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Abstract—In recent years, attention within the clinical pre-
diction community has turned to the use of survival machine
learning as a tool for predicting the risk of developing a disease
as a function of time. The current work seeks to contribute to
existing literature which demonstrates the utility of these methods
when applied to a dementia prediction context. We use the
Alzheimer’s Disease Neuroimaging Initiative ADNI dataset and
model deterioration within two distinct groups, those deemed
cognitively normal and those with a formal diagnosis of Mild
Cognitive Impairment. In agreement with existing literature
we find that survival machine learning outperforms standard
survival analysis methods such as Cox PH model, and has very
good predictive ability. We propose an innovative approach to
predicting dementia diagnosis risk on ADNI, which explores the
use of survival neural network and survival extreme gradient
boosting techniques that have hitherto seldom been applied to
this context. The stability of our models was investigated within
a Monte Carlo simulation framework.

Index Terms—Dementia Risk Prediction, Survival Analysis,
Survival Machine Learning, Gradient Boosting, Neural Net-
works, Clinical Prediction Modelling, Monte Carlo

I. INTRODUCTION

By 2050 it is estimated that around 132 million people
will be living with dementia worldwide. Currently, between
60-70% of all dementias are of Alzheimer’s Disease type
(AD) [1]. Although clinical prediction modelling using
Machine Learning (ML) methodologies has the potential
to alleviate suffering by predicting those who are likely
to develop the disease, thus far, none of the published
ML models that seek to address dementia prediction have
been successfully adopted into clinical practice [2]. One
of the challenges that prevent this successful integration
concerns the information that can be gleaned from classic
ML methods. These techniques often deliver a binary or
multinomial prediction indicating the likelihood of the

development of disease. However, in prognostic modelling, it
is usually more valuable to model the risk of developing the
disease as a function of time. This limitation of classical ML
techniques restricts clinicians’ ability to accurately track and
communicate the risk of disease occurrence over time with
the patient [3]. In the research literature, many AD studies
that use ML methods do indeed employ this classification
approach, whereby the outcome to be predicted is either
binomial or multinomial within a specific timeframe [4] [5].
Conversely, the datasets used in clinical research are often
derived from longitudinal studies, whereby clinical marker
data is collected from participants over months and years
[6]. This data is inherently dependent on time, something
that standard classification approaches cannot account for,
as they cannot consider the predictive power of time in
conjunction with other predictors. Furthermore, classification
models cannot handle drop-outs, where participants are lost
to follow up, something which is common in longitudinal
studies. As a result, an emerging field of exploration seeks
to build on classical time-dependent models, such as survival
analysis, to develop machine learning models which can
predict the time-dependent risk of developing AD and thus
move beyond simple classification. Survival analysis is a
statistical method that predicts a hazard score indicating
the risk of an event’s occurrence, as a function of time.
A common aspect of survival analysis is the presence and
handling of censored data, indicating that the event of interest
has not occurred while the subject was part of the study.
Censored data requires the use of specialised techniques,
of which, the Cox proportional hazards (Cox PH) model
[7] has historically been the most widely used. However,
the Cox model typically works best with small datasets
and does not scale well to complex multidimensional data



[8]. ML techniques inherently handle multidimensional data
and have therefore been adapted to handle censored data,
allowing ML to offer a more flexible alternative for analysing
high-dimensional, censored, heterogeneous data [8]. A further
strength of survival-based techniques is that the models can
provide not only a binary or multinomial outcome but also
the risk of such outcomes occurring at different timepoints,
allowing more information for clinicians, researchers, and
participants.

This work has several aims. First, it aims to build upon
existing literature demonstrating the utility of survival-based
ML techniques in predicting the risk of deterioration at
different time points in AD using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset. Secondly, it aims to
explore the utility of employing survival neural network and
survival extreme gradient boosting techniques and compare
them with Cox PH model in dementia prediction, and to
propose an uniform approach to predicting dementia diagnosis
risk based on these ML and statistical methods. In particular,
these survival ML modelling techniques have hitherto seldom
been explored in this context and may provide better predictive
performance than existing statistical survival analysis models
tested in this setting. The rest of the paper will be ordered
as follows. First, it will review existing literature on survival-
based ML as applied to clinical questions in general and AD
prediction in particular. Next, the problem of interest will be
defined. Then the proposed methodology will be introduced.
Before the results are presented, the study design of the dataset
will be described, including predictors and diagnostic criteria.
A discussion of the implications of these results will then
follow.

