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Abstract: There is an ongoing demand for data on population health, for reasons of resource alloca-
tion, future planning and crucially to address inequalities in health between people and between
populations. Although there are regular sources of data at coarse spatial scales, such as countries or
large sub-national units such as states, there is often a lack of good quality health data at the local
level. One method to develop reliable estimates of population health outcomes is spatial microsimu-
lation, an approach that has its roots in economic studies. Here, we share a review of this method
for estimating health in populations, explaining the different approaches available and examples
where the method is applied successfully for creating both static and dynamic populations. Recent
notable advances in the method that allow uncertainty to be represented are highlighted, along with
the evolving approaches to validation that are an ongoing challenge in small-area estimation. The
summary serves as a primer for academics new to the area of research as well as an overview for

non-academic researchers who consider using these models for policy evaluations.
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1. Introduction

The aim of this review is to extend earlier reviews of spatial microsimulation first
as a method [1] and then within the application area of estimation models for health [2].
Here, we combine the approaches used in these previous reviews to explore, in more detail,
the subset of applications within spatial microsimulation that provide a specific focus on
health outcomes and behaviours in populations.

At a time when population health globally is under threat from known health epi-
demics such as obesity and mental health as well as contagious diseases such as COVID-19,
there remain longstanding challenges in public health from non-communicable disease and
associated health behaviours. In order to consider the appropriate public health responses
to poor health in populations, the spatial distribution of health outcomes and behaviours is
required to identify where more action is needed to reduce health inequalities and what
the impact of these interventions is likely to be. This is true in most settings across the
global north and south, where adequate support for health is the responsibility of local
governments. Further, it is in the interest of local and national governments to support
positive behaviours influencing health outcomes such as diet, physical activity, smoking
cessation; high blood pressure, linked to each of these outcomes, costs the National Health
Service (NHS) GBP 2 billion annually [3]. Even where data on the national prevalence of an
outcome, such as type two diabetes, are known, there are often poor quality or non-existent
data on health at the local level where decisions on resource distribution are made. One
approach to estimating population health in these small areas is spatial microsimulation,
an approach that uses existing data to recreate individual-level populations, the focus of
this review.

] 2021, 4, 182-192. https:/ /doi.org/10.3390/j4020015

https:/ /www.mdpi.com/journal/j


https://www.mdpi.com/journal/j
https://www.mdpi.com
https://orcid.org/0000-0002-0663-3437
https://doi.org/10.3390/j4020015
https://doi.org/10.3390/j4020015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/j4020015
https://www.mdpi.com/journal/j
https://www.mdpi.com/article/10.3390/j4020015?type=check_update&version=1

] 2021, 4

183

The United Kingdom has the benefit of a National Health Service where all residents
have access to primary and secondary healthcare. What may be surprising is the difficulty
in collecting up-to-date and comprehensive data on the health of individuals living in the
UK; not all people have visited a GP recently and the data held on individuals may be
difficult to access for researchers and policymakers due to patient confidentiality. To better
understand the health of residents there are national and local surveys such as the Health
Surveys for England, Scotland, Wales and Northern Ireland which run annually and collect
detailed data on the health and health-related behaviours of people living in private homes
in each nation (see https://www.data-archive.ac.uk/, accessed on 25 May 2021). At the
aggregate national or regional level, these surveys provide a snapshot of the health of the
population across a range of demographic characteristics. These data can form the basis of
local-level estimates to support decision making, either at one point in time or forecasting
into the future to predict demand on health and social care services as the population ages
or experiences ill-health due to non-/communicable disease.

In this review we will begin with an overview of population estimation models, then
describe spatial microsimulation modelling development including static and dynamic
models. We will outline the most common algorithms used to support spatial microsim-
ulation of health outcomes and behaviours, highlighting recent advances in this method
which are overcoming historic challenges in the use of spatial microsimulation. The review
will provide researchers who are new to the area of spatial microsimulation with a strong
grounding in the background of this approach to small-area estimation specifically for
health outcomes and health behaviours, while also supporting public health academics
who want to gain a deeper understanding of the strengths and benefits of this method.

