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ChatGPT vs SBST: A Comparative Assessment
of Unit Test Suite Generation

Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo

Abstract—Recent advancements in large language models (LLMs) have demonstrated exceptional success in a wide range of general
domain tasks, such as question answering and following instructions. Moreover, LLMs have shown potential in various software
engineering applications. In this study, we present a systematic comparison of test suites generated by the ChatGPT LLM and the
state-of-the-art SBST tool EvoSuite. Our comparison is based on several critical factors, including correctness, readability, code
coverage, and bug detection capability. By highlighting the strengths and weaknesses of LLMs (specifically ChatGPT) in generating
unit test cases compared to EvoSuite, this work provides valuable insights into the performance of LLMs in solving software
engineering problems. Overall, our findings underscore the potential of LLMs in software engineering and pave the way for further
research in this area.

Index Terms—ChatGPT, Search-based Software Testing, Large Language Models

✦

1 INTRODUCTION

Unit testing is a widely accepted approach to software
testing that aims to validate the functionality of individual
units within an application. By using unit tests, developers
can detect bugs in the code during the early stages of the
software development life cycle and prevent changes to
the code from breaking existing functionalities, known as
regression [1]. The primary objective of unit testing is to
confirm that each unit of the software application performs
as intended. This method of testing helps improve the qual-
ity and reliability of software by identifying and resolving
issues early on.
SBST. The importance of unit testing in software develop-
ment and the software development life cycle cannot be
overstated. To generate unit test cases, search-based soft-
ware testing (SBST) [2] techniques are widely employed.
SBST is a technique that employs search algorithms such
as genetic algorithms and simulated annealing to create
test cases. The objective of SBST is to utilize these kinds
of algorithms to optimize the test suites, resulting in a set of
test cases that provide extensive code coverage and effective
detection of program defects. Compared to other testing
techniques, SBST exhibits promising results in reducing the
number of test cases while maintaining the same level of
defect detection capability [3], [4]. SBST has emerged as an
effective approach to improving the quality and efficiency
of software testing, providing a valuable tool for software
developers to streamline the testing process.
Large Language Model and ChatGPT. Recently, Large
language models (LLMs) have exhibited remarkable profi-
ciency in processing and performing everyday tasks such
as machine translation, question answering, summarization,
and text generation with impressive accuracy [5], [6], [7].
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These models possess a capacity nearly equivalent to that
of humans for understanding and generating human-like
text. One such example of a real-world LLM application is
OpenAI’s GPT-3.5 (Generative Pretrained Transformer 3.5),
which has been trained on an extensive amount of text data
from the internet. Its practical implementation, ChatGPT 1,
is widely employed in various daily activities, including
text generation, language translation, question answering,
and automated customer support. ChatGPT has become
an essential tool for many individuals, simplifying various
tasks and improving overall efficiency.
Deep-learning based Test Case Generation. Besides ac-
complishing daily tasks, such as text generation, language
translation, and question answering, large language models
are also been adopted and used to cope with software
engineering (SE) tasks, such as, code generation [8], [9],
[10], code summarization [11], [12], [13], document and
comments generation [14], [15], and more. These models
can be employed to generate unit test cases for programs
with the help of a large number of real-world test cases
written by developers/testers. This allows for the validation
of the intended functionality of individual units within
the software application. The integration of LLMs in SE
tasks has demonstrated their versatility and potential for
improving software development processes.
Motivation. Despite SBST performing well in generating
unit tests, there is still a learning cost for test personnel
with limited experience. As a result, it can be a barrier
to embracing SBST techniques, especially for fresh testers.
However, the applications based on large language models
can accomplish the same task (i.e., generating test suites)
with nearly no learning costs. However, it is still unknown
whether the unit tests generated by SBST can be compared
with advanced artificial intelligence models and techniques.
For example, a complete assessment of the readability,

1. CharGPT: The version used in this study is GPT-3.5 instead of GPT-
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understandability, reliability, and practical usability of the
LLM-generated test cases has not yet been conducted.
Here, in this paper, we are interested in understanding the
strengths and weaknesses of test suites generated by LLM.
Specifically, we leverage the state-of-the-art GPT-3.5 [16]
model’s product ChatGPT [17], [16] as a representative of
LLM for comparison. More importantly, this paper intends
to gain insights from two aspects: (1) we are keen on the
knowledge we can learn from large language models to
improve the state-of-the-art SBST techniques, and (2) we are
also interested in uncovering the potential limitations of the
existing large language models in generating test suites.

The rationale behind focusing our comparison on
Search-Based Software Testing (SBST) tools rather than a
broader range of unit test case generation tools. In our
revised manuscript, we elucidated this decision with the
following justifications:
• Prevalence of SBST: SBST tools, such as EvoSuite, repre-
sent a widely adopted and well-studied class of automated
unit test generation tools in both academic research and
industry practice. By comparing ChatGPT with a well-
established benchmark in the field, we aim to provide a
meaningful context for evaluating the performance and
potential of LLMs like ChatGPT in unit test generation.
• Clear Benchmarking: The systematic and optimization-
driven nature of EvoSuite provides clear metrics for compar-
ison, such as code coverage. These metrics allow for a more
objective evaluation of the test cases generated by ChatGPT
in relation to a known standard.
• Complementarity in Approach: The contrast between the
heuristic-based approach of EvoSuite and ChatGPT offers
a rich ground for comparison. By focusing on SBST, we
can more effectively highlight the unique contributions and
limitations of ChatGPT in generating unit test suites.
Our Study. To cope with the aforementioned challenges and
achieve the goals, in this paper, we intend to answer the
following research questions (RQ):
• RQ1 (Validity): How Do the Validities of ChatGPT-
Generated and Evosuite-Generated Unit Test Suites Com-
pare?
• RQ2 (Readability): How Understandable is the Test Suite
Provided by ChatGPT Compared to That of Evosuite?
• RQ3 (Code Coverage): How does ChatGPT perform with
SBST in terms of code coverage?
• RQ4 (Bug Detection): How effective are ChatGPT and
SBST at generating test suites that detect bugs?
• RQ5 (Correctness of Assertions): How do the assertions
generated by ChatGPT in unit tests compare in correctness
to those produced by SBST?
• RQ6 (Non-determination of ChatGPT): How does the
non-deterministic output of ChatGPT affect the quality and
effectiveness of generated test cases, as measured by code
coverage, fault detection?
Contribution. In summary, we make the following contri-
butions in this paper:
• In this paper, we conduct the first comparative assessment
of LLMs and SBST in terms of generating unit test suites for
programs in Java programming language;
• We systematically evaluate the test suites generated by
ChatGPT from various aspects, including correctness, read-
ability, code coverage, bug detection capability; and

• Our findings contribute to a better understanding of
the potential for LLMs to improve software engineering
practices, specifically in the domain of unit test generation.

2 BACKGROUND

SBST and Evosuite. Search-based software testing (SBST)
is a technique that formulates unit test generation as the
optimization problem [18]. SBST regards code coverage
as the test generation’s target (e.g., branch coverage) and
describes it as a fitness function to guide genetic algorithms
[3], [19], [20]. The genetic algorithms evolve tests by iterating
to (1) apply mutation and crossover operators to existing
tests (i.e., the current generation) for new offspring tests
and (2) form a new generation by selecting those with better
fitness scores from the current generation and offspring. In
our work, we choose the most mature SBST tool in Java,
Evosuite [21].
LLM and ChatGPT. LLM is the type of biggest model in
terms of parameter count, trained on enormous amounts
of text data (e.g., human-like text, code, and so on) [22],
[23], [24], [16], [25], [17]. It is designed to process and
understand input natural language text and to generate text
consistent with the input, and shows a strong ability in
natural language processing (NLP) tasks, such as, machine
translation, question answering, text generation, and so on.
ChatGPT [17] is now the most widely LLM (i.e., adapt to
human expression by using Instruct) [26], [25] implemented
atop GPT-3.5. GPT-3.5 [16] is constructed on multi-layer
Transformer decoders [22], [27], [28] using few-shot learning
(i.e., multiple examples). It shows performance similar to
that of state-of-the-art fine-tuned systems in many tasks.
One example of using GPT-3.5 is shown in Fig. 1. GPT-3.5
takes in the input prompt and infers the answer based on the
task description and examples in the input prompt. To make
LLM further align with users (humans), InstructGPT [25]
utilizes additional supervised learning and reinforcement
learning from human feedback to fine-tune GPT-3.5. Chat-
GPT [17] uses the same methods as InstructGPT and has the
ability to answer follow-up questions.

Give me a command as follows.1.

127.0.0.1 => ping 127.0.0.12.

www.google.com => ping www.google.com3.

4. openai.com => ping openai.com

      

               -3.5

   -3.5

        

                

Fig. 1: A Sample Use of GPT-3.5

For generating unit test cases, one can utilize a large
language model like GPT-3.5. To generate new test cases
given code snippets as input, the model can be fine-tuned
on a dataset of code snippets and their accompanying test
cases. One can also take advantage of ChatGPT’s answering
follow-up questions to generate more diverse test suites for
given code snippets.
Using of ChatGPT. ChatGPT [17], [16] can be used as
follows. The software developer/tester (user) registers an
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account for ChatGPT. Then, users send a prompt (a text or a
question) to ChatGPT. Then, ChatGPT will respond based
on the information it has learned from its training data.
Also, ChatGPT can be used in most software-engineering re-
lated tasks, such as, generating code, generating comments,
and generating test cases. For example, as shown in Fig.
2, ChatGPT offers a basic user interface like a Chatbot, in
which a user can ask any question in a natural language.
As shown in Fig. 2, we ask ChatGPT how to make an
HTTP request in Python, and ChatGPT shows a sample
code written in Python with corresponding explanations.
If a user is not satisfied with the generated responses, (s)he
can ask ChatGPT to regenerate a response by clicking the
“Regenerate a response” button at the bottom of the page.

Questions

Chat box

Response

Generate another

 response

Fig. 2: A Sample Use of ChatGPT in a SE Task

3 COMPARATIVE ASSESSMENT SETUP

3.1 Data Collection
As for RQ1-3, to reduce bias in selecting subject code for
generating test cases, we reuse the existing benchmark used
in the existing study to evaluate the performance of Evo-
suite. Here, we use the benchmark presented in DynaMOSA
(a.k.a Dynamic Many-Objective Sorting Algorithm) [20].
The benchmark contains 346 Java classes from 117 projects.
The detailed class information can be founded in [20] and
our artifact repository (Sec.8). However, based on facts
reported by other works [4], [29], some projects in the SF100
dataset can be obsolete and are no longer maintained. Some
projects are not able to build and compile as some classes
required in DynaMOSA dataset are missing or not publicly
available. As a result, we remove 38 projects and retain 79
projects with 248 Java classes. As for RQ4, we use the state-
of-the-art defect database for Java-related research, which
is Defects4J [30]. It contains 835 bugs from 17 open-source
projects.
Potential Data Leakage from ChatGPT (or LLMs)In ad-
dressing the concern regarding potential data leakage from
using off-the-shelf ChatGPT models, it is important to note
the nature of the datasets employed in our study. Defects4J
and dataset used by DynaMOSA primarily provide a col-
lection of reproducible bugs from real-world open-source
projects, rather than serving as a benchmark for unit test
suites. Given this context, the likelihood of ChatGPT having

been trained on closely mapped code and unit test case pairs
from these sources is exceedingly low. Furthermore, the ca-
pability of these models to generate unit test cases is distinct
from their training on natural language data. Hence, we
contend that the potential for data leakage from ChatGPT’s
training data impacting the results of our empirical study is
considerably low.

