
Exploring Chronic Respiratory

Disease Care using Statistical

Modelling and Routine Data

Rachael Charlotte Mountain

A thesis submitted for the degree of

Doctor of Philosophy

Lancaster Medical School

Faculty of Health and Medicine

Lancaster University

March 2024



Exploring Chronic Respiratory Disease Care using Statistical Modelling

and Routine Data

Rachael Charlotte Mountain

Lancaster Medical School

A thesis submitted for the degree of Doctor of Philosophy

Abstract

Chronic respiratory disease represents a significant burden to healthcare services

and wider society. Patients benefit from early diagnosis and effective disease

management, yet few patients in England are receiving the recommended levels

of care. NHS services are increasingly under pressure from an ageing population, as

well as disruption following the COVID-19 pandemic, raising important questions

about how services can evolve to improve efficiency and standard of care. This

thesis explores chronic respiratory disease care using two contrasting approaches.

First, Chapters 2 and 3 utilise routinely collected health data from the Morecambe

Bay area and provide insight into the impact of a local integrated care initiative.

Spatio-temporal methodology is used to model referrals to outpatient respiratory

clinics and a thorough data review is conducted to consider the challenge of

measuring diagnostic quality. These studies exemplify different approaches to

overcoming barriers encountered when using routine data for research purposes.

Second, Chapters 4 and 5 apply a discrete-event microsimulation model for chronic

obstructive pulmonary disease in the Canadian population to questions in the field

of health economics and outcomes research. Simulated data is used to analyse the

impact of interventions, both for identifying patients at an earlier stage in the disease

progression and earlier initiation of more intensive pharmacotherapy to improve

patient quality-of-life. The discussion points of these studies link to key NHS

goals for respiratory disease. This thesis demonstrates the role of both routine and

simulated data in healthcare research by providing insight into service utilisation,

diagnostics, earlier detection of disease, and therapeutic management. However,

neither approach is without limitations. Future research could focus on further

developing methods for synthetic data, a means of using simulation to enhance the

rich routine data landscape in England in order for research to be carried out in a

safe and effective way.
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Chapter 1

Introduction

1.1 Chronic respiratory disease

Chronic respiratory disease (CRD) is an umbrella term referring to diseases that

affect the airways and other structures of the lungs. The four main CRDs in the

UK are asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and

interstitial lung disease (ILD). It is estimated that 15% of the population in England

have a history of CRD and it is the fourth most common cause of death [1]. Whilst

cause of disease varies by specific condition, common risk factors include tobacco

smoke, air pollution, poor housing, and occupational hazards, contributing to CRD

disproportionately affecting disadvantaged socio-economic groups [2, 3]. Preventable

mortality from respiratory disease in the under 75 age demographic is almost three

times higher in the most deprived areas of England compared to the least deprived

[4].

CRD represents a substantial burden to society and healthcare services, particularly

when poorly managed. Associated breathing difficulties and other symptoms can

majorly impact on quality-of-life, with CRD accounting for 4.5% of all disability-

adjusted life-years lost [5]. Between 2012 and 2019, non-elective hospital admissions

for respiratory disease increased at three times the rate of all admissions generally,

and are a key factor in the winter pressures faced by the National Health Service

(NHS) in England [4, 6]. The direct cost of respiratory disease to the NHS is

estimated at £9 billion each year, with £4.7 billion from asthma and COPD alone

[7].
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Two of the four chapters of this thesis focus on COPD due to its individual

and prominent burden. COPD refers to a group of lung conditions characterised

by persistent and progressive airflow obstruction. COPD is the third leading

cause of death worldwide and has a prevalence of 1.9% in England [8, 9].

Clinical intervention is critical to reduce the burden of symptoms and to slow the

progression of lung function decline through optimal preventative and therapeutic

management, including smoking cessation, inhalers, influenza vaccinations, and

pulmonary rehabilitation [10, 11]. Despite the opportunity to improve patient

outcomes, COPD is notoriously underdiagnosed and poorly managed. It is estimated

that two-thirds of people with COPD in England are currently undiagnosed, with

this figure rising as high as 90% globally [12, 13]. Furthermore, COPD is a leading

cause of potentially preventable emergency admissions [14]. COPD is an ambulatory

sensitive condition meaning hospital admissions can be avoided through effective

outpatient and community-based management. Yet a survey from 2022 found that

only 18% of COPD patients in England are receiving the National Institute for

Health and Care Excellence (NICE) recommended levels of care [11].

It is clear that care standards for CRD are lacking, an issue further exacerbated by

the COVID-19 pandemic. During the pandemic, the diagnosis and management of

chronic disease was critically disrupted due to reduced access to care, and studies

have found that chronic lung conditions were among the worst affected [15, 16, 17].

Patients with chronic conditions are typically highly dependent on primary care for

ongoing care and access to specialist services. Yet in the first three months of the

pandemic, general practitioners (GPs) were advised to postpone routine referrals to

free up the capacity of acute services for pandemic response, resulting in a 74% drop

in routine referrals compared to the same period in 2019. Health testing in primary

care, including key diagnostic tests, decreased by 80%, along with reductions in

prescriptions, immunisations, and incidence rates [15, 16].

Nationally, there is considerable focus on improving standard of care for CRD

patients, both to improve population health and to reduce the burden on NHS

services. The NHS Long Term Plan recognises the need for improved diagnosis

of respiratory disease in primary care [18], not only for timely treatment of

individual patients, but also to reduce non-elective admissions and lengthy hospital

stays. An estimated 80,000 admissions could be avoided by earlier intervention

for respiratory disease [18]. The misdiagnosis between asthma and COPD is a
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common problem due to the similarity in symptoms and the lack of consistent

access in primary care to robust spirometry testing. The NHS Long Term Plan

also prioritises improved upstream prevention for respiratory disease including

smoking cessation and reducing air pollution, as well as supporting CRD patients

to effectively self-manage their conditions through correct medication usage and

increased access to pulmonary rehabilitation programmes [18]. Promoting integrated

care, an organising principle for improving the coordination of care between different

healthcare providers, is a key goal in NHS agenda to improve population respiratory

health, a theme returned to and expanded upon in Chapters 2 and 3.

1.2 Healthcare under pressure

The NHS at “breaking point” is a phrase repeatedly seen in news headlines and

media reports. The COVID-19 pandemic caused unprecedented disruption to all

healthcare services and added pressure to a system already under strain [19]. Acute

services are struggling to meet demand with outpatient waiting lists holding 7 million

patients (representing 10.6% of the total population) compared to 4.4 million prior

to the pandemic, emergency department waiting times exceeding 12 hours, and

only 2.4 hospital beds per 1,000 population (compared to an average of 5 across

Europe) [19, 20, 21]. In primary care, the number of GPs per 1,000 population

fell from 0.52 in 2015 to 0.44 in 2023 whilst the average number of patients per GP

increased by 17%. Further, newly qualified GPs are increasingly opting for part-time

work due to unmanageable workloads [22]. A key factor behind struggling services

is tight healthcare budgets, with knock-on effects to staff strikes and shortages

[19]. Although spending increased in 2020/21 to aid pandemic response, UK health

spending has slowed in the last decade compared to the long-term average with a

cumulative under-spend of £322 billion since 2009/10 [23].

The contribution of chronic disease to the healthcare crisis is substantial. In the

1950s, a pivotal transition began in developed countries in the leading type of

health problems experienced, away from acute diseases and toward chronic diseases

[24]. Today, approximately 70% of health and social care expenditure in England

is attributed to treatment and care for long-term conditions [25]. This focus is

only set to continue with population growth and increases in life expectancy. It

is estimated that by 2040, 9.1 million individuals in England will be living with a

long-term condition, 2.5 million more than in 2019. Of the projected increase, 80%
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is estimated to be from the over 70 age demographic [26]. Nations around the world

face a similar crisis. For example in the US, 50% of the population are suspected

to have a long-term condition with 86% of healthcare costs attributable to chronic

disease [24].

The organisation and delivery of healthcare services is continually under review

with considerable investment from the NHS into transformational change and new

models of care [27, 28]. The COVID-19 pandemic prompted the publication of

further NHS reports that discussed the unique opportunity to radically redesign

services [29]. With a growing and ageing population, with increasingly complex

healthcare needs, there is a need more than ever for optimal service design and

effective care management, both to ensure the best possible outcomes for patients,

as well as to reduce the pressure on services by minimising avoidable healthcare

interactions [30]. Health and healthcare research plays a vital role by creating an

evidence base to inform appropriate changes in policy and practice, providing key

context to this thesis.

Each chapter addresses a different aspect of service delivery or patient care, and

considers how the efficiency and effectiveness of CRD care can be maximised to

relieve pressure on healthcare services. Key themes encountered in this thesis

include: efficient care pathways (Chapters 2 and 3); diagnostic accuracy and

timeliness (Chapters 3 and 4); improving patient outcomes to reduce the economic,

social, and clinical burden of unplanned care (Chapters 4 and 5); and primary care-

based initiatives (Chapters 2, 3, and 4).

1.3 Data and methods

This thesis uses two contrasting data methods for investigating optimal CRD care:

routinely collected health data and simulated data. This subsection outlines the

definition, strengths, and limitations of each approach.

1.3.1 Routinely collected health data

Routinely collected health data can be defined as health data collected primarily

for purposes other than research. It is the information generated as a by-product

of patients’ interactions with healthcare services and organisations [31]. Routine
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health data can be administrative or clinical in nature, examples include electronic

health records, birth and death registries, and prescribing data. In the UK, this

data is mainly produced by the NHS.

Routinely collected health data holds huge potential for health service and clinical

research. Each patient interaction presents an opportunity to improve services and

standard of care through data-driven analytics [32]. The use of routine health data in

research has increased over time. In particular, the COVID-19 pandemic prompted

governments around the world to utilise routine health information systems for

disease surveillance and monitoring of health programmes, spotlighting the value

of routine data [33]. The UK government recently commissioned a review “Better,

Broader, Safer: Using Health Data for Research and Analysis” by Professor Ben

Goldacre and Jessica Morley that sets out a practical vision for how the efficient

and safe usage of health data can drive innovation in healthcare services [34].

1.3.1.1 Benefits

The potential of routine data for health research stems predominately from the

vast amount of information it can contain, with a wide breadth of study variables

and detailed medical histories. Combining information from different branches of

healthcare through patient-level data linkage, for example using pseudonymised NHS

Numbers, can allow a far more realistic and holistic view of patient care pathways.

Linkage to other socio-economic, environmental, or geospatial datasets can further

improve completeness and broaden the possibilities for research questions [35, 36].

Routine data can contribute toward reducing bias in an analysis. The large sample

sizes typically found in routine data can offer large statistical power, are often

representative of the population, and include patient groups that may be missed

in randomised controlled clinical trial (RCT) recruitment [35, 31]. Routine data has

additional practical benefits in terms of increasing the efficiency of the research

process. Since the information is generated as a by-product of routine health

interactions, it is a cost-effective method of data collection. Furthermore, valuable

time spent recruiting and observing participants, as is required for RCTs and

longitudinal cohort studies, is avoided.
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1.3.1.2 Limitations

However, by definition, routine data has been collected for purposes other than

research, and thus its nature can limit its application in research. The most common

issues cited in the literature are associated with data quality, specifically misclassified

or missing data, which creates a potential source of error and bias [35]. Clinicians

play a vital role in determining the quality of routine data which can result in

significant variation in the detail of information collected. The literature recognises

the tension between the need to train and educate clinicians in the importance of

high quality data recording, whilst not adding to already unmanageable workloads

[37, 38, 39].

Beyond data quality issues, data access barriers are a significant limitation to routine

data research. Access to routine data is necessarily limited to researchers for patient

privacy and data confidentiality reasons. Furthermore, the routine data landscape in

England is fragmented, with data often stored at NHS Trust or regional level. Larger,

national routine databases exist such as the Clinical Practice Research Datalink,

Optimum Patient Care Research Database, and Hospital Episode Statistics (HES),

however accessing such databases can come at considerate expense both financially

and in time taken to complete the application process. Fragmentation also occurs

between organisations, preventing important linkage of data across healthcare tiers

at a patient level [32, 36]. In line with the recommendations outlined in the Goldacre

Review, the NHS has committed to funding Secure Data Environments (SDEs)

with the aim of enhancing the usage of linked routine data for research whilst

ensuring the highest levels of patient privacy and data ethics [34, 40]. SDEs are

data storage platforms that allow researchers to access and analyse health data

without themselves receiving a copy of the dataset. The NHS is piloting a national

SDE, that has been used by the British Heart Foundation and Health Data Research

UK for understanding the impacts of COVID-19, along with multiple sub-national

SDEs [41].

The limitations of routine data under the themes of data recording practices and

data access barriers are explored further in Chapter 3.
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1.3.1.3 Use of routinely collected health data in this thesis

The Morecambe Bay Community Data Warehouse (CDW) is an SQL server owned

and maintained by University Hospitals of Morecambe Bay NHS Foundation Trust

(UHMBT). The CDW contains data from primary, secondary, and community care

across the Morecambe Bay and uses pseudonymised NHS Numbers to allow patient-

level linkage between data sets. Examples of data sets contained within the CDW

include, hospital admissions, GP observations, prescriptions, and community care

home visits. The CDW was set up with the aim of bringing together data from

different tiers of care to support services and patients across the Morecambe Bay by

generating analytics and business intelligence. Kelly Heys is the Head of Information

at UHMBT and co-supervised this thesis.

Part of this thesis aims to utilise the CDW to investigate patterns in respiratory

disease care in the Morecambe Bay area and provide insight into the impact of the

Morecambe Bay Respiratory Network (MBRN) integrated care initiative. The CDW

SQL servers were accessed via a secured NHS laptop and all data tables within the

CDW were available for analysis. Further information regarding CDW data methods

are described in Chapters 2 and 3.

1.3.2 Simulated data

Simulated data is artificial data that has been designed to resemble the properties

and characteristics of real-world data. Simulated data encompasses a broad range

of data-generating methods with varying levels of complexity, including Markov

models, decision trees, and discrete event simulations [42]. Simulation models

have a longstanding use in infectious disease research with the classical “S-E-

I-R” (susceptible, exposed, infected, and removed) modelling approach for the

transmission of infectious diseases [43], yet simulation models are also widely used in

chronic disease management. For example, the Population Health Model (POHEM)

was developed by Statistics Canada to simulate the life cycle of the Canadian

population, primarily focusing on aspects of health. POHEM has been applied

and extended for research into cardiovascular disease, cancer, osteoarthritis, and

chronic neurological conditions [44]. Additionally, the United Kingdom Prospective

Diabetes Study Outcomes Model (UKPDS-OM) predicts the risk and health

outcomes for patients with type 2 diabetes with applications to health service
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planning and economic analyses [45].

1.3.2.1 Benefits

Data is vital for health research and evidence-based policy. However, researchers

can encounter data access barriers, particularly those associated with information

governance, as discussed in the limitations section for using routine health data for

research. Simulated data is being increasingly used in health research to boost the

utility of confidential datasets whilst protecting patient privacy [46]. For example,

synthetic data, a type of simulated data, aims to create an artificial copy of an

existing dataset. The US Census Bureau defines synthetic data as “microdata

records created by statistically modelling original data and then using those models

to generate new data values that reproduce the original data’s statistical properties”

[47]. Since synthetic data does not exactly reproduce patient-level information, it

does not require such strict access procedures. The NHS is currently piloting a new

service for synthetic A&E data based on HES data [48, 49].

In addition to the benefits associated with overcoming data access and privacy issues,

simulated data offers a variety of advantages. Simulation models can allow the

evaluation of a wide range of scenarios. Analyses can be conducted for scenarios

where real-world data does not exist or is insufficient, such as for new interventions

or rare outcomes, as well as scenarios that would be practically infeasible in

empirical studies, such as long-term study periods [50, 51]. A further benefit of

simulation models is the ability to carry out sensitivity analysis. By systematically

adjusting model assumptions, the degree to which an intervention depends on a

given parameter can be assessed. This feature can be crucial for medical decision

making and policy recommendations [50]. The practical benefits noted for routinely

collected data, namely reduced time and economic costs compared to RCTs and

cohort studies, similarly apply to simulated data.

1.3.2.2 Limitations

Simulated data, however, has several limitations. First, simulated data is, by nature,

a simplified reproduction of a real-world scenario. The simulation will not reflect the

true complexity of a process, which may result in an inaccurate representation of the

effects in reality of an intervention or projection [42, 50]. Second, simulations can
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be very computationally intensive, with run times taking up to weeks if the model

uses large input data sets and complex statistical methods, or if a large number of

scenarios are being considered. In such situations, the analysis may require high

performance computers capable of parallel computing [50]. Finally, it is important

to acknowledge that a simulation model is only as good as the data sources and

statistical methods behind it. This limitation highlights the necessity of data quality

checks prior to modelling, as well as vigorous internal and external model validation

to evaluate the robustness of the outputs against real-world data.

1.3.2.3 Use of simulated data in this thesis

The Evaluation Platform in COPD (EPIC) is a deterministic discrete event

microsimulation model for the development and progression of COPD in the

Canadian general population aged ≥40 years [52, 53]. EPIC was created to be

a population-based model for epidemiological projections and evaluation of a wide

range of COPD policies in the Canadian context. EPIC is a whole disease model

which refers to a modelling approach that incorporates events across the entire

disease pathway, from incidence until death, within a single framework and with

consistent assumptions [54]. Whole disease models are an innovative method in the

field of medical decision making; they have a more flexible platform for exploring the

decision space and are able to account for downstream consequences of intervention.

In contrast, a de novo model that simulates a single scenario in a particular

population is more likely to make simplifying assumptions that may impact on the

robustness of the results [54, 55, 56].

EPIC is owned and maintained by the Respiratory Evaluation Sciences Program

research group at University of British Columbia, Vancouver. Its use in this thesis

was born out of a UKRI-Mitacs Globalink research placement within the group

between September and December 2022. Part of this thesis aims to apply EPIC to

two research questions focused around COPD diagnosis and management. Further

details regarding EPIC methodology and features added to the model for the purpose

of this research are provided in Chapters 4 and 5.

Although EPIC simulates within the context of the Canadian population and

healthcare system, the results of these studies still hold relevance to healthcare

in England and the NHS. The Canadian and British populations are comparable

in terms of average age and life expectancy [57]. Canada and Britain both have
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single-payer healthcare systems financed by the government, although in Canada

the private sector delivers a large proportion of the care. Both countries spend

approximately 12% of their gross domestic product on health, and face similar

capacity challenges with comparable number of beds and GPs per population [23,

58, 59]. Further, the key discussion points to stem from these studies regarding

suggestions for policy and best practice guidelines are not limited to the Canadian

healthcare system.

1.4 Thesis structure and aims

The overarching aim of this thesis is to use statistical modelling and data exploration

to investigate chronic respiratory care and health service delivery. This thesis

takes two different approaches and geographical settings. The first two studies

use routinely collected health data from the Morecambe Bay CDW to investigate

respiratory care in the local area and the impact of the MBRN, a local integrated

care initiative. These projects both encounter limitations of routine health data for

research but take different strategies for overcoming the barriers. The second two

studies use EPIC, a microsimulation model, to evaluate the impact of interventions

for COPD care in the Canadian population. These analyses take a health economics

and patient outcomes perspective and include recommendations for practice and

policy. The primary aims for each study are listed below:

1. Spatio-temporal analysis of referrals to outpatient respiratory clinics to

evaluate the impact of the MBRN model of care on secondary care service

utilisation (Chapter 2).

2. To assess the capacity of routinely collected data for measuring diagnostic

quality of CRD (Chapter 3).

3. Budget impact analysis to evaluate the affordability of a primary care-based

case detection programme for COPD from the perspective of the Canadian

healthcare system (Chapter 4).

4. Benefit-harm analysis to quantify the impact of earlier initiation of triple

therapy, compared to current guideline recommendations, on COPD patients’

quality-of-life (Chapter 5).
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1.4. Thesis structure and aims

This thesis is arranged into four chapters. Chapter 4 has been published, Chapters

2 and 5 are under review, and Chapter 3 is being prepared for submission.

In Chapter 2 of this thesis, we present the findings from a spatio-temporal analysis

of outpatient referrals between 2012-2020, accounting for MBRN intervention in

2017. This study proposes a methodological solution to limitations encountered

with routinely collected primary care data.

Chapter 3 explores the capacity of routine data present in electronic health records

for measuring diagnostic quality. This chapter has two parts. First, a broader but

more brief discussion of the topic in the format of a research letter, and second, an

extended report including specific findings relevant to MBRN stakeholders.

In Chapter 4, we present the results of a budget impact analysis of COPD case

detection in primary care. This analysis estimates the cost to the Canadian

healthcare system of an earlier detection programme for COPD and identifies specific

barriers to its implementation.

Finally, Chapter 5 presents a benefit-harm analysis for earlier initiation of inhaled

triple therapy for patients with COPD. This analysis weighs the benefit of reduced

risk of acute exacerbation against the harm of increased risk of pneumonia adverse

events associated with steroid-based treatment in different subgroups of COPD

patients.
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Abstract

Background: Promoting integrated care is a key goal of the NHS Long Term Plan

to improve population respiratory health, yet there is limited data-driven evidence

of its effectiveness. The Morecambe Bay Respiratory Network is an integrated care

initiative operating in the North-West of England since 2017. A key target area

has been reducing referrals to outpatient respiratory clinics by upskilling primary

care teams. This study aims to explore space-time patterns in referrals from general

practice in the Morecambe Bay area to evaluate the impact of the initiative.

Methods: Data on referrals to outpatient clinics and chronic respiratory dis-

ease patient counts between 2012-2020 were obtained from the Morecambe Bay

Community Data Warehouse, a large store of routinely collected healthcare data.

For analysis, the data is aggregated by year and small area geography. The

methodology comprises of two parts. The first explores the issues that can arise

when using routinely collected primary care data for space-time analysis and applies

spatio-temporal conditional autoregressive modelling to adjust for data complexities.

The second part models the rate of outpatient referrals via a Poisson generalised

linear mixed model that adjusts for changes in demographic factors and number of

respiratory disease patients.

Results: The first year of the Morecambe Bay Respiratory Network was not

associated with a significant difference in referral rate. However, the second and

third years saw significant reductions in areas that had received intervention, with

full intervention associated with a 31.8% (95% CI 17.0-43.9) and 40.5% (95% CI

27.5-50.9) decrease in referral rate in 2018 and 2019, respectively.

Conclusions: Routinely collected data can be used to robustly evaluate key

outcome measures of integrated care. The results demonstrate that effective

integrated care has real potential to ease the burden on respiratory outpatient

services by reducing the need for an onward referral. This is of great relevance

given the current pressure on outpatient services globally, particularly long waiting

lists following the COVID-19 pandemic and the need for more innovative models of

care.
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2.1 Introduction

Chronic respiratory disease (CRD) remains a leading cause of morbidity and

mortality in the UK; it is estimated that 15% of the population have a history of

CRD and it is the fourth most common cause of death in England [1, 2]. Respiratory

disease disproportionately affects disadvantaged socio-economic groups due to the

known links with risk factors such as smoking, air pollution, poor housing, and

occupational hazards [3]. CRD represents a large burden on the NHS with estimated

direct costs of £4.7 billion from asthma and chronic obstructive pulmonary disease

(COPD) alone [4]. The pressure is set to increase with an ageing population [5]

which raises questions about how respiratory services can be changed to be more

efficient and provide the best possible care for patients.

Promoting integrated care is a key goal of the NHS Long Term Plan to improve

population respiratory health [6]. Integrated care is an organising principle for care

delivery that seeks to improve the quality of care for patients by providing services

that are better coordinated and act in a joined-up way [7, 8]. Integrated care has

been argued as the key to making the health and social care system more sustainable.

Without integration patients are more likely to become lost in the system, needed

services can be duplicated or delayed, and the potential for cost-effectiveness declines

[9]. However, despite the large push toward building integrated systems of care

across England in recent years, evaluations have historically produced mixed results

[10, 11, 12]. Research suggests this could, at least partly, be caused by the challenge

in selecting outcome measures that are able to quantify the success of complex and

multi-faceted initiatives [10, 13, 14]. The issue is exacerbated by data access barriers,

particularly access to data linked across healthcare tiers at patient level, that can

limit the possibilities for evaluations [14, 15].

The North-West region has the highest under 75 mortality rate from respira-

tory disease in England, 44.7% compared to 33.6% country-wide [16]. Clinical

commissioning groups were dissolved on 1st July 2022, but at the time of this

analysis, they were NHS bodies responsible for the planning and commissioning

of healthcare services for their local area in England. The Morecambe Bay Clinical

Commissioning Group (MBCCG) in the North-West of England provided primary

care for approximately 352,000 patients across 32 general practices (GPs) [17]. The

majority of patients reside in Lancaster, South Lakeland, and Barrow-in-Furness,
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Figure 2.1: Map of the Morecambe Bay area shaded by local authority. Black circles show
the approximate area of influence of the Morecambe Bay Respiratory Network.

covering both rural and urban town areas, as well as a range of socio-economic levels

including some of the most deprived communities in the country [18].

The Morecambe Bay Respiratory Network (MBRN) is an integrated care initiative

operating in the Morecambe Bay area that aims to improve the quality and efficiency

of healthcare delivery for patients with the four most prevalent CRDs in the UK:

asthma, COPD, bronchiectasis, and interstitial lung disease (ILD). The first phase

of the initiative began in 2017, reaching 50% of the MBCCG population through 8

practices in the network, clustered predominately in the Lancaster and Barrow-in-

Furness localities (Figure 2.1). A second phase in 2019 extended that reach to 65%,

but this research focuses on phase one.

The MBRN evolved out of the vanguard programme for new care models, receiving

approximately £1 million investment (£3 per patient per practice) from the MBCCG

to develop a model of care that effectively used existing services to produce efficient

outcomes [19, 20]. Given NHS consultant recruitment challenges in the area and

nationally, models creating bespoke new services were unsuitable [20, 21] The core

components of the MBRN model include an enhanced primary care team that has

direct access to specialist investigation and is closely supported by secondary care ex-

pertise via monthly multidisciplinary meetings. This contrasts with other integrated

respiratory initiatives, such as Knowsley Community Respiratory Service [22], also

in the North-West region, that has moved acute services to the community rather
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than empowering primary care to provide a higher level of clinical care. The MBRN

promotes effective communication and shared pathways across healthcare tiers to

ensure that patients receive consistent information and to remove unnecessary or

duplicate appointments. A key metric for the MBRN has been the measured impact

on outpatient referrals reflecting the goals of improved service efficiency, bringing

care closer to the patient, and avoiding unnecessary referrals that increases pressure

on outpatient services and wait time for all patients.

NHS England undertakes 125 million outpatient appointments a year [23]. The

COVID-19 pandemic has added considerable pressure to an already strained system

with 6 million people on the waiting list for elective care compared to 4.4 million

prior to the pandemic. The waiting list is expected to continue to grow in the short

term as patients come forward who have delayed seeking health advice or treatment

during the pandemic [24]. The radical redesign of elective care is more essential

now than ever to manage demand in a way that improves patient care as well as

service efficiency [25]. There is a need to work with primary care to improve patient

pathways to reduce the need for an onward referral and avoidable delays where

possible [24].

The aim of this research is to provide a data-driven assessment of the impact of

the MBRN using a source of routinely collected data that has not been extensively

used in health service research. This analysis focuses on referrals to outpatient

respiratory clinics, an outcome measure of key relevance both to the MBRN and

wider NHS agenda. Existing quantitative evaluations of integrated care initiatives

for respiratory disease often focus on hospital utilisation in terms of non-elective

admissions, with mixed results [22, 26, 27, 28]. The literature on the impact

to outpatient referrals is lacking. Evaluations for non-respiratory primary care

enhanced initiatives have found evidence of a reduction in outpatient referrals,

but these studies were restricted to short time frames (3-6 months) and did not

account for other factors [29, 30]. The use of routinely collected data in this analysis

facilitates a modelling approach that adjusts for demographic factors and changes

in CRD patient count to closer study the underlying referral behaviour.

The remainder of the paper is structured as follows. After a brief overview of

the modelling approach, we describe the routinely collected data source, including

complexities and sources of missingness and the impact this may have on space-time

analyses at small-area geography level. Next, we propose the methodology used that
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has two parts:

1. Spatio-temporal extension of conditional autoregressive models to adjust for

the complexities in the data prior to the primary analysis.

2. Generalised linear mixed model of outpatient referrals in the Morecambe Bay

area over an eight year period.

We then present the results of the model output before providing a concluding

discussion, relating back to the impact of the MBRN, the wider context of the

demand on outpatient services, and the importance of robust data for healthcare

evaluations.

2.2 Methods

The main outcome variable is annual rate of referrals from GP to outpatient

respiratory clinics over an eight year study period (1st April 2012 - 31st March

2020) for 204 of the Lower-layer Super Output Areas (LSOAs) that lie within the

MBCCG boundaries. LSOAs are small areas used for census geography in the UK

that have an average population size of 1,500 [31]. The rate denominator of the

outcome measure is number of diagnosed CRD patients to adjust for differences in

patient count over space and time, and to avoid a model where referrals is acting as a

proxy for prevalence. We consider data from adults aged 25 years or over. The 18-24

age bracket was excluded to reduce potential bias from the large student population

in central Lancaster. Further, two LSOAs within the MBCCG boundaries were

excluded due to the influence of Lancaster University.

For the sake of brevity, in the remainder of the paper study years will be referenced

by the start date. For example, the study year ‘2012’ will refer to the period 1st

April 2012 – 31st March 2013. Additionally, ‘adults’ will refer to individuals aged

25 years or over unless specified otherwise.

2.2.1 Primary data source

This study uses routinely collected NHS data stored in the Morecambe Bay

Community Data Warehouse (CDW), a SQL Server owned and maintained by the

University Hospitals of Morecambe Bay NHS Foundation Trust. The CDW contains
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data from primary, secondary, and community care across Morecambe Bay and uses

pseudonymised NHS Numbers to allow linkage between data sets at an individual

level.

Referrals were identified from secondary care records of the three hospitals within

the study area with outpatient respiratory services: Furness General Hospital

in Barrow-in-Furness, Royal Lancaster Infirmary in Lancaster, and Westmorland

General Hospital in South Lakeland (Figure 2.1). A relevant referral was defined

as any new referral from GP to a respiratory, spirometry, oxygen, or lung clinic,

for an adult residing in the study area. We excluded referrals to clinics for asthma

biologics, respiratory postoperative, respiratory physiotherapy, sleep apnoea, and

referrals made under the ‘two-week wait’ pathway for suspected respiratory cancer.

Clinics were excluded if they were outside the scope of the MBRN (e.g., cancer), had

their own existing referral pathway (e.g., sleep apnoea), or if the clinic did not exist

for the entirety of the study period (e.g., asthma biologics) as this may confound

results.

Primary care records were used to build a GP-registered population dataset of all

adults residing in a study LSOA and registered at a MBCCG GP. An individual’s

entry date is defined as the most-recent of GP registration start date and their 25th

birthday. Although registration status is recorded in the CDW, registration end

date is missing for all individuals who have left or died so we use last interaction

with primary care (appointment, consultation, or medication issue) as a proxy. An

individual’s end date in the GP-registered population dataset, if relevant, is end

date proxy or date of death.

CRD patients were identified from among the GP-registered population cohort by

diagnoses recorded in primary care with a relevant asthma, COPD, bronchiectasis,

or ILD SNOMED CT code. Relevant codes were identified using NHS Digital’s

SNOMED CT Browser [32]. The codes were then filtered with the aim of reflecting

as closely as possible MBRN’s own in-house patient registers. For an asthma

diagnosis, an issuing of inhaled therapy in the past 12 months was used as an

additional criterion. The Quality and Outcomes Framework guidelines require

post bronchodilator spirometry for a COPD diagnosis [33]. We have not applied

this criterion due to discrepancies in the recording of lung function test results

in the CDW. A validation study found that using diagnoses codes alone gave a

positive predictive value for true COPD of 86.5% and including spirometry results or
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medications only marginally improved results [34]. Start and end dates for diagnoses

are recorded in the CDW and applied here to estimate the number of respiratory

patients for any given space-time unit. In the case of asthma diagnoses, the ceasing

of inhaled therapy for a period of 12 months qualifies as an end date.

