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Abstract: In this paper, I propose a tractable approach to Bayesian inference in a simple linear regression

model for which the standard exogeneity assumption does not hold. By specifying a beta prior for the

squared correlation between an error term and regressor, I demonstrate that the implied prior for a bias

parameter is t-distributed. If the posterior distribution for the identified regression coefficient is normal, this

implies that the posterior distribution for the unidentified treatment effect is the convolution of a normal

distribution and a t-distribution. This result is closely related to the literatures on unidentified regression

models, imperfect instrumental variables, and sensitivity analysis.
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1 Introduction

Consider the simple linear regression model,

Y = βX + U, (1)

in which the regressand Y , the regressor X, and the error term U are mean-zero random variables.

As is well known, this model is identified if E[U |X] = 0, which is a sufficient condition for E[U ] = 0 and

Cov[X,U ] = 0 (Wooldridge, 2010, chapter 4). Identification, in this context, means that each unique value of
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β implies a unique likelihood function. More precisely, there are no pairs β1 and β2 that generate likelihood

functions L such that L(β1) = L(β2). Identified models, in other words, do not suffer from observational

equivalence (Wechsler et al., 2013).

If E[U |X] ̸= 0, however, a sample of observations on Y and X will not permit simultaneous estimation

of β and E[U |X]. In this case, the linear regression model is unidentified. As discussed below, this is

because there exist pairs (β1,E[U |X]1) and (β2,E[U |X]2) that generate likelihood functions L such that

L (β1,E[U |X]1) = L (β2,E[U |X]2).

Unidentified models are considered in various approaches to statistics. The literature on sensitivity analysis,

for example, extends back to Cornfield et al. (1959). Sensitivity analyses that are particularly relevant to the

linear regression model in (1) include Rosenbaum & Rubin (1983), Frank (2000), Imbens (2003), Hosman

et al. (2010), Ashley & Parmeter (2015), Kiviet (2016), Oster (2019), and Cinelli & Hazlett (2020).

Sensitivity analyses solve the inferential problem in (1) by assessing how estimates of β are affected by

deterministic changes in functions of E[U |X]. An alternative approach is the Bayesian analysis of unidentified

models, in which the posterior distribution of β is conditional on a prior for some function of E[U |X]. This

is a generalisation of the standard Bayesian approach, in which the (implicit) prior for E[U |X] is degenerate

at E[U |X] = 0.

This type of Bayesian inference has been widely studied in medical statistics and econometrics. Greenland

(2005) is a key reference in the former literature, as is the more recent Greenland (2021). A book-length

treatment of Bayesian inference for unidentified models is provided in Gustafson (2015), and Burstyn et al.

(2019) provide a rare (for this literature) treatment of Bayesian inference in unidentified linear regression

models.

The related literature in econometrics dates back to Leamer (1974) and Kadane (1974), with Florens et al.

(1985, 1990) providing Bayesian discussions of unidentified models, and Poirier (1998) providing a partic-

ularly clear discussion with useful examples. Kraay (2012), Gustafson (2015), Chan & Tobias (2015) and

DiTraglia & Garcia-Jimeno (2021) provide Bayesian treatments of imperfect instrumental variable models,

which also give rise to identification problems.

There is, therefore, a substantial literature exploring the Bayesian approach to inference in unidentified

models. This literature, however, tends to rely on numerical results, and often focuses on special cases (e.g.,

Burstyn et al., 2019). This is quite natural in applied contexts, but can make it difficult for those unfamiliar

with the literature (particularly students) to understand the estimation problem. The major exception to

this rule is Leamer (1974), who (in an under-cited paper) proposes a joint-normal prior for the model in (1)

to arrive at a tractable posterior for β.
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In this paper, I build on the approach of Leamer (1974) to provide a tractable approach to Bayesian inference

in an unidentified simple linear regression model. Specifically, I show that a beta prior for the squared

correlation between the error term and regressor in (1) implies a Student’s t prior for a bias parameter

recently derived in Cinelli & Hazlett (2020). A special case implies a uniform prior for the correlation

between the error term and regressor, which allows one to appeal to the principle of insufficient reason in

the absence of useful prior information. If the posterior distribution for the identified regression coefficient

is normal, then the posterior distribution for the unidentified β is the convolution of a normal distribution

and a t-distribution.

