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ABSTRACT
Introduction  Many low-income and middle-income 
countries lack an organised emergency transportation 
system, leaving people to arrange informal transport to 
hospital in the case of a medical emergency. Estimating 
the effect of implementing an emergency transport system 
is impractical and expensive, so there is a lack of evidence 
to support policy and investment decisions. Alternative 
modelling strategies may be able to fill this gap.
Methods  We have developed a spatial-epidemiological 
model of emergency transport for life-threatening 
conditions. The model incorporates components to both 
predict travel times across an area of interest under 
different scenarios and predict survival for emergency 
conditions as a function of time to receive care. We review 
potentially relevant data sources for different model 
parameters. We apply the model to the illustrative case 
study of providing emergency transport for postpartum 
haemorrhage in Northern Ghana.
Results  The model predicts that the effects of an 
ambulance service are likely to be ephemeral, varying 
according to local circumstances such as population 
density and road networks. In our applied example, the 
introduction of the ambulance service may save 40 lives 
(95% credible interval 5 to 111), or up to 107 lives (95% 
credible interval −293 to –13) may be lost across the 
region in a year, dependent on various model assumptions 
and parameter specifications. Maps showing the 
probability of reduced transfer time with the ambulance 
service may be particularly useful and allow for resource 
allocation planning.
Conclusions  Although there is scope for improvement 
in our model and in the data available to populate the 
model and inform parameter choices, we believe this 
work provides a foundation for pioneering methodology to 
predict the effect of introducing an ambulance system. Our 
spatial-epidemiological model includes much oppurtunity 
for flexibility and can be updated as required to best 
represent a chosen case study.

INTRODUCTION
Emergency transport systems are often lacking 
in low-income and middle-income countries 

(LMICs).1 Organised transportation is often 
essential to allow effective healthcare to be 
accessed in a timely manner, particularly for 
time-sensitive conditions such as obstetric 
emergencies, sepsis and injuries—all of which 
tend to disproportionately affect LMICs.2 
While an emergency transport system could 
confer considerable benefits in such coun-
tries,1 LMICs face substantial resource 
constraints. Determining whether an emer-
gency transport system warrants prioritisation 
by policy-makers requires an understanding 
of the magnitude of the potential bene-
fits to offset against the costs. To do so, any 
new intervention should ideally be assessed 
against the next best alternative (or oppor-
tunity cost). While empirical evaluations of 
a new intervention compared with current 
practice would provide this evidence, a recent 
systematic review3 found no controlled studies 
evaluating the effectiveness of introducing 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ An organised emergency transport system may 
confer considerable benefits in low-income and 
middle-income countries (LMICs), or on the contrary, 
resources may be better used elsewhere.

WHAT THIS STUDY ADDS
	⇒ We developed a spatial-epidemiological model to 
help estimate the effect of an emergency ambulance 
system in a defined area. We demonstrate scenarios 
where the emergency ambulance is highly effective, 
not effective and even, perhaps counterintuitively, 
where it may be harmful.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our model could be used to inform policy-makers in 
LMICs, and in particular, help identify areas where 
the ambulance service may be most and least 
effective.
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an emergency transport system in LMICs. In addition, 
providing precise, unbiased estimates of the effectiveness 
of ambulance services is beset by methodological chal-
lenges.4

We previously identified and framed key issues in the 
health economics of emergency transport systems in 
LMICs and presented a basic model framework that could 
allow decision-makers to calculate the cost per life saved 
from introducing an ambulance system.4 We expand the 
concept of calculating the benefit from introducing an 
ambulance system and specify a spatial-epidemiological 
model that predicts survival for emergency conditions 
as a function of time, which incorporates spatial data on 
travel times, survival rates and other key data. Then, we 
provide an applied example to demonstrate the use of 
our spatial-epidemiological model. Finally, we discuss 
challenges and potential extensions to the model. Our 
paper is thus theoretical in nature and aims to provide a 
logical system for analysis of empirical information as it 
becomes available.