3.2 Using ChatGPT to Generate Unit Test Cases

With the help of ChatGPT, we are able to automatically gen-
erate unit test cases for programs. Unfortunately, there is no
standard or oracle on how to use ChatGPT to automatically
generate unit test cases with ChatGPT. Therefore, we adopt
the following step to learn a reasonable practice of using
ChatGPT to generate unit test cases:
• Step 1. Collecting existing tools that leverage LLM (e.g.,
ChatGPT) to automatically generate unit test cases from
various sources, including Google, Google Scholar, GitHub,
and technical blogs [31], [32], [33], [34], [35], [36];
• Step 2. Analyzing the phrases and descriptions used in
these tools to prompt LLM to generate test cases. This
part involves analyzing source codes, reading blocks, and
learning technical documents; and
• Step 3. Verifying the phrases and descriptions collected
in Step 2 with ChatGPT to exclude invalid phrases and
descriptions;

Through the Step 1-3, we obtain the following represen-
tative expressions that are able to generate unit test cases for
a code segment:
• Expression 1: “Write a unit test for ${input}” with the
code segment under test as the input;
• Expression 2: “Can you create unit tests using JUnit for
${input}?” with the code segment under test as the input;
• Expression 3: “Create a full test suite with test cases for
the following Java code: ${input}?” with the code segment
under test as the input;

Based on the above findings, we summarize our prompt
as: “Write a JUnit test case to cover methods in the following
code (one test case for each method): ${input}?” with the
code segment under test as the input. Note that, to mimic the
real-world practice, we do not intend to compare and evalu-
ate the ChatGPT prompts to build a best-performed prompt.
Instead, we only intend to build a reasonable prompt for
ChatGPT to stimulate how developers use ChatGPT in a
real-world environment.

In our study, we choose not to extensively compare and
evaluate ChatGPT prompts for the following reasons: (1)
Focus on Model Capabilities: Our primary objective is to
assess the capabilities of ChatGPT as a unit test generator,
rather than focusing on prompt engineering. We target
on understanding its performance ”out of the box” using
prompts that are straightforward and easy to understand,
as this reflects a common usage scenario where developers
(users) may not have the expertise to craft complex prompts;
and (2) Avoid Overfitting: Evaluating multiple prompts and
selecting the best-performing one could lead to overfitting
the model to the specific prompt and dataset. We intend to
avoid this potential bias and assess ChatGPT’s generaliza-
tion abilities.
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3.3 Other Setups for the Study

• Setup for EvoSuite. EvoSuite provides many parameters
(e.g., crossover probability, population size [37]) to run the
algorithms. In this paper, to evaluate and compare the
performance between Evosuite and ChatGPT, we remain the
default settings in Evosuite. As Evosuite leverages genetic
algorithms in selecting and generating test cases, to reduce
the bias introduced by randomness, we run 30 times for
each class. We do not set any time limitation for ChatGPT.
It is because the generative nature of ChatGPT means that
imposing strict time limits may not be as suitable for its
operation compared to tools designed for specific tasks.
• Long Inputs for ChatGPT. The maximum input length
for ChatGPT is 2,048 tokens, which is roughly equivalent to
340-350 words. If the input submitted is too long, ChatGPT
reports an error message and gives no response. In this
case, we try to split the entire class by methods and ask
ChatGPT to generate unit test cases for methods. However,
splitting the entire class by methods to generate test cases
cannot be a good practice as some information about the
entire class cannot be perceived by ChatGPT. As a result, it
hurts the quality of generated test cases. Here, we set the
maximum length to be 4,096 tokens. That is, if the length
of a class is larger than 4,096 tokens, we discard it. The
decision to discard only classes with more than 4096 tokens
is based on practical considerations and the limitations of
ChatGPT’s token limit. When a class exceeds 2,048 tokens,
it is already challenging to generate unit tests for it within
a single conversation due to the token limit. Therefore, we
decided to set the threshold at 4,096 tokens to give ChatGPT
a bit more room to work with and avoid discarding classes
that might still be feasible to handle. Furthermore, based
our experiments, we found that classes with more than
4,096 tokens often have relatively ”large” functions, and
it’s usually not reasonable to split the bodies of these large
functions.
• Environment. Experiments on EvoSuite are conducted on
a machine with Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz
and 128 GB RAM.

4 EXPERIMENT AND EVALUATION

4.1 Validity

RQ1: How Do the Validities of ChatGPT-Generated and
Evosuite-Generated Unit Test Suites Compare?
Motivation. The first and foremost thing we need to exam-
ine is whether ChatGPT can correctly return the test cases
for testing the program/code segment given.
Methodology. To test whether the generated test cases are
correct. We need to evaluate them from three aspects: (1)
whether ChatGPT successfully returns the test case for each
input under test; (2) whether these test cases can be com-
piled and executed; and (3) whether these test cases contain
potential bugs. Specifically, for (2), it can be examined with
the help of Java Virtual Machine (JVM). We compile and
execute the test cases to see whether JVM reports errors. For
(3), we rely on the state-of-the-art static analyzer, SpotBugs
[38], [39], [40], to scan the test cases generated by ChatGPT
to find out whether these test cases contain potential bugs
or vulnerabilities. SpotBugs [38] is the successor of FindBugs

[39], [40] (an abandoned project) and is an open-source static
software analyzer, which can be used to capture bugs in a
Java program. It supports more than 400 bug patterns and
poor programming practices.
Results.
▷ Validity of test cases generated by ChatGPT.

According to the Long-input setting in Sec. 3.3, we remove
41 classes and remain 207 Java classes from 75 projects.

We find that ChatGPT can successfully generate unit test
cases for all 207 Java classes without reporting any errors.
Among these test cases, there are 144 (69.6%) test cases
can be successfully compiled and executed without need-
ing extra-human efforts. Next, we ask two undergraduate
students who have basic knowledge of Java programming
to attempt to repair errors with the help of IntelliJ IDE [41].
For the rest 64 test cases, there are 3 test cases that cannot
be directly fixed without the background knowledge of the
target program, and 60 test cases can be repaired with the
help of IDE. Specifically, the errors in 3 test cases fall into 3
categories: a) fail to implement an interface; b) fail to initiate
an abstract class instance; c) try to initiate an instance of an
inner class.

TABLE 1: Error Types in 60 Test Cases

Type of Errors Frequency
Access Private/Protected Field 31

Access Private/protected Methods 20
Invoke undefined methods 11

Fail to initiate an instance for an interface 10
Incorrect parameter type 2

Fail to initiate an instance 2
Access undefined field 1

The errors in other 60 test cases fall into 7 categories as
shown in Table. 1. Here, invoke undefined methods represents
invoking a method, which is not defined in the target class.
Table. 2 shows some samples of invoking undefined method
errors. The root cause for invoking undefined methods is
that ChatGPT is only given the class under test instead
of the entire project. As a result, ChatGPT has to predict
the name of a callee when needed. This is especially the
case when ChatGPT attempts to generate some assertions.
However, the results in Table. 2 also surprise us that even
if the ChatGPT fails to call the correct callees, its prediction
also gives a strong clue to find the correct callee names. This
is why we can fix these errors without the need of domain
knowledge of these target projects. Fail to initiate an instance
for an interface represents that ChatGPT creates an instance
of an interface, but fails to override methods, and incorrect
types represents that the types of arguments in callsites are
incorrect.

TABLE 2: Examples of Invoking Undefined Methods

Project Classes ChatGPT’s CallSite Correct CallSite
trove TFloatDoubleHash hash.get(val) hash.index(val)
trove TFloatDoubleHash hash.put(3, 4.0f) hash.insertKeyAt(3, 4.0f)

24 saxpath XPathLexer token.getStart() token.getTokenBegin()
24 saxpath XPathLexer token.getType() token.getTokenType()

73 fim1 UpdateUserPanel user.setUsername user.setName()

To wrap up, the compiling errors made by ChatGPT
are mainly due to that it fails to have an overview of the
entire project. Thus, ChatGPT attempts to predict the callees’
names, parameters, parameters’ types, and so forth. As a
result, compiling errors are introduced.
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▷ For (3), we leverage the state-of-the-art static analyzer,
SpotBugs, to scan the test cases generated by ChatGPT. As
a result, SpotBugs report 403 potential bugs from 204 test
cases (3 test cases fail to compile). The overview distribution
is shown in Table. 3. On average, each case contains 1.97
bugs.
TABLE 3: Bug Pattern Overview for Test Cased generated by
ChatGPT

Num. of Potential Bugs Num. of Class
Over 20 3 (1.47%)
10 - 20 7 (3.43%)
1 - 9 69 (33.8%)

0 125 (61.2%)

TABLE 4: Bug Patterns’ Priority Levels
Priority Level # Bugs # Related Test Cases Average

Scariest 15 8 (3.9%) 1.87
Scary 35 12 (5.8%) 2.91

Troubling 10 7 (3.4%) 1.42
Of Concern 343 70 (34.3%) 4.9

TABLE 5: Bug Patterns
Bug Patterns # Bugs # Related Test Cases Average
Bad Practice 65 20 (9.8%) 3.25
Performance 36 19 (9.4%) 1.89
Correctness 52 20 (9.8%) 2.6

Multi-thread Correctness 1 1 (0.49% 1
Dodgy Code 199 45 (22.2%) 4.42

Internationalization 47 10 (4.9%) 4.7
Experimental 3 2 (0.98%) 1.5

From the bug priority levels perspective, SpotBugs rank
bugs’ priority level into Scariest, Scary, Troubling, and Of
Concern. Scariest level represents bugs that are considered
the most severe and potentially harmful to the overall
functionality and security of the code. These bugs should
be fixed immediately. They can indicate severe security vul-
nerabilities, data loss, crashes, and so forth. For example, as
shown in Listing 1, the code str.toString() is annotated
as a Sacriest bug for its NullPointerException bug.

Listing 1: Scariest Bug Sample
1 public void method(){
2 String str = null;
3 str.toString(); // [NullPointerException bug]
4 }

Furthermore, we carefully inspect each Scariest test
cases generated ChatGPT, we find that all Scariest test
cases generated ChatGPT fall into one category, which is
”comparing incompatible types”. For example, Listing 2
shows a Scariest bug made by GPT. The statement ’assertE-
quals(input, Variable.getVariableValue(operand))’ compares
two different types. The input is a String value, whereas
the Variable.getVariableValue(operand) returns
an Integer value.

