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23 Abstract

24 Background: Altered neural haemodynamic activity during decision making and learning has 
25 been linked to the effects of inflammation on mood and motivated behaviours. So far, it has 
26 been reported that blunted mesolimbic dopamine reward signals are associated with 
27 inflammation-induced anhedonia and apathy. Nonetheless, it is still unclear whether 
28 inflammation impacts neural activity underpinning decision dynamics. The process of 
29 decision making involves integration of noisy evidence from the environment until a critical 
30 threshold of evidence is reached. There is growing empirical evidence that such process, 
31 which is usually referred to as bounded accumulation of decision evidence, is affected in the 
32 context of mental illness. 

33 Methods: In a randomised, placebo-controlled, crossover study, 19 healthy male 
34 participants were allocated to placebo and typhoid vaccination. Three to four hours post-
35 injection, participants performed a probabilistic reversal-learning task during functional 
36 magnetic resonance imaging. To capture the hidden neurocognitive operations 
37 underpinning decision-making, we devised a hybrid sequential sampling and reinforcement 
38 learning computational model. We conducted whole brain analyses informed by the 
39 modelling results to investigate the effects of inflammation on the efficiency of decision 
40 dynamics and reward learning.

41 Results: We found that during the decision phase of the task, typhoid vaccination 
42 attenuated neural signatures of bounded evidence accumulation in the dorsomedial 
43 prefrontal cortex, only for decisions requiring short integration time. Consistent with prior 
44 work, we showed that, in the outcome phase, mild acute inflammation blunted the reward 
45 prediction error in the bilateral ventral striatum and amygdala. 

46 Conclusions: Our study extends current insights into the effects of inflammation on the 
47 neural mechanisms of decision making and shows that exogenous inflammation alters 
48 neural activity indexing efficiency of evidence integration, as a function of choice 
49 discriminability. Moreover, we replicate previous findings that inflammation blunts striatal 
50 reward prediction error signals. 
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51 1. Introduction
52 There is now compelling experimental evidence linking systemic inflammation to depression 
53 and several other psychiatric disorders (Michopoulos, Powers, Gillespie, Ressler, & 
54 Jovanovic, 2017; Miller, 2020). One of the several converging lines of evidence supporting 
55 this contention (Krishnadas & Cavanagh, 2012) has been the observation that the 
56 behavioural changes induced by acute inflammation (also known as the sickness behaviour 
57 (Dantzer & Kelley, 2007)) are the expression of an altered motivational state. While in the 
58 short-term diminished motivation is adaptive and promotes recovery, in the long run (as in 
59 chronic inflammation) it can lead to the core functional impairments commonly observed in 
60 depression (and other mental disorders) such as apathy and anhedonia (Dantzer, O'Connor, 
61 Freund, Johnson, & Kelley, 2008). Crucially, impaired motivated behaviour has been framed 
62 in terms of aberrant effort-based decision making (Husain & Roiser, 2018; Treadway, 
63 Bossaller, Shelton, & Zald, 2012). 
64
65 Mesolimbic (and mesocortical) dopamine pathways play a key role in the neurobiology of 
66 motivated behaviour (Salamone, Correa, Ferrigno, et al., 2018; Salamone, Correa, Yang, 
67 Rotolo, & Presby, 2018) and proinflammatory cytokines such as interleukin-6 (IL-6) are 
68 known to disrupt monoamine metabolism, including the synthesis, release and reuptake of 
69 dopamine (Miller, Maletic, & Raison, 2009; Miller & Raison, 2016). Furthermore, at the 
70 neurocircuitry level, previous task-based neuroimaging studies have shown that exogenous 
71 inflammation attenuates haemodynamic responses to reward anticipation (Eisenberger et 
72 al., 2010; Moieni et al., 2019) or feedback (Capuron et al., 2012) in the dopamine rich 
73 ventral striatum. Consistent with these findings, elevated endogenous inflammation was 
74 associated with blunted striatal reward signals in medicated depressed patients (Burrows et 
75 al., 2021) and decreased resting state corticostriatal functional connectivity in unmedicated 
76 depressed subjects (Felger et al., 2016). These alterations in the reward circuitry have been 
77 associated with anhedonia and psychomotor slowing (Capuron et al., 2012; Felger et al., 
78 2016) and are mediated via deficits in striatal dopamine signalling (Capuron et al., 2012).
79
80 The field of reinforcement learning (RL) (that is, learning from feedback information) has 
81 significantly contributed to bridging the explanatory gap between molecular and 
82 neuroimaging findings in inflammation research. Notably, so far neuroimaging studies have 
83 primarily focused on the reward prediction error (RPE), a mesolimbic dopaminergic teaching 
84 signal driving associative learning and motivated behaviours (Schultz, Dayan, & Montague, 
85 1997). Considering the key role of dopamine in the context of reward learning and effort 
86 expenditure (Salamone, Correa, Ferrigno, et al., 2018; Salamone, Correa, Yang, et al., 2018; 
87 Treadway, Cooper, & Miller, 2019) aberrant RPE signalling provides a parsimonious 
88 mechanistic account of the motivational disturbances induced by acute inflammation 
89 (Dantzer et al., 2008). In support of this notion, Harrison et al. conducted a functional 
90 resonance imaging (fMRI) experiment and found that, in a sample of healthy male 
91 participants, typhoid vaccination diminished RPE activity in the ventral striatum (Harrison et 
92 al., 2016). A subsequent study extended this finding by showing that raised pro-
93 inflammatory cytokines plasma levels induced by an acute stress paradigm were associated 
94 with reduced striatal RPE activations in a sample of healthy female subjects (Treadway et al., 
95 2017). 
96
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97 While these studies have exclusively modelled neural activity associated with feedback, they 
98 have not investigated the effects of inflammation on decision dynamics at the time of 
99 choice. Bounded accumulation of noisy evidence in favour of one of two decision 

100 alternatives is a well validated domain-general theoretical account of how information is 
101 processed before committing to a response option and the rate at which decision evidence 
102 is accrued scales with choice discriminability (that is, faster for easier or more discriminable 
103 decisions and slower for more difficult or less discriminable decisions) (Ratcliff & McKoon, 
104 2008). More generally, the computational framework of sequential sampling models (SSM) 
105 has proven an invaluable tool for dissecting distinct latent neurocognitive components 
106 underpinning continuous integration of decision evidence (Bogacz, 2007; Forstmann, 
107 Ratcliff, & Wagenmakers, 2016; Krajbich, Armel, & Rangel, 2010; Shadlen & Kiani, 2013; 
108 Verdonck, Loossens, & Philiastides, 2021) and their neural substrates (Balsdon, Verdonck, 
109 Loossens, & Philiastides, 2023; Franzen, Delis, De Sousa, Kayser, & Philiastides, 2020; 
110 Gherman & Philiastides, 2015; Kelly & O'Connell, 2013). Further developments in 
111 computational modelling have combined SSM and RL algorithms to better account for the 
112 within- and across-trial complexities of choice behaviour (Luzardo, Alonso, & Mondragon, 
113 2017; Pedersen, Frank, & Biele, 2017). Importantly, the neural basis of evidence 
114 accumulation processes has now been also elucidated in the context of value-based 
115 decisions (Arabadzhiyska et al., 2022; Pisauro, Fouragnan, Retzler, & Philiastides, 2017).
116
117 In this study we set out to address this knowledge gap and devised a hybrid RL and SSM 
118 computational model to identify fMRI activity that supports accumulation of decision 
119 evidence and reward learning during a probabilistic reversal learning task (PRL), akin to a 
120 two-alternative forced-choice task under time pressure. Based on the proposal that the 
121 motivational changes observed in the context of acute inflammation represent an 
122 evolutionary adaptive response promoting host survival via reallocation of metabolic 
123 resources to more pressing needs such as wound healing and pathogen avoidance (Dantzer, 
124 2001; Hart, 1988; Miller & Raison, 2016), we hypothesised that acute inflammation would 
125 be associated with differential engagement of neuronal resources required for integration 
126 of decision evidence at the time of choice as a function of perceived decision 
127 discriminability. More specifically, we predicted that, in the service of preservation of 
128 neuronal resources, inflammation would re-prioritise neuronal recruitment underpinning 
129 evidence accumulation away from decisions that are subjectively perceived as more 
130 discriminable (and thus less “worthy” of neural expenditure) towards less discriminable (and 
131 thus more “worthy” of neural expenditure) decisions. 
132
133 To test this prediction, we conducted a randomised placebo-controlled cross-over trial on a 
134 sample of healthy male subjects and employed typhoid vaccination to induce a mild 
135 inflammatory response. We evaluated between-condition (that is, typhoid vaccination 
136 versus placebo) differences in haemodynamic activity representing short versus long 
137 duration of decision evidence integration (as an index of perceived decision discriminability) 
138 at the time of choice and the RPE at the time of outcome. Crucially, we found that typhoid 
139 vaccination induced a mild inflammatory response reminiscent of that observed in 
140 depression and interfered with the efficiency of the process of evidence accumulation, 
141 specifically on decisions requiring short integration times. In addition, we further validated 
142 that RPE signalling at the time of outcome was attenuated in several limbic areas of the 
143 brain, consistent with prior work (Harrison et al., 2016; Treadway et al., 2017). Our findings 
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144 extend current insights into the effects of inflammation on the neural mechanisms of 
145 decision making and the potential cognitive pathways linking inflammation to 
146 psychopathology.
147
148 2. Methods

