0.9433 30.88 0.9253 29.84 0.9109 29.02 0.9009 28.47 0.8932 27.85 0.8857
Proposed 37.09 0.9769 35.09 0.9633 32.44 0.9389 30.90 0.9240 30.00 0.9128 29.04 0.9021

Residential

Bicubic 28.42 0.8031 27.69 0.7853 26.55 0.7636 25.81 0.7436 25.37 0.7326 24.84 0.7219
SRGAN 31.59 0.8844 30.59 0.8669 29.81 0.8394 29.02 0.8181 28.31 0.8168 27.73 0.8055
ELAN 35.32 0.9531 33.99 0.9340 31.66 0.9001 30.19 0.8633 29.37 0.8469 28.55 0.8306
Omni-SR 34.56 0.9439 33.36 0.9230 31.25 0.8906 29.95 0.8591 29.25 0.8434 28.42 0.8280
HAT 35.63 0.9557 34.16 0.9361 31.74 0.9010 30.23 0.8639 29.35 0.8457 28.44 0.8288
Real-ESRGAN 32.15 0.8839 31.32 0.8547 29.85 0.8113 28.73 0.7794 28.04 0.7592 27.22 0.7382
DualSR 33.92 0.9455 32.73 0.9216 30.85 0.8892 29.67 0.8583 29.03 0.8428 28.32 0.8279
FSSR 32.10 0.9006 31.14 0.8807 29.88 0.8579 29.00 0.8362 28.49 0.8243 27.89 0.8128
Proposed 36.77 0.9676 35.39 0.9485 32.48 0.9105 30.82 0.8757 29.96 0.8571 28.80 0.8393

Yard

Bicubic 27.19 0.8143 26.31 0.7987 25.50 0.7833 24.67 0.7677 24.44 0.7629 24.03 0.7563
SRGAN 30.67 0.9140 29.75 0.8937 28.96 0.8715 27.86 0.8415 27.60 0.8453 26.89 0.8268
ELAN 34.44 0.9544 30.91 0.9276 30.52 0.9073 29.07 0.8848 28.57 0.8790 27.93 0.8672
Omni-SR 33.56 0.9479 30.63 0.9228 30.16 0.9033 28.79 0.8813 28.37 0.8747 27.76 0.8647
HAT 34.71 0.9572 31.06 0.9300 30.59 0.9081 29.09 0.8851 28.54 0.8769 27.81 0.8636
Real-ESRGAN 30.22 0.8902 29.44 0.8692 28.81 0.8494 27.58 0.8193 27.33 0.8130 26.58 0.7963
DualSR 32.68 0.9467 27.77 0.9124 29.67 0.9006 28.54 0.8808 28.14 0.8736 27.58 0.8641
FSSR 31.37 0.9145 30.11 0.8969 29.06 0.8806 28.01 0.8642 27.70 0.8590 27.20 0.8519
Proposed 36.24 0.9692 34.04 0.9485 31.62 0.9206 29.70 0.8930 29.17 0.8852 28.38 0.8738

Farmland

Bicubic 32.60 0.8556 31.35 0.8472 30.74 0.8426 29.93 0.8367 29.19 0.8319 28.71 0.8285
SRGAN 36.33 0.9586 34.90 0.9505 34.25 0.9455 33.35 0.9389 32.58 0.9344 32.06 0.9309
ELAN 38.50 0.9723 36.67 0.9657 35.48 0.9565 33.61 0.9449 33.27 0.9409 32.32 0.9322
Omni-SR 38.14 0.9721 36.40 0.9635 35.36 0.9558 33.62 0.9467 33.23 0.9404 32.34 0.9346
HAT 38.83 0.9754 36.84 0.9682 35.56 0.9574 33.61 0.9442 33.23 0.9402 32.19 0.9281
Real-ESRGAN 31.73 0.8473 31.71 0.8376 31.28 0.8308 30.21 0.8221 29.27 0.8110 28.75 0.8076
DualSR 37.43 0.9717 35.78 0.9610 34.91 0.9533 33.88 0.9466 33.00 0.9410 32.46 0.9373
FSSR 35.62 0.9522 34.29 0.9458 33.69 0.9411 32.85 0.9346 32.18 0.9311 31.70 0.9280
Proposed 39.57 0.9794 37.62 0.9719 36.26 0.9634 33.64 0.9522 33.67 0.9422 32.16 0.9351