The primary care data in the CDW has missingness and complexities that introduce

bias to the GP-registered population cohort, in turn impacting the CRD patient

counts. The three main issues are:

1. Two of the 32 MBCCG GPs are not signed up to the CDW data sharing

agreement and so we do not have access to primary care records for these

patients. This creates spatially-correlated gaps in the data.

2. We use a proxy for GP registration end date but this will likely be earlier

than the true de-registration date, resulting in an underestimate of the GP-

registered population size at any given time.

3. For a given registration, only a patient’s current address rather than entire

address history is recorded and so movement of people within the MBCCG

over time cannot be tracked. An individual’s current address is assumed to be

the residency for their entire registration period which may result in individuals

being assigned to an incorrect space-time unit.

Each of these issues has a spatial and/or temporal dimension and could bias the

analysis via the denominator of the outcome rate.

2.2.2 Secondary data sources

GP registration data from NHS Digital [35] was used to estimate the GP-registered

population counts that would be observed in the CDW without the presence of bias

and missingness. Since 2014, NHS Digital releases data on a quarterly basis at

LSOA-level for total number of patients registered at each GP practice in England.

An age breakdown is not provided at LSOA level due to possible identification of

individuals when linked to other data sets. However, an age breakdown is provided

for each distinct GP register. Therefore, for each of the 204 LSOAs in the study area,

we estimate the number of adults registered at a MBCCG GP by multiplying the

number from the LSOAs population registered at each relevant GP by the proportion
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of that GP’s register ages 25 years or over, then summing across all GPs. This is

repeated for all quarterly releases, and the mean taken by study year.

The Office for National Statistics (ONS) publishes mid-year population estimates

that are used for estimates of LSOA age and sex demographics [36]. Although the

census population and GP-registered population are not identical, we use the ONS

estimates since NHS Digital does not cover all study years. The MBCCG and LSOA

boundaries are also available from ONS as shapefiles [37, 38]. The Open Source

Routing Machine (OSRM) package in R Studio was used to construct variables

for distance to healthcare services [39]. The road distance in kilometres (km) was

calculated for all postcodes within the study area and then averaged by LSOA.

The English Indices of Deprivation was used as a relative measure of deprivation at

LSOA-level [18].

2.2.3 Statistical Analysis

2.2.3.1 Adjusting CRD patient count

We adjust the rate denominator, CRD patient count, for the previously described

data complexities in the CDW GP registers by assuming that the population as-

signed to a given space-time unit by the CDW is representative of the corresponding

true, unobserved GP-registered population. Then for study years 2014 onward, an

estimate for the number of adult CRD patients is obtained for each LSOA by:

R̂it =
RCDW

it

PCDW
it

× PNHS
it , (2.1)

where RCDW
it is the CRD patient count from the CDW for LSOA i (i = 1, . . . , N)

and year t (t = 1, . . . , T ), PCDW
it the GP-registered adult population count from the

CDW, and PNHS
it the GP-registered adult population estimate from NHS Digital.

Since LSOA-level data is not available from NHS Digital pre-2014, we apply spatio-

temporal modelling techniques to model the error in the primary care records of the

CDW and to predict the NHS Digital figures for study years 2012 and 2013 based on

the corresponding CDW count. Once the predictions are obtained, the adjustment

in (2.1) can be applied.

The study period has T = 8 years (2012-2019), but for this model we also use data

from 1st April 2020 to 31st March 2021 to improve prediction capacity. The outcome
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variable is PNHS
it for LSOA i (i = 1, . . . , N) and year t (t = 1, . . . , T+1). The counts

are sufficiently large (mean = 1181, minimum = 681) to use a log-Gaussian model

as an approximation to the Poisson. We include covariates for (natural logarithm

of) CDW population count, PCDW
it , and measurable sources of error namely time

and proportion of LSOA population registered at a GP not included in the CDW

data sharing agreement (calculated using NHS Digital data). A generalised linear

model (GLM) was first explored. The residuals exhibited strong spatio-temporal

correlation: Moran’s I statistics computed on the residuals for each year separately

produced values ranged from 0.23 to 0.33 with p-values less than 0.0001 in all years

while the lag-1 temporal autocorrelation calculated for each LSOA separately yielded

a mean of 0.3762 across all LSOAs.

We consider a model that captures the spatio-temporal autocorrelation via random

effects assigned a spatio-temporal extension of conditional autoregressive (CAR)

distributions, which are a type of Gaussian Markov random field. We assume the

random effects to represent the unmeasured error in the CDW counts. Here we

follow the model proposed by Rushworth et al. [40]. Let S = (S1, . . . , ST+1) denote

the set of random effects for time points t = 1, . . . , T + 1, where St = (S1t, . . . , SNt)

is the vector of random effects for specific time point t. Then,

log(PNHS
it ) ∼ N

(
x⊤itβ + Sit, σ

2
)

St|St+1 ∼ N
(
ρTSt+1, τ

2Q(ρS,W )−1
)

(t = 1, . . . , T )

ST+1 ∼ N
(
0, τ 2Q(ρS,W )−1

)
.

The vector xit denotes the set of explanatory variables, β the corresponding

regression parameters, and σ2 the variance of the residual errors. For the

distributions of the random effects, ρT denotes the temporal dependency parameter,

ρS the spatial dependency parameter, τ 2 the conditional variance parameter, W an

N ×N neighbourhood matrix defined for the 204 non-overlapping spatial units that

comprise the lattice data for this study, and Q the Leroux precision matrix [41].

Further detail for the spatio-temporal CAR model methodology can be found in the

supporting information (Section 2.6).

The random effect for time point T + 1 is specified marginally since ST+2 is not

observed. A typical first-order autoregressive process defines each value conditioned

on the previous value. We condition in the reverse order since data is extracted from

21



Chapter 2. Outpatient Referrals

the CDW retrospectively making the most recent data the most accurate and error

accumulating as we go further back in time.

2.2.3.2 Modelling referrals to outpatient respiratory clinics

Let Yit be the number of new referrals from GP to an outpatient respiratory clinic

for LSOA i (i = 1, . . . , N) and year t (t = 1, . . . , T ). The referral data is modelled

using a Poisson generalised linear mixed model (GLMM) with a random intercept

term for each LSOA, denoted by Zi. The adjusted number of CRD patients from

the first part of the methodology, R̂it, is included as an offset term to give a rate

interpretation. Then,

Yit ∼ Poisson
(
R̂it exp

(
d⊤itγ + Zi

))
Zi ∼ N

(
0, κ2

)
,

where dit is the vector of explanatory variables, γ the corresponding regression

parameters, and κ2 the variance of the random effects for which we assume

independence. A corresponding Poisson GLM was over-dispersed yet exploratory

analysis carried out on the residuals did not provide evidence to support a more

complex correlation structure for the random effects. Relevant results can be found

in the supporting information (Section 2.6).

The covariate component of the GLMM is:

d⊤itγ = γ0 + γ1 Age
65−74
it + γ2 Age

75+
it + γ3 Maleit + γ4 Distancei

+ γ5 IMDi + γ6−12 Yeart + γ13 MBRNit + γ14−20 Yeart ∗ MBRNit .

The covariates Age65−74, Age75+, and Male are included to account for demographic

differences in the LSOAs and respectively represent the proportion of the adult

population in the 65-74 and 75+ age brackets, and proportion of the adult population

that are male. Stepwise covariate selection (with age groups 25-39, 40-54, 55-64, 65-

74, 75+) suggested the age groups included are the only ones that are predictive of

referrals and have a distinct effect to each other. Distance represents the average

car travel distance to the nearest hospital within the MBCCG providing respiratory

outpatient services. IMD represents the Index of Multiple Deprivation (IMD) scores

where a higher score indicates greater levels of deprivation. The IMD is updated
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every 3-4 years thus we take the mean of the 2015 and 2019 scores for each LSOA.

To account for the effect of MBRN intervention, we calculate the percentage of an

LSOAs GP-registered population that is registered at a GP that joined the MBRN

in 2017, represented in the model by MBRN. This is calculated for all study years ,

even prior to MBRN introduction, to account for any baseline differences in health

service utilisation for LSOAs that received MBRN intervention from 2017 onward.

For the purpose of exploratory data analysis, we dichotomise the continuous MBRN

variable so that an LSOA is classed as an ‘MBRN LSOA’ if MBRN > 50% and a

‘Non-MBRN LSOA’ otherwise.

Year represents the study year and MBRN*Year is an interaction term between study

year and MBRN coverage, which will be the main indicator of the impact of the

MBRN on outpatient referrals. Study year has been defined as a factor variable

as opposed to a continuous covariate or a before/after MBRN indicator, in order

to better study the evolution of MBRN impact since its initiation. For the sake of

space, the factor levels have been grouped into one term in the above equation.

Additional descriptions of covariates used for both models can be found in the

supporting information (Section 2.6).

2.2.3.3 Inference

The models are specified as Bayesian hierarchical models and parameter estimation

carried out using Markov Chain Monte Carlo (MCMC) algorithms. For the spatio-

temporal GP registration model, prediction for years 2012 and 2013 is carried out as

part of model fit. The unobserved data are treated as missing values in the response

vector and are estimated each iteration of the MCMC algorithm via the posterior

predictive distribution to produce a posterior sample. When fitting the referrals

model, to account for the uncertainty in the predictions, we randomly sample from

the posterior samples for the predictions each iteration and recalculate the offset

term. For further information on MCMC specifics, including prior distributions, we

refer readers to the supporting information (Section 2.6). The significance of model

covariates is tested at the 5% significance level using Bayesian credible intervals

(CIs). A covariate is insignificant if the interval contains the null value. All statistical

analysis was carried out in R Studio [42].
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2.3 Results

2.3.1 Adjusting CRD patient count

Since the spatio-temporal model for patient count adjustment is not the main focus

of this paper, we refer readers to the supporting information (Section 2.6) for

extended results including covariate description, parameter estimates, prediction

output, model validation, and MCMC diagnostics. Figure 2.2 and Table 2.1

are included here to highlight respectively the need and impact of the proposed

adjustment modelling.

Figure 2.2 shows the spread of percentage change between the CDW GP-registered

population counts and NHS Digital estimates for study years 2014-2019. As we go

further back in time, the magnitude of the median percentage difference increases

and there is increased variation in the degree of error. The plot shows an LSOA

that is consistently a 50-60% underestimate in the CDW whilst other LSOAs have

above a 30% overestimate in years 2014-2016, highlighting the error that can occur

at both ends of the spectrum using CDW registration data.
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Figure 2.2: Boxplot showing the spread of relative difference between the CDW counts and
NHS Digital estimates for adults registered at a MBCCG GP at LSOA-level. Percentage
difference = (CDW − NHS)/NHS × 100. Data for years 2012 and 2013 are not available
from NHS Digital.

Table 2.1 summarises the overall impact of the adjustment methodology on the total
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number of CRD patient counts that is used as the denominator of the outpatient

referral rate.

Table 2.1: Comparison of unadjusted (raw counts extracted from CDW) and adjusted
(prevalence × GP-registered adult population) total CRD patients within the MBCCG
by study year.

Year Unadjusted Adjusted Percentage difference
2012 22,803 26,293 +15.3%
2013 23,747 26,962 +13.5%
2014 24,876 27,820 +11.8%
2015 25,936 28,477 +9.8%
2016 27,082 29,305 +8.2%
2017 28,234 29,975 +6.2%
2018 29,262 30,631 +4.5%
2019 30,902 31,715 +2.6%

2.3.2 Modelling referrals to outpatient respiratory clinics

Raw data

We first present data summary results. Table 2.2 shows a comparison of age,

sex, distance to nearest hospital, and IMD score for LSOAs that received MBRN

intervention in 2017 and those that did not. Populations of the MBRN LSOAs are

on average younger, closer in distance to a major hospital, and have higher relative

deprivation.

Table 2.2: Median (interquartile range) of covariates used in the outpatient referrals
random intercept model for MBRN and non-MBRN intervention LSOAs.

MBRN Non-MBRN Difference
Age 65-74 15.4 (12.1, 19.3) 18.5 (14.7, 21.0) -3.1
Age 75+ 12.6 (9.1, 16.6) 14.0 (11.3, 17.0) -1.4
Male 47.7 (46.5, 49.0) 48.1 (46.8, 49.6) -0.4
Distance 6.0 (2.4, 8.2) 11.0 (3.76, 20.4) -5
IMD 19.5 (11.8, 31.6) 14.7 (10.0, 22.5) 4.8

A total of 8,897 referrals to outpatient respiratory clinics that fulfilled the inclusion

criteria were extracted from secondary care records in the CDW. Table 2.3

documents the raw counts by study year and the average number of referrals per

LSOA. The total number of new referrals from GP to respiratory outpatient clinics
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displayed a consistent increasing trend up to 2016, but the counts in the years since

the introduction of the MBRN (2017-2019) have not risen above 2016 levels.

Table 2.3: New referrals from GP to outpatient respiratory clinics for each study year.

Year Total number of referrals Average per LSOA
2012 968 4.75
2013 974 4.77
2014 1,039 5.09
2015 1,120 5.49
2016 1,218 5.97
2017 1,204 5.90
2018 1,165 5.71
2019 1,209 5.93

Additional data summaries can be found in the supporting information (Section

2.6).

Model output

Table 2.4 presents the parameter estimates for the GLMM.

The main indication of the effect of the MBRN are the interaction terms between

MBRN coverage and year. Prior to MBRN intervention (2012-2016), the model

output does not suggest a systematic difference in referral rates at baseline, after

adjusting for all other covariates, for LSOAs that received higher percentages of

MBRN intervention from 2017 onward. The MBRN main effect term (i.e., the effect

in 2012) and the interaction term for 2015 are marginally significant, whilst the

interactions terms for 2013, 2014, and 2016 are insignificant, at the 5% significance

level.

The MBRN did not have a significant association with referral rate in the activation

year (2017). In 2018, a 1% increase in percentage of the population registered at an

MBRN GP was associated with a 0.04% decrease in rate of referral to outpatient

respiratory clinics from GP. To put this figure in context, an LSOA with all its

population registered at an MBRN GP (i.e., full intervention, MBRN = 100%) is

associated with a 31.8% (95% CI 17.0-43.9) decrease in referral rate compared to an

LSOA with none of its population registered at an MBRN GP (i.e., no intervention,

MBRN = 0%), with all other covariates held constant. In 2019, the same 1% increase
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is associated with a 0.05% decrease in referral rate, corresponding to a 40.5% (95%

CI 27.5-50.9) decrease in referral rate for full MBRN intervention compared to no

intervention.

The model output does not suggest a significant change in overall referral rate over

time beyond what can be attributed to changes in demographic factors and the

introduction of the MBRN. All levels of the year factor variable are insignificant

except for 2016 which shows a marginally significant 9.1% increase in referral rate

compared to 2012.

Table 2.4: The median relative risks (RR) and 95% credible intervals (CI) for the covariates
included in the outpatient referrals random intercept model.

Parameter RR 95% CI
Intercept 0.037 (0.035, 0.040)
Age 65-74 1.017 (1.008, 1.026)
Age 75+ 1.009 (1.001, 1.016)
Male 1.016 (1.002, 1.028)
Distance to hospital 1.005 (1.001, 1.009)
IMD 0.998 (0.996, 0.999)
2013 0.965 (0.878, 1.054)
2014 0.991 (0.909, 1.078)
2015 1.030 (0.950, 1.128)
2016 1.091 (1.000, 1.191)
2017 1.049 (0.963, 1.149)
2018 0.975 (0.894, 1.064)
2019 0.961 (0.880, 1.049)
MBRN (main effect) 1.001 (1.000, 1.003)
MBRN 2013 0.998 (0.996, 1.000)
MBRN 2014 0.999 (0.997, 1.001)
MBRN 2015 0.998 (0.996, 1.000)
MBRN 2016 0.999 (0.997, 1.001)
MBRN 2017 0.999 (0.997, 1.001)
MBRN 2018 0.996 (0.994, 0.998)
MBRN 2019 0.995 (0.993, 0.997)

Figure 2.3 is an interaction plot providing an illustration of the effect of MBRN

intervention over time. The plot is produced using the fitted model output and

compares the predicted referral rate for an LSOA with full MBRN intervention

(MBRN=100%) compared to an LSOA with no MBRN intervention (MBRN=0%).

The rate of referral is predicted for each study year whilst all other covariates
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including the offset term are fixed at their median values across the entire data

set. In the baseline years (2012-2016) and in the activation year (2017), the credible

intervals for the predictions consistently overlap, illustrating no systematic difference

between intervention and non-intervention areas once all other covariates adjusted

for. In 2018 and 2019, the intervals separate, with the non-intervention LSOA

continuing in an upward trend and the intervention LSOA substantially decreasing.

In 2019, the model predicts a median rate of 2.9 referrals per 100 CRD patients

(95% CI 2.6-3.3) for full MBRN intervention compared to 4.3 per 100 CRD patients

(95% CI 3.9-4.7) for no MBRN intervention.
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Figure 2.3: Interaction plot for the effect of the interaction term between year and MBRN
on referral rate over time. The predicted number of referrals per 100 CRD patients
is estimated for two levels of registration at an MBRN GP at LSOA-level: 0% (‘No
MBRN intervention’) and 100% (‘MBRN intervention’). The dashed line represents the
introduction of the MBRN in 2017.

All other covariates included in the model are significant (Table 2.4). The covariates

relating to age and sex demographics are positively associated with referral rate.

For each 1% increase in the proportion of an LSOAs adult population in the 65-74

age bracket, a 1.7% increase in referral rate would be expected. For the 75+ age

bracket, the analogous increase in referral rate is 0.9%. For each 1% increase in

the proportion male, a 1.6% increase in referral rate would be expected. Distance

to closest hospital is also positively associated with referral rate with an increase

of 0.5% associated with a 1 km increase in road travel distance. The model results
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suggest a negative relationship between referral rate and socio-economic deprivation.

A 1 point increase in IMD score is associated with a 0.02% decrease in referral rate,

equating to a referral rate 1.2 times higher for the least deprived LSOA in the study

area compared to the most deprived.

The variance term for the random effects, κ2, was estimated at 0.023, 95% CI (0.015,

0.033), supporting the need for a GLMM over a GLM.

Diagnostics for the MCMC algorithm can be found in the supporting information

(Section 2.6).

2.4 Discussion

Integrated care is a broad concept with multi-faceted implications which presents a

challenge for evaluators. This study considered the use of routinely collected data

to provide a robust data-driven analysis of healthcare delivery that focuses on an

outcome measure of relevance and adjusts for diversity in the study population. The

results suggest the success of the MBRN model in reducing rates of new referrals to

outpatient respiratory clinics from GP in areas that have received higher percentages

of intervention compared to areas with lower intervention. Three years of full MBRN

intervention was associated with a 40.5% decrease in referral rate, adjusted for

changes in CRD patient count. [14, 43].

The first stage of the methodology in this paper applies existing saptio-temporal

methodology to a new setting to model official statistics and predict beyond the

published time frame at the required geography level based on error-filled routine

data. In addition, we account for uncertainty in the predictions by using the full

posterior predictive distributions in the model fit for the mixed Poisson model.

The results from the first model illustrate the consequences of the issues described

with the CDW GP registers. For example, LSOAs where a large proportion of the

population is registered at a GP not in the CDW data sharing agreement can result in

substantial underestimates of the true GP-registered population. In contrast, LSOAs

that have undergone significant housing development can have an overestimate of

the true GP-registered population in years prior to the building work. If individuals

move into the houses from the local area, the CDW does not store the address

history, thus assigning them to an address at a time before the housing existed. The

methodology we have proposed could be used in other fields of research that use
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time restricted official statistics such as further areas of health service provision,

public health and social care, and the broader social sciences.

This research into outpatient referrals supports findings from systematic reviews that

integrated care services for a specific chronic disease using an MDT approach with

disease-specific specialist input is likely to be successful at reducing hospital activity

[11, 44]. However, existing evaluations of integrated services for chronic respiratory

disease commonly focus on COPD alone, and often target only the most high-risk

patients to prevent non-elective hospital admissions [26, 27, 28]. The MBRN adds

to the existing literature by showing the potential for effective integrated care with a

broader patient scope and benefits to other aspects of healthcare service utilisation,

namely outpatient attendances. It is not a given that empowering primary care will

decrease outpatient service usage since integrated care initiatives can identify unmet

needs in their populations, resulting in evaluations reporting an increase in total

healthcare service usage [30]. In addition, an often cited limitation of integrated care

evaluations is the short follow-up period [11], an issue found in the literature that

considered the impact of enhanced primary care models on referrals. In this analysis,

the effect of the MBRN progressively increased between 2017-2019 highlighting the

importance of evaluating healthcare initiatives over sufficient time periods [14, 43].

Policymakers frequently want to see immediate results yet transformational changes

in practice and work culture requires time to gain traction [45].

The model results identified a negative relationship between socio-economic depri-

vation and rate of referrals, after adjustment for CRD patient count. This finding

supports existing literature that the most disadvantaged patient groups often have

lower probabilities of attending specialist care [46, 47]. This study is unable to

comment on the reason for the inequality in the MBCCG context; possible reasons

include patient preference [46], lack of adequate communication or health literacy

[48, 49], or differences in GP referral behaviour across the study area [50]. Existing

research predominately does not find an association between socio-economic position

and probability of visiting primary-care in developed countries, with some studies

even reporting higher rates of attendance [46, 51]. There is an opportunity for

integrated care services to reduce healthcare inequalities by training primary care

to provide more specialist services.

Of the remaining covariates in the model, the 65-74 age bracket was at the greatest

risk of higher rates of referrals followed by proportion male. Distance to hospital was
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positively associated with rate of referral, which contrasts with existing research that

links rurality with reduced access to services [52]. A probable explanation for this

finding is the relative affluence of the rural areas in the MBCCG. We are unable to

identify previous work in which outpatient referrals have been analysed at an LSOA-

level in England. The study area contained 32 GPs but 204 LSOAs, hence using the

small-area geography gave potential for insight into the contribution of other risk

factors for rate of referral that may have been lost if covariates were averaged to

GP-level. This is a particular issue in the MBCCG where several practises are made

up of multiple sites. For example, Lancaster Medical Practice is comprised of eight

separate sites spread over central Lancaster, serving a wide spectrum of patients,

demographically and clinically speaking.

The recovery of elective care following the COVID-19 pandemic is not unique

to the NHS but is affecting healthcare systems worldwide [53]. The NHS post-

COVID recovery plan states the need for an increase in activity of 30% above pre-

pandemic level by 2024/25 to reduce waiting times, but this goal has been met with

scepticism in light of NHS staff shortages and recruitment challenges [24, 54, 55].

The MBRN model demonstrates that effective integrated care has real potential to

optimise existing services and ease the burden on respiratory outpatient services

by reducing the need for an onward referral through improved patient pathways,

effective communication between healthcare tiers, and an upskilled primary care

team. The results of this analysis suggest a potential reduction of 1.4 referrals per

100 CRD patients per year for an LSOA with full MBRN intervention comapred to

no MBRN intervention. Applying this result to the MBCCG population that had an

estimated 31,715 adults with a CRD diagnosis in 2019 (Table 2.1), this would equate

to a difference of over 400 referrals a year; 930 referrals under full MBRN intervention

compared to 1,356 under no MBRN intervention. Assuming a respiratory clinician

has 2-3 4-hour clinics per week and assigns 30 minutes to a new patient [56], the

reduction of over 400 new referrals per year in the MBCCG population would equate

to approximately one fewer clinics per week, with no consideration made for the

knock-on effect to follow-up appointments.

A key strength of the proposed methods is using number of diagnosed CRD patients

as the referral rate denominator. Disease prevalence data is not always readily

available particularly at small area geography level and changes in patient counts,

beyond what is able to be accounted for through population growth and known
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risk factors, can distort both space and time analyses of healthcare utilisation [57,

58]. The model in this paper controls for changes in the size of the patient cohort,

allowing a closer study of the underlying referral behaviour.

Data is vital for understanding the impacts of health interventions and generating

robust analytics to improve healthcare delivery [43, 59]. Access to the CDW

facilitated the flexibility of this analysis and key strengths of the methodology,

including choice of outcome measure, spatial unit, adjusting for changes in CRD

patient size, a longer study period, and filtering referrals and patients at a finer

scale to capture healthcare interactions of closest relevance to the MBRN. This

research is the first extensive use of the CDW for health service research and has

barely scratched the surface of its potential. The CDW uses pseudonymised NHS

Numbers; linking data at a patient level and removing traditional data silos between

different branches of healthcare has the potential to provide a far more realistic and

holistic view of patient care pathways. There is a clear, high value in investing in

databases and personnel to exploit the wealth of information available in routinely

collected data to support evidence-based decision making [60, 61].

The limitations associated with routinely collected data are well-established [62,

63]. This research contributes to the existing literature by exploring limitations

encountered when using primary care records for space-time analyses, particularly

the difficulty in tracking movement of people. The methodology proposed to

circumvent the issues identified is somewhat of a crude fix and relies on the

assumption that the prevalence calculated from the CDW is representative of the

true, unobserved adult population for the corresponding space-time unit. This

assumption may not be reasonable for error introduced by movement of people due

to the relationship between transiency and age. If an age breakdown was provided at

LSOA-level by NHS Digital, then a more informed adjustment to CRD patient count

could be considered. Nevertheless, the strong spatio-temporal correlation identified

in the CDW error process may be useful for future research into methodology for

improving analysis using routinely collected healthcare data.

Other limitations of this research must be recognised. First, this is not a controlled

study. The data summary results evidence that the MBRN reaches the most

urbanised and deprived areas of the MBCCG. Access to a larger national or sub-

national routine data source would facilitate a matched controlled study. However,

exploratory analysis (found in the supporting information, Section 2.6) and the
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interaction terms in the GLMM prior to MBRN introduction did not suggest a

systematic difference in referral rates, once all else adjusted for, between intervention

and non-intervention areas. Therefore, it is reasonable to attribute the dramatic

decrease in referrals in 2018 and 2019 to the work of the MBRN. However, areas

that have not received MBRN intervention may not have the same capacity for

referral reduction due to potential differences in disease severity and patient need,

which are not accounted for in the model. Second, in the GLMM, year is defined

as a factor variable, adding to model complexity and forcing the relative risks to be

compared to a baseline year, in this case 2012. The factor variable was selected as it

captures the evolving and distinct impact of the MBRN in each intervention year. In

contrast, other representations of time, such as a linear time trend or a before/after

indicator variable, would assume a fixed trend across larger time periods. Due to the

small temporal sample size, more advance time series modelling was not appropriate.

Third, the study period was restricted by the introduction of the first COVID-19

lockdown in England, so we cannot comment on whether the reduction in referral

rate was sustained. Finally, reason for referral is not documented in the secondary

care records in the CDW therefore it is likely that the referrals modelled in this paper

include irrelevant referrals. Access to unstructured data, such as referral letters, may

minimise this source of bias. However, the clinic inclusion-exclusion criteria were

determined in consultation with MBRN physicians to best capture referrals that

aligned with MBRN priorities.

Future research should explore other impacts of the MBRN integrated care initiative.

This analysis has focused on outpatient referrals given the relevance to MBRN

goals and current healthcare pressures, as well as the gap in the integrated care

evaluation literature. However, it is important to consider other measures, such as

patient experience, standard of care received in primary care, and health outcomes,

to provide a full-picture evaluation of an integrated care initiative. The associated

cost to an initiative is a critical factor in decision-making for policy makers. The

cost savings associated with reduced outpatient referrals have not been included in

this study as these results may be misleading. The MBRN model has many facets

beyond efficient referral pathways, thus a separate cost-effectiveness analysis that

captures the initiatives complexity would be required.
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2.5 Conclusion

Overall, our novel analysis demonstrates the use of large routinely collected data

to robustly evaluate key outcome measures of integrated care, in this case, rate of

referrals to outpatient services. The results of this study are of great relevance

to current healthcare pressures across the globe, with large outpatient service

backlogs and demand for innovative models of care. Future work should focus on

assessing other measures appropriate to the MBRN to provide a full evaluation of

the initiative’s model of care.
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2.6 Supporting information

This section is the contents of the supplementary material file that was submitted

to BMC Health Services Research and appears online alongside the main article.

Section 2.6.1 provides further detail of the steps that were taken when constructing

the analysis data set from the CDW. Section 2.6.2 contains additional information of

the spatio-temporal GP registration model that was omitted from the main article

as this is not the primary focus of the research. Finally, Section 2.6.3 contains

exploratory data analysis, MCMC methodology, and diagnostics relating to the

outpatient referrals GLMM, to supplement the information given in the main article.

2.6.1 Primary data source

The construction of the population data set from the CDW is outlined in Section

2.2.1. In this section we provide additional detail of decisions made, for the sake of

transparency:

• Duplicate NHS Numbers (most commonly caused by an individual being

registered at more than one GP) with agreeing sex, date of birth, and date

of death (if applicable), are assumed to be the same person, and the record

with the most recent GP registration start date is taken as their current GP

practice and address. If there is discrepancy then all records with the given

NHS number are excluded.

• In order to be counted in a particular year, an individual’s entry date must be

prior to the half way point (1st October) of the given year and their end date

after the halfway point. This was done to avoid overestimating the population

count, particularly in areas with highly transient populations.

• For a given GP registration, only the individual’s current address, rather

than entire address history, is recorded. A change in address can only be

identified if it is accompanied by a change in registered GP. Consequently, it

is possible to observe “large” moves in people, but not “smaller” local moves.

This is exacerbated by several GP practices in the MBCCG being made up of

multiple sites. For example, Lancaster Medical Practice is comprised of eight

sites spread over central Lancaster, hence an individual could move multiple

times living in varied areas, demographically speaking, whilst remaining with
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the same GP. In addition, since GP registration end date is missing, it is

not possible to determine whether there are breaks between registrations, for

example if an individual has moved out of the MBCCG then moved back in

at a later date. Therefore, we only consider the most recent registration for

each individual. Although this wastes some information, given the relatively

short length of the study period it should only impact majorly on areas with

transient populations which will have a spatial correlation.

• ‘Regular’ registrations only are considered. In England, a ‘temporary’ GP

registration can be used whilst away from home for work, study, or on holiday,

for up to three months. Individuals with a temporary registration remain

registered with their permanent GP surgery during this time.

2.6.2 GP registration model

The primary focus of the main article is referrals to outpatient respiratory clinics and

the impact of the MBRN, hence minimal focus is given to the extensive work carried

out to model the GP-registered population. In this section we provide extended

detail of the model, including motivation, exploratory analysis, methodology, and

results. Some information from the main article has been duplicated for the sake of

clarity and completeness.

2.6.2.1 Model motivation

For our study into referrals to outpatient respiratory clinics, it is crucial to adjust

for patient burden to avoid producing a model that simply acts as a proxy for

CRD prevalence. Our modelling approach includes CRD patient count as an offset

term to express the rate of referral for each space-time unit in terms of number of

CRD patients. Patients with a CRD diagnosis are identified from CDW primary

care records. However, the number of patients registered at a MBCCG GP for a

given space-time unit is open to multiple sources of error (Section 2.2.1) which will in

turn bias the CRD patient count. NHS Digital has released GP-registered population

data at LSOA level since 2014, allowing us to apply a correction to our CRD patient

count for study years 2014-2019 (Section 2.2.3.1). However, NHS Digital has only

released this data since 2014, whereas our study begins in 2012. The purpose of

this model is to model the error process between the true GP-registered population
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count taken from NHS Digital and the corresponding erroneous population count

from the CDW. The model output allows us to predict the unobserved NHS Digital

data for 2012 and 2013 and apply the correction to the CRD patient count. For

our research into outpatient referrals, the GP registration model is a means to an

end, but the methodology outlined could be applied to other research where official

statistics are required beyond the time frame for which they have been reported.