Alternatively, the presence of useful prior information can motivate tighter priors for the correlation between

the error term and regressor, leading to an inferential problem similar to Leamer (1974). Whether or not

this is possible will depend on the relationship being modelled, and will rely on relevant subject knowledge.

I provide a simple example, using social science data from the recent extreme bounds analysis in Frank &

Mart́ınez i Coma (2023), to illustrate how the approach might be used in practice.

Throughout the paper, upper case Roman letters refer to observable and unobservable variables when

considered as random variables, and lower case Roman letters refer to realisations. Following the notational

convention in Gustafson (2015), lower case Greek letters with star superscripts refer to parameters when

considered as random variables, and lower case Greek letters without superscripts refer to realisations. I

refer to the target of inference as a treatment effect, in keeping with the potential outcomes framework, but

the approach is valid whenever a linear regression coefficient is consistent for some parameter of interest

when regressors are uncorrelated with an error term, and inconsistent otherwise.

2 The model

Instead of relying on the standard exogeneity assumption to justify an estimator for β in (1), assume instead

the more general restriction,

E[U |X] = γX. (2)

This implies that,

Y = δX + V, (3)

in which δ = β + γ, E[V |X] = 0, and E[Y |X] = δX. One can see that δ = β + γ is identified, as distinct

values of δ give rise to distinct conditional expectation functions. But the treatment effect β and the bias

parameter γ are unidentified, because infinitely many pairs of β and γ give rise to each distinct value of δ.

The model described by (1) and (2) is, therefore, unidentified by construction. However, equation (8) in
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Cinelli & Hazlett (2020) implies that,

|γ| = σV
σX

√
ψ

1− ψ
, (4)

in which V = Y − δX is the population analogue of the ordinary least squares residual from (3), σV is the

standard deviation of V , σX is the standard deviation of X, and ψ is the squared correlation between X

and U . The result in (4) is derived in online appendix A. It is useful because it isolates ψ, which is the

unidentified part of the model.

Motivating a prior for δ is a thoroughly studied problem in Bayesian statistics. But how should one motivate

a prior for γ? With limited background knowledge, one might appeal to the principle of insufficient reason,

sometimes known as the principle of indifference. This principle states that, if one has no more reason to

believe A than B, then one ought not to believe A more than B (Novack, 2010). In other words, where

one does not have sufficient reason to regard one possible case as more probable than another, one ought to

treat each case as equally probable (Dubs, 1942). For example, in their discussion of unidentified models,

Moon & Schorfheide (2012) suggest that, “a prior that is approximately uniform on the identified set for

the parameter of interest might serve as a useful benchmark.”

The appeal to the principle of insufficient reason in Moon & Schorfheide (2012) removes the need to choose

arbitrary parameters for prior distributions on unidentified parameters. However, as ψ can take any value

between 0 and 1, the bias in (4) can take any value on the real number line. One cannot, therefore, appeal

to the principle of insufficient reason to motivate a (proper) uniform prior for the bias parameter itself.

One can, however, appeal to the principle of insufficient reason to motivate a uniform prior distribution for

the correlation between X and U , denoted by ρ. Although this is not the parameter of interest, it is directly

related to the parameter of interest and is the underlying source of bias. Moreover, uniform priors have

been recommended for correlation coefficients in the identified case (e.g., in Jeffreys, 1961), and there is no

obvious reason to suppose that identifiability should influence our choice of prior. Assuming, therefore, that

the researcher can motivate the uniform prior,

ρ⋆ ∼ Unif[−1, 1], (5)

we have that ψ⋆ ∼ p(ψ) = 0.5ψ−0.5, or,

ψ⋆ ∼ Beta(0.5, 1). (6)

The prior in (6) suggests the generalisation,

ψ⋆ ∼ Beta(0.5, 0.5ν), (7)
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which leads to a flexible class of prior distributions for γ. To see this, some results for the generalised beta,

generalised beta prime, and half-t distributions are briefly recapped.

