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Abstract

In this thesis, we develop new statistical and machine learning methods for ge-
nomic medicine, and apply them to problems in diagnostics and precision oncol-
ogy. Our overall aim is to introduce techniques that inform practical decision mak-
ing in the design and use of clinical tests. The work combines domain-specific con-
text with modern advances in Bayesian hierarchical modelling, high-dimensional
statistics, and causal inference.

We begin in Chapter 1 with an introduction to the concepts and methodologies
that are common throughout the thesis. This includes the necessary context from
molecular biology, an overview of genomics in medicine with a particular focus
on cancer (the subject of Chapters 3 and 4), and a description of data-generating
technologies such as DNA sequencing and gene expression profiling. We also
provide an in-depth introduction to the relevant statistical learning methods and
techniques. This sets the scene for the three projects presented in subsequent
chapters.

In Chapter 2 we analyse the resolution of the loop-mediated isothermal am-
plification (LAMP) assay. LAMP is a technology that can be used in medical
tests that require quantifying the presence of RNA for each of a set of gene tar-
gets. Motivated by the unmet need for statistically principled methods for guided
LAMP optimisation, we show how to use data from clinical and synthetic samples
to improve the resolution of a LAMP-based diagnostic test for sepsis patients. In
this context, by optimisation of the assay we refer both to the selection of gene
targets, and to the tuning of reactions conditions and selection of optimal primers
to produce robust, high-resolution measurements of gene expression. Our analy-
sis identifies novel quantities associated with primer design that may drive assay
performance.

Chapter 3 focuses on designing gene panels to estimate tumour mutation bur-
den (TMB) and other exome-wide biomarkers, which are used to determine which
cancer patients will benefit from immunotherapy. The cost of whole-exome se-
quencing presently limits the widespread use of such biomarkers. In this chapter,
we introduce a data-driven framework for the design of targeted gene panels for
estimating a broad class of biomarkers including tumour mutation burden and
tumour indel burden. The first goal is to develop a generative model for the
profile of mutation across the exome, which allows for gene- and variant type-
dependent mutation rates. Based on this model, we then propose a procedure
for constructing biomarker estimators. Our approach allows the practitioner to
select a targeted gene panel of prespecified size and construct an estimator that
only depends on the selected genes. Alternatively, our method may be applied
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to make predictions based on an existing gene panel, or to augment a gene panel
to a given size. We demonstrate the excellent performance of our proposal using
data from three non-small cell lung cancer studies, as well as data from six other
cancer types.

In Chapter 4, we consider causal questions in survival analysis, and investi-
gate the extent to which the heterogeneous treatment effects of immunotherapy
vary according to patients’ clinical and genomic features. Methods for identifying
heterogeneous treatment effects from survival data are still in their infancy, and
so in this chapter we benchmark some recently proposed strategies. In partic-
ular, we show that high-throughput targeted sequencing data may offer better
understanding into which patients are likely to benefit from immunotherapy, us-
ing state-of-the art statistical learning methods based on causal survival forests
and regularisation.
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Lay Summary

Of the many diseases that profoundly impact our society, almost all are influenced
by factors related to our genes. This can be through the genetic information we
inherit from our parents (our genome), the changes that happen to our genome
through the course of our life, or the way our genes are used throughout our body.
In this century, we’ve seen incredible advancements in our ability to describe and
measure our genomes. Despite this, we feel like we know very little about how our
genomic data relates to our experience of disease compared to how much there is
to find out. Even when we do have this knowledge, it can be really hard to turn
this into technologies and practices that are useful for preventing and treating
disease. Why is that?

There are a few reasons. One of the biggest is that our genome is massive.
It consists of 20,000 genes, each comprising a sequence of molecular ‘letters’, dis-
persed throughout an overall genetic sequence around two billion characters long.
It has become a lot easier, and crucially a lot cheaper – think $100,000,000 in the
year 2000, less than $1,000 now – to sequence (read) a genome in its entirety for
any given person. This practical advantage, however, masks a scientific night-
mare. Human DNA contains more letters than there are people who’ve ever had
their genome sequenced. With that many letters, think how many combinations
of letters – how many unique possible humans – there are, and the complexity
of trying to predict anything about a human from their genome alone starts to
become obvious. In statistics, we call data like this high-dimensional, as a fancy
way of saying “there’s a lot of it, in fact more pieces of information for each person
we look at than there are people available to study”.

The ‘curse of dimensionality’ described above has arisen from a practical ad-
vantage (lots of data from each sample) creating a theoretical challenge (lots of
data from each sample), but other challenges are themselves intrinsically practi-
cal. While genetic sequencing is now unbelievably cheap compared to two decades
ago, it is not free, and for many applications sequencing the entire genome is not
necessary or efficient. Additionally, clinical decision-making often has a strong
time dependency: a cheap test that takes two weeks to run might just not cut it.
We therefore need to think not just about how much information genomic data
can give us in medicine, but how best to deploy the technologies that we have to
make practical impact now.

A final difficulty in the translation of genomic data into medical benefit is both
theoretical and practical, and concerns how data is generated and how we combine
data from disparate sources. When asking a question like “can someone’s genome
help up decide whether to treat them with drug X?”, we’ll often need to compare
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genomic data from patients who were treated with drugX with data from patients
who weren’t. These may have come from different studies, conducted by different
organisations, and targeting different populations. To start to untangle all of this,
we need a theoretical language to describe the interaction of all of these effects
– the language of causal inference. In order to develop tools that are actually
useful for clinicians, we’ll need a lot of practical insight into the situations in
which clinical and treatment decisions are being made.

Having discussed a few of the theoretical and practical problems we’ll be try-
ing to address, we’ll now describe the specific use cases. In our first application
study (Chapter 2), we look at trying to understand how to measure gene expres-
sion (how genes are used in the body) accurately, with a technology that’s more
difficult to get right than most but that has the highest chance of actually being
employed in clinical settings. This technology, LAMP, has its advantage over
other (less fiddly) gene expression measurement technologies in that it doesn’t
require large, expensive and slow bits of machinery, and can give results within
30 minutes. This is crucial for our application space: we’re attempting to use
this technology to predict whether a patient in emergency care is suffering from
a bacterial or viral infection. Making this distinction is crucial in determining
whether to treat with antibiotics – every hour of delay in deciding to give antibi-
otics to a patient suffering bacterial-driven sepsis can lead to an 8% increase in
risk of death from the infection.

In the second half of this thesis, we’re concerned with cancer. Cancer is a
natural fit for techniques in genomic medicine as cancer itself is a disease of the
genome. This gives rise in part to cancer’s extraordinary diversity: more so than
any other disease, every cancer is unique. Indeed, two patients’ tumours may
be caused by different things, occur in different places, and have very different
effects. In Chapters 3 and 4 we address one of the practical challenges described
above in the context of cancer. Namely, if a tumour is (to some extent at least)
described by the portfolio of mutations in DNA sequence that it has accumulated,
do we really need to know every single change in that sequence in order to sensibly
guide therapeutic choices? We take two approaches. Firstly, we try and predict a
tumour feature known to be associated with improved response to immunotherapy
(a type of cancer drug) using as little genomic information as possible. Remember,
using little genomic information hopefully means cheaper! Next, we start with a
prespecified collection of genes and attempt to predict the impact of treating a
given patient with immunotherapy purely on the basis of the genetic information
contained in those genes.

This entire work is bound together by a few principles:

1. Genomic data contains information that is relevant for treating disease;

2. Modern techniques in data science have the capacity to unlock that data;

3. These techniques have to be applied in a way that leads to practical benefit.

I hope that you enjoy it!
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Foreword

The work contained in this thesis constitutes the result of many partnerships,
each of which I have been lucky to have been involved in. These have enabled me
to continue working (to some extent) fruitfully and (to a greater extent) happily
since starting my PhD at Edinburgh in 2019. In many cases, however, their roots
were planted before that, and in even more cases they will hopefully continue to
grow long after everyone who will ever read this document has done so1.

To begin with some self-indulgently biographical specifics, I would not be
where I am today were it not for being randomly assigned to work in the Elowitz
Laboratory at Caltech on a summer placement in 2017. At that point I had a
passing interest in biology, passing enough to pass over (for example) choosing
to be educated in it in any way beyond what was legally required. Despite this,
somehow Michael Elowitz, Yaron Antebi, and Christina Su were persuaded to
babysit me in a professional laboratory for three months, and were in the process
responsible for the shape of my life ever since. While I’ve moved into a different
field of biology, I wouldn’t have been on the right farm were it not for their
inspiration.

Academically, the next leap for me was being encouraged to take on a Master’s
in Systems Biology by the likes of Anindya Sharma and my own lack of enthusiasm
to join the workforce. Still a pretty clueless maths student then as much as now,
I owe several people a great deal of thanks for surviving that year, including
Pavel Artemov, Stephen Cole, Sean Jones, Dan Mirea, Carolina Monck, Hannah
Munby, and Steve Russell.

While this was all going on, some new folks turned up, and they worked for
a company called Cambridge Cancer Genomics. Shortly thereafter I also worked
(sometimes) for a company called Cambridge Cancer Genomics, and this is where
I first really got a sense that what I was doing there I’d be doing for quite a bit
of the rest of my life. From Hannah Thompson and Belle Taylor’s welcome
and support (continuing to this day), to Nirmesh Patel and Harry Clifford’s
trusting, supportive, and empowering supervision, to Henry Farmery’s lessons on
the significance of unit testing, to Dobby, Dami, and Geoff’s reminders that if I
had a long way to go academically I had further to go as a Mario Kart driver,
I learned as much during my time there as I’ve learned at any other time since.
Oh, and they offered to fund my PhD.

All good things must come to an end, and while my friendships from CCG
have certainly not ended, unfortunately the company did. At this point, I was in

1Current estimates inform me that I should expect this lucky few to number between zero
and three (inclusive).
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the market for some new (academic) partners. Luckily, a measured and thought-
ful American called Michael Mayhew wandered across my mid-pandemic Zoom
window and started talking to me about whacko Bayesian stuff. It turned out
that he had a gaggle of his own (hello Diego Borges, Ljubomir Buturovic, Mafalda
Cavaleiro, Arthur Radley, Sara Masarone, Amitesh Pratap, Melissa Remmel, and
Yuan Yuan), and what was intended to be a few months of summer fun and a
chance to get away from my PhD thesis became (at the time of writing, and count-
ing in both respects) two and a bit years of fun and a pretty substantial portion
of my PhD thesis. The gentle mentorship and flexibility shown by all of these
folks, and especially Michael, was truly transformative for me as a researcher and
person.

Getting towards the end of this unrequested (and please God unrequited)
academic synopsis, I need to get to the people who’ve been supportive throughout
the years that I’ve actually been doing my PhD (rather than swanning off for
months at a time without explanation or, arguably, justification). Firstly the
Usual Suspects: Andrew Beckett, Jamie Burke, Bella Deutsch, Linden Disney-
Hogg, Jon Eugster, Josh Fogg, Augi Jacovskis (got your surname right first try),
Mary Llewellyn (not so lucky). You are amongst you: my longest and most
co-dependent flatmate, my principal collaborator in projects that have borne no
revelance to my PhD, my favourite, and five other of my friends. I will allow
you to fight it out between you who is who. Next my research group, which has
grown infuriatingly from just me to me and some other goons: Louis Chislett,
Aris Sionakidis, Torben Sell, Wenxing Zhou. I have never ceased resenting you
all for diluting my attention, but at least one of you has a boat, so I’m willing to
call it quits.

I’d thought that I might get out of mentioning my family by keeping these
acknowledgements fairly work-focused. Unfortunately this darn pandemic hap-
pened, and in doing the right and proper middle-class thing by running home to
mummy and daddy in the countryside, I’ve allowed them and my (overnumerous)
siblings an unfortunate back door into my professional life. I’m therefore obliged
to say: thanks Mum, thanks Dad, I couldn’t have done it without you. Ruth,
Sarah, Luke: I may well have been able to do it without you, but it would have
been substantially less fun. You’re all great.

I never mention it, but I spent a bit of time in London during the later
stages of my PhD. Those who I worked with in the summer of 2022 are well-
loved by myself, but unfortunately none of that stuff made the thesis, so you’ll
have to remain satisfied by being well-loved anonymously. If you want me to say
something nice about you, I’ll put it in a WhatsApp. The second half of my stay
in London, at the Alan Turing Institute don’t you know, brought with it many
welcome new faces including Lukas Franken, Susana Garcia, and Ezra Webb. It
also brought back some very welcome old ones including Seb Hickman and Sara
Masarone (again), which was an absolute treat.

Eventually I made it back most of the way to Edinburgh, stopping off in the
village of Auchendinny, Midlothian, much to the bemusement of my supervisor
Tim. Who, pretty much alone in the western world, hasn’t been mentioned so
far. Grab the hanky Tim, this bit’s for you!

At various points throughout my PhD, external factors and/or internal fid-
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getiness have prompted me to up sticks and change direction at short notice.
These changes of direction have included change of academic direction, change of
city and change of time zones2. At each of these points, any reasonable super-
visor would have been well within his rights to say “Okay, but we spent quite a
while doing thing A”, “Okay, but it would be nice to be in the same city”, “Okay,
but how about you work on this set of problems that are more relevant to my
interests and expertise?”, “Okay, but with two months to go do you really think
now’s the time?”. To say that Tim’s shown a fair bit of grace in allowing me to
pursue my interests, needs, and fancies, would be doing it down just a touch. I
have never throughout all of my forgetting and/or turning up late to meetings,
redefining deadlines, bad jokes, scrapes with international law, exposure to po-
tential defunding, or any more of an indefinite list of things, felt that Tim was
anywhere other than firmly and encouragingly behind me. I hope it’s not going
to my head to say: I was Tim’s first student, he was my first supervisor, and we
just about worked it out as we went along together. From our first meeting in
Edinburgh when he told me that it would never be my job to try and impress
him3, to socially distant tins of cider outside the university library after the first
quelling of lockdown, to a barbecue at sea in our last week as supervisor and
supervisee, I owe Tim the immense privilege it’s been to have had my life for the
last four years.

On that triumphant note (and contradicting myself) I can’t help but list some
more of the people who’ve touched my life in the last four years, perhaps not
academically, but who’ve made it an absolute pleasure to be around and about
and in so doing have made the world of difference: Lydie T, Naomi CS, Michael
C, Esme B, Bailey B, Beth B, Kathryn W, Sula C, Elinor CA, Rowan BH, Paul
NJ, Hannah W, Vessela I, Conor C, Rob J, Eve D, Tanmay S, Freddie B, David
N, Lizzie M, Lizzie J, George P, Mark A, Benji T, Daisy T, Molly S, Tommy
S, Harrison F, Clem B, Lottie P, Tom D, Ollie S, Harry J, Clara D, Sophie O,
Shereen S, Kai W, Hannah K, Frank D, Heather Y, Alex C, Alex M, Hannah S,
Jo W, James F, Rosa H, James T, Cara W, Alex S, Lawrence (Barry) S, André
V, Hawo A, Dilini K, Millie Z, Antonios PD, Jack E, Jen M, John M.

It’s bizarre after all that to end with a plug, but so I shall. The work in this
thesis comes in part from a variety of publications and pre-publications. Chap-
ter 1 is based very loosely on the book chapter: “Dimensionality and structure in
cancer genomics: a statistical learning perspective” (Bradley, 2020). Chapter 2 is
adapted from “Hierarchical Bayesian modeling identifies key considerations in the
design of loop-mediated isothermal amplification assays” (Bradley et al., 2023),
while Chapter 3 is adapted from “Data-driven design of targeted gene panels for
estimating immunotherapy biomarkers” (Bradley and Cannings, 2021a, 2022).
Chapter 4 has no associated literature, as it was being written up until the week
of submission.

2Bizarrely, the latter and the former did not overlap.
3There at least I may have succeeded as a student.
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Chapter 1

Introduction

Overview

“Maybe the universe isn’t total
chaos.”

Annie Landsberg
Maniac, S1 E10: ‘Option C’

(2018)

Advances in technology in recent decades have enabled both the generation
and computational analysis of genomic data on unprecedented scales, transform-
ing research and clinical practice throughout medicine in the process. This effect
has been especially potent in fields with a strong molecular biology component,
such as oncology. While cheap abundant biological data has unlocked invaluable
new insights, it has demanded complementary advances in statistical and machine
learning in order to answer theoretical and practical questions. The modern re-
searcher has access to a catalogue of tools, including methods inspired by progress
in AI from disciplines such as natural language processing and image analysis.
However, before employing the latest and greatest technique from predictive or
generative modelling, it is worth asking a sequence of questions. What sort of
data are we dealing with in genomic medicine? Given the abundance of data
available for a particular problem, what level of model complexity is appropri-
ate? If our methods do work, will we understand why? What stage of the clinical
pipeline is being targeted? If our hope is for the deployment of predictive systems
in clinical settings, are our tools robust enough? If so, are the technologies upon
which they rely economically viable? While we will certainly not answer all of
these questions, in the chapters that follow we will provide some language with
which to discuss them, and a range of application cases across genomic medicine.

This introduction should be equally approachable to those with a background
in statistics/machine learning and those from biology. We’ll begin by providing
context for genomics research as the starting point for much of modern medicine,
including the discovery of diseases mechanisms, biomarkers, and therapeutics.
We’ll then discuss the role of predictive models in enabling ‘precision medicine’,
and their substantial challenges. In a complementary strand, we’ll describe how
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the language of statistical learning can be used to phrase and interrogate biological
questions, as well as those arising from modern developments in machine learn-
ing. After an introduction to the types of data encountered in sequencing-based
studies along with the opportunities and problems they present, we’ll provide
some terminology and useful concepts from high-dimensional statistics, Bayesian
statistics, and causal inference, and will discuss how these concepts arise naturally
in the context of genomic medicine. This will be accompanied by some illustrative
examples of how different techniques may be employed in translational scientific
research, but the bulk of description of specific applications is left to the following
chapters. We will conclude with a summary of the application cases considered
throughout the rest of this thesis.

1.0.1 Genomics in medicine

Since the success of the Human Genome Project (Lander et al., 2001), sequencing
technologies have improved at an exponential rate, both in terms of cost per
megabase sequenced (Wetterstrand, 2022) and the number of individuals who
have had some portion of their genome sequenced. Advances have also been made
in accuracy and the capacity for long-read sequencing (Goldfeder et al., 2017).
This has introduced an invaluable new resource into biomedical research, and
initiatives such as the 10,000/100,000 Genomes Projects (Telenti et al., 2016) and
the UK Biobank (Bycroft et al., 2018) have drastically improved the accessibility
and infrastructure surrounding this data (Szustakowski et al., 2021). This is
beginning to show impact in clinical settings (Prokop et al., 2018).

In the study of cancer, a disease of the genome, the ability to rapidly and
cheaply sequence normal and tumour-derived DNA has transformed basic re-
search, birthing the field of cancer genomics. While whole-genome sequencing is
not yet standard-of-care for the generic cancer patient, access to in-depth genetic
data is becoming more common. Cancer-specific repositories such as The Can-
cer Genome Atlas (Weinstein et al., 2013) have given researchers access to large
clinical datasets with a variety of accompanying genomics information, including
somatic mutations, copy number alternations, and gene expression profiles.

The clinical impacts of genomic data have manifested themselves in many
ways. One use of genomic data in a clinical setting is for subtyping/endotyping
patients in a way that informs treatment decisions – a key tenet of so-called
‘personalised medicine’ or ‘precision medicine’. This may involve categorisation
in very broad terms, such as the separation of virally and bacterially infected
patients (see Chapter 2 and Remmel et al., 2022), or within cancer distinguishing
tumours according to the molecular profile of their mutations (Zhao et al., 2019).

Understanding the genomic landscape of disease is also critical to the field
of early-stage drug discovery (Nelson et al., 2015; Raja et al., 2017; King et al.,
2019). In cancer, knowledge of the location and associated products of onco-
genes (genes in which mutations, copy number variations, changes in expression,
or epigenetic modifications can cause a cell to become cancerous) can allow for
intelligent selection of druggable sites (Weinstein, 2002; Bedard et al., 2020),
and identification of tumour suppressor genes (genes which under normal circum-
stances prevent uncontrolled cell division) gives options for therapies which may
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replace cancer patients’ defective cell cycle control mechanisms (Fang and Roth,
2003; Morris and Chan, 2015).

Alongside new drugs, it has become increasingly common for therapies to be
offered alongside genomic biomarkers which may stratify patients who are more
likely to benefit from the treatment (Weber et al., 2014; Awad et al., 2019; Zhu
et al., 2019; Safarika et al., 2021). This is important for a variety of reasons:
to prevent unnecessary suffering for patients unlikely to benefit from drugs with
adverse side-effects; to minimise unnecessary cost of wasted treatments unlikely
to succeed; and to allow management of the use of therapies for reasons such as
antimicrobial stewardship.

New sources and modalities of data have allowed researchers a greatly ex-
panded toolbox with which to investigate the causes and development of cancer
and other diseases. Addressing these goals, however, presents a unique set of
challenges. Firstly, in clinical settings it is commonly necessary (or at least very
useful) to have some sense of the uncertainty accompanying any given prediction
or assignment. Secondly, the number of covariates common in ’omics datasets
induces a variety of theoretical and practical problems for classical statistical
analysis, a problem often referred to as the curse of dimensionality (Barbour,
2019; Bühlmann et al., 2014). Finally, genomic datasets are often collected in ob-
servational settings, with limited interventional control, incomplete observation,
and compiled from multiple heterogeneous data sources. In later sections we in-
troduce some of the methods developed to address each of these methodological
challenges.

1.0.2 Statistical learning and machine learning

Informally, statistical learning and machine learning attempt to address the theo-
retical and practical challenges associated with extracting information from data
by ‘fitting’ (or sometimes ‘training’) models that can be used to achieve some
goal. Often, this goal is to use a fitted model by predicting a future outcome for
some new data points. This is known as regression when predicting continuous
outcomes, and classification when predicting discrete outcomes. In this work we
are principally concerned with predictive modelling. While we might be inter-
ested in the details of a model we’ve fitted (we’ll refer to this as ‘inference’), its
subsequent application is generally the primary goal.

The distinction between machine learning and statistical learning is vague
and constantly evolving. Several trends are informative but not prescriptive in
describing statistical vs machine learning, including an emphasis in statistical
learning on theoretical and mathematical guarantees on the future performance
of predictive models, a tendency towards scale and non-linearity as features of
machine learning models, and (particularly more recently) a specific focus in
machine learning on neural networks and deep learning. Despite their differences
in nomenclature and focus, however, statistical and machine learning share many
common themes and goals. Most notably, they are both concerned with extracting
useful information from data as efficiently and robustly as possible. In general,
throughout the rest of this work we’ll use the term statistical learning.

In order to produce performant predictive systems, extensive research exists
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towards understanding how best to utilise the structure of the complex data
types that underlie many modern common prediction problems. Examples of
data types that have seen intense (sometimes frenzied) research over the last
decade include images, text, and (as in our case) high-throughput genomics. No-
tably, none of these data types necessarily follows a standard tabular structure,
and all are to some degree high-dimensional (i.e. contain a lot of information
per input observation). There is currently a great deal of debate around the role
of structure-informed learning algorithms in the fields of image recognition (IR)
and natural language processing (NLP). Historically, huge breakthroughs have
come from developing learning algorithms that ‘exploited the structure’ of each
of these data types, including convolutional neural networks for IR (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2018a) and word embeddings for NLP
(Mikolov et al., 2013; Bojanowski et al., 2017; Almeida and Xexéo, 2019). How-
ever, recent years have seen a trajectory tending towards a relatively small set
of model architectures dominating across surprisingly multi-disciplinary divides
(Vaswani et al., 2017; Dosovitskiy et al., 2021), with the role of inductive bias
and natural complexity regularisation speculated to contribute to this success
(De Palma et al., 2019; Valle-Pérez et al., 2019; Goldblum et al., 2023).