2.6.2.2 Exploratory analysis

The outcome variable, denoted PNHS
it , is the number of adults ≥ 25 years registered

at an MBCCG GP for LSOA i = 1, . . . , N and year t = 1, . . . , T + 1, calculated

from NHS Digital. Our study of outpatient referrals is over T = 8 study years (2012-

2019), yet for this model we utilise data from the year 1st April 2020 - 31st March

2021. We recognise that including the 2020/21 year may introduce COVID-related

bias (e.g., people may have been less likely to move house or relocate during the

pandemic which would in turn affect GP registration) but it has been included to

increase the sample size and improve the model’s prediction capacity.

We first consider a GLM. The outcome counts are sufficiently large (mean = 1181,

minimum = 681) to justify a log-Gaussian model as an approximation to the Poisson.

The natural logarithm of CDW population count, from which we aim to predict the

outcome variable for the unobserved years, is included as a covariate (log(CDW)).

Additional covariates are included to adjust for known sources of error, namely year

(Year) and proportion of the population registered at a GP not included in the

CDW data sharing agreement (Missing). Table 2.5 provides further details of the

variables used in analysis and Table 2.6 provides summary statistics. The GLM is

of the form:

log(PNHS
it ) = β0 + β1 log(CDWit) + β2 Yeart + β3 Missingit .

Spatial autocorreltion was explored using Moran’s I statistic computed on the GLM

residuals for each year separately; the values ranged from 0.23 to 0.33 with p-

values<0.0001 in all years. The lag-1 temporal autocorrelation calculated for each

LSOA separately yielded a mean of 0.3762 across all LSOAs. Therefore, we pursued

modelling approaches that would account for strong spatio-temporal correlation.
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Table 2.5: Description of variables used in spatio-temporal GP registration model.

Variable Time

vary-

ing

(Y/N)

Source Description Notes

GP-registered

population

Y NHS Digital Average number of adults

(25+ years) registered at a

MBCCG GP for each LSOA

inside the CCG boundaries

LSOA-level data released quarterly (1st Jan, 1st Apr, 1st

Jul, 1st Oct) since January 2014. LSOA-level given for

all-age only. GP-level given in five-year age brackets.

Number 25 years or over estimated for each LSOA by

multiplying the number registered at each GP by the

proportion of that GPs register over 25. Estimates

calculated for each quarter and averaged across study

years.

Only consider data for MBCCG GPs and LSOAs within

the MBCCG.

‘Regular’ registrations only. ‘Temporary’ registrations

are not counted in the NHS Digital data
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CDW GP

register

counts

Y CDW

(primary

care records)

Annualised count of the

number of adults (25+

years) registered at a

MBCCG GP for each

LSOA inside the CCG

boundaries

Entry date – most recent of study start date (01/04/12),

25th birthday, and GP registration start date.

End date – earliest of date of death and GP registration

end date proxy. If not relevant then ‘NA’.

‘Regular’ registrations only. ‘Temporay’ registrations

not included.

Year Y NA Continuous variable form of

year

Exploratory analysis suggested a linear trend between

(natural logarithm of) GP-registered population and

time, hence the use of a continuous form of year.

Missing GPs Y NHS Digital Percentage of the LSOAs

GP-registered population

missing from the CDW as

a result of GPs not in the

data sharing agreement

Two GPs not in the data sharing agreement of the CDW.

An additional GP closed in September 2015 (before the

CDW was created), patients had to register at a new

GP so these patients are “missing” pre-September 2015.

Percentage calculated using LSOA-level GP registration

data released by NHS Digital. We do with calculations

with all-age data and assume this variable not to

be correlated with age. As with the ‘GP-registered

population’ variable, mean taken across quarters.

For the study years 2012 and 2013, the 2014 value is

used. Exploratory analysis suggests this variable does

not fluctuate year-on-year.
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Table 2.6: Summary statistics for covariates used in the GP registration model.

Min 1st Median Mean 3rd Max
NHS Digital 680.6 960.5 1102.5 1180.7 1356.5 2210.7
CDW 365 881 1048 1095 1272 2153
Proportion missing 0 0 0 0.022 0.017 0.555

2.6.2.3 Methodology

Model specification

Let S = (S1, . . . , ST+1) be the set of random effects for time points t = 1, . . . , T +1,

where St = (S1t, . . . , SNt) is a vector of LSOA-level random effects for a given time

point t. Then,

log(PNHS
it ) |Sit ∼ N

(
xTitβ + Sit, σ

2
)
,

where xit is the vector of explanatory variables, β the corresponding regression

parameters, and σ2 the variance of the residual errors. The model captures the

spatio-temporal autocorrelation by assigning the random effects a spatio-temporal

extension of conditional autoregressive (CAR) priors, which are a type of Gaussian

Markov random field (GMRF). Here we follow the model proposed by Rushworth

et al. [40],

St|St+1 ∼ N
(
ρTSt+1, τ

2Q(ρS,W )−1
)

t = 1, . . . , T

ST+1 ∼ N
(
0, τ 2Q(ρS,W )−1

)
.

(2.2)

The ST+1 is specified marginally since ST+2 does not exist. We condition in the

reverse order since the unobserved data is the furthest back in time as opposed to a

future event which is more typically seen in prediction modelling.

The random effects specified in (2.2) are non-separable in space and time. Temporal

correlation is modelled in the conditional expectation via a first-order autoregressive

process with dependency parameter ρT , whereas the spatial autocorrelation is

induced via the precision matrix, Q. Numerous specifications for the precision

matrix have been proposed in the CAR literature, but here we use that proposed by

Leroux et al. [41], Q(ρS,W ) = ρSW +(1− ρS)I where ρS is the spatial dependency

parameter, I the N ×N identity matrix, and W an N ×N neighbourhood matrix

defined for the 204 non-overlapping spatial units that comprise the lattice data for

this study. Using the notation i ∼ j to mean “areas i and j share a common border”
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and ni to be the total number of neighbours for area i, the individual elements of

W are:

wij =


ni if i = j

−1 if i ∼ j

0 otherwise .

Thus the precision matrix is a weighted average of the spatially dependent and

independent structures, accommodating both weak and strong spatial autocorrela-

tion [64]. The univariate full conditional distribution better illustrates the spatial

relationship, and is given by,

Sit|S−i,t ∼ N

(
ρS
∑

j∼i Sjt

niρS + 1− ρS
,

τ 2

niρS + 1− ρS

)
.

The subscript notation −k is used to mean “all elements except k”, and so S−i,t is

the vector of all random effects at time point t excluding area i.

MCMC methodology

Model fit was carried out by sampling from the posterior distribution of the param-

eters using MCMC methodology. It is assumed the reader has an understanding of

the fundamentals of Bayesian inference and MCMC methods.

Prior distributions:

The random effects, Sit (i = 1, . . . , N and t = 1, . . . , T+1), act as latent variables and

the spatio-temporal CAR prior is described in (2.2). For the remaining parameters,

we assume the following independent prior distributions:

τ 2 ∼ Inverse-Gamma (a, b)

σ2 ∼ Inverse-Gamma (c, d)

ρT ∼ Unif (0, 1)

ρS ∼ Unif (0, 1)

β ∼ N
(
0, λ2I4

)
,

where a = c = 1, b = d = 0.01, λ2 = 1000, and I4 the 4-dimensional identity matrix.

Posterior distribution:

Let θ = (β, S, τ 2, σ2, ρT , ρS) be the vector of parameters to be estimated. The joint
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posterior distribution is:

π (θ|P ) ∝ f (log (P )|S)×
T+1∏
t=1

π(St|St+1)× π(τ 2, σ2, ρT , ρS, β)

∝
(
σ2
)−N(T+1)

exp

(
− 1

2σ2
(log(P )−Xβ − S)T (log(P )−Xβ − S)

)
× det

(
τ 2Q−1

)−(T+1)/2
exp

(
− 1

2τ 2

T+1∑
t=1

(St − ρTSt+1)
T Q (St − ρTSt+1)

)
× π(τ 2, σ2, ρT , ρS, β) .

In the above we define ST+2 = 0 to simplify the posterior equation and write

π(τ 2, σ2, ρT , ρS, β) as shorthand for the prior distributions.

Updating algorithms:

The parameters (τ 2, σ2, ρT ) were updated via separate Gibbs samplers according to

their full conditional posterior distributions:

τ 2|P, θ−τ2 ∼ Inverse-Gamma

(
a+

N(T + 1)

2
, b+

1

2

T+1∑
t=1

(St − ρTSt+1)
T Q (St − ρTSt+1)

)

σ2|P, θ−σ2 ∼ Inverse-Gamma

(
c+

N(T + 1)

2
, d+

1

2
(log(P )−Xβ − S)T (log(P )−Xβ − S)

)
ρT |P, θ−ρT ∼ Truncated-Normal

( ∑T+1
t=1 St

TQSt+1∑T+1
t=1 St+1

TQSt+1

,
τ 2∑T+1

t=1 St+1
TQSt+1

; 0, 1

)
,

where the parameters of the truncated normal distribution respectively correspond

to the mean, variance, minimum value, and maximum value.

The parameter ρS was updated via a random walk Metropolis step. The tuning

parameter was tuned to achieve an acceptance rate between 0.4 and 0.45.

The regression parameters, β, and latent variables, S, were updated jointly using

GMRF full conditional sampling techniques outlined in Chapter 2 of Rue and Held

(2005) [65]. To summarise, we define ϕ = (β, S) and so,

ϕ|P, θ−ϕ ∼ N

(
1

σ2
V −1AT log (P ), V −1

)
,

where A is the design matrix and V the precision matrix for ϕ. We omit the
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full specification of V −1. To ensure V is singular, we enforce the linear constraint∑
i ϕi = 0. Sparse matrix methods combined with the algorithm for sampling from

GMRFs under a linear constraint outlined on page 38 of Rue and Held (2005) were

used to improve computational efficiency [65].

Inference

Inference was based on 2,000 independent samples obtained from 250,000 iterations

of the algorithm with a burn-in of 50,000 and the remaining 200,000 thinned by a

factor of 100 to remove any remaining autocorrelation. Convergence of the MCMC

algorithm was established by the Gelman-Rubin convergence diagnostic calculated

on three shorter chains to select a suitable length for the burn-in period. Trace plots,

density curves, auto-correlation plots, and effective sample size (ESS) calculations

were used to assess sufficient mixing of the final chain. The independent variables

were standardised prior to model fit to reduce multicollinearity.

The unobserved data for years 2012 and 2013 (corresponding to years t = 1, 2) are

treated as missing values in the response vector and are estimated each iteration of

the MCMC algorithm according to the posterior predictive distribution:

̂log(Pit)|P ∼ N
(
xTitβ0 + Sit0, σ

2
0

)
t = 1, 2 ,

where the subscript 0 has been used to denote the current values of the parameters

at a given iteration.

2.6.2.4 Results

In preliminary runs of the MCMC algorithm, the temporal dependency parameter,

ρT , was close to 1 (0.989), suggesting very strong temporal autocorrelation in the

error process between NHS Digital data and the CDW. The model was repeated

with ρT fixed at 1 which represents perfect temporal auotcorrelation. The Deviance

Information Criterion (DIC), an indicator of model fit for hierarchical models, was

equivalent (DIC=-7299) for the models with variable and fixed temporal dependency.

Hence for sake of parsimony, we proceeded with the temporal parameter fixed at 1.
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Model output

Table 2.7 shows the results of the model fit.

Table 2.7: Median parameter estimates, 95% credible intervals (CI), and effective sample
size (ESS) for the spatio-temporal GP-registration model based on 2,000 independent
MCMC samples.

Parameter Coefficient 95% CI ESS
ρs 0.353 (0.264, 0.450) 2000
σ2 0.000173 (0.000144, 0.000207) 2138
τ 2 0.00263 (0.00226, 0.00303) 2000
β0 (Intercept) 6.111 (6.088, 6.136) 1360
β1 (log(CDW)) 0.000839 (0.000817, 0.000860) 2000
β2 (Year) -0.0152 (-0.0173, -0.0130) 1535
β3 (Missing GPs) 1.302 (1.203, 1.399) 2000

Figure 2.4 is a boxplot of the LSOA-level true GP-registered population; observed

years are shaded in grey and the predicted years shaded in green. The predicted

years are very similar to that of 2014. This is supported by census data over the same

time period which shows a plateau in the total adult population between 2012-2014

(Figure 2.5). Although the census population is not identical to the GP-registered

population, it is still a good indicator of overall trends [66].
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Figure 2.4: Spread of LSOA-level GP-registered adult (≥25) population from NHS Digital
data for years 2014-2020 (shown in grey) and spatio-temporal model prediction results for
years 2012-2013 (shown in green).

The predictive performance of the spatio-temporal model was by leave-one-out cross

validation on the observed data (2014-2020). The mean absolute percentage error
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Figure 2.5: Total population size for the 204 study LSOAs according to ONS mid-year
estimates.

(MAPE) was calculated for the predictions as well as the percentage of LSOA-level

true values within the 95% credible intervals for the corresponding prediction (Figure

2.8). The model predicts well for years 2014-2019, with a maximum of three LSOAs

falling outside the 95% CI. The year 2020 performs considerably worse compared to

the others, likely due to impact of the COVID-19 lockdown on movement of people

and GP registration behaviour.

Table 2.8: Mean absolute percentage error (MAPE) and proportion of true values that
are within the 95% credible interval (CI) for each year predicted.

Year predicted MAPE LSOAs in 95% CI
2014 1.81 202 (99.0%)
2015 1.14 202 (99.0%)
2016 1.21 204 (100.0%)
2017 1.02 204 (100.0%)
2018 1.11 201 (98.5%)
2019 1.36 202 (99.0%)
2020 3.28 168 (82.4%)

MCMC diagnostics

Figures 2.6-2.8 show the traceplots and density curves for the parameters in the

model and a subset of the latent variables. The ESS for the model parameters can

be seen in Table 2.7, and the ESS for the latent variables had a median of 2,000 and

a minimum of 1,104.
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Figure 2.6: Diagnostic traceplots and density curves for (τ2, σ2, ρs) in the spatio-temporal
GP registration model.
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Figure 2.7: Diagnostic traceplots and density curves for the β parameters in the spatio-
temporal GP registration model.
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Figure 2.8: Diagnostic traceplots and density curves for a subset of the S latent variables
in the spatio-temporal GP registration model.
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2.6.3 Outpatient referrals model

This section supplements the main article by providing additional details of the

GLMM for outpatient referrals. We first present exploratory data analysis results

before describing the specifics of the MCMC algorithm used for model fit. The

material is assumed to be read in conjunction with the main article.

2.6.3.1 Exploratory data analysis

Table 2.9 provides a summary of the variables used in the referrals model, including

data source, general description, and additional notes.

Response variable

Figure 2.9 shows the time trend in the raw referral counts data by MBRN

intervention status. For the sake of this figure, we dichotomiose the MBRN covariate

so that an LSOA is classed as ‘MBRN’ if the proportion of the population registered

at an MBRN GP ≥ 50% and ‘Non-MBRN’ otherwise. Prior to the initiation of the

MBRN, the time trends are quite similar between the two groups. Post-initiation,

the MBRN areas show a dramatic decrease in annual number of referrals whilst non-

MBRN areas continue in an upward trend. However, the patterns in this plot do not

account for population growth or changes in the demographic or health structure of

the populations.
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Table 2.9: Description of variables used in the random intercept model of referrals to outpatient respiratory clinics.

Variable Time

vary-

ing

(Y/N)

Source Description Notes

Outpatient

referrals

Y CDW

(secondary

care records)

Annualised count of number of

referrals to outpatient respiratory

clinics

New referrals from GP, for adults aged 25+ years

residing within MBCCG boundaries.

Clinic inclusion: respiratory, spirometry, lung, or

oxygen clinics; nurse or consultant led; at Royal

Lancaster Infirmary, Furness General Hospital, or

Westmorland General Hospital.

Clinic exclusion: post-op, rheumatology, physio,

asthma biologics, or sleep clinics, and 2-week-wait

cancer referrals.

CRD patients Y NHS Digital

and spatio-

temporal

model output

Annualised count of number of

patients with an asthma, COPD,

bronchiectasis, or ILD diagnosis

Patients identified by relevant asthma, COPD,

bronchiectasis, and ILD SNOMED CT codes.

Additional criterion for asthma diagnosis is an

inhaler prescription in the last 12 months.

Age Y ONS

(mid-year

estimates)

Percentage of adult (25+ years)

population in a given age bracket.

Age brackets ‘65-74’ and ‘75+’ are used; covariate

selection methods suggests these are the only

relevant age groups.
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Sex Y ONS

(mid-year

estimates)

Percentage of adult (25+ years)

population that are male

IMD

score

Y Ministry of

Housing,

Communities

&

Local

Government

Index of Multiple Deprivation

(IMD) score from English Indices

of Deprivation

The IMD is update every 3-4 years. The mean of

the 2015 and 2019, the two publications within the

study period, indices was taken.

Distance

to hospital

N OSMR Travel distance (km) by car to

the nearest hospital within the

MBCCG

Hospitals considered: Royal Lancaster Infirmary,

Furness General Hospital, and Westmorland

General Hospital.

Distances were calculated using open source

routing software in R Studio. Distances were

calculated for all 11,594 (as of 14/01/22) postcodes

in the study area and then averaged by LSOA.

Year Y NA Factor variable form of year Factor form used as opposed to continuous to

better study the evolution of the MBRN in the

three years since initiation.
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MBRN

intervention

Y NHS Digital Percentage of GP-registered pop-

ulation registered at an MBRN

GP

This is calculated for each year regardless of

whether the MBRN was yet active in order to

account for baseline differences in the areas that

have and have not received MBRN intervention.

For study years prior to MBRN introduction

(2012-2016), the covariate is calculated as the

percentage of the population registered at a GP

that goes on to join the MBRN in 2017.

Percentage calculated using LSOA-level GP reg-

istration data released by NHS Digital. We do

with calculations with all-age data and assume this

variable not to be correlated with age. As with the

‘GP-registered population’ variable, mean taken

across quarters.

For the study years 2012 and 2013, the 2014 value

is used. Exploratory analysis suggests numbers

registered at each GP does not fluctuate year-on-

year.
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Figure 2.9: Annual number of referrals for intervention and non-intervention areas. The
MBRN covariate has been dichotomised at the 50% mark. The grey dashed line represents
the introduction of the MBRN in 2017.

Explanatory variables

Table 2.10 provides summary statistics of the covariates used in the final model for

referrals to outpatient respiratory clinics.

Table 2.10: Summary of model covariates over all space-time units. All values are
percentages, except the distance variable which is in kilometres.

Min 1st quartile Median Mean 3rd quartile Max
65-74 4.40 13.73 16.42 16.88 20.52 32.70
75+ 2.33 9.90 13.54 14.09 16.79 34.71
Male 40.19 46.63 47.88 48.20 49.43 65.66
Distance 0.87 3.31 6.81 9.42 13.27 38.16
IMD 3.62 10.84 16.72 22.62 29.19 77.84
MBRN 0 0.20 51.46 50.93 99.90 100.00

Table 2.11 shows the change in mean of all time-varying covariates: both age

variables show a mostly increasing trend, indicative of an ageing population, and

percentage male has increased marginally. The proportion of the population

registered at a GP that joined the MBRN in 2017 remained mostly constant between

2014-2017 before increasing in 2018. MBRN coverage is unobserved for study years
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2012 and 2013 as NHS Digital did not release LSOA-level data until 2014. In the

final model, we assume the 2012 and 2013 values to be equal to 2014. Note that

IMD is not included in Table 2.11 since it is not time varying.

Table 2.11: Mean of time varying GLMM covariates by study year.

Year 65-74 75+ Male MBRN
2012 16.0 13.5 48.0 -
2013 16.5 13.7 48.0 -
2014 16.8 13.9 48.0 50.7
2015 17.0 14.0 48.3 50.7
2016 17.2 14.1 48.3 50.8
2017 17.3 14.2 48.3 50.8
2018 17.2 14.5 48.4 51.4
2019 17.1 14.8 48.4 51.6

Figures 2.10 and 2.11 both illustrate the spread of the MBRN. Since the MBRN

covariate is time-varying we used 2017 data only for these plots. The MBRN

covariate is defined as percentage of the total population (Table 2.10), yet 84% of

the data points are either less than 1% or greater than 99%, with an overall median

of 51.5% (Figure 2.10). Lancaster is the only area that has had widespread full

coverage (Figure 2.11), this is because all GPs in this area are part of larger, multi-

site practices. The LSOAs with 0% coverage account for a greater proportion of the

MBCCG spatially speaking, due to the differences in population density (illustrated

by the sizes of the LSOAs), and yet phase 1 of the MBRN reached 50% of the total

MBCCG population.

Overdispersion

We first considered a Poisson GLM to model referrals, with covariates included as

described in the main article. The model was overdispersed (mean(Yit) = 5.5 <

10.0 = var(Yit); residual deviance = 2092 > 1707 = q(0.95, df = 1612) and random

effects models were next considered. An analysis of the residuals did not suggest

any significant spatial or temporal correlation. Moran’s I statistic was insignificant

for study years 2012-2017 and suggested only a weak spatial correlation at the

5% significance level for 2018 and 2019 (Moran’s I = 0.10 and 0.15 respectively).

Therefore, it was concluded that a more complex spatial correlation structure was

not necessary and an independent random intercept model was used.
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Figure 2.10: Histogram showing the distribution of the proportion of the popualtion
registered at an MBRN GP in 2017.
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2.6.3.2 MCMC methodology

Prior distributions:

The random effects, Zi (i = 1, . . . , N), act as latent variables and have independent

Normal(0, κ2) priors, as described in the main article. For the remaining parameters,

the following priors were used:

κ2 ∼ Gamma (a, b)

γ ∼ N
(
0, λ2I

)
,

where a = 1, b = 0.01, λ2 = 1000, and Ip is a p-dimensional identity matrix with p

being the number of regression parameters in the referrals model.

Posterior distribution:

Let θ = (γ, Z, κ2) be the vector of parameters to be estimated. The joint posterior

distribution is:

π (θ|Y ) ∝ exp

(
N∑
i=1

T∑
t=1

[
yTitditγ + yTitzi − exp(log(Rit) + ditγ + zi)

])

× (κ2)−N/2 exp

(
− 1

2κ2

N∑
i=1

z2i

)
× π(κ2, γ) ,

where π(κ2, γ) represents the corresponding prior distributions.

Updating algorithms:

The parameter κ2 was updated via a Gibbs sampler according to the its full

conditional posterior distribution:

κ2|Y, θ−κ2 ∼ Inverse-Gamma

(
a+

N

2
, b+

1

2

N∑
i=1

z2i

)
.

The regression parameters, γ, and latent variables, Z, were updated jointly. If we

let ψ = (γ, Z), the posterior distribution for ψ is:

π(ψ|Y, κ2) ∝ exp

(
−1

2
ψTQψ + Y TBψ − 1T exp(log(R) +Bψ)

)
, (2.3)
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where Q is a diagonal matrix of the prior precision and B is the design matrix for ψ.

The distribution in (2.3) does not have a tractable form but can be approximated

to a GMRF using the methodology in e.g., Chapter 4 of Rue and Held (2005) [65].

The GMRF approximation, which we will denote by q(.), is then used as a proposal

distribution in a Metropolis-Hastings step.

We omit the full calculations, but in brief, the approximation uses a second-order

Taylor’s expansion of the log of the posterior in (2.3) about the current value of ψ,

say ψ0. Then,

π(ψ|Y, κ2) ≈ q(ψ|Y, κ2, ψ0) ∝ exp

(
−1

2
ψTCψ + bψ

)
∼ N

(
C−1b, C−1

)
,

where the matrix C and vector b are functions of ψ0:

b =
(
log π(ψ0|Y, κ2)

)′ − (log π(ψ0|Y, κ2)
)′′
ψ0

C = −
(
log π(ψ0|Y, κ2)

)′′
.

To improve the accuracy of the approximation, the expansion is repeated, with each

successive expansion performed around the mean of the previous approximation i.e.

the first expansion is around ψ0, the second expansion is around µ1 = C−1(ψ0)b(ψ0),

the third expansion is around µ2 = C−1(µ1)b(µ1), and so on. Preliminary runs of

the algorithm found five expansions to be sufficient. Once the approximation is

complete, a proposed value, say ψ∗, can be sampled from the GMRF according to the

same methodology in Section 2.6.2.3. As with the spatio-temporal GP registration

model, we impose the linear constraint
∑

i ψi = 0 to ensure the precision matrix of

the GMRF is invertible.

The acceptance probability of the Metropolis-Hastings step is,

α = min

{
1,
π(ψ∗|Y, κ2)q(ψ0|ψ∗)

π(ψ0|Y, κ2)q(ψ∗|ψ0)

}
.

Note that the above also requires a Taylor’s expansion of π(ψ∗|Y, κ2) around ψ∗ in

order to evaluate q(ψ0|ψ∗). This is also iterated to improve the accuracy.

Finally, at each iteration of the MCMC algorithm, we randomly sample from the

posterior predictions of PNHS
it for study years 2012 and 2013, and update the offset

term according to the correction formula in Section 2.2.3.1. Using this method, we

57



Chapter 2. Outpatient Referrals

use the entire posterior predictive sample, as opposed to a point estimate such as

the mean of the sample, and thus account for the uncertainty in the predictions.

Inference

Inference was based on 2,000 independent samples obtained from 25,000 iterations

of the algorithm, with a burn-in of 5,000 and the remaining 20,000 thinned by

a factor of 10. Similarly to the registration model, convergence was established

by the Gelman-Rubin convergence diagnostic. Trace plots, density curves, auto-

correlation plots, and ESS calculations were used to assess sufficient mixing of the

chain. Continuous explanatory variables were standardised prior to model fit to

reduce multicollinearity.

2.6.3.3 MCMC diagnostics

Figures 2.12-2.14 show the traceplots and density curves for the parameters in the

model. Since there are 21 regression coefficients and 204 latent variables, only a

subset of the plots are displayed. The ESS for κ2 was 1,432. The ESS for the

regression coefficients had a median of 2,000 and a minimum of 1,863, and the

latent variables had a median of 2,000 and a minimum of 1,231.

0 500 1000 1500 2000

0.
01

0
0.

02
0

0.
03

0
0.

04
0

iteration

ka
pp

a2

0.01 0.02 0.03 0.04

0
20

40
60

80

kappa2

D
en

si
ty

Figure 2.12: Diagnostic traceplots and density curves for κ2 in the random intercept
outpatient referrals model.
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Figure 2.13: Diagnostic traceplots and density curves for a subset of the regression
coefficients, γ, in the random intercept outpatient referrals model.
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Figure 2.14: Diagnostic traceplots and density curves for a subset of the Z latent variables
in the random intercept outpatient referrals model.
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3.1. Research letter

3.1.1 Introduction

The demand on diagnostic services in England has risen year-on-year. The National

Health Service (NHS) has identified the need for radical investment and reform of

diagnostic services, both to prevent missed or delayed diagnoses, and to transform

the process itself that can be duplicative and inefficient. New service delivery

recommendations emphasise virtual consultations and community diagnostics to

relieve pressure on acute services, an issue only exacerbated by the COVID-19

pandemic. There is considerable focus on the robust diagnosis of respiratory disease,

with targets to reduce variation in spirometry testing nationally through improved

training of primary care personnel.

However, there is currently no widely accepted approach for evaluating diagnostic

performance. Measuring diagnostic quality must consider more than whether the

final diagnosis is correct, but also the efficiency, timeliness, and rigorousness of the

process. There is opportunity for advanced analytic methods able to incorporate

a spectrum of information and account for the dynamic nature of the diagnostic

process. Such methods would require appropriate input data sources with clinically

rich information and linkage across healthcare tiers [1].

Routinely collected health data holds huge potential for clinical research. Each

patient interaction presents an opportunity to improve services and standard of

care through data-driven analytics. However, the nature of routine data can limit

its applications in research. The availability and quality of all variables required for

analysis must first be assessed to evaluate the capacity of the data in answering the

intended research question.

Existing literature recognises the challenges of using routine data for evaluating

diagnostics due to incomplete and erroneous coding, with an emphasis on the critical

role of physicians in influencing the quality of routine data for research purposes

[2, 3]. This study aimed to extend the discussion of the suitability of routine

data for measuring diagnostic quality by considering the problem in the context

of a specific data source and disease area. We aimed to illustrate key barriers

using electronic health records (EHRs) from the Morecambe Bay Community Data

Warehouse (CDW) applied to chronic respiratory disease (CRD).
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3.1.2 Methods

This report retrospectively analysed primary and secondary care data from the

Morecambe Bay CDW, an SQL Server owned by the University Hospitals of

Morecambe Bay NHS Foundation Trust. The CDW uses pseudonymised NHS

Numbers to individually link healthcare data across the Morecambe Bay, north-

west England, covering 3 hospitals, 32 general practices (GPs), and a population

exceeding 360,000. Patient demographic information was obtained from GP records.

CRD diagnoses (asthma, chronic obstructive pulmonary disease [COPD], bronchiec-

tasis, and interstitial lung disease [ILD]) were identified from GP records by the first

recording of a relevant SNOMED diagnosis code between 01/07/18-30/06/23. Only

patients aged ≥35 years at time of diagnosis and with ≥12 months of continuous

medical records prior to diagnosis were considered. If an individual had more than

one CRD diagnosis, these were treated as distinct events.

For each qualifying diagnosis, we extracted potential events in the diagnostic

pathway in the six-month period prior to diagnosis. By ‘diagnostic pathway’,

we are referring to the chain of events leading up to diagnosis. We obtained

information for: respiratory symptoms (cough, wheeze, dyspnoea, sputum, chest

pain, fatigue, and weight loss) recorded in GP records using SNOMED codes;

diagnostic tests conducted in both primary and outpatient care settings, using

SNOMED codes and procedure names respectively; and secondary care utilisation,

specifically outpatient respiratory clinic attendance, inpatient admissions using ICD-

10 codes, and emergency department visits with mention of respiratory problems.

All SNOMED and ICD-10 codes used in this research are available at: https:

//doi.org/10.17635/lancaster/researchdata/651.

Exploratory analysis was performed to evaluate the quality of the data.

3.1.3 Results

A total of 5,922 CRD diagnosis events (43.4% COPD, 32.9% asthma, 13.6%

bronchiectasis, 10.1% ILD) from 5,435 individuals were included in this study. Table

3.1 summarises the data findings including stratification by diagnosis.
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Table 3.1: Summary of extracted data variables for CRD diagnoses. All figures are percentages unless specified otherwise.