II. LITERATURE REVIEW

Spooner et al. [8] systematically compared the performance
and stability of ML algorithms and feature selection meth-
ods suitable for high-dimensional, heterogeneous, censored
clinical data, in the context of cognitive ageing and AD, by
predicting the risk of AD over time [8]. The authors assessed
ten survival-based machine-learning techniques alongside the
standard Cox proportional hazard model. The Sydney Memory
and Aging Study (MAS) dataset and Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset were utilised. All
algorithms evaluated performed well on both data sets and
outperformed the standard Cox proportional hazards model.
Another paper that explores the clinical utility of survival
modelling within the domain of AD research comes from [10],
which looked at the interaction between socioeconomic fea-
tures and polygenic hazard scores on the timing of Alzheimer’s
diagnosis using Cox proportional hazard survival analysis.
Only the standard Cox PH technique was used. The authors
could demonstrate the clinical utility of using socioeconomic
markers and the presence of the APOE4 gene expression to
predict the time to AD diagnosis. Although a small study
focusing on only one model, this work demonstrated the
utility of survival-based models in AD prediction. However,

more work was needed to build upon these results using ML
methods. This was achieved in [11] using ML survival-based
methods to predict the risk of developing AD in the English
Longitudinal Study of Aging (ELSA) dataset. This work
again found that Survival ML outperformed Cox methods.
On the other hand, [12] found the standard Cox regression
and two ML models (Survival Random Forest and Extreme
Gradient Boosting) had comparable predictive accuracy across
three different performance metrics, when applied to the
Prospective Registry For Persons with Memory Symptoms
(PROMPT) dataset [13]. The authors concluded that survival
ML did not perform better than standard survival methods.
In comparison, [14] found that multi-modal survival-based
deep learning methods produced good results when applied to
the ADNI dataset, comparable to [8]. However, more recent
work by [15] found that a neural network-based survival
model did not outperform Survival Random Forest, but did
outperform a standard Cox Proportional hazard model. Recent
examples have shown promise in attempting to outperform the
classic Cox proportional hazard model, using survival ML and
survival neural networks/ deep learning on clinical datasets.
This supports the continued exploration of survival ML as a
predictive tool for clinical risk problems [11].

III. STUDY OVERVIEW

This study uses survival-based ML methods to predict the
risk of deterioration, defined as receiving a worse diagnosis at
their final visit to the data collection centre before leaving the
study, compared to baseline diagnosis. Furthermore, the study
aims to build models to predict the risk of receiving a worse
diagnosis within the data collection period using survival-
based ML. These models will then be tested for stability, and
two estimations of the general test error will be calculated
based on C-Index and Calibration scores [15] [16].

IV. METHODOLOGY

A. Alzheimer’s Disease Neuroimaging Initiative

The data used in this paper was derived from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
[6]. This longitudinal case-control study was initiated in 2004
by the National Institute of Aging (NIA), The National Insti-
tute of Biomedical Imaging and Bioengineering (NIBIB), The
Food and Drug Administration (FDA), as well as elements of
the private and non-profit sectors. The initial protocol, ADNI1,
was conducted over six years, recruiting 400 subjects diag-
nosed with Mild Cognitive Impairment (MCI), 200 subjects
with Alzheimer’s (AD), and 200 healthy controls (CN). The
initial goal of the ADNI study was to test whether repeated
collections of neuroimaging, biomarker, genetic, and clinical
and neuropsychological data could be combined to contribute
in an impactful way to research dementia [6]. Data for the
present paper was downloaded on the 1st of October 2023
through the ADNIMERGE package in R. This package com-
bines predictors from the different ADNI protocols. The final
combined dataset contains 115 variables and 15,157 observa-
tions, which included multiple observations per participant.



These observations represent data collection events where
participants made up to 23 visits to study sites. The data used
for this work is a subset of the full dataset, containing only
information from the original ADNI2 study. After some initial
cleaning, the resulting data contained 607 observations and
52 variables consisting of 50 input attributes, 1 time attribute
(defined as the time in months until the participant visited
the data collection centre for the last time), and 1 outcome
attribute. The outcome attribute consisted of three diagnostic
classes received at their final visit to the data collection centre:
those who received a diagnosis of Cognitively Normal (CN),
those who received a diagnosis of Mild Cognitive Impairment
(MCI), and those who received a diagnosis of Alzheimer’s
Disease (AD) [4]. Building on [15] it was decided to exclude
CSF-derived biomarkers from the modelling process.