It has long been hoped that similar strides forward can be anticipated in
biomedical science, but even with the context as laid out above it certainly re-
mains unclear what strategies will work best for genomic and multi-omic data.
A few key properties of genomic data distinguish it from other media. Firstly,
its dimensionality: while images and text documents can be large, they do not
come close to the scale of the human genome. The dimensionality of genomic
data depends greatly on the technology being used and and with what ‘reso-
lution’ the data is being viewed. For example, in Chapters 3 and 4 we take a
‘gene-level’ view of somatic mutation data, giving a dimensionality in the tens of
thousands, while taken at its maximum dimensionality whole-genome sequenc-
ing (WGS) data includes measurements of billions of individual nucleotide bases.
We’ll discuss choices around technology and data dimensionality more in Sec-
tions 1.1.3 and 1.3. Secondly, data availability: as mentioned, human genomics
data has exploded in abundance over the last two decades, but faces some fairly
fundamental limits. Put simply, even with ultra-pervasive sequencing, it seems
likely that most humans will produce far more text and images across their life-
time than they will novel genomes for sequencing1. Finally, prediction of emergent
phenotypes from genomic data may in general simply be more complex than im-
age and text prediction/generation tasks. Image- and text-based tasks are, by
design, typically achievable by humans, and these data types are highly com-
pressible. There is, however, no requirement for evolution to have produced a
dependence structure within genomic data that is so latently simple. For all of
these reasons, there is no guarantee that approaches that have borne fruit in
other disciplines will necessarily do so in genomic medicine. Even if they do, we
may yet be far from the required richness of data availability to make full use of
these methods. Given these potential constraints, there has certainly been a great

1Note however that this may not be as obvious as it first seems, as advances in techniques
for profiling genomic heterogeneity advance even to single-cell resolution.
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deal of work towards applying methods from the statistical and machine learning
toolkit to genomics, including but not limited to random forests (Breiman, 2001;
Chen and Ishwaran, 2012), support vector machines (SVMs) (Cortes and Vapnik,
1995; Huang et al., 2018b), and artificial neural networks (ANNs) (Avsec et al.,
2021; Tran et al., 2021).

In each of the chapters that follow we will have to make choices about how to
make best use of the structure of the data types presented, including functional
reaction-curve data from gene expression assays in Chapter 2, exome-wide so-
matic mutation data in Chapter 3, and heterogeneous multi-study survival data
in Chapter 4.

1.1 Genomics and biological data

“En particulier, on ne saurait
préciser actuellement le
mécanisme selon lequel les gènes
désoxyribonucléiques peuvent
commander l’édification des acides
ribonucléiques cytoplasmiques et
le mécanisme selon lequel ces
acides ribonucléiques peuvent
présider à l’élaboration des
enzymes...”

Boivin and Vendrely (1947)

In this section we’ll review the central tenets of molecular biology necessary
to understand the rest of this work. In particular, we’ll focus on how information
flows between the three classes of molecule whose interactions determine the
majority of cellular functionality. These are DNA, RNA, and proteins, and the
flow of information between them is so consistent across nature that it is referred
to as the ‘central dogma’ of molecular biology. Describing this process also allows
us to exhibit the main new sources of data that have enabled the genomics (or
more generally ‘omics’, to distinguish from DNA-only analysis) revolution, and
to give context to their respective uses and limitations.

Once we’ve reviewed the molecular biology necessary for subsequent chapters,
we’ll discuss the specific role of genomics data in medicine and the study of
disease. Because cancer forms the dominant thread of the second half of this
thesis, we’ll devote extra time to discuss some fundamental concepts from cancer
genomics. We’ll then go into more detail in the specifics of modern technologies
for sequencing and quantification across major genomics data types.

1.1.1 The central dogma

Molecular biology has historically enabled the successful collision of two major
subfields of biology concerning evolution and cells respectively. On the one hand,
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evolutionary biology has concerned the role of inheritance and diversity in produc-
ing the range of organisms observed in the natural world. On the other, cellular
biology has concerned the mechanistic operation of cells, the constituent units
of all living beings. Molecular biology provides the link between these two dis-
parate areas of study via the flow of information between two classes of molecule.
Firstly, DNA is the carrier of genetic information and provides the mechanism
for Mendelian and Darwinian inheritance. Secondly, proteins are (amongst other
things) machines that directly perform the tasks sustaining and managing the
operation of cells in sickness and in health.

We now have a fairly nuanced understand of the connections between the
two, with RNA sat between them in the role of ‘messenger’2. Molecular biology,
via a number of key results including the discovery of the structure of DNA
in the 1950s by Crick, Franklin, Watson and Wilkins (Franklin and Gosling,
1953; Watson and Crick, 1953; Wilkins et al., 1953; Maddox, 2003), the role
of RNA as an intermediary between DNA and proteins (Boivin and Vendrely,
1947; Crick, 1958; Brenner et al., 1961; Cobb, 2015), and the ‘cracking’ of the
genetic code (Crick et al., 1961; Nirenberg and Leder, 1964; Brenner et al., 1967;
Tamura, 2016), enabled a conceptual and practical bridge between disciplines and
a fundamental unification of modern biology.

The central dogma, a term coined by Crick, can be described as follows (see
also Figure 1.1). Contained within the nucleotide sequence of DNA – often repre-
sented as a string of letters A, C, G and T , representing the nucleotide bases ade-
nine, cytosine, guanine and thymine respectively – is the hereditary information
of an organism. As is necessary for replication at the cellular or organismal level,
DNA can be copied with the help of an enzyme known as a DNA polymerase.
This is represented by a cyclic arrow from DNA to itself in Figure 1.1. With
the aid of an enzyme known as an RNA polymerase, messenger RNA (mRNA)
molecules can be can be ‘transcribed’ from a DNA sequence. This leaves the
DNA molecule unchanged in its nucleotide information content but produces a
single-stranded mRNA molecule that may be transported out of the cell nucleus
where DNA is typically stored. The word ‘transcription’ is used to emphasise
that, while chemically slightly different, DNA and RNA are essentially express-
ing the same language, with the nucleotides A/C/G/T in DNA directly mapping
to the nucleotides A/C/G/U in RNA (the letter U in represents the nucleotide
uracil, itself only differing from thymine by a single methyl group). Like DNA,
RNA may also be used as a template for direct replication with the aid of an RNA
replicase enzyme, also known as RNA-dependent RNA polymerase (RdRp).

For a typical gene, RNA molecules are transported to the cytoplasm of the
cell and, in structures known as ribosomes – themselves built out of a mixture
of ribosomal RNA (rRNA) and protein –, are translated to proteins. Proteins
are composed of sequences of amino acids, of which there are twenty types. Each
amino acid is associated with a set of three-nucleotide codons, with special codons
also associated with starting and stopping translation. Together, this collection
of codon-to-protein instruction maps are referred to as the ‘genetic code’.

2In reality, RNA does a lot more than just this. As far as the central dogma goes, however,
this is RNA’s main function.
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transciption translation

reverse transcription

Figure 1.1: The central dogma.

The central dogma refers to the one-directional flow of information along the
DNA→ mRNA→ Protein chain. Crucially, while genetic information contained
in nucleic acids can be converted to protein via translation of mRNA, the reverse
will never occur. It was historically unclear whether the one-directional flow of in-
formation would extend to transcription of DNA to RNA. This was settled when
it was discovered that the conversion of RNA to DNA via reverse transcription,
while rare in nature, is demonstrated by various retroviruses (Baltimore, 1970;
Temin and Mizutani, 1970; Coffin and Fan, 2016). Nowadays, reverse transcrip-
tion technology is commonly used throughout genomic research, for example as
part of sample preparation for the clinical gene expression testing approach de-
scribed in Chapter 2. This test also makes extensive use of DNA polymerisation
at each reaction stage.

The three classes of molecule described by the central dogma are also the
basis of the main new data sources that have powered the genomics revolution
of the last two decades. Advances in DNA sequencing have allowed systematic
and high-throughput analyses of the relationships between traits (phenotype) and
DNA sequence (genotype). Where in previous decades slow and labour-intensive
procedures such as Sanger sequencing (Sanger et al., 1977) would have been
required for any direct analysis of nucleotide sequence, today we have massively
parallelised and automated systems for achieving the same analysis at far lower
cost (we’ll discuss these more in Section 1.1.3). In Chapters 3 and 4 we’ll be
working with DNA sequencing data derived from cancer patients. In fact, for each
patient in the studies we discuss we’ll be considering two sets of DNA sequencing
data – one from the patient’s ‘normal’ cells, and the other from cancerous tumour
cells. We’ll be particularly concerned with the points at which these two sequences
differ.

The advances in sequencing described above have, in turn, also revolutionised
RNA analysis, birthing the field of transcriptomics. In both genomics and tran-
scriptomics, however, high-throughput techniques have not entirely replaced more
direct approaches to detection and quantification of DNA/RNA. During the
COVID-19 pandemic, for example, extensive use was made of diagnostic tests
based on polymerase chain reaction (PCR) to detect the RNA sequence of the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen. For
this application, sequencing would have been unnecessarily complex in order to
detect and quantify a single RNA sequence. In Chapter 2, we’ll see another ap-
plication of a direct quantification technique with many similarities to PCR to
a ‘medium-throughput’ problem, in which for different reasons both sequencing
and PCR are unsatisfactory.
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Advances to medium- and high-throughput study of protein abundance in
cells have also been made (referred to as proteomics), but have typically relied
on different underlying techniques to genomics/transcriptomics. While changes
may come with the advent of exciting new nanopore-based single-molcule protein
sequencing (Afshar Bakshloo et al., 2022; Motone and Nivala, 2023), this is as
of yet far from commonplace. While proteomic data is certainly valuable as a
snapshot of the functional state of a given sample, we don’t consider proteomic
data in any detail in this work precisely due to its relative lack of abundance.

1.1.2 Genomics in disease

While interest in the patterns of inheritance of common and rare diseases pre-
dates our understanding of genetics or even Mendelian inheritance (Emery, 1989),
the advent of molecular biology transformed our understanding not just of pat-
terns of disease inheritance, but also in some cases directly of the mechanisms
of disease. Early examples of conditions with genetically identified causes in-
cluded sickle-cell anaemia (Ingram, 1956) and Down Syndrome (Lejeune et al.,
1959). Notably, historic advances in our understanding of disease have often led
to improvements in prognosis and diagnosis, but far less frequently to successful
treatments. For example, as early as 1961 Robert Guthrie developed a method
for screening infants for phenylketonuria (PKU) that depended on detection of an
abnormal amino acid (whose role in PKU was itself discovered nearly thirty years
earlier; Fölling, 1934). While treatable with dietary changes, however, PKU is not
directly curable to this day (Mohanty, 2014). Similarly, while recent advances in
gene therapy have sparked hope for a general-purpose cure to sickle-cell anaemia
(currently a blood and bone marrow transplant from a close genetic match is re-
quired), this still seems some way off, re-emphasising the typically long arc from
genetics to cure.

The inherent difficulty in translating advances in basic science to treatment
and drug discovery has persisted into the genomics era, perhaps more so than
was envisioned by many at the conclusion of the Human Genome Project (see, for
example, Emilien et al., 2000). In particular, end-to-end success rates for clinical
trials have not improved substantially (Dowden and Munro, 2019), although there
is mounting retrospective evidence that support from genomic data is a major
predictor of clinical trial success (Nelson et al., 2015; King et al., 2019).

Outside of therapeutic and pharmacological spheres, however, there has been
substantial progress in the development and deployment of genomics-based ap-
proaches to guide clinical decision making or track the course of disease. These
have included the use of genomic data in diagnostic tests and as accompany-
ing biomarkers to therapeutics. Here we’ll discuss an example of each, which
(conveniently) correspond to the subjects of Chapters 2 and 3 respectively.

Chapter 2 is placed in the context of acute care patients who may experience
inflammation and/or sepsis/septic shock. Systemic inflammation (the erroneous
or excessive application of the process by which the body fights infection) can be
caused by a multitude of factors, including bacterial infection, viral infection, and
non-disease related mechanism such as response to trauma (Chen et al., 2017).
Appropriate clinical action depends upon determining the origin of inflamma-
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tion. This is particularly true when deciding whether to treat with antibodies,
whose non-use can entail significant and imminent impacts to mortality (Liu
et al., 2017) but whose inappropriate use can contribute to the development of
antimicrobial resistance (Fitzpatrick et al., 2019). Accurate diagnostic testing for
bacterial infection is therefore crucial. Genomic technologies have been used to
test for a multitude of bacterial infections, often through the detection of specific
DNA/RNA sequences (Fournier et al., 2014). However, the general success of
this strategy relies upon any given bacterial infection falling within the set of
genomic targets of a given detection assay. There has recently been interest (and
a certain degree of success) in developing genomics-based diagnostic tests based
on indirect detection via profiling host response rather than directly via detection
of a pathogen (Safarika et al., 2021; Kelly et al., 2022). While pathogen detection
tests are based on a set of targets (often DNA targets for bacterial infections)
from the pathogens in question, host response diagnostic tests will typically com-
prise a set of human gene targets and will be based on profiling of gene expression
(Ram-Mohan et al., 2022) or protein expression (Vanderboom et al., 2021).

Chapter 3 concerns the estimation of high-throughput genomic biomarkers.
Very generally, a biomarker is a quantity that can be measured for a given patient
or sample and provides some relevant clinical information. Different biomarkers
target very different characteristics, for example by measuring the abundance
of a given chemical (e.g. a small molecule; Qiu et al., 2023, or a large protein
such as programmed death ligand 1 (PD-L1); Doroshow et al., 2021), the visual
characteristics of a sample (Smith et al., 2003), or the mutation status of a given
genetic locus or gene (e.g. BRCA biomarkers in breast cancer; Walsh et al.,
2016). As well as measuring a wide variety of phenomena, biomarkers are also
diverse in the type of task they are designed to support. These tasks may be
prognostic, i.e. aiming to predict the likely course of a disease, diagnostic, i.e.
aiming to establish the true nature of a disease, or theranostic, i.e. aiming to
guide decision-making around allocation of therapies. Increasingly more complex
biomarkers are being developed, including for example those depending on the
mutation status of multiple genes. While complex biomarkers may increase the
power of genomic medicine to support clinical decision-making, their development
raises issues in reproducibility, dimensionality, cost efficiency, and interpretability.

Cancer: a disease of the genome

Cancer does not require much introduction even to the lay reader; direct or
indirect experience of cancer is universal. It is consistently ranked amongst the
leading causes of global mortality, and multiple subtypes of cancer are projected
to increase in their share of worldwide premature deaths over the coming decades
(Mathers and Loncar, 2006), including in the developing world (Kanavos, 2006).
Beyond its direct death toll, cancer is responsible for the expenditure of trillions of
dollars per year in cost of care and lost economic output (Wild et al., 2020). While
huge gains in the understanding, prevention, and treatment of cancer have been
made in recent years, many challenges remains in scalably advancing each of these
areas. Modern cancer treatments in particular are often extremely expensive,
with drug development costs increasing and consequently inflating the price of
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access to therapeutics (Howard et al., 2015). In short, there is much to be hopeful
about in oncology, but it is by no means guaranteed that the current revolutions
being enjoyed in scientific understanding will translate fully to equitable clinical
benefit.

We now turn to the aspects of genomics specifically relevant to cancer. A key
starting point is that cancer is not a unitary disease; two patients’ tumours may
be caused by different processes, occur in different tissues, and have very different
molecular and physiological effects (Wittekind et al., 2016). More so than any
other disease, every cancer and every tumour are unique. It is therefore natu-
ral to ask what unifying features of all cancers justify their joint classification.
The modern answer is distinct from the historical answer. Before the advent of
molecular genetics, cancers of disparate tissues of origin were grouped together
because of the common observation of malignant growths crossing over physio-
logical boundaries. Towards the end of the 19th century, it was recognised that
aberrant patterns of cell reproduction were a common feature of cancers (Wein-
stein and Case, 2008). By the early 1900s, with the writings of scientists such
as Theodor Boveri (see Boveri, 2008, for a modern translation), an answer would
be formulated foreshadowing our current understanding, although it wouldn’t be
until far later that this explanation was fully accepted. Boveri proposed that
‘chromosomal abnormalities’ gave rise to the conversion of normal cells to ma-
lignant neoplasms. In modern nomenclature, the chromosomal abnormalities to
which he referred would be regarded as (a specific kind of) mutations. It is
these that lay the groundwork for uncontrolled cellular reproduction and all the
other associated hallmarks of cancer3, such as avoiding detection from the body’s
defenses (immunosuppression/evasion), recruiting a local blood supply (angio-
genesis), and invasion of separate tissues (metastasis) (Hanahan and Weinberg,
2011). Crucially, mutations convert previously normal or benign cell popula-
tions into tumours. The mutations that were observable via optical microscopy
to scientists in the first half of the twentieth century were structural mutations
involving large-scale chromosomal translocations or deletions. It wasn’t until the
identification of the structure of DNA and its role as the primary mechanism of
inheritance by Watson and Crick (1953) and others, and the subsequent devel-
opment of molecular genetics, that the discrete nature of biological information
was fully appreciated. Later developments in DNA sequencing, beginning with
the work of Sanger et al. (1977), allowed a fuller understanding of mutations as
changes to the sequence of nucleotide bases that constitutes DNA. The science
of cancer continued to progress by associating DNA mutations (errors of cellu-
lar information storage), with their mechanistic and functional consequences, in
particular those that led to deregulation of normal cell cycle control.

Now that we are armed with a general characterisation of cancer as the con-
sequences of mutations in DNA leading to abnormal reproduction of cells, we can
begin to appreciate the reasons for cancer’s diversity. Since almost all cells in

3While some rare cancers such as polycythaemia vera (PV) may involve uncontrolled pro-
duction of cells that do not themselves harbour mutations (in this case, mature red blood cells
do not contain DNA at all), this is still the downstream effect of mutations in other cell types.
For example, in PV this is most commonly a mutation of the JAK2 gene in hematopoietic stem
cells (Tefferi, 2007).
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the body contain DNA and experience regular reproduction, cancer may occur
in a wide range of tissues throughout the body4. Furthermore, the size of the
human genome (defined as the combined total of genetic information contained
in DNA, comprising of around 20,000 genes and 3 billion nucleotide base pairs)
means that, even with cancer being as common a disease as it is, simple statistical
reasoning allows us to say with confidence that it is almost inconceivable that two
given tumours would carry exactly the same constituent mutations (even without
considering complicating factors such as tumour heterogeneity). This leads us to
the modern era of molecular biology. Since the completion of the Human Genome
Project, high-throughput sequencing, where large portions of the genome in their
entirety are sequenced for a biological sample, has become ubiquitous and highly
automated. We now have easy access to the precise locations of all mutations in
the tumour genomes of many tens thousands of thousands of samples gathered
across hundreds of studies via repositories such as The Cancer Genome Atlas
(TCGA) (Weinstein et al., 2013). This gives us an opportunity to investigate a
variety of fundamental questions with regards to the progression of cancer.

Nature vs nurture: cancer beyond the genome

In the section above we described how modern sequencing technologies allow us
to investigate questions in oncology. It’s appropriate also to address the inherent
limitations of an approach based on tumour genomes. This mirrors a classic
debate of nature versus nurture in developmental biology. In this case, we wish
to understand the extent to which the dynamics and trajectory of a tumour are
predetermined by the genetic damage it carries. We know that cancers are defined
by their mutations, but a growing field of investigation is exploring the role of
the environment in which a tumour finds itself in allowing it to flourish.

Since in the cancer-centric chapters of this thesis we’ll be focusing on what
tumour genomes can tell us, it’s important to highlight the information that can’t
be accounted for with the somatic mutation datasets we’ll be using. Firstly, we’ll
be concerned with datasets describing the changes in DNA sequence between
the germline (the DNA sequence a patient inherits) and somatic tumour cells.
This means that we typically won’t be accounting for germline variation between
patients. Many cancers have ancestral components, and molecular differences in
the normal functioning of cells may certainly impact the abnormal functioning of
cells, such as in cancer. Tumours also do not exist in a vacuum – increasingly,
oncology is beginning to acknowledge the important of the tumour microenviron-
ment in cancer progression (Whiteside, 2008). The tumour microenvironment
consists of non-cancer cells ‘recruited’ to support a tumour, in particular immune
cells involved in producing an inflammatory response.

In order to gain a full picture of cancer, therefore, approaches centred purely
on characteristic of tumours (such as those presented in this thesis in Chapters 3
and 4) must be augmented by investigations into the body’s response to tumours.
An analogy to this in a non-cancer context can be found in Chapter 2. The back-

4Tissues/cell types in which cancer is extremely uncommon tend to be those which experience
very little reproduction, and so have little chance to accumulate mutations, e.g. neuronal cells
and tissues making up the heart.
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ground to this chapter is the development of diagnostic biomarkers determining
the cause of an inflammatory response (in particular, classifying bacterial ver-
sus viral infections). The approach taken, rather than attempting to detect the
pathogen in question directly, is to detect the body’s response to infection through
the gene expression profile of immune cells. Chapter 2 focuses on how to make
these measurements sensitive and precise.

1.1.3 Modern genomics technologies

DNA sequencing

Modern genomic medicine is underpinned by the ability to sequence DNA cheaply
and quickly. DNA is organised into chromosomes, along each of which many
genes are arranged, with further non-coding regions interspersed in between. As
described in Section 1.1.1, the fundamental units of DNA are nucleotide bases, of
which there are four varieties (labelled C, G, T , and A). These are organised in
groups of length three called codons, which code for the production amino acids.
Codons are arranged in sequences such that their amino acids when joined in a
chain form proteins - the products of genes.

The aim of sequencing is to read, base by base, the information content of
DNA. This was originally done by Sanger sequencing, a procedure to infer the
base composition of a piece of DNA one base at a time (Sanger et al., 1977) via
electrophoresis. Short-read high-throughput sequencing automates this process
via the following (Bentley et al., 2008):

1. DNA is isolated from a sample and amplified (replicated many times) to
ensure good signal.

2. Purified DNA is broken into many pieces of manageable length.

3. These short strands act as templates for polymerisation by fluorescently
tagged nucleotide bases.

4. This fluorescnece is automatically detected by imaging to produce many
short ‘reads’ corresponding to strands.

5. These short sequences are matched to a reference human genome to identify
where the DNA in the original sample differed from that reference.

The short-read sequencing paradigm, while ideal for speed and scale, relies
on the existence of a complete human ‘reference genome’, onto which individual
sequences can be matched. While short-read technologies still dominate sequenc-
ing studies, other technologies are now increasing in capability and popularity,
including single molecule real-time sequencing (Eid et al., 2009; Ardui et al.,
2018) and nanopore-based sequencing (Clarke et al., 2009; Jain et al., 2016). Se-
quencing also relies on a method of sample preparation and preservation, such as
formalin-fixed paraffin embedding (Cazzato et al., 2021).
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Tumour/normal variants As described in previous sections, in cancer some
subset of cells accumulate mutations. These occur via random misreplication of
DNA during cell division or exposure to some external mutagen (e.g. cigarette
smoke or UV light). The DNA content of a cancer patient’s ‘normal’ cells (known
as germline DNA) is therefore different in sequence to that of tumour cells. To
analyse these differences systematically with sequencing, typically two samples
are collected: one from a tumour and one from normal tissue. The sequences of
each of these samples are compared to produce a list of locations at which muta-
tions have occurred: these mutations can have a variety of types (replacements,
insertions, etc.) and can have vastly differing functional implications. These are
often stored/provided in variant called format (VCF) or mutation annotated for-
mat (MAF) files. In our use cases we will simplify feature generation from these
datasets by only considering counts of mutations of a given type per gene and
sample. Finally, note the similarity in relationship a) between tumour genome
and germline genome, and b) between germline genome and human reference
genome. Despite this similarity, the actual computational and algorithmic steps
taken to produce germline/reference versus tumour/normal comparisons differ
because (at least for short-read applications) a preassembled reference genome is
typically available for the former.