2. Materials and Methods

Microsimulation is the process by which an individual-level population is constructed
from a Census and enriched with other data, typically from surveys. Adding geographical
attributes to this population is referred to as spatial microsimulation.

To identify the peer-reviewed literature on spatial microsimulation for health research,
a comprehensive review was undertaken within the medical and social science literature.
We first searched the PubMed database, which includes medical and public health literature,
for the terms “spatial microsimulation” AND “health” for 1975-2021. We repeated this
search in Science Direct, a database that captures a wider literature including the social
sciences. Known authors in the field were searched individually to identify manuscripts
not included in the original results.

This review will also describe the different approaches to spatial microsimulation
for public health outcomes and behaviours, building on a wider literature that includes
previous reviews [1,4,5] and further methodological developments identified in the litera-
ture [6-9]. In particular, we will discuss the range of approaches, defined by Tanton [5] and
O’Donoghue et al. [10] as synthetic reconstruction and reweighting broadly, bringing in
examples where this process is applied to health outcomes. The review then outlines the
shift towards dynamic models and notes the improved techniques to express uncertainty
in the estimates [8] and the increasing availability of software and code, enhancing the
reproducibility of spatial microsimulation.

3. Results
3.1. Search Results

The PubMed search returned 21 articles from 2006 to 2021 and the same search criteria
on ScienceDirect returned 46 articles from 2000 to 2021, of which 37 were research articles
and there were two duplicates, reducing the total to 35. Following filtering based on titles
and abstracts, there was a total of 21 articles that used spatial microsimulation to model
health outcomes or behaviours in people; many of the other fourteen publications were
about methodological innovation [4,8]. We then added a further three articles identified
through hand searches of key authors (Figure 1).
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Figure 1. Diagram of results from the systematic searches.

What is evident from the 24 research articles is the focus on a narrow range of out-
comes, with diet and weight status the most common topics [11-14] and smoking [15-17]
also appearing frequently. The reasons for this focus may be due to the importance of the
health outcomes or behaviours for public health policy due to the associated increased
morbidity and mortality in populations. Other health behaviours or conditions identified
in the review included problem gambling [18], mental health and alcohol consumption [19]
and combinations of health outcomes [20-23]. Dental health [24], diabetes [25] and mortal-
ity [26] are more recent topics that were modelled. Spatial microsimulation for resource
allocation, with the example of maternity services in England [27], or estimating the im-
pacts of policies on health [28] were more unusual applications of this method for public
health interests. Overall, there are numerous applications for models of local population
health behaviours or outcomes, with the main rationale for these models being support
for national and local decision-making around the prioritisation of areas for interventions
and funding.

As we will discuss in the following sections, there are dominant trends in the methods
used in spatial microsimulation for health-related outcomes and behaviours, and in the
types of modelled outputs: one point in time static models, or those that project ahead
further to predict population health outcomes (dynamic). We will highlight new develop-
ments in spatial microsimulation that improve the utility of the method for wider adoption
outside of academic research and online tools to facilitate modelling.

3.2. Review of Methods

Spatial microsimulation sits within a group of methods to support small-area estima-
tion, which includes statistical techniques and spatial microsimulation [8]. Statistical ap-
proaches include Bayesian methods [29,30] and multilevel modelling [31,32]. Both of these
have been used extensively in public health applications. Many of the health-focused spatial
microsimulation models were developed at or in collaboration with the University of Leeds
in the UK and the SimBritain model by Ballas and colleagues; see [11,16,17,19,22,33,34].

Microsimulation belongs to a category of individual-based models, though depend-
ing on the model, the results may be expressed as prevalence in a population within
areas [11,16,17,35]. Other principle methods include cellular automata (CA) and agent-
based modelling (ABM). All of these put the individual at the centre of the simulation
and their ready ability to capture and simulate individual behaviour and movement have
made them an attractive research tool within the social sciences. However, whilst there is
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somewhat of a blurring within the definition of these approaches, it is important to note
that CA and ABM are distinct from microsimulation. CA is typically applied to simulating
units of land in urban development models, whilst ABMs are used to explore behaviours
and interactions within populations [36].