Listing 2: Scariest Bug in class jipa.Main (ChatGPT)
1 public void testProcessInstruction in() {
2 String operand = ”var1”;
3 String input = ”123”;
4 ...
5 assertEquals(input, Variable.getVariableValue(operand));
6 }

Scary level represents bugs are considered significant
and could lead to issues if not fixed. These bugs are high
priority bugs but as severe as the ”scariest” ones. They still

indicate issues that should be addressed to maintain a high-
quality codebase. For example, as shown in Listing 3, the
code is annotated as a Scary bug as there is a potential
infinite Loop if someLargeNumber is calculated incorrectly.

Listing 3: Scary Bug Sample
1 public void method2(){
2 int i = 0;
3 while (i < someLargeNumber){
4 ...
5 i++;
6 }
7 }

Troubling level represents bugs are categorized as minor
but could still cause issues if left unaddressed. These bugs
are medium priority bugs that are concerning but have
a more limited impact. Things like unchecked exceptions,
unnecessary object creations belong to this category. For ex-
ample, the code Listing in 4 is an example of Troubling bug.
However, there is a potential Troubling bug issue. If b is 0,
this will result in a java.lang.ArithmeticException
issue due to division by 0.

Listing 4: Troubling Bug Sample
1 public int divide(int a, int b){
2 int result;
3 result = a/b;
4 return result;
5 }

Last, Of Concern level represents bugs are considered
informational and generally pose minimal to no risk to the
code’s functionality or security. These ”Of Concern” bugs
are typically less severe and might be related to style and
best practices, such as, deal code, misuses of static fields.
For example, as shown in Listing 5, writing to static field
Main.TOTAL_INSTRUCTION is an Of Concern bug.

Listing 5: Of Concern Bug Sample
1 public void method3(){
2 Main.TOTAL INSTRUCTION = 5;
3 }

As shown in Table. 4, most bugs (85.11%) are
with the Of Concern type. There are only 8 test cases
(3.9%) that have Scariest-level bugs. Furthermore, we
manually inspect the 8 test cases that have Scariest-
level bugs. We find that all Scariest-level bugs fall into
one issue, which is ”comparing incompatibible type for
equiality”. For example, the code assertEquals(input,
Variable.getVariableValue(operand)) indicates
such a problem. The type of input is String, while the
type of the Variable.getVariableValue(operand) is
Integer.

From the bug patterns perspective, founded bugs fall
into 7 categories: (1) Bad Practice; (2) Performance; (3)
Correctness; (4)Multi-thread Correctness; (5) Dodgy Code;
(6) Internationalization; and (7) Experimental. The detailed
descriptions of each bug pattern can be found on the official
documentation [42]. As shown in Table. 5, there are 21 test
cases involved either in correctness bugs or multi-thread
correctness bugs. These types of bugs represent appear
coding mistakes, which normally belong to the Scariest or
Scary priority level. As for Dodgy code pattern, which holds
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the largest proportion, it represents the code is confusing,
anomalous, or written in a way that leads itself to errors.
Example cases can be dead local stores, switch fall through,
and unconfirmed casts. As for correctness/multi-thread correct-
ness bugs, it mostly refers to the following 3 cases based
on our results: null dereference, out-of-bounds array access,
and unused variables.

It is noteworthy that SpotBugs adopts a comprehensive
approach to identifying issues, covering not only crash bugs
and compilation problems but also delving into style con-
cerns, best practice violations, and potential logical errors.
Our evaluation involved a meticulous manual review of
SpotBugs’ outcomes, with a specific emphasis on pinpoint-
ing issues related to crashes and compilation. In summary,
our examination revealed a total of 22 bugs, comprising
both compilation-related and crash-related issues, across 10
test cases. Specifically, 8 test cases involve the ”comparing
incompatible type for equality” errors; 1 case involves the
”read of unwritten field” bugs; and 1 case involves the
”impossible cast exception” bugs. Developers are likely to
find it relatively easy to fix the ”Comparing Incompatible
Type for Equality” errors, especially with the assistance of
modern IDEs, which offer real-time error highlighting and
auto-correction. However, addressing the ”Read of Unwrit-
ten Field” bugs and ”Impossible Cast Exception” bugs may
be more challenging, as these issues often require a deeper
understanding of the code logic and may involve manual
examination and restructuring. IDEs can still be helpful in
identifying problematic areas, but developers will need to
rely on their debugging skills and code analysis to address
these issues effectively.

In summary, from the bug priority levels and bug
patterns, we can conclude that most (61.2%) ChatGPT-
generated test cases are bug-free. Only 20 (9.8%) test cases
are from the Scariest and Scary levels.
▷ Validity of test cases generated by EvoSuite. For fairness,
we also run EvoSuite once to generate test cases for 207
Java classes. Note that for fairness, we also apply Long-
input setting in Sec. 3.3 to remove 41 classes and remain
207 Java classes from 75 projects. Furthermore, there are 3
test cases cannot be compiled. Therefore, the experiments
on EvoSuite are conducted based on the rest 204 unit test
cases. EvoSuite can successfully generate test cases for 204
Java classes. All generated test cases can be successfully
compiled and executed.

Furthermore, we leverage SpotBugs to scan the test cases
generated by EvoSuite. In total, SpotBugs reports 1,371 po-
tential bugs from 204 test cases. The overview distribution
is shown in Table. 6. On average, each case contains 6.72
bugs. A notable portion of the classes (51 out of 204, or 25%)
are free of potential bugs as identified by Evosuite. This is a
positive indicator, showing that a quarter of the analyzed
classes do not exhibit detectable bug patterns with the
current testing approach. The data also suggests a skewed
distribution of bugs across classes, with most classes having
few to no bugs and a small number having a large number
of bugs.

As shown in Tab. 7, the ”Of Concern” category, with 1294
bugs across 146 test cases, suggests a high concentration
of lower severity bugs. This indicates that while there are
many bugs, most of them might not be critically impacting

TABLE 6: Bug Pattern Overview for Test Cases generated by
Evosuite

Num. of Potential Bugs Num. of Class
Over 20 15 (7.36%)
10 - 20 22 (10.78%)
1 - 9 116 (56.86%)

0 51 (25%)

TABLE 7: Bug Patterns’ Priority Levels for Test Cases generated
by Evosuite

Priority Level # Bugs # Related Test Cases Average
Scariest 23 17 (8.33%) 1.35
Scary 47 10 (4.90%) 4.7

Troubling 7 3 (1.47%) 2.33
Of Concern 1294 146 (71.56%) 8.86

TABLE 8: Bug Patterns for Test Cases generated by EvoSuite
Bug Patterns # Bugs # Related Test Cases Average
Bad Practice 3 3 (1.47%) 1
Performance 115 17 (8.33%) 6.76
Correctness 69 25(12.25%) 2.76

Multi-thread Correctness 1 1 (0.49%) 1
Dodgy Code 1181 143 (70.09%) 8.25

Internationalization 2 2 (0.98%) 1
Experimental 0 0 (0%) 0

the software’s functionality. The ”Scariest” category, despite
having only 23 bugs, is significant due to its potential im-
pact. Furthermore, we dive into the Scariest bugs introduced
by EvoSuite. We find that the Scariest bugs mainly fall into
3 categories: incompatible types comparison (18), suspi-
cious calls to generic collection methods (4), and collections
should not contain themselves (1). Similar to ChatGPT, the
majority of Scariest bugs are comparing incompatible types
as demonstrated in Listing 6. There are 4 bugs about ”sus-
picious calls to generic collection methods”, which usually
point to potential issues with how generic collections are
used, particularly regarding type safety or unexpected be-
havior due to incorrect assumptions about types. For exam-
ple, in Listing 7, the argument of treeList3.indexOf()
should be an Integer instead of a TreeList. There is one about
”collections should not contain themselves” (as depicted in
Listing 8), which typically occurs when there is an attempt
to include a collection as an element within itself, either
directly or indirectly. This kind of operation can lead to
unexpected behaviors, such as infinite recursion in methods
that traverse the collection.

Listing 6: Scariest Bug in class Option ESTest (EvoSuite/Incom-
patibility)
1 public void test48() throws Throwable {
2 Option option0 = new Option(...);
3 boolean boolean0 = option0.equals(”6pP”);
4 ...}

Listing 7: Scariest Bug in class TreeList ESTest (EvoSuite/Sus-
picious calls to generic collection methods)
1 TreeList<Integer> treeList3 = new TreeList<Integer>();
2 int int0 = treeList3.indexOf(treeList2);

Listing 8: Scariest Bug in class DenseInstance (EvoSuite/Collec-
tions should not contain themselves)
1 public void test43() throws Throwable {
2 DenseInstance denseInstance0 = new DenseInstance(31);
3 boolean boolean0 = denseInstance0.containsValue(denseInstance0);
4 }
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The fact that these bugs appear in 17 test cases indicates
that they might be pervasive or have a high impact where
they do occur. As shown in Table. 8, there are 70 test cases
involved either in correctness bugs or multi-thread correct-
ness bugs. These types of bugs represent coding mistakes,
which normally belong to the Scariest or Scary priority level.

By comparing the experiment results, we find that
ChatGPT’s generated test cases have a significantly higher
proportion with no potential bugs (60.2%) compared to
Evosuite (25%), indicating a cleaner output. Despite this,
Evosuite exhibits fewer test cases with a high concentration
of bugs (over 20). Notably, the average score for ’Of Con-
cern’ bugs is lower for ChatGPT (4.9), suggesting that the
bugs present are generally of a lower priority compared to
those in Evosuite’s test cases (8.86). Additionally, Evosuite
seems to produce a considerable amount of ’Dodgy Code’,
with the average severity almost double that of ChatGPT’s.
This points to ChatGPT’s generated tests being less prone to
serious bugs and Evosuite’s to higher occurrences of non-
critical issues.

Answer to RQ1: Validity

• After analyzing the bug priority levels and bug patterns
of ChatGPT-generated test cases, it can be inferred that a
majority of these cases, specifically 61.2%, are free from
any bugs. However, a small proportion of test cases,
comprising only 9.8%, have been categorized under the
Scariest and Scary levels, indicating the presence of severe
issues.
• By comparing the experiment results, we find that
ChatGPT’s generated test cases have a significantly higher
proportion with no potential bugs (60.2%) compared to
Evosuite (26.09%), indicating a cleaner output. Despite
this, Evosuite exhibits fewer test cases with a high concen-
tration of bugs (over 20). Notably, the average score for
’Of Concern’ bugs is lower for ChatGPT (4.9), suggesting
that the bugs present are generally of a lower priority
compared to those in Evosuite’s test cases (8.86). Addi-
tionally, Evosuite seems to produce a considerable amount
of ’Dodgy Code’, with the average severity almost double
that of ChatGPT’s. This points to ChatGPT’s generated
tests being less prone to serious bugs and Evosuite’s to
higher occurrences of non-critical issues.