Targeted sequencing While WGS and whole-exome sequencing (WES) have
become far cheaper in recent years, it is still often not advantageous, particularly
in the presence of cost or time constraints, to sequence an entire exome. In partic-
ular, if a (relatively small) set of target regions are known to be of interest, ‘gene
panels’ designed only to sequence those regions can be deployed fairly simply. In
many cases the cost of sequencing a given region at a given depth scales fairly
linearly with the total combined length of the genomic regions being targeted.
This also means that, for an equivalent cost, a targeted sequencing panel may be
profiled at far greater depth, which is particularly useful when searching for vari-
ants only occurring in a small subset of cells. Many commercial gene panels are
available (for example for cancer monitoring), often comprising 100-1000 genes.

Gene expression

As described above, DNA sequencing allows us to investigate the coding sequence
of DNA in normal and dysfunctional cells. The central dogma (described in Sec-
tion 1.1.1), however, tells us that this is only a starting point towards understand-
ing the full picture of cellular behaviour. The revolution in cheap DNA sequencing
has, in turn, impacted our ability to quantify RNA at scale. However, in our gene
expression-focused application study in Chapter 2 we don’t use sequencing-based
approaches. In order to give good context to the reasons for this, here we’ll briefly
describe RNA sequencing, PCR (another common lower-throughput method for
RNA detection/quantification), and why neither are satisfactory for the aims of
Chapter 2. The technology we will end up using, know as LAMP, is most similar
to PCR and so we’ll dedicate a reasonable amount of time to discussing how PCR
looks in practice to motivate both its similarities and differences with LAMP.
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RNA sequencing RNA-Seq, short for RNA Sequencing, is now a very com-
mon method for high-throughput detection and quantification of RNA (Wang
et al., 2009). Simplified, RNA-Seq works by converting RNA to DNA via reverse
transcription (a common theme in what’s to come), then applying standard high-
throughput sequencing methods to the resultant complementary DNA (cDNA).
This is a slight oversimplification but contains the pertinent steps. In practice,
great care needs to be taken in RNA library preparation to ensure that RNA is
isolated from genomic DNA (gDNA) and of sufficient quality, entailing several
further steps. While we do not provide a detailed overview of RNA-Seq here as
it is not used in any subsequent chapters, we emphasise that there exists a wide
body of technological and methodological research underpinning modern clini-
cal RNA sequencing. This includes means of RNA quantitation such as polyA+
selection and rRNA depletion (Zhao et al., 2018), and methods for transcrip-
tomic profiling of low-yield samples such as TempO-Seq (Bushel et al., 2018) and
EdgeSeq (Qi et al., 2019).

While RNA-Seq has been revolutionary for exome-wide gene expression stud-
ies, many applications remain where it is unnecessary or insufficient. Commonly
this is because RNA-Seq, while incredibly cheap compared to historical levels,
is still more expensive than simpler techniques for low-throughput analyses, e.g.
detection of a single RNA sequence. For these, it is still common to use older
methods such as reverse-transcription PCR.

PCR Polymerase chain reaction (PCR) was developed by Kary Mullis while
working at Cetus Corporation in 1983, a feat for which he jointly received the
Nobel Prize in Chemistry in 1993, and has served as a component of much work
manipulating DNA molecules ever since (Saiki et al., 1985; Mullis et al., 1986).
The aim of PCR is, given an input DNA molecule, to amplify it in vitro. By
amplify, we mean produce many identical/complementary DNA molecules. By in
vitro, we mean in an artificial context without access to normal cellular machinery.
With the basic mechanism of PCR, which we will describe below, it is fairly
simple to extend to detection/quantification of RNA with a reverse-transcription
preparation step.

PCR works by alternating between two steps (referred to together as a ‘cy-
cle’): a denaturing step and a synthesis step. Beginning with a double-stranded
DNA sequence, a sample is heated until the DNA denature, i.e. splits into two
complementary single strands. In the second step, a polymerase known as ‘Taq’
catalyses the synthesis of a complementary sequence onto each single strand. This
is initiated by the presence of a primer, a short oligonucleotide comprising some
portion of the desired sequence that hybridises to single stranded DNA and acts
as a starting point for polymerisation.

A significant complication to the implementation of PCR reactions is that
its two stages must occur at different temperatures. The Taq polymerase has
an optimal temperature of around 70-80°C, while denaturation occurs around
94-98°C. This variation in temperature determines the progression of subsequent
PCR reactions and requires a thermocycler. This restricts PCR experiments
to be conducted in laboratory-like settings, rather than in field or point-of-care
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Figure 1.2: Example fluorescence curve as might be produced by a PCR reaction.
Values on y-axis on arbitray scale, with example quantitation level shown with
grey dashed line.

applications.
Up until this point we have used terminology pertaining to detection and

quantification interchangeably. In this context, detection refers to an assay re-
turning a binary outcome indicating whether the molecular sequence in question
was present in a sample, whereas quantification (also sometimes referred to as
quantitation) refers to an assay returning a continuous non-negative value de-
noting the level of abundance of a given molecule. Using the PCR assay for
quantitation, referred to as quantitative polymerase chain reaction (qPCR), has
grown in popularity since the development of automated fluorescence detection.
The outputs of qPCR analyses are fluorescence curves produced by the detection
of fluorescent markers attached to the nucleotide bases used in synthesis, and
can track the amount of polymeristion occurring during any given cycle. These
typically look as shown in Figure 1.2, consisting of relatively flat phases at the
beginning and end of a reaction, with more rapid growth phase in between. Detec-
tion is typically performed via establishing a threshold (grey dashed line) above
which the target is said to be present. Traditionally quantitation has proceeded
in a similar fashion, by relating estimated abundance to the number of cycles
before the quantitation threshold is met and disregarding all other information.

PCR and qPCR require the design/selection of a primer (actually two primers,
but one is typically the complement of the other). This primer, a short oligonu-
cleotide matching some portion of the target sequence, must be chosen to balance
several ideal properties. It must be suitably specific to the target DNA sequence,
while also being of an appropriate length. Designing PCR primers is both an
art and a science, and analagous to one of the problems investigated in Chap-
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ter 2, albeit in the context of another assay (known as LAMP) that shares some
features with PCR but, notably, depends on the design of at least six primers.
This introduces a much higher degree of complexity, as does the nature of LAMP
reactions, which occur far more in parallel than PCR reactions which are neatly
divided into cycles. The reason to invest in understanding this more complex
system is precisely that LAMP is not designed around cycles, because it happens
at constant temperature. This eliminates the need for a thermocycler, enabling
LAMP to be deployed cheaply and space-efficiently for point-of-care applications
such as the one described in Chapter 2.

1.2 Statistical learning theory

“We need data to construct
prediction rules, often a lot of it.”

“For prediction purposes, [linear
models] can sometimes outperform
fancier nonlinear models,
especially in situations with small
numbers of training cases, low
signal-to-noise ratio or sparse
data.”

Elements of Statistical Learning
(Hastie et al., 2009)

Now familiar with the most relevant biological concepts, we turn to the math-
ematical theory and techniques underlying statistical learning, which has experi-
enced a surge of interest in the last few decades, partially fuelled by explosions
of data availability across multiple domains, contemporaneous increases in com-
putational power, and the desire to provide satisfying theoretical frameworks to
accompany complementary practical advances in machine learning. While so
far there is no theory of statistical learning with the capacity to fully describe,
explain, or validate the impressive results demonstrated in (for example) deep
learning, the language of statistical learning is invaluable in specifying learning
models, providing metrics by which they can be measured, and triaging where
they go wrong. It is also the language with which we will be attempting to
interrogate issues of inference and prediction in cancer genomics.

Firstly, we lay out some terminology and notation. We often consider a very
generic setup, in which we have paired data

Dn = {(x1, y1), (x2, y2), . . . , (xn, yn)}.

We refer to this dataset as our ‘training’ data. We do not here consider settings in
which components of inputs xi or ouputs yi are missing. We model each of these
pairs as being drawn independently from a joint probability distribution PX×Y
describing the likelihood of observing any combination of observation x and label
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y. We write that yi ∈ Y for each i ∈ {1, . . . , n}. For now we make no assumptions
about the nature of the Y : labels may be continuous values for regression (Y ⊂ R),
discrete values for classification (Y = {0, 1}), or more complicated hybrid objects
such as is the case in survival analysis (see Section 1.2.4). We assume that
xi ∈ X ⊂ Rp for each i, so that our observed values are vectors of length p and
each element is a real number (possibly restricted to some subset such as the
positive reals - this is what X specifies). We refer to p as the dimension and n as
the sample size of our data.

We wish to fit some model M to the data. Formally, this model M refers
to a family of probability distributions in which we assume the true distribution
PX×Y lies, sometimes indexed by a discrete set of parameters (referred to as
a parametric model). The processing of fitting a model refers to choosing an
estimated distribution that matches the true distribution as well as possible.
This could be in order to make some inference about the true distribution, for
example through estimating its parameters, which will hopefully shed light on the
effect of each of the covariates contained in an observation x. Alternatively, we
might be principally interested in predicting future values of y from unlabelled
observations as accurately as possible. These two aims are often distinguished by
the umbrella terms statistical inference and statistical learning.

1.2.1 Bayesian and frequentist approaches to statistics

In this thesis, we will use two different frameworks for describing and fitting sta-
tistical learning models. Each of these inherit from a long tradition of statistical
research, and debate around the relative merits of each has been extensive and
sometimes acrimonious (Bayarri and Berger, 2004; Coles, 2006; Vallverdú, 2016).
These two schools of thought are frequentist and Bayesian statistics, and to give
a full summary of the history of each and their interactions is well beyond the
scope of this introduction. Therefore, we will restrict ourselves here to a brief
description of some motivational and practical differences, enough to justify why
one may select one over the other for a particular application. This will be-
come relevant in the chapters that follow, as we adopt a Bayesian perspective in
Chapter 2 and a frequentist perspective in Chapters 3 and 4.

Notions of probability

The divergence between Bayesian and frequentist statistics is in some senses
deeply philosophical, and yet often also purely pragmatic. Few would nowa-
days hold that any working statistician need embrace only Bayesian or frequentist
methods as a matter of principle (Gelman and Yao, 2021; Bon et al., 2023). How-
ever, it is worth emphasising that differences in these two flavours come down to
as fundamental a concept as the definition of probability. While most day-by-day
decisions around which statistical framework to use would rarely necessitate con-
sidering this, it is useful to think about in order to understand where motivating
differences have originated, even as an applied statistician.

In the frequentist framing, probabilities are an intrinsic property of some
system. Given an experimental setup (the classic examples being a coin toss
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or die roll), we are invited to imagine the experiment being repeated over and
over again with an identical (or at least indistinguishable) starting point. The
probability of an event is defined as the limit, as the number of experiments goes
towards infinity, of the the proportion of experiments in which the event occurs.
So as an increasing number of, for example, fair coin flips are performed, the
number of heads obtained should tend towards one half of the total number of
flips. It may seem convoluted to define probability as the limit of an infinite
sequence, but it is worth remembering that this is no more complex than the
standard definition of a real number5.

In the Bayesian framing, probability is a subjective concept and the relates
to a particular state of knowledge around a system or event. Bayesian probabil-
ity may be formulated as a quantification of uncertainty about an event. So for
example, in the Bayesian framework there is no inconsistency whatsoever about
the ‘probability’ of an event differing between two observers even the underly-
ing experiment is the same, if the observers are privy to different information.
This freedom in fact forms the basis of Bayesian inference, where the probability
distribution concerning a given quantity is updated on the basis of new data.

Finally, it is worth pointing out that these two notions of probability are
simply different interpretations of the same axiomatic framework of probability
due to Kolmogoroff (1933), or even merely that axiomatic framework being put
to different uses. There is no mathematical difference in the laws of probability
between the two schools; only in the machinery that probability theory is used to
build. In the next section we will see Bayes’ rule, a fact about probability that
is equally true in any inferential framework. Bayesian statistics having derived
its name from the rule6 is simply a reflection of the central role it plays in doing
Bayesian statistics.

Uncertainty quantification

The different notions of probability underlying Bayesian and frequentist statis-
tics give rise to different methods of inference and prediction, allowing for and
demanding differing interpretations. Let’s return to a prediction task as described
in the preceding section, and propose the following linear model for Y ’s depen-
dence on X:

Y | X = x ∼ N (xTβ, σ2).

Let us suppose for now that σ is somehow known and focus on inference for the
parameter β. In the frequentist framing, we have postulated the existence of a
true β and it is our objective to estimate it as well as possible. We typically do
this via maximum likelihood estimation (MLE): from our training data Dn we
calculate the likelihood of observing the values yi that we have under our model,
given the observed values of xi and in an alternate universe where the true value
of the model parameter was given by some β̂. We then choose the β̂ such that
this likelihood is highest and use it as our estimate of the true parameter. We

5The reals R are typically constructed as equivalence classes of Cauchy convergent infinite
sequences of rational numbers.

6Or at least shared the derivation of its name with the rule.
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can show that the estimate β̂ satisfies

β̂ ∈ arg min
β∈Rp

{ 1

n

n∑
i=1

(yi − xTi β)2}.

We would not expect that the MLE procedure will give us the correct answer every
time. Indeed, we may quantify exactly how far away the estimate will typically
be from the true value under repeats of the same experiment. In this sense we
are doing uncertainty quantification, but the uncertainty being quantified is due
to the random noise inherent in the model, i.e. it is still strictly a frequentist
uncertainty.

Bayesian inference takes a different approach. Because in Bayesian analysis
we are permitted to define a probability distribution purely expressing our belief
about a given quantity, we arrive with a predefined distribution, known as the
prior, whose density we will refer to as pβ(β). We may also (as in the frequentist
case) define the likelihood of observing Y = y, given all other quantities according
to our model. We write this as pY |X,β(y;x, β). At this point we may now apply
Bayes’ theorem, allowing us to recast one conditional probability in terms of
another, to recover:

pβ|X,Y (β;x, y) =
pY |X,β(y;x, β)pβ(β)

pY |X(y;x)
.

Here the denominator pY |X(y;x) is the likelihood of observing Y = y givenX = x,
marginalised across the prior pβ(β). The converse conditional pβ|X,Y (β;x, y) is
referred to as the posterior distribution, and may be understood as an updated
distribution reflecting our new understanding having observed data relating X
and Y . Uncertainty quantification in the Bayesian paradigm is therefore far
more direct: our ‘current’ distribution for β at each point reflects our state of
knowledge about the variable, which is liable to change as and when new data
becomes available.

It is worth mentioning the impact that a choice of inferential framework has
on subsequent prediction tasks. When predicting outputs for future observations
in a frequentist framework, typically the best estimates (e.g. MLE estimates) of
a given parameter are used, with uncertainty bounds on the outcome provided
due to stochastic elements of the model (in this case the variance σ2). This is
fundamentally different however in Bayesian analysis, where uncertainty in the
parameters of the model can propagate through and are philosophically indistin-
guishable from stochasticity in outputs. In this sense, Bayesian prediction models
can be thought of as continuous weighted mixtures of fixed-parameter models.

Model fitting

In performing Bayesian inference, computation of the numerator of the defining
Bayes’ equation in the previous section is typically computationally easy for any
given β. However, the total evidence pY |X(y;x) in the denominator can be very
hard to compute, especially as the dimensionality of β increases. This necessitates
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the use of approximate schemes for producing empirical samples drawn from the
posterior distribution of β. The most well-known of these is Markov chain Monte
Carlo (MCMC) (Hastings, 1970; Gelfand and Smith, 1990). To produce empir-
ical samples, the MCMC algorithm proceeds from a random starting point, and
combines proposals of random jumps with a criterion for accepting or rejecting
steps based on the ratio of posterior probabilities between the two points. This
ratio is available because it does not rely on the evidence. It is possible to show
that this procedure forms a Markov chain with a stationary state given by the
true distribution. Alternates to MCMC include Hamiltonian Monte Carlo (HMC)
(Neal, 2011), which will be used for all inferences in this work. HMC explores
the state space of β in similar fashion but allows for a ‘momentum’ component
of the current state, allowing for more efficient overall exploration.

1.2.2 High-dimensional statistics

Informally, we may think of high-dimensional statistics as being concerned with
the realm in which the dimensionality of our input data, p, is comparable to
or greater than the number of training samples n we have available. In this
regime the classical asymptotic theory of statistics, which generally relies on an
assumption of fixed dimension and considers limiting behaviour as n→∞, may
fail to apply. Results such as the law of large numbers and central limit theorem
are not applicable7.

High-dimensional statistics attempts to gauge what we can do in regimes such
as these. One common approach is to assume that the data being modelled has
some low-dimensional structure. For our purposes, this means that we can embed
our input data into a lower dimensional space such that this smaller representa-
tion of the random variable X contains all or most relevant information about Y .
This assumption may be motivated by external knowledge about the system being
modelled, or may be purely a practical choice in the hope that improvements in
predictive or inferential performance can be seen empirically. Several dimension-
ality reduction techniques are common in the analysis of biological and medical
data, most prominently principal component analysis (PCA) (Ma and Dai, 2011)
and t-distributed stochastic neighbour embedding (t-SNE) (Kobak and Berens,
2019). Both of these techniques are unsupervised (i.e. do not depend on ‘output’
values Y ), although PCA can be used in combination with prediction methods.
The focus of t-SNE is more specifically in visualisation; unlike PCA it cannot, for
example, be used to fit an embedding function on a training set and be applied
to future unseen samples.

In order to leverage structural assumptions in regression or classification prob-
lems, we will need to translate them into some algorithmic choice for model fit-
ting. This can be achieved in a variety of ways, including restrictions on the
model familyM and adjustments to a given model fitting method. One partic-
ularly common approach to the latter is called regularisation, and will form an
important component of much of the work throughout this thesis.

7This is not, of course, to say that they are not true; simply that we are working in a regime
in which their conclusions are not helpful.
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Assumptions of structure

Structural assumptions for statistical learning models aim to directly tackle the
problem at the heart of high-dimensional statistics: that if each component of
our input variable X can have a full and independent contribution to Y , then we
will not have enough data to recover the information contained in each variable.
This is true even in a relatively simple class of models, e.g. ordinary least squares
(OLS). We therefore assume that some lower-dimensional representation of X is
responsible for determining all or most of Y ’s dependence onX. We can formulate
this in greatest generality via the principle of sufficient dimension reduction (SDR)
(Adragni and Cook, 2009). For this, we say that given random variables (X, Y )
specified by a joint distribution PX×Y , there exists a sufficient dimension reduction
of size d∗ if there exists some function φ : X → Rd∗ with d∗ < p such that Y is
conditionally independent of X given φ(X), i.e.

Y ⊥⊥ X | φ(X).

This is a very general form, and while it includes or motivates many practically
implemented strategies, in order to be useful these are typically even more re-
strictive. For example, one may restrict that the sufficient dimension reduction is
a linear map (Omidiran and Wainwright, 2010; Cannings and Samworth, 2017).
One particularly common strengthening of SDR is an assumption of sparsity.
Sparsity conveys that only some small subset of input covariates are important.
We may formulate this by insisting that the reduction map φ : X → Rd∗ has the
form

φ
(

x1

x2
...
xp

) =


xi1
xi2
...

xid∗

 ,

where each of the ij are distinct and ij ∈ {1, . . . , p} for j ∈ {1, . . . , d∗}. Here
the subset of covariates that are important are the collection {xi1 , xi2 , . . . , xid∗}
of size d∗. Note that we typically do not know which set of covariates these
are in advance, but even assuming that there exists such a subset can prove a
surprisingly useful restriction.

It is worth at this point drawing a distinction between two phenomena in
statistics and data science both referred to as ‘sparsity’, both of which are relevant
to genomics applications. The first is sparse data, in which almost all observed
data points have the same value (typically zero). Mutation data displays this
trait – the rate at which mutations occur in the genome varies widely across and
within cancer types, but rarely exceeds 100 Mut/Mb, i.e. one mutation per 104

nucleotide base pairs (Chalmers et al., 2017). Sparse data can be exploited in
many ways, including through efficient storage and specially tailored algorithms.
However, here we will focus on sparse models, for which it is assumed that only
a small subset of the input covariates are relevant.

It is also notable that sparsity has a particularly simple interpretation in the
context of linear models (and some generalisations of them). Suppose that we
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once again consider:
Y | X = x ∼ N (xTβ, σ2).

This does not specify an entire model for (X, Y ) (we are making no claims about
the marginal distribution of X), but does specify a family of distributions for Y
conditional on the value taken by X, parameterised by β ∈ Rp. We may then say
that this model is d∗-sparse iff

|β|0 ≤ d∗, where |β|0 :=

p∑
j=1

1{βj 6= 0}.

This is especially useful in that we’ve related the structural modelling assumption
we’re making to the parameters we aim to fit. This will lead naturally to model
fitting approaches described in the next section. Methods that encourage sparsity
as described here will naturally perform variable selection as part and parcel of
the model fitting process.

From structure to regularisation

Now that we’ve shown how we may formulate a low-dimensional structural as-
sumption, we explore how this might be translated into an algorithmic imple-
mentation or adjustment for model fitting. Picking up where we left off with
sparse linear models (a good example case for exploring more general principles),
we describe the least absolute shrinkage and selection operator (LASSO) method
(Tibshirani, 1996). While we don’t deploy this directly in the subsequent chap-
ters, many of the methods we utilise (including the group LASSO in Chapter 3
and L1-penalised neural networks in Chapter 4) are expansions of the concept.

Taking the definition of parametric sparsity given in the previous section, we
may see that fitting an OLS model with an assumption of d∗-sparsity equates to
finding β̂ satisfying

β̂ ∈ arg min
β∈Rp

|β|0≤d∗

{ 1

n

n∑
i=1

(yi − xTi β)2}.

There are two further innovations required to arrive at the LASSO method. The
first is to note that solving the optimisation above is equivalent, for some penalty
term η indirectly determined by d∗, to solving the Lagrangian dual :

β̂ ∈ arg min
β∈Rp

{ 1

n

n∑
i=1

(yi − xTi β)2 + η|β|0}.

To make this equivalence valid for a small value of d∗, the ‘hyperparameter’
η should be chosen to be large, and vice versa. This is technically valid but
computationally intractable, as the | · |0 norm8 is non-convex. Practically, to

8Technically a ‘psuedonorm’, as it does not scale homogeneously, i.e. |λβ|0 6= λ|β|0 in general
for scalar λ.
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solve this we would have to perform a separate optimisation for each of(
p
d∗

)
=
p(p− 1) . . . (p− d∗ + 1)

d∗!

potential covariate subsets. The second LASSO innovation is therefore to replace
the L0 norm |β|0 with the L1 norm |β|1 :=

∑p
j=1 |βj|. This makes for a convex

optimisation problem which can be solved extremely efficiently. Formally, this
is known as the convex relaxation of the original optimisation problem (for a
more thorough introduction see, for example, Wainwright, 2019, Chapter 7)
and provides many appealing properties. In particular, L1-penalised regression
encourages fitting a parameter β with many covariates that are exactly zero (as
opposed to, for example, L2-penalised regression, also known as ridge regression).
Our final LASSO optimisation is therefore to find β satisfying

β̂ ∈ arg min
β∈Rp

{ 1

n
(yi − xTi β)2 + η|β|1}.

The form of alteration that has been made to the model fitting process here, by
adding an additional ‘penalty’ encouraging the resultant model to be fitted in a
certain way, is known as regularisation. Several examples of regularisation will
be demonstrated throughout this thesis.

We may also choose to incorporate structure into our statistical learning mod-
els via the choice of model space that we allow. This approach, in which the overall
‘shape’ of a model is chosen to encourage it towards some structural assumption,
is sometimes known as implicit regularisation (as opposed to the explicit regu-
larisation demonstrated above). This might be, for example, via what is known
as representation learning, in which a map is learnt embedding inputs into some
space, the outputs of which may be used for prediction. A celebrated example of
this is in autoencoder and variational autoencoder neural networks (Lecun, 1987;
Kingma and Welling, 2013), in which a low-dimensional representation is fitted
using a network with a ‘bottleneck’ consisting of relatively few nodes. In Chap-
ter 4, we will utilise both representation learning and a tailored regularisation
approach for approaches to causal inference.

1.2.3 Causal inference

Later sections of this thesis make use of concepts from causal inference, the foun-
dations of which we describe now. Causal inference is far from new, but has
generated increased attention in recent years. Of particular interest to us in
Chapter 4 will be blending flexible regression methods such as random forests
and neural networks with approaches in causal inference to extract meaningful
conclusions from messy, complex, and disparate data.