The origins of these models are in non-spatial microsimulation in the 1950s (see Orcutt
1957 reproduced in 2007 [37]). Over the last two decades, a division has appeared between
probabilistic approaches, which return slightly different results each time [21,38], and
deterministic methods, which provide the same estimates if all input variables remain
constant [11,12,17,19,20,22,33,34,39,40]. Synthetic reconstruction, such as the use of Monte
Carlo sampling to add additional population characteristics to simulated populations in
areas, appears much less frequently [14].

The probabilistic methods include combinatorial optimisation (using simulated anneal-
ing most often) and the deterministic methods frequently employ an Iterative Proportional
Fitting (IPF) method. In both approaches, there are two datasets required: a known popu-
lation distribution in each small area such as Census data and a dataset that includes the
outcome(s) of interest, for example, a health survey. This is often referred to in the literature
as microdata [41]. The variables used to link the two datasets, population distributions
and microdata, are referred to as constraint variables. For both approaches to provide
meaningful outputs, the constraint variables need to be associated with the outcome of
interest [7]. For example, in the case of constructing a type two diabetes model, the fol-
lowing characteristics associated with the disease would be included: age, sex, ethnicity
and some indicator of relative socioeconomic status. The expressed benefit of deterministic
approaches has been described as more appropriate for policy analysis, where the impact
of policy changes may be more evident if inputs are changed to the models, as described
by Ballas and colleagues [11].

3.2.1. Combinatorial Optimisation

Two methods are typically employed to allocate individuals to areas in static spatial
microsimulation: deterministic reweighting and combinatorial optimisation [10]. Deter-
ministic reweighting methods like IPF typically compute decimal weights for each person
and area combination, leading to fractions of people (decimals) being allocated to areas;
this approach will be described further in the following section.

Combinatorial optimisation, in contrast, allocates entire individuals to areas and seeks
out the optimal fit for populations within areas as defined by a dataset [41]. Combinatorial
optimisation methods work by using a random allocation of individuals from the microdata
into each area in turn. As each person is assigned a place in an area, the goodness-
of-fit for the new population of the area is recalculated. Simulated annealing is one
such technique to generate new populations within areas that have the characteristics
of interest, such as smoking, diabetes status, level of physical activity. This technique
chooses an optimal configuration from the microdata population constrained by known
area-level population counts from the Census (typically age—sex—ethnicity distributions).
This microdata population could also be another source of sufficiently detailed complete
data on a population such as a school pupil census or registers from a doctor’s surgery.

People are randomly selected from the microdata and considered for inclusion in
the population of an area if they improve the goodness of fit of the population against
constraint tables [5]. These steps of aggregation of data and evaluation of fit against known
data are repeated. If the fit is improved with the addition of a “new” individual, then
they replace an “old” individual in that area. In this process, each person has a weight
of either one if they are chosen to reside in an area or zero if they are not selected to be
included in an area’s estimated population. The estimated or synthetic population is a
realistic approximation of the known population based on the selected constraints. The
new synthetic population has these new attributes of interest attached to them as well as the
core demographic constraint data. Outputs can be counts of people with a given attribute
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or represented as prevalence within a population. This also allows for cross-tabulated data
for the estimated values, as the synthetic population is based on “whole” individuals.

3.2.2. Deterministic Reweighting

Deterministic reweighting follows a similar process, however, outputs may only be
expressed as prevalence estimates due to the use of decimals in the weighting process. This
algorithm is described in detail elsewhere [33,41]. The main difference is that individuals
from the microdata (survey) dataset are given a weight or probability of living in an area
based on the known population distribution of the constraint variables. The algorithm
creates a new weight for each person from the microdata to live in each small area for every
constraint, iterating through this reweighting process until a predefined level of agreement
between the known distribution of constraint variables in an area and the estimated
distribution of these variables is reached. Some variations of this algorithm attempt to
smooth the population distribution towards the mean, which requires an additional step of
cluster analysis prior to implementing the reweighting algorithm [7]. The cluster analysis
on key predictive population characteristics for the health outcome of interest improves
the accuracy of modelled estimates for unknown outcomes.