149 2.1 Participants

150 We recruited potential participants from the School of Psychology and Neuroscience 
151 subjects’ pool at the University of Glasgow. Exclusion criteria were an Axis I psychiatric 
152 disorder according to the Diagnostic and Statistical Manual, fourth edition (DSM-IV); a 
153 diagnosis of physical illness which was ascertained based on participants’ self-reported 
154 medical and medication history; a diagnosis of current infection, which was ascertained 
155 based on the presence of any self-reported symptoms suggestive of active infection; a 
156 history of Salmonella typhi vaccination over the last 3 years or any other vaccinations over 
157 the last 6 months; a history of antibiotic or anti-inflammatory treatment (including 
158 nonsteroidal anti-inflammatory drugs) over the last 2 weeks; a history of substance 
159 dependence or current use of tobacco; any contraindication to Salmonella typhi vaccination 
160 or fMRI. Participants were requested to avoid caffeinated and alcoholic beverages, high-fat 
161 meals and strenuous physical exercise for 12 hours before testing. 

162

163 We only recruited male subjects in the study for various reasons. Inflammatory markers are 
164 positively associated with menstrual symptoms severity (Bertone-Johnson et al., 2014) and 
165 fluctuate throughout the menstrual cycle (Blum et al., 2005). Moreover, the use of oral 
166 contraceptives increases the level of circulating inflammatory markers (Divani, Luo, Datta, 
167 Flaherty, & Panoskaltsis-Mortari, 2015). Finally, neither a pregnancy test nor the use of 
168 contraceptives is a conclusive way of ruling out pregnancy and uncomplicated pregnancy 
169 can induce a state of low-grade inflammation (Challis et al., 2009; Palm, Axelsson, Wernroth, 
170 Larsson, & Basu, 2013; Sacks, Studena, Sargent, & Redman, 1998). 

171

172 Based on a previously documented behavioural effect size (2 = 0.96) (Harrison et al., 2016) 
173 obtained using a similar reward learning task and the same intervention (i.e. typhoid 
174 vaccine) and randomised crossover design, we estimated a sample size of 14 subjects would 
175 give us a power of 90% at alpha=0.05 (two-tailed). We also factored in a 25% drop out rate 
176 and estimated a final total sample size of 20 subjects.

177

178 2.2 Study procedures 

179 2.2.1 Study design

180 We conducted a double-blind, placebo-controlled, randomised crossover trial 
181 (https://classic.clinicaltrials.gov/ct2/show/NCT02653235) (Fig. 1). Although the study was 
182 pre-registered as a clinical trial, the behavioural task and hypotheses presented in this 

https://classic.clinicaltrials.gov/ct2/show/NCT02653235
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183 manuscript were not included in the pre-registration. Each participant received placebo or 
184 typhoid vaccine on the same arm over two separate visits. The order in which the study’s 
185 interventions were delivered was randomised according to a 1:1 allocation ratio. Treatment 
186 assignment was concealed, and the randomisation schedule was generated and kept within 
187 the pharmacy. Participants, investigators, and pharmacist were blind to treatment 
188 allocation, which was only revealed at the end of the study. To minimise the risk of 
189 unblinding, the syringes were prefilled, and the injections were administered by a nurse 
190 independent of the study. All visits were scheduled at 9am. While participants were not 
191 allowed to eat throughout the whole experimental session, they were allowed to drink 
192 water. Baseline IL-6 level, biological measurements and the self-rated Profile of Mood States 
193 (POMS) questionnaire were taken before participants received the injection. At 3 to 4 hours 
194 after the injection participants underwent MRI scanning, which included a resting state and 
195 a task-based fMRI scan. The results of the resting state fMRI scans have already been 
196 reported in previous papers (Stefanov, McLean, Allan, Cavanagh, & Krishnadas, 2020; 
197 Stefanov, McLean, McColl, et al., 2020). Follow-up IL-6 level, biological measurements and 
198 the POMS questionnaire were repeated after the scans. The choice of conducting 
199 behavioural, neuroimaging and other follow-up tests at 3 to 4 hours after the injection was 
200 based on prior evidence that mood scores in the placebo and typhoid vaccine groups 
201 separated out at 3 hours post injection (Wright, Strike, Brydon, & Steptoe, 2005). All 
202 participants provided written informed consent. The study protocol was approved by the 
203 West of Scotland Ethics Committee. 

204
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205
206 Fig. 1. Experimental design and systemic biological response. (A) The study design and 
207 experimental protocol. SCID is the Structured Clinical Interview for DSM-IV. IL-6 is 
208 interleukin 6. POMS is the self-rated Profile of Mood States questionnaire. (B) CONSORT 
209 Flow Diagram (C) Interaction plot showing significant effect of typhoid vaccine on plasma IL-
210 6 levels as indexed by statistically significant time (pre- vs. post-injection) x condition 
211 (placebo vs. typhoid vaccine) interaction. (D-E) Interaction plots showing no significant 
212 effect of typhoid vaccine on heart rate (bpm) and tympanic temperature (oC). Means  SEM 
213 are shown. Color-coded semi-transparent lines represent individual data.  *** p<0.001
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214

215 2.2.2 Study interventions

216 Salmonella typhi (Typhim Vi) vaccine consisted of the Vi capsular polysaccharide typhoid 
217 vaccine (Sanofi Pasteur Europe, Lyon, France), 50-mg/mL virulence polysaccharide antigen 
218 of formaldehyde-inactivated Salmonella typhi. The typhoid vaccine is a low-grade 
219 inflammatory challenge which has been shown to significantly increase IL-6 plasma levels 
220 (Brydon et al., 2009; Harrison et al., 2009; Strike, Wardle, & Steptoe, 2004; Wright et al., 
221 2005). Crucially, the typhoid vaccine gives rise to the host of acute, transient and mild 
222 cognitive, affective, and motivational changes that are typical of sickness behaviour and 
223 resemble depressive features, without any effect on joint pain, tympanic temperature, or 
224 hemodynamic parameters (Brydon et al., 2009; Harrison et al., 2009; Strike et al., 2004; 
225 Wright et al., 2005). The placebo was 0.5 ml of isotonic saline solution.