Causal inference concerns understanding the effect of some treatment on an
outcome, potentially in the presence of spurious associations (known as confound-
ing) between treatment and outcome due to their shared relationship with an
outside factor. Estimating the impact of a treatment on an outcome is difficult
because, by definition, we will never observe the outcome for a particular treated
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sample if we had not performed the treatment, and vice verse. To mitigate this
we use a framework called potential outcomes due to Donald B. Rubin (Rubin,
1974, 2005).

Potential outcomes

Here we continue to consider covariates X taking values in X ∈ Rp (which we may
now also sometimes refer to as confounders), and a response variable Y taking
values in Y . We also introduce a binary treatment indicator variable A taking
values in {0, 1}, such that now we have a jointly distributed triple (X,A, Y ). We
want to understand the effect of altering the treatment A on the outcome Y . A
natural quantity to estimate might be

E[Y |A = 1]− E[Y |A = 0].

However, if both Y and A depend on X, we might observe some spurious depen-
dencies. In Rubin’s framework we therefore want to define reasonably comparable
potential outcomes of Y in a hypothetical alternate universe in which we had in-
tervened/not intervened to change A.

Let Y (0), Y (1) refer to potential outcomes taken by Y under intervention with
A = 0, 1 respectively. We may therefore say9 that Y = Y (A). We make two
further assumptions:

1. Positivity: the propensity function is positive almost everywhere, i.e.

π(x) := P(A = 1|X = x) is such that π(X) ∈ (0, 1) almost surely.

2. No unmeasured confounders: treatment is ‘essentially random’ given X, i.e.

{Y (0), Y (1)} ⊥⊥ A|X.

These are considered sufficient to estimate the average treatment effect (ATE),
defined below. Note that in the case of a randomised controlled trial (RCT),
all the above apply except that the propensity function π(x) is known (often
constant) and unconfounded. In this case we get the two conditions above for
free.

Average treatment effect

The average treatment effect (ATE) is defined via ATE := E[Y (1) − Y (0)]. The
assumptions described in the previous section are sufficient for the ATE to be

9In the alternate notation of do-calculus (Pearl, 1995, 2012), we would say that P(Y (a) =
y) := P(Y = y|do(A = a)).
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identifiable (Stone, 1993), since

ATE = E[Y (1) − Y (0)]

= E[E[Y (1) − Y (0)|X]] (by the tower property)

= E[E[Y (1)|X]]− E[E[Y (0)|X]]

= E[E[Y (1)|X,A = 1]]− E[E[Y (0)|X,A = 0]] (by Assumption 2)
= E[E[Y |X,A = 1]− E[Y |X,A = 0]],

andX, Y and A are all observed quantities. Assumption 1 establishes that we can
expect to observe samples with both A = 0 and A = 1 across the support of X,
while Assumption 2 gives interchangeability of potential outcomes and observed
outcomes conditioned on treatment and confounders. Methods for estimation
of ATE have been proposed for a variety of modelling assumptions and contexts
(Reiersöl, 1945; Thistlethwaite and Campbell, 1960; Rosenbaum and Rubin, 1983;
Abadie, 2005; Craig et al., 2017; Roth et al., 2023). One common such method is
propensity score matching, which relies on partitioning observations into groups
with approximately equal propensity scores. Note that

P(A = 1|π(X), Y (1), Y (0)) = E[A|π(X), Y (1), Y (0)]

= E[E[A|X, Y (1), Y (0)]|π(X), Y (1), Y (0)]

(by the tower property)

= E[E[A|X]|π(X), Y (1), Y (0)]

(by Assumption 2)

= E[π(X)|π(X), Y (1), Y (0)]

(by definition of propensity)
= π(X) = P(A = 1|π(X)),

so that {Y (0), Y (1)} ⊥⊥ A|X ⇒ {Y (0), Y (1)} ⊥⊥ A|π(X) (this is due to Rosenbaum
and Rubin 1983). We can then say that

ATE = E[E[Y |π(X), A = 1]− E[Y |π(X), A = 0]].

To estimate the ATE we therefore need only to average over the marginal dis-
tribution of π(X) rather than the entire marginal distribution of X, which can
be particularly useful when X is high-dimensional. Methods for propensity score
matching often begin by using some regression method to produce an estimate π̂
of the propensity function.

Causal inference can be particularly useful when working with observational
data, i.e. data for which we did not have direct experimental control over the
treatment A. Situations where causal inference may be used include measuring
the impact of administering a given drug from data in which the drug has been
given to some patients but not others. Here we may not fully understand whether
patterns exist in who has received the drug (e.g. those who are already very ill),
and in estimating the ATE we aim to remove any bias in differences in outcomes

45



(e.g. survival time) for those who were given or were not given the drug. While
it is often useful to gauge the utility of a treatment across an entire population
via the ATE, it does not necessarily make any progress towards recommending
whether treatment will benefit a given patient. For this, we need heterogeneous,
conditional, or individual treatment effects. This will be discussed at length in
Chapter 4.

1.2.4 Survival analysis

In the final portion of this summary of selected techniques from statistical learn-
ing, we introduce survival analysis. Survival analysis is common throughout
biomedical research, particularly in the interpretation of clinical trial data. It is
therefore invaluable in the goals of later chapters, i.e. to predict cancer patients’
response to immunotherapy based on historical clinical and genomic data.

Survival times

Survival analysis concerns modelling the amount of time elapsing before a given
event occurs. In medical settings, this is often time-to-death analysis, but the
same framework is used to approach other events, both medical (e.g. relapse or
visit to hospital) and non-medical (machine lifetime, customer churn, etc.). Since
our main application cases are concerned with overall survival (OS), we will refer
here to a generic ‘event’ as death. For a patient i, we will refer to survival
times with either a lower case ti (for observations) or upper case Ti (for random
variables). As a starting point for motivating techniques in survival analysis, we
note the following properties we might expect from survival times:

1. Survival times are continuous : ti ∈ R. This is intuitively true in many sit-
uations, but we typically only measure data in discrete bins (e.g. months).
This can introduce complexities such as exact ties in survival time.

2. Survival times are positive: ti > 0. This is a consequence of survival times
always being relative to some other time point. The choice of this baseline
can often vary between (and even within) studies.

The second point above emphasises the importance of an appropriate definition
of starting time for interpreting survival times. Defining suitable end points can
also present nuanced issues, particularly accounting for, for example, deaths due
to competing risks. While this is studied extensively in the literature, in this work
we assume a fairly simple modelling scenario with no patients removed from the
dataset from external causes. One form of removal/missingness that we certainly
do care about, however, is censoring.

Censoring

Censoring refers to a structured pattern of non-observance of a given outcome,
in this case, the death of a patient. In the studies we will discuss in this chapter,
this is typically because the period of observation for the study ended. This is
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know as right-censoring. Because we have not observed the death of the patient,
we only have access to a one-sided interval in which this would have occurred.
Addressing censoring is one of the core missions of survival analysis.

At this point we introduce some notation. For a patient i, we let ci ∈ R+

(or Ci for a random variable) denote the time at which the patient is removed
from further observation, relative to the baseline observation time point for that
patient. We therefore observe only the following: yi ∈ R+ (or Yi for random
variable) is the time of final follow-up, i.e. yi = min(ci, ti); and δi (or ∆i) for
censorship status, i.e. δi = 1{ti ≤ ci}.

Our general aim, therefore, is to perform inference about the behaviour of the
random variables Ti from observation only of a given set of n pairs {(yi, δi)}ni=1.
Here we assume that these tuples of observations (and potential future obser-
vations) are realisations of independent and identically distributed random vari-
ables, and so refer to this underlying joint distribution without reference to sample
i, i.e. we may consider the joint variable (T,C,∆). We discuss in the next section
some common practices for performing inference on these targets.

One further concept worth mentioning is that of informative vs non-informative
censoring. In the latter, it is assumed that censoring is independent of survival
time, given the covariates. Throughout this chapter, we assume we are considering
non-informative censoring for simplicity, although some of the methods presented
have mechanisms for adjusting for informative censoring (see, for example, the
CSA-INFO method of Chapfuwa et al., 2021).

Modelling approaches

We now describe some common approaches to statistical modelling of survival
data. We begin by defining hazard. While it is possible to characterise the
distribution of survival times T in a variety of ways, hazard is common as it
is both interpretable and easy to work with. For the distribution T , we define
hazard h(t) as a function of time t as the instantaneous rate of death at time t,
given survival up until time t, via:

h(t) := lim
δt→0

P(T ∈ [t, t+ δt]|T > t)

δt
.

We also define the survival function S(t) as P(T > t). We may then observe that
hazard is expressible as

h(t) = lim
δt→0

P(T > t)− P(T > t+ δt)

P(T > t)δt

=
1

S(t)
lim
δ→0

S(t)− S(t+ δt)

δt
= − 1

S(t)

d

dt
S(t)

= − d

dt
logS(t).

Finally note that dS
dt

= −f(t), where f(t) is the probability density function for
T , so we may also write h(t) = f(t)

S(t)
. This is consistent with the intuition that

hazard denotes rate of death, scaled by likelihood of survival so far. Often when
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fitting predictive models, we use hazard as the target of prediction given inputs
x, aiming to estimate h(t|x). Before we move on to this case, however, we’ll
discuss a few more properties of hazard. It can be useful to define the cumulative
hazard function H(t) =

∫ t
0
h(u)du. We may then observe further useful relations

between hazard, cumulative hazard, and density. Firstly note that

H(t) :=

∫ t

0

h(u)du

= −
∫ t

0

d

du

(
logS(u)

)
du = −

[
logS(u)

]t
0

= − logS(t),

so we can also express H(t) in terms of the survival function. Likewise we can
express f(t) simply in terms of hazard via

f(t) = h(t)S(t) = h(t) exp(−H(t)).

From this last relationship we can quickly see that under an assumption of con-
stant hazard h(t) = λ, survival times will follow an exponential distribution, with
density function f(t) = λ exp(−λt), with mean λ−1 and variance λ−2.

However, as mentioned above, a single model for all survival times is not
sufficient for most purposes. In general we want to learn about the effect of
some covariates on survival time. We therefore introduce a random (potentially
vector-valued) variableX taking values in Rp, and define the following conditional
versions of survival and hazard functions:

h(t|x) := lim
δt→0

P(T ∈ [t, t+ δt]|T > t,X = x)

δt
S(t|x) := P(T > t|X = x).

Note that the same relationships as above hold. When making decisions around
modelling, assumptions about the behaviour of these two functions are typically
the starting point. We’ll here evaluate two common assumptions, based on re-
stricting the functional form of each of these two functions respectively.

The proportional hazards assumption Proportional hazards models are
based on the assumption that changes in a given covariate have the effect of
increasing hazard by a constant factor across all time points. We state this
formally via the requirement that there exist functions h0 : R+ → R+ and θ :
Rp → R+ such that

h(t|x) = h0(t)θ(x).

In practice the function θ is often chosen to be θ(x) = exp(−βTx) for parameter
β ∈ Rp to be fitted. In this case h0(t) is left to be fitted flexibly (although
this is not necessary for inferring β, making the resulting model (the Cox model;
Cox, 1972) semi-parameteric. Note that we can derive the resultant form of the
survival function as S(t|x) = S0(t)θ(x), where S0(t) = exp(−

∫ t
0
h0(u)du).
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The accelerated failure time assumption Accelerated failure time models
(Wei, 1992) are based on the assumption that changes in a given covariate have
the effect of scaling the entire lifetime of a patient by a constant factor. This is
formalised by position that there exist functions S0 : R+ → [0, 1] and θ : Rp → R+

such that
S(t|x) = S0(θ(x)t).

As for proportional hazards, the function θ is often chosen to be θ(x) = exp(−βTx).
Again as above, we may use this restriction to infer the form of the hazard func-
tion as θ(x)h0(θ(x)t), where h0(t) = − d

dt
logS0(t). The function S0(t) is often

chosen to be the exponential survival function e−t.
Note that the proportional hazards and accelerated failure time assump-

tions are not mutually exclusive. Consider for example the following setting:
T is Weibull distributed with parameters λ, k, i.e. has cumulative distribu-
tion function 1 − exp((t/λ)k). Now suppose that the parameter λ is given by
λ = λ0 exp(βTx). We then have that

S(t|x) = exp
(
− tkλ−k0 exp(−βTx)

)
,

which satisfies the correct form for the accelerated failure time assumption with
S0(t) = exp(−tk) and θ(x) = λ−k0 exp(βTx). We can also show that the hazard is
given by

h(t|x) = ktk−1λ−k0 exp(−kβTx),

satisfying the proportional hazards assumption with h0(t) = kλ−k0 tk−1 and θ(x) =
exp(−kβTx).

The Cox proportional-hazards model The Cox proportional-hazards mod-
els (Cox, 1972) remains by far the most commonly employment survival analysis
techniques, and likely represents once of the most significant contributions to
statistics of the twentieth century. As would be expected, Cox regression em-
ploys the proportional hazards assumption described in the previous section in
a semi-parametric linear model of the hazard function. The Cox model can be
stated as follows:

h(t|x) = h0(t) exp(xTβ).

In the language of Section 1.2.4, we refer to θ(x) = exp(xTβ) as the ‘parametric’
portion of the model (parameterised by the vector β ∈ Rp), while the baseline
hazard function h(t), when needed, is typically fitted with non-parametric meth-
ods. The term semi-parametric is used to describe the combination of these two
components. However, the power of Cox regression is that the parameter β can
be inferred without the need to fit the non-parametric baseline hazard h0(t). This
is achieved via minimisation of the partial likelihood:

L(β) =
∏
i:δi=1

exp(xTi β)∑
j:tj≥ti exp(xTj β)

,

which can be separated from all non-parametric estimates of the model and used
as an objective for minimisation with respect to β.
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Non-parametric methods While Cox proportional hazards models are by
far the most commonly applied methodology underlying the majority of survival
analyses, the specific nature of the Cox partial likelihood is not always easy to
adapt to scenarios where more flexible survival distributions are sought. This is
not to say that the regression function underlying a Cox model cannot be more
general; indeed, methods such as DeepSurv (Katzman et al., 2018) have made
use of deep neural networks to specify a proportional hazards function. However,
even in this scenario the proportional hazards assumption can be quite restrictive.
Later in this chapter we demonstrate a method for non-parametric survival anal-
ysis due to Chapfuwa et al. (2018). Their strategy relies on applying a flexible
regression function to a known source of simple randomness (e.g. a neural net-
work applied to a multivariate normal source). To fit such models, they propose a
loss function that includes an optimisation term to ensure that predicted survival
times are a) close to true survival times in the case of uncensored data and b)
greater than the observed censoring time in the case of censored data. To be
specific, for a predicted survival time t, observed endpoint time y and censoring
status δ they penalise their loss function with

δ|t− y|+ (1− δ) max{0, y − t}.

Here we see the first term (applied to uncensored data) penalises estimated sur-
vival times far from the observed value, and the second term (applied to censored
data) penalises estimated survival times less than the observed censoring time.
In their original paper Chapfuwa et al. (2018) propose weighting these terms in a
tunable manner, while in later work (such as applied to heterogeneous treatment
effect (HTE) estimation in Chapfuwa et al., 2021) they present them without
tuning parameters.

1.3 Genomic medicine questions in the language
of statistical learning

“You check the charts, and start
to figure it out.”

LCD Soundsystem
‘All My Friends’ (2007)

At this point, we have covered most of the introductory molecular biology and
statistical learning theory that will be necessary to understand later chapters.
Here we aim to bring those two threads together by describing how, for each of a
set of given application cases, we select a particular set of tools. The tools will be
both biological and statistical, and we will describe our motivation in deploying
them to solve or partially solve the problem at hand. Each will provide some
motivational background to a particular chapter.
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1.3.1 Signal and noise: understanding genomics technology

In our first application case we are confronted with the following setup: a gene
expression measurement technology, known as LAMP, has been proposed as the
only viable technology for transcript profiling in a given medical test. For any
sample profiled by LAMP, we use a separate reaction to measure each transcript of
interest. The raw data outputted from the LAMP reaction are noisy amplification
curves that look fairly similar to PCR curves (see Figures 1.2 and 2.3). From each
curve we want to be able to predict the true gene expression associated with that
sample and transcript.

This forms the basis of a prediction problem, with input data given by the
amplification curves themselves, and outputs given by the true gene expression
values (for a training dataset, we have access to these via a gold standard reference
technology). However, a few more factors are at play. Firstly, it is well known
that LAMP has higher precision and resolution when profiling some transcripts
than others. It will be important in the final implementation of the medical test
which transcripts are chosen, and this decision will be made not just on the basis
of their biological relevance, but also their amenabiliy to measurement with the
LAMP technology. We therefore require a means of quantifying our uncertainty
when using amplification curves to infer gene expression. We also have some
mechanistic knowledge about typical amplification curves, and can quite easily
construct models of the shape of these curves based on RNA abundance as an
input. Therefore, a framework for predicting gene expression would ideally be
based on the ability to invert such models.

We wish to perform inference in a manner that emphasises and enables the
quantification of uncertainty; we have sufficient domain knowledge to select prior
parameter distributions that match our understanding of what amplification
curves should look like; and we wish in the end to be able to probabilistically
invert a conditional model for amplification curves given true gene expression
into a conditional model for the opposite. All the considerations above point to
using a Bayesian framework in the analysis of LAMP data. This is exactly what
we do in Chapter 2, in which we do all of the analysis described, save for pro-
ducing an inverted ‘gene expression given amplification curve’ model: while this
aim was certainly the motivation, the work in this chapter is more exploratory,
aiming to identify features of LAMP reactions that contribute to improved or
worsened quantitative performance.

1.3.2 Gene panel selection: working to constraints

In Section 1.2.2, we discussed some of the terminology associated with high-
dimensional statistics. An apt question is, when working with cancer genomics,
in what manner of high-dimensional regime are we operating? This obviously
depends on the specifics of the question we are trying to answer, the data we
have available, and through what lens we view that data. To elaborate on this
final point, we consider somatic mutation sequencing as described in Section 1.1.3
and ask how we may process it to produce ‘tabular’ data, for which we can think
about values of n and p. Mutation data, typically stored in VCF or MAF files,
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contains a list of mutations, alongside information about which sample a mutation
occurred in, where in the genome it occurred, and what form the mutation took.
It is natural to consider the number of individual biological samples as n, but
what about p? We could have one ‘column’ (i.e. a separate covariate of our
input) devoted to each base in the genome or exome, recording whether or not a
mutation was observed at that point. This data would be ultra-high dimensional
– of the order p ≈ 3×109 for genome-wide sequencing, p ≈ 3×106 for exome-wide
sequencing – to the extent that it would be almost impossible to use productively,
with typical individual studies having on the order of magnitude of thousands of
samples at best (TCGA contains around 2×104 samples in total across 33 cancer
types; Cancer Genome Atlas Network, 2015). It is therefore often useful to take
a ‘gene-level’ view. Here we might group exomic bases into their associated gene
regions, and for each covariate column take the count of mutations in that gene.
This leaves us with a resultant dimensionality of p ≈ 2 × 104, a much more
manageable size.

Despite this reduced dimensionality, there are several reasons we might want
to whittle down to an even smaller number as part of a prediction task (i.e. to
perform variable selection). One is that the resultant selected genes might in
themselves be of interest. This is one means of searching for driver genes, i.e.
those that when mutated will elevate risk of the development, progression or
adaptation of a tumour (Hanahan and Weinberg, 2000, 2011). Driver genes are
thought to be relatively rare, and observant readers will note that this is exactly
a sparsity assumption – a regularisation method such as the LASSO might be
helpful.

Another justification for selecting some small set of genes/genomic loci for a
prediction task is that the cost and time to perform sequencing depends (approx-
imately linearly) on the size of the subsection of the genome to be sequenced, and
the depth at which it is sequenced. This means that in many practical or clinical
environments, cost is a major factor. If a future biomedical test is to be based on
sequencing then it may be essential that a concise targeted gene panel is selected,
while maintaining enough accuracy that clinicians feel confident in acting upon
its predictions. As mentioned above, sparsity may be well-motivated if we are
predicting a phenomenon for which we can assume a small set of driver genes.
But what if no such assumption is reasonable? What if we are aiming to predict
an outcome that (by definition) is known to depend on all regions of the genome,
and our need to select a concise set of representatives is purely practical? Will
methods from high-dimensional statistics continue to be optimal? This is exactly
the question investigated in Chapter 3, where we aim to develop concise gene
panels for predicting tumour mutation burden (TMB) and tumour indel burden
(TIB), each an exome-wide biomarker.

1.3.3 Assessing an intervention: getting the most out of
data

While in this thesis we are not principally interested in analysing or accounting for
missing data, a fascinating area of study in its own right, our analysis is still often
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shaped by what events we are and are not able to observe, and the impact this has
on the data we do collect. When attempting to formulate a medical question such
as “will a given patient benefit from treatment from a certain drug”, we may fairly
straightforwardly formulate this as a prediction task. From a historic dataset we
gather some information about each patient, both clinical and genomic, and let
this constitute our input values (xi for patient i). We then observe how each
patient responded (via an output yi) and what treatment they were given (via
a binary indicator ai), and learn to predict yi on the basis of xi and ai. As
simple as this appears, however, reality has a way of muddying the waters. When
investigating whether patients experience a survival benefit from a treatment, we
are faced with two limitations to any observational dataset. Firstly, we will only
observe for any patient in our historical dataset one outcome at most, any never
what would have happened had their treatment decision been reversed. Secondly,
when assessing survival outcomes we will be limited by the fact that not every
patient will die within the timescale of a given study. This is obviously a very
good thing, but means that for a substantial portion of our cohort we will not
directly observed the outcome of interest, and this can severely impede our ability
to fit models to predict it.

It should be of no surprise that, when considering unobserved alternate out-
comes under a different treatment, we turn to causal inference. We will however
be required to investigate several extensions to the base case laid out in Sec-
tion 1.2.3, to accommodate the use of survival data and to enable answering a
more personalised question than can be expressed by average treatment effect.
This intersection of restrictions sits at the heart of an active field of research, and
will be the focus of Chapter 4.

1.4 Summary and thesis outline

“Now this is not the end. It is not
even the beginning of the end.
But it is, perhaps, the end of the
beginning.”

WC (1942)

If this introduction has succeeded in its goals, it should have motivated why
techniques from statistical and machine learning have value to add addressing
genomics questions in medical applications. In particular, it should have provided
the necessary biological and statistical background to understand each of the
subsequent chapters. It should also have provided a ‘high-level’ view of why each
technique we’ve selected from the statistical learning arsenal is well-matched to
the application case in which we apply it. This motivation will be to some degree
restated with each case study, but with more of a focus on providing specific
technical context to the decisions made in each investigation.

A recurring theme in each chapter is that the complex structure of data pre-
sented in biological research can be a sticking point that, at its full potency, could
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severely undermine our capacity to answer the question we’d like, and to build
the tools that we’d like. The restrictions we face when dealing with biological
data can originate from the complexity of the underlying biological systems under
investigation, or from external ‘real-world’ factors such as bounds on the cost and
time available in order to make a solution fit for purpose.

Even at the current pace of increase of the availability of biological data
(in particular from high-throughput sequencing studies), it remains to be seen
whether the powerful and general machine learning techniques that have revolu-
tionised other traditional learning problems will be at our disposal in a meaningful
way. It is still firmly the case that specific biological and contextual expertise is
necessary to optimally leverage the new wealth of data that is available to us.
Therefore, to unlock the potential of that data, we need researchers who are able
to speak the language of both statistical and biological ‘camps’. It is not sufficient
that researchers in cancer genomics provide data and questions to researchers in
statistics/machine learning, nor that statistical researchers push forward with
the development of methods without influence from the context of the problems
they are attempting to address. Instead, methods need to be crafted bespokely
by those who understand what features of biological data are relevant, how those
features manifest themselves, and how to exploit them in a mathematically robust
way.