With both the combinatorial optimisation and deterministic reweighting approaches
to spatial microsimulation one consideration is the microdata. These populations will
be replicated many times over to represent the population of interest if the microdata
includes a sample of perhaps 15,000 individuals to synthetically generate the population of
an entire nation of millions. When this is the situation, each person from the microdata
may have a very small weight or probability of living in an area that has a population of
1500-7000 individuals depending on the scale. The decimal weights for all 15,000 people
in the microdata are summed for each area to provide the numerator in a fraction that
calculates the population prevalence of an outcome in a small area population. With
combinatorial optimization, the resulting synthetic population may be based on fewer
individuals from the microdata in each small area, certainly not exceeding the known
population. Combinatorial optimisation works well at recreating populations of “real”
people. An earlier analysis of methods concluded that deterministic reweighting performed
slightly better for estimating health outcomes compared to other methods [9].

3.3. Static and Dynamic Models

The models discussed in this review are predominantly static spatial microsimulation
models that is they model the health of a population at one point in time by bringing
together a microdata set and a population dataset. While this can be very useful where little
is known about the current health of populations in small areas, in other situations there
will be more interest in future modelling or testing policy scenarios. For these purposes,
dynamic spatial microsimulation models are needed. This section will briefly describe the
static spatial microsimulation models before discussing the few available dynamic spatial
microsimulation models available.

3.3.1. Static Spatial Microsimulation Models

The majority of spatial microsimulation models are static; the aim of these models
is to create a reliably estimated population dataset for one time point [9,11,12,15-17,19—
22,33-35,38-40,42]. The simplicity of these models with regards to temporal specificity
allows users to explore research questions termed “what-if” scenario modelling. Because
only a very few variables are changed to model a potential change in policy and thus a
change in health, the consideration for change over time in a population or individual is
not included. They can be used to monitor health outcomes in small areas, or estimate
demand for services, as seen in work by Tomintz and colleagues [17,27].

Output from some spatial microsimulation models that provide individual-level data
can be linked to other models, such as agent-based models. There are very few published
examples of spatial microsimulation being used to create a population that can be turned
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into agents (see Wu et al., 2008 for one example [43]), likely limited by computational
power. However, this could be a valuable option for health policy research—agents with
detailed health attributes—for applications that require interaction and explore “nudges”
for behaviour change.

3.3.2. Dynamic Spatial Microsimulation

Dynamic models simulate changes in people and their circumstances over time. The
early dynamic model developed by Orcutt (1961) [44] became DYNASIM (The Dynamic
Simulation of Income Model [45], a model for prediction into the future and policy analysis.
Following this example, a number of dynamic microsimulation models were created for a
range of applications. Li and O’Donoghue [46] published a review including 61 dynamic
models developed between 1977 and 2013 with social or economic applications.

Dynamic models start with a population that has a number of individual characteris-
tics. These populations are created through similar methods to those described previously
or may be individuals from survey datasets. The population is allowed to age and develop
over time, and individuals may move between different states in the model (such as chang-
ing marital status from single to married). Parameters and assumptions of changes to status
(known as transition probabilities) allow the researchers to test different interventions and
observe the outcomes on the status of individuals. These changes in status, or transition
probabilities, are often based on known longitudinal data where available.

Developing the demographic basis of a dynamic model is described in detail by Ballas
et al. [33]. The SMILE (Simulation Model for the Irish Local Economy) model begins
with a static population from a spatial microsimulation (IPF) with the characteristics of
age, sex, marital status, employment and geographic location (District Electoral Division).
Demographic characteristics of births, deaths and internal migration are estimated for
this starting population and used to project them forward in time. A random number
between 0 and 1 is assigned to each person and mortality is calculated based on their
characteristics and a vital statistics table. A person with a 50% chance of survival from
the vital statistics would survive if their random number is between 0 and 0.5 but would
die if the random number was 0.51 or greater. Migration is similarly estimated based on
probability. Individuals move to new locations based on population size. The resulting
populations for small areas are projected with these characteristics in mind and the results
are then compared with aggregate data at a larger spatial scale, with absolute percentage
error calculated as a means of validation.