3 The generalised beta, beta prime, and half-t distributions

Consider a beta-distributed variable Q with parameters κ and λ; Q ∼ Beta(κ, λ). According to Crooks

(2019), it is the case that,

T = Q1/ω ∼ GenBeta(κ, λ, ω),

in which the generalised beta distribution, GenBeta(κ, λ, ω), has the probability density function,

p(t) =
|ω|

B(κ, λ)
tκω−1 (1− tω)λ−1 .

If κ = 0.5, λ = 0.5ν, and ω = 2, this expression simplifies to,

p(t) ∝ (1− t2)0.5ν−1,

which is related to the distributions discussed in Berger & Sun (2008) and Ly et al. (2018). Using the same

beta-distributed Q, it is also the case that,

Z = α+ η

(
Q

1−Q

)1/µ

∼ GenBetaPrime(α, η, κ, λ, µ),

in which the generalised beta prime distribution, GenBetaPrime(α, η, κ, λ, µ), has the probability density

function,

p(z) =
1

B(κ, λ)

∣∣∣∣µη
∣∣∣∣ (z − α

η

)κµ−1(
1 +

(
z − α

η

)µ)−κ−λ

.

If α = 0, κ = 0.5, λ = 0.5ν, µ = 2, and η = θ
√
ν, this expression simplifies to,

p(z) ∝
(
1 +

1

ν

(z
θ

)2
)−(ν+1)/2

,

which is a half-t distribution with ν degrees of freedom (Gelman, 2006; Crooks, 2019).

4 Prior distributions for γ

The results in sections 2 and 3 imply that, if a researcher can motivate a beta prior for ψ, then their prior

for |ρ| is a generalised beta distribution and their prior for γ is the non-standardised t-distribution,

γ⋆|σV , σX ∼ St

(
0,

σV
σX

√
ν
, ν

)
. (8)
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Figure 1: Example priors for ψ (left panel) and ρ (right panel) for two choices of ν in (7).

Figure 1 plots examples of priors for ψ and ρ for two obvious choices of ν. For ν = 1, the prior for ρ

resembles (but is not identical to) the prior suggested in Lindley (1965), and the implied prior for γ is a

Cauchy distribution (Crooks, 2019). For ν = 2, the prior for ρ is uniform, as in (5). As ν becomes larger,

the prior for ρ becomes narrower and the prior for γ becomes approximately normal.

Of course, it would be reasonable to object to privileging the correlation coefficient in this derivation of a

prior distribution for γ. Instead, one could place a prior directly on γ, as in Leamer (1974). In fact, the

approach outlined above was initially motivated as a way of justifying Leamer’s choice. In addition, it is

worth noting that the generalised beta prior for ρ has the same form as many of the reference priors in

Berger & Sun (2008), with the correspondence depending on the choice of ν.

5 Posterior distributions for β

The model in section 2 is only specified at the level of conditional expectation functions. To provide a more

concrete guide to its applicability, consider the following heirarchical representation of a model that can be

estimated in practice:

p(Y |δ, σ2V , x) = N
(
δx, σ2V

)
,

δ = β + γ; p(γ⋆|σ2V , x) = St

(
0,

σV
σ̂X

√
ν
, ν

)
,

p(δ⋆, σ2⋆V |x) ∝ 1/σ2V .

(9)

The data are now assumed to be normally distributed, and both the data and priors are conditional on the

sample values of the regressor. The prior distribution for the estimated regression parameters is uniform on

(δ, logσV ), i.e., uninformative (Gelman et al., 1995, chapter 14).
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Given the foregoing, the conditional posterior distribution for δ is normal,

δ⋆|σ2V , y, x ∼ N

(
δ̂,
σ2V
sxx

)
, (10)

in which δ̂ is the OLS estimator and sxx is the sample sum of squares of the regressor, while the posterior

for σ2V is a scaled inverse-χ2 distribution,

σ2⋆V |y, x ∼ Inv-χ2
(
n− 1, σ̂2V

)
, (11)

in which σ̂2V is the sample standard deviation of the OLS residuals.