As motivation for the challenges discussed above, it should go without saying
that medical genomics in the machine learning age has potential to do a great deal
of good in the long term. Yet uncovering a deeper understanding of how diseases
work isn’t the only worthwhile goal. Designing procedures that can work now to
be more effective, sometimes crossing a threshold between non-pracitcality and
practicality (embedded in some particular context), can have a more immediate
benefit. In the clinic, the time scale and cost of data collection are not abstract
mathematical problems, so designing a predictive model that maximally lever-
ages the data available (while acknowledging that there is never a guarantee that
any particular dataset contains the information necessary to answer a particu-
lar question) can be just as enabling as uncovering a new paradigm of disease
progression.

To wrap up this introduction, we’ll now briefly (and with some repetition from
what’s come before) outline the studies discussed in each subsequent chapter. In
Chapter 2 we present new analysis of the loop-mediated isothermal amplification
(LAMP) assay on clinical and synthetic samples, motivated by the unmet need
for statistcally principled methods for guided LAMP optimisation. To do this,
we’ll use Bayesian methods for prediction, where the target of prediction is not
the medical outcome in question but the technical accuracy of an assay based
on a given biological target. We continue in Chapter 3 with another study into
the optimal, data-driven design of a biomedical test, albeit in the cancer setting.
Here, we are concerned with the prediction of tumour mutation burden (TMB),
a key clinical biomarker determing how likely cancer patients are to respond to
immunotherapy. Our task is to select a small number of gene targets to form a
targeted DNA sequencing panel from which to estimate TMB. We’ll do this with
an extension of LASSO-based regularisation. Finally, in Chapter 4, we extend the
previous chapter’s work, and investigate the extent to which panel-based genomic

54



markers can be tailored to identify heterogeneous causal effects in immunotherapy
response.
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Chapter 2

Bayesian analysis for optimising
LAMP gene expression assays

Overview

Loop-mediated isothermal amplification (LAMP) is a fast and cost-effective tech-
nique for detection of DNA/RNA. Its lack of reliance on complex laboratory
equipment makes it ideal for use in point-of-care biomedical applications such
as the diagnosis of time-critical disease. In this chapter we investigate the use
of LAMP for profiling gene expression by measuring mRNA in blood samples.
This is used in a test to establish whether patients with acute inflammation are
bacterially or virally infected.

While LAMP has many appealing properties, it remains unclear what factors
affect its quantitative resolution. A lack of model-based frameworks to charac-
terise LAMP data presents an unmet need in enabling the development and use of
the assay. At present each of the assay’s multiple primers are typically optimised
experimentally, presenting a major bottleneck in assay design. We present hier-
archical Bayesian models of LAMP amplification based on Gompertz functions,
and use these models to infer the effect of RNA variation and other factors on
LAMP amplification curves derived from ∼100 blood samples of patients with
suspected acute infection.

Our analysis uncovers associations between LAMP assay resolution and char-
acteristics such as primer sequence composition and thermodynamic properties.
In addition to correlations between RNA input abundance and time shift of the
LAMP amplification curve, we also detect RNA-dependent associations with
amplification rate. We further investigate associations between primer/target
properties and quantitative performance of the assay by generating a set of syn-
thetic RNA samples with systematically varied primer sequences and applying our
framework. We find evidence that the associations observed are driven by across-
target rather than within-target variation. This has important implications for
study design, where in the past similar analyses have relied upon datasets includ-
ing only one primer configuration per target. Our findings represent first steps
towards data-driven development of quantitative assays, a key need in enabling
LAMP’s use in the range of application spaces for which it shows promise.
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2.1 Introduction

Loop-mediated isothermal amplification (LAMP) is a fast, sensitive, and pre-
cise method for detecting DNA or RNA, the latter case referred to as reverse-
transcription (RT)-LAMP. Since its introduction (Notomi et al., 2000), LAMP
has been used for pathogen detection (Mekata et al., 2009; Cao et al., 2017;
Thiessen et al., 2018), sex identification (Hirayama et al., 2013; Almasi and Al-
masi, 2017; Centeno-Cuadros et al., 2018), and cancer monitoring (Li et al., 2016;
Horiuchi et al., 2020; Kalofonou et al., 2020). Unlike comparable assays such as
PCR, LAMP is isothermal and therefore does not require a thermocycler. This
makes the assay particularly amenable to point-of-care and field applications (Fu
et al., 2011). In particular, we study the use of LAMP in diagnostic testing for
time-critical acute medicine, a setting in which lab-based PCR is unviable.

We begin by introducing some terminology. We refer to a sample as the
material to be profiled for a given patient, in our case from a blood sample. For
each sample, we aim to profile the expression of multiple RNA sequences, referred
to as targets. Each target will typically be chosen to represent a particular gene of
interest, but could be any sequence. The LAMP assay comprises an amplification
reaction initiated by the target sequence and whose progress can be measured
for detection/quantitation. The reaction in question relies on several primers.
These are oligonucleotides (short sequences of DNA) that are complementary to
subsequences of the target and bind to them by hybridisation. Once these primers
have bound to the target or to subsequent products, they act as initiation points
for polymerisation, leading to the production of more nucleotide sequences which
fold and separate to form an amplicon. This amplicon then serves as the basis
for further amplification steps. The components of the reaction are chemically
tagged such that amplification can be measured via fluorescence. By this we
mean that the reaction emits light that can be measured and forms the basis for
the data we aim to analyse.

As in PCR, LAMP specificity relies on primer-target complementarity. In its
original conception, two pairs of primers (referred to as F3/B3 and FIP/BIP)
were proposed, and further optional pairs of primers were introduced for loop
hybridisation (Nagamine et al., 2002) and amplicon enlargement (Gandelman
et al., 2011). In the experiments discussed here, six primers are used: the core
pairs F3/B3 and FIP/BIP, and a loop hybridisation pair LF/LB. A technical
overview of the LAMP reaction is given in Figure 2.1. It is not necessary to
understand every step of the reaction to follow the analysis presented in this
chapter; readers need only follow that the LAMP assay requires the design of six
primers. The need for coordinated design of multiple primers can create a major
bottleneck in LAMP assay development.

While LAMP has primarily been used in qualitative/detection applications,
advances in measurement technology (Zhang et al., 2014; Becherer et al., 2020),
in particular automated fluorescence detection for producing LAMP amplification
curves, have enabled quantitative use of the assay. Previous work has extended
this approach to measurement of mRNA in a given sample, a technique referred
to throughout as quantitative reverse-transcription loop-mediated isothermal am-
plification (qRT-LAMP) (Remmel et al., 2022). Quantification for qRT-LAMP
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Figure 2.1: Intermediate steps in the qRT-LAMP reaction. A: Following reverse
transcription, any of the primers F3, FIP (comprising F2 and F1c sequences),
and LB may anneal to the cDNA template. Polymerisation from the bound FIP
primer leads to introduction of the F1c sequence into the product. B: Annealing
of the F1c sequence to its complement creates a loop. The primers B3, BIP (com-
prising B2 and B1c sequences), and LF anneal to this single-loop template. C:
Annealing of the B1c sequence to its complement creates another loop, resulting
in the canonical ‘dumbbell’ LAMP template, or amplicon. D: The stem region
of the dumbbell template (the span between F1c and B1 sequence regions) con-
tains the target sequence of interest while the loop regions (the regions spanning
from F1c/B1 inclusive to F1/B1c exclusive) provide additional sites to initiate
polymerisation. Crucially, any of the six primers may anneal and initiate poly-
merisation at any point at which a complementary region is available, leading to
creation of other products (not shown for simplicity) distinct from the canonical
product.
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requires analysis of the same data (one amplification curve per sample per tar-
get), but rather than detecting simply whether a reaction has initiated aims to
extract quantitative data reflective of the input RNA abundance.

Current understanding of the ideal properties of primers and targets to opti-
mise qRT-LAMP’s performance is incomplete and qualitative; primer design relies
on a small set of guiding principles (Panno et al., 2020), including restrictions on
the GC nucleotide content, melting temperature, and presence of GG repeats in
primer sequences. In practice, primer design proceeds in trial-and-error fashion,
as these guidelines can often be in conflict and are far easier to simultaneously
satisfy for some RNA targets than others. Furthermore, there has been little
work to assess the impact on performance of sequence-based and thermodynamic
properties of the LAMP primers and amplicon.

Statistical modelling frameworks provide one approach to link assay properties
and characteristics of amplification curves. Extensive work exists for modelling
both PCR amplification curves (Spiess et al., 2008; Matz et al., 2013; Subra-
manian and Gomez, 2014; Nguyen et al., 2020) and the effect of primer/target
properties on PCR assay performance (Mallona et al., 2011; Wright et al., 2014;
Döring et al., 2019). Previous work on primer design for PCR has identified ther-
modynamic properties of primer/target interactions (Mann et al., 2009; Li and
Brownley, 2010; Döring et al., 2019) and sequence length (Huang et al., 2022)
as key quantities associated with assay specificity. Thermodynamic properties
(e.g. free energy of primer-target hybridisation) have also been associated with
the speed of isothermal reactions (Kimura et al., 2011). In contrast, the study
of LAMP-based quantitation is still under active development, and methods for
qRT-LAMP data analysis are lacking.

Gompertz functions (Gompertz, 1825) have proved a useful tool for empiri-
cal modelling of growth curves in varied biological settings (Tjørve and Tjørve,
2017). One formulation of the Gompertz curve is parameterised by an ‘ampli-
tude’ (the maximum value reached at asymptote), a ‘rate’, and an ‘offset’ (the
horizontal shift of a curve along its time axis). Gompertz functions are simi-
lar to logistic functions, but allow for steeper increases from baseline and slower
approaches to asymptote than logistic functions. In Section 2.2.2 we define Gom-
pertz functions formally (Equation 2.1) and give some examples alongside real
amplification curves to demonstrate their properties (Figure 2.3). Bayesian and
hierarchical Bayesian formulations of Gompertz curves have appeared in biomed-
ical applications (Wiper et al., 2010; Demirhan and Ata Tutkun, 2015; Sasaki and
Kondo, 2016; Gotuzzo et al., 2019; Vaghi et al., 2020; Berihuete et al., 2021) and
have started to appear in LAMP reaction modelling for detection (Carvalho et al.,
2021). However, no Bayesian or hierarchical methods have yet been applied to
characterise qRT-LAMP dynamics or to model the effects of different properties
of LAMP targets/primers on quantitative assay performance.

Here we present a model-based analysis of the quantitative characteristics of
the LAMP assay. We first develop a Bayesian modelling framework for inferring
the impact of changes in RNA input on amplification rate and offset, and we ap-
ply this framework to a dataset of qRT-LAMP curves derived from 109 patients
suspected of acute infection. Then, we compile a collection of primer/target
features, and extend our hierarchical framework to detect associations between
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these features and resolution (or the ability to detect differences in RNA input)
of the qRT-LAMP assay. In order to further investigate the effects of primer/-
target features on assay resolution, we utilise a novel dataset from synthetic
in vitro-transcribed (IVT) RNA templates assayed with systematically varied
LAMP primer sequences. This dataset allows us to apply our framework in a
context where we apply multiple primer sets to each target, and in so doing more
directly interrogate the effects of changes to primer design. Our model-based anal-
ysis highlights several key considerations in the design and optimisation of the
qRT-LAMP assay, including the use of amplification rate for quantitative infer-
ence and the inclusion of thermodynamic properties into decisions around primer
design. We provide a description of our implementation of this work via the R
package LAMPPrimerFeatures and a targets analysis workflow in Appendix A.

In Figure 2.2 we give an example of the eventual workflow that we aim to
develop, for which this chapter is an exploratory first analysis. While we can
extract good signal (i.e. association with NanoString) for some markers based
purely on the estimated offset of their LAMP amplification curves, we hope to
develop improved expression estimation methods. To do, we require a deeper
understanding of the statistical effects governing reaction curves. Understanding
these is the core aim of this chapter.

2.2 Methods

2.2.1 Datasets and technologies

We utilised two datasets, one derived from clinical samples and one from synthetic
IVT RNA templates. We summarise the data availability for each of the two
experimental setups in Table 2.1.

Our clinical dataset comprised blood samples collected from 109 patients,
each adjudicated to be either bacterially infected, virally infected, or non-infected
(with these three labels occurring in approximately equal proportions). For each
sample, we analysed gene expression measured from 28 target RNA transcripts:
25 genes previously identified as targets of interest for bacterial/viral/non-infected
classification (He et al., 2021) as well as 3 housekeeping genes (KPNA6, RREB1,
and YWHAB). By a housekeeping gene, we mean one whose expression is not
expected to vary substantially between samples, and so can act as reference for
normalisation. We tracked fluorescence for 20 minutes or 60 ‘cycles’ (1 cycle =
20 seconds)1. For each sample/target, two technical replicates were performing
using separate subportions (aliquots) of the given sample. Another aliquot was
used for mRNA quantification using the NanoString (NS) nCounter system. The
NS nCounter system directly counts RNA transcript number in a single step by
measurement of fluorescence via hybridisation of capture and reporter probes. As
such, NS measurements are a singular value (unlike other comparison technologies
such as qPCR) and very sensitive even at low expression levels (Geiss et al., 2008).
While NS is unsuitable for point-of-care usage, it is an ideal technology to provide

1Note that these are not strictly cycles since the LAMP reaction is isothermal, but the cycle
nomenclature is still common in the LAMP literature.
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(a) Workflow for LAMP-based expression assay.

(b) Per-target associations between estimated Gompertz curve offset from qRT-LAMP
measurements, and NanoString measurements.

Figure 2.2: Overview of aims: our eventual goal (beyond the scope of this work)
is to estimate gene expression accurately from qRT-LAMP measurement curves.
This would follow the workflow shown in a). To motivate this as an achiev-
able outcome, we show in b) associations between our ground truth NanoString
measurements and a very simnle expression estimation method based purely on
estimated Gompertz offsets extracted from each curve.
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Summary Clinical Dataset IVT Dataset
Number of samples 109 3
Number of targets 25 3(non-housekeeper)
Number of targets 3 0(housekeeper)

Replicates per sample/target 2 ≥ 2(qRT-LAMP)
Primer sets per sample/target 1 35-63
Replicates per sample/target 1 0(NS)

Cycles per run 60 90

Table 2.1: Specification of clinical and IVT datasets.

‘gold standard’ benchmark measurements. Higher NS values correspond to higher
target expression.

Our IVT RNA dataset (preparation described in Remmel et al., 2022) com-
prised measurements for three targets: IFI27, JUP, and OASL. This dataset was
generated by assaying different concentrations of synthetic RNA templates corre-
sponding to each of the the targets. To test the effects of varying different primer
properties on qRT-LAMP performance, FIP and BIP primer sequences were var-
ied for each target. These sequence alterations consisted of variations in the
lengths of annealing sequence for either the F1c (B1c) or F2 (B2) subsequences
of the FIP (BIP) primer (Figure 2.1). F3, B3, LF, and LB primer sequences were
not varied. For each target/primer set combination, qRT-LAMP measurements
at three RNA concentrations (101, 103, and 105 copies/µL; 20µL per reaction)
were collected, with at least two replicates per concentration. We investigated
effects of changes in FIP/BIP primer sequence in 35, 48 and 63 primer combina-
tions for IFI27, JUP, and OASL respectively. For the IVT samples, fluorescence
was tracked for 30 minutes, or 90 cycles.

We now describe technical aspects of sample preparation and collection for
each of the datasets used. Blood samples from our clinical dataset were col-
lected using the PAXgene RNA system, as described in Ram-Mohan et al. (2022).
These patients samples were drawn from patients involved in two clinical trials:
“HostDx Sepsis in the Diagnosis and Prognosis of Emergency Department Pa-
tients With Suspected Infections: a Multicenter Pilot Study” (clinicaltrial.
gov/NCT03744741), and “Efficiency in Management of Organ Dysfunction Asso-
ciated with Infection by the Novel SARS-CoV-2 Virus Through a Personalised
Immunotherapy Approach: The ESCAPE Clinical Trial: The ‘ESCAPE’ Trial
(a.k.a ESCAPE)” (EudraCT/2020-001039-29). At enrollment, patient blood was
collected and immediately stored with PAXgene RNA stabilisation. Two in-
dependent aliquots of each sample underwent RNA extraction for profiling by
qRT-LAMP and were dispensed along with primers and reagents and run on a
96-well plate with a QuantStudio™ 5 Real-Time PCR System for Human Iden-
tification (Applied Biosystems; Waltham, MA USA). We normalised NS mea-
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surements by first rescaling counts such that housekeeping genes had a geometric
mean of 1000 and then applying a log2 transformation to the rescaled counts.
To measure mRNA expression with qRT-LAMP, a set of six LAMP primers
(FIP/BIP, F3/B3, and LF/LB; Figure 2.1) for each target were designed using
PrimerExplorer v5 (Eiken, 2019) or via a third-party service provider (Primer
Digital, Ltd; Helsinki, Finland). QRT-LAMP reactions occurred at 65◦C, in the
presence of 90mM KCl and 8mM MgSO4. Originally 29 non-housekeeper targets
were measured, but we excluded 4 for technical reasons: FURIN and S100A12
due to the use of different primer concentrations; CTSB and DEFA4 as LF/LB
primers did not anneal to their target sites. Reaction conditions for qRT-LAMP
with IVT RNA templates were identical to those used for the clinical samples.
Replicate samples were dispensed along with primers and reagents and run on a
384-well plate with the QuantStudio™ 5 instrument.

2.2.2 Amplification curve pre-processing and normalisation

To prepare qRT-LAMP curves for analysis, we performed a series of pre-processing
steps. We first applied baseline correction to set the initial fluorescence of each
reaction approximately to zero. We then used a nonlinear least-squares approach
to fit Gompertz functions to each amplification curve. The Gompertz function is
parameterised by three quantities (a, b, and c in Equation 2.1) associated with the
amplitude, rate, and cycle offset, respectively, of the amplification curve. One can
think of the parameter c as a time-to-threshold measurement (as used for qPCR)
in which the threshold is specific to each reaction curve. Higher cycle offset (a
right-shifted curve) would indicate lower amounts of RNA, and vice versa. The
Gompertz function is defined as follows:

y = a exp
(
− exp

(
− b(t− c)

))
. (2.1)

Here, y corresponds to baseline-corrected fluorescence and t is time in cycles.
Our procedure estimates parameters (âgomp, b̂gomp, ĉgomp) for a given amplification
curve. Anecdotally and experimentally, LAMP amplification curves often become
very noisy around asymptote, and for reasons of technical calibration the absolute
level of asymptotic fluorescence (a) is relatively unimportant (as with qRT-PCR)
to quantitation compared to cycle offset (c). The impact of input RNA abundance
on amplification rate (b) is, by contrast, fairly unexplored. Motivated by this
and after noting some misfit to the asymptote in early versions of our curve-
fitting procedure, we developed and applied an iterative procedure, described
in Algorithm 1, to remove observations exceeding the fitted asymptote at each
iteration. We then retained the fitted asymptote (âgomp) at the last iteration
(when no points of the curve exceeded the asymptote) to rescale the curve. A
selection of example outputs from this procedure appear in Figure 2.3. Note that
in the remainder of this work we will be attempting to model the rate and offset
of these curves on the basis on the abundance of RNA input to the assay.
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Figure 2.3: The normalisation procedure described in 2.2.2, with examples from
our clinical dataset. A: Baseline-corrected LAMP curves with points correspond-
ing to individual fluorescence measurements (arbitrary units) over 20s cycles. B:
Rescaled and pruned LAMP amplification curves. Points show scaled measure-
ments while solid blue lines correspond to Gompertz curve fits from our iterative
procedure. C: Distribution of goodness-of-fit (measured by mean squared error)
for our fitted Gompertz curves, with 50%, 90% and 99% quantiles indicated by
dashed vertical lines. Representative fits from these quantiles are shown in A and
B. D: Reproduction of the third figure of panel B, with a logistic curve fit for
comparison (red).
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Algorithm 1: Iterative least-squares Gompertz curve-fitting procedure

Data: The set {(t,Dt) : t = 1, . . . , T}, where T is the number of cycles
observed and Dt is the fluorescence measured by the qRT-LAMP
assay at cycle t.

Output: A triple (âgomp, b̂gomp, ĉgomp) of Gompertz parameter estimates,
and a pruned set {(t,Dt) : t = 1, . . . , n∗}.

Set n = T ;
Set δ = 0;
while (δ ≥ 0) do

Set (â, b̂, ĉ) = arg min
(a,b,c)∈R3

{∑n
t=1

(
Dt − a exp

(
− exp

(
− b(t− c)

)))2}
;

Set δ = max{Dt : t ∈ {1, . . . , n}} > â;
Set n = min{t : Dt+1 > â};

end
Set (âgomp, b̂gomp, ĉgomp) = (â, b̂, ĉ);
Set n∗ = n.

2.2.3 Single-target model

To investigate the effects of RNA abundance on qRT-LAMP amplification curves
for individual targets, we model the Gompertz curve parameter estimates pro-
duced by our nonlinear fitting procedure. For samples i = 1, . . . , N , replicates
j = 1, . . . , J , with NS-measured gene expression xi (a proxy for true RNA input
in clinical samples), we model estimated parameters for rate (b̂gomp

ij ) and cycle off-
set (ĉgomp

ij ) of an individual target as realisations of independent random variables
B̂ij and Ĉij distributed according to:

B̂ij ∼ Student-t(µB + λBxi + ρBĥ
gomp
i , νB, σB), (2.2)

Ĉij ∼ Student-t(µC + λCxi + ρC ĥ
gomp
i , νC , σC). (2.3)

Probabilistic graphical model (PGM) plate diagrams for these models are given
in Figure 2.4. We use a Student-t(µ, ν, σ) likelihood to provide robustness to
outliers, with µ, ν, and σ corresponding to the location, shape, and scale of
the distribution respectively. We refer to λB and λC as resolution parameters
since a larger absolute value of λB or λC would reflect greater sensitivity, on
average, to changes in RNA input for a given target. Note that these properties
are with respect to absolute changes in RNA input, not changes in RNA input
relative to the overall variation of a given target. We are therefore specifically
attempting to measure LAMP’s technical performance measuring a biochemical
target, not the total discriminatory power of the range of a target’s expression.
When, for example, selecting targets for a diagnostic test, other considerations
such as clinical significance and variation in expression will have to be weighed
against technical resolution of the assay.

The input ĥgomp
i is the geometric mean of the values ĉgomp

ijk across all replicates
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Figure 2.4: PGM plate diagrams for single-target models of B̂ (left) and Ĉ (right).

j and all housekeeping genes k ∈ {KPNA6, RREB1, YWHAB}, included to nor-
malise for sample-to-sample variation in RNA yield. The strength of this normali-
sation is controlled by the parameters ρB and ρC . The parameters σB and σC cap-
ture variation in rate and cycle offset that is not attributable to variation in RNA
input. Bayesian inference is performed with the R package brms (Bürkner, 2017).
We specify priors as follows. For the rate model (eq. 2.2): µB ∼ N (0.5, 0.52),
λB ∼ N (0, 0.12), ρB ∼ N (0, 0.12), νB ∼ Γ(2, 0, 1), σB ∼ Student-t(3, 0, 2.52); for
the cycle offset model (eq. 2.3): µC ∼ N (30, 52), λC ∼ N (0, 12), ρC ∼ N (0, 12),
and identical priors to the rate model for νC , σC . Priors here and throughout
this chapter were chosen either as brms defaults or, where necessary, to meet
basic prior predictive checks based on minimum and maximum observed relative
fluorescence levels for each cycle throughout the entire dataset. We approximate
model posteriors with 4000 samples (1000 warm-up) from 3 HMC chains, assessed
for convergence with all parameter posteriors achieving R̂ ≤ 1.01 and bulk and
tail effective sample sizes above 1000.

