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Abstract: Since 2015, there has been an increase in articles on anomaly detection in robotic systems,
reflecting its growing importance in improving the robustness and reliability of the increasingly uti-
lized autonomous robots. This review paper investigates the literature on the detection of anomalies
in Autonomous Robotic Missions (ARMs). It reveals different perspectives on anomaly and juxtapo-
sition to fault detection. To reach a consensus, we infer a unified understanding of anomalies that
encapsulate their various characteristics observed in ARMs and propose a classification of anomalies
in terms of spatial, temporal, and spatiotemporal elements based on their fundamental features.
Further, the paper discusses the implications of the proposed unified understanding and classification
in ARMs and provides future directions. We envisage a study surrounding the specific use of the
term anomaly, and methods for their detection could contribute to and accelerate the research and
development of a universal anomaly detection system for ARMs.

Keywords: anomaly; autonomous robots; autonomous missions

1. Introduction

Autonomous robotic missions (ARMs) have become increasingly important in various
fields, including manufacturing [1], logistics [2], search and rescue operations [3], and even
space exploration [4]. As the complexity of these missions grows, ensuring the reliability
and safety of the robots becomes paramount [5]. One critical aspect of ensuring the safety
and reliability of ARMs is the timely and accurate detection of anomalies [6], which can
arise from various sources such as hardware faults [7], software faults [8], environmental
change [9], or unexpected interactions with other systems [10–13].

Despite the significant advances in robotics and artificial intelligence (AI), detecting
and identifying anomalies in ARMs remains challenging [14,15]. This is further exacerbated
by the lack of a unified understanding of anomalies and the diverse range of techniques
used for anomaly detection in the literature. Although there are numerous review articles
on fault detection and diagnosis in robotic systems [16–22], they do not explicitly focus
on anomalies in the context of autonomous robotic missions. Hence, the objectives of this
paper are:

1. To provide a comprehensive review of the existing literature on anomalies in ARMs,
covering various types of anomalies and detection methods.

2. To identify the fundamental features of anomalies in the current literature and classify
them into spatial, temporal, and spatiotemporal elements.

3. To propose a unified understanding of anomalies that can serve as a basis for the
development of more unified anomaly detection systems for ARMs.

The paper is organised as follows: Section 2 presents the methodology used for the
literature search and selection; Section 3 explains the relationship and differences between
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faults and anomalies; Section 4 discusses the classification of anomalies in ARMs; Section 5
provides an overview of methods used for anomaly detection; Section 6 proposes a unified
understanding of anomalies; and finally, Section 7 concludes the review and highlights
future research directions.

2. Methodology

A systematic approach using the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) [23] was used to guide the review. Figure 1 illustrates the
workflow to establish an evidence-based minimum set of articles relevant to this review.

Figure 1. PRISMA diagram of literature search.

2.1. Search Strategy

We performed a systematic search of the literature using online databases, including
IEEE Xplore, Scopus, and Web of Science, from inception to September 2022. The search
included the following keywords and phrases: (“anomaly” OR “outlier” OR “abnormality”
OR “novelty” OR “irregularity”) AND (“detection” OR “identification” OR “discovery”)
AND (“autonom*” OR “robot*”). These keywords were searched within the titles, abstracts,
and keywords of the papers.

2.2. Pre-Inclusion and Exclusion Criteria

We applied the following pre-inclusion and exclusion criteria:
Pre-inclusion criteria:

1. The paper must focus on anomaly detection or identification in the context of au-
tonomous robotic missions (ARMs).

2. The paper must include at least one method or algorithm related to anomaly detection
or identification.

Exclusion criteria:

1. Papers that discuss anomaly detection in non-autonomous systems or applications
not related to robotics.

2. Papers that mention anomaly detection in ARMs only in passing, without providing
any substantial discussion or contribution to the topic, such as with results only in
simulation and not in a real environment.

