
Please cite the Published Version

Chait, Khaled , Laouid, Abdelkader , Kara, Mostefa , Hammoudeh, Mohammad , Ald-
abbas, Omar and Al-Essa, Abdullah T (2023) An Enhanced Threshold RSA-Based Aggregate
Signature Scheme to Reduce Blockchain Size. IEEE Access, 11. pp. 110490-110501. ISSN
2169-3536

DOI: https://doi.org/10.1109/ACCESS.2023.3322196

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/634427/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Additional Information: This is an open access article which first appeared in IEEE Access

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-8744-3901
https://orcid.org/0000-0002-8175-8467
https://orcid.org/0000-0002-5736-8039
https://orcid.org/0000-0002-9735-2365
https://doi.org/10.1109/ACCESS.2023.3322196
https://e-space.mmu.ac.uk/634427/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Received 16 September 2023, accepted 1 October 2023, date of publication 5 October 2023, date of current version 11 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3322196

An Enhanced Threshold RSA-Based Aggregate
Signature Scheme to Reduce Blockchain Size
KHALED CHAIT 1, ABDELKADER LAOUID 1, MOSTEFA KARA 1,
MOHAMMAD HAMMOUDEH2, OMAR ALDABBAS3, AND ABDULLAH T. AL-ESSA4
1LIAP Laboratory, University of El Oued, El Oued 39000, Algeria
2Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
3Faculty of Engineering Technology, Al-Balqa’ Applied University, Amman 15008, Jordan
4Access Management and Data Protection Division, Information Protection Department, Digital and Information Technology, Saudi Aramco, Dhahran 31311,
Saudi Arabia

Corresponding author: Abdelkader Laouid (abdelkader-laouid@univ-eloued.dz)

ABSTRACT The transformative potential of blockchain technology has resulted in its widespread adoption,
bringing about numerous advantages such as enhanced data integrity, transparency, and decentralization.
Blockchain has effectively proven its ability to establish trustworthy systems across a multitude of
applications. As the number of transactions recorded into a blockchain grows, the blockchain’s size expands
significantly, posing challenges to the network, particularly in terms of storage capacity and processing
power. To address this problem, we present a cryptosystem based on RSA to provide aggregate signatures
in blockchains. The aggregate signature replaces all transaction signatures of a block. In this scheme, all
participating blockchain nodes use the same modulus N , each with its own private and public key pair
generated from N . Regardless of the number of transactions, nodes, and signers, the aggregate signature
size is always O(k), where k is a security parameter. The miner that constructs a candidate block computes
the aggregate signature σ , replaces all transaction signatures by σ , and transmits the block with only one
aggregate signature. The proposed scheme incorporates a flexible and accountable subgroup aggregate
signature mechanism, allowing any subset t of n total elements to sign data, where t is the required
number of signers. To verify that a set of elements signed the block, the verifier requires the aggregate
signature, the aggregate public key, and the data hash. This approach requires minimal interaction between
the signers, which results in reduced network traffic. Regardless of the network size, there are always t + n
exchanged messages. Experimental analysis shows the proposed aggregate signature scheme’s effectiveness
in increasing security robustness and reducing block size and overall network traffic.

INDEX TERMS Blockchain, digital signatures, aggregate signature, multiparty computation, secure
architecture, transaction authorization.

I. INTRODUCTION
The prevailing design of blockchain exposes information to
all network participants, making it challenging to maintain
privacy and confidentiality [1]. These restrictions become
particularly critical in applications involving sensitive data,
such as financial transactions or personal information.

The Secure Multiparty Computing (SMC) concept was
proposed as a promising solution to address this privacy

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

concern. SMC enables multiple parties to jointly compute
a function on their individual private inputs while keeping
those inputs secret. Implementing SMC using blockchain,
called SMCB, ensures all SMC transactions are recorded as
a timestamped source of truth on the blockchain.

One of the key advantages of SMCB is its ability
to enable secure data sharing and collaboration among
multiple entities without requiring them to trust each other
fully. This is achieved via cryptographic protocols, allowing
participants to jointly perform computations on their private
data without revealing sensitive information to other parties.

110490

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-8744-3901
https://orcid.org/0000-0002-8175-8467
https://orcid.org/0000-0002-5736-8039

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

Consequently, SMCB offers a viable solution for appli-
cations where privacy and confidentiality are paramount,
such as healthcare, financial services, and supply chain
management.

Encryption is a crucial information security aspect in
all security services and mechanisms [2]. It provides the
main foundations for data confidentiality, integrity, and
authentication [3], [4]. Among the most secure encryption
methods currently is SMC. SMC allows a set of distributed
elements to jointly compute a random function without
revealing their input [5]. The continuous development of
emerging technologies such as cloud computing, blockchain,
and the Internet of Things (IoT) led to an increased focus
on SMC. SMC has a crucial advantage in solving privacy
and security issues as a general-purpose tool for calculating
private data.

SMC is an encryption and authentication protocol in shared
computing that aims to maintain the integrity of collected
and stored information and preserve confidentiality [6].
In general, SMC addresses the problem of collaborative
computing performed by a group of participants more
securely within the framework of distributed computing [7].
The primary goals that SMC protocols aim to achieve are,
firstly, input confidentiality, as information derived from the
implementation of the protocol must not allow any inference
as to private data held by others. Secondly, robustness, which
means no group of conniving elements should be willing to
share the information, or any deviation from the instructions
is likely to coerce honest elements into producing an incorrect
result.

The popularity and use of blockchain is increasing every
day [8]. In which blocks are verified by nodes, which
accept them after cryptographic digital signatures. Therefore,
an efficient signing process is necessary to ensure that all
nodes reach a consensus [9] and verify the validity of blocks.
However, with the widespread use of blockchain, fraudulent
activities have increased. Multi-signature agreements and
AGgregate Signature (AGS) were introduced to reduce these
fraudulent incidents.

SMC properties can be exploited to create an aggregate sig-
nature that enables multiple participants to sign a message(s)
without revealing their private key. SMC allows a coordinator
to create an AGS that can be verified later while keeping
private keys safe.

Protocols based on multi-signature and AGS require using
different signatures, hence different keys, rather than just one,
to authorize a task [10]. This practice is often used to perform
authorized party tasks. AGS technology can be widely used in
several fields, including electronic transactions. It reinforces
the security of transactions more transparently.

More specifically, a system with multi-signatures or AGS
requires several elements to sign a transaction before it is
integrated into the blockchain [11]. This approach differs
from traditional cryptocurrency transactions, which only
require one signature, usually taken from the sender of funds.
These systems are sometimes called t − of − n transactions,

where t represents the required number of signatures, and n
is the total number.