4.2 Readability

RQ2: How Understandable is the Test Suite Provided by
ChatGPT Compared to That of Evosuite?
Motivation. Analyzing the readability of ChatGPT-
generated code is to make sure that human developers
can easily maintain, comprehend, and modify it. This is
crucial when ChatGPT-generated code will be maintained
and changed over time by other developers or when it will
be merged into already-existing codebases.
Methodology. For this RQ, we set up two sub-tasks: (1) code
style checking; and (2) code understandability.
▷ To check code styles of generated test cases, we rely on
the state-of-the-art software quality tool which supports
Java: Checkstyle [43], which is a development tool to check
whether Java code adheres to a coding standard. It auto-
mates the process of checking Java code. Here, we leverage

two standards (i.e., Sun Code Conventions [44], Google Java
Style [45]) with Checkstyle to check whether the ChatGPT
generated test suite adheres to these standards.
▷ Dantas et al. [46] proposed cognitive complexity and
cyclomatic complexity metrics for measuring the under-
standability of a code snippet. Cyclomatic complexity mea-
sures program complexity by counting independent paths
in source code. It indicates code size, structure, and com-
plexity, and helps find error-prone areas. Cognitive com-
plexity is a metric that evaluates code complexity from a
human perspective. It considers factors like code structure,
naming, and indentation to determine how hard code is to
understand. It helps developers gauge maintainability and
modification difficulty and identifies complex or confusing
code parts. Cyclomatic and cognitive complexity can be
measured with the PMD IntelliJ plugin [47]. The details can
be found on the project repository (Sec. 8).
Results. According to the Long-input setting in Sec. 3.3,
we remove 41 classes and remain 207 Java classes from
75 projects. Furthermore, there are 3 test cases cannot be
compiled. Therefore, the experiments are conducted based
on the rest 204 unit test cases.
▷ Readability of test cases generated by ChatGPT.
• Code Style Checking Results.
▷ Checkstyle-Google: Fig. 3 shows the boxplot of Google
Codestyle violations for each class. It shows that the dataset
has several outliers on the higher side, with a median value
of approximately 70. The interquartile range (IQR) falls
between around 30 to 175, indicating that most of the data
lie within this range. However, the data is highly skewed to
the right, with a few extreme data points on the higher side,
indicating that the distribution does not follow the expected
pattern. The minimum value is 4, and the maximum value
is 1260, which shows a wide range of values in the dataset.

0 200 400 600 800 1000 1200
#Google Code Style Violations (ChatGPT)

Fig. 3: Boxplot of Google Code Style Violations (ChatGPT)

Next, The radar plot in Fig. 4 breakdowns violation
issues by types to display the details. As depicted in Fig.
4, we can conclude that:
• Indentation is the most common code style violation,
indicating that ChatGPT may need to work on consistently
formatting its code to improve readability and maintainabil-
ity;
• FileTabCharacter and CustomImportOrder also ap-
pear to be frequent violations, which highlights the im-
portance of proper configuration and consistency in code
structure; and
• Violations related to code legibility and ease of reading,
such as LineLength and AvoidStarImport should not
be ignored to maintain a high standard of code quality.
▷ Checkstyle-SUN: Fig. 5 shows the boxplot. The median
value of the data is around 28, with 25% of the data falling
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Fig. 4: Radar Plot of Google Code Style Violations

below 15 and 75% falling below 55. There are several values
above the upper quartile, indicating potential outliers or
extreme values. The minimum value in the data is 3 and the
maximum is 297. The IQR for the dataset is 40, indicating
that most of the values in the dataset fall within this range.
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Fig. 5: Boxplot for SUN Code Style Violations

Next, The radar plot in Fig. 6 breakdowns viola-
tion issues by types to display the details. As de-
picted in Fig. 6, it appears that the two most common
types of coding issues are MissingJavadocMethod and
MagicNumber, with 2742 and 2498 occurrences respec-
tively. The MissingJavadocMethod issue suggests that
more documentation and explanations are required for
ChatGPT. Furthermore, magic numbers in the test cases
generated by ChatGPT are mainly used in the assertions.
Additionally, the figure shows that FinalParameters,
RegexpSingleline, and AvoidStarImport also occur
frequently, indicating that attention should be paid to these
areas as well. Some of the less frequent issues, such as
HiddenField and UnusedImports, may be less urgent
but still worth addressing to improve overall code quality
for ChatGPT.

In summary, as an AI language model, ChatGPT may
not have a specific code style that it adheres to when gen-
erating test cases. However, the code style of the test cases
can be influenced by the parameters and rules set for the
generation process or the input that is given to the model. It
also suggests that programmers should pay attention to the
code style when using test cases generated by ChatGPT.
• Code Complexity. The default cyclomatic and cognitive
complexity thresholds in PMD are 10 and 15, which means if
the cyclomatic and cognitive complexities of a class/method
are lower than these values, the system does not report
the issue. Thus, we build a series of customized rules to
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Fig. 6: Radar Plot of SUN Code Style Violations

measure complexity. The rule sets can be downloaded from
our online repository. Note that, the complexity is measured
on a method basis.
▷ Cognitive Complexity: Based on the technical report from
SonarSource [48], Cognitive Complexity can be categorized
into four categories: low (<5 cognitive complexity), moder-
ate (6-10), high (11-20), and very high complexity (21+). As
the results are shown in Table. 9, all methods are with low
complexity.

TABLE 9: Cognitive Complexity Results Overview

Cognitive Complexity Level Num. of Class Num. of Methods
Low complexity (<5) 204 3302

Moderate complexity (6-10) 0 0
High complexity (11-20) 0 0

Very High complexity (21+) 0 0

TABLE 10: Cyclomatic Complexity Results Overview

Cyclomatic Complexity Level Num. of Class Num. of Methods
Low complexity (1-4) 204 3300

Moderate complexity (5-7) 2 2
High complexity (8-10) 0 0

Very High complexity (11+) 0 0

▷ Cyclomatic Complexity: Based on the official documenta-
tion from PMD [47], Cyclomatic Complexity can be catego-
rized into four categories: low (1-4 cyclomatic complexity),
moderate (5-7), high (8-10), and very high complexity (11+).
As the results are shown in Table. 10, there are 3300 methods
from 204 classes with low complexity and 2 methods from 2
classes with moderate complexity.
User Study on ChatGPT-generated Test Cases. Further-
more, we invite 5 Java programmers with at least 3 years
of Java programming experience to assess the readability of
generated unit test cases. Developers are required to read
the code, and then answer the following questions:
• On a scale of 1-5 (1 (very poor) to 5 (excellent)), how
readable do you find this code?
• What aspects of the code made it easy or difficult to
understand?

We collect developers’ feedback on the test cases and the
average readability score for each test case. The Pareto Chart
depicted in Fig. 7 illustrates that the average readability
score for ChatGPT-generated test cases is 3.92. Out of the
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total 1020 collected readability scores (calculated as 5*204),
the distribution is as follows: 159 scores at 5, 632 scores at 4,
218 scores at 3, and 11 scores at 2. The majority of test cases
fall into the high readability category (score 4), suggesting
that ChatGPT tends to generate test code that is relatively
easy to understand.
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Pareto Chart of Readability Scores for GPT-Generated Test Cases

Fig. 7: Pareto Chat of Readability Score for GPT-generated Test
Cases

Nevertheless, the results highlight that ChatGPT occa-
sionally produces low-readability test cases, as observed in
11 (with a score of 2) out of 1020 instances. We conducted
a more in-depth examination of the 11 cases that received a
rating of 2, revealing several prevalent issues that adversely
affect the readability of the generated code:
• Complex Syntax and execution logic. ChatGPT may
generate test cases with unnecessarily complex syn-
tax or convoluted logic, making it difficult for devel-
opers to follow and maintain the code. For example,
for the charting.CoordSystemUtitlites, developers
comment that the code contains a complex setup in the
setUp method with multiple anonymous inner classes and
objects that implement various interfaces. This setup makes
developers hard to follow the code’s logic.
• Lack of Full Context. ChatGPT may not fully understand
the specific context or requirements of the software being
tested, leading to test cases that are irrelevant or confusing.
• Lack of Proper Organization and Structure. For example,
for the agents.GroupAgent, one developer complains
that the code lacks proper organization and structure. It’s
challenging to discern the purpose and relationships be-
tween different parts of the code; and
• Lack of Comments and Explanation. ChatGPT may
generate comments that are inaccurate or misleading, which
can lead to confusion or incorrect assumptions about the test
cases.

Therefore, based on all the aforementioned results, we
can conclude that the ChatGPT-generated test cases are
overwhelmingly easy to follow and in low complexity.
▷ Readability of test cases generated by EvoSuite.
• Code Style Checking Results.
▷ Checkstyle-Google: Fig. 8 shows the boxplot of Google
Codestyle violations for each class generated with EvoSuite.
The dataset has several outliers on the higher side, with a
median value of approximately 234. The interquartile range

(IQR) falls between around 101 to 445.75, indicating that
most of the data lie within this range. The minimum value
is 14, and the maximum value is 11,002, which shows a wide
range of values in the dataset.
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Fig. 8: Boxplot of Google Code Style Violations (EvoSuite)

▷ Checkstyle-SUN: Fig. 9 shows the boxplot of SUN
Codestyle violations for each class generated with EvoSuite.
It reveals a median value of approximately 153.5, indicating
that half of the values are below this point. The 25th per-
centile (Q1) is around 65.75, and the 75th percentile (Q3) is
about 321.75, suggesting that the middle 50% of the data is
spread over a range of 256 (the Interquartile Range, IQR).
The dataset has a minimum value of 7 and a maximum of
4546, with several values, especially the maximum, signifi-
cantly higher than the upper quartile, pointing to potential
outliers or extreme values.
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Fig. 9: Boxplot for SUN Code Style Violations (EvoSuite)

▷ Cognitive Complexity: As the results are shown in Table.
11, all methods are with low complexity.

TABLE 11: Cognitive Complexity Results Overview

Cognitive Complexity Level Num. of Class Num. of Methods
Low complexity (<5) 204 8115

Moderate complexity (6-10) 0 0
High complexity (11-20) 0 0

Very High complexity (21+) 0 0

TABLE 12: Cyclomatic Complexity Results Overview

Cyclomatic Complexity Level Num. of Class Num. of Methods
Low complexity (1-4) 204 8115

Moderate complexity (5-7) 0 0
High complexity (8-10) 0 0

Very High complexity (11+) 0 0

▷ Cyclomatic Complexity: As the results are shown in Table.
12, there are 8,115 methods from 204 classes with low
complexity.
User Study on Evosuite-generated Test Cases. The same
user study (i.e., same study setting) is conducted on
Evosuite-generated test cases with the same users. We col-
lect developers’ feedback on the test cases and the aver-
age readability score for each test case. The Pareto Chart
depicted in Fig. 10 illustrates that the average readability



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

score for ChatGPT-generated test cases is 3.89. Out of the
total 1020 collected readability scores (calculated as 5*204),
the distribution is as follows: 130 scores at 5, 652 scores
at 4, and 238 scores at 3. The majority of test cases fall
into the high readability category (score 4), suggesting that
EvoSuite tends to generate test code that is relatively easy
to understand.
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Fig. 10: Pareto Chat of Readability Score for EvoSuite-generated
Test Cases

• Readability Comparison between Unit Test Suite gen-
erated by ChatGPT and EvoSuite. In summary, the read-
ability comparison between unit test suites generated by
ChatGPT and EvoSuite reveals that both tools are capable of
producing highly readable and understandable tests, albeit
through different approaches.