As δ = β+γ, the conditional posterior distribution for β is a convolution of the normal conditional posterior

for δ and the Student’s t prior for γ,

β⋆|σV , y, x = δ⋆|σV , y, x

− γ⋆|σV , x.
(12)

As described in Pogány & Nadarajah (2013), the probability density function of this convolution can be

expressed as,

p(β) ∝ exp

−

(
β − δ̂

)2

2σ2V
sxx

× g(β),

in which g(β) involves an integral that is explained in online appendix B, and is straightforward to evaluate

numerically.

To compute the marginal posterior distribution for β, σ2V needs to be integrated out of the conditional

posteriors for δ and β in (12), using (11). This is straightforward to achieve using simulations, although

certain choices of ν in the prior for γ might imply the need for a large number of runs to accurately estimate

the tails in γ⋆|x.

On the other hand, if both ν and the sample size are large enough, the marginal posteriors for both δ and

γ will be approximately normal, and so too will the marginal posterior for β. These issues are considered

further in the next section.

6 Practical considerations

The model outlined in section 5 is simplified to permit tractability, in order to aid pedagogy. However, if

one can motivate a reasonable value for ν, then the model can be estimated. Moreover, the prior for (δ, σV )

could be changed without major complication (e.g., by using a conjugate prior).
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How, then, should a researcher motivate a choice for ν? This will depend on the relationship being modelled

and the presence of expert subject knowledge. But progress can be made by examining existing extreme

bounds analyses in the relevant subject, to give some idea about the correlation structure of commonly used

covariates (Leamer, 1983).

Consider, for example, the problem of identifying the determinants of voter turnout in elections. This is of

obvious policy importance, as the overall health of a democracy is closely related to the engagement of its

citizens in the electoral process. Despite this, there is very little consensus in the political science literature

on these determinants, mainly due to a lack of convincing identification strategies. One obvious possibility

is the cross-country relationship between voter turnout and income inequality,

Y = βX + U, (13)

in which Y denotes the number of voters in an election as a percentage of the voting population, and X

denotes the Gini coefficient of income inequality. Clearly, E[U |X] = γX in the general case.

This problem motivates the recent extreme bounds analysis in Frank & Mart́ınez i Coma (2023). They

estimate repeated linear regression models of the form described in (13), augmented with,

U = ζC + E, (14)

in which C is a vector of different combinations of over 60 observable covariates, and E is an error term.

Using their dataset, the left panel of figure 2 plots the empirical distributions of the squared correlation ψ

between X and different choices of U , calculated from approximately 37,000 regressions (further details of

the computations are provided in online appendix C). This histogram is overlaid with the beta prior in (7),

in which ν = 134.

In this example, the empirical distribution of ψ is relatively tight. Moreover, the residual degrees of freedom

in the simple linear regression of Y on X is 397, so one can treat the marginal posterior distributions of

both δ and β as approximately normal. The posterior mean and variance for δ, using the model in section

5, are -1.08 and 0.46, while the posterior for β is approximated by,

β⋆|y, x ∼ N

(
δ̂,
σ̂2V
sxx

+
σ̂2V
σ̂2Xν

)
, (15)

which has a mean and variance of -1.08 and 1.83. Approximately 79% of this posterior mass is for negative

values of β, with the remaining 21% positive.
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Figure 2: Empirical distribution of ψ from Frank & Mart́ınez i Coma (2023) (left panel) and normal
approximations to the posterior distributions for δ and β (right panel) in (13).

These normal approximations to the posterior distributions of δ and β are displayed in the right panel of

figure 2. The increased uncertainty surrounding the treatment effect β compared to the reduced form δ

is readily apparent, which is qualitatively similar to the results in Frank & Mart́ınez i Coma (2023), in

which the extreme bounds distribution of the coefficient on income inequality varies widely across model

specifications.

The normal approximation in (15) illustrates in a particularly clear manner that the posterior standard

deviation of β shrinks to a positive constant as the sample size increases, rather than zero. In general, as

discussed Gustafson (2005), Moon & Schorfheide (2012), Gustafson (2015), and others, the posterior of the

identified δ tends to the true value of δ as the sample size increases, while the posterior of the unidentified

β tends to its conditional prior evaluated at the true value of δ.