2.3. Screening and Selection Process

After the initial search, the papers were screened based on their titles and abstracts
to ensure they met the pre-inclusion criteria. The full text of the selected papers was then
assessed for eligibility based on the exclusion criteria.
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2.4. Data Extraction and Analysis

For each selected paper, we extracted the information on the anomaly type (spatial,
temporal, or spatiotemporal), detection method, and the application relevance to ARMs.
The information was then analysed and categorised to provide an overview of the current
state of anomaly detection research in ARMs and to identify trends and gaps in the literature.
Figure 2 indicates a 415.4% growth in publications on anomaly detection in robotics from
2015 to 2022 based on the number of papers that matched the pre-inclusion criteria.

Figure 2. This graph was generated by counting the number of papers that matched the pre-inclusion
criteria for each year. The graph displays the increasing trend of publications on anomaly detection
in robotics over the years.

3. What Are Anomalies and How Do They Differ from Faults?

The relationship between anomalies and faults is quite complex, with different re-
searchers having varying opinions [22,24]. However, Figure 3 clarifies the fault and anomaly
concepts and their relationship in the context of ARMs. When the ARM is repeated N times,
the green left section of the bar represents the number of times where the hypothetical
autonomous robot completes the mission with the expected behaviours. The blue bar
section towards the right, represents the number of times in the mission where unexpected
behaviour in execution were observed. To differentiate these unexpected behaviours,
and their inter-relations, we visualise it with a Venn diagram. As observed in the Venn
diagram, not all anomalies are as harmful as most people perceive [25]. If an observed
anomaly was diagnosed to be harmful or disruptive to the mission continuity, it could
be either due to a system anomaly or an environmental anomaly. System anomalies can
be caused by faults, which can be classified as either known or unknown faults. Known
faults represent the system errors, the cause of which are known and mostly have a known
solution while unknown or unanticipated faults are system errors that were not experienced
nor solved yet [22,24,26].

Khalastchi and Kalech’s [22] article suggests the commonly used term “unknown
fault” in fault detection is indicative that there is no clear term to define the unknown
faults. Such unknown faults are usually interpreted as “anomaly” in the context of ARMs.
However, Graabæk et al. [27] suggests that anomalies can be symptoms of faults, implying
that both known and unknown faults can be a cause of an anomaly. Moreover, we propose
that the term anomaly has a meaning beyond the undesired system behaviour caused by
faults and that also encapsulates the environmental impacts independent of the system
and hence cannot be named as faults. Furthermore, as indicated in Figure 3, anomalies in
the autonomous missions can also result from the aleatoric uncertainty of the AI models
used for the perception and control tasks [28], which become predominant in interactions
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with specific and usually unforeseen environmental conditions to manifest unexpected
behaviour, hence an anomaly.

Figure 3. The relationship of anomalies and faults in the context of autonomous robotic missions.

The two coloured bars in Figure 3 highlight that the probability of the robot executing
the same behaviours depends on its environment. Usually, the training of AI systems
happens in a specific controlled environment. Thus, the missions will be highly repeatable
in those environments; however, in new environments, there is a higher possibility that
the robot will perform unexpected or wrong executions due to the probabilistic nature
of certain AI models such as deep reinforcement learning and Bayesian Models [29–31].
Moreover, the irreducible error or aleatoric uncertainty [32], intrinsic to any AI model, is
one of the reasons for anomalies in autonomous robots and is exacerbated when the robot
is in a new environment [28].

The consequences of these anomalies are not always harmful to a mission, as illustrated
in Figure 3. An anomaly can sometimes be inconsequential to the mission continuity.
For example, a robot that uses deep reinforcement learning for motion planning can
move from a start position to an end goal via different trajectories. In the presence of
an environmental anomaly, and due to its interaction with the probabilistic nature of AI
models, it may randomly plan a totally new path which was not experienced before; yet,
the new trajectory may result in achieving the goal more or less in the same duration,
hence overall it might not result in any failure or underperformance. Such deviations are
considered a harmless or inconsequential anomaly.