Answer to RQ2: Readability

• Code Style-Google Rule The median value of approxi-
mately 70 (violations). The interquartile range (IQR) falls
between around 30 to 175, indicating that most of the data
lie within this range. Furthermore, Indentation is the
most common code style violation;
• Code Style-SUN Rule The median value of the data
is around 28 (violations), with 25% of the data falling
below 15 and 75% falling below 55. The two most common
types of coding issues are MissingJavadocMethod and
MagicNumber, with 2742 and 2498 occurrences respec-
tively; and
• Code Complexity. From the cognitive complexity per-
spective, all methods are in low complexity. From the
cyclomatic complexity perspective, almost all (3300 out
of 3302) methods are in low complexity and the other 2
methods are in moderate complexity. Thus, the ChatGPT-
generated test cases are overwhelmingly easy to follow
and with low complexity.
• The readability comparison between unit test suites
generated by ChatGPT and EvoSuite reveals that both
tools are capable of producing highly readable and un-
derstandable tests, albeit through different approaches.

4.3 Code Coverage

RQ3: How does ChatGPT perform with SBST in terms of
code coverage?

Motivation. While low coverage implies that certain por-
tions of the code have not been checked, high coverage
shows that the produced tests have thoroughly evaluated
the code. Comparing the code coverage between the test
suite generated by ChatGPT and SBST allow us to evaluate
and assess the ChatGPT-generated test suite.
Methodology. JaCoCo [49] measures instruction and branch
coverage. The instruction coverage relates to Java bytecode
instructions and is thus analogous to statement coverage
on source code. We use just instruction coverage (i.e., state-
ment coverage (SC)) to evaluate code coverage as JaCoCo’s
definition of branch coverage counts only branching of
conditional statements, nor edges in the control flow graph.
Results. According to the Long-input setting in Sec. 3.3, we
remove 41 classes and remain 207 Java classes from 75
projects.

TABLE 13: Statement Code Coverage for Project (I)

Projects (A)Max (A)Min (A)SDEV. (A)Avg. (A)ChatGPT
1 tullibee 100% 100% 0.00 100% 93%
100 jgaap 95.0% 95.0% 0.00 95.0% 83%
105 freemind 71.5% 64.5% 1.56 69.1% 52%
107 weka 87.0% 79.0% 2.95 83.0% 37%
11 imsmart 100% 100% 0.00 100% 100%
12 dsachat 35.5% 35.5% 0.00 35.5% 34%
14 omjstate 67.0% 67.0% 0.00 67.0% 55%
15 beanbin 80.5% 80.5% 0.00 80.5% 46%
17 inspirento 94.0% 92.5% 0.33 94.0% 87.5%
2 a4j 50.5% 44.0% 1.54 48.5% 31%
21 geo-google 54.0% 54.0% 0.00 54.0% 67%
24 saxpath 97.0% 96.0% 0.34 96.5% 95%
26 jipa 88.0% 73.5% 3.63 83.50% 97%
29 apbsmem 98.0% 98.0% 0.00 98.0% 80%
31 xisemele 71.0% 71.0% 0.00 71.0% 75%
33 javaviewcontrol 82.0% 62.5% 6.13 76.0% 46%
35 corina 85.0% 75.0% 3.69 78.0% 65%
36 schemaspy 100.0% 100.0% 0.00 100.0% 67%
39 diffi 99.0% 93.0% 3.02 95.5% 69.5%
4 rif 100.0% 100.0% 0.00 100.00% 96%
40 glengineer 97.0% 86.5% 3.37 95.0% 73%
41 follow 92.5% 71.0% 5.73 82.0% 38%
43 lilith 100.0% 100.0% 0.00 100.0% 95%
45 lotus 70.5% 70.5% 0.00 70.5% 75%
47 dvd-homevideo 13.3% 13.3% 0.00 13.3% 0.7%
51 jiprof 96.5% 78.0% 3.76 93.0% 44.5%
52 lagoon 19.5% 14.0% 1.15 18.0% 27%
55 lavalamp 100.0% 100.0% 0.00 100.0% 100%
60 sugar 96.0% 87.5% 2.47 90.0% 79%
61 noen 82.5% 81.5% 0.18 81.5% 60%
63 objectexplorer 51.5% 51.5% 0.00 51.5% 47%
64 jtailgui 76.5% 17.0% 16.41 70.0% 0%
68 biblestudy 81.5% 81.5% 0.00 81.5% 57%
69 lhamacaw 43.5% 43.5% 0.00 43.5% 6%
7 sfmis 100.0% 100.0% 0.00 100.0% 87%
72 battlecry 1.0% 1.0% 0.00 1.0% 57%
73 fim1 24.0% 24.0% 0.00 24.0% 44.5%
74 fixsuite 67.5% 50.0% 6.43 54.5% 40%
77 io-project 100.0% 100.0% 0.00 100.0% 71%
78 caloriecount 92.7% 88.3% 1.24 89.7% 46.7%
79 twfbplayer 97.5% 95.5% 0.53 96.5% 69.5%
8 gfarcegestionfa 68.0% 62.5% 1.31 65.0% 55%
80 wheelwebtool 84.3% 83.0% 0.31 83.3% 36%
82 ipcalculator 91.5% 81.0% 4.07 85.0% 73%
83 xbus 34.0% 19.0% 6.75 23.00% 33%
84 ifx-framework 55.0% 55.0% 0.00 55.0% 32%
85 shop 71.5% 55.8% 4.22 63.8% 24.8%
86 at-robots2-j 86.0% 48.0% 15.02 58.0% 45%
87 jaw-br 32.0% 31.0% 0.18 32.0% 17.5%
88 jopenchart 99.5% 72.0% 10.87 78.5% 52%
89 jiggler 91.0% 81.7% 2.10 89.7% 30.3%
90 dcparseargs 100.0% 94.0% 1.22 99.0% 75%
91 classviewer 93.0% 91.0% 0.29 92.5% 73%
92 jcvi-javacommon 100.0% 100.0% 0.00 100.0% 74%
94 jclo 82.0% 68.0% 4.31 74.0% 11%
95 celwars2009 47.0% 47.0% 0.00 47.0% 46%
97 feudalismgame 25.0% 19.5% 2.06 21.1% 15%
98 trans-locator 50.0% 47.0% 0.57 50.0% 15%
99 newzgrabber 20.7% 17.7% 0.76 20.3% 10.7%

Note: The colored cells in Tables 8 and 9 indicate cases where ChatGPT outperforms
EvoSuite in terms of statement code coverage. However, there is no cell colored in Table
9 because EvoSuite outperforms ChatGPT for all projects in that table.

▷Statement Coverage (SC) Comparison. As we run 30
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TABLE 14: Statement Code Coverage for Project (II)

Projects (A)Max (A)Min (A)SDEV. (A)Avg. (A)ChatGPT
checkstyle 87.5% 79.3% 3.28 84.7% 65.2%
commons-cli 98.5% 95.0% 1.09 98.1% 69%
commons-collections 94.3% 89.3% 0.91 94.1% 68%
commons-lang 94.0% 86.0% 2.36 90.1% 73.1%
commons-math 72.7% 64.1% 3.17 69.0% 45.6%
compiler 67.7% 36.9% 9.48 53.9% 6.29%
guava 75.0% 70.1% 1.28 72.9% 63.1%
javaml 97.1% 87.3% 2.46 96.4% 76.1%
javex 94.0% 67.0% 12.59 81.2% 63%
jdom 80.7% 80.5% 0.06 80.7% 31.3%
joda 94.9% 92.4% 0.64 93.9% 71.6%
jsci 97.0% 86.0% 2.62 92.4% 50%
scribe 95.3% 95.3% 0.00 95.3% 91.2%
trove 81.0% 76.7% 1.26 79.3% 45.3%
twitter4j 92.2% 89.7% 0.67 91.3% 70.7%
xmlenc 97.0% 94.0% 0.61 95.1% 54%
Overall Avg. (Project) 77.4% 70.6% - 74.5% 55.4%

times for EvoSuite, we compute the maximum, minimum,
average, and average standard deviation. Recall the result
in RQ1, for the 3 ChatGPT-generated test cases, which failed
to be fixed without the background knowledge, we regard
their code coverage as 0 2.

As shown in Table 13 and 14, for Evosuite, on average,
the maximum SC can reach 77.4% for all projects; the mini-
mum SC can reach 70.6% for all projects; and the average SC
can reach 74.2% for all projects. In contrast, for ChatGPT, on
average, the average SC can reach 55.4% for all projects. In
general, Evosuite outperforms ChatGPT 19.1% in regards to
SC. Additionally, ChatGPT outperforms Evosuite in 10 out
of 75 (13.33%) projects, which are highlighted in Table. 13
and 14. From the class perspective, ChatGPT outperforms
EvoSuite in 23 (11.11%) out of 207 classes.

Furthermore, by investing 23 cases that ChatGPT outper-
forms EvoSuite, we find that ChatGPT is well performed in
generating test cases for the following reasons:
1. ChatGPT can generate different String objects/inte-
ger/double values to use (e.g., comparison) with high
diversity compared to Evosuite (Ref: guava::Objects,
math::SimplexTableu). Number of cases: 3;
2. ChatGPT can generate an instance of Font for
FontChooser, which is not applicable for Evosuite (Ref:
71_film2::FontChooserDialog) Number of cases: 1;
3. ChatGPT can generate more reasonable and useable UI
operations (i.e., ActionEvents) for testing UIs compared
to Evosuite (Ref: 72_bcry::battlecryGUI) Number of
cases: 3;
4. ChatGPT can generate test cases or instances based on
the existing information from the classes under tests (Ref:
45_lotus::Phase). Fig. 11 shows a code segment from
45-lotus::Phase.java. This code segment also sug-
gests some instances (e.g, UpkeepPhase(), DrawPhase(),
Main1Phase()) are compatible with the type of
Game.currentPhase. Such information can be correctly
captured by ChatGPT and be used to generate diverse
Phase instances. As a result, it can reach a high coverage
than EvoSuite Number of cases: 1;
5. ChatGPT can generate more complex call chains for
testing based on the semantics information collected
from the classes under test compared to EvoSuite (Ref
guava::Monitor). For example, the code segment in Fig.
12, ChatGPT can generate a more complex call chain rather