226

227 2.2.3 Biological measurements and the POMS questionnaire

228 At the start of each visit all participants were screened for the presence of DSM-IV Axis I 
229 psychiatric disorders using the Structured Clinical Interview for DSM-IV. Moreover, 
230 additional baseline psychological measurements included the State-Trait Anxiety Inventory 
231 (Spielberger, 1983), the Beck Depression Inventory (Beck, Steer, & Brown, 1996) and the 
232 Functional Assessment of Chronic Illness Therapy – Fatigue Scale (Webster, Cella, & Yost, 
233 2003) to screen for any baseline trait and state anxiety, subclinical depression and severe 
234 fatigue.

235

236 On each visit patients completed the POMS questionnaire (McNair, 1971) at baseline and 3 
237 to 4 hours post-injection. The POMS is a validated self-rated psychometric scale designed to 
238 assess transient mood symptoms and is thus sensitive to the cognitive, affective and 
239 motivational changes associated with inflammation-induced sickness behaviour. The POMS 
240 is made up of 65 items grouped in 6 different subscales assessing different mental state 
241 dimensions such as Tension-anxiety, Depression-dejection, Anger-hostility, Fatigue-inertia, 
242 Confusion-bewilderment and Vigour-activity. The Total Mood Disturbance score is 
243 calculated by subtracting the Vigour-activity score from the total obtained from adding up 
244 the scores of the other subscales.

245

246 Tympanic temperature, heart rate, blood pressure and plasma IL-6 level were measured at 
247 baseline and 3 to 4 hours post-injection. Moreover, at 3 to 4 hours post-injection a research 
248 nurse ascertained whether participants reported any pain or discomfort at the injection site 
249 and visually inspected the injection site for the presence of swelling. To measure plasma IL-6 
250 level a sample of 10 mL of venous blood was drawn into BD Vacutainers (BD Biosciences, 
251 Franklin Lakes, NJ) containing K2EDTA and centrifuged immediately at 8000 rpm for 10 
252 minutes. Plasma was collected and frozen at -80oC. IL-6 was assayed in duplicate using 
253 Human IL-6 Quantikine High-Sensitivity ELISA kits (R&D Systems, Minneapolis, MN) as per 



9

254 the manufacturer’s instruction. Optical densities were read using an Infinite 200 PRO TECAN 
255 microplate reader (Tecan, Männedorf, Switzerland) and were converted into concentrations 
256 against a 7-point standard curve. The kit sensitivity was 0.11 pg/mL and the intra- and inter-
257 assay coefficients of variation were 10% and 11%, respectively. There were no IL-6 values 
258 below the detection limit. Furthermore, based on the finding of a previous meta-analysis 
259 that the pooled estimate of IL-6 values in the blood of healthy adult donors (n=3166) was 
260 5.186 pg/ml (95% confidence interval: 4.631, 5.740) (Said et al., 2021), we considered any 
261 baseline IL-6 value exceeding the upper 95% confidence interval limit (i.e. 5.74 pg/ml) as 
262 indicative of possible active infection. We did not find any baseline IL-6 values in our sample 
263 to be greater than this cut-off.

264

265 2.2.4 Behavioural task

266 In the fMRI experiment we employed a PRL task (n=180), which is shown in Figure 2 and was 
267 previously described in (Fouragnan, Queirazza, Retzler, Mullinger, & Philiastides, 2017; 
268 Fouragnan, Retzler, Mullinger, & Philiastides, 2015; Queirazza, Fouragnan, Steele, Cavanagh, 
269 & Philiastides, 2019). Briefly, participants were required to choose between two abstract 
270 visual stimuli, which were randomly sampled from a pool of 18 different geometrical 
271 shapes. Both stimuli could yield either a positive (+10) or negative (−10) outcome devoid of 
272 monetary value. Reinforcement contingencies were probabilistic and asymmetrically 
273 skewed so that one stimulus (i.e. the high probability stimulus) had a greater chance of 
274 yielding a positive outcome than the other stimulus (i.e. the low probability stimulus). 
275 Reversals of reinforcement contingencies were triggered when participants chose the high-
276 probability stimulus five times over the last six trials. As a result, participants experienced a 
277 different number of reversals. Furthermore, to prevent participants from easily figuring out 
278 the underlying reversal rule, we ran a randomly generated number of buffer trials from a 
279 zero-truncated Poisson distribution before reversing stimulus-outcome contingencies. 

280

281 Participants were advised of the probabilistic nature of the task and that reinforcement 
282 contingencies might reverse based on their performance. They were also advised the goal of 
283 the task was to get as many positive outcomes (i.e. +10) as possible and that their 
284 performance would be monitored. Moreover, to allow participants to familiarise themselves 
285 with the nature of the task, they had a 5-minutes practice session before the fMRI scan. The 
286 task was programmed using Presentation (Neurobehavioural Systems) stimulus delivery 
287 software. Participants were remunerated at the end of each experimental session for their 
288 participation, including their daily and travel allowance (up to £100).  

289

290 The PRL task is ideally suited to probing biases in the acquisition and processing of feedback 
291 during probabilistic learning. Optimal performance rests on the subjects’ ability to infer 
292 whether fluctuations in the observed stimulus-outcome associations reflect either noise 
293 (given the stochastic reinforcement schedule) or sudden environmental changes (that is, 
294 reversals). 
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295

296 Fig. 2. Behavioural task and computational model. (A) Probabilistic reversal learning task. 
297 Each trial commenced with a jittered interstimulus interval (1 to 4 s) displaying a fixation 
298 cross. Subsequently, two geometrical shapes appeared randomly on either side of the 
299 screen for 1.25 s. Participants had 1 s to make a choice via a button press. In case of late 
300 responses participants were presented with a screen prompting them to respond faster. 
301 Following a second jittered interstimulus interval (1 to 4 s), participants were presented 
302 with the outcome of their decision for 0.65 s. Outcome was either positive (+10) or negative 
303 (−10). Reinforcement contingencies were asymmetrically skewed (70 to 30%) so that the 
304 expected value of the two stimuli was of the same magnitude but of opposite sign. To 
305 maximize the design efficiency for the fMRI analysis, the duration of jittered interstimulus 
306 intervals was optimized using a genetic algorithm. (B) Short (dark blue/red) versus long 
307 (light blue/red) integration time. We modelled the decision phase of the task using an OU 
308 process. Solid red and blue traces represent moment-by-moment ramping up of decision 
309 evidence at slow (right) and fast (left) accumulation rates indexing decisions of low and high 
310 discriminability respectively. Magnitude of accumulation rates was determined by 
311 difference of expected values (as a proxy measure of subjective decision discriminability), 
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312 ‘urgency’ to make decision and stochasticity inherent to decision process (that is, noise). 
313 Shaded areas under EA ramps denote short (dark blue/red) versus long (light blue/red) 
314 integration times. Convolution of short versus long AUCs (that is, area under EA curves) with 
315 a hemodynamic response function (HRF) yields low versus high predicted BOLD activity 
316 respectively. Dotted black line represents non-decision time. 