In summary, there are different types of anomalies and different reasons for them in
autonomous missions. How do we know what an anomalous behaviour is? Are there any
fundamental features that define anomalous behaviours in ARMs? This is explored in the
next section in reference to the reviewed literature.

4. Classification of Anomalies in ARMs

Anomalies in ARMs can manifest in various forms, with different levels of complexity
and implications for the mission’s success and safety. To better understand and address
these anomalies, it is essential to classify them according to their fundamental characteristics.
In analysing the strategy, methods, and models within the reviewed articles, three distinct
frameworks for anomalies in ARMs were identified: spatial, temporal, and spatiotemporal,
as shown in Figure 4.
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Figure 4. Spatial, temporal, and their correlations. For example, an image of a car with its background
is purely spatial, and similarly, the time-series data showing variation in the car’s horsepower are
purely temporal. However, we demonstrate the spatiotemporal correlation when the images are
stacked to create a sequence of motions or when horsepower data links with the appropriate image
in the sequence.

The spatial, temporal, and spatiotemporal classification refers primarily to the nature
of the observation that defines the anomaly and its classification and, hence, the data used
for its detection. For example, spatial anomalies may include hardware faults affecting the
physical structure of a robot or environmental obstacles that hinder a robot’s movement.
Temporal anomalies, on the other hand, may include unexpected changes in a robot’s speed,
acceleration, or energy consumed over time. Spatiotemporal anomalies, which involve
both spatial and temporal aspects, can be more complex and challenging to detect, as they
may involve interactions between multiple robots or between a robot and its environment
over time.

The distinction between these types of anomalies has implications for the methods
used to detect them and the challenges faced in ARMs. For instance, spatial anomalies
may be more effectively detected using image-based or distance-based algorithms, while
temporal anomalies may require time-series analysis or signal-processing techniques. Spa-
tiotemporal anomalies, due to their complexity, may require more advanced methods, such
as machine learning algorithms that can capture the intricate relationships between spatial
and temporal features.

Table 1 presents a summary of the key characteristics of each category of anomalies,
along with representative examples of anomalies from the literature. It lists articles selected
based on their relevance to the specific anomaly types, their methodological rigour, and their
contributions to the understanding and detection of anomalies in ARMs.
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Table 1. Features of anomalies observed in ARMs.

Title Year “Anomaly” Determinants Data Used to Capture
“Anomalies” Anomaly Class

Compressive change retrieval
for moving object detection [33] 2016

The difference in the given
image and the previous similar
images retrieved from a search.

GPS data, two cameras,
and LiDAR data Spatial

Anomaly detection and
cognisant path planning for

surveillance operations using
aerial robots [34]

2019 Car, blanket Camera of a DJI Matrice 100 Spatial

Safe robot navigation [35] 2020
Variation in environmental

conditions (Sunlight, Fire, Rain,
Wet)

RGB-D, Gravity Aligned Depth.
Gravity Aligned Surface

Normals. Gravity Aligned
Surface Normals.

Spatial

An anomaly detection system
via moving surveillance robots
with human collaboration [36]

2021
Variation of the position of

objects in the reference images
to that of the observed image.

RGB data from a camera
attached to the robot Spatial

An anomaly detection approach
to monitor the structure-based

navigation in agricultural
robotics [37]

2021

Low light, shadows,
leaf-covering sensors,
and unrealistic basic

assumptions in the tracking
algorithms

16-channel 3D LiDAR sensor Spatial

Curiosity MSL [38] 2018 Variation in the individual
telemetry data.

Telemetry data for a specific
time frame (5 days ) nearby an

anomaly
Temporal

Robot health estimation through
unsupervised anomaly

detection using gaussian
mixture models [39]

2020
Robot immobilised or unstable
due to external influences such

as extra payload
Current from the motor Temporal

Anomaly detection in industrial
robots [40] 2021

Overload, parts breaking,
environmental effects,

maloperation, program
exceptions, transmission errors

Power factor. Loop current.
Reactive power. Active power.