Background
Aside from our previous paper,4 other literature has 
investigated the benefits and challenges of emergency 
transport systems. A review assessing the economic 
value of out-of-hospital emergency care found a lack 
of evidence to establish whether such services are cost-
effective,5 highlighting the need for model-based evalu-
ations. Fischer et al6 developed an ‘Ambulance Response 
Curve’ which allows policy-makers to estimate the 
marginal cost of an ambulance and the opportunity cost 
of each second of response time. However, estimation of 
the ‘Ambulance Response Curve’ relies on current data 
from an operational ambulance system which would be 
an issue for LMICs with no or an unorganised ambulance 

system. A more recent paper7 attempted to determine 
the optimal location for emergency medical centres and 
allocate ambulances to these in order to minimise costs 
and maximise survival. Although potentially useful when 
planning the introduction of new medical facilities, this 
model focuses on the location optimisation of hospitals 
in order to reduce transport time, whereas we are inter-
ested in predicting the impact of reducing travel times 
on survival.

There is the potential for delay in the time interval 
between a medical emergency happening and the receipt 
of treatment. This ‘delay’ has been often described 
in three parts. The time between the patient or carer 
realising there is a medical emergency and deciding to 
seek healthcare is the ‘first delay’. The ‘second delay’ 
describes the time between a patient deciding they need 
to seek healthcare to arriving at a medical facility. Once 
the patient has arrived, any further delay in receiving 
treatment is known as the ‘third delay’.8 Emergency 
transportation can reduce the second delay, and there-
fore, modelling this time interval is our focus.

SPATIAL-EPIDEMIOLOGICAL MODEL FRAMEWORK
Figure  1 shows potential processes that could affect 
the time interval between a patient realising that there 
is a need to seek emergency healthcare and arriving at 
a medical facility. We consider there to be two general 
transport options if a decision to seek care has been 
made: first, the patient calls for an ambulance which 
travels from some location to the patient and then to the 
healthcare facility or second, the patient arranges their 
own transport locally, which then travels to the healthcare 
facility. The choice may be influenced by supply-induced 
demand; whereby the patient decides to seek healthcare 

Figure 1  Potential processes linking a patient realising that there is a medical emergency and probability of survival. Orange 
boxes relate to an individual patient, yellow boxes relate to epidemiological parameters/functions, green boxes are travel 
times, blue boxes are factors that can affect travel times and grey boxes represent other factors that may affect an individual’s 
probability of survival through the survival function.
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due to the existence of an ambulance service.4 9 The 
patient may also decide against seeking healthcare and 
in this case, the survival function would determine their 
outcome.

In a scenario where we include an option that an ambu-
lance service does not exist, the patient is forced to follow 
option two and arrange informal transport to hospital. 
When an ambulance service option is included in the 
comparison and the patient chooses option one, there 
may a be delay in call out of the ambulance (﻿‍θ‍). Similarly, 
under option two, there is the potential for delay while 
attempting to locate a suitable vehicle and a driver (﻿‍τ ‍). 
Both parameters (﻿‍θ‍, ﻿‍τ ‍) will be influenced by the popu-
lation density (‍ρ‍) at location ‍x ‍. The higher the popula-
tion density, the more likely it is that there will be a delay 
in ambulance call out since we would expect a higher 
volume of calls. On the contrary, the higher the popu-
lation density, the faster someone will be able to locate a 
vehicle for informal transportation to the medical facility, 
since we assume that with more people in an area there 
are more available vehicles. Disease incidence (﻿‍I ‍) is also 
affected by population density.

The ambulance or informal transport, located at ‍a ‍ and 
‍b ‍, respectively, then travels to pick up the patient from 
where they are located, at ‍x ‍. The location ‍a ‍ could be a 
localised ambulance hub or a centralised hub situated 
at a hospital. In more complex scenarios, the location 
of the ambulance could be stochastic if it is ‘roaming’, 
although we do not consider that option further here. 
For an ambulance originating at a centralised hub, it 
will travel from ‍a ‍ to ‍x ‍ and back again. Also note that it 
is likely that the informal transport is situated where the 
patient is; in this case ‍b = x ‍. Travel times for each mode of 
transport are dependent on ‘road friction’ and a velocity 
parameter. Typically, we assume the ambulance can travel 
faster than private transportation. We use the term ‘road 
friction’ to describe factors that will affect travel time, 
such as speed limits and road conditions, or lack thereof.

The time elapsed between the patient deciding to seek 
healthcare and arriving at the medical facility (‍t ‍) directly 
affects their survival, which is modelled by some survival 
function (‍S

(
t
)
‍) (see Applied Example for specification 

of the survival function for a particular medical condi-
tion). For a patient at location ‍x ‍, the travel time to a 
medical facility is ‍t

(
x
)
‍. The survival function (‍S

(
t
(
x
))

‍) 
is, therefore, also location dependent. If the ambulance 
service reduces this time ‍t ‍, there will be improvements 
in survival. If the patient receives any treatment in the 
ambulance, in the form of paramedical services, this will 
directly affect their probability of survival (and hence the 
parameters of the survival function). The total effect of 
the ambulance service can then be estimated by calcu-
lating the cumulative difference in probability across the 
whole area of interest between the two scenarios.