B. Input Variables

• Baselines Demographics: age, gender, ethnicity, race,
marital status, and education level were included in the
original dataset.

• Neuropsychological test results, including those from
the Functional Activities Questionnaire (FAQ), the Mini-
Mental State Exam (MMSE), and Rey’s Auditory Verbal
Learning Test (RAVLT), were included in the data. This
numeric data is well-validated as a tool for identifying
cognitive impairment in general and AD-related cognitive
impairment in particular. Full details of the tests included
can be found in [17].

• Positron Emission Tomography (PET) measurements
(FDG, PIB, AV45) are indirect measures of brain function
using the Positron Emission Tomography neuroimaging
modality.

• Magnetic Resonance Imaging (MRI) measurements
(Hippocampus, intracranial volume (ICV), MidTemp,
Fusiform, Ventricles, Entorhinal and WholeBrain) are
structural measurements of a participant’s brain derived
from the Magnetic Resonance Imaging neuroimaging
modality.

• APOE4 is an integer measurement representing the ap-
pearance of the epsilon4 allele of the APOE gene. This
allele has been implicated as a risk factor for AD [18].

• Last Visit is defined for this work as the number of
months from baseline data collection to the subject’s
last visit at a data collection centre. This variable was
added to explicitly define a time predictor for the survival
modelling approach presented in this work.

C. Data Preprocessing

Boolean variables were created, indicating the location of
missing data for each predictor. Variables with missingness
at 90% or greater of the total rows for that predictor were
removed. All nominal predictors were dummy-coded. The
data was split into two groups to predict deterioration using
survival-based ML and Cox PH model. The first group con-
tained only those diagnosed as cognitively normal (CN) on
their first visit to the data collection centre. The second group

contained only those diagnosed with Mild Cognitive Impair-
ment (MCI) on their first visit to the data collection centre.
Deterioration was defined as receiving a worse diagnosis on
their final visit to the data collection centre. Full detais of
outcome definitions can be seen in Table I and Table II.

The resultant two datasets had 285 and 322 observations
respectively and 92 variables (See Table III).

TABLE I
THOSE WHO RECEIVED A COGNITIVELY NORMAL (CN) DIAGNOSIS AT

BASELINE WERE THE ONLY GROUP INCLUDED. THE MODELS PREDICTED
THE DIAGNOSES THESE PARTICIPANTS RECEIVED AT THE FINAL VISIT,

DEFINED HERE.

Outcome Definition

CN Those diagnosed with CN at baseline
who received the same diagnosis at final visit.

MCI/AD Those having received a diagnosis of CN at baseline
either received a diagnosis of MCI or AD at final visit.

TABLE II
THOSE WHO RECEIVED A MILD COGNITIVE IMPAIRMENT (MCI)

DIAGNOSIS AT BASELINE WERE THE ONLY GROUP INCLUDED. THE
MODELS PREDICTED THE DIAGNOSES THESE PARTICIPANTS RECEIVED AT

THE FINAL VISIT, DEFINED HERE.

Outcome Definition

CN/MCI Those diagnosed with MCI at baseline and who received
the same diagnosis at their last visit or a diagnosis of CN.

AD Those diagnosed with MCI at baseline
and who received a diagnosis of AD at their last visit.

D. Models

Model development, evaluation, and validation were carried
out according to methodological guidelines outlined by [19];
results were reported according to the Transparent Reporting
of a multivariable prediction model for Individual Prognosis
or Diagnosis (TRIPOD) guidelines [20]. This paper explored
three algorithms:

Cox Proportional Hazard Model (Cox PH) - The Cox model
is expressed by the hazard function, which is the risk of an
event occurring at time t as follows:

h(t) = h0(t) ∗ exp(β1X1 + β2X2 + βpXp) (1)

where t represents the survival time, h(t) is the hazard
function acting upon survival time t, X1, X2, ...Xp are the
values of the p covariate, β1, β2, ...βp are the coefficients that
measure the effect of the covariates on the survival time, and
h0(t) is the baseline hazard function. The coefficients are
estimated by maximising the partial likelihood and so the
model does not require tuning.