317

318 2.3 Computational modelling

319 2.3.1 Model architecture

320 To provide a fine-grained mechanistic account of the decision-making processes underlying 
321 observed choice behaviour during the PRL task we devised nested hybrid RL and SSM 
322 computational models (Pedersen et al., 2017). Based on prior empirical findings that 
323 integration of decision evidence is a domain-general mechanisms also pertaining to value-
324 based decisions (Krajbich et al., 2010; Pisauro et al., 2017), we mathematically described the 
325 decision phase of the task using an Ornstein-Uhlenbeck (OU) process (Arabadzhiyska et al., 
326 2022; Pisauro et al., 2017; Polania, Krajbich, Grueschow, & Ruff, 2014) as the choice rule. 
327 The OU process is a variant of the leaky competing accumulator family of models (Bogacz, 
328 Brown, Moehlis, Holmes, & Cohen, 2006). It assumes that a decision is made by 
329 accumulating noisy evidence via a single integrator (i.e. decision unit) until a decision 
330 boundary is reached in favour of one of two alternatives. Within each trial decision evidence 
331 is continuously updated as per the following equation:

332

333 𝐸𝐴𝑡+1 =  𝐸𝐴𝑡 + (𝜆𝐸𝐴𝑡 + 𝜅𝐷𝑉𝑘)𝑑𝑡 + 𝜎𝑑𝑊𝑡

334

335 where EA is the amount of evidence accumulated at time t, DV denotes the signed decision 
336 variable’s magnitude at trial k (that is, the trial-by-trial difference between choice values Q1 
337 and Q2) thus indexing choice discriminability (i.e. difficulty), dW represents independent 
338 (Wiener) white noise fluctuations at time t thus accounting for RT within-trial variability and 
339 dt is the sampling timestep, which was set to 0.001s. The free parameter  denotes 
340 sensitivity to choice discriminability and can be interpreted as the individual ability to 
341 discern decision evidence. While the free parameter  represents the ‘urgency’ to reach the 
342 decision boundary, the free parameter  scales the inherent noisiness corrupting decision 
343 evidence accumulation. Moreover, we included a lag parameter nDT, which accounts for 
344 non-decision time processes including encoding of visual stimuli and motor 
345 preparation/execution. Unless otherwise specified we assumed that a decision is made 
346 when |EA| is 1. Response times are estimated by the time EA takes to reach the decision 
347 threshold plus the non-decision time nDT. We assumed the starting point was 0 and thus 
348 unbiased. The DV determines the average rate of evidence accumulation per unit of time 
349 operating as a dynamic drift rate. Crucially, we estimated the efficiency of decision evidence 
350 integration by computing the area under the curve (AUC) of trial-wise EA ramps to 
351 quantitatively model the efficiency of neural processing of decision evidence as a function of 
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352 perceived choice discriminability (Figure 2B) (Pisauro et al., 2017). Short integration times 
353 are determined by steeper EA ramps, which are on average associated with greater DV 
354 values thus indexing (subjectively) more discriminable and therefore less ‘effortful’ 
355 decisions. Conversely, long integration times result from shallow EA ramps that are linked to 
356 smaller DV values denoting (subjectively) less discriminable and therefore more ‘effortful’ 
357 decisions.

358

359 Choice values Q1 and Q2 are updated according to a conventional Rescorla-Wagner learning 
360 rule: 

361

362 𝑄𝑖
𝑘+1 =  𝑄𝑖

𝑘 + 𝛼(𝑅𝑘 ―  𝑄𝑖
𝑘)

363

364 where R is the feedback received at trial k and superscript i  [1,2] indicates the chosen Q 
365 value at trial k. The difference between feedback R and expected Q value represents the 
366 RPE. The free parameter  is the learning rate. We tested 3 differently parameterised 
367 models, which are illustrated in Table 1. In the RLSSM1 model we fixed the parameters  to 
368 increase model’s parsimony. In the RLSSM3 model we allowed the decision bound to vary 
369 across participants as the free parameter a. A higher decision bound reflects slower but 
370 more accurate decisions and vice versa. A major advantage of our hybrid modelling 
371 approach is that combining RL and SSM models accounts for both within-trials (i.e. ramping 
372 up of decision evidence) and across-trials (i.e. feedback-based updating of the decision 
373 variable) decision dynamics.

374

nDT     a

RLSSM1 3.251.03 1.890.36 1.180.6 -1.811.74 1 1

RLSSM2      

RLSSM3      

375 Table 1. Models’ parameters. We fitted 3 differently parameterised models to observed RTs 
376 and choice data. Mean  standard deviation of fitted parameters in their native space are 
377 shown for the best fitting model. Bold fonts (and red crosses) indicate fixed parameters.

378
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379 2.4.2 Model fitting 

380 For each subject j we fitted a computational model to the observed choices and RT 
381 distributions and estimated the negative log likelihood NLL using the following cost 
382 function:

383

384 𝑁𝐿𝐿𝑗 = ―[𝑙𝑜𝑔(𝐾𝑆(𝑅𝑇𝑐ℎ𝑜𝑖𝑐𝑒 1
𝑑𝑎𝑡𝑎 ,𝑅𝑇𝑐ℎ𝑜𝑖𝑐𝑒 1

𝑚𝑜𝑑𝑒𝑙 )) + 𝑙𝑜𝑔(𝐾𝑆(𝑅𝑇𝑐ℎ𝑜𝑖𝑐𝑒 2
𝑑𝑎𝑡𝑎 ,𝑅𝑇𝑐ℎ𝑜𝑖𝑐𝑒 2

𝑚𝑜𝑑𝑒𝑙 ))]

385

386 where KS(x,y) is the Kolmogorov-Smirnov test (kstest2 function in Matlab) estimating the 
387 probability that x and y come from the same continuous distribution.

388

389 To optimise model parameters, we initially performed a search over a coarse grid of values 
390 and identified the subject-specific set of parameter values minimising the NLL cost function. 
391 For each parameter we set an upper and lower grid bound ( [0.5,3],  [1,3],  [-0.5,2], nDT 
392 [1,5],  [-4,4], a [-1,0]) in the parameters’ native space and then sampled 20 equally spaced 
393 values including the grid bounds. To enforce the parameters natural bounds, we 
394 implemented log (, , , nDT, a) and logit () transforms of the parameter values. We then 
395 used the parameter values obtained from the grid search to initialise a quadratic 
396 optimisation routine (fminunc function in Matlab) and derived the best fitting set of 
397 parameter estimates. 

398

399 2.3.3 Model comparison and validation

400 To perform formal model comparison, we estimated the Bayesian Integration Criterion (BIC) 
401 as follows:

402

403 𝐵𝐼𝐶 =
𝑁

𝑗
2𝑁𝐿𝐿𝑗 + 𝑑𝑙𝑜𝑔(𝑇𝑗)

404

405 where T is the total number of trials for subject j and d is the number of free parameters.

406 To evaluate the models’ ability to reproduce observed response latency and accuracy, we 
407 correlated fitted and observed subject- and choice-wise mean RTs and accuracy using 20% 
408 bend correlation test (Pernet, Wilcox, & Rousselet, 2012).

409
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410 2.4 fMRI

411 2.4.1 fMRI data acquisition

412 We used a 3T GE system with an eight-channel parallel imaging head coil. We acquired a 
413 high-resolution T1-weighted structural image (0.5 mm by 0.5 mm by 1.2 mm voxels, 512 by 
414 512 matrix, 124 axial slices, inversion time (TI) = 450 ms, repetition time (TR) = 7700 ms, 
415 echo time (TE) = 1.5 ms, flip angle = 12°) using an optimized inversion recovery fast spoiled 
416 gradient echo sequence and a functional echo planar imaging scan (3-mm isotropic voxels, 
417 64 by 64 matrix, 608 axial slices, TR = 2000 ms, TE = 30 ms, flip angle = 80°). Slice orientation 
418 was tilted to +30° from the anterior commissure-posterior commissure (AC-PC) plane to 
419 reduce signal dropout in the orbitofrontal cortex (Weiskopf, Hutton, Josephs, & Deichmann, 
420 2006). The first four volumes of the functional scan were discarded to allow for the 
421 magnetic field to reach the steady state. 