We refine the general framework in figure 1 to define our 
spatial-epidemiological model. We make some assump-
tions about the two scenarios we wish to compare and 
some of the model parameters to simplify the exposition, 

although these can be changed in other comparisons. 
We assume that the ‘standard of care’ is a scenario where 
no emergency transport exists, and people must arrange 
informal transport to a medical facility (option two). We 
explore the potential reduction in travel time and corre-
sponding improvement in survival because of introducing 
an ambulance system, whereby people can now choose 
option one. Second, we assume that delay in ambulance 
call out (﻿‍θ‍) is zero and that as soon as a patient summons 
an ambulance it leaves immediately. We also assume that 
the ambulance hub is centralised (located at the medical 
facility) and the informal transport is at the same location 
as the patient (‍b = x ‍). Lastly, paramedical services are not 
considered and we assume the ambulance is used purely 
for transportation.

If a patient decides to arrange informal transport 
to hospital or if the ambulance service does not exist, 
their total travel time will be denoted ‍t

(
x
)

+ τ
(
x
)
‍. We 

assume that ‍τ
(
x
)
‍, which we will refer to as the ‘waiting 

delay’, follows a Rayleigh distribution (see online supple-
mental material 1 for further detail and derivation). The 
expected value of our specified Rayleigh distribution is 

‍

β√
ρ
(
x
)
‍
 and this can be interpreted as the mean waiting 

delay given a population density ‍ρ‍ at location ‍x ‍. The 
parameter ‍β‍ is the defining parameter for our Rayleigh 
distribution and can be interpreted as mean waiting 
delay when the population density is one individual per 
unit area. Travel time with the ambulance service will be 

‍2st
(
x
)
‍, since we have assumed that the ambulance hub is 

located at the medical facility and that there is no delay 
in ambulance call out (‍θ = 0‍). The term ‍s ‍ denotes the 
‘speed multiplier’ of the ambulance because we assume 
an ambulance travels faster than a standard vehicle. 
To summarise, if the ambulance service does not exist, 
travel time can be written as ‍t0 = t

(
x
)

+ τ
(
x
)
‍. If the 

ambulance service does exist, patients have a choice 
over their method of travel and travel time will either 
be ‍t1 = t

(
x
)

+ τ
(
x
)
‍ or ‍t1 = 2st

(
x
)
‍; there are three logical 

options that follow:
1.	 Patient always chooses the ambulance.
2.	Patient chooses the ambulance with some probabil-

ity.
3.	 Patient chooses the fastest option.

We introduce ‍p0‍ and ‍p1‍ to denote the proportion of 
people who seek healthcare in the absence and presence 
of the ambulance system, respectively. Any supply-induced 
demand created by the existence of the ambulance, can 
be incorporated into the model by introducing distribu-
tions for ‍p0‍ and ‍p1‍ .

The total number of people surviving in the absence 
(‍N0‍) and presence (‍N1‍) of the ambulance system can be 
calculated by integrating over all locations ‍x ‍ within an 
area ﻿‍A‍ (‍x ∈ A‍):
Equation 1

	﻿‍
N1 = I

ˆ

x∈A
p1S

(
t1
(
x
))

ρ
(
x
)

dx
‍�
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	﻿‍
N0 = I

ˆ

x∈A
p0S

(
t0
(
x
))

ρ
(
x
)

dx
‍�

where ﻿‍I ‍ denotes the incidence of a certain disease within 
the population and ‍ρ

(
x
)
‍ is the population density. The 

mean effect of introducing the ambulance service in 
terms of lives saved is therefore
Equation 2

	﻿‍
∆ = N1 − N0 = I

ˆ

x∈A

[
p1S

(
t1
(
x
))

− p0S
(
t0
(
x
))]

ρ
(
x
)

dx
‍�

To determine the benefit from using the ambulance 
system for multiple conditions, equation 2 can be 
summed across each of the conditions the ambulance is 
used for. The integrals above sum the survival probabili-
ties across the area of interest. Where there are parame-
ters, for example, defining the survival function, we must 
also average over these to calculate ‍E

(
N1

)
‍ and other 

quantities of interest. However, we have not included 
these above for ease of presentation. Also note that an 
additional random term was not added to the model 
since stochastic terms are already included.