Of course, in other cases a choice of large ν might be inappropriate. Moreover, one might be concerned

that, even though scores of observable confounders have been used to estimate the distribution of ψ in

this example, the remaining unobservable confounders might follow a different distribution. In these cases

researchers could utilise a uniform prior for ρ, appealing to the principle of insufficient reason, or even the

extreme prior obtained by setting ν = 1, which implies that the posterior for β is the convolution of a

normal distribution and a Cauchy distribution, which is a Voigt distribution (Crooks, 2019).

7 Discussion

According to the data visualisation pioneer Edward Tufte, one of the “shortest true statements” that can be

made about statistics is that, “correlation is not causation but it sure is a hint” (Tufte, 2006). This outlook

informs various approaches to statistics that attempt to deal with imperfect identification, including the

literatures on unidentified regression models, imperfect instrumental variables, and sensitivity analysis.
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In this paper, I hope to have contributed to these literatures by providing a tractable approach to Bayesian

inference for unidentified linear regression models. Although the estimation problem discussed in this paper

does not disappear as the sample size increases, it does disappear as the correlation between the regressor

and regressand becomes stronger, and σV approaches zero in (4). Simply put, the stronger the correlation

between the regressor and regressand, the greater the likelihood of a positive treatment effect.

The results in this paper are most closely related to those in Leamer (1974) and Cinelli & Hazlett (2020).

In fact, thinking about how one might appeal to the principle of insufficient reason to motivate a choice

of variance for the bias prior in Leamer (1974) was the original inspiration behind this paper, and was

made possible by the derivations in Cinelli & Hazlett (2020). Various contributions in the medical statistics

literature, including Gustafson (2005, 2009, 2010, 2012, 2014), McCandless et al. (2007, 2008), Gustafson

et al. (2010), Xia & Gustafson (2016), and Gustafson & McCandless (2018), are also closely related.

Importantly, the Bayesian approach should not be seen as a competitor to sensitivity analyses, but rather

a complement. In fact, one could conduct a sensitivity analysis on the Bayesian approach outlined in

this paper, by observing how the posterior for β changes when ν is varied deterministically. At the same

time, using prior distributions can simply the inferential procedure somewhat, by reducing the amount of

parameters that have to be varied deterministically.1

Finally, there are many ways that the approach outlined in this paper could be extended to make it less

focused on simplicity for pedagogical reasons, and more focused on practical application. One obvious

avenue is an extension to multiple linear regressions with observable controls, perhaps borrowing from the

frequentist approach in Oster (2019). Another would be an exploration of the correlation structure of

observable covariates using other extreme bounds analyses, or novel databases.

In any case, I hope that the tractability of the results presented here will help those unfamiliar with the

literature to understand the peculiar problems of estimation and inference in unidentified models, and apply

simple solutions in practice.
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Online appendices for ‘Tractable Bayesian inference for an unidentified simple linear

regression model’

A Deriving the bias parameter

As discussed in section 2 of the main text, the bias parameter in (4) is implied by equation (8) in Cinelli &

Hazlett (2020). They consider a data generating process of the form,

Y = βX + ζU +W, (A.1)

which nests the model in (1), and an estimated (restricted) model of the form,

Y = δX + V. (A.2)

Starting from the standard omitted variable bias formula, we have,

bias = γ = δ − β =
Cov(X,U)

Var(X)
× ζ,

=
Cov(X,U)

Var(X)
× Cov(Y ⊥X , U⊥X)

Var(U⊥X)
,

=
Cor(X,U)Sd(U)

Sd(X)
× Cor(Y ⊥X , U⊥X)Sd(Y ⊥X)

Sd(U⊥X)
,

=
Cor(X,U)Cor(Y ⊥X , U⊥X)

Sd(U⊥X)
Sd(U)

× Sd(Y ⊥X)

Sd(X)
,

(A.3)

in which Y ⊥X is the variable Y after removing the component linearly explained by X, and similarly for

U⊥X . Now, recalling that Var(U⊥X)
Var(U) = 1− R2

UX = 1− R2
XU , in which R2

XU = R2
UX is the R2 from regressing

X on U , we have,

|γ| =

√
R2
XUR

2
Y U |X

1− R2
XU

× Sd(Y ⊥X)