Forest

Bicubic 30.30 0.7985 29.38 0.7772 28.70 0.7612 27.85 0.7409 27.24 0.7271 27.10 0.7237
SRGAN 33.47 0.8739 31.95 0.8446 31.07 0.8252 29.98 0.8008 29.24 0.7835 29.05 0.7788
ELAN 37.61 0.9562 35.58 0.9215 34.00 0.8985 32.40 0.8661 31.46 0.8445 31.11 0.8354
Omni-SR 36.82 0.9437 35.04 0.9130 33.67 0.8889 32.23 0.8589 31.31 0.8383 31.04 0.8317
HAT 37.80 0.9581 35.71 0.9233 34.08 0.8993 32.43 0.8667 31.45 0.8442 30.99 0.8317
Real-ESRGAN 32.96 0.8610 32.15 0.8276 31.41 0.7998 30.47 0.7710 29.55 0.7402 29.22 0.7248
DualSR 36.65 0.9493 34.52 0.9120 33.44 0.8892 32.12 0.8607 31.25 0.8399 31.00 0.8340
FSSR 33.50 0.8797 32.56 0.8604 31.90 0.8459 31.01 0.8265 30.37 0.8129 30.22 0.8100
Proposed 38.67 0.9647 36.82 0.9393 34.81 0.9077 32.96 0.8723 31.81 0.8484 31.50 0.8409
Table 4
Average results for images from WorldView-3. The unit of PSNR is decibel (dB). The best and second-best results are indicated in red and blue, respectively.

Scene type Method Aspect ratio 3 Aspect ratio 4 Aspect ratio 5 Aspect ratio 6 Aspect ratio 7 Aspect ratio 8

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Average

Bicubic 29.19 0.8204 28.20 0.8045 27.40 0.7902 26.63 0.7758 26.16 0.7678 25.72 0.7609
SRGAN 32.65 0.9111 31.45 0.8919 30.64 0.8731 29.70 0.8540 29.10 0.8474 28.55 0.8373
ELAN 36.17 0.9608 34.08 0.9395 32.51 0.9169 30.96 0.8937 30.27 0.8817 29.46 0.8696
Omni-SR 35.42 0.9538 33.56 0.9331 32.17 0.9116 30.77 0.8902 30.12 0.8785 29.35 0.8681
HAT 36.48 0.9636 34.25 0.9419 32.58 0.9177 31.00 0.8940 30.24 0.8802 29.34 0.8668
Real-ESRGAN 31.73 0.8844 30.98 0.8622 30.14 0.8387 29.09 0.8152 28.45 0.8002 27.81 0.7864
DualSR 34.91 0.9553 32.56 0.9300 31.77 0.9103 30.61 0.8900 29.95 0.8785 29.36 0.8687
FSSR 32.92 0.9168 31.68 0.9003 30.75 0.8854 29.86 0.8705 29.34 0.8623 28.85 0.8552
Proposed 37.49 0.9714 35.70 0.9539 33.41 0.9272 31.50 0.9019 30.73 0.8878 29.68 0.8757
12



Information Fusion 108 (2024) 102372Y. Sun et al.
Fig. 17. HR and SR results of the test scene from HRRSD with the rotation angle 0◦ and the aspect ratio 4. (a) HR. (b) SRGAN. (c) ELAN. (d) Omni-SR. (e) HAT. (f) Real-ESRGAN.
(g) DualSR. (h) FSSR. (i) Proposed method.
Table 5
Ablation study on the shifted window mechanism.

HRRSD WorldView-3

PSNR SSIM PSNR SSIM

w/o shifting 31.52 0.8921 32.57 0.9063
shifted windows 31.95 0.9046 33.09 0.9197

window partitioning without shifting, the SR network with shifted
window partitioning demonstrates superior performance. Specifically,
for all test images with aspect ratios ranging from 3 to 8, the average re-
sults on the HRRSD dataset show improvements of 0.0125 and 0.43 dB
in terms of SSIM and PSNR indices, respectively. Similarly, on the WV3
dataset, it demonstrates enhancements of 0.0134 and 0.52 dB in SSIM
and PSNR indices, respectively. These experimental findings highlight
the efficacy of utilizing shifted windows to establish connections among
windows in preceding layers, thereby contributing to the enhanced
performance of remote sensing image SR.