422

423 2.4.2 fMRI data preprocessing

424 fMRI data preprocessing and statistical analyses were performed using FSL (FMRIB’s 
425 software library) software. Preprocessing pipeline involved intramodal motion correction 
426 using MCFLIRT (motion correction FMRIB’s linear image registration tool), slice timing 
427 correction, spatial smoothing with an isotropic 5-mm full width at half maximum Gaussian 
428 kernel, high-pass temporal filtering with a cut-off frequency of 110 s, and grand-mean 
429 intensity normalization of each entire four-dimensional dataset. Functional scans were 
430 subsequently coregistered with skull-stripped structural images using boundary-based 
431 registration as implemented in FLIRT (FMRIB’s linear image registration tool) and spatially 
432 normalized into MNI152 space using FNIRT (FMRIB’s non-linear image registration tool) 
433 nonlinear registration. 

434

435 2.4.3 fMRI data analysis

436 We performed whole-brain statistical analyses using a multilevel mixed-effects approach as 
437 implemented in FLAME1 (FSL). Our choice to conduct whole-brain analyses was motivated 
438 by the distributed nature of the brain networks exhibiting EA dynamics during decision 
439 making (Gherman et al., 2024). Importantly, we implemented a model-based fMRI approach 
440 (O'Doherty, Hampton, & Kim, 2007), where the regressors of interest were continuous 
441 parametric regressors derived from the model fit. At the first level, we built a design matrix 
442 modelling both the decision and outcome phases of the behavioural task. 

443

444 To probe the effect of inflammation on the efficiency of decision dynamics such as bounded 
445 evidence accumulation we investigated brain activity covarying with the trial-wise AUC 
446 estimates of the fitted EA ramps. The model-derived AUC estimates reflect the level of 
447 underlying aggregate activity of pools of neurons involved in stimulus value integration and 
448 should therefore scale with BOLD responses in regions of the brain that operate as evidence 
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449 accumulators (that is, as shown in Figure 2B, greater BOLD responses for long integration 
450 time and vice versa). More specifically, we reasoned that inflammation may differentially 
451 impact neural integration of decision evidence at different timescales (short versus long 
452 integration time) and thus as a function of perceived choice discriminability. To test this 
453 hypothesis, we modelled the interaction effect of evidence integration time (short versus 
454 long) and experimental condition (placebo versus typhoid vaccine) on the neural 
455 accumulation of decision evidence. At the first level we set up a contrast (i.e. short – long 
456 evidence integration time) to capture the (simple) effect of evidence integration time in the 
457 placebo and typhoid conditions. At the second level, we tested for a significant between-
458 condition difference of the simple effects. 

459

460 In the main analysis we built a design matrix where we derived two parametric regressors 
461 by performing a median split of the fitted AUC estimates so that while one regressor 
462 modelled “long” EA processes (that is, equal to/greater than median AUC value), another 
463 regressor modelled “short” EA processes (that is, smaller than median AUC value). We also 
464 included a nuisance regressor, which was modulated by the reaction times and thus 
465 accounted for both visual stimulation and motor response. All the regressors in the decision 
466 phase were aligned with the onset of the decision phase. In a supplementary analysis we 
467 used a single parametric regressor for accumulated evidence in the design matrix. The goal 
468 of this supplementary analysis was to test for any significant effect of typhoid vaccine on the 
469 neural encoding of decision evidence accumulation independent of integration time.

470

471 The regressors in the outcome phase were aligned with the onset of the outcome phase and 
472 included a parametric regressor of interest encoding the trial-wise model-derived RPE 
473 estimates and two unmodulated nuisance regressors representing visual stimulation and 
474 lost trials respectively. We included six additional motion parameters (three translations and 
475 three rotations) estimated during the motion correction phase as regressors of no interest. 
476 We modelled all regressors as stick functions. We ensured that our design matrix was well 
477 conditioned and not rank deficient using the collinearity diagnostics incorporated in FSL. We 
478 convolved all regressors with a hemodynamic response function (double gamma function). 

479

480 To test for any significant between-condition (placebo versus typhoid vaccine) differences 
481 we conducted a second-level mixed-effects analysis of the subject-wise linear contrasts of 
482 the parameter estimates using a paired two-sample t test. We thresholded the resulting Z 
483 statistic images using a cluster-defining threshold of Z > 2.57 and an FWE-corrected 
484 significance threshold of P = 0.05. 

485

486 2.5 Statistical analyses

487 2.5.1 Biological measurements and POMS scores
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488 To identify outlying IL-6 values we calculated the z-score of the pre- and post-injection IL-6 
489 values in both the typhoid vaccine and placebo conditions and considered any z-score equal 
490 to or greater than 3 as an outlier. We identified two IL-6 outlying values in the typhoid 
491 vaccine condition. We applied a log-transformation to treat outlying IL-6 measures and 
492 correct positively skewed data. To test for any significant between-condition differences in 
493 the pre- to post-injection mean change of log(IL-6), biological measurements and POMS 
494 scores we conducted 2x2 repeated measures ANOVA using factors condition and time as the 
495 independent variables and examining the condition x time interaction. 

496

497 2.5.2 Behaviour and model parameters

498 To analyse observed choice behaviour during the task we conducted maximal by-subject 
499 random intercept and random slopes generalised and loglinear mixed-effects models (Barr, 
500 Levy, Scheepers, & Tily, 2013) using the lme4 package in R (http://www.r-project.org) and 
501 allowing for random correlations between independent variables. We tested the statistical 
502 significance of the fixed effects using the likelihood ratio test (Barr et al., 2013). 

503

504 To test task related learning effects as a function of the experimental condition (placebo 
505 versus typhoid vaccine) we conducted the following mixed-effects regression model:

506

507 𝑙𝑜𝑔𝑖𝑡(𝑐ℎ𝑜𝑖𝑐𝑒) = 1 + ℎ𝑝𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + (1 + ℎ𝑝𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)

508

509 where hps denotes the high probability symbol. A positive main effect of the high probability 
510 symbol on choice behaviour suggests a learning effect on task performance. The interaction 
511 term captures the effect of typhoid vaccine on task performance.

512

513 Furthermore, we ascertained whether there was any typhoid-dependent feedback valence 
514 (fbk) effect on the probability of repeating same choice (stay) and response times (RT) as per 
515 the following models:

516

517 𝑙𝑜𝑔𝑖𝑡(𝑠𝑡𝑎𝑦) = 1 + 𝑓𝑏𝑘 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + (1 + 𝑓𝑏𝑘 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)

518

519 𝑙𝑜𝑔(𝑅𝑇) = 1 + 𝑓𝑏𝑘 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + (1 + 𝑓𝑏𝑘 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)

520

http://www.r-project.org
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521 To test for any significant between-condition differences in behavioural measures (including 
522 mean accuracy and median RT) and model parameters we conducted the following linear 
523 regression model:

524

525 𝑣𝑐𝑛𝑗 ― 𝑝𝑙𝑏𝑗 = 1 + 𝑜𝑟𝑑𝑒𝑟𝑗 + 𝑝𝑙𝑏𝑗

526

527 where the intercept represents the between-condition mean difference adjusted for 
528 potential order effect. The factor order indexes whether, for subject j, typhoid vaccine was 
529 administered during the first or second visit and the term 𝑝𝑙𝑏 is the mean-centred placebo 
530 score, here used as a covariate to reduce sampling variance and increase statistical power 
531 (Hedberg & Ayers, 2015). 

532

533 3. Results

534 3.1 Participants

535 We recruited twenty healthy male participants. One participant advised he had been 
536 diagnosed with clinical depression and commenced on antidepressant treatment during his 
537 second visit and was thus excluded from the study sample. Otherwise, we did not find 
538 evidence of Axis I psychiatric disorder, trait and state anxiety, subclinical depression and 
539 severe fatigue for the remaining participants. The sample mean age was 25.63  6.52 years 
540 and the sample mean BMI was 22.76  2.17. 