It is clear to see that there will be benefit from intro-
ducing the ambulance service where the informal 
travel time is longer than the travel time with the ambu-
lance (‍t

(
x
)

+ τ
(
x
)

> 2st
(
x
)
‍). Rearranging this gives 

‍τ
(
x
)

>
(
2s − 1

)
t
(
x
)
‍. We can use a Rayleigh distribution 

to determine the probability (‍q
(
x
)
‍) that someone will 

reach hospital faster with the ambulance system and map 
these probabilities across the region to identify areas 
would see the largest reduction in transfer times (see 
online supplemental material 1).
Equation 3

	﻿‍ q
(
x
)

= Pr
[
τ
(
x
)

>
(
2s − 1

)
t
(
x
)]

‍�

Data sources
WorldPop model global population densities at a reso-
lution of 1 km.10 This dataset can be used to provide 
estimates for the population density at location ‍x ‍, ‍ρ

(
x
)

‍. A useful source to obtain estimates of the incidence of 
disease is the Global Burden of Disease (GBD),11 which 
provides estimates of the incidence of a range of diseases 
in different countries.

Weiss et al12 mapped the estimated shortest motorised 
travel time to the nearest hospital/clinic from any loca-
tion around the world, also at a resolution of 1 km. They 
did this by creating global ‘friction surfaces’, which reflect 
the estimated time required to traverse each pixel of a 
map. A variety of data sources, including Google Maps 
and OpenStreetMap, were used to update the global 
‘friction surfaces’ so that both road conditions and speed 
limits are reflected in the respective travel times.

However, a limitation to the Weiss et al12 data is that it 
maps travel time to the closest healthcare facility, and this 
facility may not offer emergency care. To alter the travel 
times so that they reflect the time taken to reach specific 
emergency healthcare facilities, the least-cost-path algo-
rithm (which finds the shortest path across the map given 

the respective friction, as outlined by Weiss et al12) can be 
re-run.

See table 1 for an overview of general data sources.

APPLIED EXAMPLE
Background
In order to demonstrate how our spatial-epidemiological 
model works, we have selected the region of Northern 
Ghana (including what are now known as the Savannah 
and North East regions following a referendum13). Our 
model considers the scenario where the region is consid-
ering implementing an entirely new ambulance service. 
In practice, many regions (including Northern Ghana) 
do have an existing level of service (which they may 
consider upgrading14), but for simplicity, we will assume 
that no ambulance service currently exists. Similarly, we 
will also assume that the ambulance service is targeted, 
meaning it only attends to patients with a specific medical 
emergency. Postpartum haemorrhage (PPH) is not only a 
leading cause of maternal death in Ghana but also world-
wide.15 There exists a 2-hour international threshold for 
obstetric emergencies to access suitable healthcare16 and 
PPH is best treated at a medical facility. It is, therefore, 
a suitable marker condition for exploring the benefit 
of introducing a targeted ambulance system. See online 
supplemental material 2 for description of a severe PPH.

In introducing our applied example, we make several 
further assumptions. We will vary our assumptions 
regarding ‍t1

(
x
)
‍, the transfer time with the ambulance 

service, to reflect different choices people may make 
regarding how they travel to hospital. In the first instance, 
we will assume that people will choose the fastest mode 
of transport to the hospital (labelled as ‘fastest’ below). 
It is under this assumption that maximum benefit would 
be achieved from the intervention, given our assumption 
of no medical care being received during ambulance 
travel. However, this scenario is unrealistic because it 
assumes people have perfect knowledge. Thus, to eval-
uate the impact of this assumption on the model, we will 
also examine a scenario where people always choose the 
ambulance, even if this is in fact slower (‘ambulance’). 
A third scenario, where half of people are randomly 
assigned to the ambulance and the other half to informal 
transport will also be included (‘random’).