After a consensus process and selecting a new block, nodes
need to verify all signatures of the block’s transactions one
by one to be integrated into the blockchain. In the current
practice of Bitcoin, multi-sign t − of − n is used for each
transaction separately, which undoubtedly requires a big size
(global size equals tx × t × |Sig| where tx is the number of
transactions) and a long time to verify the block validity (tx×t
verifications).

This research presents a new aggregate signature architec-
ture based on a modified RSA [12] cryptosystem (AGS-MR)
to minimize block sizes. Our model merges all signatures
into a unique one. There are several application areas of
the proposed technique. However, this article studies its
application to the blockchain.

The scenario presented in Figure 1 is assumed in the
general use of the proposed AGS-MR technique. One or
more system elements create the data, then published to the
network to be signed by a subset of size t ⩽ n and considered
approved. An aggregator (can be one of the signers) waits to
obtain t signatures, then combines these individual signatures
into one. Finally, this aggregate signature is published for
verification.

The rest of the paper is organized as follows: Section II
discusses and reviews the relevant works. Section III presents
some preliminaries for AGS-MR. Section IV explains
AGS-MR’s architecture. In Section V, the experimental
performance analysis of AGS-MR is presented in three main
subsections: an analysis of execution time, scalability, and
data size. Section VI discusses the security aspect in detail.
Lastly, the paper presents conclusions and future work in
Section VII.

II. RELATED WORK
Multi-signatures notion was first presented by Itakura and
Nakamura [13]. Recently, this technique was investigated
broadly based on systems such as RSA, Discrete Logarithms,
Pairings, and Lattices. These works vary in improving
multi-signature schemes on different levels, e.g., complexity,
but they may overlook other aspects.

The authors of [14] presented a concept of an aggregate
signature that resembles the multi signatures. In the first
one, each element creates its own signature; an aggregator
aggregates all generated signatures into one value. In the
second strategy, the signers cooperate to create one signature
for the same message. The difference between the aggregate
signatures and multi-signatures can be defined not by the
messaging flexibility but by the entity that joins all generated
signatures into one. The problem with this scheme is that
it did not give an aggregate public key. To improve the
privacy protection of transaction addresses in the blockchain,
Qiao et al. [15] proposed a short signature size aggregation
signature scheme, where the aggregate signature size is
separated from the number of signers, which reduces the
storage overhead. Moreover, the scheme creates a signature

VOLUME 11, 2023 110491

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

FIGURE 1. Proposed aggregate signature architecture for general use.

based on the discrete logarithm problem, reducing the
computational and verification overhead.

In [16], the authors constructed multi-signature schemes to
especially reduce the Bitcoin blockchain size. The proposed
constructions in the plain public key model are derived from
Schnorr and BLS signatures. To prevent the rogue public key
attack, these constructions are based on techniques invented
in [17] and [18] for securing Schnorr multi-signatures. This
technique still needs three rounds. Zhao et al. [19] developed
a novel system that combined the general elliptic curve
algorithm and 0−signature schemes in a single scheme
as aggregate signatures. First, they proved the subtlety of
reaching aggregate signature from general elliptic curves.
Then, they proposed an aggregate signature generated from
the 0−signature scheme. Finally, they applied the proposed
AGS scheme to the existing Bitcoin system to show the
optimized performance and compatibility.

To strengthen the security of secure multi-party compu-
tation (SMC), Blanton et al. [20] combined SMC schemes
based on secret sharing with signatures to enforce input
correctness in the form of certification. Based on two types
of signatures in the context of CL-signatures [21], [22],
they studied the enforcement of truthful inputs used in SMC
through input certification at the moment of computation
initiation, a party supplying input accompanying it with
a certificate, and proves that the data input used in the
computation is equivalent to what has been certified.

In [23], the authors proposed a two-round Multi-signature
technique based on Okamoto signatures that supports the
public key aggregation from a public-key signature tech-
nique. The signing algorithm takes as input a private key, a list
of public keys LK, and a message; thus, each signing process
needs a new LK if there is a new signers list. The drawback
of this scheme is it needs four exponentiation operations
for signing and six for verifying. The authors in [24] devel-
oped a secure and feasible permissioned blockchain-based
anonymous and traceable aggregate signature scheme for the

Industrial Internet of Things. A smart contract is employed
to authenticate anonymous sources, smart liaison among
entities, and distribute cryptographic materials between enti-
ties. Smart contracts ensure data sharing among anonymous
and mistrusted entities. The definitive aggregate signature’s
length is constant, producing an AGS compact.

Nurzhan et al. [25] handled providing transaction security
issues in decentralized smart grid energy trading without
dependence on trusted third parties. Using blockchain
technology and multi-signatures, they implemented a proof-
of-concept (PoC) for a decentralized energy trading system,
allowing elements to negotiate energy prices and securely
execute trading transactions anonymously. Reference [26]
proposed many lattice-based distributed signing techniques
with low round complexity following the Fiat-Shamir with
Aborts (FSwA) paradigm of Lyubashevsky [27]. These
schemes are distributed variants of the fast Dilithium-G
signature protocol.

The work in [28] presented a lattice-based linearly
homomorphic signature with multiple signers with a security
proof. The authors used well-known lattice-based protocols
such as trapdoor generation and extracting basis to distribute
different secret keys to each user. The problem with this
scheme is that the verification process does not give the
signers list.

Mihir et al. [29] proposed a two-round multi-signature
technique supporting key aggregation to improve the security
guarantees for Discrete Log-based multi-signature schemes.
The problem is that each individual signature (IS) is sent to
every other signer, creating big traffic in the network. In the
second round, each signer receives the list of IS and computes
the aggregate signature by multiplying them.

Some works on aggregation signature schemes based on
blockchain [30], [31], [32], [33]. These proposals suffer
from correlation to the individual signature number in the
aggregate verification process. In addition, the problem with
[30], [31] schemes is the aggregate signature length depends

110492 VOLUME 11, 2023

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

TABLE 1. A summary of the drawbacks of some previous works.

on the number of signers. Therefore, they suffer from a big
size of AGS.

To address the issues summarised in Table 1, we present a
new and effective AGS scheme, which will be described in
detail in the next section.