The newer dynamic spatial microsimulation models are increasingly complex in
terms of the characteristics modelled. They follow a process like SMILE with movement
between areas for internal migration and changes in status, or transition, for attributes
such as marital status, employment and health. A model based in the US is the Future
Elderly Model, which explores the demographic transition by modelling several health
outcomes (stroke, cancer, diabetes) for those age 50 years and over. The scenario modelling
considers different interventions for health care as well as the cost of health outcomes in the
population [47]. In the UK, another model is MOSES [48], with outputs suitable for spatial
analysis, and in Sweden, there is SVERIGE [49], which draws upon detailed datasets for
their relatively smaller population. Here, additional characteristics such as education and
income are modelled alongside employment and migration within the country at a fine
spatial scale using a 100m grid, all informed by longitudinal microdata.

SPENSER (Synthetic Population Estimation and Scenario Projection Model) is a com-
pilation of software packages to model future population change and movement using
dynamic microsimulation [50]. SPENSER can provide customised populations for unique
research questions by linking to a range of datasets including the UK Census and any of the
national health surveys. SPENSER has the capacity to model individuals within households
and includes a variety of options for validation. One application of the SPENSER model
is in the Systems science In the Public Health and Health Economics Research (SIPHER)
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project. In the SIPHER project, SPENSER has created synthetic populations with attributes
to simulate the impacts of a number of interventions including mental health impacts [51].

This research with dynamic spatial microsimulation is timely, as funding for expensive
traditional research approaches such as clinical trials is pressurised, and many public health
research questions do not lend themselves to a standard randomised control trial approach.
The building of a synthetic population on which to “test” interventions to improve health
can save funding bodies millions of pounds as well as the ethical concerns of running trials
on human participants. In contrast, a reliable computer model informed by real-world
observations may quickly test several policy scenarios and model the impacts on health.
Examples of this include taxation on unhealthy food and subsidies on healthier options,
see Blakely et al., 2020 [52].

3.4. Challenges with Spatial Microsimulation

Modelled estimates, whether they are for applications in transportation [53], demogra-
phy [50] or health, need to include some indication of accuracy. In 2000, this was explored
by Voas and Williamson [54], and to date, this is a frequently cited publication for the
appropriate methods of assessing the accuracy of outputs from spatial microsimulation
models. Often, this is a combination of internal model validation using total absolute error
(TAE) and external validation against some related outcome, such as hospitalisation records
(see [29]) or where possible, known data for the same outcome to provide more confidence
in the application of the model for other health outcomes (see [16]). Additionally, the
estimates at a smaller level may be aggregated up to a higher level of geography where the
distribution of health outcomes is known [12,19].

The validation of models, for spatial microsimulation or another method of estimating
outcomes in individuals or populations where a phenomenon is unknown, is an inherent
weakness in terms of the estimated outcomes being used with confidence. As these models
are used to inform policy decisions and resource allocation, there needs to be ease of
communicating the uncertainty around estimates. Whitworth and colleagues [6,8] made
substantial gains in this area of research. By using outputs from multilevel regression for
the constraint variables in an IPF reweighting model, they were able to provide credible
intervals around the estimated data within small areas. In a similar vein, pattern-orientated
modelling (POM) could offer an alternative method of validation by examining multiple
points at different spatial scales [55]. Although typically used with ABMs, POM could
allow a more robust identification and validation of processes and uncertainty within the
model input and output. Previously there was no capacity to indicate the uncertainty
around estimates from spatial microsimulation outputs, hindering their adoption more
widely. With the move towards an expectation to provide not just the estimated values
but also a measure of uncertainty around them, the use of spatial microsimulation is
likely to increase.

A further barrier to the adoption of spatial microsimulation models, and perhaps a
stronger explanation for the relatively low evidence of application in many settings, is the
previous requirement to create software capable of developing the estimates. In contrast,
the multilevel approaches to small-area estimation may be used by anyone with access
to appropriate software including MLWin. For Bayesian methods, there have long been
options including winbugs. Spatial microsimulation software is often bespoke and created
by a person for one main project using Java, which was the situation with SimBritain [33]
and several related models [11,16,17,19,20]. As free open source software including R has
gained popularity, there is more opportunity to develop a spatial microsimulation model
that can be coded more easily. A free online platform for spatial microsimulation was
available, SimSalud [56], which offered the option of either combinatorial optimisation or
deterministic reweighting. The user simply uploaded data in a predefined format with a
wizard-based graphical user interface. At the time of writing, this website is no longer live.
Other similar options include Lovelace’s free R code and book for spatial microsimulation
on GitHub [57] and the Flexible Modelling Framework developed at the University of
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Leeds [42]. As code sharing becomes more common, which is indeed expected with the
publication of research, the ability of more academics and policymakers to use spatial
microsimulation models will increase.