2. Different from 204 test cases in other RQs, we have 207 test cases
considered in this RQ.

if(Game.currentPhase instanceof UntapPhase) changePhase(new UpkeepPhase());
else if(Game.currentPhase instanceof UpkeepPhase) changePhase(new DrawPhase());
else if(Game.currentPhase instanceof DrawPhase) changePhase(new Main1Phase());
else if(Game.currentPhase instanceof Main1Phase) changePhase(new 
CombatBeginningPhase());
else if(Game.currentPhase instanceof CombatBeginningPhase) changePhase(new 
DeclareAttackersPhase());
else if(Game.currentPhase instanceof DeclareAttackersPhase) changePhase(new 
DeclareBlockersPhase());
else if(Game.currentPhase instanceof DeclareBlockersPhase) changePhase(new 
CombatDamagePhase());
else if(Game.currentPhase instanceof CombatDamagePhase) changePhase(new 
CombatEndPhase());
else if(Game.currentPhase instanceof CombatEndPhase) changePhase(new 
Main2Phase());
else if(Game.currentPhase instanceof Main2Phase) changePhase(new 
EndOfTurnPhase());
else if(Game.currentPhase instanceof EndOfTurnPhase) changePhase(new 
CleanupPhase());
else if(Game.currentPhase instanceof CleanupPhase) changePhase(new 
PlayerChangePhase());
else if(Game.currentPhase instanceof PlayerChangePhase)

Fig. 11: The Code Segment from 45-lotus::Phase

than invoking a single method once. More importantly, its
call chain is logically correct. That is, the method enter
must be invoked before leave. This can benefit from that
the LLM can precept semantic context from the code or
identifiers. Number of cases: 7 and;

@Test
public void testEnterWhen() throws InterruptedException {

Guard guard = new Guard(monitor) {
@Override
public boolean isSatisfied() {

return true;
}

};
monitor.enterWhen(guard);
assertTrue(monitor.lock.isLocked());
monitor.leave();
assertFalse(monitor.lock.isLocked());

}

Fig. 12: The Code Segment from guava::MonitorTest

6. ChatGPT can generate test data that is suitable for the
target regarding the semantic context. For example, the
input parameter for invoking the method setCountry
(Ref: 21_geo-google::GeoStatusCode) can be any
String. However, a real country name (e.g., United States)
can be more suitable for testing the method setCountry
compared to a random String Number of cases: 8;

From the breakdown of the cases into the different
reasons, we find that ChatGPT performs well in generat-
ing complex test inputs with contexts and complex execu-
tion logical chains in terms of generate test cases (inputs).
Moreover, as the code complexity increases, so does the
search space for identifying appropriate test cases, leading
to longer execution times and greater computational ex-
penses for SBST techniques. Consequently, this can pose a
significant challenge in uncovering effective test cases that
can ensure optimal code coverage and expose any defects.

Following the previous research works [4], [50], [51], we
adopt Vargha-Delaney Âab to evaluate whether a particular
approach (a) outperforms another (b). According to Vargha
and Delaney Âab [51], negligible, small, medium, and large
differences are indicated by A12 over 0.56, 0.64, 0.71, and
0.8, respectively.
▷All Classes Comparison. As shown in Table. 15, there 193
test cases fall into large and 14 test cases fall into negligible
group. This indicates EvoSuite is overwhelmingly better
than ChatGPT in reaching higher code coverage for most
cases. The overall Vargha-Delaney measure for all classes is
0.71 (medium).
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TABLE 15: Vargha-Delaney Measures for Evosuite vs. ChatGPT

Large Medium Small Negligible
Num. of Classes 193 0 0 14

Overall V.D. 0.71 (Medium)

▷Small/Big Classes Comparison. Here, small classes are
defined as classes with less than 50 branches. Classes with
more than 50 branches are considered as big classes.

TABLE 16: Vargha-Delaney Measures for Big Classes

Large Medium Small Negligible
Num. of Big Classes 121 0 0 5

Overall V.D. 0.764 (Large)

TABLE 17: Vargha-Delaney Measures for Small Classes

Large Medium Small Negligible
Num. of Small Classes 70 0 0 11

Overall V.D. 0.63 (Small)

▷Big Classes Comparison. Table. 16 shows the comparison
for big classes. There 121 test cases fall into large and 5 test
cases fall into negligible group. This indicates EvoSuite is
overwhelmingly better than ChatGPT in reaching higher
code coverage for big class cases. The overall Vargha-
Delaney measure for all classes is 0.764 (large).
▷Small Classes Comparison. Table. 17 shows the compari-
son for small classes. There 70 test cases fall into small and 11
test cases fall into negligible group. This indicates EvoSuite
is overwhelmingly better than ChatGPT in reaching higher
code coverage for small class cases. The overall Vargha-
Delaney measure for all classes is 0.63 (small).

Unfortunately, we fail to see ChatGPT outperforms Evo-
Suite for even big classes. It indicates no matter the big or
small classes, developers are suggested to turn to EvoSuite
in order to obtain a higher code coverage. The potential
causes may be diverse and varied. Some possible reasons
can be: (1) incomplete specifications: ChatGPT is only given
the classes under test instead of the entire project. Thus,
without the information from the entire project, it can be
hard for ChatGPT to generate more valuable test cases; (2)
lack of feedback mechanisms: Unlike Evosuit, which can
learn from feedback (i.e., cover data), ChatGPT relies solely
on the training data. It makes it challenging for ChatGPT
to comprehend the feedback from test results through an
iterative process leading to low test coverage.

However, the results also suggest two insights:
⋆Insight 1: Our study indicates a promising trend wherein
ChatGPT demonstrates a notable ability to grasp the se-
mantics and context of the code under test. This initial
observation suggests that integrating an AI model, like
ChatGPT, with Search-Based Software Testing (SBST) tools
could potentially improve their understanding of complex
code structures. Such an integration might enable SBST
tools to generate test cases that are more precisely aligned
with the intricacies of the code semantics. However, it’s
important to note that this is a preliminary insight based
on our current dataset and observations. Further empirical
research is needed to explore this potential integration in
depth; and

⋆Insight 2: Even though it cannot compare with EvoSuite,
ChatGPT can still reach a relatively high code coverage
(55.4%). Thus, ChatGPT can still serve as an entry-level tool
for testing newcomers or as a backup option.

Answer to RQ3: Code Coverage

• For Evosuite, on average, the maximum SC can reach
77.4% for all projects; the minimum SC can reach 70.6%;
and the average SC can reach 74.2%. In contrast, for
ChatGPT, on average, the average SC can reach 55.4%;
• After examining 23 cases in which ChatGPT outper-
formed EvoSuite (in code coverage), our analysis suggests
six potential scenarios where ChatGPT may be better
suited. These findings contribute to a growing body of
research exploring the efficacy of automated testing tools;
• The experimental results indicate EvoSuite is over-
whelmingly better than ChatGPT in reaching higher code
coverage for both big class cases and small class cases; and
• Two potential reasons for low code coverage can be: in-
complete specifications; and lack of feedback mechanisms.

4.4 Bug Detection

RQ4: How effective are ChatGPT and SBST at generating
test suites that detect bugs?
Motivation. The main use of generated test suites is to find
buggy code in a program. Therefore, in this RQ, we evaluate
the effectiveness of generated test suite in detecting bugs.
Methodology. To evaluate the effectiveness of generated
test suite in terms of detecting bugs, we first generate unit
test suites for the target classes and examine whether the
test suite can successfully capture the bug in the Defects4J
benchmark. Note that, in this RQ, for fairness, we only
run EvoSuite once to generate test cases. It is also worth
mentioning that, in this RQ, our primary goal is to evaluate
the bug detection ability of the unit test cases generated by
ChatGPT, rather than treating ChatGPT as a dedicated bug
detection or fuzzing tool.

@Test
public void testConstructorWithStartAndEndInstant() {

Instant start = new Instant(0);
Instant end = new Instant(1000);
Period p = new Period(start.getMillis(), end.getMillis());
assertEquals(1000, p.getMillis());

}

0

Fig. 13: The Test Cases for Time Project

Results. Some bugs in the Defects4J are logical bugs,
which are triggered with assertions. Unfortunately,
we find that sometimes the assertions generated by
ChatGPT are not reliable. For example, Fig. 13 illus-
trates a test case for Period in Time project. The asser-
tion statement assertEquals(1000, p.getMillis();
is incorrect. However, the code segment under test is
not buggy and the expected value should be 0 instead
of 1000. ChatGPT makes an incorrect assertion for this
case. It means we cannot fully rely on the assertions
in ChatGPT-generated test cases to determine whether
the bugs are successfully triggered. However, manually
checking the assertions in ChatGPT-generated test cases
can be effort-consuming and error-prone [52], [53], [54].
Therefore, in this RQ, we focus on bugs that associate
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with Java Exceptions, such as NullPointerException,
UnsupportedOperationException.

TABLE 18: Bug Detection Comparison for ChatGPT and Evo-
suite

ChatGPT Evosuite
Project # All/ # Exce. Bugs Detected Coverage Detected Coverage
Chart 26 / 8 4 (50%) 62% 3 (38%) 85%

Cli 39 / 8 1 (13%) 70% 2 (25%) 88%
Closure 174 / 9 1 (11%) 14% 0 (0%) 4%
Codec 18 / 7 0 (0%) 60% 2 (29%) 94%

Collections 4 / 2 0 (0%) 87% 0 (0%) 67%
Compress 47 / 19 6 (32%) 42% 3 (16%) 57%

Csv 16 / 7 2 (29%) 80% 5 (71%) 90%
Gson 18 /12 2 (17%) 59% 6 (50%) 55%

JacksonCore 26 / 8 2 (25%) 38% 2 (25%) 64%
JacksonDatabind 112 / 53 9 (17%) 30% 4 (8%) 56%

JacksonXml 6 / 1 0 (0%) 29% 0 (0%) 49%
Jsoup 93 / 22 4 (18%) 63% 10 (45%) 86%
JxPath 22 / 1 1 (100%) 40% 1 (100%) 88%
Lang 64 / 20 6 (30%) 68% 3 (15%) 55%
Math 106 / 28 5 (18%) 64% 12 (43%) 84%
Time 26 / 7 1 (14%) 56% 2 (29%) 88%
Total 796 / 212 44 (21%) 50% 55 (26%) 67%

Table. 18 shows the experimental results. In the table, for
each project, the higher values (e.g., higher code coverage)
are highlighted in comparison between the two approaches.
Furthermore, out of 212 bugs, 44 were successfully detected
by test cases generated by ChatGPT, with an average state-
ment code coverage of 50%. In contrast, test cases generated
by EvoSuite successfully detected 55 bugs, with an average
statement code coverage of 67%. From the comparison, we
can also see that in some cases, EvoSuite detected more
bugs than ChatGPT, while in other cases, ChatGPT detected
more bugs than EvoSuite. For example, in the Chart project,
EvoSuite had a higher coverage rate for bug detection than
ChatGPT, but ChatGPT detected more bugs than EvoSuite
in some cases. It is worth noting that the coverage rates
for both tools varied greatly across different projects, indi-
cating that the effectiveness of each tool may depend on
the specific characteristics of the project being tested. It is
interesting to note that ChatGPT was able to detect bugs
in some cases where EvoSuite was not, indicating that the
two tools may complement each other and could be used
together to improve bug detection.