III. PRELIMINARIES
This section recalls some basic definitions and reviews
related mathematical concepts.

Zp = Z/pZ = {0, 1, . . . , p− 1}, denotes a ring of residue
classes modulo p,
pk: the public key is a large numerical value that is

utilized for encryption and checking the legitimacy of a
digital signature.
sk: in a symmetric cryptosystem, the secret key is

employed for encryption and decryption; in an asymmetric
cryptosystem, the private key is employed for encryption and
to construct signatures.
KeyGen: returns a secret (or private) and public keys
mod : modular arithmetic for integers is a function that

considers the remainder. In which numbers will wrap around
upon reaching a given limit known as the modulus to leave a
remainder. This function is often used in prime numbers.
Hashfunction: is a one-way mathematical function that

uses inputs of variable lengths and returns outputs of a fixed
length. It should be hard to guess the input value using its
output. Moreover, it should be hard to determine an input that
provides a pre-defined output.
×: multiplication operator,
+: addition operator,∑t

i=1mi: denotes the sum, m1 + m2 + · · · + mt .∏t
i=1mi: denotes the product, m1 × m2 × · · · × mt

Prime number : a prime number p is a whole number
realizes p ≥ 2, and the only factors of p are 1 and itself.
Safeprimes: A prime number p is called safe if p = 2 ×

p′ + 1, such that p′ is also a prime number.
SpecialRSAmodulus: An RSA modulus N = p × q is

special if p = 2× p′ + 1 and q = 2× q′ + 1 are safe primes.
Asymmetricscheme: allows encryption from the recipient’s

public key. Only the recipient, equipped with a private key
associated with his public key, can decrypt the message. The
asymmetric technique is based on one-way functions, i.e.,
it is simple to apply it to plaintext but extremely difficult

to recover this plaintext from its corresponding ciphertext
without the associated public key.

A. DIGITAL SIGNATURE
Is amechanism bywhich a sentmessage can be authenticated,
i.e., verifying that a message comes from a known sender.
It must not be easy to forge. Digital signatures are usually
made using a hash function and a public-key cryptosystem.
The hash provides a message digest, which will be encrypted
using a public-key cryptosystem. Therefore, a digital signa-
ture is a number dependent on some secret known only to the
signer, namely, the signer’s private key. Besides, signatures
must be easily verifiable.

B. ONE-ROUND PROTOCOL
Supports non-interactive applications like secure e-mail
sending. If user A wants to email user B, key ka is the shared
secret key.

C. TWO-ROUND PROTOCOL
Supports interactive applications. If user A wants to commu-
nicate with user B interactively, then the keys ka and kb are
the shared secret keys.

D. THREE-ROUND PROTOCOL
Supports also interactive applications. If user A wants
to communicate with user B interactively. This protocol
includes key confirmation in the third round.

E. BASICS OF RSA SIGNATURES
Assume a standard RSA setting; the public key is indicated as
a pair (e,N), and the private key is indicated as a number d .
The modulus N equals a product of two large and secret
primes p, q, and the private key d denotes the multiplicative
inverse of e modulo (p− 1)× (q− 1). To give a secure RSA
system, it is assumed that both p and q are sufficiently large,
such that it is infeasible to either factorize N or to find the
secret d , given only the public key (e,N). Let a message m
denote an integer between 0 and N . The RSA signature is
constructed as follows: s = md mod N . Anyone can verify
that s is a signature on the message m as follows: m = se

mod N .

F. BLOCKCHAIN
Is a new technology for storing and transmitting information
evolving without centralized control; it uses peer-to-peer
networks and allows the constitution of replicated and
distributed registers; these registers are secured thanks to
cryptography by linking blocks to each other. It consists of
approved transactions before being recorded in a computer
code chain. Transaction details are recorded on a public
ledger that anyone on the network can see. It can be used
in cryptocurrencies, financial contracts, asset tracking, digital
Identity, real estate, voting, government benefits, healthcare
and medical information, logistics and supply chain tracking,
etc.

VOLUME 11, 2023 110493

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

IV. AGS ARCHITECTURE
This section provides an overview of the proposed AGS-MR,
which aims to reduce the size of data represented by a large
number of signatures to only one. It also aims to reduce the
calculation time by verifying one signature instead of a group
of signatures.

We propose a new aggregate signing method based on
RSA. Then, we present how to apply it to reduce the
size of the blockchain. The same RSA modulus N is used
by all participants to enable a coordinator to create an
aggregate signature σ based on a set of individual signatures
si calculated using N . Therefore, it does not matter whether
these single signatures belong to the same message or to
different messages, as is the case with the blockchain (where
the transactions are different). Our approach can be used
in: (1) from (m; s1, s2, . . . si) to (m; σ) where si is the
signature of user i; Or (2) from (m1,m2, . . .mi; s1, s2, . . . si)
to (m1,m2, . . .mi; σ), where si is the signature of mi.
Each node receives from the aggregator the message and

its signature, verifies the aggregator signature, signs the
message, and sends it back again to the aggregator. The
aggregator waits until receiving t − 1 individual signatures.
This process is not subject to arrangement, i.e., the order of
receipt of signatures from other nodes is random because
each node signs the digest and then sends it to the aggregator
completely independent of other nodes. Hence, there is no
interaction between the signer nodes. Upon receipt of t −
1 responses, the aggregator computes the aggregate signature,
signs the list of nodes participating in this process, and
broadcasts them on the network. Any element can extract the
signer list, check the AGS, and easily ensure whether a node
participated in the process.

The general architecture of the proposed AGS is shown in
Figure 2 and given in Algorithms 3 and 1.

The process in the proposed AGS-MR for blockchain
(Figure 3) starts normally, i.e., a transaction is signed only
by the sender of funds (or t − of − n multi-sig). After
creating a new block and going through the consensus
process, the miner signs aggregate tx signatures into one
by multiplication. We propose a new modified RSA-based
signature using a single commonmodulusN for all nodes and
caching the real encryption key e by a random number r . The
AGS is computed by multiplying all individual signatures of
transactions.

A. AGS-MR DESCRIPTION
The AGS-MR scheme consists of three algorithms:
KeyGen: is an algorithm that, on input public modulus,

generates a public-private key pair (pk, sk).
Sign: is an algorithm that takes in input the secret key sk

and message m from the message space, outputs aggregate
signature σ .
Verify: is an algorithm that takes in input the public key pk ,

a message m, and a signature σ , and outputs a bit ‘1’ denotes
accepted, ‘0’ denotes rejected.

Our AGS model for message spaceM is based on the RSA
cryptosystem. Its detail is as follows:

1) SETUP
We assume that there is a Trusted Third Party (TTP) where all
nodes agree on the public parameters. TTP’s setup algorithm
mainly fixes the parameters’ distribution given an RSA
modulus (N). The public parameters are an implicit input to
all of the following algorithms.

2) KEY GENERATION
ATTP runs the key generation algorithm on the same inputN
to generate the node’s public and private keys e and d ,
respectively. Only the TTP knows p and q to prevent any
node from generating its own private key. The TTP operates
as follows:

get N = p× q with p and q are two large prime
numbers

compute φ(N) = (p− 1)× (q− 1)
select at random e, gcd(e, φ(N)) = 1
compute d, e× d ≡ 1 mod φ(N)
construct(E,D) = {(e, d)i, i ⩾ 0}

the subscripts for e and d are as follows:
e is a small integer random number : 1 < e < φ(N)
d = e−1 mod φ(N)
(me)d mod N = m

The TTP selects a pair from (E,D) we call it (er , dr) where
dr is not prime. Therefore, dr = t × r with (t, r) ∈ Z2.
It keeps dr and r secret, puts t as a threshold, and er is a
public parameter. Thus, (mer)t×r mod N = m.
Finally, the TTP gives each node i a pair of keys (ei, d ′i)

where {
d ′i = di + r
(mei)di mod N = m

In another term, di is not known for the node i (see
Section VI).