2.2.4 Multi-target model

To evaluate associations between primer/target properties and assay resolution,
and to model qRT-LAMP amplification curves across all targets, we propose
hierarchical models of the estimated rate and cycle offset. We derive estimates
of the rate b̂gomp

ijkl and offset ĉgomp
ijkl for sample i, replicate j, target k, and primer

set l (only varied in the case of IVT RNA templates) from our non-linear least
squares fitting procedure. We then model each of the b̂gomp

ijkl and ĉgomp
ijkl as being

independent realisations of random variables B̂ijkl, Ĉijkl, where:

B̂ijkl ∼ Student-t(µB(zkl;βB) + λB(zkl;γB)xi + ρBĥ
gomp
i , νB, σB), (2.4)

Ĉijkl ∼ Student-t(µC(zkl;βC) + λC(zkl;γC)xi + ρC ĥ
gomp
i , νC , σC). (2.5)

Here, for each model the location of the likelihood comprises RNA-independent
baseline offset µB (/µC) and RNA-dependent resolution λB (/λC) functions, pa-
rameterised by βB (/βC) and γB (/γC), respectively. These functions (which
we will refer to as µ and λ when speaking interchangeably about either model)
take as an input a vector of sequence-based and thermodynamic features, zkl,
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associated with the given primer set l and target k. In our clinical dataset, z has
no dependence on l as each target corresponds to a single primer set. Also, for
our clinical dataset, we let baseline offset µ vary across targets k by specifying it
as a hierarchical random effects term. We also remove dependence of µ on zk:

µ(zk;β) = β0,k, (2.6)
β0,k ∼ N (µβ0 , σ

2
β0

). (2.7)

This random term models target-specific effects unrelated to assay characteristics.
Our models of baseline offset in clinical samples did not have slopes (βz) varying
by target as we had only one primer set per target.

For our IVT RNA dataset, we note that: a) xi represents the log RNA copy
number at concentration i, and b) we drop the housekeeping term (ρĥgomp

i ) as
input RNA concentrations are known. For both our IVT RNA and clinical data,
we use λ to model effects of assay features on (RNA-dependent) assay resolution
(e.g. λ(zkl; γ) = γ0 + γLstemLstem,k,l).

For analysis of our IVT RNA dataset, we specify two types of models, which
we refer to as across-target and within-target models respectively. For both model
types, the RNA-independent offset function, µ, includes random intercepts and
random slopes to model dependence on assay properties. For example, when
using stem length as an input: µ(zkl;β) := β0,k + βLstem,k

Lstem,k,l. This is to
allow maximum flexibility in the RNA-independent offset to focus on changes in
resolution (via λ) due to primer set features. The form of the resolution function
λ for our across-target model is identical to that applied to clinical data, while
for the within-target model, we include random target-specific intercepts in the
resolution function λ. Again, using stem length as an example, the within-target
model λ function would be:

λ(zkl;γ) = γ0,k + γLstemLstem,k,l, (2.8)
γ0,k ∼ N (µγ0 , σ

2
γ0

). (2.9)

We give PGM plate diagrams for both across- and within-target models for B̂
and Ĉ in Figure 2.5. Note that the only difference is whether the parameter γ0 is
‘inside’ the plate associated with target k, i.e. is allowed to vary between targets.
When the λ function parameter γ is a ‘global’ parameter (i.e. not specified
as a hierarchical term), we use independent N (0, 22) priors for its component
parameters. When γ includes hierarchical terms for the intercept, we specify
priors µγ0 ∼ N (0, 22), σγ0 ∼ Student-t(3, 0, 2.52). Priors for the baseline offset
parameters β are set similarly, aside from the intercept term β0: µβ0 ∼ N (1, 12)
for our rate model and µβ0 ∼ N (23, 52) for our cycle offset model. In each case the
parameters ν and σ are given priors ν ∼ Γ(2, 0.1), σ ∼ Student-t(3, 0, 2.52). For
multi-target model parameter inference, we use 3 HMC chains of 4000 samples
(1000 warm-up), again assessing convergence by confirming that all chains have
R̂ ≤ 1.01 and effective bulk and tail sample sizes above 1000.
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Figure 2.5: PGM plate diagrams for B̂ (left) and Ĉ (right). Specifications are
given for multi-target models with across-target resolution functions (top row)
and within-target resolution functions (bottom row).

Property type Property Symbol Unit

Amplicon-specific
Stem length Lamp

s bp
Loop length Lamp

l bp
GC Content GCamp -

Specific to primer p

4-complexity Cp -
Free energy of annealing ∆Gp

a kJmol−1

Free energy of self-
∆Gp

sd
kJmol−1

dimerisation
Free energy of secondary

∆Gp
ss kJmol−1

structure formation

Table 2.2: Properties of targets/primers used in hierarchical modelling of LAMP
performance. Here p ∈ {F3, B3, F IP,BIP, LF, LB}.

2.2.5 Properties of primers and targets

Multiple properties are known to impact efficacy of LAMP primers, including
melting temperature, GC content and GG repeat abundance (Eiken, 2019). In
practice, many of these properties are tightly controlled in primer design work-
flows, resulting in little variability with respect to these quantities. We therefore
focused on three classes of LAMP properties: a) sequence features of the LAMP
target or amplicon; b) thermodynamic properties of primers and their targets;
and c) measures of primer sequence complexity. The full list of properties ap-
pears in Table 2.2. Stem length (Lstem) and loop length (Lloop) measure the
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total length in nucleotide bases of the amplicon stem and loop regions, respec-
tively (Figure 2.1D). GC content (GC) is the proportion of bases of the entire
amplification region (F3 to B3, inclusive) that are either G or C.

Each free energy property measures the strength of some binding process
via Gibbs free energy. Free energy of annealing (∆Gp

a) measures the binding
affinity of a primer with its complementary target region, while free energy of
self-dimerisation (∆Gp

sd) quantifies a primer’s propensity to anneal to another
copy of the same primer. Finally, ∆Gp

ss measures a single primer’s tendency to
form secondary structure within itself. We follow the approach of Döring et al.
(2019), using UNAFold (Markham and Zuker, 2008) for free energy calculations
and applying ion concentration adjustments as described in Peyret (2000). For
FIP (BIP) primers, we calculated separate free energies of annealing for F1c (B1c)
and F2 (B2) primer subsequences.

To measure the extent to which a primer sequence contains unexpected k-mer
sequences (i.e. sequences of length k) compared to a reference sequence, we also
computed sequence complexity (Cp) (Nielsen et al., 2003; Xia et al., 2010). This
measure is based on the information-theoretic notion of entropy (Shannon, 1948).
We measure complexity with respect to 4-mers and use the entire human exome
as contained in the Ensembl database (Yates et al., 2020) as our set of reference
sequences. We use a simplified formulation of 4-complexity:

Cp
4 := 1−

∑L−3
`=1 n

p
4(`) log(np4(`))

Z
.

Here, np4(`) refers to the count of 4-mers found in the reference sequence set that
match the 4-mer in primer p’s sequence starting at position `. The normalising
constant Z is set to ensure that complexity varies between 0 and 1. A low
complexity score indicates that the majority of a primer’s constituent k-mers
occur commonly in the reference set.

2.2.6 Bayesian stacking for model comparison and valida-
tion

To compare multi-target models and identify which LAMP properties are most
robustly associated with resolution, we use Bayesian model stacking based on
Pareto-smoothed importance sampling approximations of each model’s perfor-
mance in leave-one-out cross-validation (LOO-PSIS; implemented by the R pack-
age loo; Vehtari et al., 2020). The aim of this procedure is to approximate what
results would have been uncovered by performing analysis on multiple training/-
validation data splits.

In traditional model stacking, predictions from multiple models are ensem-
bled via a linear combination in order to minimise the average cross-validation
prediction error (Wolpert, 1992). The same process is applied in Bayesian model
stacking, but rather than using the squared error of models’ predictions, one cal-
culates log predictive densities for left-out observed values (i.e. those allocated
to a validation set; Yao et al., 2018). The outputs of stacking are model weights
associated with each individual model in the ensemble. These weights will sum to

70



one, and a larger weight indicates a more substantial contribution for the corre-
sponding model (relative to other models in the ensemble) to the optimal model
combination. Thus, we take large stacking weights to be indicative of stronger
associations of the corresponding model’s features with qRT-LAMP assay reso-
lution. We use Pareto-smoothed importance sampling to approximate (Vehtari
et al., 2017, 2021) the log posterior predictive density of each left out sample.
Pareto k diagnostic values > 0.5 would indicate a poor approximation of the
LOO posterior predictive density for some observations. We did not observe any
such problematic Pareto k-estimates in our analyses.

2.3 Results

2.3.1 RNA dependence for qRT-LAMP cycle offset and
amplification rate varies widely between targets

Our first aim was to infer the resolution (λB, λC) and precision (σB, σC) param-
eters associated with RNA input’s effect on qRT-LAMP curve characteristics in
clinical samples. We used our single-target models (Equations 2.2 and 2.3, Sec-
tion 2.2.3) to decompose variation in cycle offset (ĉij; median 22.2 across all tar-
gets, interquartile range (IQR) 5.03 across all targets) and rate (b̂ij; median 0.334
across all targets, IQR 0.076 across all targets) into separate RNA-dependent and
RNA-independent components. We fitted these models for each of our 25 targets
of interest (He et al., 2021). Summaries of the posterior distributions for rate and
cycle offset parameters appear in Tables 2.3 and 2.4. More in-depth summaries
are given in Appendix B.

We see a wide range of inferred posterior means for both λC and σC . For
the parameter λC , which denotes resolution with respect to cycle offset, larger
negative values correspond to improved resolution, and suggest that for a given
change in RNA input a larger average change in amplification curve cycle offset
will be observed. Offset precision σC is always positive, with lower values corre-
sponding to a more precise assay (i.e. less variation in amplification curve cycle
offset between samples of the same RNA input). For example, targets CTSL1
and ZDHHC19 both show good resolution (posterior means of −1.86 and −2.20,
95% credible intervals of (-2.09, -1.64) and (-2.59, -1.81), respectively), but dif-
ferent levels of precision (posterior means of 1.57 and 6.15, 95% credible intervals
of (1.42, 1.74) and (5.57, 6.80), respectively). Inferences of poor resolution and
precision for some targets (e.g. KIAA1370) indicate the potential need for further
optimisation of assay properties and/or conditions. We also note that, as expected
and as reflected by the posteriors for ρC , the geometric mean of the housekeeping
cycle offsets is generally correlated with the cycle offset of the target (i.e., lower
sample yield should correspond to higher cycle offsets for all targets).

The amplification rate parameter λB also varied between targets, with a larger
positive value indicating greater average sensitivity to changes in RNA input.
While some reactions, including for example CD163 and RAPGEF, showed almost
no detectable variation in rate due to RNA input (posterior mean for λB of
0.00, 95% credible intervals of (0.00, 0.01) in both cases), others such as PER1
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and ZDHHC19 did show a dependence on NS-derived measurements of RNA
(posterior means for λB of 0.04 in both cases, 95% credible intervals of (0.03,
0.05) and (0.04, 0.04) respectively). Posterior summaries for the precision in
amplification rate (σB) were roughly similar across targets. We also found that
housekeeping levels showed a negative association with the rate of amplification
(for example, 95% posterior credible intervals for ρB of (-0.03, -0.02) in ARG1
and (-0.02, -0.01) in BATF).

Target λC σC ρC

ARG1 -0.71 (-0.78, -0.65) 1.14 (1.02, 1.26) 1.14 (1.02, 1.26)
BATF -1.02 (-1.16, -0.88) 0.73 (0.66, 0.81) 0.78 (0.70, 0.86)
C3AR1 -0.90 (-1.00, -0.79) 0.88 (0.79, 0.97) 0.54 (0.43, 0.65)
C9orf95 -0.64 (-0.85, -0.44) 0.86 (0.78, 0.96) 0.51 (0.41, 0.60)
CD163 -0.61 (-0.68, -0.53) 0.51 (0.46, 0.56) 0.36 (0.30, 0.43)

CEACAM1 -0.64 (-0.73, -0.56) 0.97 (0.88, 1.08) 0.42 (0.31, 0.54)
CTSL1 -1.86 (-2.09, -1.64) 1.57 (1.42, 1.74) 1.03 (0.86, 1.21)

GADD45A -0.68 (-0.80, -0.56) 1.03 (0.94, 1.15) 0.29 (0.17, 0.40)
GNA15 -0.77 (-0.93, -0.61) 0.67 (0.60, 0.73) 0.95 (0.85, 1.04)
HK3 -0.70 (-0.76, -0.63) 0.44 (0.40, 0.49) 0.71 (0.66, 0.76)

HLA-DMB -0.95 (-1.41, -0.51) 3.25 (2.94, 3.61) 0.67 (0.35, 0.98)
IFI27 -0.91 (-1.01, -0.80) 2.10 (1.89, 2.34) 0.69 (0.48, 0.89)
ISG15 -0.97 (-1.06, -0.87) 2.10 (1.89, 2.34) 0.84 (0.63, 1.06)
JUP -1.57 (-1.78, -1.36) 2.43 (2.20, 2.69) 1.51 (1.25, 1.77)

KCNJ2 -0.70 (-0.81, -0.60) 0.75 (0.68, 0.83) 0.18 (0.09, 0.27)
KIAA1370 -0.34 (-0.57, -0.10) 0.99 (0.89, 1.10) 0.42 (0.31, 0.53)

LY86 -0.71 (-0.85, -0.58) 0.66 (0.60, 0.74) 0.78 (0.70, 0.86)
OASL -0.83 (-0.91, -0.76) 0.89 (0.80, 0.99) 0.83 (0.74, 0.93)
OLFM4 -1.01 (-1.12, -0.90) 1.58 (1.43, 1.77) 0.52 (0.35, 0.68)
PDE4B -0.95 (-1.21, -0.69) 1.35 (1.23, 1.49) 0.90 (0.74, 1.05)
PER1 -1.41 (-1.74, -1.10) 2.61 (2.36, 2.88) 0.39 (0.20, 0.58)
PSMB9 -0.94 (-1.06, -0.83) 0.66 (0.60, 0.73) 0.88 (0.79, 0.96)

RAPGEF1 -0.60 (-0.95, -0.26) 1.79 (1.62, 1.98) 0.68 (0.51, 0.86)
TGFBI -0.71 (-0.79, -0.63) 0.58 (0.53, 0.65) 0.79 (0.72, 0.87)

ZDHHC19 -2.20 (-2.59, -1.81) 6.15 (5.57, 6.80) 0.89 (0.53, 1.26)

Table 2.3: Posterior mean estimates of cycle offset resolution, precision and house-
keeping normalisation parameters for single-target models based on each target
(values in brackets = 95% credible intervals).

To further elucidate the range of behaviours captured by these single-target
models, we simulated from the posterior predictive distributions of B̂ and Ĉ for
four targets (CEACAM1, BATF, PER1, and ZDHHC19), to parameterise scaled
Gompertz curves. We used these samples to simulate scaled Gompertz curves
from targets showing different types of association between RNA input and ampli-
fication rate/cycle offset. We simulated these curves at three NanoString-derived
RNA input values (results shown in Figure 2.6). CEACAM1 displays negligible
rate dependence on RNA input, whereas all three others appear qualitatively dif-
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Target λB σB ρB

ARG1 0.02 (0.02, 0.02) 0.03 (0.03, 0.03) -0.03 (-0.03, -0.03)
BATF 0.03 (0.02, 0.03) 0.03 (0.03, 0.03) -0.02 (-0.02, -0.01)
C3AR1 0.02 (0.02, 0.02) 0.02 (0.02, 0.03) -0.01 (-0.02, -0.01)
C9orf95 0.02 (0.01, 0.02) 0.03 (0.02, 0.03) -0.01 (-0.02, -0.01)
CD163 0.00 (0.00, 0.01) 0.03 (0.02, 0.03) -0.01 (-0.01, -0.01)

CEACAM1 0.00 (0.00, 0.01) 0.02 (0.02, 0.02) -0.01 (-0.02, -0.01)
CTSL1 0.03 (0.02, 0.03) 0.03 (0.03, 0.03) -0.01 (-0.02, -0.01)

GADD45A 0.02 (0.01, 0.02) 0.03 (0.03, 0.03) -0.02 (-0.02, -0.01)
GNA15 0.02 (0.01, 0.02) 0.02 (0.02, 0.02) -0.02 (-0.02, -0.02)
HK3 0.00 (0.00, 0.00) 0.02 (0.02, 0.02) -0.01 (-0.02, -0.01)

HLA-DMB 0.01 (0.00, 0.01) 0.03 (0.03, 0.03) -0.01 (-0.01, -0.01)
IFI27 0.01 (0.00, 0.01) 0.03 (0.02, 0.03) -0.01 (-0.02, -0.01)
ISG15 0.01 (0.00, 0.01) 0.02 (0.02, 0.02) -0.02 (-0.02, -0.01)
JUP 0.02 (0.02, 0.02) 0.03 (0.03, 0.03) -0.02 (-0.02, -0.01)

KCNJ2 0.00 (0.00, 0.00) 0.02 (0.02, 0.02) -0.01 (-0.01, 0.00)
KIAA1370 0.02 (0.01, 0.03) 0.04 (0.03, 0.04) -0.01 (-0.02, -0.01)

LY86 0.02 (0.01, 0.02) 0.02 (0.02, 0.02) -0.02 (-0.02, -0.01)
OASL 0.01 (0.01, 0.02) 0.02 (0.02, 0.03) -0.02 (-0.02, -0.01)
OLFM4 0.01 (0.01, 0.01) 0.03 (0.03, 0.03) -0.01 (-0.01, -0.01)
PDE4B 0.01 (0.00, 0.01) 0.02 (0.02, 0.02) -0.01 (-0.02, -0.01)
PER1 0.04 (0.03, 0.05) 0.05 (0.05, 0.06) -0.01 (-0.02, -0.01)
PSMB9 0.01 (0.00, 0.01) 0.02 (0.01, 0.02) -0.01 (-0.02, -0.01)

RAPGEF1 0.00 (0.00, 0.01) 0.02 (0.02, 0.02) -0.02 (-0.02, -0.02)
TGFBI 0.01 (0.00, 0.01) 0.02 (0.02, 0.03) -0.01 (-0.02, -0.01)

ZDHHC19 0.04 (0.04, 0.04) 0.05 (0.04, 0.05) -0.02 (-0.02, -0.01)

Table 2.4: Posterior mean estimates of rate resolution, precision and housekeeping
normalisation parameters for single-target models based on each target (values
in brackets = 95% credible intervals).

ferent in shape across the gene expression range. PER1 and ZDHHC19 exhibit
the greatest offset resolution, but this is accompanied by substantially worse pre-
cision. A key point to emphasise is that, unlike in the case of qPCR, opting for an
approach based purely on time-to-threshold will under-utilise the full information
content of qRT-LAMP curves. As rates of amplification also appear important
for characterising qRT-LAMP reactions, parameter estimates of the rates could
be used in tandem with cycle offsets for target quantitation.

2.3.2 Multi-target model identifies assay properties associ-
ated with LAMP resolution in patient data

We fitted the multi-target models described in Equations 2.4 and 2.5 to our
clinical dataset using different combinations of primer/target features in the res-
olution function λ(zk;γ). We considered the following forms for λ in each anal-
ysis: a) an intercept-only model λ(γ) = γ0; b) for each of the three amplicon
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Figure 2.6: Simulated amplification curves for four primers (CEACAM1,
RAPGEF1, BATF, and ZDHHC19). Posterior predictive samples of Gompertz
curves of scaled fluorescence based on posterior predictive samples from mod-
els 2.2 and 2.3. For each target, curves are simulated at three different RNA
input (NS) levels – note that higher NS values correspond to higher expression
and, generally, to lower cycle offsets (left-shifted amplification curves). Solid lines
depict posterior means, while highlighted regions correspond to 95% credible in-
tervals.
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properties, a univariate linear function (e.g. for stem length Lstem, λ(zk;γ) =
γ0 + γLstemLstem,k); and c) for each primer-specific quantity and primer pair, a
bivariate model (e.g. in the case of free energy of annealing for the F1/B1 pair,
λ(zk;γ) = γ0 + γ∆GF1

a
∆GF1

a,k + γ∆GB1
a

∆GB1
a,k). Note again that in this setting we

only have one candidate primer set for each target and so no dependence on
primer set l.

Posterior summaries of the resolution function coefficients as well as the leave-
one-out Pareto smoothed importance sampling (LOO-PSIS) stacking weights for
each of these models appear in Figure 2.7 for models based on estimated rate
and in Figure 2.8 for those based on estimated cycle offsets. In each case, for
the stacking weights (left-hand panels of Figures 2.7/2.8), the higher the stacking
weight, the higher quality predictions the model was judged to have made for
a left-out sample in comparison to alternative models. In the right-hand panel
of Figures 2.7/2.8, we show posterior summaries of effect sizes (i.e. γB and γC
coefficients) associated with each of the primer/target properties used as features
in the resolution function, λ.

We found quantities associated with cycle offset resolution in both positive and
negative directions whose corresponding models were assigned strong weightings
by the LOO-PSIS procedure. Increased stem length, complexity in the F3/B3
primer pair, free energy of annealing in F2/B2 regions of the FIP/BIP primers,
and free energy of secondary structure formation in F3/B3 were associated with
improved resolution (negative effect sizes), and all corresponding models received
relatively high stacking weights. Immediately striking is the observation that,
despite the widespread assumption that design of the FIP/BIP primers is most
influential in determining LAMP performance, we detect surprisingly strong as-
sociations with properties of other primer pairs. This is a potent signal suggest-
ing the need for future follow-up work. These associations, particularly for F3,
may reflect the importance of the primer to the synthesis of a full-length tem-
plate, resulting in more sites for primer annealing and amplification (Figure 2.1).
Increases in complexity of LF/LB primers, free energy of self-dimerisation for
FIP/BIP, and free energy of secondary structure formation in LF/LB were as-
sociated with worse resolution (positive effect sizes), with corresponding models
also receiving high stacking weights. We do observe some primer pairs for which
posterior mean effect sizes were in opposing directions. For example, free energy
of self-dimerisation shows a positive effect for the B3 primer and a negative effect
for F3. We see that no such models were assigned large stacking weights. We
might expect these different associations with resolution due to stochasticity of
the LAMP assay in the production of intermediates from either strand of the
target.

We also observe associations between primer/amplicon properties and rate
resolution (Figure 2.7). Note that in this case a positive effect size corresponds to
improved resolution. Some properties appear to be associated with rate resolution
in the same way as offset resolution: for example, 4-complexity of F3/B3 are
associated with improved resolution in each case. Others, such as stem length, are
associated with worsened rate resolution but improved offset resolution. Others
still show strong effects in one model but not in another, including free energy
of self-dimerisation of the F3/B3 pair. Unlike for offset models, one of the most

75



Figure 2.7: Posterior summaries of multi-target models for rate resolution speci-
fied in Sections 2.2.4 and 2.3.2, based on combinations of primer/target prop-
erties, with their associated Bayesian model stacking weights (left) and γB-
coefficient effects sizes (right). Effect sizes are posterior means, with error bars
delineating 95% credible intervals. Notation as given in Table 2.2.
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Figure 2.8: Posterior summaries of multi-target models for cycle offset resolution
specified in Sections 2.2.4 and 2.3.2, based on combinations of primer/target
properties, with their associated Bayesian model stacking weights (left) and γC-
coefficient effects sizes (right). Effect sizes are posterior means, with error bars
delineating 95% credible intervals. Notation as given in Table 2.2.
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Pos. Rate Coef. Negative Rate Coef.

Pos. Offset Coef. × Free energy of self-
dimerisation (FIP/BIP)

Neg. Offset Coef. Loop length Stem length

Table 2.5: Properties for which credible regions for both rate and offset resolution
did not contain zero and within-pair properties were aligned in directionality.

strongly identified contributors to rate resolution (free energy of annealing of the
F1/B1 regions) exhibits distinct reversed directions of effect between F1 and B1
regions.

In Table 2.5 we summarise the three properties for which strong uniform
signal (as defined in the caption) was observed for both resolution with respect
to amplification curve rate and offset.