We sought expertise from a consultant physician who 
practices in Northern Ghana to determine which centres 
have the means to treat the PPH case outlined in the 
appendix. After receiving the names of four hospitals 
(Baptist Medical Centre (Nalerigu), Tamale Teaching 
Hospital, West Mamprusi District Hospital (Walewale), 
District Hospital (Yendi)), we updated the travel time 
data to recalculate travel times to these specific hospitals 
using the least-cost path algorithm as outlined by Weiss et 
al.12 These updated travel times were used to define ‍t

(
x
)

‍, the estimated average travel time to the closest medical 
facility (of the four) from location ‍x ‍ in minutes.
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Model parameters and data
An exponential survival function is a simple distribution 
defined by a single parameter.17 A study that included 
44 628 patients and investigated mortality after hospital 
admission found that death following admission declined 
exponentially over time.18 Therefore, an exponential 
survival function was chosen to model survival after severe 
PPH; ‍S

(
t
)

= exp
(
−λt

)
‍, where ﻿‍λ‍ is the rate parameter of 

an exponential survival function. An elicitation exercise 
by a group of obstetric experts (see online supplemental 
material 2) estimated that baseline survival rate for severe 
PPH after 24 hours was 0.16 (95% credible interval (CrI) 
0.05 to 0.31). It is after this point that we assume that 
most of these women continue to survive regardless of 
whether they have received any medical intervention. 
Taking this, and the estimated maximum time taken to 
reach the hospital given our dataset of travel times19 into 
account, we chose a suitable mean value for ﻿‍λ‍ (﻿‍λ‍ = 0.056). 
The value for ﻿‍λ‍ was drawn from a normal distribution.

A study in China which enrolled almost 100 000 women 
found that 0.81% experienced PPH, defined as an esti-
mated blood loss of greater than or equal to 1000 mL 
in 24 hours.20 Given that the PPH case outlined in the 
online supplemental material is more severe than this, it 
is reasonable to assume that the incidence is lower than 
0.81%. We believed the GBD estimate of PPH to be inac-
curate also due to this reason. Therefore, informed by 

this evidence and expert opinion (RL, a consultant obste-
trician), a gamma distribution with shape parameter two 
and scale parameter 0.5 was chosen to model the inci-
dence of severe PPH. These parameters were chosen so 
that the mode of the distribution is 0.5%, meaning that 
the most likely value for the incidence of severe PPH is 
0.5% of live births. In 2020, it was estimated that there 
were 905 000 live births in Ghana (birth rate of 27.5 per 
1000 of the population).21 The birth rate was multiplied 
by the incidence sampled from the gamma distribution.

A recent systematic review that investigated prehos-
pital emergency care in LMICs found no studies that 
compared time taken to reach hospital in an ambulance 
versus to time taken using standard transport.3 A study 
in Finland estimated that emergency vehicles travel 
20%–25% faster than standard vehicles.22 Although this 
study was conducted in a high-income country, given the 
lack of any other available evidence, we used the findings 
to guide our choice of values for the speed multiplier. We 
chose ‍s = 0.6, 0.7, 0.8, 0.9‍ for a 40%, 30%, 20% and 10% 
proportion reduction in average transfer times with the 
ambulance, respectively.

A 2020 survey of residents in Tamale, the biggest city in 
Northern Ghana, found that only 22% of people own a 
car23 and it is reasonable to assume that this percentage is 
lower in rural areas. We chose ‍β = 60, 120, 180, 240, 300‍ 
to represent waiting times of 1–5 hours in an area where 

Table 1  Model inputs, suggested data sources and choices for the applied example

Model inputs Symbol Suggested data sources Choice for applied example

Population density ‍ρ
(
x
)
‍

WorldPop global population density 
dataset10

WorldPop Northern Ghana population 
density dataset10

Population density datasets available from:
https://hub.worldpop.org/project/
categories?id=18

Travel time ‍t
(
x
)
‍

Weiss et al global map of average 
travel time to a medical facility,12 with 
updated travel times to emergency 
medical facilities

Weiss et al map of average travel time to a 
medical facility12 for Northern Ghana, with 
updated travel times to the closest of four 
emergency facilities
Global travel time datasets and R script 
used to update the data available from:
https://malariaatlas.org/project-resources/
accessibility-to-healthcare/

Survival function ‍S
(
t
)
‍

Expert elicitation of likely survival 
probabilities

Exponential survival function with 
expert elicitation exercise and estimated 
travel times used to inform choice of 

‍λ
(
λ = 0.056

)
‍

Incidence of the disease(s) ‍I‍
Global Burden of Disease estimates 
of disease incidence by country

Gamma distribution with shape parameter 
two and scale parameter 0.5

Speed multiplier of the ambulance ‍s‍ ‍s = 0.6, 0.7, 0.8, 0.9‍

Expected waiting delay where population 
density per unit area is equal to one and 
waiting delay is modelled with a Rayleigh 
distribution ‍β‍ ‍β = 60, 120, 180, 240, 300‍
Proportion seeking care with an 
ambulance service ‍p1‍

No supply-induced demand; ‍p0 = p1 = 1‍
Proportion seeking care without an 
ambulance service ‍p0‍
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the population density is 1 per km2. For reference, in 
2020, the average population density in Ghana was 137 
per km2,24 which would correspond to expected waiting 
delay times of 5.1, 10.3, 15.4, 20.5 and 25.6 minutes for 
‍β = 60, 120, 180, 240, 300‍, respectively.