3) SIGNING: FIRST ROUND
In the first round, an aggregator (node1) signs the candidate
data as

s1 = hd
′

1 (1)

where h denotes the hash of a message m, d ′1 is the
aggregator’s private key.

Then, the aggregator diffuses s1 on the network and waits
until receiving t−1 response, where t is the required number
of signatures (the threshold).

Each node receives the signature s1, checks it using
sender’s public key (e1) following these steps:
1) Given s1 = hd

′

1 = hd1+r

2) Let y = her×t+e1 where er is a known public parameter

110494 VOLUME 11, 2023

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

FIGURE 2. Proposed modified RSA-based aggregate signature architecture.

FIGURE 3. Basic and Agg Sig block models.

3) the receiver computes y′ = ser×t×e11
4) if y = y′, then the sender is checked, and its signature

is valid.

4) CORRECTNESS OF A SINGLE SIGNATURE VERIFICATION

s1 = hd
′

1 = hd1+r ;

y′ = ser×t×e11 ;

H⇒ y′ = h(d1+r)×(er×t×e1)

y′ = h(d1×e1×er×t)+(r×t×er×e1);

we have d1×e1 ≡ 1 mod φ(N) and r× t×er = dr×er ≡ 1
mod φ(N).

Therefore, y′ = her×t+e1 = y.
After checking, each node i signs the message hash using

its private key

si = hd
′
i (2)

Algorithm 1 Individual Signature Algorithm
Require: (message : M; sigaggregator : s1; pkaggregator :

e1); sk : d ′i ; threshold : t; pub param : er ,N
Ensure: sig : si

function Nodei Sig
h← hash(M)
y← her×t+e1 mod N

4: y′← ser×t×e11 mod N
if y = y′ then ▷ verify aggregator signature validity

si← hd
′
i mod N ▷ compute its own signature

send si to the aggregator
8: else

invalid aggregator signature
end if

end function

where d ′i is the private key of node i.

5) SIGNING: SECOND ROUND
In the second round of communication, a node i sends its
signature si to the aggregator. The aggregator assembles all
received signatures by multiplying them (including its own)
as shown in Equation 3.

σ =

t∏
i=1

si (3)

If the list of participants must be shared, we assume
that nodes are numbered from 1 to n, and numbers are of
the same size (e.g., node 1: n1 = 0000000001, node 122:
n122 = 0001111010, node 564: n564 = 1000110100, etc.
for numbering 1023 nodes), the aggregator constructs list
of signers using Equation 4, then signs L using its private

VOLUME 11, 2023 110495

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

Algorithm 2 Verification of Individual Signature
Require: message hash : h; sig : s; pksender :

e; threshold : t; pub param : er ,N
Ensure: sig validity : 0, 1

1: function Verf Sig
2: y← her×t+e mod N
3: y′← ser×t×e mod N
4: if y = y′ then
5: return 1
6: else
7: return 0
8: end if
9: end function

key (5).

L = ∥ti=1ni (4)

SL = (hash(L))d
′

1 (5)

Finally, the aggregator diffuses Signed Message (SM)
information on the network where everyone can easily check
its validity (6).

SM = (m, σ,L, SL) (6)

6) AGGREGATE SIGNATURE VERIFICATION
Using SM , anyone can verify the aggregate signature by
applying the following steps.

1) Calculate h: h = Hash(message).
2) Check the validity of the signer’s list by employing

Algorithm 2, then extract participating signers.
3) Let h′ = her .
4) Using aggregator and signers public keys, the verifier

calculates s using Equation 7.

s =
t∏
i=1

h′Ei (7)

where Ei =
∏t

j=1 ej with j ̸= i; i.e., Ei is the product of
all signers public keys except i.

5) Using aggregator and signers public keys, the verifier
calculates s′ using Equation 8.

s′ = (σ er × h−1)E (8)

where E =
∏t

i=1 ei and h−1 id the modular
multiplicative inverse of h, i.e., h× h−1 mod N = 1.

6) If s = s′, the aggregate signature is accepted.

7) CORRECTNESS OF THE AGGREGATE SIGNATURE
VERIFICATION
h′ = her and s =

∏t
i=1 h

′Ei ⇒

s = h′E1×h′E2× . . . h′Et . Knowing that Ei =
∏t

j=1 ej with
j ̸= i, this gives us,
s = h′e2×e3...et × h′e1×e3...et × . . . h′e1×e2×e4×...et and

Algorithm 3 AGS Aggregator Algorithm
Require: message : M; pk(s) : ei; sk : d ′1; threshold :

t; pub param : er ,N
Ensure: sig : σ, signer ′s list : SL

function Aggregator Sig
h← hash(M)

3: s1← hd
′

1 mod N
diffuse (M , s1)
list ← {}

6: L ←′′

while |list| < t do
receive sig si of node ni

9: checking the validity of each si
insert ni in list
L ← L ∥ ni

12: end while
σ ←

∏t
i=1 si mod N

SL ← (hash(L))d
′

1 mod N
15: diffuse (M , σ,L, SL)

end function

TABLE 2. Private and public parameters in the modified RSA scheme
where N = p × q, dr = t × r , and d ′

i = di + r .

s = h′E1+E2+E3+...Et

On the other hand,
we have σ =

∏t
i=1 si where si = hd

′
i with d ′i = di + r

σ = s1 × s2 × . . . st
so σ = hd

′

1 × hd
′

2 × . . . hd
′
t

⇒ σ = hd1+r × hd2+r × . . . hdt+r that implies,
σ = ht×r × hd1+d2+...dt

according to Equation 8, s′ = (σ er × h−1)E where E =∏t
i=1 ei;
⇒ s′ = (h(t×r)×er × h(d1+d2+...dt)×er × h−1)E

we know that (t×r)×er ≡ 1 mod φ(N) so h(t×r)×er = h;
and h× h−1 = 1;
that implies s′ = ((her)(d1+d2+...dt))E ,
therefore, s′ = (h′(d1+d2+...dt))E ,
we have E× (d1+d2+ . . . dt) = (e1× e2× . . . et)× (d1+

d2 + . . . dt),
if ei × di ≡ 1 mod φ(N) then
E × (d1 + d2 + . . . dt) = E1 + E2 + . . .Et and
s′ = h′E1+E2+...Et = s.
The verification function can be illustrated in Algorithm 4.
Table 2 summarizes the private and public parameters used

in the proposed approach.