2.3.3 Varying qRT-LAMP primer sequences identifies dis-
tinct across-target and within-target patterns of as-
say resolution

In this section we describe our use of a distinct, novel synthetic dataset (prepa-
ration described in Section 2.2.1 and Remmel et al., 2022) to address with more
granularity the direct effects of changes to primer sequences on assay resolution.
While in Section 2.3.2 we identified interesting and unexpected associations with
other primer pairs, here we focused on FIP and BIP primers – future work will
address comparable questions for F3/B3/LF/LB. We also focus here on offset
resolution only. In the previous analysis, we pooled our data across targets to
estimate associations of assay properties with resolution. However, while we
showed associations of these properties with resolution across targets, we could
not determine for any individual target whether variation in these properties was
associated with variation in resolution. To address the latter objective (arguably
more important for LAMP optimisation), we generated a IVT RNA dataset com-
prising multiple primer sets (containing multiple combinations of the FIP and
BIP primers) for each target. We fitted models with two different forms of res-
olution function. In the first form, for each combination of assay properties
we fitted a model based on those properties alone with no target-level group-
ing terms (across-target models). In this way, the resolution function λ did not
depend on target (k) other than through the primer set (l) features zkl (e.g.,
λ(zkl;γ) = γ0 + γLstemLstem,k,l).

In the second model form (within-target), we specified a hierarchical random
effects term (varying by target) for the resolution intercept, γ0. In this way, we
were able to infer the dependence of resolution on primer set properties while
accounting for intrinsic target-to-target variation in resolution. Summarised in-
ferences and model stacking weights after fitting of the across-target and within-
target models to the IVT RNA data appear in Figure 2.9. Note again that these
models are not a subset of those shown in Figure 2.8, but rather similar models
applied to a novel synthetic IVT dataset with systematically varied FIP and BIP
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Figure 2.9: Posterior summaries of multi-target models as specified in Sec-
tions 2.2.4 and 2.3.3 applied to IVT RNA data. Effect sizes for γ-coefficients
from across-target (center left) and within-target (center right) models, as well
as associated model stacking weights (far left/right respectively). Error bars de-
lineate 95% credible intervals.

primers.

We note that the across-target models gave far more inferences than the
within-target models of high-confidence, high-magnitude effect sizes of assay prop-
erties on resolution. Relatively few properties were inferred to have effect sizes of
high magnitude (many 95% credible intervals contain 0) for within-target mod-
els. Importantly, these results indicate that much of the variation in resolution
explained in previous models may be due to intrinsic target-to-target variation
not attributable to the assay properties we considered. Of the within-target mod-
els, those based on complexity of the FIP primer, free energy of self-dimerisation
of the FIP primer, and free energy of secondary structure formation of the FIP
primer had significant posterior mean effect sizes (i.e. 95% posterior credible
intervals not containing zero). Notably, several of these within-target inferences
differ in directionality from their across-target counterparts, indicating that not
accounting for intrinsic target-to-target variation could be masking the nature
of the association between assay properties and resolution. Furthermore, these
results highlight the importance of utilising multiple primer sets per target in
characterising this variation. Interestingly, we do note that both within- and
across-target models agreed in allocation of the largest stacking weight to free
energy of secondary structure formation for FIP/BIP, a novel quantity for con-
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sideration in the design of qRT-LAMP assays.

2.4 Discussion

We have presented and applied a novel model-based framework to characterise
quantitative performance of the qRT-LAMP assay. We first introduced a non-
linear least-squares fitting procedure based on Gompertz curves that allows for
fast, accurate characterisation of qRT-LAMP reactions. Based on LAMP reac-
tion curve characteristics derived from this Gompertz curve-based fitting proce-
dure, our Bayesian hierarchical models have generated new insights into the qRT-
LAMP reaction and its properties at the single- and multi-target levels. At the
single-target level, our analysis identified RNA-independent and RNA-dependent
associations with qualitative characteristics and quantitative performance of qRT-
LAMP in a dataset of patients with suspected acute infection. Our investigation
of the effects of various sequence-based and thermodynamic primer/target prop-
erties on qRT-LAMP performance identified novel associations between some of
these properties and LAMP assay resolution. We’ve not only adapted our frame-
work to single-target and multi-target settings but also to different qRT-LAMP
data modalities (from IVT RNA and clinical samples). Finally, we have used
our IVT RNA data and modelling framework to investigate the extent to which
associations observed between primer/target properties and LAMP performance
will be borne out by artificially altering primers as part of an assay optimisation
workflow.

We highlight several advantages of our approach. The single-target models
introduced in Section 2.2.3 and applied in Section 2.3.1 provide a formal frame-
work for inference with uncertainty of qRT-LAMP performance measures such
as resolution and precision. This approach allows assay developers to ascertain
the quantitative performance of an predesigned LAMP target. Such inferences
may in turn motivate optimisation of the given target or, in light of poor tar-
get performance, alternative target selection as part of a broader panel of target
biomarkers. Furthermore, both our single-target and multi-target models allow
decomposition of variation in LAMP reaction characteristics into components
useful for mRNA quantitation (i.e. amplification rate and cycle offset). By
incorporating different features of the assay into model components for RNA-
dependent and RNA-independent variation, we can uncover potentially tunable
determinants of LAMP assay performance. Indeed, our framework applied to IVT
RNA data revealed significant associations between primer and target features
and assay resolution. While IVT RNA data are useful for assay development due
to their cost and ease of handling, they are not biologically representative and
would likely not recapitulate assay performance seen on clinical samples. As we
could adapt our models to both IVT RNA and clinical samples, we were able to
compare our inferences across different data types and to better anticipate clinical
performance of a given assay. We see our framework and analysis as important
first steps towards a system for LAMP assay design and optimisation.

However, the results of our hierarchical modelling (Section 2.3.3) highlight
the complexities of optimising qRT-LAMP assay performance. While FIP and
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BIP primers are known to play a central role in LAMP-based amplification, our
model-based analysis (Figures 2.7 and 2.8) provides evidence that other primer
characteristics may also affect assay performance. Models based on loop amplifi-
cation and inner primer pairs were identified by model stacking as producing some
of the most robust and predictive associations. Furthermore, our findings suggest
that increasing a given property (for example, free energy of self-dimerisation)
may be associated with improved resolution for one primer pair (FIP/BIP) but
the opposite for another (LF/LB). As changing one oligo property (e.g. secondary
structure formation) may alter another (propensity to self-dimerise), our results
support joint consideration of all primer pair characteristics as part of assay opti-
misation efforts. We also observe, for several properties, a difference in magnitude
of effect sizes between forward and backward primers (Figure 2.9). Subject to
further investigation, we hypothesise that this difference in association strength
between members of a primer pair could arise due to the orientation of initial
RNA inputs to the LAMP assay. For example, B3 primers could anneal to RNA
inputs before reverse transcription while F3 primers – relying on the generation
of an F3c region – could not anneal until after reverse transcription, and this
could explain some degree of within-primer pair disparity. However, this trend
is far from clear and consistent across different quantities and primer pairs, so
much further investigation is required.

Further work is required to accurately predict performance in a proposed as-
say for a potentially novel target. As part of our efforts towards a more predictive
model, we analyzed multiple primer sets per target with our IVT RNA dataset.
Indeed, we found for multiple models that the effects of varying properties of
primers and amplicons differ in their strength and direction when viewed across-
target vs within-target (Figure 2.9). Put another way, accounting for target-
to-target differences in resolution not due to the assay features attenuated the
strength of association between the features and resolution. These results sug-
gest that other assay features may be explaining target-to-target differences in
resolution and that predictive models based on pooling all targets together (i.e.
across-target models) may not generalise well to new targets. Interestingly, recent
work on predictive modelling of PCR amplification from primer/target features
showed good performance in held-out test sets (Döring et al., 2019). This perfor-
mance could be due to both a focus on a highly related set of targets which might
be expected to share assay performance properties as well as due to random data
subsampling to create training, validation and test data splits for model devel-
opment. In this setting, all splits would likely include observations for a given
target (a kind of information leakage), complicating interpretation of the model’s
generalisation. However, if we consider a highly related family of targets to be
similar to a single target, the results of Döring et al. (2019) are consistent with
our findings that within-target trends (rather than general trends shared across
targets) in the relationship between LAMP assay performance and primer prop-
erties are important for optimisation of a given target or target family. Reliably
determining the optimal properties of a primer set to achieve a pre-specified level
of quantitative performance would allow for less trial-and-error in the develop-
ment process, and ongoing and future work will be required to add both more
targets and primer sets to our IVT RNA dataset.
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To extend and more comprehensively validate the results presented here, a
follow-up study will be required to profile many more targets with – crucially
– multiple combinations of primers for each target. In particular, we note that
while our IVT RNA data analysis included multiple primer sets per target, we
were only able to assay three targets due to time/cost constraints. Further data
collection will also permit investigation of additional candidate assay proper-
ties, including gDNA interference, sensitivity to reagents and other sequence-
based/thermodynamic quantities. In addition, while IVT RNA data are useful
for assay development due to their cost and ease of handling, they are not bio-
logically representative. The degree to which conclusions drawn from IVT RNA
translate to clinical samples is the subject of ongoing and future investigation.
Also, while in our multi-target modelling work we have investigated variation in
resolution with respect to cycle offset, we have not provided a complementary
analysis for the other properties shown to be important in our single-target mod-
elling section. These include resolution with respect to amplification rate, and
precision. Extending our analysis to identify associations between these perfor-
mance characteristics and assay properties is the subject of ongoing and future
work. In addition, for simplicity, we assumed a linear relationship between assay
properties and resolution. Further investigations will involve nonlinear relation-
ships between these quantities.

2.5 Conclusion
This work provides an extensible platform to address the significant knowledge
gap in enabling reliable quantitative design and use of the qRT-LAMP assay.
Our analysis has uncovered important insights of RNA-dependent and RNA-
independent effects on qRT-LAMP assay behaviour as well as assay properties
associated with improved quantitative resolution of LAMP. Our efforts have also
raised important considerations for constructing truly predictive systems of assay
performance. With further data collection, expansion of our set of assay features,
and extension of our modelling framework, we hope to take another important
step towards principled design of robust, clinically performant qRT-LAMP assays.
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Chapter 3

Data-driven design of targeted gene
panels for estimating
immunotherapy biomarkers

Overview
In this chapter, we introduce a novel data-driven framework for the design of tar-
geted gene panels for estimating exome-wide biomarkers in cancer immunother-
apy. Our first goal is to develop a generative model for the profile of mutation
across the exome, which allows for gene- and variant type-dependent mutation
rates. Based on this model, we then propose a new procedure for estimating
biomarkers such as tumour mutation burden and tumour indel burden. Our ap-
proach allows the practitioner to select a targeted gene panel of a prespecified
size, and then construct an estimator that only depends on the selected genes.
Alternatively, the practitioner may apply our method to make predictions based
on an existing gene panel, or to augment a gene panel to a given size. We demon-
strate the excellent performance of our proposal using data from three non-small
cell lung cancer studies, as well as data from six other cancer types.

3.1 Introduction
It has been understood for a long time that cancer, a disease occurring in many
distinct tissues of the body and giving rise to a wide range of presentations, is
initiated and driven by the accumulation of mutations in a subset of a person’s
cells (Boveri, 2008). Since the discovery of immune checkpoint blockade (ICB)1
(Ishida et al., 1992; Leach et al., 1996), there has been an explosion of interest
in cancer therapies targeting immune response and ICB therapy is now widely
used in clinical practice (Robert, 2020). ICB therapy works by targeting natural
mechanisms (or checkpoints) that disengage the immune system, for example
the proteins cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and PD-
L1 (Buchbinder and Desai, 2016). Inhibition of these checkpoints can promote

1For their work on ICB, James Allison and Tasuku Honjo received the 2018 Nobel Prize for
Physiology/Medicine (Ledford et al., 2018).

83



a more aggressive anti-tumour immune response (Pardoll, 2012), and in some
patients this leads to long-term remission (Borghaei et al., 2021). However, ICB
therapy is not always effective (Nowicki et al., 2018) and may have adverse side
effects, so determining which patients will benefit in advance of treatment is vital.

Exome-wide prognostic biomarkers for immunotherapy are now well-established
– in particular, tumour mutation burden (TMB) is used to predict response to
immunotherapy (Zhu et al., 2019; Cao et al., 2019). TMB is defined as the total
number of non-synonymous mutations occurring throughout the tumour exome,
and can be thought of as a proxy for how easily a tumour cell can be recognised
as foreign by immune cells (Chan et al., 2019). However, the cost of measur-
ing TMB using WES (Sboner et al., 2011) currently prohibits its widespread use
as standard-of-care. Sequencing costs, both financial and in terms of the time
taken for results to be returned, are especially problematic in situations where
high-depth sequencing is required, such as when utilising blood-based circulating
tumour DNA (ctDNA) from liquid biopsy samples (Gandara et al., 2018). The
same issues are encountered when measuring more recently proposed biomark-
ers such as tumour indel burden (TIB) (Wu et al., 2019b; Turajlic et al., 2017),
which counts the number of frame-shift insertion and deletion mutations2. There
is, therefore, demand for cost-effective approaches to estimate these biomarkers
(Fancello et al., 2019; Golkaram et al., 2020).

In this chapter we propose a novel, data-driven method for biomarker esti-
mation, based on a generative model of how mutations arise in the tumour ex-
ome. More precisely, we model mutation counts as independent Poisson variables,
where the mean number of mutations depends on the gene of origin and variant
type, as well as the background mutation rate (BMR) of the tumour. Due to
the high-dimensional nature of sequencing data and the fact that in many genes
mutations arise purely according to the BMR, we use a regularisation penalty
when estimating the parameters of the model. In addition, this identifies a sub-
set of genes that are mutated above or below the background rate. Our model
facilitates the construction of a new estimator of TMB, based on a weighted lin-
ear combination of the number of mutations in each gene. The vector of weights
is chosen to be sparse (i.e. have many entries equal to zero), so that our esti-
mator of TMB may be calculated using only the mutation counts in a subset of
genes. In particular, this allows for accurate estimation of TMB from a targeted
gene panel, where the panel size (and therefore the cost) may be determined by
the user. Targeted gene panels have found use throughout cancer and princi-
ples behind their design and implementation are of substantial general interest
(Bewicke-Copley et al., 2019).

We demonstrate the excellent practical performance of our framework using a
non-small cell lung cancer (NSCLC) dataset (Campbell et al., 2016), and include
a comparison with existing state-of-the-art approaches for estimating TMB. We
further validate these results by testing the performance on data from two more
NSCLC studies (Hellmann et al., 2018a; Rizvi et al., 2015). Moreover, since our
model allows variant type-dependent mutation rates, it can be adapted easily to

2It has been suggested that focusing on mutations of particularly high immunogenicity may
entail better predictions of response to ICB, but this question is yet to be satisfyingly settled.
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predict other biomarkers, such as TIB. Our method may also be used in com-
bination with an existing targeted gene panel. In particular, we can estimate a
biomarker directly from the panel, or first augment the panel and then construct
an estimator. Finally, in order to further investigate the utility of our proposal
across a range of mutation profiles, we use it to select targeted gene panels and
estimate TMB in six other cancer types.

Due to its emergence as a biomarker for immunotherapy in recent years, a
variety of groups have considered methods for estimating TMB. A simple and
common way to estimate TMB is via the proportion of mutated codons in a tar-
geted region. Budczies et al. (2019) investigate how the accuracy of predictions
made in this way are affected by the size of the targeted region, where mutations
are assumed to occur at uniform rate throughout the genome. More recently Yao
et al. (2020) modelled mutations as following a negative binomial distribution
while allowing for gene-dependent rates, which are inferred by comparing non-
synonymous and synonymous mutation counts. In contrast, our method does not
require data including synonymous mutations. Where they are included, we do
not assume that synonymous mutations occur at a uniform rate throughout the
genome, giving us the flexibility to account for location-specific effects on syn-
onymous mutation rate such as chromatin configuration (Makova and Hardison,
2015) and transcription-dependent repair mechanisms (Fong et al., 2013). Linear
regression models have been used for both panel selection (Lyu et al., 2018) and
for biomarker prediction (Guo et al., 2020). A review of some of the issues arising
when dealing with targeted panel-based predictions of TMB biomarkers is given
by Wu et al. (2019a). Finally, we are unaware of any methods for estimating TIB
from targeted gene panels.

The remainder of the chapter is as follows. In Section 3.2, we introduce our
NSCLC data sources, and provide a detailed description of our methodological
proposal. The full demonstration of our method using the NSCLC dataset is given
in Section 3.3. Section 3.4 provides several further analyses to investigate the
robustness of our proposal in other cancer types and we conclude in Section 3.5.
We also provide an R package ICBioMark (Bradley and Cannings, 2021b) which
implements the methodology and reproduces our experimental results. This is
described in Appendix C.

3.2 Methodology

3.2.1 Data and terminology

Our methodology can be applied to any annotated mutation dataset obtained
by WES. To demonstrate our proposal we make use of the NSCLC dataset pro-
duced by Campbell et al. (2016), which contains data from 1144 patient-derived
tumours. For each sample in this dataset we have the genomic locations and
variant types of all mutations identified. At the time of the study, the patients
had a variety of prognoses and smoking histories, were aged between 39 and 90,
41% were female and 59% were male; see Figure 3.1. In Figure 3.2A we see
that mutations counts are distributed over a very wide range, as is the case in
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many cancer types (Chalmers et al., 2017). For simplicity, we only consider seven
non-synonymous variant types: missense mutations (which are the most abun-
dant), nonsense mutations, frame-shift insertions/deletions, splice site mutations,
in-frame insertions/deletions, nonstop mutations and translation start site mu-
tations. We present the frequencies of these mutation types in Figure 3.2B.
Frame-shift insertion/deletion (also known as indel) mutations are of particular
interest when predicting TIB, but contribute only a small proportion (< 4%) of
non-synonymous mutations.

Figure 3.1: Demographic data for the clinical cohort in Campbell et al. (2016).
A: Violin plots of age for patients, stratified by sex. B: Stacked bar chart of
patients’ smoking histories, shaded according to cancer stage diagnosis.

Figure 3.2: Dataset-wide distribution of mutations. A: Violin plot of the distri-
bution of TMB and TIB across training samples. B: The relative frequency of
different non-synonymous mutation types.

It is useful at this point to introduce the notation used throughout this chap-
ter. The set G denotes the collection of genes that make up the exome. For a
gene g ∈ G, let `g be the length of g in nucleotide bases, defined by the maximum
coding sequence3. A gene panel is a subset P ⊆ G, and we write `P :=

∑
g∈P `g

3The maximum coding sequence is defined as the collection of codons that may be translated
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for its total length. We let S denote the set of variant types in our data (e.g. in
the dataset mentioned above, S contains the seven possible non-synonymous vari-
ants). Now, for i = 0, 1, . . . , n, let Migs denote the count of mutations in gene
g ∈ G of type s ∈ S in the ith sample. Here the index i = 0 is used to refer
to an unseen test sample for which we would like to make a prediction, while
the indices i = 1, . . . , n enumerate the samples in our training data set. In order
to define the exome-wide biomarker of particular interest, we specify a subset of
mutation types S̄ ⊆ S, and let

TiS̄ :=
∑
g∈G

∑
s∈S̄

Migs, (3.1)

for i = 0, . . . , n. For example, including all non-synonymous mutation types in
S̄ specifies TiS̄ as the TMB of sample i, whereas letting S̄ contain only indel
mutations gives TIB.

Our main goal is to predict T0S̄ based on {M0gs : g ∈ P, s ∈ S}, where the
panel P ⊆ G has length `P satisfying some upper bound. When it is clear from
context that we are referring to the test sample and a specific choice of biomarker
(i.e. S̄ is fixed), we will simply write T in place of T0S̄.

3.2.2 Generative model

We now describe the main statistical model that underpins our methodology.
In order to account for selective pressures and other factors within the tumour,
we allow the rate at which mutations occur to depend on the gene and type of
mutation. Our model also includes a sample-dependent parameter to account for
the differing levels of mutagenic exposure of tumours, which may occur due to
exogenous (e.g. UV light, cigarette smoke) or endogenous (e.g. inflammatory, free
radical) factors.

We model the mutation countsMigs as independent Poisson random variables4
with mutation rates φigs > 0. More precisely, for i = 0, 1, . . . , n, g ∈ G and s ∈ S,
we have

Migs ∼ Poisson(φigs), (3.2)

where Migs and Mi′g′s′ are independent for (i, g, s) 6= (i′, g′, s′). Further, to model
the dependence of the mutation rate on the sample, gene and mutation type, we
use a log link function and let

log(φigs) = µi + log(`g) + λg + νs + ηgs, (3.3)

for µi, λg, νs, ηgs ∈ R, where for identifiability we set ηgs1 = 0, for some s1 ∈ S
and all g ∈ G.

for some version of a gene, even if all the codons comprising the maximum coding sequence are
never simultaneously translated. Gene coding lengths are extracted from the Ensembl database
(Yates et al., 2020).

4Other valid distributional alternatives would be available; in particular, the negative bino-
mial distribution would be able to cope with overdispersion that is known to occur in mutation
data. However, we selected the Poisson distribution for its simplicity, and because after early
exploration the negative binomial showed no advantage in downstream prediction tasks.
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The terms in our model can be interpreted as follows. First, the parameter
µi corresponds to the BMR of the ith sample. The offset log(`g) accounts for
a mutation rate that is proportional to the length of a gene, so that a non-zero
value of λg corresponds to increased or decreased mutation rate relative to the
BMR. The parameters νs and ηgs account for differences in frequency between
mutation types for each gene. The choice of Poisson distribution was motivated
by simplicity and practicality, particularly for the subsequent analysis. Other
candidates such as the negative binomial distribution were tried but did not
provide sufficient evidence of improvements in end-to-end prediction as to justify
the added complexity of deriving predictive functions from them.

The model in (3.2) and (3.3) (discounting the unseen test sample i = 0) has
n + |S| + |G||S| free parameters and we have n|G||S| independent observations
in the training data set. In principle we could attempt to fit our model directly
using maximum likelihood estimation. However, we wish to exploit the fact that
most genes do not play an active role in the development of a tumour, and
will be mutated approximately according to the BMR. This corresponds to the
parameters λg and ηgs being zero for many g ∈ G. We therefore include an `1-
penalisation term applied to the parameters λg and ηgs when fitting our model.
We do not penalise the parameters νs or µi since we expect that different mutation
types occur at different rates, and that the BMR is different in each sample.

Writing µ := (µ1, . . . , µn), λ := (λg : g ∈ G), ν := (νs : s ∈ S) and η := (ηgs :
g ∈ G, s ∈ S), and given training observations Migs = migs, we let

L(µ, λ, ν, η) =
n∑
i=1

∑
g∈G

∑
s∈S

(
φigs −migs log φigs

)
be the negative log-likelihood of the model specified by (3.2) and (3.3). We then
define

(µ̂, λ̂, ν̂, η̂) = arg min
µ,λ,ν,η

{
L(µ, λ, ν, η) + κ1

(∑
g∈G

|λg|+
∑
g∈G

∑
s∈S

|ηgs|
)}
, (3.4)

where κ1 ≥ 0 is a tuning parameter that controls the number of non-zero com-
ponents in λ̂ and η̂, which we choose using cross-validation (see Section 3.2.5 for
more detail).

3.2.3 Proposed estimator

We now attend to our main goal of estimating a given exome-wide biomarker for
the unseen test sample. Fix S̄ ⊆ S and recall that we write T = T0S̄. We wish to
construct an estimator of T that only depends on the mutation counts in a gene
panel P ⊂ G, subject to a constraint on `P . To that end, we consider estimators
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of the form5

T (w) :=
∑
g∈G

∑
s∈S

wgsM0gs,

for w ∈ R|G|×|S|. In the remainder of this subsection we explain how the weights w
are chosen to minimise the expected squared error of T (w) based on the generative
model in Section 3.2.2.

Of course, setting wgs = 1 for g ∈ G and s ∈ S̄ (and wgs = 0 otherwise) will
give T (w) = T . However, our aim is to make predictions based on a concise gene
panel. If, for a given g ∈ G, we have wgs = 0 for all s ∈ S, then T (w) does not
depend on the mutations in g and therefore the gene does not need to be included
in the panel. In order to produce a suitable gene panel (i.e. with many wgs = 0),
we penalise non-zero components of w when minimising the expected squared
error. We define our final estimator via a refitting procedure, which improves the
predictive performance by reducing the bias, and is also helpful when applying
our procedure to panels with predetermined genes.