Survival XGBoost (SXGB) - Extreme Gradient Boosting is
a tree-based ensemble method that grows trees sequentially,
by adhering to a gradient descent procedure informed by a
loss function, often the negative log liklihood, defined as:



min
θ

∑
y

− log(p(y; θ)) (2)

where the model seeks to minimise the negative log of
difference between the true outcome y, observed in the training
data, and the outcome predicted by the model θ.

This function informs a step function, which calculates
the most appropriate adjustments to the model parameters in
order to converge on a solution. In the case of the SXGB
the negative log-liklihood is used to calculate steps towards
a solution that finds the risk score derived from a Cox
Proportional Hazard technique. Thus, the SXGB model seeks
to find a risk score that will most closely reflect the true risk
for that participant [28].

Hyperparameter tuning was performed for model
optimisation with the following values. Number of trees
was between 500-1500, max depth was between 1-10, min
child weight was between 0.0001-0.001, eta was between
0.1-1 and alpha was between 0.01-1. The best performance
for the CN group was found when alpha was 0.01, eta was
0.05, min child weight was 0.0001, max depth was 3, and
number of rounds was 1000. For the MCI group the best
performance was found when alpha was 0.1, min child weight
was 0.0001, max depth was 5, and number of rounds was 1500.

Survival DeepHit Neural Networks (SNN) - DeepHit is a
multi-task neural network comprising a shared sub-network
and K cause-specific sub-networks. The architecture differs
from a conventional multi-task neural network in three ways.
First, it utilises a single softmax layer as the output layer of
DeepHit to ensure that the network learns the joint distribution
of K possible outcomes, not the marginal distributions of each
outcome. Second, it maintains a residual connection from the
input covariates into the input of each cause-specific sub-
network. Third, it uses a combination of the negative log
likelihood loss function and a ranking loss function, similar
to the concordance index, in order to define a differentiable
loss function. This function is defined as:

Loss = L1 + L2 (3)

L1 is defined as:

L1 = −
N∑
i=1

[1(k(i) 6= θ) · log(y(i)
k(i),s(i)

)]

+1(k(i) = θ) · log(1−
k∑
k=1

F̂k (s
(i)|x(i))) (4)

where 1(·) is an indicator function. The first term captures
the information provided by uncensored patients; the second
term captures the censoring bias by exploiting the knowledge
that they are alive (in usual survival analysis terms) at
the censoring time, so that the first hitting event will occur

among one of the K causes after the given censoring time [21].

L2 incorporates estimated Cumulative Incidence Functions
(CIF) calculated at different times in order to finetune the
network to each cause-specific estimated CIF. In order to do
so the loss function employs a ranking function similar to the
concordance index. This index states that a patient who dies
at time s should have a higher risk at time s than a patient
who survived longer than s. For L2 the ranking loss function
is defined as:

L2 =

K∑
k=1

αk ·
∑
i 6=j

Ak,i,j·n(F̂k(s
(i)|x(i)), F̂k(s(i)|x(j))) (5)

where the coefficients αk are chosen to trade off ranking
losses of the k-th competing event, and n(x, y) is a convex
loss function. The full technical description of this model can
be found in [21].

For the SNN modelling process the hyperparameter search
space was as follows. Number of nodes between 16-96,
activation function either relu or leakyrelu, number of epochs
between 100-15, batch size between 32 and 48, leanrning
rate between 0.0001, 0.01, lambda between 0-1, and alpha
between 0-0.5. For the CN group, the best performance was
found when the number of nodes was 16, activation was relu,
epochs was 500, batch size was 32, learning rate was 0.001,
lambda was 0.3, and alpha was 0.5. For the MCI group, the
best performance was found when the number of nodes was
32, activation was relu, number of epochs was 500, batch size
was 48, learning rate was 0.001, lambda was 0.1, and alpha
was 0.

TABLE III
THE FINAL DIMENSIONS OF THE TWO DATASETS AFTER PREPROCESSING.