Ablations of the attention mask in the shifted window-based self-
attention module are presented in Table 6. The outcomes indicate
that eliminating the mask module enhances the utilization of patch
recurrence in remote sensing images, facilitating the capture of stronger
long-range dependencies inherent in such images. On the HRRSD
dataset, the removal of the attention mask led to improvements of
0.0047 and 0.14 dB in SSIM and PSNR, respectively. Similarly, on
the WV3 dataset, SSIM and PSNR improved by 0.0053 and 0.18 dB,
respectively.
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Table 6
Ablation study on the attention mask module.

HRRSD WorldView-3

PSNR SSIM PSNR SSIM

masked 31.81 0.8999 32.91 0.9144
w/o masking 31.95 0.9046 33.09 0.9197

5. Conclusion

In this paper, we propose a self-supervised remote sensing image
SR method based on Swin Transformer for the RSA system. By utilizing
self-supervision, we leverage the spatial correlations between degraded
images at various rotation directions of the rectangular pupil to achieve
improved image recovery results while minimizing the risk of ‘‘hal-
lucinations’’. Swin Transformer’s content-based interactions between
attention weights and image content, along with its shifted window
mechanism, can capture stronger long-range dependencies in remote
sensing images. Extensive digital simulation and semi-physical imaging
experiments compare the proposed SR method with several represen-
tative and state-of-the-art techniques, such as SRGAN, RealESRGAN,
ELAN, Omni-SR, HAT, DualSR, and FSSR. These experiments use the
public dataset HRRSD and images from the WorldView3 satellite, in-
volving six aspect ratios of the primary mirror. For the HRRSD dataset,
the proposed method achieved the best performance for all aspect ratios
because it fully considers the image degradation mechanism. For the
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Fig. 18. HR and SR results of the test scene yard with the rotation angle 0◦ and the aspect ratio 4. (a) HR. (b) SRGAN. (c) ELAN. (d) Omni-SR. (e) HAT. (f) Real-ESRGAN. (g)
DualSR. (h) FSSR. (i) Proposed method.
WV3 dataset, encompassing a total of 36 sets of digital simulation test
images, our method surpasses other approaches in terms of the SSIM
metric in 35 sets and in terms of the PSNR metric in 33 sets. The
experimental results also demonstrate the robustness of the proposed
method to varying aspect ratios of the primary mirror. It demonstrates
significant improvement over other methods for primary mirrors with
aspect ratios of 3 to 6. For primary mirrors with larger aspect ratios
(7 or greater), the proposed method’s performance is slightly degraded
but still ranks no lower than the second-best result. Moreover, for
scenes with rich texture and high repetition rates, such as residential
areas, yards, and forests, the proposed method demonstrates a stronger
capability to recover high-frequency information, which can not only
obtain the best performance in all aspect ratios but also suppress the
generation of artifacts. In future research, we will explore the integra-
tion of more advanced Transformer-based models into the SR module.
This endeavor aims to enhance the scientific foundation and provide a
valuable reference for implementing the RSA imaging technology.
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Fig. 19. HR and SR results of the test scene harbor with the rotation angle 0◦ and the aspect ratio 4. (a) HR. (b) SRGAN. (c) ELAN. (d) Omni-SR. (e) HAT. (f) Real-ESRGAN. (g)
DualSR. (h) FSSR. (i) Proposed method.
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Fig. 20. HR and SR results of the test scene road with the rotation angle 90◦ and the aspect ratio 4. (a) HR. (b) SRGAN. (c) ELAN. (d) Omni-SR. (e) HAT. (f) Real-ESRGAN. (g)
DualSR. (h) FSSR. (i) Proposed method.
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Fig. 21. HR and SR results of the test scene airport with the rotation angle 90◦ and the aspect ratio 4. (a) HR. (b) SRGAN. (c) ELAN. (d) Omni-SR. (e) HAT. (f) Real-ESRGAN.
(g) DualSR. (h) FSSR. (i) Proposed method.
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Fig. 22. SR results of the semi-physical experimental image with the rotation angle 90◦ and the aspect ratio 3. (a) LR. (b) SRGAN. (c) ELAN. (d) Omni-SR. (e) HAT. (f) Real-ESRGAN.
(g) DualSR. (h) FSSR. (i) Proposed method.
Fig. 23. SR results of the test image parking lot with the rotation angle 135◦ and the
aspect ratio 6. (a) HR. (b) LR. (c) ELAN. (d) Proposed method.
18
Fig. 24. SR results of the test image field with the rotation angle 45◦ and the aspect
ratio 5. (a) HR. (b) LR. (c) Real-ESRGAN. (d) Proposed method.
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