By comparing the test cases generated by ChatGPT and
EvoSuite, we find several possible reasons that LLM (e.g.,
ChatGPT) may not outperform Evosuite:
• As ChatGPT can only take text as input, instead of the bi-
nary representation of the entire project (e.g., a Jar file), it can
be challenging for ChatGPT to generate complex instances
without a complete understanding of the project. Similarly,
it may struggle to generate corner cases for exploring bugs.
• As a large language model, ChatGPT generates/predicts
content takes a prompt or starting text as input, and uses its
learned understanding of language to predict what words
or phrases should come next. This prediction is based on
the probability that a certain sequence of words would
appear in the dataset. It is highly possible that a commonly
used case (i.e., test case/data in our context) holds a higher
probability compared to an edge case; and
• By adopting the genetic algorithm to explore potential test
suites capable of achieving higher code coverage, Evosuite
may theoretically possess a greater probability of discover-
ing bugs. Notably, such a feedback mechanism is presently
absent in LLMs, such as ChatGPT, underscoring the poten-
tial benefits of combining SBST techniques with LLMs for
program testing and bug detection.

It is also worth mentioning that the results presented do
not reflect the capability of ChatGPT in finding or locating
bugs. It only implicates the bug detection capability of
ChatGPT-generated test cases.

Answer to RQ4: Defects and Bug Detection

• The test cases generated by ChatGPT can be misleading
in finding logical-related bugs, as the assertions gener-
ated can be incorrect and unreliable;
• Out of 212 bugs, 44 were successfully detected by test
cases generated by ChatGPT, with an average statement
code coverage of 50%. In contrast, test cases generated by
EvoSuite successfully detected 55 bugs, with an average
statement code coverage of 67%;
• Evosuite integrates a genetic algorithm to find test cases
that can provide better code coverage and increase the
chances of finding bugs. LLM tools like ChatGPT do not
have this feedback mechanism. Thus, combining the SBST
technique and LLM can improve software testing accuracy
and bug detection.

4.5 Correctness of Assertions

RQ5: How do the assertions generated by ChatGPT in unit
tests compare in correctness to those produced by SBST?
Methodology. To evaluate the correctness of assertions gen-
erated by ChatGPT in unit tests compare in correctness
to those produced by SBST, we leverage the IntelliJ IDE’s
sophisticated debugging tools. With the IDE, we can metic-
ulously monitor the runtime behavior of each test case.
This process enables a precise assessment of whether the
assertions accurately reflect the intended functionality of the
code.
Results.
▷ Assertions in test cases generated by ChatGPT. For the
corrections of assertions generated by ChatGPT, we only
considered the 144 test cases (according to RQ1) that can
successfully compiled and executed. For the test cases that
cannot be executed, it can be infeasible to evaluate the
correctness of assertions.

In general, there are 1,776 methods in these test cases
with 2,553 assertions. Among 2,553 assertions, there are
2,001 (78.38%) correct assertions. It suggests that a sig-
nificant majority of the assertions generated by ChatGPT
(78.38%) were fully correct, accurately reflecting the ex-
pected behavior of the code. However, a notable fraction
of the assertions (21.62%) are not correct, either due to
misinterpretation of the code’s functionality or limitations
in the AI’s contextual understanding.

We further investigate the possible reasons that lead to
incorrect assertions. Specifically, we find the following main
reasons:
• Lack of context (274/548 (50%)): ChatGPT, or any AI
model, may not always have the full context of the applica-
tion or the intricate details of the business logic. This lack of
context can lead to assertions that don’t accurately capture
the intended behavior of the code under test. For instance,
the model might not understand the wider implications of a
function within the overall application, leading to assertions
that are technically correct in isolation but incorrect within
the broader context of the application. For the example,
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the following code represents an example of this type. The
assertion is incorrect due to lack of the context that it
requires a case-sensitive representation.

Listing 9: Lack of context
1 // Assume a function that returns true if a user has admin privileges
2 public boolean isAdmin(User user) {
3 return user.hasRole(”admin”);
4 }
5

6 // Generated test without context might not account for user roles being case−sensitive
7 public void testIsAdmin() {
8 User user = new User();
9 user.setRole(”Admin”); // Incorrect role due to case sensitivity

10 assertFalse(isAdmin(user));
11 }

• Errors with initialization (119/548 (21.7%)): Initialization
errors occur when the test setup is incorrect or incomplete.
This can lead to assertions that are based on improperly
initialized objects or variables, resulting in false positives
or negatives. For example, the following code segment
presents this type of error.

Listing 10: Errors with initialization
1 public void testCalculateArea() {
2 Rectangle rect = null; // Should be initialized properly
3 double area = rect.calculateArea();
4 assertEquals(20.0, area, 0.01); // Incorrect assertion due to initialization error
5 }

• Misunderstanding of method behavior/lack of implemen-
tation details (53/548 (9.7%)) This happens when ChatGPT
misunderstands the purpose or the expected behavior of
a method. Without a deep understanding of the method’s
implementation details or intended use, the generated as-
sertions might not accurately test the method’s functionality.
For example, the following code segment presents this type
of error.

Listing 11: Misunderstanding of method behavior/lack of im-
plementation details
1 public void testGetUserFullName() {
2 User user = new User(”John”, ”Doe”);
3 String fullName = user.getFullName();
4 assertEquals(”Doe, John”, fullName);
5 // Incorrect assertion, expected ”John Doe”
6 }

• Math Errors (26/548 (4.7%)): Math errors in assertions can
arise from incorrect calculations or logic related to numerical
operations. This might happen if the AI misunderstands the
mathematical logic or operations within the code, leading
to assertions that expect incorrect values. For example, the
following code segment presents this type of error.

Listing 12: Math Error
1 public void testDivide() {
2 Calculator calc = new Calculator();
3 double result = calc.divide(10, 2);
4 assertEquals(6, result); // Incorrect assertion, result should be 5
5 }

• Initialization with NULL (24/548 (4.3%)): Similar to initial-
ization errors, this specific error involves initializing objects
or variables with NULL (or null in some languages like
Java). This can result in NullPointerExceptions or other
unintended behaviors that make the assertions invalid or
cause them to fail for the wrong reasons. For example, the
following code segment presents this type of error.

Listing 13: Initialization with NULL
1 public void testProcessOrder() {
2 Order order = null; // Should not be null
3 boolean result = processOrder(order);
4 assertTrue(result);
5 // Incorrect assertion, will throw NullPointerException
6 }

• Overlooking Common Java Methods (16/548 (2.9%)): This
error indicates that ChatGPT might have overlooked or
misunderstood common Java methods and their usage. This
could lead to assertions that don’t utilize standard library
methods correctly or fail to account for their behavior,
leading to inaccurate tests. For example, the following code
segment presents this type of error.

Listing 14: Overlooking Common Java Methods
1 public void testStringConcatenation() {
2 String result = ”Hello, ” + ”World!”;
3 assertEquals(”Hello, World!”, result.trim());
4 // Incorrect usage of trim() method
5 }

• Formatting error/unmatched arguments/unsupported
operations(12/548 (2.1%)): These errors can occur due to
syntactical mistakes, incorrect formatting, or the use of
unsupported arguments in assertions. They can also happen
when there’s a mismatch between the expected and actual
arguments in the assertion method calls. For example, the
following code represents an example of this type. The as-
sertion will throw exception due to unmatched arguments.

Listing 15: Formatting error/unmatched arguments/unsup-
ported operations
1 public void testFormatString() {
2 String result = String.format(”%s is %d years old”, ”John”, ”thirty”);
3 assertEquals(”John is thirty years old”, result);
4 }

• Method overriding with Null (10/548 (1.8%)): This error
involves overriding methods with null values, leading to
incorrect behavior in the tests. For instance, if a method that
is supposed to return a value is overridden to return null in
the test setup, the assertions may fail or pass incorrectly. For
example, the following code represents an example of this
type.

Listing 16: Method overriding with Null
1 public void testGetUserEmail() {
2 User user = new User() {
3 public String getEmail() {
4 return null; // Overridden to return null
5 }
6 };
7 assertNotNull(user.getEmail()); // Incorrect assertion
8 }

▷ Assertions in test cases generated by EvoSuite. Regard-
ing the correctness of assertions in test cases generated by
EvoSuite, we also consider the 144 test cases to compare
with ChatGPT. Note that, in this RQ, for fairness, we only
run EvoSuite once to generate test cases. EvoSuite generate
5,764 test methods in these test cases with 21,818 assertions.
Among 21,836 assertions, there are 21,832 (99.9%) correct
assertions. It suggests that assertions generated by EvoSuite
are highly accurate, demonstrating a success rate of nearly
100%. This level of precision indicates that EvoSuite is a
reliable tool for automated test case generation, capable of
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producing assertions with a very high probability of being
correct.

Answer to RQ5: Correctness of Assertions
In conclusion, when assessing the accuracy of test asser-
tions, EvoSuite shows exceptional performance, underlin-
ing its reliability in automated test case generation. In
contrast, ChatGPT’s test cases exhibit a 78.38% correctness
rate in its assertions, reflecting a substantial majority of
accurate assertions but also highlighting a gap where
21.62% were incorrect. These inaccuracies may stem from
misunderstandings of the code’s functionality or limita-
tions in the AI’s contextual comprehension. The analysis
suggests that while both tools are effective in generating
test assertions, EvoSuite demonstrates a higher level of
precision compared to ChatGPT.

4.6 Non-determination of ChatGPT

RQ6: How does the non-deterministic output of ChatGPT
affect the quality and effectiveness of generated test cases,
as measured by code coverage, fault detection?
Methodology. We acknowledge the inherent non-
deterministic nature of models like ChatGPT, which
can yield different outputs for identical inputs due to
factors such as randomness in the sampling methods used
to generate text. Therefore, we randomly selected 10 Java
classes from the Defects4J and generated unit test cases
with ChatGPT 10 times. The generated unit test cases from
these repeated trials were then compared using several
criteria, including code coverage, and the ability to detect
faults.
Results. We randomly select the following 10 subjects
(bug.id) from Defects4J to conduct our experiment.

TABLE 19: Randomly Selected Sample for RQ6

Project BugID
Codec 5,15

Collections 28
Compress 18,35

Csv 2,4
Lang 44

MATH 1
Cli 14

Table. 20 shows the experimental results for 10 trials,
in which the symbol ’✓’ represents the bug is captured by
the test case, and the symbol ’✗’ represents the bug is not
captured.

In terms of code coverage and bug detection efficiency,
we find that the following findings:
• Inconsistent Code Coverage Across Trials: The data
shows fluctuating code coverage percentages for the same
project and BugId across different trials. For instance, in the
Codec project for BugId 5, coverage ranges from 68% to 87%;
• Varying Bug Detection Efficiency: The table indicates
that the same bug is sometimes detected and sometimes not
across different trials (e.g., BugId 15 in Codec detected in
Trials 2 and 8 but not in others). This inconsistency in bug
detection, despite similar conditions, suggests that Chat-
GPT’s approach to identifying bugs is non-deterministic,
leading to different outcomes in different runs;

• Distinct Outcomes in Trials with Identical Coverage:
Instances where different trials yield identical code coverage
but differing results in bug detection underscore the unpre-
dictable nature of the generated test cases. For instance, in
the Csv project, BugId 4 showed bug detection in Trials 2,
4, and 5 with varying coverage percentages, including 23%
and 54%, while other trials with similar coverage did not
detect the bug.