Current, Voltage. Incoming
frequency.

Temporal

Anomaly detection in
cobots [41] 2021

Increase in temperature due to
load and speed of the cobot

during human-robot interaction.

Joint values, Speed, Current,
Voltage Power Temporal

Robot-assisted feeding [42] 2017

Touch by a user, aggressive
eating, utensil collision by a
user, sound from a user, face

occlusion, utensil miss by a user

RGB-D, Joint torque, Sound
energy Spatio-Temporal

Human-care rounds robot with
contactless breathing

measurement [43]
2019 A breathing Human on the floor RGB-D and Thermal Point

Cloud (TPC) Spatio-temporal

Anomaly detection using IoT
sensor-assisted ConvLSTM

models for connected
vehicles [44]

2021
Unusual Variations in

autonomous vehicle navigation
and powertrain data

Temperature sensors, pressure
sensors, location and orientation

sensors
Spatio-temporal

Traffic accident detection via
self-supervised consistency

learning in driving
scenarios [45]

2022 Inconsistent movements of
humans and other vehicles RGB Spatio-temporal

Proactive anomaly detection for
robot navigation with

multi-sensor fusion [46]
2022 Weeds and low-hanging leaves

block the sensory signals.
RGB, Lidar point cloud, and the

planned path. Spatio-temporal



Sensors 2024, 24, 1330 7 of 15

4.1. Spatial Features of an Anomaly

Spatial features refer to the relationships between objects in the environment without
considering the time of observation. Examples of spatial features include simple coor-
dinates, points, lines, 3D objects, topological coverage, and linear networks [47]. In the
context of ARMs, the focus is on the spatial features of objects in the environment, such as
the shape of the buildings, ground, walls, and other robots.

Detecting spatial features is commonly used in the vision systems of robots, as they
capture a single observation at a specific moment. For instance, Dang et al. [34] and
Tomoya et al. [33] concentrate on spatial features when discussing anomalies without
considering the timing of the observed behaviour. Dang et al. used drones for surveillance
where objects deviating from the normal soil and bushes, such as cars or blankets, were
deemed anomalous. To detect these anomalies, Tomoya et al. compared two images or
static representations of the environment and identified anomalies based on variations be-
tween the observed images. Zaheer et al. [36] also focused on spatial features in their study
of anomaly detection systems using moving surveillance robots with human collaboration.
They employed a neural network called SiamNet to compare pairs of images, with sub-
stantial variations between the images indicating an anomaly. Although the comparison
occurs at a specific point in time, the SiamNet technique does not consider the time-varying
nature of the analysed data.

Resende et al. [48] offer another example: any surface variation within a pipe trans-
porting tailings from a plant to a dam was considered an anomaly. The anomalies were
detected using a deep learning model that analysed camera images of the pipe collected by
the robot. In this case, the anomaly detection method and the anomalies themselves were
defined solely in terms of spatial features without accounting for the timing of observations.

Lawson et al. [49] utilised generative adversarial network (GAN) models to detect
spatial patterns in the environment. They identified anomalies as variations in the spatial
patterns learned by the GAN models. As their focus was on identifying changes in visual
observations, they did not integrate temporal relations, and their definition of anomaly
was based exclusively on spatial features.

4.2. Temporal Features of an Anomaly

Temporal features pertain to the element of time and the patterns that emerge in a
sequence of time-related observations. In ARMs, temporal features are particularly relevant
due to their dynamic nature, beginning and end points, and time-bounded manipulation
of objects in space. Temporal features of a robotic mission focus on patterns observed in
time series data without considering the spatial relationships within the environment.