In the case of a maternity system, almost all births are 
supervised; even in an area such as Ghana where around 
half of births are at home.25 Assuming the birth super-
visor will only decide to seek further medical care if it 
is required, we can assume that the introduction of the 
ambulance system creates no supply-induced demand 
and set ‍p0 = p1 = 1‍.

The key parameters that define our model and choices 
for the applied example are given in table 1.

Implementation and estimation
The model was built using R V.4.1.0. The ‍q

(
x
)
‍ proba-

bilities (equation 3) were plotted across the Northern 
Ghana region for six ‍β‍ and ‍s ‍ combinations (‍β = 0.6, 0.9‍ 
and ‍s = 60, 180, 300‍). Equation 2 was replicated 10 000 
times for each ‍β‍ and ‍s ‍ combination under each of the 
three transfer choice scenarios (‘fastest’, ‘ambulance’ 
and ‘random’). The mean and 95% CrIs were calculated 
from the 10 000 replications. For the ‘fastest’ scenario, 
lives saved were plotted across the region for the six ‍β‍ and 
‍s ‍ combinations as specified above. All code is included in 
online supplemental material 3.

RESULTS
Figure 2 shows the average transfer time in minutes to 
one of the four specified hospitals and the population 
density across the region. Population density is high in 
the areas close to the hospitals (marked by black crosses). 

The areas with the fastest transfer times are (broadly) the 
areas with the highest population density.

Figure 3 shows the probability of reaching one of the 
four hospitals faster with the ambulance service under 
different parameter value choices for the waiting delay 
parameter (‍β‍) and ambulance speed multiplier (‍s
‍). When ‍β = 60‍ and ‍s = 0.9‍, it is clear to see that some 
regions will not benefit from the introduction of the 
ambulance service (yellow areas). Here, the ambulance 
travels little faster than other vehicles and the waiting 
delay is short, meaning it would be faster to arrange 
informal transportation. The areas that will however 
benefit from the ambulance service are towards the 
west of the region where population density is low (see 
figure  2) meaning a large waiting delay for informal 
transport, but the hospital is still near enough to make 
the ambulance journey from the hub and back worth-
while. Areas where population density is high see a lower 
probability of improved transfer time; here waiting delay 
is low because we have assumed that more vehicles are 
available in populated areas.

Table 2 shows the mean number of lives saved per year 
in Northern Ghana by introducing the ambulance service 
with the corresponding 95% CrIs, under the ‘fastest’ 
assumption. Benefits when waiting delay is 60 are close 
to 0, but as waiting delay increases, there are large poten-
tial gains in lives saved for the lower values of the ambu-
lance speed multiplier. The 95% CrIs are wide, indicating 
that the model is sensitive to distributional assumptions. 
For example, in the case of a longer delay associated 
with arranging informal transport to hospital and a fast 
ambulance, the mean (95% CrI) estimate is that 40 (5 to 
111) lives would be saved in a year by the introduction of 

Figure 2  Estimated population density across the North Ghana region (left) and travel time in minutes to one of the four 
specified hospitals (right). Population density is shown on the left. Transfer times are shown on the right (data manipulated from 
Weiss et al 12). Yellow areas indicate densely populated areas (left) and low transfer time (right). The four hospitals are: Baptist 
Medical Centre (Nalerigu), Tamale Teaching Hospital (Tamale), West Mamprusi District Hospital (Walewale) and District Hospital 
(Yendi). These locations are marked by crosses.
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the ambulance service. At the upper end of the interval, 
111 lives saved seems like an intervention that is worth 
consideration but if only 5 lives were saved, the opportu-
nity cost may be high. For reference, the WHO estimated 
that there were 776 maternal death across the whole of 
Ghana in 2020.26 See online supplemental figure 1 for a 
visual representation of where lives are saved across the 
region.