All
(n=5,922)

COPD
(n=2,573)

Asthma
(n=1,949)

Bronchiectasis
(n=803)

ILD
(n=597)

Demographics
Age (mean ± s.d.) 65.4 ± 13.3 66.3 ± 12.1 59.4 ± 13.6 71.4 ± 11.2 72.5 ± 11.8
Male 49.9 50.3 44.3 51.2 64.2
Symptom information
Dyspnoea 36.1 38.4 31.1 38.9 39.4
Cough 22.2 22.4 21.5 27.0 16.9
Sputum 14.4 16.2 10.0 21.2 11.9
Wheeze 12.7 12.0 17.3 10.3 4.2
Other a 8.0 9.4 4.8 9.7 9.5
Symptom absence 17.4 17.6 18.3 16.9 14.1
None 47.5 47.0 49.9 44.0 46.2
Selected diagnostic tests
Blood test 63.6 65.3 53.1 74.7 76.2
Chest x-ray 41.1 44.0 31.0 53.1 45.4
Spirometry b 36.1 41.3 36.5 26.8 24.3
Peak expiratory flow 34.4 35.0 34.9 27.8 39.5
Oximetry 32.2 31.5 28.3 39.0 39.2
Reversibility b 23.2 28.4 24.6 13.6 9.5
Other lung function 22.6 27.8 19.6 21.4 38.4
Other 4.0 2.8 2.2 9.5 7.7
None 17.1 15.0 25.2 10.1 8.5
Secondary care utilisation
Outpatient clinic 26.3 22.4 12.6 44.2 63.5
Inpatient admission 17.1 17.9 8.9 23.7 32.0
Emergency department 9.3 10.3 6.0 11.8 11.7
None 60.8 62.6 78.6 41.3 21.1

a ‘Other’ symptoms are chest pain, fatigue, and weight loss.
b Spirometry is any evidence of spirometry being carried out whereas reversibility is when the spirometry has been specified as post-bronchodilation.
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Symptom recording

Almost half of diagnoses had no SNOMED-coded symptom information in the

six months prior to diagnosis. Absence of symptoms cannot safely be inferred

from absence of symptom recording. Other explanations include incomplete data

recording, symptoms were not discussed, or an incidental diagnosis occurred

following an unlinked medical event. The explicit recording of symptom absence

was low, only 17.4%.

Removing patients without symptom information recorded from further analysis

could induce bias by excluding milder or asymptomatic cases. Less obvious bias

may result from demographic variability due to differences in data recording by GP

sites. When aggregated at GP-level, the percentage of diagnoses without symptom

information ranged from 30.1%-83.7%.

Diagnostic tests

At least one diagnostic test was identified for 82.9% of diagnoses, but issues arise

with interpreting results. X-ray imaging was the second most common test ordered

prior to CRD diagnosis with highest rates seen for bronchiectasis. However, scan

imagery and associated reports are not available in the CDW to interpret results.

Descriptive SNOMED codes such as ‘Chest x-ray abnormal’ exist yet lack clinical

detail and had only been used in 4.9% of chest x-rays.

There was evidence of post-bronchodilator spirometry (‘reversibility’) for 28.4% of

COPD diagnoses. Yet only 50.3% of this group had numeric results for both pre-

and post-bronchodilation stored under explicit and easily identifiable SNOMED

codes (e.g., ‘Forced expiratory volume in one second/forced vital capacity ratio

before[after] bronchodilator’). In 23.0% of cases, numeric results were missing

altogether, potentially recorded in free text.

There is lack of data pertaining to the motivation for a diagnostic test. Blood tests

were the most common test ordered, yet these could have been ordered for purposes

other than CRD diagnosis.
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Forming care pathways

We present evidence of care across the healthcare tiers. In total, 39.2% of diagnostic

pathways included secondary care services with higher percentages observed for

rarer diseases. However, the CDW does not contain free text fields, referral letters,

or clinician reports. Without a connecting narrative, there is uncertainty in which

healthcare events are part of the same chain of care and have contributed toward a

diagnosis, similar to the issue of motivation behind diagnostic tests.

Suspected cases

Our analysis only included cases that result in diagnosis. However, we can infer

that identifying suspected cases (where a patient is suspected of having a disease

but is not diagnosed either because the diagnosis was ruled out or the patient was

not adequately followed up) presents a challenge. There are SNOMED codes for

‘Suspected asthma’ and ‘Suspected COPD’, but these had only been used in 13.6%

and 6.4% of asthma and COPD diagnoses respectively. No equivalent codes exist

for the rarer diseases, bronchiectasis and ILD. Other variables could act as proxies,

including diagnostic tests, symptoms, referrals, or a combination, but there are other

conditions for which such events could apply.

3.1.4 Discussion

This report has evaluated and illustrated the capacity of routinely collected health

data for measuring diagnostic quality using examples from the Morecambe Bay

CDW and CRD. Routine health data holds huge potential to provide feedback for

transforming diagnostic services to meet increasing demand and improve standard

of care. However, by exploring data quality in a specific setting we have identified

data-level barriers that must first be addressed to assess diagnostic performance.

These issues also generalise beyond the scope of this project. The issues identified

can be broadly grouped into two themes: data recording practices and data access

barriers.
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Data recording

Data with rich clinical information such as GP observations will be essential

to understanding diagnostic quality [1]. However, our findings support previous

literature that there are fundamental problems at the data recording level [2, 3, 4].

Without consistent and high-quality data recording, both over time and between

GPs, we are unable to distinguish incomplete data collection from incomplete

diagnostic pathways. Standardising data recording practices in primary care will

be paramount to facilitating high-quality evidence-based health services research

and we present specific recommendations regarding standardisation.

First, standardisation is needed in terms of the information to be recorded for each

diagnosis. The consideration of symptoms is a likely first event in a diagnostic

pathway, yet our results show this information is substantially under-recorded in

primary care, particularly symptom absence. Other potentially key information,

including commentary on scan imagery and codes indicating suspected disease face

similar barriers of inconsistent usage.

Second, standardisation regarding the specific SNOMED codes used. SNOMED is

the most comprehensive clinical terminology product globally and a critical tool for

research with primary care EHRs. However, the hierarchy of the coding system

creates multiple ways of recording similar information. The use of ambiguous

codes can lead to misclassification by a researcher, or the information being missed

altogether [4], as illustrated by post-bronchodilation spirometry results.

Data access

Access to individually linked data will be crucial to the task of measuring diagnostic

quality [1]. Health data research in England is moving in the direction of wider access

to individually linked data with recommendations outlined in the Goldacre Review

and the recent funding of NHS Secure Data Environments to centralise health data

sub-nationally. This study supports existing recommendations by demonstrating the

proportion of diagnostic pathways that traverse healthcare tiers. The fragmentation

of data across different health systems is an established barrier to research with

routine data and prevents a full picture of patients’ healthcare journeys [5].

Unstructured data, including free text fields, narrative reports, and referral letters,

is needed to improve clarity and completion of the diagnostic pathway, yet access to
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unstructured data is often limited to researchers in accordance with information

governance. We recommend the further development of methods for drawing

structured data from free text, such as natural language processing (NLP). NLP

could be used both to withdraw information from historical data to supplement gaps

in structured data, including clinical motivation and narrative to link events, as well

as implemented in current EHR systems to support real-time coding of structured

data to improve usage of correct clinical coding [2, 6].

Limitations

In this study, diagnosis events were identified by the first recording of a relevant

SNOMED diagnosis code. This method was selected based on previous validation

studies for identifying respiratory disease patients from EHRs, yet these studies

deal only with whether the patient has the disease in question, and not the precise

time of diagnosis. Patients can be treated for a condition before a diagnosis code is

recorded. Alternatively, a code may be recorded when it is in fact only a working

diagnosis due to financial incentives such as the Quality and Outcomes Framework

(QOF) in England. Suspected disease SNOMED codes do not qualify for QOF

patient registers, a possible explanation for their low usage in our data. This source

of uncertainty is a limitation of our study. Since we look at the six months prior

to diagnosis, our results may change under different definitions of time of diagnosis.

However, it is also an issue beyond the scope of this study and the problem links into

the data recording theme. Established coding practices combined with validation

studies are required for accurately identifying time of diagnosis in EHRs [7]

Other limitations include the fact that the data explorations have been kept brief

and more patterns in the data could be uncovered by exploring relationships with,

for example, age, sex, and time. Second, we used a 5-year study period which covers

the COVID-19 pandemic, a time of significant disruption to healthcare services.

However, both pre- and post-pandemic data is included to minimise bias. Finally,

we have focused on a specific case study and have not explored the generalisability

of our results to other routine data sources or disease areas.
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3.1.5 Conclusion

Measuring diagnostic quality using routinely collected data will require improve-

ments in data recording and data access. A standardisation of data recording

practices in primary care is needed to promote consistent, high-quality, and easily

interpretable data. However, even with perfect coding, structured EHRs leave gaps

in the diagnostic pathway. Unstructured data present in healthcare documents

combined with NLP methodology may provide solutions.

This study demonstrates the importance of effective feedback loops between

researchers and healthcare professionals for increasing the capacity of routine data

for research. It is critical to provide those on the frontlines of data collection with

an understanding of how data will appear in EHR databases, targeted areas for

recording improvement, and motivation of what could be achieved with better data.
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Executive summary

The NHS Long Term Plan outlines aims to improve the robust recognition and

diagnosis of respiratory disease, with a focus on reducing the variation in access

to spirometry testing. Broader NHS agenda is increasingly centred on community-

based care through new service delivery models to relieve pressure on acute services.

The Morecambe Bay Respiratory Network (MBRN), an integrated care initiative in

the Morecambe Bay area, has targeted improved diagnostic standards. The MBRN’s

service model allows a higher standard of clinical care closer to home through an

enhanced primary care service, whilst streamlining access to specialist services via

monthly multidisciplinary team meetings. It was hoped that this thesis would be

able to evaluate the MBRN’s impact on patient diagnostic pathways.

The main findings of this report presented in Section 3.2.3 detail the barriers

encountered in using routine data from the Morecambe Bay Community Data

Warehouse (CDW) to measure diagnostic quality. The discussion is structured by

topic, including constructing diagnostic pathways, symptoms, and diagnostic tests.

To aid in extending our findings to other field of research, we additionally propose

a thematic framework:

• Data recording – foundational issues at the recording level, specifically how

data is inputted into electronic health records by general practitioners.

• Data access – limitations arising from data availability.

• Broader study design considerations – such as the impact of COVID-19.

Despite the limitations encountered, Section 3.2.4 presents findings from the data

relevant to MBRN stakeholders. These results are exploratory only but are provided

to demonstrate the often-unconsidered potential of integrated care initiatives to

facilitate greater research capacity of routine data via standardisation of care

pathways and promoting high-quality data recording practices.

The report concludes with recommendations for future research into diagnostic

quality, specifically standardising data recording practices in primary care, vali-

dation studies for time of diagnosis, and access to free-text data for insight into the

complexities of the diagnostic process. Regarding the MBRN, access to MDT data

linked with patient records will be critical for future evaluations of the intervention.
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3.2.1 Introduction

The NHS Long Term Plan identifies the need for radical investment and reform

of diagnostic services to not only prevent missed or delayed diagnoses but also to

transform the diagnostic process itself that can be duplicative and inefficient [8].

The demand on diagnostic services has risen year on year with a knock-on effect to

waiting times, an issue only exacerbated by the COVID-19 pandemic [9]. Recent

NHS England reports outline recommendations for new service delivery models with

an emphasis on virtual consultations and community diagnostics to relieve pressure

on acute services [10]. There is considerable focus on the robust recognition and

diagnosis of respiratory disease, with targets to reduce the variation in the quality

of spirometry testing across the country through improved training of personnel in

primary care [8].

The Morecambe Bay Respiratory Network (MBRN)

The key component of the MBRN integrated care service model is to enhance and

upskill primary care teams to provide a higher level of clinical care to patients. The

following elements specifically relate to diagnostics:

• Multidisciplinary team (MDT) meetings – primary care is supported by

secondary care expertise and expanded community teams via monthly MDT

meetings where patients are discussed from diagnostic and management

perspectives. Specialist input is received at an earlier stage in the patient

pathway, improving diagnostic accuracy as well as service efficiency by

reducing inappropriate referrals.

• Direct referrals – GPs have direct access to lung function testing. This means

that GPs can refer directly to lung function clinics rather than first referring

to a respiratory medicine clinic, then the patient receiving an onward referral

for testing. The aim is to improve the efficiency of the diagnostic process by

ensuring patients have all appropriate tests completed before being discussed

at an MDT or seen in clinic if necessary.

• Diagnostic template – the MBRN diagnostic template covers key areas of

diagnostic relevance for chronic respiratory disease (CRD) namely symptoms,

medical and family histories, risk factors, diagnostic tests, and follow up
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plan. Usage of the template should aid in standardising diagnostic practice

across GPs and improve diagnostic accuracy by ensuring all clinically relevant

features are considered. A copy of the template can be found in Appendix

A.1.

• Training – alongside the informal training opportunities through the MDT

meetings GPs receive additional training and education via the MBRN,

including in spirometry.

Project background

An original aim of this thesis was:

“Using national standards and guidelines, develop classification algorithms to

understand the features of diagnostic quality for the four main CRDs (asthma,

chronic obstructive pulmonary disease [COPD], bronchiectasis, and interstitial lung

disease [ILD]). Identify areas of good practice and areas that may require improved

training in respiratory care and support from population health strategies.”

In brief, to achieve this aim we planned to develop an algorithm that identifies from

the data key risk factors, symptoms, tests results, and other healthcare interactions,

that are associated with each of the four main CRD diagnoses. This could then be

compared to national diagnostic standards and guidelines to assess the standard of

practice and identify any improvements made by the MBRN. However, to undertake

this work, a more fundamental question first needed to be answered: “How do we

define a good diagnosis and how can it be measured using routinely collected data?”.

Addressing this question is the overarching objective of this report.

Despite the need for radical reform of diagnostic services, there is currently no

widely accepted measurement approach for evaluating diagnostic performance. To

be clear, in this report we use diagnostic performance and diagnostic quality to refer

to the entire journey of a patient being diagnosed, as opposed to the accuracy of

diagnostic instruments. There is opportunity for advanced analytic methodology

that incorporates a spectrum of information and accounts for the dynamic nature

of the diagnostic process. However, such methods would require appropriate input

data sources with clinically rich information, particularly symptoms, and linkage

across healthcare tiers [1].

Routinely collected health data holds huge potential for epidemiological and clinical
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research. Routine data can offer large statistical power, are often representative of

a population, have detailed medical histories, and linkage with other data sources

can improve completeness [11, 12]. However, the nature of routine data can limit

its applications in research, with common issues associated with misclassified and

missing data. Any research using routine data must consider both the availability

and quality of all variables required for analysis to assess the capacity and fitness-

for-purpose of the data in answering the intended research question [13, 14].

Existing literature recognises the challenges of using routine data to measure

diagnostic performance due to incomplete and erroneous coding, with an emphasis

on the critical role of physicians in influencing the quality of routine data for research

purposes [2, 3, 6]. Suggested solutions include improved standardisation of clinical

coding, a culture of change in physicians’ attitudes toward high-quality recording

practices, and increased validation of coding used for research [1, 3, 6]. However, to

the best of our knowledge, no studies have provided a thorough examination of a

routine data source or considered the issues in the context of a specific disease.

The content of this report has been used to achieve two outcomes. First,

to extend the existing discussion of measuring diagnostic quality with routine

data by providing an in-depth examination of key barriers and illustrating with

specific examples using electronic health records (EHRs) from the Morecambe Bay

Community Data Warehouse (CDW) applied to CRD. Second, to provide a response

to MBRN stakeholders regarding the feasibility of the originally planned research

question, specifically evaluating the impact of the MBRN on diagnostic performance.

3.2.2 Methods

This report uses primary and secondary care data from the Morecambe Bay CDW

linked at patient-level via pseudonymised NHS Numbers. Incidences of CRD

(asthma, COPD, bronchiectasis, and ILD) diagnoses between 2015-2022, for adults

≥35 years at time of diagnosis, were identified from primary care records using

SNOMED CT codes. Unless specified otherwise, we consider diagnosis events, not

individuals. For example, if an individual has both an asthma and COPD diagnosis

in their medical history these are counted as two distinct diagnosis events. For

each disease and individual combination, only the first occurrence of a diagnosis is

considered.
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Data variables that could either be indicators of diagnostic quality or be associated

with the diagnostic process were extracted from primary and secondary care

records, including symptoms, diagnostics tests, secondary care utilisation, and

MBRN intervention. Quantitative exploratory analysis was carried out to assess

the availability, identifiability, completion, and missingness of these variables. All

SNOMED and ICD-10 codes used for analysis are available at: https://doi.org/

10.17635/lancaster/researchdata/651.

The data presentations in this report include temporal trends, but also focus on

diagnoses made in 2022 to provide a picture of the most up-to-date diagnostic

practices since diagnostic technologies and best practice guidelines change over time.

Findings from 2022 may be vulnerable to COVID-19 related bias and Appendix A.2

provides additional results to consider this impact on the data presentations and

subsequent conclusions.

3.2.3 Generalisable issues

In this section, we consider different barriers to measuring diagnostic quality using

routine data. Although we illustrate with examples from CRD in the Morecambe

Bay area, the issues discussed are generalisable to other disease areas, as well as

research using routine data more broadly. The section is structured by topic.

However, we also propose a thematic framework for thinking through the issues

raised, specifically whether the issue is linked to data recording practices, data

access, or is a broader study design consideration. Table 3.2 provides an overview

of the topics and themes that will be encountered to help orientate the reader.

Table 3.2: Topics discussed in Section 3.2.3 with crosses indicating the relevant themes.

Topic Data recording Data access
Broader study design

consideration
Constructing diagnostic pathways X X X
Symptom recording X
Diagnostic tests X X
Suspected cases X
Identifying local intervention X X X
Control group X X
COVID-19 X
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3.2.3.1 Constructing patient diagnostic pathways

By ‘diagnostic pathway’ we are referring to the chain of events leading up to

diagnosis. Two examples are provided in Tables 3.3 and 3.4. The pathways were

constructed by first identifying patients according to the criteria outlined in Section

3.2.2 then extracting any respiratory-related activity from primary or secondary care

prior to the diagnosis.

Table 3.3 shows the pathway for a COPD diagnosis. The patient only interacted

with primary care prior to diagnosis and there is a good level of detail with risk

factors, symptoms, and diagnostic tests recorded.

Table 3.3: Example of a diagnostic pathway for COPD diagnosis.

Date Age Category Observation Result/additional detail
2013-01-29 55 Risk factor Current smoker Light (1-9 cigs/day)
2014-12-23 57 Risk factor Current smoker Moderate (10-19 cigs/day)
2016-04-05 59 Test Chest X-ray
2016-04-26 59 Symptom Chesty cough
2016-04-26 59 Test Spirometry
2016-04-26 59 Test FEV1/FVC ratio 67.620

2016-04-26 59 Test
FEV1/FVC ratio post
bronchodilator

65.980

2016-04-26 59 Test Spirometry reversibility negative
2016-05-11 59 Risk factor Current smoker
2016-05-11 59 Symptom Wheeze absent

2016-05-11 59 Symptom
Medical Research Council
Breathlessness Scale

Grade 3

2016-05-11 59 Test Spirometry
2016-05-11 59 Test Post bronchodilator spirometry
2016-05-11 59 Test FEV1/FVC ratio 69.790
2016-05-11 59 Diagnosis COPD

The pathway shown in Table 3.4 is for a bronchiectasis diagnosis. Compared to

Table 3.3, the pathway is shorter and less detailed in terms of symptoms and tests,

but we see the patient interacting with both inpatient and outpatient services in the

months prior to diagnosis.

These pathways were constructed on an ad-hoc basis for illustration. Producing

a rigorous algorithm to construct diagnostic pathways from EHRs for research

purposes raises key questions that first need addressing.
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Table 3.4: Example of a diagnostic pathway for bronchiectasis diagnosis.

Date Age Category Observation Result/additional detail
2013-11-19 85 Risk factor Non-smoker Never smoked tobacco
2014-11-04 86 Diagnosis Asthma
2015-04-21 87 Inpatient Emergency admission Asthma, unspecified
2015-06-05 87 Test Chest X-ray
2015-06-09 87 Referral Referred from GP
2015-06-30 87 Diagnosis Acute asthma exacerbation
2015-07-03 87 Outpatient Seen in respiratory clinic No procedures recorded
2015-07-29 87 Diagnosis Bronchiectasis

i. Identifying time of diagnosis

For research using primary care records, SNOMED CT is a crucial tool for identifying

patients with a specific condition. SNOMED CT is the most comprehensive clinical

terminology product globally and allows patient problem lists of current diagnoses

to be maintained by general practices [15]

However, primary care records show that patients can be treated for a condition for

years before a diagnosis code is recorded, resulting in a diagnosis time later than

the truth. A partial solution has been implemented in the BREATHE recommended

codes for asthma and COPD found via the Health Data Research Phenotype Library

[16]. These codes allow observations that indicate ongoing treatment such as ‘COPD

annual review’ and ‘Under care of specialist asthma nurse’ to qualify as a diagnosis.

These codes were implemented for further analysis, along with our own constructed

lists for bronchiectasis and ILD.

Alternatively, a relevant SNOMED code may be recorded as a working diagnosis.

For example, in the case of COPD, a GP may record a diagnosis code to ensure the

patient is listed on the Quality and Outcomes Framework (QOF) COPD patient

register whilst diagnostic tests are carried out. If the suspected diagnosis is ruled

out, the active code should be removed from the patients record, but this may

not always happen. The recording of diagnosis codes as a working diagnosis can

result in a diagnosis time earlier than the truth if the clinical diagnosis is later

confirmed, or even a false detection if the diagnosis is later ruled out. Validation

studies for identifying patients from EHRs attempt to circumvent this issue by

considering algorithms with additional criteria along with diagnostic codes such

as prescriptions, diagnostic tests, and/or symptoms [11, 13, 17]. However, in the

case of COPD, validation studies recommend the use of diagnosis codes alone and
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found that including test results or medications only marginally improved results

[17]. Nevertheless, these validation studies consider only the question of whether an

individual has the condition in question as opposed to the exact time of diagnosis,

which is critical for studying patient diagnostic pathways.

ii. Defining the start and end of the diagnostic pathway

This can be undertaken in two ways:

1. Event-based – the pathway starts with a certain event, such as a risk

factor (although this could occur years prior; in Table 3.3 the first smoking

observation occurs over three years prior to COPD diagnosis) or the recording

of a relevant symptom (poor symptom recording is discussed in Section 3.2.3.2)

and ends with diagnosis.

2. Time-based – the pathway includes events within a certain window of time,

for example, the six months prior to diagnosis. The appropriate window of

time would vary by disease and should account for factors associated with the

wider healthcare environment such as outpatient referral waiting times. To

adjust for the possibility of codes being recorded as a working diagnosis, the

end point of the diagnostic pathway could be set beyond the recording of a

qualifying diagnosis code. However, this could result in the diagnostic pathway

including treatment-related events.

iii. Selecting events relevant to the diagnostic pathway

The diagnostic process is often not confined to a single episode of care but will

traverse multiple appointments and even healthcare tiers. Relevant events could

include risk factors and symptoms recorded in primary care, diagnostic tests in

primary or secondary care, referrals to outpatient clinics, A&E presentations, and

admissions to hospital. The CDW does not contain free text fields, referral letters,

or clinician reports, linking to the data access theme of our thematic framework

(Table 3.2). Without an accompanying narrative it is difficult to determine which

interactions are part of the same chain of care and hence which events have

contributed toward a diagnosis (this is further discussed Section 3.2.3.3). For

example, in Table 3.4, the hospital admission for asthma may have triggered a

chain of events leading to the bronchiectasis diagnosis 10 months later, or it may
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have been an independent event.

3.2.3.2 Symptom recording

The presentation of a symptom is a likely first event in a diagnostic pathway.

For research using claims-based data, the lack of symptom information has been

highlighted as a major barrier to measuring diagnostic quality [1]. The CDW

provides clinically rich information from primary care observations data, avoiding

the data access issue, yet there is a more fundamental problem at the recording-

level, aligning with the data recording theme of our proposed framework (Table

3.2). For the diagnosis of CRD, we consider cough, wheeze, sputum, breathlessness,

chest pain, weight loss, and fatigue as relevant symptoms, following clinician input.

Figure 3.1 shows the percentage of CRD diagnoses made in 2022 with recorded

symptom information in the six months prior to the first recording of a diagnosis

code. In the six months prior to diagnosis, 46% of diagnoses had no symptom

information recorded. Note that symptom information includes the recorded absence

of a symptom (e.g., ‘No wheeze’ or ‘Weight normal’). The explicit recording of

symptom absence was present in just 20% of diagnostic pathways.
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Figure 3.1: Percentage of diagnoses 2022 (n=1,229) with symptom information recorded
in the six months prior to diagnosis. Labels above bars show the frequency.

However, we cannot infer absence of symptoms from absence of symptom recording.

Some of the 46% will be asymptomatic cases that have been diagnosed following

an incidental diagnostic test or other healthcare interaction, but many will likely
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be the result of incomplete data recording, or even that the symptom was not

discussed between patient and practitioner. It is not possible to distinguish between

these events from the data. Performing diagnostic pathway analysis on the subset

of patients that have a symptom recorded could induce bias by excluding milder

or asymptomatic cases, but also in terms of location and demographics since data

recording practices are likely to vary by GP (see Section 3.2.4.2, for example).

A standardisation of the diagnostic process, including the recording of presence

and absence of key symptoms, would facilitate defining the diagnostic pathway

and identifying instances where symptom information is not being taken into

consideration for diagnosis [3, 6].

3.2.3.3 Diagnostic tests

The diagnostic process, particularly diagnostic testing, often traverses healthcare

tiers. Thus, an immediate barrier to constructing diagnostic pathways is being able

to integrate different sources of healthcare data at patient-level [1]. This research

uses the CDW, a store of primary, secondary, and community care data that can

be individually linked via pseudonymised NHS Numbers. However, issues arise with

both identifying tests relevant to the diagnostic pathway and with interpreting the

test results, preventing critical judgement on diagnostic quality.

i. Identifying relevant tests

Potentially relevant diagnostic tests for each of the four CRDs were advised by

clinician expertise. Tests carried out in primary care were identified using SNOMED

CT codes and tests carried out in secondary care were identified by searching

procedure names. Using this method, we identified diagnostic tests carried out

for each patient in the six months prior to diagnosis. However, uncertainty remains

surrounding the motivation behind a test since not all diagnostic tests are specific to

one disease or even to a small group of conditions. As discussed in Section 3.2.3.1,

without free text fields to provide clinician commentary on the decision-making

process, there can be ambiguity in clinical coding as to why a given test was ordered

[18]. As an illustration, Figure 3.2 shows the percentage of CRD diagnoses made

in 2022 that have evidence of each test in the six months prior to diagnosis. The

four most common tests, each with approximately 60% completion, are blood tests.
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Given the older demographic of CRD patients and probable comorbidities, a blood

test could have been ordered for other purposes and may not be part of the chain

of events contributing toward diagnosis.
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Figure 3.2: Percentage of diagnoses in 2022 (n=1,229) with evidence of each diagnostic
test in the six months prior to diagnosis. Labels next to bars show the frequency.

ii. Interpreting test results

SNOMED CT is advertised as a comprehensive clinical terminology product [15],

yet the fine granularity of the codes can create multiple ways of recording similar

information. When unspecific or ambiguous codes are used, information, although

recorded, can become unusable to a researcher [2]. As an example, COPD can only

be confirmed by a post-bronchodilator spirometry result of FEV1/FVC ratio < 0.7

[19]. This is often referred to as a test of reversibility since if lung function (measured

by FEV1/FVC) is not improved (“reversed”) by administering a bronchodilator

then this is indicative of COPD. The underutilisation of spirometry for diagnosing

COPD is a global issue with an estimated 60%-70% of COPD patients lacking

this test in their medical records [20]. In our data, only 29% of COPD patients

diagnosed in 2022 had evidence of a test of reversibility being administered in the

six months prior to diagnosis, which is consistent with the literature. However,

of that 29%, only 27% had the numeric test results recorded under the explicit

SNOMED codes ‘FEV1/FVC ratio before bronchodilator’ and ‘FEV1/FVC ratio

after bronchodilator’. Many GPs, although recording that post-bronchodilator
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spirometry was being carried out, instead used the unspecific ‘FEV1/FVC ratio’ code

to record both the before and after bronchodilator results, as illustrated in Table 3.5.

The three observations have the same time stamp since it corresponds to the time

the GP saves the appointment notes, and so the before and after bronchodilator

results become indistinguishable.

Table 3.5: An illustration of spirometry results for COPD diagnosis being recorded under
unspecific SNOMED codes.

Date/time Observation Results
2018-03-21 10:34:51 FEV1/FVC ratio 0.63
2018-03-21 10:34:51 Post-bronchodilator spirometry
2018-03-21 10:34:51 FEV1/FVC ratio 0.71

Even when results have been explicitly recorded, numeric results do not always have

a clear and decisive cut-off. For example, COPD is defined by a post-bronchodilator

FEV1/FVC ratio < 0.7. In contrast, an asthma diagnosis typically requires a peak

expiratory flow test [19], the interpretation of which is dependent on what’s ‘normal’

for the individual which may not be identifiable from EHRs.

X-ray and scan imagery are not typically available in EHR databases used by

researchers. After blood tests, x-ray imaging is the most common test used for

CRD diagnosis (Figure 3.2) and is crucial for diagnosing bronchiectasis and ILD.

Descriptive SNOMED codes such as ‘Chest x-ray abnormal’ exist yet lack the rich

clinical detail that could be provided by free text fields or the scan image itself, and

would be susceptible to inconsistent data recording practices, as seen in other areas.

3.2.3.4 Suspected disease

In the issues discussed so far, the data presentations have been limited to cases

that result in a diagnosis, which would be a major source of bias in any further

analysis. The pathway taken for suspected cases of a disease where the patient

is not diagnosed, either because the diagnosis was ruled out or the patient was

not adequately followed up, speak just as loudly to the question of diagnostic

quality. However, identifying suspected cases is not a straightforward task. For

CRD, there are SNOMED codes for ‘Suspected asthma’ and ‘Suspected COPD’,

but no equivalent for the rarer diseases, bronchiectasis and ILD. Furthermore, using

this method would rely on consistent and widespread recording of suspected codes

which is currently lacking. Only 15% of asthma patients and 8% of COPD patients
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had the corresponding suspected disease code anywhere in their records. A possible

explanation for the low usage of suspected disease codes is the preference of GPs to

use diagnosis codes as a working diagnosis to ensure the patient is on the relevant

QOF register whilst tests are carried out to confirm the diagnosis. This issue was

discussed briefly in Section 3.2.3.1. Other variables could act as proxies for suspected

disease, such as key diagnostic tests, symptoms, referral to other services, or a

combination, but there are other conditions for which such events could apply.

3.2.3.5 Identifying local intervention

Interventions introduced locally will not have a unique associated SNOMED code,

creating a barrier for researchers restricted to structured data in EHRs. An intended

aim of this project was to evaluate the impact of the MBRN care model on

diagnostic quality. However, key elements of the MBRN diagnostic pathway are

either challenging to identify or unavailable in the CDW. The two examples given

below highlight the importance of collaboration between clinician and researcher,

and links to all the issues considered in our thematic framework (Table 3.2). If

studies are to be designed that can effectively evaluate healthcare interventions,

those responsible for service design need an understanding of the availability and

format of structured EHR databases commonly used by researchers.

i. MBRN diagnostic template

The MBRN diagnostic template (Appendix A.1) was introduced in 2017. The

template has been circulated to all GPs in the Morecambe Bay area, but we would

expect its usage to be higher amongst MBRN GPs. The template includes the

SNOMED code for ‘Initial respiratory assessment’ for administrative purposes and

it was hoped this code could identify template usage. Figure 3.3 shows the annual

usage of the code has increased dramatically since template introduction yet was

also used frequently pre-intervention.

To identify authentic uses of the template, additional codes from the template

recorded in the same appointment as the ‘Initial respiratory assessment’ code were

considered with the intention of applying a threshold. The template has a theoretical

maximum of 48 codes in one use if all are relevant and able to be carried out. Figure

3.4 shows the annual average number of additional codes between 1991-2022.
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Figure 3.3: Number of initial respiratory assessment codes recorded between 1991-2022
by GP MBRN status.