Schnell et al. [39] investigated robot anomalies by examining variations in time series
data from different sensors using a Gaussian mixture model (GMM) framework. They
analysed data from a robot joint when a payload was added, comparing the normal
time-series pattern of the motor’s current values with the pattern during the load. They
defined patterns as anomalous if they were dissimilar. Similar studies, such as anomalies
in spacecraft [38], sensor anomalies in industrial robots [40], and predicting outages in
collaborative robots [41], also analysed time series data and defined specific variations in
the data as anomalous.

In the case of spacecraft anomalies, researchers analysed various telemetry data for
five days using Long Short Term Memory (LSTM) models and dynamic thresholding to
detect deviations in the usual patterns within specific time series [38]. For sensor anomalies
in industrial robots, generative models were used to artificially create anomalies in the
sensor data due to the scarcity of real anomaly data [40]. These pseudo-anomalies were
then used to train an LSTM model for detecting variations from the normal time series.

For predicting outages in collaborative robots, the focus included how increased load
could potentially lead to system failures [41]. In this case, the anomaly was the increased
load, and the detection was based on the temporal variation of different parameters such as
current, voltage, and temperature during the loading operation. Although the underlying



Sensors 2024, 24, 1330 8 of 15

cause of the anomaly was spatial (i.e., the increase in load), the detection relied on the
temporal variation of parameters, leading to its classification as a temporal anomaly.

4.3. Spatiotemporal Features of an Anomaly

Spatiotemporal features describe the space–time relationships of events or processes,
such as those occurring in ARMs. These features consider both spatial and temporal aspects
of data related to objects with varying features in time within a dynamic environment.

Recent research in robotics has explored spatiotemporal correlations in various con-
texts. Fang et al. [45] used a graph neural network to capture spatiotemporal correlations
in a scene to predict possible accidents during self-driving car missions. Another study
on assistive robots in healthcare [43] initially detected spatial features such as objects in
the environment. (e.g., a human as an object), Then, we further examined variations in
the volume of a human object (e.g., chest movement of a human object that leads to an
increase or decrease of volume), incorporating the temporal element. This research focused
on spatiotemporal features and variations in these patterns to detect anomalies, such as
identifying a living human in the environment.

In their robot-assisted feeding application, Park et al. [42] employed LSTM-based
autoencoders to detect predefined spatiotemporal patterns. The model identified and
classified anomalies by observing an increase in the reconstruction error in the current
data, signalling abnormal behaviours of humans or the robot during assistive feeding
experiments, such as aggressive eating or face occlusion.

Ji et al.’s [46] research on anomaly detection for robot navigation provided another
perspective on spatiotemporal correlations, aiming to identify and prevent anomalies in
densely cluttered outdoor robotic missions. The study first considered the usual spatial cor-
relations in captured images, then predicted the probability of future failure by considering
the planned motions from the predictive controller and the present observations from the
perception module, thus incorporating the temporal element of anomalies.

In another recent paper [44], the authors claimed that their ConvLSTM models identi-
fied unusual variations in spatiotemporal elements during the motions of an autonomous
vehicle and termed these variations anomalies.

In conclusion, this section has presented a classification of anomalies in ARMs by
categorising them into spatial, temporal, and spatiotemporal elements, providing an un-
derstanding of the diverse nature of anomalies that may occur in autonomous robotic
missions. The following section will delve into the techniques and methods employed for
the detection of these anomalies in the context of ARMs.

5. Methods of Anomaly Detection in ARMs

This section provides an overview of the methods and techniques employed for
anomaly detection in ARMs, considering the diverse types of anomalies outlined in the
previous section. The discussion on anomaly detection is centred around model-based
techniques and data-driven methods, emphasising the latter due to its increased adoption
and scalability.

5.1. Model-Based Techniques

To detect anomalies, model-based techniques rely on a priori knowledge of the sys-
tem’s underlying kinematics, dynamics, or other physical properties. These methods can be
useful when the system’s behaviour can be accurately modelled using theoretical principles
and the amount of available data is limited.