541

542 3.2 Biological measurements and POMS scroes

543 Typhoid vaccine significantly raised IL-6 plasma levels (condition x time interaction: 
544 F1,18=31.4, p<.001) as shown in Figure 1C. Typhoid vaccine was not associated with a 
545 significant change in tympanic temperature (condition x time interaction: F1,18=1.18, p=.29) 
546 (Figure 1D), heart rate (condition x time interaction: F1,18=.321, p=.57) (Figure 1E), systolic 
547 (condition x time interaction: F1,18=.008, p=.93) or diastolic (condition x time interaction: 
548 F1,18=1.69, p=.21) blood pressure. Moreover, none of the participants reported any 
549 discomfort or pain, or exhibited swelling on the injection site at 3 to 4 hours post-injection, 
550 all of which minimised the risk of unblinding. 

551

552 We did not find any statistically significant effect of the condition x time interaction on 
553 POMS total and sub scores (total POMS: F1,18=.85, p=.37; depression: F1,18=.008, p=.93; 
554 fatigue: F1,18=3.4, p=.08; vigour: F1,18=.28, p=.6; tension: F1,18=.008, p=.93; confusion: 
555 F1,18=.61, p=.45; anger: F1,18=.65, p=.43). While failing to reach statistical significance, 
556 severity of fatigue symptomatology was greater in the typhoid vaccine condition and was 
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557 the most pronounced behavioural difference as a function of inflammation. Raw biological 
558 measures and POMS scores are shown in Table 2.

559

Placebo 
(pre)

Placebo 
(post)

Vaccine (pre) Vaccine 
(post)

Biological measures

IL-6 (pg/ml) 0.910.51 1.210.89 1.281.28 5.267.19

Tympanic temperature 
(oC)

35.730.52 35.970.45 35.880.45 35.960.40

Systolic pressure (mmHg) 120.479.94 122.116.65 120.2111.39 121.477.10

Diastolic pressure 
(mmHg)

78.477.50 75.267.10 76.118.81 75.747.82

Heart rate (bpm) 75.3713.86 65.799.20 73.7914.97 65.688.70

POMS

Tension - anxiety 11.262.16 10.321.6 11.262.42 10.371.83

Depression – dejection 15.581.12 15.370.96 15.791.36 15.632.52

Anger – hostility 13.052.15 12.841.46 13.372.77 12.841.38

Vigour – activity 26.375.06 24.956.15 27.324.97 25.057.79

Fatigue – inertia 9.322.52 8.372.03 9.682.81 10.374.02
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560 Table 2. Raw biological measurements, POMS scores and behavioural results. Mean  
561 standard deviation are shown for data collected before (pre) and after (post) injection.

562

563 3.3 Model comparison and fit

564 On formal model comparison we found that the most parsimonious model RLSSM1 provided 
565 the best fit to observed behaviour (BIC=569) compared to RLSSM2 (BIC=694) and RLSSM3 
566 (BIC=704) (Figure 3A). Moreover, we found that RLSSM1 was able to reproduce observed 
567 behavioural effects as across subjects correlations between fitted and observed mean RT 
568 and choice accuracy were statistically significant (Figure 3B-C). Taken together, these results 
569 show that both predictive and generative performance of our best fitting model is robust 
570 and thus validate such model as an accurate description of the cognitive processes 
571 underpinning decision making and learning during the task (Palminteri, Wyart, & Koechlin, 
572 2017).

573

Confusion - bewilderment 10.741.52 10.371.12 10.581.54 10.532.14

Behavioural Task

Accuracy rate 0.660.07 0.640.1

Reaction time (seconds) 0.650.07 0.640.07
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574

575 Fig 3. Model checking and behavioural results. (A) Model comparison showing BIC (less is 
576 better). (B-C) Scatter plots (n=76) showing the relationship between subject-wise fitted and 
577 observed mean choice reaction times in seconds (B) and mean choice accuracy (C). (D) Violin 
578 plot showing non-significant between-condition comparison of reaction times (RT) in 
579 seconds. Grey line represents interquartile range and white circle denotes the median. Light 
580 blue (n=19) and purple (n=19) dots represent individual subjects. rbend stands for 20% bend 
581 correlation coefficient.

582

583 3.3 Behaviour and model parameters

584 On average participants performed above chance level during the task (main effect of hps:  
585 = 1.34, p < .001) although there was no significant effect of typhoid vaccine on task 
586 performance (interaction effect of hps:intervention :  = -.11, p = .45). Positive feedback 
587 significantly increased the probability of repeating same choice ( = 3.28, p < .001) but not 
588 the speed of button presses ( = .003, p = .81) on subsequent trials. There was no significant 
589 typhoid dependent effect of feedback on choice perseveration ( = -.25, p = .40) and 
590 response times ( = -.01, p = .59). We did not find typhoid vaccine to have any significant 
591 effect on behavioural variables recorded during the RL task including response latencies 
592 (t16=1.18, p=.25) (Figure 3D) and choice accuracy (t16=.84, p=.42) (Table 2). Likewise, there 
593 were no statistically significant between-condition differences in the best-fitting model 
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594 parameters estimates (nDT : t16=.87, p=.39;  : t16=.85, p=.41;  : t16=.89, p=.38;  : t16=.71, 
595 p=.49) (Figure 4). Thus, typhoid vaccine did not have a significant effect on non-decision 
596 time (nDT), the step size of choice value update (), the ‘urgency’ to make a decision () and 
597 the individual ability to discern decision evidence (). It is possible that the lack of significant 
598 behavioural and computational effects of the typhoid vaccination was due to i) the low-level 
599 inflammatory response and ii) insufficient power because of the relatively small sample size. 

600

601 Previous studies documented significant behavioural findings in the context of low-grade 
602 inflammation, albeit employing different behavioural and experimental paradigms. Harrison 
603 et al. found that typhoid vaccination enhanced punishment but attenuated reward 
604 sensitivity during a reinforcement learning task (Harrison et al., 2016). However, in their task 
605 punishment and reward learning were tested in separate sessions and stimulus-outcome 
606 contingencies were not reversed. Boyle et al. reported that the probability of choosing the 
607 more frequently rewarded of two stimuli (that is, reward responsiveness) in a popular 
608 (implicit) reward learning task (Pizzagalli, Jahn, & O'Shea, 2005) was positively correlated 
609 with IL-6 plasma concentrations following acute stress (Boyle, Stanton, Eisenberger, 
610 Seeman, & Bower, 2020) and influenza vaccination (Boyle et al., 2019). Though, reward 
611 sensitivity, as indexed by a computational parameter scaling reward magnitude, was not 
612 associated with IL-6 plasma concentrations (Boyle et al., 2019). Crucially, reward 
613 responsiveness reflects a reward-induced (implicit) response bias that is not captured by our 
614 task. We thus argue that the lack of behavioural findings in our study compared to previous 
615 work is primarily due to various significant methodological differences.

616

617 We thus ascertained whether fMRI data provided additional explanatory power to reveal 
618 the hypothesised (most likely subtle) effects of typhoid-induced inflammation on decision 
619 dynamics.

620
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621

622 Fig. 4. Fitted parameters. Violin plots showing fitted estimates of model parameters (in 
623 their native space) as a function of experimental condition. We did not find any between-
624 condition significant differences. Grey line represents interquartile range and white circle 
625 denotes the median. Light blue (n=19) and purple (n=19) dots represent individual subjects. 
626 nDT stands for non-decision time parameter.