4

8

12

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Year

A
ve

ra
ge

 n
um

be
r 

of
 c

od
es

Figure 3.4: Median number of additional template codes recorded during same
appointment as initial respiratory assessment code between 1991-2022.
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From these results, a sensible threshold could be eight i.e., template usage would be

identified by the recording of ‘Initial respiratory assessment’ plus eight other codes

during the same appointment that correspond to fields of the MBRN template.

Applying this criterion reduces the estimated number of templates completed from

7,760 to 5,657 between 2017-2022.

However, an immediate issue with applying an additional code threshold is we are

essentially creating a subset of ‘good’ template usage. By removing those we deem

to be ingenuine uses of the template, we will likely also remove many poor uses of

the template, which could introduce bias into further analysis.

ii. MBRN MDT meetings

The MDT meetings are the central element to the MBRN model and represent a

critical step in the MBRN diagnostic pathway. During these meetings, suspected

diagnoses are discussed with specialist input to avoid secondary care utilisation

where possible. The MBRN maintains their own records for when a patient was

presented at a meeting and the subsequent outcomes of the discussion. However,

this data is not available in the CDW, preventing accurate identification of patients

cared for under the MBRN model. A partial solution in this instance could be for

the MBRN to record the ‘Multidisciplinary meeting’ SNOMED code in patients’

primary care records when discussed at an MDT. A researcher with knowledge of

the MBRN meeting dates would then at least be able to identify with reasonable

certainty when a patient was discussed, even if they do not have access to the meeting

outcomes.

3.2.3.6 Control group

Routinely collected health data, by definition, is not collected for the primary

purpose of research. A consequence of this can be a lack of control group when

aiming to evaluate the effectiveness of healthcare interventions. For this specific

research, a control group for the MBRN intervention population is particularly

important to control for changes in diagnostic practice and data recording practice

over time, as well as the interruption to healthcare services caused by the COVID-19

pandemic (see Section 3.2.3.7).

The CDW is a regional database covering healthcare interactions within the
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Morecambe Bay area only. The Morecambe Bay has an adult (≥35 years) population

size over 260,000 which, numerically speaking, is quite large, yet the populations that

have and have not received MBRN intervention are not comparable groups (Table

3.6). The MBRN intervention population is on average younger, living in more urban

areas, and significantly more deprived, with 27.3% of its adult (≥35) population in

the bottom two deciles of the Index of Multiple Deprivation (IMD) compared to

just 0.3% for the non-MBRN intervention population. The COPD prevalence is

significantly greater for the MBRN intervention population, which is to be expected

given the higher rate of key risk factors, namely smoking and deprivation.

Larger, national routine health data sources exist, such as secondary care data

from NHS Digital’s Hospital Episode Statistics (HES) [21] and the Clinical Practice

Research Datalink (CPRD) which includes primary care data for 18 million currently

registered patients across the UK [22] and would likely be able to provide an effective

control group for the MBRN intervention population. However, such databases can

come at considerable expense both financially and in time taken to complete the

application process, linking into the data access theme in our proposed thematic

framework (Table 3.2).

3.2.3.7 COVID-19 pandemic

The COVID-19 pandemic caused obvious, significant disruption to all healthcare

services [23, 24]. The impact to the management and diagnosis of chronic disease

in primary care was substantial with decreases in the number of referrals, medical

tests, prescriptions, immunisations, and incidence rates [25, 26]. Studies have found

chronic lung conditions, particularly COPD, to be amongst the worst affected [26,

27]. Further, the pandemic has changed the way patients access healthcare services,

including style of consultation with GPs [28, 29]. The MBRN is now facing a

considerably different healthcare environment than when the initiative began. Since

diagnostics is a dynamic field, any analysis on diagnostic quality would benefit from

using the most recent data to reflect current diagnostic technology and best practice

guidelines [1]. Therefore, a study of diagnostic performance and the impact of the

MBRN may be best attempted in the future to allow the data to stabilise post-

pandemic.
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Table 3.6: Population demographics table for Morecambe Bay GP registered adult (age
≥ 35) population (n=264,626) as of January 2023.

Non-MBRN
(n=96,990)

MBRN
(n=167,636)

p-value

Age
Mean ± sd 60.3 ± 14.6 58.5 ± 14.7 <0.0001
35-49 (%) 26.0 31.3
50-64 (%) 35.1 34.3
65-79 (%) 28.2 25.2
80+ (%) 10.7 9.2

<0.0001

Sex
Male (%) 48.8 49.4 <0.0001

Socioeconomic deprivation
IMD deciles 1-2 (%) 0.3 27.3
IMD deciles 3-4 (%) 7.5 21.1
IMD deciles 5-6 (%) 31.9 18.1
IMD deciles 7-8 (%) 44.2 20.4
IMD deciles 9-10 (%) 15.6 12.9

<0.0001

Smoking status
Current smoker (%) 10.3 16.0
Ex-smoker (%) 41.6 41.0
Never smoker (%) 46.0 41.1

<0.0001

Missing (%) 2.1 1.9
Location
Urban (%) 31.8 67.8 <0.0001

CRD prevalence
Asthma (%) 11.3 12.0 <0.0001
COPD (%) 2.5 4.4 <0.0001
Bronchiectasis (%) 0.8 0.9 0.21
ILD (%) 0.5 0.5 0.50
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3.2.4 Results for the MBRN

Section 3.2.3 described different barriers to researching diagnostic quality with

routine data, discussing the broader issues under a thematic framework. This section

presents exploratory results from the data relevant to the MBRN. The findings are

not what we originally aimed to achieve but have been useful for our stakeholders.

3.2.4.1 MBRN Diagnostic Template

The MBRN diagnostic template examples one method through which standardi-

sation of care and coding practices could be achieved. When used correctly and

consistently, clinically relevant information required for analysing diagnostic quality

is recorded, and addresses some of the challenges discussed in this report. The

template includes fields for the presence and absence of symptoms (Section 3.2.3.2),

uses explicit SNOMED codes for recording test results (Section 3.2.3.3), and its

usage could provide some indication of GP diagnostic suspicion (Section 3.2.3.4).

Sections 3.2.4.2 and 3.2.4.3 include results for specific fields of the template.

The effectiveness of the template in transforming both diagnostic and data recording

practices critically depends on successful uptake by GPs. The MBRN template has

been circulated to all GPs within the Morecambe Bay area, but we would expect its

usage to be higher amongst MBRN GPs. Figure 3.5a shows considerable variation

in the number of recordings of the ‘Initial respiratory assessment’ code by GP in

2022, standardised for GP patient list size. The results show that MBRN GPs

are generally using the template at a higher rate compared to non-MBRN GPs.

Bay Medical Group has the highest rate of template usage with 29 uses per 1,000

patients, followed by Lancaster Medical Practice and Queen Square Surgery with

21 and 17 uses per 1,000 patients respectively. These three GPs are all based in the

Lancaster area and are significant contributors to the MBRN.

However, rate of usage does not equate to consistent template completion. Figure

3.5b shows the average number of additional template codes recorded in the same

appointment as a recording of the ‘Initial respiratory assessment’ code by GP. The

results do not have as clear a divide by MBRN status compared to Figure 3.5a.

Queen Square Surgery has the highest number of additional codes with a median of

26 (theoretical maximum of 48), whereas Bay Medical Group and Lancaster Medical

Practice are in the bottom half with just 13 and 12 additional codes respectively.
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(b) Median number of additional codes recorded during the same appointment as a
recording of initial respiratory assessment.

Figure 3.5: Results for MBRN template usage in 2022 by GP.
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3.2.4.2 Symptom recording

Using the method described in Section 3.2.3.5 to identify authentic uses of the

MBRN diagnostic template, symptom information had been recorded in 87% of uses.

However, given that the method used essentially creates a subset of good template

usage, we also examined temporal trends in symptom information recording in

the six months prior to diagnosis for all CRD diagnoses, split by MBRN GP

status. Figure 3.6 shows that MBRN GPs had better, symptom recording, even

prior to intervention in 2017 and maintained their rate throughout the COVID-19

pandemic. In contrast, non-MBRN GPs saw some improvements up until 2019,

but regressed over the pandemic. Number of diagnoses in 2022 with symptom

information recorded in the previous six months was 60% for MBRN GPs yet only

39% for non-MBRN GPs.
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Figure 3.6: Percentage of diagnoses with a symptom recorded in the six months prior
to diagnosis between 2015-2022 and by GP MBRN status. Labels above bars show the
frequency.

In Section 3.2.3.2 it was reported that 46% of diagnoses made in 2022 had no

symptom information recorded in the six months prior to diagnosis. Figure 3.7

shows this result varies between 8% and 93% when aggregated at GP level. In fact,

the average of 46% is considerably weighted by Bay Medical Group and Lancaster

Medical Practice, the two largest GPs in the Morecambe Bay, and part of the MBRN.

Seven of the eight lowest results are from practices within the MBRN network.
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Figure 3.7: Percentage of diagnoses in 2022 with no symptom information recorded in the
previous six months by GP. Labels above bars show the frequency.

3.2.4.3 Spirometry results for COPD diagnoses

The need for improved spirometry access and the goals of the MBRN have already

been discussed in Section 3.2.1 and Section 3.2.3.3. In brief, the underutilisation of

spirometry for diagnosing COPD is a global issue, a key reason being the lack of

equipment and trained personnel in primary care. National agenda from the NHS

has set targets to improve the quality of spirometry testing across the country. The

MBRN model aims to address these issues by upskilling GPs, including spirometry

training, to provide a higher level of clinical care.

For authentic uses of the template resulting in a COPD diagnosis within six months

of template completion, post-bronchodilator spirometry is present in 70% of cases, all

of which have results recorded using unambiguous SNOMED codes due to template

design (Appendix A.1). Spirometry is not suitable for all patients and lung function

testing was restricted during the COVID-19 pandemic, which may explain some

of the 30% without evidence of the test. As explained in the previous section,

the method used for identifying template usage is biased toward good completion,

and so we also examine temporal trends in spirometry and reversibility tests in

the six months prior to diagnosis for all COPD diagnoses, split by MBRN GP
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status. ‘Spirometry’ includes any evidence of the test being carried out whereas

‘reversibility’ are the instances where it has been specified as post-bronchodilation.

Figure 3.8 shows that MBRN GPs display an increasing trend in spirometry and

reversibility following intervention in 2017. There was a decrease in test utilisation

during the COVID-19 pandemic, but with evidence of recovery by 2022. In

comparison, non-MBRN GPs fared worse during the pandemic with spirometry

utilisation reaching approximately 10% in 2021, with little improvement in 2022.
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Figure 3.8: Percentage of COPD diagnoses by GP MBRN status with evidence of
spirometry and post-bronchodilator spirometry in the six months prior to diagnosis
between 2015-2022.

Section 3.2.3.3 showed that only 27% of COPD diagnoses with evidence of a test for

reversibility additionally had clearly identifiable numeric results. Figure 3.9 shows

how this percentage varies over time and by GP MBRN status. The results shows a

clear increase in the percentage of identifiable post-bronchodilator numeric results

among MBRN GPs since the introduction of the initiative in 2017. Non-MBRN GPs

were also displaying an increasing trend until 2020, but have significantly decreased

over the COVID-19 pandemic.
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Figure 3.9: Percentage of COPD diagnoses between 2015-2022 with evidence of
reversibility and clearly identifiable numeric test results in the six months prior to
diagnosis. Labels above bars show the frequency.

3.2.4.4 COVID-19 pandemic

Longitudinal results presented in this report (e.g., Figures 3.6, 3.8, and 3.9) suggest

a greater continuation of care to MBRN GPs during the COVID-19 pandemic,

with results returning, if not improving upon, pre-pandemic levels by 2022. This

could provide evidence of the benefit of effective integrated care during times of

crises to healthcare services. However, given the lack of comparability between the

MBRN and non-MBRN populations (Section 3.2.3.6), we cannot safely attribute

these differences to the influence of MBRN intervention alone.

3.2.4.5 Direct referrals

MBRN GPs have direct access to lung function clinics (see Section 3.2.1 for further

details) which are identifiable in outpatient data in the CDW from 2020 onward.

Use of this facility should produce a more efficient diagnostic process by ensuring

patients have all appropriate information required by the clinician in place before

being discussed at an MDT or seen in clinic if necessary.

Relevant direct referrals were identified from CDW outpatient attendance tables by

the following criteria: clinic names with the term ‘lung function’, new referrals (as

opposed to follow-up), and general practice as the referral source.
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Between 2020-2022, MBRN GPs made 740 direct referrals to lung function clinics.

Of the 740 patients, 675 have a CRD diagnosis in their medical records, but only 171

occurred within six months of being seen in the lung function clinic. This suggests

that the majority of referrals are treatment-related rather than diagnostic-related.

It would be possible, and potentially insightful, to do a closer examination of the

171 patients directly referred for lung function testing in the six months prior to

diagnosis. However, in the MBRN model, direct referrals and MDT meetings work

in unison; a patient is first directly referred for testing then all appropriate results

are presented at an MDT meeting and discussed with specialist input. Without

access to MDT records (see Section 3.2.3.5) we only have a partial picture of the

MBRN diagnostic pathway and thus any inference on the direct referrals alone would

be considerably limited in its ability to evaluate MBRN impact.

However, direct referrals to lung function clinics remain a key element to the MBRN

model. Here we present summary data comparing outpatient service utilisation

in the six-month period before and after the lung function clinic appointment for

patients referred directly and indirectly (e.g., from a respiratory clinic or from A&E).

The following results only consider appointments up to 30th June 2022, since we

look at the six-month period following the appointment. We do not restrict to

appointments that can be linked to a diagnosis event for the sake of a larger samples

size.

Table 3.7 shows that patients directly referred are less likely to have been seen in

a respiratory clinic in the six months prior to the lung function clinic appointment

(p-value < 0.0001), as would be expected for a direct referral. Table 3.8 shows that

patients directly referred are also less likely to be seen in a respiratory clinic in

the six months following the lung function appointment (p-value < 0.0001). Only

20% of patients directly referred are seen in a respiratory clinic in the six months

following lung function testing, compared to 59% for indirect referrals. This suggests

the effectiveness of the MBRN model in streamlining care pathways and improving

service efficiency.

Table 3.7: Frequency table for direct referrals to lung function clinic against respiratory
outpatient clinic attendance in the six months prior to the appointment.

Not seen in respiratory clinic Seen in respiratory clinic
Indirect referral 309 757
Direct referral 652 74
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Table 3.8: Frequency table for direct referrals to lung function clinic against respiratory
outpatient clinic attendance in the six months following the appointment.

Not seen in respiratory clinic Seen in respiratory clinic
Indirect referral 435 631
Direct referral 579 147

3.2.4.6 Rare disease

An increase in the (diagnosed) prevalence of rare disease could be indicative of

improved diagnostic quality, particularly under the MBRN model where GPs receive

additional training and have access to specialist expertise via MDT meetings. For

CRD, the rare diseases we consider are complex asthma and ILD.

i. Complex asthma

Severe asthma is not well coded in primary care records. There are only 59 patients

with the ‘Severe asthma’ SNOMED code in the CDW for adults ≥35 years, the

earliest usage dating back to 1972. We instead use referrals to severe asthma and

asthma biologics (a treatment option for certain types of complex asthma) clinics as

a proxy. Table 3.9 shows the number of referrals to these clinics between 2018-2022

by GP MBRN status. Prior to 2018, total referral counts are less than 10 per year

thus have been excluded. The results do not provide strong evidence that the MBRN

has driven an increase in diagnosed complex asthma. Non-MBRN GPs accounted

for a greater proportion of the referrals between 2018-2020 despite having a smaller

asthma cohort (Table 3.6). Although this relationship has reversed in 2021-2022,

the results may be affected by the COVID-19 pandemic (Section 3.2.3.7).

Table 3.9: Number of referrals to complex asthma and asthma biologics clinics by GP
MBRN status between 2018-2022.

2018 2019 2020 2021 2022
Non-MBRN 12 25 44 16 30
MBRN 8 25 33 42 52
Total 20 50 77 58 82

An issue related to these results, is that the CDW only has data for referrals made

into the University Hospitals of Morecambe Bay NHS Foundation Trust. Patients

in the Lancaster area (which has received MBRN intervention) may choose to

attend clinics at Royal Preston Hospital, part of Lancashire Teaching Hospitals NHS
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Foundation Trust, over Lancaster Royal Infirmary, if the waiting lists are shorter. In

comparison, patients in the more northern parts of the Morecambe Bay area (which

has not received MBRN intervention) do not have other hospitals in proximity thus

their care is more likely to be kept within the Trust, and hence within the data.

ii. ILD

Figure 3.10 shows the number of ILD patients between 2015-2022 among patients

registered at MBRN and non-MBRN GPs. The gap between MBRN and non-MBRN

GPs is more pronounced from 2018 onward, following MBRN intervention. MBRN

GPs saw a significant rise in diagnosed cases in 2021, and similarly for non-MBRN

GPs in 2022, which may support evidence in the literature of the association between

COVID-19 and lung fibrosis [30].

However, simple examinations of rare disease prevalence cannot alone be an indicator

of diagnostic quality and should not be entirely attributed to an intervention such

as the MBRN. Modelling disease prevalence would require a more sophisticated

model to account for changes in population demographics, risk factors, and other

changes in diagnostic practice outside that of the MBRN. Given the, naturally,

small samples sizes for these rare diseases within the Morecambe Bay, this type of

modelling approach would benefit from a larger, perhaps national, dataset, an issue

touched upon in Section 3.2.3.6.
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Figure 3.10: Number of diagnosed ILD patients by GP MBRN status 2015-2022.
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3.2.5 Discussion

This report has considered the capacity of routinely collected health data for

measuring diagnostic quality. The diagnostic process is complex and multi-faceted

which certainly presents an opportunity for advanced analytic methods, however,

routine data is not yet fit for the task. This research examined the limitations

associated with relevant data variables, which are generalisable beyond the scope

of this project. We have proposed a thematic framework for grouping the barriers

encountered, specifically whether they can be linked to data recording practices,

data access, or broader study design considerations. The themes we assigned to

each topic is specific to this project and may vary in different study environments

and data access agreements. The framework can be used and adapted by other

researchers working with routine health data as a tool for thinking through barriers

to research.

The key strength of this study is the illustration of the issues using a specific

data source and disease area. Our findings support existing literature that a

standardisation of coding in primary care is paramount to facilitating high-quality

evidence-based health services research [4, 31], yet many of these articles fail to

provide targeted areas for improvement or motivation as to what could be achieved

with better data [3, 6]. Using the example of CRD in the Morecambe Bay area

and data from the CDW, we have highlighted specific issues that need addressing,

including: consistent recording of both symptoms and their absence in primary care

to distinguish incomplete data collection from incomplete diagnostic pathways; the

use of unambiguous SNOMED codes to prevent recorded information, such as test

results, becoming unusable by a researcher; and an established method for recording

patients suspected of a given disease, and when the diagnosis has been ruled out,

to avoid a biased analysis limited to patients that are eventually diagnosed. This

research demonstrates the importance of effective feedback loops between researcher

and healthcare professionals on the frontlines of data collection for increasing the

capacity of routine data for research purposes.

The secondary aim of this report was to respond to the feasibility of the original

thesis project plan, particularly with regards to MBRN intervention. The broader

challenges to measuring diagnostic quality still apply, yet there are additional

barriers specific to evaluating the impact of the MBRN. We have shown the MBRN

diagnostic template to be challenging, although not impossible, to identify, and
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MDT data to be unavailable in the CDW. Without access to this information,

we cannot form MBRN diagnostic pathways. The lack of sufficient control group

is also a considerable challenge; in seeking to improve diagnostic quality, the

MBRN has consequently improved coding standards, creating their own confounder.

Therefore, evaluating the impact of the MBRN on diagnostic quality may require a

larger, perhaps national, data set. Nonetheless, there have been positive results

reported regarding the MBRN, including symptom recording and usability of

post-bronchodilator spirometry results. These results are a small but important

demonstration of the benefits of coding standardisation, through simple means such

as a diagnostic template, as well as the role integrated care initiatives could play

in facilitating high-quality research. The inferred reduced secondary care utilisation

from direct referrals to lung function clinics also lends evidence to improved service

efficiency through integrated care.

This study has many limitations. First, the data explorations presented are

necessarily brief to cover the numerous data variables suggested by clinical expertise

as relevant to the diagnostic process. There is admittedly far more that could

be done to uncover patterns in the data, such as relationships by age, sex, GP,

and specific disease type. Second, we identified diagnosis events by the first

recording of a relevant SNOMED code then looked at the previous six months for

diagnostic-related activity. In this report, we recognise the uncertainty in defining

the diagnostic pathway and our results may change under different definitions.

Third, the interruption of the COVID-19 pandemic to healthcare provision has been

highlighted as a barrier to researching diagnostic quality for CRD, but it also will

have impacted all the exploratory results presented. Finally, although the use of a

specific case study is a key strength of this project, we are unable to comment on

the generalisability of our results to other routine data sources or disease areas.

Our findings suggest possible future directions for research into diagnostic quality

with routine data, other than the required improvements to data recording practices.

First, validation studies for coding accuracy is key for research using routinely

collected data [32, 33]. Although there have been numerous validation studies

published for using EHRs to accurately identify CRD patients [17, 13], to the best of

our knowledge, there have been no such studies conducted for time of diagnosis. Not

until we have an accurate time of diagnosis can we meaningfully begin the discussion

of defining the diagnostic pathway. Second, the CDW has important characteristics
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that will be crucial for measuring diagnostic quality, including cross healthcare

tier data and detailed clinical information, such as GP observations. However,

the diagnostic process is complex and much depends on the thought process or

motivation of the responsible healthcare professional. Data sources that include free

text data, narrative reports, and scan imagery, combined with machine learning

and natural language processing methodology, could provide valuable insight into

clinical logic.

3.2.6 Conclusion

Measuring the performance of the diagnostic process using EHRs will rely on

consistent and high-quality data recording which are currently lacking in routine

data. Poor recording of both symptoms and their absence in primary care records

is a critical barrier to defining diagnostic pathways and must improve to distinguish

incomplete data collection from incomplete diagnostic pathways. There is a need

to standardise coding practices as the fine granularity of SNOMED codes can

prevent clear interpretation. In addition, validation studies have been published

for accurately identifying CRD patients from EHRs, yet similar studies for time of

diagnosis could aid in distinguishing diagnostic and treatment events. The MBRN

diagnostic template demonstrates the often-unconsidered potential of integrated care

initiatives to facilitate greater research capacity of routine data via standardisation

of care pathways and promoting high-quality data recording practices. However,

even with perfect coding, EHRs do not capture the clinical logic that accompanies

decisions made by healthcare professionals. Free text data, narrative reports,

and scan imagery along with machine learning and natural language processing

methodology may provide solutions.
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Abstract

Background: An estimated 70% of Canadians with chronic obstructive pulmonary

disease (COPD) are undiagnosed, creating a barrier to early intervention. There is

growing interest in the value of primary care-based opportunistic case detection for

COPD. We build on a previous cost-effectiveness analysis by evaluating the budget

impact of adopting COPD case detection in the Canadian general population.

Methods: We used a validated discrete-event microsimulation model of COPD

in the Canadian general population ≥40 years to assess the costs of implementing

eight primary care-based case detection strategies over five-years (2022-2026) from

the healthcare payer perspective. Strategies varied in eligibility criteria (based on

age, symptoms, or smoking history) and testing technology (COPD Diagnostic

Questionnaire [CDQ] or screening spirometry). Costs were determined from

Canadian studies and converted to 2021 Canadian dollars. Key parameters were

varied in one-way sensitivity analysis.

Results: All strategies resulted in higher total costs compared to routine diagnosis.

The most cost-effective scenario (the CDQ for all patients) had an associated total

budget expansion of $423 million, with administering case detection and subsequent

diagnostic spirometry accounting for 86% of costs. This strategy increased the

proportion of COPD individuals diagnosed from 30.4% to 37.8% and resulted in 4.6

million referrals to diagnostic spirometry. Results were most sensitive to uptake in

primary care.

Interpretation: Adopting a national COPD case detection programme would

be an effective method for increasing diagnosed COPD dependent on successful

uptake, but it will require prioritisation by budget holders and substantial additional

investment to improve access to diagnostic spirometry.
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4.1 Introduction

Chronic obstructive pulmonary disease (COPD) affects 2.6 million Canadians and

is the third leading cause of death worldwide [1, 2]. Quality-of-life for COPD

patients can be significantly impaired by the burden of symptoms and subsequent

exacerbations, affecting their ability to partake in daily activities [3]. Diagnosis is

critical for clinical intervention to reduce symptoms and the risk of exacerbations

through optimal preventative and therapeutic management, particularly smoking

cessation [4]. Despite major social and clinical implications, 70% of Canadians

with COPD remain undiagnosed and experience worse long-term health outcomes

through late recognition of their condition [5, 6]. Although COPD is recognized as

an ambulatory-sensitive condition meaning hospitalisations can be avoided through

optimal outpatient management, one-third of patients are initially diagnosed in

hospital following an exacerbation-related admission [7, 8]. Guidelines recommend

against screening of asymptomatic adults due to lack of evidence that diagnosis

before symptom development improves patient outcomes. However, asymptomatic

is an ambiguous concept; 50% of adults with airflow obstruction fail to report

symptoms or mask symptoms by limiting physical activity [9, 10]. Given the

substantial burden associated with undiagnosed COPD, there is a need for further

research into alternative earlier detection strategies [11, 12, 13]. Emerging evidence

from clinical trials and modelling studies demonstrates that targeted, opportunistic

case detection in primary care improves long-term patient outcomes and is likely

to be cost-effective [14, 15, 16]. A recent cost-effectiveness analysis by Johnson

et al. (2021) evaluated primary care-based COPD case detection strategies in the

general Canadian population. At a willingness-to-pay (WTP) threshold of $50,000
per quality-adjusted life-year (QALY) gained, case detection with symptom and risk

factor-based questionnaires or screening spirometry was cost-effective. The highest

value strategy was regularly administering the COPD Diagnostic Questionnaire

(CDQ) at three-year intervals to all patients ≥40 years during routine primary care

interactions [16].

However, given the high prevalence of undiagnosed COPD, investment in a national

COPD case detection programme would require significant allocation of healthcare

resources. In a time of intense pressure on healthcare budgets, we must consider the

affordability of an intervention as well as its value. The aim of our study was to build

on a previous cost-effectiveness analysis by evaluating the budget impact of adopting
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primary care-based COPD case detection in the general Canadian population

[16]. We assessed total medical costs from the healthcare payer perspective of

implementing eight case detection strategies that vary in their eligibility criteria

and testing technology over a five-year time horizon between 2022 and 2026.

4.2 Methods

This study was designed in accordance with ISPOR (The Professional Society for

Health Economics and Outcomes Research) best practice guidelines for budget

impact analysis [17].

4.2.1 Setting

Our analysis is from the perspective of the Canadian healthcare system and considers

a five-year study period between 2022 and 2026. The total population of Canada

was 38.9 million in 2022 with a median age of 41 years, based on Statistics Canada

projections [18]. The target population for case detection intervention was the

general Canadian population aged ≥40 years, of size 19.8 million in 2022 [18]. The

eligible population was the subset of the target population that was eligible for case

detection, which varied by strategy. We report the budget impact for the target

population for comparability between strategies with different eligibility criteria.

Our analysis was implemented in an open population, meaning individuals enter

and exit the target population throughout the time horizon.

4.2.2 Analytic framework

We used the Evaluation Platform in COPD (EPIC), a previously validated deter-

ministic discrete-event microsimulation model of COPD in the general Canadian

population aged ≥40 years. EPIC simulates the development and progression of

COPD across the entire disease pathway, including demographics of the general

Canadian population, smoking prevalence, COPD occurrence, symptoms, primary

care visits, COPD diagnosis, lung function decline, exacerbations, COPD-related

and background mortality, medical costs, and QALYs over a lifetime horizon [19].

EPIC uses data from the Canadian Cohort of Obstructive Lung Disease (CanCOLD)

study, a national prospective cohort of patients with COPD and at-risk of COPD,
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to model community diagnosis, primary care utilisation, and respiratory symptoms

[20]. Smoking status is based on Population Health Model (POHEM), a validated

microsimulation model developed by Statistics Canada [21]. Each component of

EPIC has passed rigorous tests of internal and external validity [19, 16] (Appendix

B.1) and EPIC is an open-source R package [22].

This analysis simulated within EPIC the implementation of COPD case detection

administered during routine primary care visits over a five-year time horizon (2022-

2026).

4.2.3 Case detection

We evaluated eight case detection strategies used in the cost-effectiveness analysis

by Johnson et al. (2021), all of which were found to be cost-effective at a WTP

of $50,000/QALY (Table 4.1). We did not consider repeat testing of the same

individual at specified intervals due to the short time horizon and to show the costs

of a single implementation of each strategy. Strategies are grouped according to their

eligibility criteria for selecting patients to receive case detection, either all patients

(S1), symptomatic patients (any one of cough, phlegm, wheeze, or dyspnoea) (S2),

or patients aged ≥50 years with a smoking history (S3). The testing technologies

considered are the CDQ [23] and the hand-held flow meter [24], which performs

screening spirometry based on the ratio of forced expiratory volume in 1 second

to forced expiratory volume in 6 seconds <0.7. All scenarios were compared to a

baseline scenario of no case detection.

Although we replicated all eight strategies reported by Johnson et al. (2021),

our reporting focuses on S1a (CDQ ≥17 points for all patients), the highest

value strategy identified at a WTP threshold of $50,000/QALY gained. However,

guidelines suggest that interventions with a large budgetary impact should be

subject to lower cost-effectiveness thresholds [25]. We reanalyzed the cost-

effectiveness plane in Johnson et al. (2021) (Appendix B.2) and found that the

WTP threshold must be reduced to $25,000/QALY for S1a to no longer be the

preferred strategy, at which point S3b (CDQ ≥16.5 points for patients ≥50 years

with a smoking history) becomes most cost-effective. Therefore, for comparison, we

also discuss results for S3b.
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Table 4.1: Summary of case detection strategies evaluated.

Testing technology Eligibility criteria Sensitivity (%) a Specificity (%) a

(S1) All patients
S1a: CDQ ≥ 17 points 91.0 49.0
S1b: Flow meter

(with bronchodilator)
80.0 94.0

S1c: CDQ ≥ 17 points + Flow meter
(with bronchodilator)

None

72.0 97.0

(S2) Symptomatic patients
S2a: Flow meter

(without bronchodilator)
≥1 respiratory symptom b 81.5 88.9

(S3) Smoking history
S3a: CDQ ≥ 19.5 points 64.5 65.2
S3b: CDQ ≥ 16.5 points 87.5 38.8
S3c: Flow meter

(without bronchodilator)
79.9 84.4

S3d: CDQ ≥ 17 points + Flow meter
(with bronchodilator)

Past or current smoker
Age ≥50 years

74.4 97.0

CDQ - COPD Diagnostic Questionnaire
a Sensitivity and specificity values are derived from the literature and further details have been

provided previously [16]. Sensitivity and specificity values relate to the outcome of the case

detection test only; patients testing positive are then referred for diagnostic spirometry which

we assume to have 100% accuracy.
b Respiratory symptoms defined as the presence of chronic cough in the absence of a cold, any

wheeze, phlegm in the absence of a cold, or dyspnoea, measured using the Medical Research Council

dyspnoea scale with a score of 2-5 indicating the presence of dyspnoea, in the past year.

To be eligible for case detection, individuals must fulfill the eligibility criteria

and have visited primary care in the previous year (Figure 4.1). Patients testing

positive at case detection were referred to outpatient diagnostic spirometry, which

we assumed to have 100% accuracy. We modelled gradual market penetration by

assuming a linear uptake from 5% in 2022 to 25% in 2026, based on participation in

lung and colon cancer screening programmes [26, 27]. Throughout the simulation,

patients could also be diagnosed with COPD at primary care visits without the use

of case detection or following an exacerbation-related hospital admission (Appendix

B.1).