5.1.1. Kinematic and Dynamic Modeling

Anomalies in the kinematic or dynamic behaviour of a robot can be detected by
comparing the observed motion with the expected motion based on the system’s kinematic
or dynamic models [50]. Deviations from the expected behaviour can indicate the presence
of an anomaly [51].
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5.1.2. Model Predictive Control

Model Predictive Control (MPC) is a control strategy that uses a system model to
predict future behaviour and determine the optimal control inputs. Anomalies can be
identified and addressed in real-time by comparing the predicted behaviour with the actual
system response [52]. However, this method needs an accurate system model, which is
hard to formulate, especially when considering ARMs. Methods such as learning local
linear models online have been introduced to reduce these limitations of MPC [53].

5.1.3. Observer-Based Methods

Observer-based methods, such as Kalman or particle filters, have been employed to
estimate a system’s internal state based on the available measurements and a system model.
By comparing the estimated state with the actual state, anomalies can be detected and
mitigated [54]. Similarly, hidden Markov models (HMMs) are widely used in the anomaly
detection of autonomous robotic missions. Here, HMMs are used to model the normal
state of the robot or different phases of the task. Once the HMM is trained, it can be used to
analyze new sequences of sensor data. A low likelihood score indicates that the observed
sequence is unlikely under normal operating conditions and is considered an anomaly [55].
Further, employing sliding mode observers for meticulous fault identification within
robotic 271 vision systems underscores the indispensable utility of precise, model-informed
diagnostics 272 in safeguarding autonomous robotic missions’ fidelity and operational
efficacy [56].

The above methods heavily rely on the accurate model of either the system process or
system behaviour, which is usually not available and tedious to develop due to the complex-
ity of the system. For example, with a walking autonomous robot equipped with cameras,
these approaches would require an extensive model of the behaviour of all the actuators of
the robot in almost all possible states and all relevant visual information on the environ-
mental conditions. Therefore, these methods have the limitation of not being scalable to be
applied on more complex systems and to detect more complex phenomena [57].

Emerging hybrid techniques in ARMs, such as Adaptive Neural Tracking Control [58]
and Generative-Model-Based Autonomous Intelligent Unmanned Systems [59], exemplify
the cutting-edge integration of model-based frameworks with adaptive, data-driven tech-
nologies. While the former leverages neural networks for enhancing anomaly detection and
system performance, the latter employs generative models to boost system adaptability and
intelligence in dynamic environments. These approaches underscore the hybrid paradigm’s
capability to transcend traditional boundaries, offering sophisticated solutions for complex
challenges in autonomous system development.

5.2. Data-Driven Techniques

Data-driven techniques have been extensively used for anomaly detection in ARMs
due to their minimal reliance on prior system knowledge and adaptability to data variations.
In this discussion, the data-driven anomaly detection techniques are categorised according
to their focus on spatial, temporal and spatiotemporal features. The review has indicated
an increased utilisation of data-driven methods to detect anomalies in the recent decade.
Figure 5 provides examples of various algorithms presently applied to detect spatial,
temporal, and spatiotemporal anomalies in autonomous missions and with the year of the
initial use of these algorithms.

The breakthrough in spatial anomaly detection happened with the progress and
adoption of convolutional neural networks (CNNs) [60] and variations of the same for
object recognition in the images. Spatial anomaly detection research mainly focuses on
comparing the normal image with the new image and detecting any new pattern or
object in the image compared to the previous one. Various algorithms, such as deep
convolutional neural networks (DCNNs) [61], a convolutional neural network with multiple
hidden layers, LibSVM, a library for support vector machine algorithms, and autoencoders
which encode the data or, in this case, image into a latent space and detect variations in
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new images using the reconstruction error, is used for spatial anomaly detection. More
recently, SiamNet [62] and Deep Support Vector Data Description (SVDD) [26] have been
implemented where SiamNet contains two symmetric convolutional neural networks which
enable the comparison of different images with minimal training data, and the Deep SVDD
optimises the training data or image into a hypersphere and considers out of boundary
data from this distribution as anomalies.