4. Discussion

We present an overview of the applications of spatial microsimulation to address
public health. Notably, the majority of papers included focus on non-communicable
disease (NCD) and behaviours, while communicable disease or vector-borne disease is
largely absent. This may be explained by considering the alternative options for modelling
population health as behaviours, such as agent-based modelling mentioned previously.
ABM allows users to model interactions between agents and with the environment, which
are particularly relevant for communicable disease modelling, while far fewer ABMs have
sought to model NCDs [36]. In contrast, NCDs such as type 2 diabetes typically develop
over a longer time period and population movement is less relevant.

The differing approaches to spatial microsimulation, such as probabilistic and de-
terministic methods, each offer unique values to the modeler. With the more common
deterministic methods, there is the possibility to test out the changes in health in popu-
lations in response to a stimulus such as new food tax policies, if there are some data to
show how the new policy may impact diet choices. Because the health of the estimated
populations would otherwise remain the same without amended inputs, any estimated
changes in behaviour from the policy would be evident in the difference between outputs
from the “baseline” model and the “post-policy” model. If, however, probabilistic methods
like combinatorial optimisation are applied, the models will need to be run many more
times to reach conclusions about the health impacts of policy, but the randomness inherent
in the model may offer a better representation of human behaviour.

The ability to explore uncertainty in spatial microsimulation is a relatively new
and valuable feature—this will allow more confidence in the use of estimated values
for planning for public health activities in local areas, as strategists are familiar with
confidence/credible intervals. The next important phase of research is to improve com-
munication of the methods that provide these estimates, as a clear representation of the
process followed will further support the adoption of these estimates for intervention or
policy planning. This will be more feasible with the availability of model code on resources
such as Github and the push for greater reproducibility in academic publications.

5. Conclusions

Spatial microsimulation offers the option to estimate attributes of a population living
within an area. For those working in public health or researching health geographies, this
is a valuable tool; often in research, the question remains whether observed differences
in health at coarse population levels occur due to differences between the composition of
populations, or the context they live within [58,59]. Understanding which aspect may be
driving differences in health is crucial to devise acceptable and impactful policy actions.
However, many datasets are limited by a lack of spatial detail and the data are only
available for relatively large populations. To develop meaningful interventions that support
population health, smaller-scale data are required. These allow for better identification
of neighbourhoods that may need additional resources, such as screening for type 2
diabetes [60,61] when the early identification of this disease will lead to better outcomes
for the population and individuals.

Microsimulation and spatial microsimulation in particular have a historic applica-
tion in creating synthetic populations to help answer these types of research questions.
Here, we outlined the main applications, methods and areas of development for spatial
microsimulation in health. The shifting focus to dynamic models of population health and
linking together spatial microsimulation with other approaches that allow behaviours to
emerge over time including agent-based models is an exciting area for further development.
The main challenge will be in researchers’ abilities to communicate the methods clearly
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to non-experts to encourage the adoption of these techniques and to explain the limita-
tions associated with each method. Further barriers include demonstrating uncertainty,
and by extension confidence in the results, and the inability to use the models outside of
specialised groups due to lack of software resources. Both of these limitations are being
reduced through new projects such as SPENSER.

Overall, this is an exciting time in the evolution of spatial microsimulation models.
Computational power is increasing, and new forms of data are constantly emerging that
provide more insight into human behaviour and decision-making. Policymakers are
increasingly comfortable with advanced methods of geocomputation where adequate
explanations for the data, methods and results are documented. As we look to model
interventions ahead of implementation to save the cost of expensive trials, dynamic spatial
microsimulation provides an excellent opportunity to support public health at multiple
scales across a range of topics.
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