4.2.4 Inputs

We include direct COPD healthcare costs only (Table 4.2). Costs were converted to

2021 Canadian dollars ($) using the healthcare component of the Consumer Price

Index [28] and were not discounted over the time horizon [17].
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Figure 4.1: Schematic for administration of case detection programmes. Individuals
receiving case detection are shown in blue, those not receiving case detection are shown in
grey. Costs associated with case detection, diagnosis, and treatment are included in red.

Administering case detection was costed at 34% of a 15-minute routine primary care

visit [42, 43]. The CDQ is only assigned the time-related cost whereas flow meter

strategies incur the additional cost of screening spirometry. Outpatient diagnosis

includes the cost of diagnostic spirometry plus a primary care visit to interpret the

results. Unit costs of utilisation were determined from the British Columbia fee

schedule [29].

Within EPIC, inhaled therapies are assigned to individuals according to the Global

Initiative for COPD (GOLD) ABCD criteria following diagnosis or an exacerbation

[44]. Average annual costs of treatment with inhaled therapies were determined from

medication dispensation records in British Columbia health administrative data [30].
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Table 4.2: Costs and parameter input values relevant to evaluation of case detection.

Item Value References
Global parameters
Time horizon 5 years
Population size 19.8 million [18]
Case detection initial uptake 0.05
Annual increase in case detection uptake 0.05

[26]

Discount for costs 0 [17]
Case detection costs
Time-related cost for administration $11.91
Flow meter with bronchodilator $18.90
Flow meter without bronchodilator $12.77
Outpatient diagnosis $62.19

[29]

Treatment
Costs (annual per-patient) a

SABA $55.17
LAMA $366.55
LAMA/LABA $670.44
ICS/LAMA/LABA $1,185.23

[30]

NRT $382.63 [31]
Rate reduction for exacerbations

SABA 0
LAMA 0.22 [32]
LAMA/LABA 0.23 [33]
ICS/LAMA/LABA 0.34 [34]

NRT odds ratio for successful smoking cessation 1.38 [35, 36]
Medication adherence b 0.7
Exacerbation costs c

Mild $31.68
Moderate $793.08
Severe $10,063.13
Very severe $22,033.60

[37, 38]

Maintenance costs (annual per-patient) d

GOLD 1 $147.48
GOLD 2 $360.49
GOLD 3 $943.83
GOLD 4 $1,286.84

[39, 40]

CDQ - COPD Diagnosis Questionnaire; NRT - Nicotine Replacement Therapy; SABA - Short-
acting beta-agonists; LAMA - Long-acting muscarinic antagonist; LABA - Long-acting beta-
agonist; ICS - Inhaled corticosteroids; GOLD - Global Initiative for COPD.
General EPIC model parameters have been reported previously [19, 16].
a Annual per-patient treatment costs are weighted by adherence (70% in the base case analysis).
b Medication adherence of 70% means that out of 100 patient-years in which a patient was eligible
for a medication, they only took the medication (and thus received the benefit) in 70 patient-years.
c Mild exacerbations are an intensification of symptoms that does not require an encounter
with the healthcare system and so are only assigned the cost of increased medication; moderate
exacerbations are when the patient visits a physician or emergency department but is not
hospitalised; severe exacerbations are assumed to result in a hospital admission, and very severe
exacerbations in admission to the intensive care unit.
d Maintenance costs are those that accrue outside of episodes of exacerbations and include physician
visits, rehabilitation programmes, laboratory tests and devices, and oxygen therapy. Treatment
costs have been deducted from maintenance costs to avoid double counting [41].
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Three months of nicotine replacement therapy (NRT) was administered to all newly

diagnosed patients who were current smokers. The associated effect of treatment on

health outcomes is summarised in Table 4.2. Adherence to both treatments was set

at 70%. We assume 100% public drug coverage since all provinces have full coverage

for adults ≥65 years which will account for most COPD patients [45].

The medical costs of exacerbations and background medical costs (outside of

exacerbations and treatment) were determined from published Canadian studies

and applied by exacerbation severity and GOLD grade [37, 38, 39, 40].

4.2.5 Analysis

Budget impact was calculated for each strategy and year as the difference in

total costs from the baseline scenario, where negative budget impact indicates

additional healthcare resources are required (budget expansion). We also evaluated

cost subcategories of case detection, treatment (inhaled therapies and NRT), and

exacerbation-related hospitalisations. In addition, we evaluated the performance

of each strategy by reporting the size of the eligible population, number of case

detections administered, number of referrals to outpatient diagnostic spirometry,

and number of additional true COPD diagnoses.

We conducted one-way sensitivity analysis to assess the impact of model assump-

tions. We evaluated low case detection uptake (2% to 10% range; 2%/year increase)

and high uptake (8% to 40% range; 8% /year increase) scenarios. We ran separate

analyses for reduced adherence to inhaled therapies of 0.5 and 0.3, following previous

population assessments, and removing the administration of NRT following diagnosis

since guidelines recommend smoking cessation for all current smokers irrespective

of COPD diagnosis [46, 44]. Further analysis was conducted with an age limit ≥75

years for case detection.

4.3 Results

The starting population size was 19.8 million for adults ≥40 years of age. Over

the time horizon, 2.3 million individuals entered the model and 940,000 left from

death/emigration. At baseline the COPD prevalence among Canadians aged ≥40

years was 11.9% and 30.4% of individuals with COPD were diagnosed. These are
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similar to the COPD prevalence (11.2%) and proportion diagnosed (29.7%) observed

in the CanCOLD study [5, 47] (Appendix B.1).

The most inclusive strategies (S1 – all patients ≥40 years) resulted in 40.4% of

the target population administered case detection after five years, compared to

16.7% under the least inclusive strategies (S3 – patients ≥50 years with a smoking

history) (Table 4.3). In S1a (CDQ ≥17 points for all patients), an additional

145,700 individuals with COPD were diagnosed after five years compared to routine

diagnosis in the no case detection scenario, which increased the proportion of COPD

individuals diagnosed to 37.8% (from 30.4%) by 2026. The diagnosed proportion

increased to 34.1% under S3b (CDQ ≥16.5 points for patients ≥50 with a smoking

history). However, S1a also resulted in 4.6 million referrals to diagnostic spirometry,

96% of which were false positives.

Table 4.3: Five-year (2022-2026) cumulative results on scope and performance of case
detection strategies. Percentages are the proportion of the target population, unless
specified otherwise.

Referred for OP spirometry
Eligible a Administered

case detection
True positives
(% of tested)

False positives
(% of tested)

Additional
diagnoses b

(S1) All patients

S1a: CDQ ≥ 17
175,400
(2.0%)

4,468,000
(49.9%)

145,700
(0.66%)

S1b: Flow meter
85,000
(0.9%)

772,100
(8.6%)

67,700
(0.31%)

S1c: CDQ ≥ 17 + Flow meter

20,468,000
(92.4%)

8,947,300
(40.4%)

58,100
(0.6%)

412,900
(4.6%)

44,600
(0.20%)

(S2) Symptomatic patients

S2a: Flow meter
18,760,100
(84.7%)

5,792,300
(26.2%)

87,000
(1.5%)

1,161,600
(20.1%)

69,800
(0.32%)

(S3) Smoking history

S3a: CDQ ≥ 19.5
28,000
(0.8%)

1,382,600
(37.3%)

22,000
(0.10%)

S3b: CDQ ≥ 16.5
87,000
(2.3%)

2,117,800
(57.1%)

76,300
(0.34%)

S3c: Flow meter
55,100
(1.5%)

748,900
(20.2%)

47,000
(0.21%)

S3d: CDQ ≥ 17 + Flow meter

8,486,300
(38.3%)

3,705,900
(16.7%)

42,400
(1.1%)

184,600
(5.0%)

35,300
(0.16%)

OP – outpatient. Results based on a single run of EPIC per scenario.
a Eligible defined as meeting the eligibility criteria and having visited primary care within the same
year over the time horizon.
b Additional diagnoses compared to routine diagnosis under the baseline scenario of no case
detection, after 5 years.

All strategies resulted in higher total costs compared to no case detection (Table

4.4). The greatest budget expansion was $423 million for S1a, with 86% of costs
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attributed to administering case detection and subsequent diagnostic spirometry.

The corresponding results for S3b were $195 million and 83%. The costs of case

detection began to plateau by the end of the time horizon as the proportion of

eligible patients not already tested was depleted, whereas treatment costs continued

to increase as more patients were diagnosed (Figure 4.2). Minor cost-savings

were observed from exacerbation-related admissions and outpatient care from fewer

mild and moderate exacerbations, respectively saving $6 million/year and $12
million/year under S1a by 2026.

Table 4.4: Total budget impact (no case detection – case detection) results. Negative
budget impact indicates budget expansion.

Outcome S1a S1b S1c S2a S3a S3b S3c S3d
No case detection strategy costs (million $)
Case detection: physician time a 0
Case detection: use cost a 0
Treatment 2,300
Hospitalisation 4,786
Outpatient b 7,666
Total 14,752
Case detection strategy costs (million $)
Case detection: physician time a 107 107 107 69 44 44 44 44
Case detection: use cost a 293 228 314 155 89 139 99 132
Treatment 2,365 2,325 2,312 2,329 2,306 2,337 2,321 2,314
Hospitalisation 4,772 4,779 4,780 4,779 4,781 4,777 4,779 4,780
Outpatient b 7,637 7,649 7,652 7,648 7,660 7,649 7,654 7,657
Total 15,175 15,087 15,165 14,980 14,880 14,947 14,898 14,927
Budget impact (million $)
Case detection: physician time a -107 -107 -107 -69 -44 -44 -44 -44
Case detection: use cost a -293 -228 -314 -155 -89 -139 -99 -132
Treatment -65 -25 -12 -29 -6 -37 -21 -14
Hospitalisation 13 7 6 7 5 9 7 6
Outpatient b 29 17 14 18 7 17 12 9
Total -423 -335 -412 -228 -128 -195 -146 -175

Results based on a single run of EPIC per scenario.
a Case detection costs have been split by time (time-related cost of GP implementing case detection)
and use cost (cost of Flow Meter technology and outpatient spirometry diagnosis).
b Outpatient care are the remaining costs not included in case detection, treatment or
hospitalisation and includes COPD maintenance costs, routine diagnosis, and costs associated
with mild and moderate exacerbations which are assumed not to result in hospitalisation.

Sensitivity analysis showed minimal change in the ranking of strategies across

analyses (Figure 4.3). Total budget impact decreased by a maximum of 4.5%

when NRT was removed or medication adherence was decreased since case detection

administration, which comprises the majority of costs, was unaffected. Results were

most affected by uptake, with higher uptake rates (8% to 40% range; 8% /year)
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Figure 4.2: Annual total (top), case detection (middle left), treatment (middle right),
hospitalisation (bottom left), and outpatient care (bottom right) additional costs (million
$) compared to no case detection baseline scenario. Negative additional costs indicate cost
savings.
S1a CDQ ≥ 17 points for all patients; S1b flow meter (with bronchodilator) all patients; S1c CDQ ≥
17 points + flow meter (with bronchodilator) all patients; S2a flow meter (without bronchodilator)
among symptomatic patients; S3a CDQ ≥ 19.5 points among patients aged ≥50 years with a
smoking history; S3b CDQ ≥ 16.5 points among patients aged ≥50 years with a smoking history;
S3c flow meter (without bronchodilator) among patients aged ≥50 years with a smoking history,
S3d CDQ ≥ 17 points + flow meter (with bronchodilator) among patients aged ≥50 years with a
smoking history. Results based on a single run of EPIC per scenario. Corresponding results tables
can be found in Appendix B.3
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Figure 4.3: Sensitivity analysis of total additional costs of case detection strategies
compared to no case detection. Negative additional costs indicate cost savings. Grey
dashed line indicates the reference case analysis.
CDU – case detection uptake (low uptake defined as 2% to 10% range with 2%/year increase
and high uptake as 8% to 40% range with 8% /year increase); NRT – nicotine replacement
therapy; MA – medication adherence. S1a CDQ ≥ 17 points for all patients; S1b flow meter (with
bronchodilator) all patients; S1c CDQ ≥ 17 points + flow meter (with bronchodilator) all patients;
S2a flow meter (without bronchodilator) among symptomatic patients; S3a CDQ ≥ 19.5 points
among patients aged ≥50 years with a smoking history; S3b CDQ ≥ 16.5 points among patients
aged ≥50 years with a smoking history; S3c flow meter (without bronchodilator) among patients
aged ≥50 years with a smoking history, S3d CDQ ≥ 17 points + flow meter (with bronchodilator)
among patients aged ≥50 years with a smoking history. Results based on a single run of EPIC per
scenario.
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resulting in greater budget expansion ($598 million under S1a) but also a greater

proportion of COPD patients diagnosed (40.1% by 2026 under S1a) compared to

the reference analysis. Sensitivity analysis results for upper age limit are presented

in Appendix B.5.

4.4 Discussion

We used a validated whole disease microsimulation model to evaluate the budget

impact to the Canadian healthcare system of adopting primary care-based early

detection strategies for COPD. We have created a web app which allows readers

to modify cost and uptake inputs and examine their impact on results (https://

resplab.shinyapps.io/bia-copd-mountain-2023/). Questionnaire-based test-

ing for all patients ≥40 years during routine primary care visits, although most

effective at increasing the diagnosed prevalence, would have a large budgetary

impact of $423 million over five years, with budget expansion largely attributed

to case detection and subsequent outpatient diagnosis. Total healthcare spending in

Canada was estimated at $331 billion in 2022, representing 12.2% of the country’s

GDP [48]. Implementing a country-wide COPD case detection programme would

require significant additional investment of healthcare resources, accounting for an

estimated 0.04% of the healthcare budget per year by 2026. If the budget impact of

a more inclusive strategy is deemed too high, then we must accept a lower threshold

for cost-effectiveness. At a reduced WTP, the CDQ at a low threshold remains the

preferred testing technology but paired with stricter eligibility criteria (≥50 years

with a smoking history) with a budget impact of $195 million.

This study is the first budget impact analysis of COPD case detection strategies and

contributes an important affordability and feasibility assessment. Our analysis is

monetary-focused and only captures benefits that result in cost-savings. Therefore,

it is important to keep the results in the context of the preceding and complimentary

cost-effectiveness analysis that established the value of the strategies considered

in terms of QALYs gained by patients diagnosed earlier through case detection

versus monetary costs less than the conventional WTP threshold [16]. Other existing

literature has evaluated the performance of COPD case detection in improving long-

term patient outcomes [14, 15, 16]. We provide additional evidence showing that

case detection can be a successful method for reducing the prevalence of undiagnosed

COPD when applied to a large population, dependent on strategy selected and rate

126

https://resplab.shinyapps.io/bia-copd-mountain-2023/
https://resplab.shinyapps.io/bia-copd-mountain-2023/


4.4. Discussion

of uptake. Strategies targeting a more limited population increase the proportion

of diagnosed patients by a smaller proportion, but the total budgetary impact is

smaller.

Our results highlight the need for increased diagnostic spirometry capacity, which

may be the greatest barrier to implementing COPD case detection. A COPD diag-

nosis can only be confirmed using spirometry yet there is massive underutilisation

of this diagnostic test globally [49, 50]. In Canada, estimates for the proportion of

patients with a community diagnosis of COPD who have never received spirometry

range from 30-42% [50, 51]. A principal reason for this is lack of equipment and

trained personnel for spirometry in primary care where 80% of patients with COPD

in Canada are managed [39]. Primary care practitioners often refer patients to

specialised pulmonary function laboratories, which can have long waiting lists and

create further access barriers for rural and remote parts of Canada [52, 53]. Most

strategies considered in this analysis would require at least one million diagnostic

spirometry tests over five years, which we assume to be referred to outpatient

services. Future research and discussions must consider solutions for upskilling

primary care to perform diagnostic spirometry if COPD case finding strategies in

the entire Canadian population are to be feasible.

This study has several limitations. First, our analysis based uptake on general

population participation in lung and colon cancer screening in Canada [26, 27].

Spirometry is a comparatively less invasive procedure so may have higher uptake,

but given major issues with spirometry access, we do not exceed 40% per year as

the upper limit in sensitivity analyses [51]. Nonetheless, sensitivity analysis shows

uptake to be a significant determinant in affordability and our analysis should be

updated when results from empirical studies are available. Second, our model only

accounts for the effect of inhaled therapies on exacerbation rate and not the indirect

improvement in lung function [54, 55]. We may observe more cost-saving if this latter

mechanism was accounted for as patients would be less likely to progress to more

severe disease stages. Third, there is uncertainty in how the time-related cost would

be billed. Since we assume case detection to be administered during routine primary

care visits, it may not result in budget impact if it does not result in an increase

in the length or number of appointments. Conversely, this time cost captures the

opportunity cost for time spent administering COPD case detection during primary

care visits. We separate out the time-related cost in our budget impact results
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for full transparency. Finally, EPIC is a deterministic model which means we

are unable to explore uncertainty in the input parameters through probabilistic

sensitivity analysis, however, results from one way sensitivity analyses are reported.

4.5 Conclusion

Adopting a national primary care-based case detection programme for COPD will

require prioritisation by budget holders and significant additional investment to

facilitate access to diagnostic spirometry. Case detection is an effective method for

increasing the proportion of COPD patients diagnosed but depends on uptake of

the programme in primary care.

128



4.6. Supporting information: Extended statistical methodology

4.6 Supporting information: Extended statistical

methodology

The budget impact analysis was submitted and published in CMAJ Open, the Cana-

dian Medical Association’s open access journal. Therefore, the paper appropriately

focused on the health economics and application of results. However, the analysis

was carried out using an advanced statistical simulation model that underwent

adaptation and development specifically for the purpose of this research. This report

is supplementary to the main article and provides an extended explanation of the

statistical methodology. We begin with an overview of the Evaluation Platform in

COPD (EPIC) [19, 16] before detailing adaptations I made to EPIC during my time

within the Respiratory Evaluation Sciences Program research group at University

of British Columbia, Vancouver, funded by the UKRI-Mitacs Globalink research

exchange scheme. The changes include necessary expansions to model inputs and

outputs to accommodate the analysis design, and the development of a new model

setting to allow identical baseline values across different intervention strategies,

which will be of benefit to future research using EPIC. It is assumed that the reader

has first read the main article.

4.6.1 What is EPIC?

EPIC is a deterministic discrete-event microsimulation model for the development

and progression of COPD in the Canadian general population aged ≥40 years. EPIC

was a nationally funded research project involving stakeholders from a variety of

disciplines including statistics, data science, medicine, epidemiology, economics, and

health policy. The aim of EPIC was to create a population-based COPD model for

epidemiological projections and evaluation of a wide range of COPD policies in the

Canadian context [19].

Key words:

• Deterministic – a given initial state will always produce the same output.

• Discrete-event – operates as an ordered sequence of events in time.

• Microsimulation – simulates events at an individual person level.
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EPIC is a “whole disease” model which refers to a modelling approach that

incorporates events across the entire disease pathway within a single framework and

with consistent assumptions [56]. Compared to a de novo approach, whole disease

models have a more flexible platform for exploring the decision space and are able to

account for downstream consequences of intervention. This enables a more realistic

estimation of costs and can improve efficient allocation of funds as well as overall

disease management [56, 57, 58].

Events are incorporated into EPIC through a series of modules: (1) demographics of

the general Canadian population, (2) smoking prevalence, (3) COPD occurrence, (4)

symptoms, (5) primary care visits, (6) COPD diagnosis, (7) lung function decline, (8)

exacerbations, (9) COPD-related and background mortality, and (10) medical costs

and quality adjusted life-years. Figure 4.4 provides a simplified diagram of the EPIC

model. An optional additional module for case detection was developed for the cost-

effectiveness analysis that this budget impact analysis builds upon [19, 16]. Each

module uses statistical modelling (e.g., linear models, generalised linear models,

random effects model, cox proportional hazards models) fit to a range of Canadian

data sources including clinical trials, longitudinal cohort studies, and administrative

data. Parameter values are taken from published Canadian studies and reports.

Where appropriate data or literature is not available, parameters have been fine-

tuned until outputs reflect overall population trends.

EPIC is an open-source model available as an R package, but the model itself runs

in C++.

Figure 4.4: Schematic illustration of the Evaluation Platform in COPD (EPIC). Diagram
from Johnson et al. (2021) [16].
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4.6.2 Summary of minor changes to EPIC

Since EPIC was also used for the previous cost-effectiveness analysis by Johnson

et al. (2021), all the major modelling components for case detection were already

developed. However, a few minor adaptions were required to accommodate the

budget impact study design.

Additional outputs

This study is the first time EPIC has been used for a cost-focused analysis.

Furthermore, annual results are crucial for a budget impact analysis whereas some

of the existing outputs in EPIC were only available cumulatively across the entire

model time horizon. Therefore, additional outputs were added to provide costs by

the required subcategories, and relevant results at an annual level.

Additional functionality to the case detection module

Two changes were made to the case detection module.

First, simulations in EPIC start in 2015 due to the incorporation of population

projections from POHEM within the population demographics module. Previously,

the case detection module could either be on for the entire model time horizon or

off for the entire model time horizon, whereas for the budget impact analysis we

needed case detection intervention to begin in 2022. Therefore, functionality was

added to turn case detection on and off at user defined years. Turning case detection

off is not needed for the budget impact analysis but was included to provide greater

generalisability to other analyses where you may want to study the effects in the

years following a short-term intervention.

Second, we needed to model gradual market penetration of the case detection

strategy in primary care as rate of uptake would have a significant impact on costs.

This was achieved by changing the probability of case detection from a scalar (in the

cost-effectiveness analysis the probability of case detection is assumed fixed across

the time horizon) to a vector of length equal to the time horizon. The user can then

set the probability for each year of intervention individually.
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4.6.3 Development of new setting

The most substantial change to EPIC was the addition of a new model setting that

was developed to address a specific problem in the budget impact analysis but could

be useful for any analysis that introduces an intervention or requires comparison

across different scenarios/strategies.

The problem

There are two features of EPIC relevant to this problem. First, simulations start

in 2015, and second, EPIC simulates person-by-person i.e., a given agent’s pathway

is simulated from creation to death (or end of model time horizon) before the next

agent’s pathway begins. As a result, the pre-intervention period in the budget impact

analysis (2015-2021) was different across the nine scenarios considered (nine being

one baseline no case detection scenario plus eight case detection strategy scenarios).

By “different”, we mean they have different simulation paths and produce different

outputs. Setting seed in R does not fix the problem.

To explain why this occurs, let us simplify the problem by considering just

two scenarios, one in which no case detection is introduced and one in which

questionnaire-based case detection for all patients is introduced. These are strategies

‘S0’ and ‘S1a’ respectively, continuing notation from the main article. Assuming we

set seed in R, when EPIC is initialised the first agent created in both scenarios

will be identical. Further, the sequence of events for this agent from 2015-2021

will be identical since so far there is no difference between the two simulations.

However, when we reach 2022, in the S1a simulation, case detection is introduced

into the population and let’s assume that this agent is both eligible and selected.

The agent will then interact with the case detection module and randomness will be

encountered that is not present in the S0 scenario. The set seed has now “broke”

because S1a is a few “random steps” ahead of S0. This isn’t a problem for the

first agent; we of course want the simulation path to be different between the two

scenarios following case detection – that’s the whole point of an intervention! The

problem arises when we move on to the second agent. Since the two simulation

scenarios are now at different positions in the sequence of random numbers set by

R, the second agent created will be totally different between the two scenarios (and

will obviously then have different simulation paths). The same will be true for every
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other agent simulated.

In certain analyses, this would potentially not be an issue. With a large enough

sample size, the variation would even out, and EPIC would still produce very

similar overall results. For example, even if the exact number of agents alive and

the exact number of agents with COPD varies slightly across scenarios, we would

still expect the COPD prevalence to be very similar. However, in a budget impact

analysis the baseline values (results for 2021) should be identical. Figure 4.5 shows

the equivalent results as Figure 4.2, but prior to the implementation of the new

setting. The results show that the budget impact in 2021 is not equal to zero,

illustrating the difference between simulation scenarios even prior to intervention.

The hospitalisation costs and outpatient care costs plots (bottom row of Figure

4.5) show the most random fluctuation. These costing subgroups are driven by

exacerbations which are rarer events and hence the most vulnerable to stochastic

variation. Furthermore, the hospitalisation costs from 2022-2026 could misleadingly

suggest that case detection is resulting in greater hospitalisation costs, when in fact

there were greater hospitalisation costs in the baseline year as well, potentially

resulting from the baseline scenario (S0) simulating a comparatively less severe

COPD patient mix.

The solution

A few solutions were first considered but quickly dismissed:

• Simulate year-by-year instead of person-by-person – this would involve an

extensive rewrite of all model code.

• Begin simulations in 2022 instead of 2015 – this is not possible due to the way

population projections are incorporated.

• Run multiple simulations for each scenario and take the average (like

an MCMC approach) – could theoretically work but would be extremely

computationally intensive given the number of strategies, the time horizon,

and population size. Even with high-performance computing, it would likely

take weeks to run a large enough number of simulations for each scenario.

A solution was found by taking a closer look at the sources of randomness within

EPIC and considering how to control the pre-intervention period.
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Figure 4.5: Annual total (top), case detection (middle left), treatment (middle right),
hospitalisation (bottom left), and outpatient care (bottom right) additional costs (million
$) compared to no case detection baseline scenario. Negative additional costs indicate cost
savings. Analogous to Figure 4.2 but prior to the implementation of the new setting.

134



4.6. Supporting information: Extended statistical methodology

Within EPIC, randomness is introduced via random sampling from five statistical

distributions:

• Normal(0, 1) – used to simulate patient characteristics that assume a normal

distribution e.g., height and weight

• Uniform(0, 1) – used to accept/reject events with a given probability

• Exponential(1) – used to simulate time to events

• Multivariate-Normal(µ,Σ) – where µ is the mean vector and Σ the covariance

matrix; used to model presentation of respiratory symptoms (cough, wheeze,

phlegm, and sputum)

• Gamma(α, β) – where α is the shape parameter and β the scale parameter;

used for simulating number of primary care visits per year.

The normal, uniform, and exponential distributions are by far the most used

(numerous times per agent per year). For the sake of efficiency in C++, random

variables from these distributions are batch sampled at model setup and stored in a

buffer. The default batch size is 50,000 but can be adjusted in model settings. When

a sample from one of the distributions is needed during simulation, a value is taken

from the respective buffer starting from the first value and working systematically

through until all the values have been used. When every value in the buffer has

been used, another batch is sampled.

To overcome the problem of different pre-intervention simulation paths, we instead

refill the buffers immediately before each agent creation (regardless of whether all

the values in the buffer have been used). This solution relies on the assumption

that the user sets seed in R and that the buffers are appropriately sized as to not

need refilling other than at agent creation. Corresponding agents across different

scenarios will then have identical buffers and hence will have the same sequence

of events pre-intervention. Once case detection is reached, the simulation paths

of corresponding agents across different scenarios may diverge, but this will have

no effect on the next agent. Referring back to the explanation of the problem in

Section 4.6.3, by refilling before each agent creation it’s as if every agent is the first

agent. Figure 4.6 provides a simplified diagram that is intended to illustrate how

the sequence of random numbers are realigned at each agent creation to produce

135



Chapter 4. Budget Impact Analysis
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the same

Pre-intervention period: 
different

Refilling buffers only when needed

(a) Existing method in EPIC: buffers refilled only when needed.

Agent 1

Agent 1

Agent 2

Agent 2

…

…

Scenario 1

Scenario 2

Agent 1 creation: 
buffer filled

Agent 2 creation: 
buffer refilled

Unused

Unused

Pre-intervention period: 
the same

Pre-intervention period: 
the same

Refilling buffers at each agent creation

(b) Newly developed method: buffers refilled at start of each agent creation.

Figure 4.6: Schematic comparing different methods of refilling random number buffers.
Circles represent a random event in an agent’s simulation pathway.

identical pre-intervention pathways. Note that if an agent does not interact with the

case detection module in any of the scenarios, then that agent’s simulation path will

be identical for the entire time horizon across all scenarios. This has the additional

benefit of reducing overall stochastic variation across scenarios allowing for a more

accurate assessment of the effects of intervention (comparing Figure 4.5 of this report

with Figure 4.2 illustrates the reduction in stochastic variation).

However, the multivariate normal (MVN) and gamma distributions do not use the

buffer approach. These distributions are used less frequently (at most once per agent

per year) and the parameters are not fixed but instead must be calculated based on

patient-level characteristics. Therefore, these distributions are only sampled as and

when needed.

136



4.6. Supporting information: Extended statistical methodology

We can convert both distributions over to the buffer system by using knowledge of

statistical distributions.

For the MVN distribution, we apply the following result:

Result 1. Let y ∼ MVN(µ,Σ) and x ∼ MVN(0, Id) where Id is the d-

dimensional identity matrix. Then y = µ + Lx where L is the Cholesky

decomposition of Σ.

So, when the MVN distribution is needed, µ and Σ (and hence L) can be calculated

as previously. Then, x is a 4-dimensional vector (since there are 4 respiratory

symptoms included within EPIC) of independent Normal(0, 1) random variables

which can be taken from the Normal(0, 1) buffer.

For the gamma distribution, we first note that the shape parameter, α, can only

ever be one of two values depending on the agents COPD status. These values are

known at model setup. Hence, we create two gamma buffers Gamma(α1, 1) and

Gamma(α2, 1) and apply the following result:

Result 2. Let X ∼ Gamma(α, 1). Then Xβ ∼ Gamma(α, β) .

So, when the gamma distribution is needed, the scale parameter, β, can be calculated

as previously. Then a Gamma(α, 1) random variable is drawn from the appropriate

buffer, depending on the agents COPD status, and multiplied by the scale parameter.

Refilling the buffers at each agent creation comes at a major cost to model efficiency.

The efficiency can be improved my minimising the batch size. As already mentioned,

the default batch size is 50,000 which is excessive for one agent. Temporary counting

functions were added into EPIC to count the number of times each distribution was

being used per agent. Simulations were then run for 1,000,000 agents over varying

time horizons to calculate the smallest possible batch sizes (as a function of the time

horizon) needed to guarantee the buffers won’t need refilling mid-agent pathway.

These were the findings:

• Gamma – used at most once per agent per year. The two gamma buffers can

use the same batch size. Batch size = time horizon + 1 ∗
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• Normal – used at most eight times per agent per year. Batch size = 8 × (time

horizon + 1) ∗

• Exponential – median used is 5.8 (IQR 5.5, 5.9) per agent per year but can get

extreme results of up to 50 per agent per year (caused by agents experiencing

large number of exacerbations). Batch size = 60 × time horizon has proved

sufficient

• Uniform – median used is 8.7 (IQR 7.8, 9.7) per agent per year but similarly

can get extreme results of up to 102 per agent per year. Batch size = 110 ×
time horizon has proved sufficient.

∗ The + 1 is required since a given time horizon equates to time horizon + 1

simulation years as a baseline year zero is also simulated.

These batch sizes are specific to the case detection analysis and would potentially

need refining if applied to other analyses.

However, even with batch sizes minimised, the run time is approximately tripled

compared to when the buffers are only refilled as needed. Therefore, the commands

for refilling the buffers at agent creation have been wrapped in an if/else statement

and the option to turn on this functionality included in model settings so that there

is only a cost to model efficiency when necessary for the analysis.
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Abstract

Rationale: Reducing the risk of exacerbation is a fundamental goal in managing

stable COPD. Guidelines recommend triple therapy (inhaled corticosteroids, long-

acting muscarinic antagonists, and long-acting beta-agonists [ICS/LAMA/LABA])

only as a step-up from dual therapy (LAMA/LABA) for patients at continued high

risk of exacerbation, due to the trade-off of an increased risk of pneumonia associated

with ICS-containing therapies. However, there is little evidence on the optimum

timing of initiating triple therapy.