Figure 5. Methods to find anomalies in spatial, temporal and Spatio-temporal elements. Where
S.1 [33], S.2 [34], S.3 [61], S.4 [35], S.5 [62], S.6 [26] represent spatial anomaly detection methods,
ST.1 [42], ST.2 [43], ST.3 [44], ST.4 [46], ST.5 [47], ST.6 [45] represent Spatio-temporal anomaly detection
methods and T.1 [38], T.2 [39], T.3 [40], T.4 [41] represent Temporal anomaly detection methods.
The colour variation represents the year when the method was first used in Robotics for anomaly detection.

The main challenge in temporal anomaly detection is developing models or systems
that can remember past experiences or quantify patterns from long and complex time-series
data. The temporal anomaly detection problem is not equivalent to sensor noise prediction
problems. The noise, or any sudden amplitude or frequency change in the signal, can be
easily captured or filtered out using already established digital signal processing methods
such as Fast Fourier Transform (FFT) [63] and Radon Fourier Transform (RFT) [64], or
cancelled out via the feedback controllers inside the autonomous robots. The main break-
through leading to temporal anomaly detection through solving and capturing patterns
in highly complex time series data in robotic systems emerged with the development of
recurrent neural networks (RNNs) [65]. RNNs are neural networks capable of remembering
past experiences or storing helpful information from past data, and LSTM [66] is a type of
RNN widely used in time series forecasting.

Moreover, the Gaussian mixture model (GMM) [67] is used for health monitoring
and detecting anomalies from the sensors in the robots, wherein the healthy robot data
is used for training the model that is then able to detect any anomalies in the time series
data without any previous knowledge of the anomalies. Light Gradient Boosting Machine
or LightGBM, a fast and high-performing gradient boosting algorithm, has recently been
used for time series data analysis [39]. It is similar to the multiple linear regression (MLR)
method used in time series forecasting in robotics systems [40].

Spatio-temporal anomaly detection targets anomalies with spatial and temporal corre-
lations and hence is more challenging due to the complexity of finding the spatial correla-
tions, temporal correlations and the correlations between both. Recent advancements in
spatio-temporal anomaly detection have stemmed from the integration of convolutional
networks in the RNNs to create Convolutional LSTMs (Conv-LSTM) [11] and Integrating
Variational Autoencoders with LSTMs. Both these frameworks were able to capture the
spatial variations, temporal variations, and correlations. For example, capturing anomalies
by collecting various sensor data such as from the Global Navigation Satellite System (spa-
tial), the location, position, and orientation of an autonomous car in a specific time interval
(temporal) is a representative of spatio-temporal anomaly detection [44]. In Figure 5, ST.2
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mentions using FFT in anomaly detection. Here, spatial anomaly (human in a specific
location) is captured via a Random Sampling consensus algorithm, and further, FFT is
specifically used to detect the variation in the chest movement of the detected human.
Thus, the overall system can detect spatiotemporal anomalies. J. W. Kaeli et al. focuses on
a data-driven approach that uniquely combines spatial and temporal anomaly detection
aspects through semantic mapping in the context of autonomous underwater vehicles [68].
Given its emphasis on real-time processing of diverse data types, such as optical and
acoustical imagery for dynamic environmental interpretation and anomaly identification,
it naturally extends into spatiotemporal anomaly detection.

In summary, this section has provided an overview of the model-based and data-
driven techniques employed for anomaly detection in ARMs. We have specifically focused
on the data driven detection methods targeting spatial, temporal, and spatio-temporal
anomaly detection, which are mainly based on application of deep neural networks.

6. Towards a Unified Understanding of Anomaly in ARMs

In light of the presented literature review, we posit and introduce inferential con-
stituents that define anomalies in the context of ARMs. The discussion henceforth is to
establish a unified understanding.