B. AGS-MR BLOCKCHAIN SCENARIO
In Algorithms 3 and 1, t denotes the number of required
signatures. After signing data (data digest) by the aggregator
(line 3 in Alg 3), this signature s1 is diffused (line 4 in Alg 3),

110496 VOLUME 11, 2023

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

Algorithm 4 AGS Verification Algorithm
Require: message : M; pkaggregator : e1; agg sig :

σ ; signerslist : L; signed list : SL; pub param :
t, er ,N

Ensure: sig : si

function Verf Agg Sig
2: h← Hash(M)

hl ← Hash(L)
4: y← hler×t+e1 mod N

y′← SLer×t×e1 mod N
6: if y = y′ then

h′← her mod N
8: E ←

∑t
i=1(

∏t
j=1 ej) with j ̸= i

s← h′E mod N
10: E ′←

∏t
i=1 ei

s′ = (σ er × h−1)E
′

mod N
12: if s = s′ then

return 1
14: else

return 0
16: end if

else
18: return 0

end if
20: end function

and each participant node that receives s1 verifies it (line 5
in Alg 1). If s1 is valid, the node i signs data (data digest)
and sends back its own si to the aggregator (lines 6 and 7 in
Alg 1). After receiving t signatures, the aggregator computes
the aggregate signature σ (line 12 in Alg 3) in the next step.
Finally, the list of signers and signs is constructed using
Equations 4 and 5.

Where t is the number of block transactions, the scenario
in AGS-MR for blockchain differs slightly. Each sender i
signs its transaction Ti as shown in Equation 2 where h
denotes the transaction hash, i.e., si = (hash(Ti))d

′
i . The

miner computes σ the multiplication of all transactions’
signatures using Equation 3 where si denotes the signature of
transaction i. Finally, the miner diffuses the signed block SB:
SB = (block, σ). The approved block can now be integrated
into the blockchain after easily checking its AGS, as shown
in Algorithm 4, where the message is the miner’s candidate
block.

V. PERFORMANCE EXPERIMENTAL ANALYSIS
To assess the performance of the proposed AGS-MR, this
section is divided into three main subsections: an analysis of
execution time, scalability, and data size.

A. EXECUTION TIME
The proposed AGS-MR was implemented in Python lan-
guage running on a personal computer with Processor

TABLE 3. AGS-MR execution time with different numbers of required
signatures.

FIGURE 4. Execution time of signing and verifying processes for different
numbers of signatures.

Intel(R) Core(TM) i3-3110M CPU 2.40 GHz, 2 Core(s),
4 Logical Processor(s), and 4 Go RAM. Each node was
simulated by a process where multi-process programming
was implemented.

Table 3 and Figure 4 show the results of signing and
verification functions executions. In these experiments,
we ignored the time to build and extract the signers’ list
in the Sig and Verf phases, respectively. The setting used
in the implementation was N = 32 bits, t is the required
number of signers, and sha256 hash is used. In each test,
we chose a secret key dr , factorized it, and extracted t and
r where dr = t × r .
We notice that to sign 13 transactions, 0.06 ms is needed;

the verification needs 0.22 ms. For 29 transactions, Sig and
Verf needed 0.13 ms and 0.58 ms respectively; this makes
sense so that 29≈ 13× 2, 0.13≈ 0.6× 2 with a little increase
in verification time 0.58 ≈ 0.22 × 2.5. In the third test, the
increase rate is fixed for Sig, but it increases for Verf, 117 ≈
29 × 4, 0.54 ≈ 0.13 × 4, and 7.39 ≈ 0.58 × 13. Comparing
tests 5 and 6, 1053 ≈ 351 × 3, 5.04 ≈ 1.62 × 3, and 925 ≈
74.3× 12. This is logical because, in the Sig function, we just
have a multiplication of signatures; on the other hand, the
Verf function uses exponential operations. Figure 5 compares
AGS-MR with other techniques in terms of computation cost
for aggregate verification.

B. SCALABILITY
Scalability is the extent to which a system accommodates the
number of signers. As for the aggregate signature in itself,
this does not represent a problem at all because whatever
the number of signees, the size of AGS will remain constant
(equal to O(k)) and will not be affected by that, thus, our
proposed AGS is scalable. We will have to discuss the list

VOLUME 11, 2023 110497

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

FIGURE 5. The aggregate verification cost comparison.

of signers in the threshold system, where we need t signers
from n elements.

In the proposed method, a list L of members participating
in the aggregate signature is formed as shown in Equation 4,
and then this list is sent as it is without being encrypted.
To verify the integrity, the aggregator signs the list’s
digest (SL) using its private key (Equation 5), and everyone
can check SL using the aggregator’s public key. The size of
a list L is not linked to any parameter other than the total
number n of nodes within the network. Whatever n, we can
control t simply becausewe can choose a private dr which can
be factorized into several small factors, and then the desired t
is controlled.

If t is a large number that will affect the size of the
participants’ list, we can choose t ′ signers where t = t ′ × α.
That is, after receiving t signatures, the aggregator randomly
divides them into t ′ groups, where each group consists of α

elements. One signer is randomly selected from each group.
In this case, it must work with (e′r , d

′
r) instead of (er , dr)

where d ′r = t ′ × r .
In other settings, if we want to encrypt the list of signers,

the decimal value of the concatenation of signer numbers
must be less than N . The verifier will decrypt this value using
the aggregator’s public key, knowing that the aggregator’s
private key encrypts it. Equation 9 shows the relationship
between the number of nodes in the network (n), the number
of signers (t), and the public key (N).

t × ⌜log2(n)⌝ < ⌜log2(N)⌝ (9)

where ⌜x⌝ denotes int(x)+ 1.
Equation 9 indicates that if n is a large number, then N will

become a very large one. Therefore, the technique with these
settings is not scalable. To solve this problem, we can select a
sub-group s of users regardless of network size. The members
of s are permanent or randomly variable at each consensus
iteration or after certain iterations. Thus, validating amessage
only needs to sign t ′ − of − s users instead of t − of − n.

C. NETWORK TRAFFIC
Cooperative blockchain techniques, such as multi-signature
schemes, can be classified into two primary categories:
interactive and non-interactive. Interactive schemes involve
complete interaction among all participants to generate a

FIGURE 6. Interactive and non-interactive schemes network traffic
comparison.

multi-signature or aggregate signature. In contrast, non-
interactive schemes minimize system traffic by requiring
only partial interaction. For instance, Bellare et al. [29]
proposed an interactive scheme that generates t×t exchanged
messages. Conversely, non-interactive schemes, like the
proposed AGS-MR, generate only t+nmessages (Figure 6),
where t represents the number of signers and n represents the
total number of nodes (with t < n).