Objectives: To perform a benefit-harm analysis to evaluate the net benefit of earlier

initiation of triple therapy for the prevention of acute exacerbations in patients with

COPD, compared to standard timing recommended in current guidelines.

Methods: We used a validated whole disease microsimulation model of COPD in

the Canadian general population aged ≥40 years to determine the benefit-harm

of earlier initiation of triple therapy over a 20-year time horizon, compared to

standard care. We assessed net change in quality-adjusted life-years (QALYs) from

the reduction in risk of acute exacerbations and the increased risk of treatment-

related pneumonia in subgroups of patients with COPD defined by exacerbation

history, symptoms, and disease severity. Model parameters were determined from

clinical trials and other published literature. Key parameters were varied in one-way

sensitivity analysis.

Results: In patients at high risk of acute exacerbation (54.7% female, mean age

74.0, 68% GOLD grade I-II), earlier initiation of triple therapy was associated with a

net QALY gain of 4.8 per 100 COPD patients over 20 years, compared to standard

care. The net QALY gain increased to 5.9 per 100 patients in the subgroup of

patients with a high symptom burden (mMRC≥2). Earlier initiation remained net

beneficial in all subgroup and sensitivity analysis scenarios.

Conclusions: Modelling suggests that earlier initiation of triple therapy is likely

to be net beneficial for patients at high risk of acute exacerbation, with an even

greater benefit to patients with a high symptom burden. Further clinical research

is needed to verify these findings in empirical studies.
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5.1 Introduction

Chronic obstructive pulmonary disease (COPD) is the third leading cause of

mortality worldwide and significantly impairs quality-of-life [1]. Patients with

COPD experience periods of acute symptom worsening, known as exacerbations,

representing a major cause of hospitalisations. Reducing the risk of exacerbation is

a fundamental goal in managing stable COPD to prevent accelerated deterioration

of lung function, health status, quality-of-life, and mortality [2, 3, 4]. Maintenance

pharmacotherapy with inhaled corticosteroids, long-acting muscarinic antagonists,

and long-acting beta-agonists (ICS/LAMA/LABA), referred to as “triple therapy”,

is recommended for patients at continued risk of acute exacerbations despite

dual therapy (LAMA/LABA) [2, 5]. Large randomised controlled trials have

demonstrated the effectiveness of triple therapy in reducing the risk of acute

exacerbations in patients with moderate to very severe COPD and a history of

exacerbation [6, 7, 8]. However, ICS-containing therapies carry a number of risks,

with varying degrees of evidence. Increased risk of pneumonia is most strongly

associated with ICS use [9], though other potential risks such as osteoporosis,

glycemic control, and cataracts have been observed in observational studies [10, 11,

12]. As a result of the trade-off between exacerbations and possible adverse outcomes

associated with ICS, ICS-containing regimens, and specifically triple therapy, are not

recommended until later stages of disease [2, 5].

Currently, little evidence exists comparing different approaches to the timing of

triple therapy initiation. Therefore, the primary aim of this study was to perform

a benefit-harm analysis to determine the net benefit of earlier initiation of triple

therapy for the prevention of acute exacerbations in patients with COPD, compared

to standard timing recommended in current guidelines [2, 5]. Net benefit analysis is

a quantitative method for assessing whether the benefits of treatment outweigh the

harms of side effects using a single measure, quality-adjusted life-years (QALYs), to

inform clinical decision making [13]. We assessed net change in QALYs from the

reduction of exacerbation risk and the increased risk of treatment-related pneumonia

in subgroups of patients with COPD defined by exacerbation history, symptoms, and

disease severity over a 20-year time horizon.
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5.2 Methods

We performed a benefit-harm analysis of earlier initiation of triple therapy for

prevention of acute exacerbation in patients with COPD. The benefit (reduction in

exacerbation rate) of triple therapy and its harm (increased risk of pneumonia) were

measured by net change in QALYs over 20 years. The time horizon was varied in

sensitivity analysis. We chose pneumonia as the principal risk to include in our model

given the strength of evidence linking triple therapy to pneumonia [14, 15, 16]. Other

potential risks of ICS have weaker evidence from observational evidence [10, 11, 12]

and were not included due to a lack of randomised evidence that ICS/LAMA/LABA

is associated with an increased risk of adverse events other than pneumonia when

compared to LAMA/LABA therapy [14, 15, 16].

Following Global Initiative for Chronic Obstructive Lung Disease (GOLD) and

Canadian Thoracic Society (CTS) guidelines, the target population was COPD

patients on a single inhaler agent and at high risk of acute exacerbation, defined

as ≥2 moderate or ≥1 severe exacerbations in the previous 12 months [2, 5]. This

corresponds to groups C and D of the GOLD “ABCD” assessment tool, which the

most recent GOLD 2023 report has proposed combining into a single “frequent

exacerbator (group E)” category [17].

In the standard care scenario, patients fulfilling the eligibility criteria were as-

signed dual (LAMA/LABA) therapy. Patients remaining at high risk of acute

exacerbation despite treatment with dual therapy were then stepped up to triple

(ICS/LAMA/LABA) therapy. In the earlier initiation scenario, patients fulfilling the

exacerbation eligibility criteria skipped dual therapy and were directly assigned triple

therapy in the first instance of meeting the exacerbation criteria. The treatment

pathways are shown in Figure 5.1.

5.2.1 Model

We used the Evaluation Platform in COPD (EPIC), a previously developed and

validated deterministic discrete-event microsimulation model of COPD in the general

Canadian population aged ≥40 years [18, 19, 20, 21]. EPIC simulates the

development and progression of COPD through a series of interacting modules,

including demographics of the general Canadian population, smoking prevalence,
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COPD patients 
not on dual or 
triple therapy

Fulfil eligibility criteria 
- ≥2 moderate or ≥1 

severe exacerbations 
in previous 12 months Assigned 

ICS/LAMA/LABA 
therapy

Continued high risk - 
≥2 moderate or ≥1 

severe exacerbations 
in previous 12 months

Assigned 
LAMA/LABA 

therapy

Assigned 
ICS/LAMA/LABA 

therapy

Standard care

Earlier initiation

Figure 5.1: Schematic illustrating the treatment pathways for standard care and earlier
initiation of triple therapy in the reference analysis.

COPD incidence, respiratory symptoms, primary care visits, COPD diagnosis, lung

function decline, exacerbations, COPD-related and background mortality, medical

costs, and QALYs over a lifetime horizon. The rate of exacerbation has been

calibrated using reported figures from the Canadian Institute for Health Information

[22] and data from the Canadian Cohort of Obstructive Lung Disease (CanCOLD)

study, a national prospective cohort of patients with COPD that contains patients

with diagnosed and undiagnosed COPD [23]. In diagnosed patients, the rate of

moderate and severe exacerbations have been validated against major clinical trials

(ECLIPSE, MACRO, OPTIMAL, AND STATCOPE) and a meta-analysis [24].

Each component of EPIC has passed rigorous tests of internal and external validation

and is available as an open-source R package [25]. EPIC has previously been used

in a benefit-harm analysis of long-term therapy with azithromycin [20].

5.2.2 Input values

Model inputs were derived from published studies through a targeted literature

search. The selection of studies is described below. Table 5.1 summaries EPIC

input values relevant to this analysis.

Treatment effectiveness

Within EPIC, inhaled therapies are assigned to individuals following diagnosis or

an exacerbation. Treatment effectiveness is incorporated through the reduction

in overall exacerbation rate. Whether a patient experiences an exacerbation is

predicted by their age, sex, smoking status, FEV1, GOLD grade, and medication
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Table 5.1: Model parameter values relevant to the evaluation of triple therapy.

Item Value References
Global parameters
Time horizon 20 years
Annual discount for QALY 1.5% [26]
Inhaled therapies
Exacerbation rate reduction

LAMA/LABA 0.26 [27]
ICS/LAMA/LABA a 0.44 [6]

Medication adherence b 0.7
Pneumonia
Baseline annual rate 0.0612 [6]
Risk ratio for triple therapy 1.53 [14]
QALY reduction 0.0196 [28]
Health outcomes GOLD I GOLD II GOLD III GOLD IV
Background utility 0.81 0.72 0.68 0.58
QALY reduction from mild-
moderate c exacerbation

0.0225 0.0155 0.0488 0.0488

QALY reduction from severe-
very severe c exacerbation

0.0728 0.0683 0.0655 0.0655

[29]

LAMA – long-acting muscarinic antagonists, LABA – long-acting beta-agonists, ICS – inhaled
corticosteroids, QALY – quality-adjusted life year.
General EPIC model parameters have been reported previously [18, 19].
a Risk ratio for ICS/LAMA/LABA vs placebo calculated as ‘risk ratio for ICS/LAMA/LABA vs
LAMA/LABA × risk ratio for LAMA/LABA vs placebo’ [30].
b Medication adherence of 70% means that out of 100 patient-years in which a patient was eligible
for a medication, they only took the medication (and therefore received the benefit) in 70 patient-
years.
c Mild exacerbations are defined as an intensification of symptoms that does not require an
encounter with the healthcare system and so are only assigned the cost of increased medication;
moderate exacerbations are those in which the patient visits a physician or emergency department
but is not hospitalised; severe exacerbations are assumed to result in a hospital admission; and
very severe exacerbations in admission to the intensive care unit.

status. The rate of exacerbation and probability of an exacerbation being

mild, moderate, severe, or very severe are modelled using separate individualised

prediction equations developed through calibration and data from the MACRO trial

[24, 31]. The individual-specific rates are modelled across all severities to reflect

evidence of an exacerbation susceptibility phenotype independent of exacerbation

severity [32]. Further details of EPIC’s exacerbation modelling have been provided

elsewhere [18].

Our analysis required two treatment effectiveness model inputs. First, the

effectiveness of LAMA/LABA compared to placebo was based on the SHINE trial
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[27]. Other clinical trials (e.g., AUGMENT and ACLIFORM) have compared

LAMA/LABA therapy to placebo, but allowed concomitant ICS therapy, thereby

potentially confounding the treatment effectiveness point estimate for exacerbation

reduction [33, 34]. To avoid biasing our model, we selected the SHINE trial as it

explicitly states that randomisation was stratified by ICS status, such that ICS use

was balanced between groups. Second, the additional exacerbation rate reduction

associated with triple therapy was based on the risk ratio of ICS/LAMA/LABA

compared to LAMA/LABA from the IMPACT trial [6]. However, since EPIC’s

modelling approach requires treatment effectiveness to be expressed in terms of

exacerbation reduction compared to placebo, we converted the risk ratio to a placebo

baseline by following the approach adopted in National Institute for Health and Care

Excellence’s economic report for inhaled triple therapy [30]. Medication adherence

was set at 70% and varied in sensitivity analysis.

Pneumonia events

The annual number of pneumonia events was modelled for each patient. Pneumonia

can vary significantly in severity, from mild events treated at home with antibiotics,

to very severe events requiring admission to the ICU [35]. However, we do not stratify

our modelling by pneumonia severity due to a lack of clear criteria for defining

episodes in clinical trials that report pneumonia as a secondary endpoint. The

baseline rate of pneumonia for COPD patients was taken from the LAMA/LABA

arm of the IMPACT trial [6] and the additional risk associated with triple therapy

was based on a meta-analysis for triple therapy in the management of COPD [14].

Health state utility values (utilities)

To calculate QALYs, the benefit and harm of triple therapy were captured by health

state utility values. Outcomes were discounted at 1.5% per year and varied in

sensitivity analysis [26].

EPIC models background utility values for COPD patients by GOLD grade. The

QALY reduction associated with exacerbation events, stratified by GOLD grade and

exacerbation severity, were determined using EQ-5D health states and are applied

at the end of an exacerbation event [29]. The derivation and validation of these

values have been described in detail elsewhere [18].
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We determined the pneumonia utility value using a study investigating seven

different pneumonia scenarios that distinguished between where the event was

treated (home/hospital), rate of recovery (progressive/delayed), and whether the

patient developed severe complications [28]. We applied the disutility associated

with the “uncomplicated hospital” scenario across all pneumonia events in our

model. We selected this scenario as an intermediate, average scenario given the

lack of detailed reporting on ICS-related pneumonia events in clinical trials. A

pneumonia episode is assumed to last 6 weeks, including the event itself and

associated recovery to baseline health, translating to an associated QALY reduction

of 0.0196 per episode. We consider alternative pneumonia utilities in sensitivity

analysis.

5.2.3 Analysis

The primary outcome measure was the benefit-harm metric calculated as net

QALY gain from earlier initiation of triple therapy, compared to standard care.

Treatment is net beneficial if the value of net QALY is positive. In addition, we

report other health outcome results as secondary outcomes, including number of

exacerbations, pneumonia events, mortality, and treatment years. All analyses

were carried out in R v.4.3.0 and analysis code are available online (https:

//github.com/rachaelmountain/Triple-therapy-BHA).

Subgroup analysis

We performed subgroup analysis to investigate the benefit-harm of earlier initiation

of triple therapy among different groups of patients included in the primary target

population (GOLD groups C/D, ≥2 moderate or ≥1 severe exacerbations in the

previous 12 months). First, we restricted the target population to patients with

a high symptom burden (GOLD group D) [5]. We measured this by functional

disability related to dyspnoea (mMRC≥2) since EPIC does not include COPD

Assessment Test (CAT) scores. In a separate subgroup analysis, we restricted the

target population to patients with moderate to severe airflow limitation (GOLD

group C/D and GOLD grades ≥2).

152

https://github.com/rachaelmountain/Triple-therapy-BHA
https://github.com/rachaelmountain/Triple-therapy-BHA


5.3. Results

Sensitivity analysis

We conducted one-way sensitivity analysis to assess the impact of model assump-

tions. We evaluated both a higher risk of pneumonia associated with triple therapy

(risk ratio 1.87) and a lower risk (risk ratio 1.25) using the 95% confidence interval

limits reported in the meta-analysis from which the reference value was derived

[14]. The same meta-analysis was used to inform higher and lower triple therapy

treatment effectiveness scenarios; the corresponding exacerbation risk reductions are

0.48 and 0.35 respectively. We considered different utility values for a pneumonia

episode, including “complicated hospital” and “uncomplicated home” pneumonia

treatment scenarios as these respectively produced the highest and lowest QALY

reduction (0.12 and 0.0081 respectively) [28]. We also ran separate analyses for:

reduced adherence to inhaled therapies of 50% and 30% [36]; using utility discount

rates of 3% and 0% [26]; and time horizons of 35 years (lifetime) and 5 years.

Since EPIC is a deterministic model, we cannot explore parameter uncertainty via

probabilistic sensitivity analysis.

5.3 Results

The study population at baseline was 54.7% female and had mean age 74.0. The

distribution between GOLD grades were 19.3% grade I, 48.9% grade II, 27.4% grade

III, and 4.5% grade IV. For patients in the primary population (GOLD groups C/D,

≥2 moderate or≥1 severe exacerbations in the previous 12 months), earlier initiation

of triple therapy resulted in a net QALY gain of 4.8 per 100 COPD patients over a

20-year time horizon. Earlier initiation resulted in 6.8 additional pneumonia events

per 100 patients but reduced the number of exacerbations by 36.3. Table 5.2 presents

the analysis outcomes standardised to a cohort of 100 COPD patients fulfilling the

eligibility criteria.

5.3.1 Subgroup analysis

Figure 5.2 compares the difference (earlier initiation – standard care) in outcome

measures between the primary population and subgroups of eligible patients. Both

subgroups were associated with a greater net QALY gain compared to the primary

analysis group with reduced total exacerbations, severe/very severe exacerbations,

and exacerbation-related mortality per 100 patients fulfilling the scenario-specific
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Table 5.2: Analysis outcomes over a 20-year time horizon expressed per 100 COPD patients
fulfilling the eligibility criteria (GOLD groups C/D).

Outcome Standard care Earlier initiation Difference
Total exacerbations 1246.9 1210.6 -36.3
Severe/very severe exacerbations 249.7 245.3 -4.4
Pneumonia events 60.7 76.7 6.8
Mortality due to exacerbations 40.1 39.5 -0.6
Dual therapy treatment years 315.6 0 -315.6
Triple therapy treatment years 534.1 855.3 321.2
Life years 870.2 875.8 5.6
Total QALYs 533.6 538.4 4.8

Life years Total QALYs

Pneumonia events Dual therapy treatment years Triple therapy treatment years

Total exacerbations Severe/very severe exacerbations Mortality due to exacerbations
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Figure 5.2: Difference in outcome measures for earlier initiation, relative to standard
care, compared across primary analysis and subgroup analyses expressed per 100 COPD
patients fulfilling the scenario-specific eligibility criteria.
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eligibility criteria. Patients with high symptom burden (GOLD group D) derived

the most benefit from earlier initiation of triple therapy with a net QALY gain of

5.9 per 100 patients over 20 years, compared to 5.2 for patients with moderate to

severe airflow obstruction (GOLD C/D and GOLD ≥2).

5.3.2 Sensitivity analysis

Sensitivity analysis showed earlier initiation of triple therapy remained net beneficial

under varying model assumptions (Figure 5.3).

Pneumonia risk
(1.25 / 1.87)

Pneumonia disutility
(0.0081 / 0.12)

Discount rate
(0% / 3%)

Medication adherence
(30% / 50%)

Time horizon
(5−year / 35−year)

Triple therapy effectiveness
(0.35 / 0.48)

2 3 4 5 6
Net QALY

Low

High

Figure 5.3: One-way sensitivity analysis results for net QALY gain (earlier initiation –
standard care) under varying parameter assumptions (low/high values). Black vertical
line represents the reference analysis (4.8 net QALYs per 100 patients).

Results were most sensitive to changes in treatment effectiveness, with a difference

of 4.1 QALYs between the high and low effectiveness scenarios (rate reductions

from triple therapy of 0.48 and 0.35, respectively, compared to 0.44 in the reference

analysis). Net benefit decreased in scenarios with lower medication adherence, with

a net QALY gain of 3.1 per 100 patients with 30% adherence. Changing the risk of

pneumonia associated with triple therapy had the smallest effect on results. A 5-

year time horizon had over half the net QALY gain of the reference analysis whereas

increasing the time horizon to 35-years only resulted in 1.1 additional QALYs per

100 patients compared to the reference. Hence most benefits accrued before the end

of the 20-year time horizon since many severe patients, who will benefit the most
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from triple therapy, have died before 20 years.

5.4 Discussion

We used a validated whole disease microsimulation model to evaluate the net benefit

of earlier initiation of triple therapy for the prevention of acute exacerbation in

patients with COPD. Among patients at high risk of exacerbation, current guidelines

recommend triple therapy for patients only as a step-up from dual therapy if

exacerbations remain uncontrolled. However, our results indicate that the benefit of

earlier initiation of triple therapy for patients at high risk of exacerbations, who are

in GOLD groups C/D (≥2 moderate or ≥1 severe exacerbation in the previous 12

months), could outweigh the harm incurred through increased risk of pneumonia,

with a net QALY gain of 4.8 per 100 patients. The net beneficial finding was robust

to all subgroup and sensitivity analyses.

Determining the optimal timing of inhaler escalation has significant implications

for patients, the health system, and future guideline development. First, our

findings are hypothesis-generating and suggest that additional clinical research

should investigate whether our results are robust in real-world clinical settings. If so,

earlier initiation of triple therapy could yield important clinical benefits to COPD

outcomes at both the patient and population level. Using a recent study from

British Columbia, we estimate that 14% of COPD patients, or equivalently, 118,000

Canadians nationwide, would be classified in the primary population cohort of our

study and would be affected by a potential change in treatment recommendations

[37, 38]. However, potential benefits should be counterbalanced with the risks and

costs of triple therapy in individualised, patient-level, shared decision-making, prior

to changing recommended clinical practice. Pneumonia was the only adverse event

considered in this analysis due to strength of evidence, but our analysis should be

updated as additional high-quality data on risks of triple therapy becomes available.

Second, our study highlights the importance of both symptoms and exacerbations

in determining therapy step-ups. The current recommendation of LAMA/LABA

therapy is based on exacerbation history alone, without accounting for patient

symptom severity. Further, the 2023 GOLD report proposes combining groups C

and D from the “ABCD” assessment tool into one group “E” to highlight the clinical

relevance of exacerbation history [17]. Our results indicate that earlier initiation of
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triple therapy would be net beneficial in the GOLD E population. However, studies

have shown that greater symptom burden at baseline is associated with a greater

rate of exacerbation, and that dyspnoea is a significant predictor of 5-year survival

rates [39, 40, 41]. Our subgroup analysis results showed that among patients at high

risk of acute exacerbation, symptomatic patients derive the greatest net benefit from

earlier initiation of triple therapy (net QALY gain of 5.9 per 100 patients), as these

patients have an even greater propensity to exacerbate.

In our sensitivity analysis, the reduced medication adherence (50% and 30%)

scenarios, although still net beneficial, resulted in smaller net QALY gains.

Medication adherence is a critical component to effective disease management yet

adherence to inhaled therapies among COPD patients is notoriously low, with

reported values as low as 15% [42]. Our results suggest that the less frequently

patients take their medications, the less benefit will result from earlier triple therapy

in terms of reduced risk of exacerbation, compared to standard care. This decrease

in benefit continues to outweigh the reduced harm from lower pneumonia risk,

leading to a reduced, but persistent net QALY gain. Given low inhaler adherence in

typical practice, the sensitivity analyses may be more indicative of the effect of early

initiation of triple therapy in a real-world setting. Regardless of treatment approach,

we would argue that adherence should be optimised prior to stepping-up therapy,

since there are additional risks to prescribing intensive and expensive therapy to

non-adherent patients, such as harms from abrupt treatment discontinuation and

financial harm.

Our study reinforces the importance of disease models, such as EPIC, for evidence

generation. Modelling allows researchers to ask important questions about trade-offs

in clinical care or population health management and evaluate challenging treatment

decisions. For this analysis, EPIC allowed us to study outcome measures over a

long-term time horizon. Clinical trials comparing triple and dual therapy are often

6-12 months in length and thus are limited in their ability to consider the long-term

benefits and harms of treatment [14]. They also infrequently enrol patients with mild

COPD (GOLD 1), and thus fail to consider the benefits of earlier treatment initiation

among patients who are frequent exacerbators regardless of disease severity. It is

important to note that our analysis did not include the impact of exacerbations on

disease progression. Therefore, our results could be considered conservative and a

greater net QALY gain would likely be observed if the indirect benefit of preserving
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lung function was accounted for as patients would spend greater time in mild disease

stages [43, 44].

This study has several limitations. First, we have simplified our modelling of

pneumonia. Events are not stratified by severity due to a lack of clear definition

and reporting of episodes in clinical trials. In sensitivity analysis our results

were not significantly impacted by varying pneumonia risk, but the net benefit of

earlier initiation of triple therapy is lower when pneumonia episodes are assumed

to have more severe impact on health state (disutility). Second, the reduction

in exacerbation rate for LAMA/LABA vs placebo and ICS/LAMA/LABA vs

LAMA/LABA are taken from different trials, SHINE and IMPACT respectively.

Our modelling approach assumes that the LAMA/LABA populations between the

two studies are comparable, yet IMPACT only enrolled patients with≥1 moderate to

severe exacerbations in the previous 12 months, compared to SHINE where over 70%

of participants had zero exacerbations in the previous 12 months. However, there are

no clinical trials comparing triple and dual therapy with a placebo-controlled arm

due to the lack of clinical equipoise. To account for this, we varied the treatment

effectiveness estimate associated with triple therapy in sensitivity analysis and found

that the net benefit was positive at both the high and low plausible limits. Third, our

analysis does not consider other indicators for ICS such as asthma-COPD overlap

syndrome or blood eosinophil counts as this information is not included within

EPIC. Clinical trials (e.g., TRINITY, TRIBUTE, IMPACT) have suggested that

eosinophils are a useful biomarker for predicting patients likely to respond to triple

therapy and it comprises a key component of GOLD’s recommendations for follow-

up pharmacological treatment [17]. Future research could consider stratification

of patients based on these criteria to further study the benefit-harm in clinically

relevant subgroups. Fourth, we did not include costs data in this analysis. The role

of a benefit-harm analysis is to assess whether there is a net benefit of treatment,

and once established, monetary costs are an important consideration. Economic

evaluations, such as cost-effectiveness analyses, will be required to quantify the

value of earlier initiation of triple therapy more fully for clinical and policy decision

making. Finally, our study did not include the full range of potential harms and

benefits of early triple therapy initiation due to limited data availability and data

quality. For example, the opportunity cost of patient time associated with taking an

additional therapy is not incorporated in our model. There is growing recognition

in the health economics community that such factors are important to model, but
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require prospective collection and are beyond the scope of this study [45].

5.5 Conclusion

Among patients at high risk of acute exacerbation, earlier initiation of triple therapy

is estimated to be net beneficial, with an even greater benefit to patients with a high

symptom burden. Further clinical research is needed to verify these findings from

our modelling study.
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Chapter 6

Discussion

The primary aim of this thesis was to investigate chronic respiratory disease care

and health service delivery through the use of statistical methodology. Two distinct

approaches were used, differing in data source and geographical setting. Firstly,

Chapters 2 and 3 used routinely collected health data from the Morecambe Bay

CDW to investigate local respiratory care. The findings from these studies provide

insight into the impact of the MBRN integrated care initiative and offer contrasting

approaches to encountering barriers in research with routine data. Secondly,

Chapters 4 and 5 used a discrete event microsimulation model of the development

and progression of COPD in the Canadian population to answer questions in the

field of health economics and outcomes research. The key discussion points from

these studies include recommendations to practice and policy for COPD care that

hold relevance to the English healthcare system.

6.1 Chapter overviews

Outpatient services in England are under unprecedented pressure, an issue ex-

acerbated by delayed referrals during the COVID-19 pandemic for routine and

chronic care. Integrated care has been argued as the solution for improving the

sustainability of the health and social care system, yet there are gaps in the literature

for quantitative evidence of the impact of integrated care initiatives on elective care.

Chapter 2 of this thesis utilised routinely collected health data from the Morecambe

Bay CDW to model space-time patterns in referrals to outpatient respiratory clinics
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in the Morecambe Bay area between 2012-2019 and assess the impact of MBRN

intervention. The analysis encountered issues with primary care data from the

CDW and proposed a novel spatio-temporal methodological solution that could be

expanded to other fields using time restricted official statistics. The results estimated

areas with full MBRN intervention were associated with a 40% reduction in referral

rate by the third year of the initiative. Although the study was limited by a lack

of control group, the results showed the potential of integrated care models with

enhanced primary care teams to relieve pressure on elective care services and reduce

the referral backlog following COVID-19 disruption.

The NHS Long Term Plan has targeted improved diagnostic standards for CRD, yet

there is currently no accepted measurement approach for evaluating the diagnostic

process. Existing literature recognises the challenge of measuring diagnostic quality

and the need for novel sources of data. Chapter 3 discussed the capacity of routinely

collected data for measuring diagnostic quality in the formats of a research letter and

an extended report to the MBRN. The research encountered limitations associated

with relevant data variables extracted from the Morecambe Bay CDW and grouped

the issues under thematic headings: data recording, data access, and broader study

design considerations. In contrast to the methodological approach taken in Chapter

2, Chapter 3 concluded that the routine data in the CDW was not fit-for-purpose

for evaluating the diagnostic process but emphasised the importance of feedback

between researchers and clinicians to improve the potential of routine data for

research in the future. The extended report included exploratory data results on the

impact of the MBRN, exemplifying the potential role of integrated care in improving

both diagnostic standard and the capacity of routine data for research purposes.

However, findings were limited by lack of control group, disruption of the COVID-

19 pandemic, and changes in data recording practices.

Patient outcomes for COPD are considerably improved through optimal preventative

and therapeutic management, and yet the disease is notoriously underdiagnosed

with consequences for patient long-term outcomes and non-elective admissions.

A previous analysis found that a primary care-based case detection programme

would likely be cost-effective, but in a time of intense pressure on healthcare

budgets, it is important to also consider the affordability. Chapter 4 extended

the previous cost-effectiveness analysis by evaluating the budget impact of multiple

strategies for primary care-based case detection in the Canadian population using
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the EPIC microsimulation model. The most cost-effective strategy, questionnaire-

based testing for all patients over the age of 40, was found to be the most expensive

and would require prioritisation by budget holders. The analysis highlighted the

need for increased diagnostic spirometry capacity, particularly in primary care,

which may be the greatest barrier to implementing COPD case detection.

COPD exacerbations represent a major cause of non-elective hospital admissions.

Maintenance pharmacotherapy is an important element of managing COPD to

reduce the risk of exacerbation and improve patient quality-of-life. Chapter 5

presented a benefit-harm analysis conducted within EPIC to quantify the net benefit

for COPD patients of earlier initiation of triple therapy compared to standard timing

in current guideline recommendations. Modelling results suggested that the benefit

of earlier initiation of triple therapy for patients at high risk of acute exacerbation

could outweigh the harm incurred through increased risk of pneumonia adverse

events, with an even greater benefit observed for patients with a high symptom

burden. Sensitivity analysis suggested the net benefit is smaller at lower assumed

medication adherence, reinforcing the importance of effective disease management,

including correct medication usage. Further clinical research is needed to verify

these findings in empirical studies.

6.2 Implications and future research

6.2.1 Healthcare

Many of the themes encountered in this thesis link to goals from the NHS Long

Term Plan for improving respiratory disease care and population health.

First, the Long Term Plan commits to improving earlier detection and diagnosis of

respiratory disease, particularly increasing access to spirometry testing in primary

care to support the accurate diagnosis of COPD [18]. Chapter 3 results supported

existing literature that spirometry is hugely underused, whilst contributing new

insight into the impact of the pandemic on diagnostic testing [60]. Chapter 4

considered further consequences of the issue by highlighting the lack of primary

care personnel trained in spirometry as a key barrier to implementing case finding

programmes to reduce the prevalence of undiagnosed COPD, and its associated

significant burden to society and healthcare services [12, 13, 61]. It is clear that
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spirometry access must improve. The NHS Spirometry Commissioning Guidance

builds upon the initial goals in the Long Term Plan by proposing three service

delivery models for primary care-based spirometry testing, namely training GPs,

establishing local diagnostic hubs, or a combination [62]. The guidelines emphasise

the importance of decision-making at a local-level, to best suit the needs of

the local population as well as the importance of integrating services [62, 63].

Chapter 3 provided exploratory evidence of improvements to spirometry completion

following MBRN intervention, a local initiative that has trained GPs in the

network in spirometry and provides interpretation support from specialists via multi-

disciplinary team (MDT) meetings. However, these results faced limitations and

additional study is needed of spirometry rates over time and across the country,

along with robust evaluation of the the effectiveness of relevant service models in

improving diagnostic standards.

Second, the Long Term Plan aims to do more to support those with respiratory

disease to receive and use correct medication [18]. Chapter 5 highlighted the impor-

tance of research into the optimal timing of initiating or upgrading pharmacotherapy

to improve patient quality-of-life and disease management. However, a consequence

not discussed in the benefit-harm analysis, is the impact of increased pneumonia

events resulting from triple therapy, which may contradict other NHS goals to reduce

the burden of community-acquired pneumonia and associated hospital admissions.

In order to estimate the impact of earlier initiation of more intensive therapies on

acute services, improved definition and recording of adverse event severity is needed

in clinical trial data, as outlined in the limitations of the chapter. With regards to

medication usage, the sensitivity analyses of both Chapters 4 and 5 showed that

at lower medication adherence, treatment effectiveness and the potential for cost-

savings decline. Medication adherence is a critical component of effective disease

management, yet adherence is estimated at around 50% for patients with chronic

illnesses, and as low as 15% for COPD [64, 65]. The factors behind a patient not

correctly taking their medication can be complex and varied, including forgetfulness,

costs, poor technique, and strong beliefs [65]. NICE guidelines recommend a range

of interventions for improving adherence tailored to patients’ individual needs,

highlighting the importance of a “whole patient” view of care [66]. Medication

patterns using routine data was not explored in this thesis, despite the availability of

prescription data in the CDW. There is considerable existing literature exploring the

relationship between adherence and health outcomes (e.g., [67, 68, 69]), however it
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could be of interest to use a linked routine data source to explore how care pathways

vary at different adherence levels, for example using state sequence analysis.