6.1. What Is Anomaly in ARMs?

An anomaly in ARMs is a deviation from the:

- Expected behaviour and performance of a robotic system;
- Expected sequence of states of the robotic system during its operation;
- Expected form and mode of interaction with its environment;

Which may impact the mission’s objectives, safety, or efficiency. The expected be-
haviour, performance, or state transitions are defined by the robot’s design, control algo-
rithms, and mission constraints.

6.2. In What Form Can Anomaly Be Observed?

Anomalies can be observed in spatial, temporal, or spatio-temporal forms. This form
depends on the nature of the data or the patterns through which the autonomous robot is
monitored and through which the detection is implemented.

6.3. What Is the Source of Anomaly?

Anomalies can arise from the robotic system itself (e.g., sensor errors, actuator mal-
functions) or from the environment (e.g., unexpected obstacles, changing conditions).
The source of an anomaly can be a system failure as well as an unforeseen mode of interac-
tion with environment.

6.4. How Severe Are Anomalies?

Anomalies can range from minor deviations that do not significantly impact the
mission’s objectives to critical faults that may lead to system failures or safety hazards.

With these descriptions, we aim at progressing towards a unified understanding of
the concept of anomaly in ARMs, and delineating the detection frameworks that apply
to different categories of anomalies. Such unified understanding might facilitate the
comparison and integration of various anomaly detection techniques and promote the
advancement of safe and reliable autonomous robotic systems.

7. Conclusions

This review comprehensively examined the literature on anomalies in Autonomous
Robotic Missions (ARMs). Our exploration of the literature highlighted the diversity in
approaches and definitions of anomalies within autonomous robotics.

We introduced a classification of anomalies into spatial, temporal, and spatiotemporal
categories, focusing on the domains in which anomalies manifest. This classification
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has been closely linked to the methods employed to detect anomalies in literature. We
provided a discussion of methods of anomaly detection and highlighted the prominent
ones that apply to the detection of spatial, temporal, and spatiotemporal anomalies: image
processing-based algorithms more generally apply to spatial anomalies, sequential data
analysis and signal processing techniques are more relevant for temporal anomaly detection,
and more advanced machine learning techniques are applied to simultaneously capture
the correlations of spatial and temporal features in spatiotemporal anomalies. We reviewed
both data-driven and model-based techniques to achieve these goals.

Moreover, we formulated a set of descriptions of anomalies in ARMs, which can
be gathered into a working definition as follows: An anomaly in Autonomous Robotic
Missions is a deviation from the expected behaviour, performance, or state of the robotic
system and its environment, which may impact the mission’s objectives, safety, or efficiency;
and this anomaly can be caused either by system faults or the change in the environmental
dynamics of interaction. The nuanced understanding of anomaly categories facilitates a
more strategic approach, ensuring that detection methods are more effective in addressing
the specific nature of the anomaly.

This review shows that integrating data-driven and model-based techniques is an
emerging avenue for future research, as challenges in anomaly detection cannot be solved
solely using data or predefined system models. The potential of this integration to en-
hance anomaly detection in ARMs underscores the need for concerted efforts to over-
come the inherent challenges of combining heterogeneous sources of information and
analytical techniques.

Furthermore, this review highlights that ARMs involve physical systems operating in
dynamic real-world environments, necessitating predictability and understandability to
foster trust among operators and stakeholders. The ability to provide clear insights into
the system’s decision-making processes, especially in detecting and managing anomalies,
is crucial for ensuring these missions’ safety, efficiency, and reliability. This requirement
for transparency extends beyond technical necessity, becoming a cornerstone for the ethi-
cal deployment and societal acceptance of autonomous systems. The implications of the
review span various sectors, including automotive, service industries, self-driving vehi-
cles, autonomous drones, and underwater robotics. Benefiting from the review insights,
stakeholders across these sectors can enhance the safety and reliability of their autonomous
systems by adopting the best practices, designing new detection methodologies and ensur-
ing ethical deployments, ultimately driving the evolution of autonomous technologies in
real-world applications.
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