D. DATA SIZE
The proposal is a compact AGS with public key aggregation
where signers are not aggregated using their public keys
but their numbers, which makes a big difference in size.
We proposed a short accountable-subgroup AGS technique.
An AGS technique allows any subset s of a set S to sign a
message m where a valid signature σ reveals which subset
generated the signature. The signature size is only O(k) bits
independent of t and x, where t =| s | and x =| S |.

In a basic AGS, a signature by a set S is just the
concatenation of all the signatures of x elements. For a
security parameter k , the aggregate public key size isO(x×k)
bits, and the signature size is O(x × k) bits. Our AGS-MR
scheme rivals other works where AGS size is only O(k) bits
beyond the description of the set S, independent of x. The
aggregate public key (AGP) size can be reduced using the
order number of elements expressed by b; therefore, AGP size
equals x× | b | with b≪ k .
To see how all this can be used, consider a Bitcoin n−of−n

Multisig address first. If each block contains tx transactions,
the signature size currently done in Bitcoin is equal toO(tx×
n× k). The public key size is also O(tx × n× k).
Table 4’s parameters are set following Boneh scheme [16],

where there are tx transactions, each containing inp inputs, all
from n−of−nmulti-sig wallets.G denotes the space required
to represent an element of a group, and ‘‘any’’ denotes support
for arbitrary polynomial sizes x and y for x−of −ymulti-sig.
By selecting the following parameters, tx = 1500, inp = 3, n
= 3. For Bitcoin and MuSig [18], | G | = 32B and | Z | =
32B. For Boneh scheme, | G1 | = 96B, | G2 | = 48B, and
| Zq | = 32B. For our scheme, b = 32B and | N | = 2KB.

VI. SECURITY ANALYSIS
This Section presents the following points.

110498 VOLUME 11, 2023

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

TABLE 4. Comparison of needed space for a block in blockchain [16].

A. SECURITY MODEL
TTP selects p and q as two large safe primes numbers
where N = p× q is in order of -at least- 2048 bits and keeps
them secret. The TTP selects a secret RSA key pair as (er , dr)
where dr is not prime. Let dr = t × r . Here, dr and r are
kept secret, and the threshold t is set. The public parameters
are (N , t, er). Each RSA key pair (ei, di) generated by TTP
should be transformed to (ei, d ′i) before it delivers it to the
user i, where d ′i = di + r . The message m that will be signed
should be less than N (m < N).

The security of AGS techniques is equivalent to the
nonexistence of an adversary capable of existentially forging
an AGS. The question is whether the adversary tries to forge
an aggregate signature on a message of his choice. The
adversary A is given a single private key. His goal is the
existential forgery of an AGS. We allow the adversary to
choose all private keys except the challenge private key. The
adversary is also given access to a signing oracle on the
challenge private key. His advantage AdvAGSA is defined
to be his chance of success in the following game:
Setup. The aggregate forger A is provided with a private

key d ′1 generated at random.
Queries. A requests AGS with d ′1 on the message of his

choice.
Response.A outputs t−1 additional private keys d ′i , i = 2, t

are included in A’s forged AGS and an aggregate signature σ .
Definition: An aggregate forger A breaks a t-user AGS

scheme in the aggregate chosen key model if the following
conditions are met:
A runs in determinist time.
A makes t − 1 queries to the signing oracle.
A can guess (define) the challenge private key d ′1 from σ ,

where σ =
∏t

i=1 si and si = hd
′
i with i = 1, t .

The proposed model is based on RSA, each node i has
a public key and a private key (ei, d ′i) where d

′
i = di + r

and (mei)di mod N = m; di and r are not known for nodes.
Therefore, if RSA is secure, our scheme is more secure. The
signing is meaningless if we say the private key has been
revealed. Because in any encryption system, we will consider
that the private key can only be accessed by its owner.

The adversary can easily obtain the private key if a
technique is insecure. Currently, RSA is considered one of

the strongest and most popular encryption techniques and the
most widely used worldwide. No algorithm yet enables the
private key ‘‘d’’ from the cipher, the signature, or the public
key.

Since our scheme is based on RSA, we consider Lemma 1.
Lemma 1: If an adversary can compute the private key

d with known me where (me)d = m mod N, then an
RSA-based signature of an arbitrary message m can be
forged.

Proof: If d ′ = d mod φ(N), then c = md mod N =
md
′

mod N and e× d ′ = e× d = 1 mod φ(N). So, c is an
RSA signature of m. □
By Lemma 1, the security of our scheme depends on the

security of an RSA signature scheme. Since N has two large
prime factors, p and q, an adversary can not factor it by any
integer factoring algorithm. Moreover, p− 1 and q− 1 must
have large prime factors p′ and q′, respectively.
Transaction integrity relies on the collision and pre-image

resistance of the Hash algorithm. SHA256 is based on the
Merkle-Damgard arrangement, where the next block’s hash
value depends on the previous block’s hash value, so it
is expected to be collision-resistant due to the underlying
compression function.

B. WHY MODIFIED RSA?
We use the same modulus N for all system participants in
our setting. If TTP gives everyone a key pair (ei, di) where
ei×di ≡ 1 mod φ(N), an adversary can get all private keys ei
and easily forge the signature and impersonate any other node
in the system. The adversary gets two (e1, d1) and (e2, d2)
where: {

e1 × d1 ≡ 1 mod φ(N)
e2 × d2 ≡ 1 mod φ(N)

Which gives:{
e1 × d1 = 1+ α × φ(N)
e2 × d2 = 1+ β × φ(N)

we see that if e1, e2, d1, and d2 are known, then the
adversary can extract φ(N); consequently, computing p and q;
finally, computing all other privates keys di by using nodes’
public keys ei.

VOLUME 11, 2023 110499

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

Thus, the TTP does not give node i the real di but the twin
d ′i where d

′
i = di+r with keeping r secret. Now, the adversary

can not get φ(N) regardless of its number of pair keys.{
(d ′1 − r)× e1 = 1+ α × φ(N)
(d ′2 − r)× e2 = 1+ β × φ(N){
d ′1 × e1 = 1+ r × e1 + α × φ(N)
d ′2 × e2 = 1+ r × e2 + β × φ(N)

Even if e1, e2, d ′1, and d
′

2 are known, we now notice that
there is another secret variable r in the equations, which
makes it impossible to calculate φ(N).

There are other known attacks on RSA signature, such as
Existential forgery and Chosen message attacks. To mitigate
these attacks, amessagem is not signed directly as is (σ = md

where d is the private key), instead, m is encapsulated first
using an encoding function like the Hash function, putting
h = Hash(m), then signing h as σ = hd . The one-way
function is provably secure in the random oracle model
because the adversary could not compute the hash function
by himself.