Finally, the NHS Long Term Plan advocates integrated care systems to improve

efficiency and patient outcomes [18]. Integrated care has been argued as essential

for improving the sustainability of the health and social care system, linking to a

main theme of this thesis, “healthcare under pressure”. Following the 2022 Health

and Care Act, integrated care is central to the organisation of the NHS in England

[70], yet there is inconclusive evidence for its effectiveness [71, 72, 73]. Existing

literature suggests two contributing factors are insufficient data sources and choice

of outcome measures [74, 75]. Chapters 2 and 3 provided insight into the impact

of the MBRN initiative using a linked cross-tier routine data source. The results

showed that a service model with an enhanced primary care team and disease-specific

specialist input via MDTs was successful at reducing outpatient service utilisation

and increasing recording of key diagnostic markers, such as symptoms and test

results, in GP records. It was hoped that this thesis would provide a more thorough

and well-rounded evaluation of the MBRN by analysing diverse outcomes. However,

potential research questions were limited by data quality, data availability, and the

COVID-19 pandemic which disrupted routine care and restricted the time period in

which the MBRN operated under regular circumstances. Quantitative evaluation

of the MBRN should continue into areas such as symptom control, medication

usage, and cost-effectiveness. However, the success of future research will critically

depend on access to MDT data, the central component to the MBRN model, and

a comparable population elsewhere in the country, particularly if funding for the

network is to expand to cover the entirety of the Morecambe Bay area.

6.2.2 Data methods

This thesis has demonstrated the benefits of simulated data for health research,

particularly its ability to be applied to a wide range of scenarios. Chapters 4

and 5 used the same simulation model to answer contrasting COPD research

questions, with the two studies respectively including short- and long-term time

horizons, economic and social outcome measures, service delivery and therapeutic

intervention evaluations, as well as focusing on diagnosis and management stages

of care. Despite the Canadian setting of the model used, the results hold relevance

to the NHS due to the comparability of the populations, healthcare systems, and
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healthcare pressures in England and Canada. However, a UK- or England-based

microsimulation model for COPD, or even for multiple CRD conditions combined,

could still be beneficial. A simulation model similar to EPIC could evaluate different

strategies to assist in planning and prioritising health service delivery to achieve the

ambitious goals set out in the NHS Long Term Plan [18]. Tan et al. developed a

microsimulation model for COPD in Great Britain but the model only comprises of

population demographics, smoking prevalence, and lung function decline, and does

not model health service interactions. Furthermore, the model uses both outdated

and international data sources [76]. Future research could exploit the rich routine

data sources in England to construct a CRD microsimulation model. In contrast,

EPIC is highly dependent on data from longitudinal cohort studies and clinical trials,

thus is arguably limited in its ability to reflect real-world practice [52, 53]. Canadian

healthcare is largely managed by province, contributing to a lack of national routine

health databases. The Pan-Canadian Health Data Strategy’s 2021 report contrasts

the Canadian and UK health data systems, and highlights provincial data silos as

a major barrier to generating whole health sector intelligence [77]. Although this

thesis has recognised potential access barriers to national routine health data for

researchers in England, it is not a given that such databases exist in the first place,

and represent an invaluable commodity for health research.

Using data generated from patients’ routine interactions with the healthcare system

holds huge potential to improve services and standard of care. Chapters 2 and 3

of this thesis have demonstrated some of the strengths of using routine data for

research, especially the wide range of study variables available within the CDW.

Chapter 3 highlighted the importance of access to linked data by constructing patient

diagnostic pathways across primary and secondary care. Community care data,

although available from the CDW and a novel feature of the database, was not used

in this thesis due to inconsistent data quality. More research is needed that utilises

community data, in conjunction with primary and secondary data, for studying

chronic conditions, particularly those that affect the elderly, as a large proportion

of their care is likely to be handled by community services. The use of the CDW

additionally exemplified the benefits of access to local health data, which creates

potential for more bespoke access arrangements, as well as close collaboration and

conversation with local stakeholders. On the other hand, a common limitation

between Chapters 2 and 3 was the regional nature of the CDW that prevented

a sufficient control group for the MBRN intervention population. This limitation
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lends evidence to the need for investment into national or sub-national Secure Data

Environments (SDEs) with linked data across healthcare tiers [41]. Future research

utilising these new data sources in development present exciting opportunities for

insight into health outcomes, interventions, and inequalities that may not be possible

with access to only regional or trust level datasets.

A critical topic relating to research with routine data, yet to be addressed in this

thesis, are the real concerns from the public surrounding patient privacy. For

example, in November 2023, the NHS signed a £330 million contract with Palantir,

a US technology company that works closely with intelligence agencies such as the

CIA, to develop a “federated data platform”, raising patient fears that their personal

data would be misused [78]. Public trust is critical to building and promoting safe

data platforms, but will also influence how effective the data can be for research.

Without sufficient public trust, an increasing number of individuals may opt out

of their health data being used for research, if given the choice. This occurred in

2021 following the announcement from the NHS of the General Practice Data for

Planning and Research system, where changes to the way general practice data was

to be collected was inadequately explained to the public. Although opting out is

well within an individual’s right, a large opt-out rate increases the risk of reduced

data quality [40]. The National Data Guardian’s 2021 report “Putting Good Into

Practice” found that participants expect more transparency across the entire data

life cycle for how their information is used and how decisions are made [79]. The

government has recognised the need for improvement in how they communicate and

engage with the public surrounding the use of personal data [40].

Synthetic data may hold the solution to stringent data access barriers, privacy

concerns, and contribute toward regaining public trust. Synthetic data uses

modelling to simulate an artificial copy of a confidential dataset with new data

values that mimic the statistical properties of the original data. It could be

considered a middle-ground between the two data methods used in this thesis.

Since synthetic data does not exactly reproduce patient-level information, it does not

require such strict access procedures. There are an increasing number of open-source

tools available for synthetic data generation with user-friendly interfaces in R (e.g.,

SynthPop [80]) and Python (e.g., BIT-ADRUK Synthetic Data Tool [48]), reflecting

the growing interest for accessible data [47]. OpenSAFELY, a secure open-source

platform for analysis of electronic health records, allows users to build and test their
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analysis code with synthetic data prior to submission for execution with real data,

removing the need for direct access to patient records [81]. However, compared to

other fields such as finance and economics, the use of synthetic clinical and healthcare

data is still minimal, in part due to the higher consequences of modelling error [82].

As with all simulated data, the quality of synthetic data is critically dependent

on the generating methodology used and may not reflect the true complexity of

the real-world setting. A validation study by Chen et al. found that a leading

synthetic data generator had limited capability to model deviations from standard

care outcomes and practices, which may limit its applications to research questions

like those considered in this thesis [83]. Furthermore, synthetic data carries the

risk of bias amplification, thus solutions to data quality issues discussed in Chapter

3 remain critical [82]. Additionally, privacy concerns persist, such as duplication

of outlying data points in the original data posing a risk of the re-identification

of individuals, highlighting the importance of thorough auditing procedures prior

to data release [47, 84]. In the future, synthetic data is expected to become more

widely used in health research, and research should continue to evaluate synthetic

data generation methodology and its application to specific disease areas.

6.3 Conclusion

This thesis has explored chronic respiratory disease care through two contrasting

sources of data. Chapters 2 and 3 used routinely collected health data from

the Morecambe Bay area to study service utilisation and diagnostic quality, with

additional consideration for a local integrated care initiative. Chapters 4 and 5 used

a microsimulation model to evaluate the impact of interventions for earlier diagnosis

and therapeutic management for COPD patients. The results of the four studies

hold great relevance to NHS goals for improving standard of care for respiratory

disease, particularly diagnostic standards, correct medication usage, and integrated

services. This thesis spotlights the potential role of both routine and simulated data

in healthcare research, whilst demonstrating their respective limitations. Synthetic

data has been suggested as a middle-ground between the two methods, using

simulation to exploit the wealth of information in routine data whilst minimising

access barriers and privacy concerns. Future research could further develop synthetic

data methodology to enhance the usage of the invaluable routine data commodity

available in England for improving health services and population health.
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Measuring diagnostic quality using

routinely collected data:

Supplementary material

A.1 MBRN diagnostic template

Below is a copy of the MBRN diagnostic template provided by Dr Patrick Haslam,

GP at Queen Square Medical Practice (Lancaster, UK) and joint clinical lead for

the MBRN. Circles indicate fields with a corresponding SNOMED code. Items not

circled indicate free text boxes or administrative procedures such as booking next

appointment.
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A.2 Impact of COVID-19

Many of the data presentations in this report focus on diagnoses made in 2022

to provide a picture of the most up-to-date diagnostic practices since diagnostic

technologies and best practice guidelines can change over time. However, the

COVID-19 pandemic caused significant disruption to healthcare provision (see

Section 3.2.3.7) which may introduce some bias into the exploratory results

presented. Here we reproduce certain figures from the report using 2019 data to

inspect the impact of COVID-19 on the presented results.

Figure A.1 shows the symptom recording in the six months prior to diagnosis for

CRD diagnoses made in 2019, analogous to Figure 3.1. The percentage of diagnoses

without any symptom information recorded was 47% in 2019 and 48% in 2022.

Further, the percentages for the other symptoms have remained similar, with the

exception of a significant increase in recording of wheeze between 2019 and 2022.
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Figure A.1: Analogous to Figure 3.1. Percentage of diagnoses made in 2019 with symptom
information recorded in the six months prior to diagnosis. Labels above bars show the
frequency.
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Figure A.2 in analogous to Figure 3.7 and shows symptom recording by GP in 2019.

The two plots are different in terms of order of GPs but this is to be expected given

MBRN intervention. However, the plots have similar overall shapes, with GP-level

results spread quite evenly between approximately 25% and 80%.
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Figure A.2: Analogous to Figure 3.7 Percentage of diagnoses in 2019 with no symptom
information recorded in the previous six months by GP. Labels above bars show the
frequency.

Figure A.3 shows the percentage of diagnoses with each diagnostic test carried out

in the six months prior to diagnosis for diagnoses made in 2019, analogous to Figure

3.2. Both plots have blood tests in the top four, ranging between 60% to 67%

completion. There are some changes to order in the less frequently used tests, but

this is to be expected given low sample sizes. The key difference between the two

set of results is the decreased use of pulmonary function tests for diagnoses made

in 2022 compared to 2019. Since we consider the six months prior to diagnosis,

diagnoses made in 2022 may cover the period of time where pulmonary function

testing was limited due to COVID-19 restrictions.
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Figure A.3: Analogous to Figure 3.2 Percentage of diagnoses in 2019 with evidence of
each diagnostic test in the six months prior to diagnosis. Labels next to bars show the
frequency.
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Budget impact analysis:

Supplementary material

This appendix is the contents of the supplementary material file that was submitted

to CMAJ Open and appears online alongside the main article (https://www.

cmajopen.ca/content/suppl/2023/11/07/11.6.E1048.DC1).

B.1 EPIC validation

The Evaluation Platform in COPD (EPIC) is a previously developed model and

has undergone rigorous validation including replicating the rate and severity of

exacerbations and COPD-related mortality rate in two external cohort studies.

Details have been previously described elsewhere [52, 53]. Below we summarise

the key elements relevant to the budget impact analysis.

Population size and demographics are based on population projections from

Statistics Canada [85]. Figure B.1 shows results of the validation of population

size and the population pyramid for 2025 (near the end of the study time horizon).

Within EPIC, patients can be diagnosed with COPD outside of case detection. The

diagnosis module uses input data from the Canadian Cohort of Obstructive Lung

Disease (CanCOLD) study to model the annual probability of routine diagnosis

during primary care visits both among COPD patients and non-COPD patients

(overdiagnosis) [53, 86]. Probability of diagnosis is modelled as a function of sex,
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symptoms, smoking status, and number of GP visits. The diagnosis module has

been calibrated to yield a stable proportion of diagnosed patients among COPD

individuals approximately equal to that observed in CanCOLD (29.7%) [87, 86].

Overdiagnosed patients can have their diagnosis reversed annually, the probability

for which is calibrated to yield a stable proportion of false positive diagnoses among

non-COPD individuals at 3% in accordance with the observed input CanCOLD

data source [53] and similar to previous studies [88]. Figure B.2 shows results of the

validation for COPD diagnosis and overdiagnosis.

(a) Population growth between 2015-2035.

(b) Population pyramid of age in 2025.

Figure B.1: Validation of EPIC population against Statistics Canada projections.
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(a) Proportion of COPD patients diagnosed.

(b) Proportion of non-COPD patients overdiagnosed.

Figure B.2: Validation of EPIC COPD diagnosis module against CanCOLD data over
20-year time horizon for 150,000 simulated individuals.
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B.2 Recalibrating the cost-effectiveness plane

The cost-effectiveness plane used by Johnson et al. (2021) was recalibrated at lower

willingness-to-pay (WTP) thresholds [53]. The preferred case detection strategy

using the efficiency frontier approach with a WTP threshold of $25,000/QALY

gained was S3b (questionnaire-based screening for adults aged ≥50 years with a

smoking history) (Figure B.3).

Figure B.3: Cost-effectiveness plane for case detection scenarios. Solid blue line
indicates the efficiency frontier, and the grey dashed line indicated the WTP threshold
($25,000/QALY gained). The highest value scenario is highlighted in red.
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B.3 Budget impact results tables

Tables B.1-B.8 show the extended annual budget impact results for each strategy

compared to a baseline scenario of no case detection.

Table B.1: Annual budget impact results for case detection strategy S1a.

Outcome 2021 (Baseline) 2022 2023 2024 2025 2026
No case detection strategy costs
CD: time 0 0 0 0 0 0
CD: use cost 0 0 0 0 0 0
Treatment 393,530,276 417,513,737 438,863,110 460,607,046 481,266,209 501,851,770
Hospitalisation 857,500,298 886,643,782 915,325,378 951,343,357 994,360,219 1,038,253,318
Outpatient 1,382,501,810 1,427,522,685 1,475,284,754 1,529,463,255 1,587,334,011 1,646,461,799
Total 2,633,532,385 2,731,680,204 2,829,473,242 2,941,413,658 3,062,960,439 3,186,566,886
Case detection strategy costs
CD: time 0 8,426,599 16,512,477 23,225,846 27,980,080 30,417,175
CD: use cost 0 23,182,793 45,379,385 63,882,768 76,851,041 83,544,168
Treatment 393,530,276 418,197,267 442,737,753 470,714,863 500,838,467 532,892,687
Hospitalisation 857,500,298 886,324,440 914,199,119 948,754,968 990,866,199 1,032,316,209
Outpatient 1,382,501,810 1,426,806,092 1,472,958,585 1,524,109,881 1,578,888,806 1,634,717,281
Total 2,633,532,385 2,762,937,191 2,891,787,318 3,030,688,325 3,175,424,593 3,313,887,519
Budget impact
CD: time 0 -8,426,599 16,512,477 -23,225,846 -27,980,080 -30,417,175
CD: use cost 0 -23,182,793 -45,379,385 -63,882,768 -76,851,041 -83,544,168
Treatment 0 -683,530 -3,874,643 -10,107,817 -19,572,258 -31,040,917
Hospitalisation 0 319,343 1,126,259 2,588,389 3,494,020 5,937,109
Outpatient 0 716,593 2,326,169 5,353,374 8,445,205 11,744,518
Total 0 -31,256,986 -62,314,077 -89,274,668 -112,464,154 -127,320,633
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Table B.2: Annual budget impact results for case detection strategy S1b.

Outcome 2021 (Baseline) 2022 2023 2024 2025 2026
No case detection strategy costs
CD: time 0 0 0 0 0 0
CD: use cost 0 0 0 0 0 0
Treatment 393,530,276 417,513,737 438,863,110 460,607,046 481,266,209 501,851,770
Hospitalisation 857,500,298 886,643,782 915,325,378 951,343,357 994,360,219 1,038,253,318
Outpatient 1,382,501,810 1,427,522,685 1,475,284,754 1,529,463,255 1,587,334,011 1,646,461,799
Total 2,633,532,385 2,731,680,204 2,829,473,242 2,941,413,658 3,062,960,439 3,186,566,886
Case detection strategy costs
CD: time 0 8,426,599 16,512,477 23,225,846 27,980,080 30,417,175
CD: use cost 0 18,095,941 35,403,697 49,809,695 59,924,520 65,138,034
Treatment 393,530,276 417,502,295 439,839,584 464,000,396 488,865,354 514,550,406
Hospitalisation 857,500,298 886,488,161 915,155,450 949,922,059 992,470,688 1,035,052,965
Outpatient 1,382,501,810 1,427,128,994 1,473,885,031 1,526,189,614 1,582,014,503 1,639,472,537
Total 2,633,532,385 2,757,641,990 2,880,796,239 3,013,147,609 3,151,255,145 3,284,631,118
Budget impact
CD: time 0 -8,426,599 -16,512,477 -23,225,846 -27,980,080 -30,417,175
CD: use cost 0 -18,095,941 -35,403,697 -49,809,695 -59,924,520 65,138,034
Treatment 0 11,442 -976,475 -3,393,350 -7,599,146 -12,698,637
Hospitalisation 0 155,621 169,929 1,421,298 1,889,531 3,200,353
Outpatient 0 393,691 1,399,723 3,273,642 5,319,508 6,989,261
Total 0 -25,961,786 -51,322,997 -71,733,952 -88,294,706 -98,064,232

Table B.3: Annual budget impact results for case detection strategy S1c.

Outcome 2021 (Baseline) 2022 2023 2024 2025 2026
No case detection strategy costs
CD: time 0 0 0 0 0 0
CD: use cost 0 0 0 0 0 0
Treatment 393,530,276 417,513,737 438,863,110 460,607,046 481,266,209 501,851,770
Hospitalisation 857,500,298 886,643,782 915,325,378 951,343,357 994,360,219 1,038,253,318
Outpatient 1,382,501,810 1,427,522,685 1,475,284,754 1,529,463,255 1,587,334,011 1,646,461,799
Total 2,633,532,385 2,731,680,204 2,829,473,242 2,941,413,658 3,062,960,439 3,186,566,886
Case detection strategy costs
CD: time 0 8,426,599 16,512,477 23,225,846 27,980,080 30,417,175
CD: use cost 0 24,838,754 48,648,753 68,439,896 82,366,712 89,561,692
Treatment 393,530,276 417,277,873 438,904,708 461,889,458 485,073,969 508,838,130
Hospitalisation 857,500,298 886,545,719 915,165,446 950,042,531 992,523,607 1,035,330,430
Outpatient 1,382,501,810 1,427,235,127 1,474,200,864 1,526,918,210 1,583,028,815 1,641,116,604
Total 2,633,532,385 2,764,324,071 2,893,432,247 3,030,515,942 3,170,973,183 3,305,264,032
Budget impact
CD: time 0 -8,426,599 -16,512,477 -23,225,846 -27,980,080 -30,417,175
CD: use cost 0 -24,838,754 -48,648,753 -68,439,896 -82,366,712 -89,561,692
Treatment 0 235,864 -41,599 -1,282,412 -3,807,760 -6,986,361
Hospitalisation 0 98,063 159,933 1,300,825 1,836,612 2,922,888
Outpatient 0 287,558 1,083,890 2,545,045 4,305,196 5,345,195
Total 0 -32,643,867 -63,959,006 -89,102,284 -108,012,744 -118,697,145
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Table B.4: Annual budget impact results for case detection strategy S2a.

Outcome 2021 (Baseline) 2022 2023 2024 2025 2026
No case detection strategy costs
CD: time 0 0 0 0 0 0
CD: use cost 0 0 0 0 0 0
Treatment 393,530,276 417,513,737 438,863,110 460,607,046 481,266,209 501,851,770
Hospitalisation 857,500,298 886,643,782 915,325,378 951,343,357 994,360,219 1,038,253,318
Outpatient 1,382,501,810 1,427,522,685 1,475,284,754 1,529,463,255 1,587,334,011 1,646,461,799
Total 2,633,532,385 2,731,680,204 2,829,473,242 2,941,413,658 3,062,960,439 3,186,566,886
Case detection strategy costs
CD: time 0 5,004,082 9,995,920 14,512,228 18,294,522 21,179,422
CD: use cost 0 11,288,986 22,462,791 32,590,260 41,111,291 47,541,278
Treatment 393,530,276 417,643,275 440,194,486 464,888,659 490,426,731 516,246,279
Hospitalisation 857,500,298 886,890,213 917,303,826 950,967,898 991,630,518 1,031,811,258
Outpatient 1,382,501,810 1,427,009,214 1,473,636,753 1,526,851,278 1,581,440,262 1,639,090,025
Total 2,633,532,385 2,747,835,770 2,863,593,776 2,989,810,322 3,122,903,323 3,255,868,263
Budget impact
CD: time 0 -5,004,082 -9,995,920 -14,512,228 -18,294,522 -21,179,422
CD: use cost 0 -11,288,986 -22,462,791 -32,590,260 -41,111,291 -47,541,278
Treatment 0 -129,538 -1,331,377 -4,281,613 -9,160,522 -14,394,510
Hospitalisation 0 -246,431 -1,978,448 375,459 2,729,702 6,442,060
Outpatient 0 513,471 1,648,001 2,611,978 5,893,749 7,371,774
Total 0 -16,155,566 -34,120,535 -48,396,664 -59,942,884 -69,301,376

Table B.5: Annual budget impact results for case detection strategy S3a.

Outcome 2021 (Baseline) 2022 2023 2024 2025 2026
No case detection strategy costs
CD: time 0 0 0 0 0 0
CD: use cost 0 0 0 0 0 0
Treatment 393,530,276 417,513,737 438,863,110 460,607,046 481,266,209 501,851,770
Hospitalisation 857,500,298 886,643,782 915,325,378 951,343,357 994,360,219 1,038,253,318
Outpatient 1,382,501,810 1,427,522,685 1,475,284,754 1,529,463,255 1,587,334,011 1,646,461,799
Total 2,633,532,385 2,731,680,204 2,829,473,242 2,941,413,658 3,062,960,439 3,186,566,886
Case detection strategy costs
CD: time 0 3,614,923 6,996,089 9,691,191 11,515,588 12,319,716
CD: use cost 0 7,321,358 14,133,386 19,504,765 23,177,778 24,826,494
Treatment 393,530,276 417,315,771 438,732,867 461,384,970 483,317,058 505,457,281
Hospitalisation 857,500,298 888,080,237 915,186,809 951,013,298 993,184,504 1,033,515,705
Outpatient 1,382,501,810 1,427,151,698 1,474,621,789 1,528,567,283 1,585,023,474 1,644,148,744
Total 2,633,532,385 2,743,483,986 2,849,670,940 2,970,161,507 3,096,218,403 3,220,267,939
Budget impact
CD: time 0 -3,614,923 -6,996,089 -9,691,191 -11,515,588 -12,319,716
CD: use cost 0 -7,321,358 -14,133,386 -19,504,765 -23,177,778 -24,826,494
Treatment 0 197,966 130,243 -777,924 -2,050,849 -3,605,511
Hospitalisation 0 -1,436,454 138,570 330,059 1,175,715 4,737,614
Outpatient 0 370,987 662,965 895,972 2,310,537 2,313,055
Total 0 -11,803,782 -20,197,698 -28,747,849 -33,257,963 -33,701,053
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Table B.6: Annual budget impact results for case detection strategy S3b.

Outcome 2021 (Baseline) 2022 2023 2024 2025 2026
No case detection strategy costs
CD: time 0 0 0 0 0 0
CD: use cost 0 0 0 0 0 0
Treatment 393,530,276 417,513,737 438,863,110 460,607,046 481,266,209 501,851,770
Hospitalisation 857,500,298 886,643,782 915,325,378 951,343,357 994,360,219 1,038,253,318
Outpatient 1,382,501,810 1,427,522,685 1,475,284,754 1,529,463,255 1,587,334,011 1,646,461,799
Total 2,633,532,385 2,731,680,204 2,829,473,242 2,941,413,658 3,062,960,439 3,186,566,886
Case detection strategy costs
CD: time 0 3,614,923 6,996,089 9,691,191 11,515,588 12,319,716
CD: use cost 0 11,419,437 22,042,829 30,502,949 36,241,553 38,805,529
Treatment 393,530,276 417,904,014 441,044,569 466,551,891 492,458,299 519,274,253
Hospitalisation 857,500,298 887,932,717 915,133,889 950,001,828 992,166,827 1,031,847,452
Outpatient 1,382,501,810 1,426,894,720 1,473,704,146 1,526,774,157 1,582,156,778 1,639,691,744
Total 2,633,532,385 2,747,765,811 2,858,921,522 2,983,522,015 3,114,539,046 3,241,938,693
Budget impact
CD: time 0 -3,614,923 -6,996,089 -9,691,191 -11,515,588 -12,319,716
CD: use cost 0 -11,419,437 -22,042,829 -30,502,949 -36,241,553 -38,805,529
Treatment 0 -354,498 -1,879,732 -5,565,440 -10,484,144 -17,249,349
Hospitalisation 0 2,086,309 -1,918,798 3,748,029 2,246,765 3,386,751
Outpatient 0 -219,296 1,065,053 1,551,379 4,970,980 5,143,954
Total 0 -13,636,897 -31,901,672 -40,800,360 -51,418,050 -60,300,220

Table B.7: Annual budget impact results for case detection strategy S3c.

Outcome 2021 (Baseline) 2022 2023 2024 2025 2026
No case detection strategy costs
CD: time 0 0 0 0 0 0
CD: use cost 0 0 0 0 0 0
Treatment 393,530,276 417,513,737 438,863,110 460,607,046 481,266,209 501,851,770
Hospitalisation 857,500,298 886,643,782 915,325,378 951,343,357 994,360,219 1,038,253,318
Outpatient 1,382,501,810 1,427,522,685 1,475,284,754 1,529,463,255 1,587,334,011 1,646,461,799
Total 2,633,532,385 2,731,680,204 2,829,473,242 2,941,413,658 3,062,960,439 3,186,566,886
Case detection strategy costs
CD: time 0 3,614,923 6,996,089 9,691,191 11,515,588 12,319,716
CD: use cost 0 8,168,405 15,777,432 21,830,947 25,972,872 27,740,809
Treatment 393,530,276 417,595,501 439,815,630 463,797,758 487,644,177 511,947,716
Hospitalisation 857,500,298 888,032,675 915,174,395 950,639,141 992,516,680 1,032,900,277
Outpatient 1,382,501,810 1,427,012,736 1,474,176,971 1,527,669,771 1,583,628,648 1,641,959,473
Total 2,633,532,385 2,744,424,241 2,851,940,517 2,973,628,809 3,101,277,965 3,226,867,991
Budget impact
CD: time 0 -3,614,923 -6,996,089 -9,691,191 -11,515,588 -12,319,716
CD: use cost 0 -8,168,405 -15,777,432 -21,830,947 -25,972,872 -27,740,809
Treatment 0 -81,764 -952,520 -3,190,712 -6,377,968 -10,095,946
Hospitalisation 0 -1,388,893 150,983 704,216 1,843,539 5,353,041
Outpatient 0 509,949 1,107,783 1,793,484 3,705,364 4,502,325
Total 0 -12,744,036 -22,467,275 -32,215,151 -38,317,526 -40,301,105
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Table B.8: Annual budget impact results for case detection strategy S3d.

Outcome 2021 (Baseline) 2022 2023 2024 2025 2026
No case detection strategy costs
CD: time 0 0 0 0 0 0
CD: use cost 0 0 0 0 0 0
Treatment 393,530,276 417,513,737 438,863,110 460,607,046 481,266,209 501,851,770
Hospitalisation 857,500,298 886,643,782 915,325,378 951,343,357 994,360,219 1,038,253,318
Outpatient 1,382,501,810 1,427,522,685 1,475,284,754 1,529,463,255 1,587,334,011 1,646,461,799
Total 2,633,532,385 2,731,680,204 2,829,473,242 2,941,413,658 3,062,960,439 3,186,566,886
Case detection strategy costs
CD: time 0 3,614,923 6,996,089 9,691,191 11,515,588 12,319,716
CD: use cost 0 10,821,693 20,929,498 29,003,098 34,429,943 36,828,162
Treatment 393,530,276 417,463,330 439,317,841 462,665,119 485,642,400 508,979,062
Hospitalisation 857,500,298 888,060,245 915,246,260 950,806,652 992,681,448 1,033,176,370
Outpatient 1,382,501,810 1,427,097,525 1,474,411,581 1,528,047,035 1,584,247,905 1,642,978,516
Total 2,633,532,385 2,747,057,717 2,856,901,270 2,980,213,095 3,108,517,284 3,234,281,826
Budget impact
CD: time 0 -3,614,923 -6,996,089 -9,691,191 -11,515,588 -12,319,716
CD: use cost 0 -10,821,693 -20,929,498 -29,003,098 -34,429,943 -36,828,162
Treatment 0 50,407 -454,732 -2,058,073 -4,376,191 -7,127,292
Hospitalisation 0 -1,416,463 79,118 536,705 1,678,771 5,076,948
Outpatient 0 425,160 873,173 1,416,220 3,086,106 3,483,283
Total 0 -15,377,513 -27,428,028 -38,799,437 -45,556,845 -47,714,940
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B.4 Overdiagnosis results

At baseline the prevalence of overdiagnosed COPD among non-COPD Canadians

aged ≥40 years was 3.0%, which reflects the prevalence observed in the CanCOLD

study [53]. Within EPIC, diagnosis and case detection are modelled as annual events

and a patient cannot be overdiagnosed with COPD in the same year that they receive

case detection. Figure B.4 shows prevalence of overdiagnosis among non-COPD

patients over the time horizon. Overdiagnosis results are equivalent within eligibility

criteria groups since each group selects the same cohort of patients for case detection.

Compared to the baseline scenario (S0 – current practice) all case detection strategies

result in a reduction in overdiagnosis prevalence. Strategies with eligibility criteria

based on patients’ smoking history (S3 group) observes the smallest reduction since

the S3 group has the strictest eligibility criteria thus is administering case detection

to the smallest number of patients. The difference between the S1 (all patients)

and S2 (symptomatic patients) group is minimal despite significant differences in

the number of patients administered case detection (Table 4.3 of the main article).

Symptoms are a significant risk factor for overdiagnosis so the S2 group is more

targeted at patients who would typically be at greater risk of overdiagnosis.

Figure B.4: Prevalence of overdiagnosed COPD among non-COPD patients over the time
horizon by eligibility criteria group. S0 - baseline (no case detection); S1 - all patients; S2
- symptomatic patients; S3 - patients with a smoking history.

196



B.5. Additional sensitivity analysis results

B.5 Additional sensitivity analysis results

Figure B.5 shows sensitivity analysis results for an upper age limit ≤75 years for

considering patients for case detection. The overall budget expansion decreases on

average by 22.5% with an upper age limit as fewer individuals would be administered

case detection, and consequently, diagnosed. For S1a, the number of individuals

administered case detection over 5 years reduces by 1.5 million (from 8.9 million

under the reference case to 7.4 million) and the budget expansion reduces by $72
million (from $423 million to $351 million). By 2026, the diagnosed prevalence

reaches 35.7% with an upper age limit compared to 37.8% under the reference case.

Figure B.5: Sensitivity analysis of total additional costs of case detection strategies
compared to no case detection. Negative additional costs indicate cost savings. U75 –
additional eligibility criteria ≤75 years.
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