627

628 3.4 fMRI

629 3.4.1 Model-based fMRI analysis

630 In the decision phase of the reward learning task, we found a significant interaction effect of 
631 evidence integration time and experimental condition on the neural accumulation of 
632 decision evidence in the dorsomedial prefrontal cortex (dmPFC) bilaterally (peak Z score = 
633 3.7; MNI space coordinates = 0,50,34; p < .05 FWE) (Figure 5A). Conversely, we did not find 
634 any evidence that the typhoid vaccine had a significant effect on BOLD activity covarying 
635 with the accumulation of decision evidence independent of integration time. As shown in 
636 Figure 6, the interaction effect was primarily driven by typhoid-induced attenuation of BOLD 
637 activity representing short EA processes. Moreover, we did not observe a monotonic effect 
638 of integration time on the dmPFC haemodynamic responses in the placebo condition. 
639 Correspondingly, dmPFC activity significantly correlated with post-injection log(IL-6) plasma 
640 concentrations in the typhoid vaccine but not the placebo condition (Figure 5C). In our task 
641 we did not experimentally manipulate different levels of stimulus discriminability (or 
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642 difficulty) to explicitly modulate evidence integration times and associated haemodynamic 
643 responses. It is thus possible that the variability of EA-evoked BOLD responses in the 
644 placebo condition was insufficient to reveal a monotonic effect of integration time. Taken 
645 together, these results seem to suggest that low-grade inflammation differentially affect 
646 neural integration of decision evidence diverting neural recruitment away from decisions 
647 which are subjectively perceived as more discriminable and thus easier to integrate. We 
648 interpret this finding as evidence that transient mild inflammation re-prioritises allocation of 
649 neuronal resources away from decisions that are easier to integrate in the service of energy 
650 preservation.

651

652 At the time of outcome, we found that BOLD activity covarying with the fitted model-
653 derived RPE estimates was significantly lower in the vaccine compared to the placebo 
654 condition as shown in Figure 5B. Typhoid vaccine attenuated RPE signals in the bilateral 
655 putamen (peak Z score = 3.69; MNI space coordinates = -28,-2,-10; p < .05 FWE), bilateral 
656 amygdala (peak Z score = 3.71; MNI space coordinates = -26,-2,-24; p < .05 FWE), bilateral 
657 hippocampus (peak Z score = 3.6; MNI space coordinates = 22,-8,-28; p < .05 FWE), bilateral 
658 parahippocampus (peak Z score = 3.96; MNI space coordinates = -28,-30,-22; p < .05 FWE) 
659 and left supramarginal gyrus (peak Z score = 3.6; MNI space coordinates = -54,-42,22; p < .05 
660 FWE). Moreover, BOLD activity in the RPE cluster was more significantly associated with 
661 post-injection log(IL-6) plasma concentrations in the typhoid vaccine than in the placebo 
662 condition (Figure 5D). Our findings replicate previous reports of inflammation-induced 
663 blunting of striatal RPE signals (Harrison et al., 2016; Treadway et al., 2017). 

664
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665

666 Fig. 5. fMRI results. (A) During the decision phase BOLD activity in the bilateral dmPFC 
667 denoted a significant interaction effect of evidence integration time (IT) and experimental 
668 condition on the neural accumulation of decision evidence as tested by the contrast Short 
669 ITVCN – Long ITVCN < Short ITPLB – Long ITPLB. (B) During the outcome phase BOLD activity in the 
670 bilateral putamen and amygdala/hippocampus complex encoding the RPE was attenuated in 
671 the vaccine compared to the placebo condition. MNI coordinates are shown. p < .05 FWE. 
672 (C-D) Scatter plots (n=38) showing correlations between post-injection log(IL-6) plasma 
673 concentrations and average parameter estimates (i.e. beta weights) extracted from the 
674 dmPFC (C) and the RPE cluster (D). Light blue and purple dots represent individual subjects 
675 in the typhoid vaccine and placebo condition respectively. rbend indicates the 20% bend 
676 correlation coefficient.

677
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678

679 Fig. 6. Interaction plot showing the significant effect of typhoid vaccine on dmPFC beta 
680 weights as a function of evidence integration time (IT) (i.e. short versus long). Means  SEM 
681 are shown. Color-coded semi-transparent lines represent individual data.

682

683 4. Discussion
684 Our data showed that acute low-grade inflammation diminishes neural activity linked to the 
685 accumulation of decision evidence in the dmPFC as a function of perceived decision 
686 discriminability. We have thus offered novel mechanistic evidence suggesting that 
687 inflammation interferes with the efficiency of neural accumulation of evidence in the 
688 decision process itself. We leveraged the insights afforded by a hybrid RL and SSM 
689 computational model into the latent components of information processing leading up to 
690 choice selection and specifically probed BOLD activity encoding sequential temporal 
691 integration of decision evidence. Bounded evidence accumulation (or integration) 
692 constitutes a general framework to investigate how the brain processes decision evidence 
693 and ultimately determines choice behaviour (Forstmann et al., 2016; Ratcliff & McKoon, 
694 2008; Ratcliff, Smith, & McKoon, 2015). It denotes the sequential sampling of noisy 
695 (perceptual or value-based) information about a stimulus (or set of stimuli) to some 
696 threshold level (that is, boundary) whence a choice is made (Forstmann et al., 2016; Shadlen 
697 & Kiani, 2013). Crucially, the efficiency of evidence accumulation is represented by the rate 
698 (or speed) at which evidence is accrued, that depends on the strength (or discriminability) of 
699 observed stimuli and is usually parameterised by the drift rate. In this study we set the 
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700 (dynamic) drift rate to the expected value difference of two available choice options to 
701 account for inter-trial variability in perceived choice difficulty (or discriminability). Other 
702 factors influencing the efficiency of evidence accumulation are decision noise and urgency 
703 (Bogacz et al., 2006). While the former describes the inherent stochasticity of the evidence 
704 sampling process that corrupts stimulus strength, the latter denotes the “urgency” to 
705 accelerate evidence accumulation to the decision bounds. Thus, the smaller the magnitude 
706 of the decision noise and/or urgency the smaller the rate of evidence accumulation and vice 
707 versa. 
708
709 Most importantly, the framework of bounded evidence accumulation is robustly grounded 
710 in neurobiology (Gold & Shadlen, 2007; Shadlen & Kiani, 2013). Since the initial key finding 
711 that, during a motion discrimination task, the average firing rates recorded from single 
712 neurons in the lateral intraparietal cortex of two rhesus monkeys approximated 
713 accumulation-to-bound dynamics (Shadlen & Newsome, 2001), a plethora of independent 
714 studies have reported neural signatures of bounded evidence accumulation in the prefrontal 
715 and sensorimotor areas of human subjects using electroencephalography (EEG) (Kelly & 
716 O'Connell, 2013; Philiastides, Heekeren, & Sajda, 2014; Philiastides, Ratcliff, & Sajda, 2006; 
717 Wyart, de Gardelle, Scholl, & Summerfield, 2012), fMRI (Filimon, Philiastides, Nelson, 
718 Kloosterman, & Heekeren, 2013; Heekeren, Marrett, Bandettini, & Ungerleider, 2004; 
719 Ploran et al., 2007) and brain stimulation (Philiastides, Auksztulewicz, Heekeren, & 
720 Blankenburg, 2011). Notably, employing simultaneous EEG-fMRI a recent study identified 
721 neural correlates of bounded evidence accumulation in the medial PFC in the context of 
722 value-based decisions (Arabadzhiyska et al., 2022; Pisauro et al., 2017), thus lending further 
723 (neuroimaging) support to the proposal that bounded evidence accumulation is a domain-
724 general decision mechanism (Krajbich et al., 2010). 
725
726 Previous human fMRI studies have characterised the dmPFC as an accumulator region that 
727 acts as a decision value comparator and modulates motor cortex activity to implement 
728 choice (Hare, Schultz, Camerer, O'Doherty, & Rangel, 2011; Pedersen, Endestad, & Biele, 
729 2015; Wunderlich, Rangel, & O'Doherty, 2009). Moreover, the dmPFC has been implicated 
730 in cost-benefit evaluation and is thought to determine willingness to engage in rewarded 
731 mental effort (Vassena, Deraeve, & Alexander, 2017). Cognitive effort is exerted through 
732 increasing commitment of cognitive control to improve behavioural performance, the 
733 benefits (that is, reward) of which are weighed against the costs of growing cognitive 
734 demands (Shenhav et al., 2017). A recent finding that stimulation of the dmPFC using 
735 transcranial alternating current stimulation increased cognitive effort expenditure for 
736 rewards, provided a causal link between dmPFC and effort-based choices (Soutschek, 
737 Nadporozhskaia, & Christian, 2022). Converging evidence that the dmPFC plays a key role in 
738 regulating effortful control is consistent with our interpretation that inflammation-induced 
739 attenuation of dmPFC BOLD activity supporting short evidence integration time serves the 
740 purpose of energy preservation by shifting neuronal resources away from relatively less 
741 costly neural tasks. 
742