C. PREVENTING 51% AND ROGUE PUBLIC KEY ATTACK
ATTACKS ON BLOCKCHAIN
In the basic blockchain implementation, a 51% attack
requires the adversary to control 51% of computational
power to alter backdated transactions and generate blocks
with faulty transactions to achieve a double-spending attack.
We can add another signature layer to increase the security
level in the blockchain by avoiding the 51% attacks.
To validate a new block, the system needs t ′ signatures; the
miner diffuses the block and waits to get t ′ random signatures
on this block to aggregate them. Therefore, computational
power has no significance. The cooperation of t ′ malicious
nodes is needed to attack the system. To validate its block
by honest nodes, the malicious miner diffuses data and waits
until receiving t ′ responses from its pool. Observing that an
honest node receives responses randomly, it takesmore than t ′

malicious nodes to perform a double-spending attack.
In basic practice blockchain, a rogue public key

attack (RPKA) is possible because it is trivial to compute
a new rogue public key using a subtraction operation on
a given field G. Our technique is secure against RPKA
without requiring every user to prove knowledge or possess
the corresponding secret key. On the one hand, each pair of
keys is authenticated by a trusted third party; on the other
hand, there is a single di realizes (mei)di = m.

VII. CONCLUSION
This article introduced a new aggregate signature scheme,
AGS-MR, based on the RSA cryptosystem. We modified
the basic RSA technique to improve security since AGS-MR
uses the same modulus N for all network nodes. AGS-
MR’s architecture is designed to be applied in many settings
requiring multiple signatures where the nodes do not need
to prove knowledge or possess their secret key. Regardless

of the number of nodes in the network, the final aggregate
signature size in AGS-MR is equal to O(k), where k is a
security parameter.

In AGS-MR, all interactions between nodes are removed
except in two rounds between the miner and signers, which
gives t+n exchanged messages instead of n×n in interactive
multi-signature schemes. The specifications of AGS-MR are
explained and compared to other schemes, including the
current application of Bitcoin, in terms of communication
and computation costs, where AGS-MR achieved 146KB
vs. 216KB of its rival (Boneh AMSP) in terms of the size
of AGS. Also, AGS-MR achieved 23.4 ms vs. 91.38 ms
compared to the best rival (Cui et al.) regarding computation
cost for 203 signatures. Concerning network traffic, the AGS-
MR scheme significantly reduces the number of exchanged
messages; it achieved t + n vs. t × t messages, where t is the
number of signers and n denotes the network size. In future
works, we intend to find a more efficient method to compute
the aggregate public key to be independent of the number of
signers in terms of size.

REFERENCES
[1] G. Epiphaniou, P. Pillai, M. Bottarelli, H. Al-Khateeb, M. Hammoudesh,

and C. Maple, ‘‘Electronic regulation of data sharing and processing using
smart ledger technologies for supply-chain security,’’ IEEE Trans. Eng.
Manag., vol. 67, no. 4, pp. 1059–1073, Nov. 2020.

[2] S. Moffat, M. Hammoudeh, and R. Hegarty, ‘‘A survey on ciphertext-
policy attribute-based encryption (CP-ABE) approaches to data security
on mobile devices and its application to IoT,’’ in Proc. Int. Conf. Future
Netw. Distrib. Syst., Jul. 2017, pp. 1–10.

[3] K. Chait, A. Laouid, L. Laouamer, and M. Kara, ‘‘A multi-key based
lightweight additive homomorphic encryption scheme,’’ in Proc. Int. Conf.
Artif. Intell. Cyber Secur. Syst. Privacy (AI-CSP), Nov. 2021, pp. 1–6.

[4] M. Kara, A. Laouid, A. Bounceur, M. Hammoudeh, and M. Alshaikh,
‘‘Perfect confidentiality through unconditionally secure homomorphic
encryption using otp with a single pre-shared key,’’ J. Inf. Sci. Eng., vol. 39,
no. 1, pp. 183–195, 2023.

[5] E. Makri, D. Rotaru, F. Vercauteren, and S. Wagh, ‘‘Efficient comparison
for secure multi-party computation,’’ in Proc. Int. Conf. Financial Cryp-
tography Data Secur. Cham, Switzerland: Springer, 2021, pp. 249–270.

[6] M. Kara, A. Laouid, A. Bounceur, M. Hammoudeh, M. Alshaikh, and
R. Kebache, ‘‘Semi-decentralized model for drone collaboration on secure
measurement of positions,’’ in Proc. 5th Int. Conf. Future Netw. Distrib.
Syst., Dec. 2021, pp. 64–69.

[7] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I. Pagter,
N. P. Smart, and R. N. Wright, ‘‘From keys to databases—Real-world
applications of secure multi-party computation,’’ Comput. J., vol. 61,
no. 12, pp. 1749–1771, 2018.

[8] M. Hammoudeh, B. Adebisi, D. Unal, and A. Laouid, ‘‘Bringing coordi-
nation languages back to the future using blockchain smart contracts,’’ in
Proc. 5th Int. Conf. Future Netw. Distrib. Syst., Dec. 2021, pp. 299–304.

[9] A. Habib, A. Laouid, and M. Kara, ‘‘Secure consensus clock synchroniza-
tion in wireless sensor networks,’’ in Proc. Int. Conf. Artif. Intell. Cyber
Secur. Syst. Privacy (AI-CSP), Nov. 2021, pp. 1–6.

[10] Q. He, X. Xin, and Q. Yang, ‘‘Security analysis and improvement of a
quantum multi-signature protocol,’’ Quantum Inf. Process., vol. 20, no. 1,
pp. 1–21, Jan. 2021.

[11] H. Zhang, X. Zou, G. Xie, and Z. Li, ‘‘Blockchain multi-signature wallet
system,’’ in Proc. CCF China Blockchain Conf., Wuxi, China: Springer,
Dec. 2022, p. 31.

[12] R. L. Rivest, L. Adleman, andM. L.Dertouzos, ‘‘On data banks and privacy
homomorphisms,’’ Found. Secure Comput., vol. 4, no. 11, pp. 169–180,
1978.

[13] K. Itakura and K. Nakamura, ‘‘A public-key cryptosystem suitable for
digital multisignatures,’’ NEC Res. Develop., vol. 71, pp. 1–8, Jan. 1983.

[14] D. Boneh, ‘‘Aggregate and verifiability encrypted signature form bilinear
maps,’’ in Advances in Cryptology—EUROCRYPT. Berlin, Germany:
Springer, 2003, pp. 416–432.

110500 VOLUME 11, 2023

K. Chait et al.: Enhanced Threshold RSA-Based Aggregate Signature Scheme

[15] K. Qiao, H. Tang, W. You, and Y. Zhao, ‘‘Blockchain privacy protection
scheme based on aggregate signature,’’ in Proc. IEEE 4th Int. Conf. Cloud
Comput. Big Data Anal. (ICCCBDA), Apr. 2019, pp. 492–497.