Answer to RQ6: Correctness of Assertions
• The degree of non-determinism in ChatGPT’s unit test
case generation appears to be relatively high, as evidenced
by the variability in code coverage and inconsistency in
bug detection across trials for the same BugId.
• This non-determinism is likely influenced by the in-
herent variability in AI decision-making processes, the
complexity of the code and bugs, and the nuances in
ChatGPT’s understanding of the task context.

4.7 Time Efficiency
A direct comparison of time efficiency between ChatGPT
and EvoSuite is not justifiable due to their differing na-
ture, objectives, and operational paradigms. ChatGPT, as
a generative language model, is not inherently designed
with a primary focus on test efficiency but rather on lever-
aging natural language understanding and code semantics
to generate coherent and contextually relevant test cases.
On the other hand, SBST tools like EvoSuite are explicitly
engineered to optimize specific criteria such as code cover-
age or fault detection within a given computational budget,
making efficiency a core aspect of their design.

5 LIMITATIONS, AND THREATS TO VALIDITY

5.1 Limitations
The results and experiments of this study are limited in two
parts: (1) Given the need to manually query ChatGPT, our
study is limited to only the queries made for the study. As
ChatGPT is closed-source and we cannot map our results to
the details or characteristics of ChatGPT’s internal model.
We also do not know ChatGPT’s exact training data, which
means we cannot determine if the exact response to our
queries are members of the training data; and (2) It also
worth noting that ChatGPT’s capability is continuously re-
fined and improved by their developers over time according
the OpenAI’s release note [55]. The responses of ChatGPT
can only reflect the performance of ChatGPT at the time we
conducted our work (i.e., ChatGPT Jan 30 (2023) Version).

5.2 Threats to Validity
To reduce bias by manually selecting subject programs for
testing, we reuse the benchmarks (i.e., Defects4J, Dyan-
MOSA Dataset), which have been used and studied in the
existing researches. Furthermore, we also reuse the metrics
presented in existing research works to calculate the code
coverage, code readability and so forth. Another threat to
internal validity comes from the randomness of the genetic
algorithms. To reduce the risk, we repeat EvoSuite for 30
times for every class. As for external validity, due to size of
the benchmarks, we do not attempt to generalize our results
and conclusions.
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TABLE 20: Code Statement Coverage and Bug Detection (✓/✗) for 10 Trials

Project BugId Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

Codec 5 71%(✗) 78%(✗) 78%(✗) 71%(✗) 68%(✗) 75%(✗) 75%(✗) 87%(✗) 78%(✗) 81%(✗)
Codec 15 63%(✗) 82%(✓) 68%(✗) 72%(✗) 74%(✗) 70%(✗) 82%(✗) 93%(✓) 93%(✗) 97%(✗)
Collections 28 100%(✗) 100%(✗) 100%(✗) 100%(✗) 100%(✗) 100%(✗) 100%(✗) 50%(✗) 100%(✗) 100%(✗)
Compress 18 35%(✗) 0%(✗) 28%(✗) 38%(✗) 19%(✗) 39%(✗) 35%(✗) 35%(✗) 9%(✗) 35%(✗)
Compress 35 7%(✗) 51%(✗) 0%(✗) 18%(✗) 0%(✗) 18%(✗) 17%(✗) 17%(✗) 0%(✗) 25%(✗)
Csv 2 95%(✗) 85%(✗) 90%(✗) 85%(✗) 95%(✗) 80%(✗) 80%(✗) 65%(✗) 85%(✗) 85%(✗)
Csv 4 53%(✓) 23%(✓) 0%(✗) 20%(✓) 54%(✓) 54%(✓) 23%(✗) 17%(✓) 73%(✗) 49%(✗)
Lang 44 39%(✗) 28%(✓) 53%(✗) 43%(✗) 25%(✓) 57%(✗) 2%(✗) 44%(✓) 47%(✗) 22%(✗)
MATH 1 54%(✗) 43%(✗) 43%(✗) 46%(✗) 44%(✗) 53%(✗) 40%(✗) 49%(✗) 37%(✗) 56%(✗)
Cli 14 42% (✗) 35% (✗) 35% (✗) 35% (✗) 33% (✗) 54% (✗) 64% (✗) 53% (✗) 42% (✗) 35% (✗)

6 RELATED WORK

Language Models. Language models are used in NLP for
many tasks, such as, machine translation, question answer-
ing, summarization, text generation and so on [5], [7], [56],
[57], [58], [59], [60], [61], [62], [63]. To better understand
language, models with massive parameters are trained on
an extremely large corpus (i.e., LLM). Transformer [22] is
constructed on stacked encoders and decoders. It leverages
self-attention mechanism to weigh the importance of words
in the input text, capturing long-range dependencies and
relationships between words in the input. It is the base
for many LLMs. ELMo [64] utilizes multi-layer bidirec-
tional LSTM and provides high-quality word representa-
tions. GPT [28] and BERT [23] are built on the decoders
(unidirectional) and encoders (bidirectional) of Transformer,
respectively, using pre-training and fine-tuning techniques.
GPT-2 [27] and GPT-3 [16] are the descendants of GPT. GPT-
2 has a larger model size than GPT, and GPT-3 is larger
than GPT-2. Moreover, with larger corpus, GPT-2 and GPT-
3 introduce zero-shot and few-shot learning to make models
adapt to Multitask. Codex [62] is obtained by training GPT-3
using Github code data. It is the model that powers GitHub
Copilot [65], a tool generating computer code automatically.
InstructGPT [25] utilizes additional supervised learning and
reinforcement learning from human feedback to fine-tune
GPT-3, aligning LLM with users. ChatGPT [17] uses the
same methods as InstructGPT and has the ability to answer
follow-up questions.
Search-based Software Testing. SBST approaches test case
generation as an optimization problem. The first SBST
method to produce test data for functions with float-type
inputs was put out by Miller et al. [66]. Many software
testing methods [67], [68], [69] have made extensive use of
SBST approaches. Most studies concentrate on (1) Search
algorithms: Tonella [18] suggested iterating to generate one
test case for each branch. A test suite for all branches was
suggested by Fraser et al. [3]. Many-objective optimization
techniques were presented by Panichella et al. [19], [20]. To
lower the expenses of computing, Grano et al. [70] devel-
oped a variation of DynaMOSA; (2) Enhancing fitness gra-
dients: Arcuri et al. introduced testability transformations
into API tests [71] For programs with complicated inputs.
Lin et al. [72] suggested an approach to deal with the inter-
procedural flag issue. A test seed synthesis method was sug-
gested by Lin et al. to produce complicated test inputs [29].
Braione et al. [73] coupled symbolic execution and SBST;
(3) Design of the fitness function: Xu et al. [74] suggested
an adaptive fitness function for enhancing SBST; Rojas et

al. [75] suggested combining multiple coverage criteria for
fulfilling more requirements from developers. Gregory Gay
experimented with various criterion combinations [76] to
compare the usefulness of multi-criteria suites for spotting
practical flaws. Zhou et al. [4] proposed a method to select
coverage goals from multiple criteria instead of combining
all goals; (4) Readability of created tests: Daka et al. [77]
suggested naming tests by stating covered goals. Deep
learning techniques were presented by Roy et al. [78]; (5)
Applying SBST to more software fields such as Machine
Learning libraries [79], Android applications [80], Web APIs
[81], and Deep Neural Networks [82]. Tufano et. al[31] train
a model using the transformer architecture to generate unit
tests by understanding both the structure of code and the
natural language descriptions associated with it. This pro-
cess entails pre-training on a large corpus of Java code and
related documents, followed by fine-tuning on a specifically
curated dataset aimed at unit test generation. This approach
allows the model to learn the context and intricacies of
both programming and natural languages, enabling it to
produce more accurate and relevant unit tests. AthenaTest
emphasizes leveraging transformers for understanding and
generating unit tests from code, focusing on real-world code
and tests to create more readable and understandable test
cases. Meanwhile, the LLM versus EvoSuite comparison
explores the potential of cutting-edge language models in
creating effective test cases, contrasting them with Evo-
Suite’s evolutionary algorithm approach.

Leverage LLMs in Software Testing Recent advancements
in Large Language Models (LLMs) have opened new av-
enues in software testing. Specifically, Deng et al proposed
TitanFuzz [83], which leverages Large Language Models
(LLMs) to generate input programs for fuzzing deep learn-
ing libraries. Schäfer et al. [84] proposed TESTPILOT, which
is an adaptive LLM-based test generation tool for JavaScript
that automatically generates unit tests for the methods in a
given project’s API. Lemieux et al. leveraged LLMs to help
SBST’s exploration in taming the Plateaus problem [85]. It
addresses the challenges of SBST hitting coverage plateaus
by using Codex to provide example test cases for under-
covered functions, aiding SBST to explore more effectively.
But, CODAMOSA is susceptible to coverage bias. It relies
on existing test cases and example inputs, which may not
fully explore all program paths. Consequently, it might
miss certain edge cases or unanticipated behaviors. CO-
DAMOSA’s integration of LLMs enhances test case gener-
ation by providing diverse examples, adaptive exploration,
and breaking through coverage plateaus. However, it’s es-
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sential to consider the trade-offs and limitations associated
with this approach. In this paper, we focus on evaluating
the performance of LLM-generated test cases instead of
using LLMs to improve the code coverage. Yuan et al. [86]
proposed ChatTESTER to improve the quality of test cases
generated by LLMs.

7 CONCLUSION

In this article, we present a systematic assessment of unit
test suites generated by two state-of-the-art techniques:
ChatGPT and SBST. We comprehensively evaluate test suites
generated by ChatGPT from multiple critical perspectives,
including correctness, readability, code coverage, and bug
detection capability. Our experimental results demonstrate
that (1) 69.6% of the ChatGPT-generated test cases can
be successfully compiled and executed; (2) We also ob-
served that the most common violations in the gener-
ated code style were Indentation (for Google Style) and
MissingJavadocMethod (for SUN Style), while the major-
ity of the test cases exhibited low complexity; (3) Moreover,
our evaluation revealed that EvoSuite outperforms Chat-
GPT in terms of code coverage by 18.8%; and (4) EvoSuite
outperforms ChatGPT in terms of bug detection by 5%. In
this paper, our primary objective is to explore the poten-
tial benefits and limitations of leveraging Large Language
Models (LLMs) like ChatGPT in the generation of unit test
suites, particularly in comparison with traditional Search-
Based Software Testing (SBST) tools like EvoSuite. We plan
to compare the performance of various Large Language
Models (LLMs) in generating unit test suites in future work.
Such a comparison would not only provide insights into the
capabilities and limitations of different LLMs but also guide
practitioners and researchers in selecting the most suitable
models for their specific needs.

8 DATA AVAILABILITY

The experimental results and raw data are available at:
https://sites.google.com/view/chatgpt-sbst
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