Online supplemental tables 1, 2 show the impact of the 
ambulance system under the ‘ambulance’ and ‘random’ 
assumptions, respectively. Under both assumptions, for 

16 of the ‍β‍ and ‍s ‍ combinations the introduction of the 
ambulance service would lead to lives lost, due to people 
travelling to hospital by ambulance when informal trans-
port is in fact faster.

DISCUSSION
Experimental studies comparing health outcomes for 
those served by ambulance services compared with 
standard transport have not been carried out.3 We 
have described and demonstrated use of a spatial-
epidemiological model to estimate the effectiveness of an 
ambulance service. In the case of our applied example, 
the model suggests that the effects of an ambulance 
service are likely to be varied and depend on local circum-
stances such as population density and road networks. 
A systematic review investigating the barriers to out-of-
hospital care found that poor road conditions, especially 
in rural areas, were a large contributing factor to trans-
port delays.27 The model we have developed enables 
factors such as these to be explored.

Given the uncertainty regarding unseen parameters to 
which the model is sensitive, decision-makers may wish 
to focus attention on the possibility of simply reducing 
delay. In that case, the detail in figure 3 will be most infor-
mative. This would allow for identification of areas where 
the intervention should be targeted. A study conducted 
in a rural area of Bangladesh trialled use of spatial anal-
ysis and geographical information systems to aid maternal 
health planning and resource allocation and found that 
this helped to prioritise undeserved areas. Participants 
expressed their satisfaction with the use of spatial anal-
ysis and specified that they need autogenerated maps,28 
demonstrating that our spatial-epidemiological model 
may also be well received and useful to policy-makers.

For some scenarios, patients have a choice over the 
type of transport they take. It is likely that when the 
ambulance service is first introduced, people would still 
choose to arrange their own transport since they may be 
sceptical of the new service. A survey conducted in Ghana 
supports this theory; 77.4% of people believed a taxi to 
be faster than an ambulance.29 However, as the service 
becomes more established more people may begin to opt 
to travel by ambulance. At the extreme, this would shift 
results in our applied example closer to those presented 
in online supplemental table 1 and would lead to lives 
being lost. Still, it is unlikely people would always wait for 
an ambulance and they would exercise their own judge-
ment based on local knowledge and previous experience. 
If the model was to be used to inform policy, this assump-
tion would require careful consideration given the large 
differences in results in the applied example.

Limitations
The number of people who benefit from the introduc-
tion of the ambulance service is likely to vary with popu-
lation density (online supplemental figure 1). The aggre-
gate effect in remote areas is smaller because there are 

Figure 3  Probability of improved transfer times with the 
ambulance service in Northern Ghana. The left and right 
columns represent a fast and slow ambulance service 
respectively. Delay in locating a vehicle for informal transport 
to hospital (waiting delay) increases with each row. The 
yellow areas (low probability of improvement) indicate that 
the ambulance service will not reduce transfer times and it 
will be faster to arrange informal transportation to hospital. 
The purple areas (higher probability of improvement) indicate 
that introduction of the ambulance service will improve 
transfer times.
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fewer people, but when an ambulance is needed, they 
may have the largest benefit on an individual level. There 
are important equity implications that must be consid-
ered here. Although rural areas may benefit dispropor-
tionately, the same is likely true across the socioeconomic 
gradient. Wealthier people are more likely to be able to 
access their own informal transport, so a universal ambu-
lance system provision may indeed help narrow health 
inequalities. This is a benefit not currently captured by 
the output of the model.

A limitation to any model-based approach is the avail-
ability of reliable data to inform parameter estimates. In 
our applied example, choosing values to represent the 
‘waiting delay’ was challenging. Possibly the best way to 
inform this parameter choice would be to survey those 
living in an area of interest and ask them how long they 
believe it would take them to locate a suitable vehicle. 
This is a key parameter in our model so justifying these 
values with real data is a priority if the model were to be 
used to inform policy.

In our spatial-epidemiological model, the speed of the 
ambulance was modelled as proportional compared to 
standard transport. The model is sensitive to this constant 
so surveying local emergency vehicle drivers could help 
to inform values chosen for this parameter. While we 
updated the Weiss et al12 travel time data with informa-
tion from a local expert, the dataset does not take into 
account daily or seasonal variation in travel times and it is 
likely the differences in the speed of the ambulance and 
standard transport will vary in response to such factors. A 
study conducted in Sierra Leone found that less women 
experiencing an obstetric emergency reached hospital 
within 2 hours during the rainy season,16 which demon-
strates that seasonal variation may be an important 
factor. Moreover, recent research has questioned the reli-
ability of friction surface generated travel times. Patient-
reported travel times were consistently longer than those 
estimated from the friction surfaces and accounting for 

this error using local data is something that should be 
considered.30

Our model assumes that an ambulance is readily avail-
able and leaves with no delay once it has been summoned. 
The model could be extended to eliminate this assump-
tion by allowing for delay in call out. Future research 
could investigate this using queue theory.