[16] D. Boneh, M. Drijvers, and G. Neven, ‘‘Compact multi-signatures for
smaller blockchains,’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.
Cham, Switzerland: Springer, 2018, pp. 435–464.

[17] M. Bellare and G. Neven, ‘‘Multi-signatures in the plain public-key model
and a general forking lemma,’’ inProc. 13th ACMConf. Comput. Commun.
Secur., Oct. 2006, pp. 390–399.

[18] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille, ‘‘Simple Schnorr multi-
signatures with applications to bitcoin,’’ Des., Codes Cryptogr., vol. 87,
no. 9, pp. 2139–2164, Sep. 2019.

[19] Y. Zhao, ‘‘Practical aggregate signature from general elliptic curves, and
applications to blockchain,’’ in Proc. ACM Asia Conf. Comput. Commun.
Secur., Jul. 2019, pp. 529–538.

[20] M. Blanton and M. Jeong, ‘‘Improved signature schemes for secure multi-
party computation with certified inputs,’’ in Proc. Eur. Symp. Res. Comput.
Secur. Cham, Switzerland: Springer, 2018, pp. 438–460.

[21] J. Camenisch and A. Lysyanskaya, ‘‘Signature schemes and anonymous
credentials from bilinear maps,’’ in Proc. Annu. Int. Cryptol. Conf. Cham,
Switzerland: Springer, 2004, pp. 56–72.

[22] T. Elgamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469–472, Jul. 1985.

[23] K. Lee and H. Kim, ‘‘Two-round multi-signatures from Okamoto
signatures,’’ Mathematics, vol. 11, no. 14, Jul. 2023, Art. no. 3223.
[Online]. Available: https://www.mdpi.com/2227-7390/11/14/3223, doi:
10.3390/math11143223.

[24] T. Li, H. Wang, D. He, and J. Yu, ‘‘Permissioned blockchain-based
anonymous and traceable aggregate signature scheme for industrial
Internet of Things,’’ IEEE Internet Things J., vol. 8, no. 10, pp. 8387–8398,
May 2021.

[25] N. Z. Aitzhan and D. Svetinovic, ‘‘Security and privacy in decentralized
energy trading through multi-signatures, blockchain and anonymous
messaging streams,’’ IEEE Trans. Depend. Secure Comput., vol. 15, no. 5,
pp. 840–852, Sep. 2018.

[26] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi, ‘‘Two-round n-
out-of-n and multi-signatures and trapdoor commitment from lattices,’’
J. Cryptol., vol. 35, no. 2, pp. 1–56, Apr. 2022.

[27] V. Lyubashevsky, ‘‘Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures,’’ in Advances in Cryptology—ASIACRYPT.
Berlin, Germany: Springer, 2009, pp. 598–616.

[28] R. Choi and K. Kim, ‘‘Lattice-based multi-signature with linear homomor-
phism,’’ in Proc. Symp. Cryptogr. Inf. Secur. (SCIS), 2016, pp. 1–8.

[29] M. Bellare and W. Dai, ‘‘Chain reductions for multi-signatures and the
HBMS scheme,’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.
Singapore: Springer, Dec. 2021, pp. 650–678.

[30] Y. Gao and J. WU, ‘‘Efficient multi-party fair contract signing protocol
based on blockchains,’’ J. Cryptologic Res., vol. 5, no. 5, pp. 556–567,
2018.

[31] Y. Zhao, ‘‘Aggregation of gamma-signatures and applications to bitcoin,’’
IACR Cryptol. ePrint Arch., 2018, Art. no. 414. [Online]. Available:
https://ia.cr/2018/414

[32] J. Cui, J. Zhang, H. Zhong, R. Shi, and Y. Xu, ‘‘An efficient certificateless
aggregate signature without pairings for vehicular ad hoc networks,’’ Inf.
Sci., vols. 451–452, pp. 1–15, Jul. 2018.

[33] H. Shu, P. Qi, Y. Huang, F. Chen, D. Xie, and L. Sun, ‘‘An efficient
certificateless aggregate signature scheme for blockchain-based medical
cyber physical systems,’’ Sensors, vol. 20, no. 5, p. 1521, Mar. 2020.

KHALED CHAIT received the Eng. and M.Sc.
degrees in computer engineering from the Uni-
versity of Bejaia, in 2008 and 2011, respectively.
He is currently pursuing the Ph.D. degree with
the University of El Oued. Until 2013, he was a
Research Assistant with the Research Centre for
Scientific and Technical Information (CERIST),
Algeria, later with industry, as a Software Engi-
neer. His research interests are distributed systems,
artificial intelligence, security, and blockchain.

ABDELKADER LAOUID received the Eng.
degree from Batna University, in 2008, the
Magister degree from the University of Bejaia,
in 2011, and the Ph.D. degree from the University
of Bretagne Occidental, in 2017. He is a
Full Professor and the Head of the Artificial
Intelligence and its Applications Laboratory,
University of El Oued. He is a researcher in the
field of computer science, with a particular focus
on cybersecurity, the IoT, distributed systems, and
blockchain.

MOSTEFA KARA received the Eng. degree in
computer science from the University of Biskra,
Algeria, in 2005, and the master’s degree in artifi-
cial intelligence and the Ph.D. degree in advanced
information systems from the University of El
Oued, Algeria, in 2019 and 2022, respectively.
His research interests include computer security,
cryptography, and blockchain.

MOHAMMAD HAMMOUDEH received the
B.Sc. degree in computer communications from
Arts Sciences and Technology University, in 2004,
the M.Sc. degree in advanced distributed systems
from the University of Leicester, in 2006, and the
Ph.D. degree in computer science from the Univer-
sity of Wolverhampton, in 2008. He is the Saudi
Aramco Chair Professor of cyber security with the
King Fahd University of Petroleum and Minerals.
His research interests include the applications of

zero trust security to internet-connected critical national infrastructures,
blockchains, and other complex highly decentralized systems.

OMAR ALDABBAS received the B.E. degree
from Philadelphia University, in 2003, and the
M.Sc. and Ph.D. degrees from De Montfort
University, Leicester, U.K., in 2006 and 2008,
respectively, all in computer engineering. Since
2016, he has been an Associate Professor and
the Director of the Consultations, Studies, and
Training Center, Al-Balqa’ Applied University.

ABDULLAH T. AL-ESSA is a Cybersecurity
Professional with Saudi Aramco Cybersecurity
Operations. He has ten years of experience in
various cybersecurity domains. He led multiple
teams within the organization. He is currently the
Head of Cryptography Solutions.

VOLUME 11, 2023 110501

http://dx.doi.org/10.3390/math11143223