Dataset Variables Observations
CN at baseline 92 285
MCI at baseline 92 322

E. Nested Cross-Validation and Monte-Carlo Simulation

A Nested Cross-Validation procedure was implemented to
tune and evaluate the models so precise estimates of the
model’s performance of unseen cases (internal validation)
could be gathered [4]. Nested Cross-Validation consisted of an
outer 5-fold CV (model assessment) and an inner 5-fold CV
(model tuning). We conducted a Monte Carlo procedure of 100
repetitions of the nested CV using different random splits per
model to assess the models’ stability. Performance statistics
were recorded for each model produced by each iteration. Each
performance statistic’s mean and standard deviation across all
iterations were recorded when the Monte Carlo was complete.
To ensure the representativeness of training and test samples
in both procedures, the data splitting was stratified based on
the AD cases variable.



F. Performance Metrics

To assess model performance, two statistics were recorded.
Discrimination was assessed using the Concordance index
or C-index [19]. This metric, also called Harrel’s C-index,
provides a global assessment of the model and can be consid-
ered a more general form of the AUCROC measure typically
used in binary classification tasks. The C-index computes
the percentage of comparable pairs within the dataset whose
risk score was correctly identified by the model. Comparable
pairs are defined as a selection of two observations, which
can be compared in terms of survival time predicted by the
model. If both are censored, then they are not included in the
computation for this metric. A pair is considered concordant if
the observation who experiences the earlier event is identified
as having greater risk and discordant otherwise. Thus the total
concordance score for a model is the ratio of concordant pairs
within the dataset divided by the total number of comparable
pairs [16]. More formally, the concordance index is defined
as:

C =

∑
concordant pairs∑
comparable pairs

(6)

Secondly, calibration was assessed using Van Houwelin-
gen’s Alpha Survival Measure of non-proportional hazards
models [15]. This metric is defined as:

α =
∑

δ/
∑

Hi(ti) (7)

where δ is the true censoring indicator observed from the test
data, Hi is the cumulative hazard predicted by the model and
ti is the observed survival time. The model is well calibrated
if the estimated α is equal or close to 1. Calibration is a formal
comparison between the probability distribution and resultant
survival instances observed in the test data and the probability
distribution and resultant survival predictions generated by the
model. A full exploration of this metric can be found in [22].

G. Software and Hardware

The data analysis was conducted using the R language [23].
Initial data cleaning was performed using base R functions
and the Tidyverse R package [24]. The creation of dummy
variables was performed using the Caret R package [25]. The
nested crossvalidation procedure, including training, tuning
and evaluation, was performed on the Cox PH, SXGB, and
SNN models using the mlr3 R package [26]. The hardware
consisted of 1 server running Ubuntu with a 16-core Ryzen
processor, 128 GB of RAM and a 4090 RTX 24GB GPU.

V. ANALYSIS RESULTS

The nested cross-validation C-index and Calibration perfor-
mance for each model type is detailed below.

The best performing model for both groups was the Survival
XGBoost, followed by the Survival DeepHit model. Both
Survival ML models outperformed the Cox Proportional Haz-
ards model in terms of Calibration and C-Index performance
metrics. All models performed better on the MCI data than
the CN data.

TABLE IV
C-INDEX AND CALIBRATION SCORES FOR THE MODELS APPLIED TO THE

CN AND MCI GROUPS.

Model C-Index - CN / MCI Calibration - CN / MCI
Cox PH 0.59/0.78 0.01/0.25
SXGB 0.84/0.86 0.9/0.8
SNN 0.70/0.77 0.60/0.91

The Results of the Monte-Carlo Simulation are detailed
below.

TABLE V
MONTE CARLO SIMULATION OF 100 ITERATIONS FOR THE MODELS

APPLIED TO THE CN GROUP.

Model Mean (SD) C-Index - CN Mean (SD) Calibration - CN
Cox PH 0.59(0.06) 0.03(0.02)
SXGB 0.82(0.03) 0.9 (0.1)
SNN 0.70(0.06) 0.60(0.03)

TABLE VI
MONTE CARLO SIMULATION OF 100 ITERATIONS FOR THE MODELS

APPLIED TO THE MCI GROUP.

Model Mean (SD) C-Index - MCI Mean (SD) Calibration - MCI
Cox PH 0.78(0.02) 0.33(0.08)
SXGB 0.86(0.01) 0.81 (0.07)
SNN 0.77(0.02) 0.91(0.1)

When considering the Monte-Carlo simulation, for both
groups the survival XGBoost model proved the best perform-
ing in terms of the mean C-index and Calibration scores over
100 iterations of the nested cross-validation procedure.