Another improvement to our analysis would be to esti-
mate lives saved from using the ambulance for multiple 
conditions. Summing benefits in terms of lives saved 
across multiple emergency conditions would give a more 
realistic idea of the impact of the ambulance service since 
it is likely the ambulance would be used for more than 
one condition. This would be useful for policy-makers 
when comparing the benefits of the intervention to the 
estimated costs.

Although our spatial-epidemiological model includes 
terms to account for the possibility of supply-induced 
demand, introducing distributions for these terms was 
not required in our applied example. When the model is 
applied to other medical conditions in future work, the 
prospect of supply-induced demand9 can be investigated 
and included in the model. For example, the availability 
of an ambulance service that catered for sick children 
might result in some children reaching the hospital who 
otherwise would have remained at home to recover or 
die.

A study conducted in Afghanistan found that 48-hour 
mortality when patients in a helicopter ambulance were 
treated by paramedics trained in critical care was 7% 
compared with 15% when the patient was treated by an 
army medic with basic knowledge.31 The possibility that 
the ambulance includes a paramedic service so that the 
introduction of the ambulance service not only affects 
survival through reduced travel time, but also directly 
affects the probability of survival could be considered in 
future work.

Table 2  Mean number of lives saved by the emergency transport system for different values of the speed multiplier (‍s ‍) and 
waiting delay (‍β‍) parameters assuming people choose the fastest method of transportation

Transfer
assumption:
fastest

Mean lives saved (95% CrI)

‍β‍

‍s ‍ 60 120 180 240 300

0.6
1.4
(0.2 to 3.9)

8.0
(0.9 to 22.5)

17.7
(2.0 to 49.6)

28.9
(3.6 to 79.0)

40.4
(5.0 to 111.4)

0.7
0.3
(0 to 0.9)

2.7
(0.3 to 7.5)

7.9
(0.9 to 21.7)

15.0
(1.9 to 42.6)

23.9
(2.8 to 67.6)

0.8
0.1
(0 to 0.3)

1.2
(0.1 to 3.3)

4.0
(0.5 to 11.2)

8.5
(1.0 to 24.3)

14.3
(1.7 to 40.6)

0.9
0.1
(0 to 0.2)

0.6
(0.1 to 1.7)

2.2
(0.3 to 6.2)

5.1
(0.6 to 14.3)

9.2
(1.1 to 26.0)

Lower values of ﻿‍s ‍ indicate a faster ambulance compared with standard transport. Lower values of ‍β‍ indicate less time needed to arrange 
informal transportation to hospital (waiting delay). Values are mean (95% CrI) lives saved in a year across the whole region.
CrI, credible interval.
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Finally, many LMICs report grouped morbidity 
data rather than for individual residence areas. In this 
instance, the spatial distribution of healthcare providers 
can be used to estimate spatial disease incidence. Instead 
of using a single parameter to define disease incidence, 
a technique such as this could be employed to estimate 
the spatial distribution of disease.32 Alternatively, a prev-
alence mapping technique using data from a prevalence 
survey33 could be explored.

CONCLUSION
Although an increasing amount of evidence points to the 
cost-effectiveness of ambulance systems in LMICs, further 
research is still needed to determine the impact of ambu-
lance systems in terms of both health and economic 
outcomes.34 Comparison to a concurrent control in the 
case of an ambulance system is very difficult, if not impos-
sible4 and we believe a model-based approach is the next 
best alternative. We hope that this analysis provides an 
exemplar of how a spatial-epidemiological model could 
be applied to determine potential benefit from the intro-
duction of an emergency transport system. If results from 
the model were to be used by policy-makers an exten-
sive evaluation to inform parameter choice and multiple 
sensitivity analyses would need to be conducted and 
although there is scope for improvement in our spatial-
epidemiological model, we believe this work provides a 
foundation for pioneering methodology to predict the 
benefit from introducing an ambulance system. Our 
suggested model includes much opportunity for flexi-
bility, and we encourage researchers to update our meth-
odological framework as required.
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