Sd(X)
, (A.4)

in which R2
Y U |X is the partial R2 from regressing Y on U after controlling for X. If Var(W ) = 0 then the

model in (A.1) is equivalent to the model in (1), noting that the value of ζ is irrelevant for the (hypothetical)

unobservable U . In which case, R2
Y U |X = 1 and thus,

|γ| =

√
R2
XU

1− R2
XU

× Sd(Y ⊥X)

Sd(X)
, (A.5)

which is equivalent to (4) with a change in notation.
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B The convolution of a normal distribution and a t-distribution

Using the notation in Pogány & Nadarajah (2013), consider a normally distributed X and t-distributed Y

such that,

X ∼ p(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
, (B.1)

Y ∼ p(y) =
1√

νλB(ν/2, 1/2)

[
1 +

(y −m)2

νλ2

]−(ν+1)/2

. (B.2)

Equations (3) and (4) in Pogány & Nadarajah (2013) state that the probability density function of S = X+Y

can be expressed as,

p(s) =
1√

2πσB(ν/2, 1/2)
exp

[
−(s− µ−m)2

2σ2

]
I

(
λ2ν

2σ2
,
λ
√
ν(µ+m− s)

σ2
,
ν + 1

2

)
, (B.3)

in which,

I(a, b, c) =

∫ ∞

−∞

exp(−au2 − bu)

(1 + u2)c
du. (B.4)

Translating from this notation to the notation of the model outlined in the main text, s = β, µ = δ̂, m = 0,

σ2 = σ2V /sxx, and λ = σV /(σ̂X
√
ν). This convolution can be computed using the mpmath package in Python

with the following code snippet:

1 # grid for s:

2 size = 100

3 s_space = mp.linspace(-5, 5, size)

4 # create array to hold pdf

5 pdf = mp.zeros(size , 1)

6 # set model parameters:

7 mu_ = . . . mu = mp.mpf(mu_) . . . etc

8 # composite constants:

9 a = mp.power(lam ,2)*v/(2*mp.power(sig ,2))

10 c = mp.mpf((v+1)/2)

11 const = 1 / ( mp.sqrt (2*mp.pi)*sig*mp.beta(v/2 ,1/2) )

12

13 # compute pdf

14 for idx , s in enumerate(s_space ):

15

16 # compute composite parameter b

17 b = lam*mp.sqrt(v)*(mu + m - s)

18

19 # compute integral

20 f = lambda u: mp.exp(-a*u**2 - b*u) / mp.power ((1 + mp.power(u,2)), c)

21 integral = mp.quad(f, [-mp.inf , mp.inf])

22

23 # compute pdf

24 pdf[idx] = const*mp.exp(-mp.power(s - mu - m, 2)/(2* mp.power(sig ,2)))* integral
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C The empirical example

The empirical example in section 6 in the main text uses the dataset from Frank & Mart́ınez i Coma (2023)

downloaded from,

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/UIMCYT

on 12th February 2024. The dependent variable is voter turnout as a percentage of voting age population,

and the covariates are the 69 variables listed in table A12 of that paper’s appendix. Excluding the Gini

coefficient, that leaves 68 potential confounders. The potential variables in C are then made up of the list of

all subsets of these 68 potential confounders of size three or smaller, which implies 52,462 separate regres-

sions. After excluding regressions with multicollinearity problems and regressions with highly consequential

missing observations, the total number of regressions run is 36,698.

Running these regressions yields 36,698 separate ‘draws’ of ψ, the squared correlation between X and

U , from the empirical distribution of observable confounders. As the distribution of ψ is assumed to be

Beta(0.5, 0.5ν), this implies E[ψ] = 1/(1 + ν), which motivates a simple moment estimator of ν,

ν̂ =
1− Ê[ψ]

Ê[ψ]
= 133.54. (B.5)

Of course, as noted in the main text, a choice of ν this large might be inappropriate in other contexts.

Moreover, one might be concerned that, even though scores of observable confounders have been used

to estimate the distribution of ψ in this example, the remaining unobservable confounders might follow a

different distribution. In these cases, as already noted, researchers could appeal to the principle of insufficient

reason to motivate a uniform prior for ρ.
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