Fig. 1. Boxplots of C-Index performances for models applied to the CN
group, obtained in the Monte Carlo simulation of 100 iterations.



Fig. 2. Boxplots of C-Index performances for models applied to the MCI
group, obtained in the Monte Carlo simulation of 100 iterations.

VI. DISCUSSION

This study aimed to further explore the potential of survival-
based ML as a tool for predicting time to AD diagnosis. This
paper demonstrates the clear utility of such methods when
predicting on the ADNI dataset. This supports the work of [8]
[11] [14] [15] and thus provides further support for the utility
of these survival based techniques in the context of dementia
prediction modelling.

In line with [15] we found that a tree-based method proved
superior to a survival neural network model, in terms of
discrimination and calibration, when applied to the ADNI
dataset.
This paper is one of only two known papers to explore
Calibration in the context of survival ML in dementia.
Calibration allows the quantification of a models’ ability to
closely match the probability distribution of the true outcomes
in the dataset at hand. A poorly calibrated model may provide
predictions that overestimate or underestimate the density
of outcomes within the sample. In the context presented
here, poorly calibrated models may lead to clinicians being
misinformed as to the true number of patients who are likely
to deteriorate resulting in a worse diagnosis. Conversely
a well calibrated model allows for greater accuracy in
decision making regarding clinical outcomes and the clinical
interventions that may be implemented in response to those
outcomes.

To our knowledge, this is one of only two papers to use
survival XGBoost to model dementia progression. This paper

found that XGBoost provided superior predictive ability to
the standard Cox PH model. This is in contrast with [12]
which found no difference between tree-based ensemble
methods and the standard Cox model. This may be due to the
way in which the trees were created with different variable
selection and splitting criteria [15]. XGBoost is a powerful
machine learning technique that uses an ensemble tree based
method to build trees that allow progress through a gradient
descent method. Gradient descent requires a loss function be
defined, and in this instance the loss function was the negative
log likelihood. However, as has been noted elsewhere [29]
the relationship between the negative log-likelihood and the
C-Index, the most commonly used metric in survival analysis,
has not been fully proved. This means that we may be able
to optimise this model to produce better predictive power if
we use a loss function more aligned with the performance
metric of interest. However, the DeepHit model used here,
does indeed use a loss function that is statistically related
to the C-Index, but this model did not produce superior
performance, as compared to SXGB. On the other hand,
Neural Networks usually perform better on image and audio
classification rather than tabular data, such as the dataset used
in this study [27] and this may explain the performance of
this model in the current context.

This study agrees with the growing body of evidence show-
ing that survival-base ML can and does outperform standard
Cox PH models, when used to predict risk of deterioration
in dementia. Despite these results being broadly in line with
previous work [8] [11] [14] [15] there are a number of
limitations to the current work that should be noted when
interpreting the results found here. Firstly, this paper used
a relatively small sample for the modelling process. Future
work will need to validate the current results on a much larger
dataset in order to establish the robustness of our findings.
Secondly, the ADNI dataset is approximately 80% white and
wholly based in the USA. Future work should therefore seek
to validate these results on a more diverse dataset, with a
particular focus on data from non-white participants, who
are under-represented in the most commonly used datasets in
this field. Future work should also aim to improve upon the
explainability of the models developed here. In the clinical
setting it is essential that health workers are afforded the
opportunity to understand how diagnoses are reached so they
are confident that they are correct. Therefore, it is essential
that any clinical prediction model has the capabilities to allow
clinicians to see how predictions are made. Extensions of the
current paper should therefore explore the use of explainable
AI methods for this purpose.

VII. CONCLUSION

This paper proposed an innovative survival ML and sta-
tistical based methodology and approach to predicting the
time to Alzheimer’s Disease diagnosis using the Alzheimer’s
Disease Neuroimaging Initiative ADNI dataset. In particular
we explored survival ML models based on neural networks -



SNN, and on gradient boosting - SXGB, which were compared
with the Cox PH model. The models were applied to predicting
deterioration within two distinct groups of patients, those
deemed cognitively normal and those with a formal diagnosis
of Mild Cognitive Impairment at baseline. The stability of
our models was investigated within a Monte Carlo simulation
framework. Overall, the survival ML outperformed the statis-
tical Cox PH model, with the best performances achieved by
the gradient boosting based model SXGB.
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