743 The experimental framework of effort-based decision making has been crucial in helping 
744 dissociate different components of reward processing that underlie inflammation-induced 
745 motivational impairments (Draper et al., 2018; Treadway, Buckholtz, Schwartzman, 
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746 Lambert, & Zald, 2009). Within this framework motivation is operationalised as willingness 
747 to expend (physical or mental) effort to obtain rewards as a function of reward magnitude 
748 and likelihood (Husain & Roiser, 2018). In line with the contention that inflammation 
749 primarily impairs effort-based decisions, animal studies have consistently documented that 
750 while inflammation spares reward sensitivity (or “liking”), it reduces effort expenditure (or 
751 reward “wanting”) (Nunes et al., 2014; Vichaya, Hunt, & Dantzer, 2014; Yohn et al., 2016). 
752 Using a high effort/high reward versus low effort/low reward behavioural paradigm, one of 
753 these studies showed that the administration of lipopolysaccharide (LPS), a bacterial 
754 endotoxin used to elicit a systemic inflammatory response, shifted mice choice preference 
755 from the low effort/low reward towards the high effort/high reward option, therefore 
756 suggesting that effort investment is re-prioritised as a function of reward magnitude 
757 (Vichaya et al., 2014). An analogous behavioural finding was reported in humans (Lasselin et 
758 al., 2017). While in our experimental paradigm we did not modulate reward magnitude nor 
759 its likelihood, our results are consistent with the view that inflammation reallocates 
760 metabolic resources towards tasks that are (subjectively) deemed worth the effort in the 
761 face of increasing (internal and/or external) demands (Lasselin, 2021).

762

763 Dopamine signalling is believed to guide effort expenditure and allocation in pursuit of 
764 rewarding outcomes (Salamone, Correa, Ferrigno, et al., 2018; Salamone, Correa, Yang, et 
765 al., 2018; Walton & Bouret, 2019). A recently proposed unifying account of the role of 
766 dopamine in cost-benefit trade-offs posits that while increased stimulation of D1 and D2 
767 dopamine receptors reduces effort costs, diminished stimulation of D2 receptors reduces 
768 delay and risk costs (Soutschek, Jetter, & Tobler, 2023). Inflammation alters dopamine 
769 metabolism (Treadway et al., 2019). It decreases its synthesis via depletion of 
770 tetrahydrobiopterin (BH4) (Felger et al., 2013), an enzyme co-factor that is necessary for 
771 conversion of dopamine precursors into dopamine, and increases its reuptake by increasing 
772 the maximum rate of the dopamine transporter (Moron et al., 2003). The net effect of 
773 inflammation is thus to reduce dopamine bioavailabity, which is consistent with our (and 
774 previous) observation that inflammation diminishes activity in regions of the brain known to 
775 be major recipients of dopaminergic input and that have been implicated in effort-based 
776 decision making.

777

778 We replicated previous findings that experimentally induced mild inflammation lessens 
779 neural representation of the RPE in the striatum (Harrison et al., 2016; Treadway et al., 
780 2017). It is possible that diminished neural encoding of value expectations associated with 
781 blunted RPE signalling disrupts integration of decision evidence at the time of choice. 
782
783 Prior studies showed that increased levels of circulating pro-inflammatory cytokines (i.e. IL-
784 6) induced using typhoid vaccination (Harrison et al., 2016) or a laboratory stress paradigm 
785 (Treadway et al., 2017) disrupted RPE signalling during a probabilistic RL task. Contrary to 
786 the behavioural paradigm employed in these studies, we did not have a neutral outcome 
787 nor separate appetitive (win versus neutral) and aversive (lose versus neutral) stimuli-
788 outcome pairings in our task. We thus conclude that the finding of inflammation induced 
789 attenuation of RPE signals is robust to variations in reward learning paradigms. Blunted 
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790 striatal RPE signalling has already been linked to the severity of anhedonic symptoms in 
791 depression (Gradin et al., 2011; Kumar et al., 2008) and acute stress (Carvalheiro, Conceicao, 
792 Mesquita, & Seara-Cardoso, 2021). Moreover, we found RPE related activity in the putamen 
793 and amygdala to reliably classify response to self-help CBT in unmedicated depressed 
794 patients (Queirazza et al., 2019). Unlike RPE signals, Harrison et al. reported that 
795 punishment prediction errors (that is, BOLD activity negatively covarying with prediction 
796 error estimates in the aversive condition only) in the left insula were enhanced in response 
797 to inflammation. Consistent with the fMRI results they found that, behaviourally, 
798 inflammation increased punishment versus reward sensitivity (Harrison et al., 2016). 
799 Notably, in a subsequent study they showed that the tetracycline antibiotic minocycline 
800 attenuated the LPS-induced shift in punishment versus reward sensitivity, thus implicating 
801 microglial activation as putative molecular mechanism of the motivational impairments 
802 linked to inflammation (De Marco et al., 2023). 
803
804 While the lack of significant behavioural and computational effects of inflammation in our 
805 study may be due to the insufficient power associated with our relatively small sample size 
806 and/or lower signal to noise ratio of the typhoid vaccination compared to other paradigms 
807 of controlled immune activation in humans such as LPS (Lasselin, Lekander, Benson, 
808 Schedlowski, & Engler, 2021), we showed that fMRI provided additional explanatory power 
809 to reveal subtle but significant effects of inflammation on the efficiency of decision 
810 dynamics in the brain.
811
812 An important limitation of our study is that the lack of females in our sample limits 
813 generalisation of our results to both sexes. It is also important to acknowledge that it is still 
814 not clear the extent to which the motivational changes associated with experimentally 
815 induced acute inflammation match those observed in depression and other mental 
816 disorders. Likewise, while the typhoid vaccine model of acute and transient inflammation 
817 circumvents the confounding influence of prolonged stress and pain associated with chronic 
818 inflammation, further work is necessary to elucidate the neural pathways and 
819 computational mechanisms associated with long-term inflammation. 
820
821 5. Conclusion
822 In this study we explicitly modelled the neural mechanisms underpinning integration of 
823 decision evidence, which converging empirical evidence has validated as a key processing 
824 stage of decision making. To the best of our knowledge, this is the first study to show that 
825 mild, experimentally induced inflammation alters neural activity supporting bounded 
826 evidence accumulation at the time of choice. The importance of elucidating the effects of 
827 inflammation on the neural implementation of decision dynamics to better unpack its links 
828 with psychopathology is underscored by converging behavioural findings that bounded 
829 accumulation of decision evidence is impaired in depression (Cataldo, Scheuer, 
830 Maksimovskiy, Germine, & Dillon, 2023; Lawlor et al., 2020) and other mental disorders 
831 (Banca et al., 2015; Heathcote et al., 2015; Karalunas, Huang-Pollock, & Nigg, 2012; Sripada 
832 & Weigard, 2021). Behavioural and neural signatures of the efficiency of bounded evidence 
833 accumulation thus represent a domain-general transdiagnostic risk factor for 
834 psychopathology (Weigard & Sripada, 2021).

835
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