To construct our estimator, note that under our model in (3.2) we have
EM0gs = Var(M0gs) = φ0gs, and it follows that the expected squared error of
T (w) is

E
[
{T (w)− T}2

]
= Var(T (w)) + Var(T )− 2Cov(T (w), T ) +

[
E{T (w)− T}

]2
=
∑
g∈G

∑
s∈S̄

(1− wgs)2φ0gs +
∑
g∈G

∑
s∈S\S̄

w2
gsφ0gs

+
(∑
g∈G

∑
s∈S

wgsφ0gs −
∑
g∈G

∑
s∈S̄

φ0gs

)2

.

(3.5)

This depends on the unknown parameters µ0, λg, νs and ηgs, the latter three of
which are replaced by their estimates given in (3.4). It is also helpful to then
rescale (3.5) as follows: write φ̂0gs = `g exp(λ̂g + ν̂s + η̂gs), and define

pgs :=
φ̂0gs∑

g′∈G
∑

s′∈S̄ φ̂0g′s′
=

`g exp(λ̂g + ν̂s + η̂gs)∑
g′∈G

∑
s′∈S̄ `g′ exp(λ̂g′ + ν̂s′ + η̂g′s′)

.

Then let

f(w) :=
∑
g∈G

∑
s∈S̄

pgs(1− wgs)2 +
∑
g∈G

∑
s∈S\S̄

pgsw
2
gs +K(µ0)

(
1−

∑
g∈G

∑
s∈S

pgswgs
)2
,

where K(µ0) = exp(µ0)
∑

g∈G
∑

s∈S̄ `g exp(λ̂g + ν̂s + η̂gs). Since f is a rescaled
version of the error in (3.5) (with the true parameters λ, ν, η replaced by the
estimates λ̂, ν̂, η̂), we will choose w to minimise f(w).

Note that f only depends on µ0 via the K(µ0) term, which can be interpreted

5Note that our estimator may use the the full set S of variant types, rather than just those
in S̄. In other words, our estimator may utilise information from every mutation type, not just
those that directly constitute the biomarker of interest. This is important when estimating
mutation types in S̄ that are relatively scarce (e.g. for TIB).
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as a penalty factor controlling the bias of our estimator. For example, we may
insist that the squared bias term (1 −

∑
g∈G

∑
s∈S pgswgs)

2 is zero by setting
K(µ0) = ∞. In practice, we propose to choose the penalty K based on the
training data; see Section 3.2.5.

At this point f(w) is minimised by choosing w to be such that wgs = 1 for
all g ∈ G, s ∈ S̄, and wgs = 0 otherwise. As mentioned above, in order to form
a concise panel while optimising predictive performance, we impose a constraint
on the cost of sequencing the genes used in the estimation. More precisely, for a
given w, an appropriate cost is

‖w‖G,0 :=
∑
g∈G

`g1{wgs 6= 0 for some s ∈ S}.

This choice acknowledges that the cost of a panel is roughly proportional to the
length of the region of genomic space sequenced, and that once a gene has been
sequenced for one mutation type there is no need to sequence again for other
mutation types.

Now, given a cost restriction L, our goal is to minimise f(w) such that
‖w‖G,0 ≤ L. In practice this problem is non-convex and so computationally
infeasible. As is common in high-dimensional optimisation problems, we consider
a convex relaxation as follows: let ‖w‖G,1 :=

∑
g∈G `g‖wg‖2, where wg = (wgs :

s ∈ S) ∈ R|S|, for g ∈ G, and ‖ · ‖2 is the Euclidean norm. Define

ŵfirst-fit ∈ arg min
w

{
f(w) + κ2‖w‖G,1

}
, (3.6)

where κ2 ≥ 0 is chosen to determine the size of the panel selected.
The final form of our estimator is obtained by a refitting procedure. First, for

P ⊆ G, let

WP := {w ∈ R|G|×|S| : wg = (0, . . . , 0) for g ∈ G \ P}. (3.7)

Let P̂ := {g ∈ G : ‖ŵfirst-fit
g ‖2 > 0} be the panel selected by the first-fit estimator

in (3.6), and define
ŵrefit ∈ arg min

w∈WP̂

{
f(w)

}
. (3.8)

We then estimate T using T̂ := T (ŵrefit), which only depends on mutations in
genes contained in the selected panel P̂ . The performance of our estimator is
investigated in Section 3.3, for comparison we also include the performance of
the first-fit estimator T (ŵfirst−fit).

3.2.4 Panel augmentation

In practice, when designing gene panels a variety of factors contribute to the
choice of genes included. For example, a gene may be included due to its relevance
to immune response or its known association with a particular cancer type. If this
is the case, measurements for these genes will be made regardless of their utility
for predicting exome-wide biomarkers. When implementing our methodology,
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therefore, there is no additional cost to incorporate observations from these genes
into our prediction if they will be helpful. Conversely researchers may wish to
exclude genes from a panel, or at least from actively contributing to the estimation
of a biomarker, for instance due to technical difficulties in sequencing a particular
gene.

We can accommodate these restrictions by altering the structure of our regu-
larisation penalty in (3.6). Suppose we are given (disjoint sets of genes) P0, Q0 ⊆
G to be included and excluded from our panel, respectively. In this case, we
replace ŵfirst-fit in (3.6) with

ŵfirst-fit
P0,Q0

∈ arg min
w∈WG\Q0

{
f(w) + κ2

∑
g∈G\P0

lg‖wg‖2

}
. (3.9)

Excluding the elements of P0 from the penalty term means that ŵfirst-fit
P0,Q0

6= 0 for the
genes in P0, while restricting our optimisation to WG\Q0 excludes the genes in Q0

by definition. This has the effect of augmenting the predetermined panel P0 with
additional genes selected to improve predictive performance. We then perform
refitting as described above. We demonstrate this procedure by augmenting the
TST-170 gene panel in Section 3.3.5.

3.2.5 Practical considerations

In this section, we discuss some practical aspects of our proposal. Our first consid-
eration concerns the choice of the tuning parameter κ1 in (3.4). As is common for
the LASSO estimator in generalised linear regression (see, for example, Michoel
(2016) and Friedman et al. (2021)), we will use 10-fold cross-validation. To high-
light one important aspect of our cross-validation procedure, recall that we con-
sider the observationsMigs as independent across the sample index i ∈ {1, . . . , n},
the gene g ∈ G and the mutation type s ∈ S. Our approach therefore involves
splitting the entire set {(i, g, s) : i = 1, . . . , n, g ∈ G, s ∈ S} of size n|G||S| (as
opposed to the sample set {1, . . . , n}) into 10 folds uniformly at random. We
then apply the estimation method in (3.4) to each of the 10 folds separately on
a grid of values (on the log scale) of κ1, and select the value that results in the
smallest average deviance across the folds. The model is then refitted using all
the data for this value of κ1.

The estimated coefficients in (3.6) depend on the choice of K(µ0) and κ2. As
mentioned above, we could setK(µ0) =∞ to give an unbiased estimator, however
in practice we found that a finite choice of K(µ0) leads to improved predictive
performance. Our recommendation is to use K(µ0) = K(maxi=1,...,n{µ̂i}), where
µ̂i = log(Ti/

∑
g,s `g exp(λ̂g + ν̂s + η̂gs)) is a pseudo-MLE (in the sense of Gong

and Samaniego (1981)) for µi, so that the penalisation is broadly in proportion
with the largest values of µi in the training dataset. The tuning parameter κ2

controls the size of the gene panel selected in (3.6): given a panel length L, we
set κ2(L) = max{κ2 : `P̂ ≤ L} in order to produce a suitable panel.

We now comment briefly on some computational aspects of our method.
The generative model fit in (3.4) can be solved via coordinate descent (see,
for example, Friedman et al., 2010), which has a computational complexity of
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O(N |G|2|S|2) per iteration. We fit the model 10 times, one for each fold in our
cross-validation procedure. This is the most computationally demanding part of
our proposal – in our experiments below, it takes approximately an hour to solve
on a laptop6 – but it only needs to be carried out once for a given dataset. The
convex optimisation problem in (3.6) can be solved by any method designed for
the group LASSO; see, for example, Yang and Zou (2015). In our experiments
in Section 3.3, we use the gglasso R package (Yang et al., 2020), which takes
around 10 minutes to reproduce the plot in Figure 3.6. Note also that the so-
lutions to (3.6) and (3.8) are unique; see, for example, Roth and Fischer (2008,
Theorem 1). The last step of our proposal, namely making predictions for new
test observations based on a selected panel, carries negligible computational cost.

Finally we describe a heuristic procedure for producing prediction intervals
around our point estimates. In particular, for a given confidence level α ∈ (0, 1),
we aim to find an interval [T̂L, T̂U] such that P

(
T̂L ≤ T ≤ T̂U

)
≥ 1−α. To that end,

let tα := E{(T̂ −T )2}/α, then by Markov’s inequality we have that P(|T̂ −T |2 ≥
tα) ≤ α. It follows that [T̂ − t

1/2
α , T̂ + t

1/2
α ] is a (1 − α)-prediction interval for

T . Of course, the mean squared error E{(T̂ − T )2} defined in (3.5) depends on
the parameters λ, η, ν and µ0, which are unknown. Our approach is to utilise the
estimates λ̂, η̂, ν̂ (see (3.4)) and replace µ0 with log(T̂ /

∑
g,s `g exp(λ̂g + ν̂s+ η̂gs)).

While this is not an exact (1 − α)-prediction interval for T , we will see in our
experimental results in Sections 3.3.2 and 3.3.4 that in practice this approach
provides intervals with valid empirical coverage.

3.3 Demonstration using an NSCLC dataset

In this section we demonstrate the practical performance of our proposal using the
dataset from Campbell et al. (2016), which we introduced in Section 3.2.1. Our
main focus is the prediction of TMB, and we show that our approach outperforms
the state-of-the-art approaches. We also analyse the suitability of our generative
model, consider the task of predicting the recently proposed biomarker TIB, and
include a panel augmentation case study with the TST-170 gene panel.

Since we are only looking to produce estimators for TMB and TIB, we group
mutations into two categories – indel mutations and all other non-synonymous
mutations – so that |S| = 2. This simplifies the presentation of our results
and reduces the computational cost of fitting the generative model. In order to
assess the performance of each of the methods in this section, we randomly split
the dataset into training, validation and test sets, which contain ntrain = n =
800, nval = 171 and ntest = 173 samples, respectively. Mutations are observed in
|G| = 17358 genes. Our training set comprises samples with an average TMB of
252 and TIB of 9.25.

6In this case a 2022 Macbook Air M2.
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3.3.1 Generative model fit and validation

The first step in our analysis is to fit the model proposed in Section 3.2.2 us-
ing only the training dataset. In particular, we obtain estimates of the model
parameters using equation (3.4), where the tuning parameter κ1 is determined
using 10-fold cross-validation as described in Section 3.2.5. The results are pre-
sented in Figure 3.3. The best choice of κ1 produces estimates of λ and η with
44.4% and 77.8% sparsity respectively, i.e. that proportion of their components
are estimated to be exactly zero. We plot λ̂ and η̂ for this value of κ1 in Figures
3.4 and 3.5. Genes with λ̂g = 0 are interpreted to be mutating according to the
background mutation rate, and genes with η̂g,indel = 0 are interpreted as having
no specific selection pressure for or against indel mutations. In Figures 3.4 and
3.5 we highlight genes with large (in absolute value) parameter estimates, some
of which have known biological relevance in oncology; see Section 3.5 for further
discussion. Finally, note that the average µi among current smokers is 5.40 (with
standard deviation 0.76), amongst reformed smokers is 5.26 (0.84), and among
lifelong non-smokers is 4.04 (1.12). This suggest that smokers may have higher
BMRs, which is as we expect.

Figure 3.3: The average deviance (with one standard deviation) across the 10
folds in our cross-validation procedure plotted against log(κ1). The minimum
average deviance is highlighted red.

We now validate our model in (3.3) by comparing with the following alterna-
tives:
(i) Saturated model : the model in (3.2), where each observation has an associ-

ated free parameter (i.e. φigs > 0 is unrestricted);

(ii) No sample-specific effects : the model in (3.3), with µi = 0 for all i ∈
{1, . . . , n};

(iii) No gene-specific effects : the model in (3.3), with λg = ηgs = 0 for all g ∈ G
and s ∈ S;

(iv) No gene/mutation type interactions : the model in (3.3), with ηgs = 0 for all
g ∈ G and s ∈ S.

In Table 3.1 we present the residual deviance and the residual degrees of
freedom between our model and each of the models above. We see that our
model is preferred over the saturated model, and all three submodels of (3.3).
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Figure 3.4: Manhattan plot of fitted parameters λ̂g and their associated genes’
chromosomal locations. The genes with the five largest positive parameter esti-
mates are labelled.

Figure 3.5: Manhattan plot of fitted parameters η̂g,indel and their associated genes’
chromosomal locations. The five largest positive and negative genes are labelled.

94



Table 3.1: Model comparisons on the basis of residual deviance statistics.

Comparison Residual Residual Degrees dev/df p-value
Model Deviance (dev) of Freedom (df)
(i) 1.43× 106 2.74× 107 5.22× 10−2 1.00
(ii) 1.42× 105 8.00× 102 1.77× 102 0.00
(iii) 1.10× 105 1.33× 104 8.24× 100 0.00
(iv) 1.70× 104 1.82× 103 9.33× 100 0.00

3.3.2 Predicting tumour mutation burden

We now demonstrate the excellent practical performance of our procedure for
estimating TMB. First it is shown that our method can indeed select gene panels
of size specified by the practitioner and that good predictions can be made even
with small panel sizes (i.e. ≤ 1Mb). We then compare the performance of our
proposal with state-of-the-art estimation procedures based on a number of widely
used gene panels.

In order to evaluate the predictive performance of an estimator we calcu-
late the R2 score on the validation data as follows: given predictions of TMB,
t̂1, . . . , t̂nval

, for the observations in the validation set with true TMB values
t1, . . . , tnval

. Let t̄ := 1
nval

∑nval

i=1 ti, and define

R2 := 1−
∑nval

i=1 (ti − t̂i)2∑nval

i=1 (ti − t̄)2
.

Other existing works have aimed to classify tumours into two groups (high
TMB, low TMB); see, for example, Büttner et al. (2019) and Wu et al. (2019a).
Here we also report the estimated area under precision-recall curve (AUPRC) for
a classifier based on our estimator. We define the classifier as follows: first, in
line with major clinical studies (e.g. Hellmann et al., 2018b; Ramalingam et al.,
2018) the true class membership of a tumour is defined according to whether it
has t∗ := 300 or more exome mutations (approximately 10 Mut/Mb). In the
validation set, this gives 47 (27.5%) tumours with high TMB and 124 (72.5%)
with low TMB. Now, for a cutoff t ≥ 0, we can define a classifier by assigning
a tumour to the high TMB class if its estimated TMB value is greater than or
equal to t. For such a classifier, we have precision and recall (estimated over the
validation set) given by

p(t) :=

∑nval

i=1 1{t̂i≥t, ti≥t∗}∑nval

i=1 1{t̂i≥t}
and r(t) :=

∑nval

i=1 1{t̂i≥t, ti≥t∗}∑nval

i=1 1{ti≥t∗}
,

respectively. The precision-recall curve then is {(r(t), p(t)) : t ∈ [0,∞)}. Note
that a perfect classifier achieves a AUPRC of 1, whereas a random guess in this
case would have an average AUPRC of 0.275 (the prevalence of the high TMB
class).

Now recall that TMB is given by equation (3.1) with S̄ being the set of all non-
synonymous mutation types. Thus to estimate TMB we apply our procedure in
Section 3.2.3 with S̄ = S, where the model parameters are estimated as described
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in Section 3.3.1. In Figure 3.6, we present the R2 and AUPRC for the first-fit and
refitted estimators (see (3.6) and (3.8)) as the selected panel size varies from 0Mb
to 2Mb in length. We see that we obtain a more accurate prediction of TMB, both
in terms of regression and classification, as the panel size increases, and that good
estimation is possible even with very small panels (as low as 0.2Mb). Finally, as
expected, the refitted estimator slightly outperforms the first-fit estimator.

Figure 3.6: Performance of our first-fit and refitted estimators of TMB as the
selected panel size varies. Left: R2, Right: AUPRC.

We now compare our method with state-of-the-art estimators applied to com-
monly used gene panels, as well as a panel selected by the proposal of Lyu et al.
(2018). The three next-generation sequencing panels that we consider are chosen
for their relevance to TMB. These are TST-170 (Heydt et al., 2018), Founda-
tion One (Frampton et al., 2013) and MSK-IMPACT (Cheng et al., 2015). Fur-
ther, the panel selected by the approach in Lyu et al. (2018) consists of the genes
that are mutated more than 10% of the time, that are less than 0.015Mb in length
and for which the presence of a mutation in the gene is significantly associated
with higher TMB values. For each panel P ⊆ G, we use four different methods
to predict TMB:

(i) Our refitted estimator applied to the panel P : we estimate TMB using
T (ŵP ), where ŵP ∈ arg minw∈WP

{f(w)}, and WP is defined in (3.7).

(ii) estimation and classification of tumour mutation burden (ecTMB): the pro-
cedure proposed by Yao et al. (2020).

(iii) A count estimator: TMB is estimated by `G
`P

∑
g∈P

∑
s∈S̄M0gs, i.e. rescaling

the mutation burden in the genes of P .

(iv) A linear model: we estimate TMB via ordinary least-squares linear regres-
sion of TMB against

{∑
s∈SM0gs : g ∈ P

}
.
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The latter three comprise existing methods for estimating TMB available to prac-
titioners. The second (ecTMB), which is based on a negative binomial model, is
the state-of-the-art. The third is a standard practical procedure for the estima-
tion of TMB from targeted gene panels. The fourth is the approach proposed by
Lyu et al. (2018). The refitted estimator applied to the panel P is also included
here, in order to demonstrate the utility of our approach even with a prespecified
panel.

Figure 3.7: The performance of our TMB estimator in comparison to existing
approaches. Left: R2, Right: AUPRC.

We present results of these comparisons in Figure 3.7. First, for each of the
four panels considered here, we see that our refitted estimator applied to the panel
outperforms all existing approaches in terms of regression performance, and that
for smaller panels we are able to improve regression accuracy even further by
selecting a panel (perhaps even of smaller size) based on the training data. For
instance, in comparison to predictions based on the TST-170 panel, our procedure
can achieve higher R2 with a selected panel of half the size (with 0.2Mb we obtain
an R2 of 0.78). The best available existing method based on the TST-170 panel, in
this case the linear estimator, has an R2 of 0.74. Moreover, data-driven selection
of panels considerably increases the classification performance for the whole range
of panel sizes considered. In particular, even for the smallest panel size shown in
Figure 3.7 (∼0.2Mb), the classification performance of our method outperforms
the best existing methodology applied to the MSK-IMPACT panel, despite being
almost a factor of six times smaller. The full proposal of Lyu et al. (2018), which
involves applying the linear regression estimate to the panel selected as described
above, also performs well here.

Finally in this subsection we demonstrate the practical performance of our
method using the test set, which until this point has been held out. Based on
the validation results above, we take the panel of size 0.6Mb selected by our
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procedure and use our refitted estimator on that panel to predict TMB for the
173 samples in the test set. For comparison, we also present predictions from
ecTMB, the count-based estimator and the linear regression estimator applied to
the same panel. In Figure 3.8 we see that our procedure performs well; we obtain
an R2 value (on the test data) of 0.85. The other methods have R2 values of 0.67
(ecTMB), −36 (count) and 0.64 (linear regression). The count-based estimator
here gives predictions which are reasonably well correlated to the true values of
TMB but are positively biased. This is because our selection procedure tends to
favour genes with higher overall mutation rates and thus a count estimator based
on the highly mutated genes will overestimate the total number of mutations.
We also include a red shaded region comprising all points for which heuristic 90%
prediction intervals (as described in Section 3.2.5) include the true TMB value.
We find in this case that 93.6% of the observations in the test set fall within this
region, giving valid empirical coverage.

Figure 3.8: Prediction of TMB on the test dataset. Dashed blue (diagonal)
line represents perfect prediction, and the black dashed lines indicate true and
predicted TMB values of 300.

Superiority over randomly chosen panels

To ensure our method is selecting better-than-random gene panels, we generate
100 random gene panels of length less than or equal to 0.6MB. Each panel is
selected by randomly ordering all genes appearing in our dataset and selected
the first genes in this ordering until the maximum size is reached. In Figure 3.9
we show that of these panels, none achieve superior predictive AUPRC on the
validation set.
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Figure 3.9: The predictive performance of randomly chosen gene panels of size ≤
0.6MB. Performance of our selected gene panel shown with red dotted line.

Robustness to different training datasets

Here we investigate the robustness of our proposal to changes in the training
dataset. We conduct an experiment that first involves splitting the training data
set of n = 800 observations into four disjoint datasets of 200 observations. We
then retrain our model and estimator given in Sections 3.2.2 and 3.2.3 based
on the four possible datasets that combine three of the four subsets. We then
evaluate the predictive performance on the validation dataset similarly to in the
previous subsection. The results are given in Figure 3.10; we see that our proposal
is has very similar regression performance on the four different subsets.

3.3.3 External testing and classification for immunother-
apy

The aim of this section is to further test our proposed estimator of TMB by mak-
ing use of two external NSCLC datasets for which the response to immunotherapy
is available: Hellmann et al. (2018a), which contains 75 samples with an average
TMB of 261; and Rizvi et al. (2015), which contains 34 samples with an average
TMB of 258.

We first use our refitted estimator trained on the same data as in Section 3.3.2
to predict TMB for the samples in the new datasets using the selected panel of
size 0.6Mb. The predictions are given in Figure 3.11; the corresponding regres-
sion performance is R2 = 0.70 across the two datasets, with a joint AUPRC for
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Figure 3.10: The regression performance on the validation dataset for the four
different training subsets of 600 observations.

classifying tumours to high or low TMB classes of 0.91.

These datasets also allow us to assess the practical utility of using our esti-
mated TMB values to predict response to immunotherapy. Of the 75 samples in
the Hellmann et al. (2018a) study, 37 were identified as having a Durable Clinical
Benefit (Class 1) in response to immunotherapy (PD-L1+CTLA-4 blockade), and
the remaining 38 were deemed to have No Benefit (Class 0). Of the 34 samples in
the Rizvi et al. (2015) study, 14 were identified as having a Durable clinical ben-
efit beyond 6 months (Class 1) in response to immunotherapy (Pembrolizumab),
while the remaining 20 were deemed not to have such benefit (Class 0). Since
the treatment and outcome definition differ between studies, we separate them
for analysis of response. We construct two simple classifiers for comparison, the
first assigning a sample to Class 1 if the true TMB value is greater than some
threshold t, and the second using our estimated value of TMB in the same way.
In Figure 3.12, we plot the receiver operating characteristic (ROC) curve (that is
the false positive rate against the true positive rate as the classification threshold
t varies). The area under the ROC curve is 0.68 for the Hellmann et al. (2018a)
dataset when using the true TMB value and is 0.64 when using the estimated
TMB value. The Rizvi et al. (2015) has an area under the ROC curve of 0.79
using true TMB values and 0.76 using estimated TMB values. We see that, in
both cases, very little is lost in terms of predicting response to immunotherapy
when using our estimated value of TMB.
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Figure 3.11: Performance of our model trained on the Campbell et al. (2016)
dataset used to predict TMB based on the panel of size 0.6Mb selected by our
method on the external test datasets of Hellmann et al. (2018a) and Rizvi et al.
(2015)

Figure 3.12: ROC curves for classifying the response to immunotherapy in the
Hellmann et al. (2018a) (black) and Rizvi et al. (2015) (red) datasets using the
true TMB values (solid) and estimated TMB values (dashed) based on the panel
of size 0.6Mb selected by our method.
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3.3.4 Predicting tumour indel burden

In this section we demonstrate how our method can be used to estimate TIB.
This is more challenging than estimating TMB due to the low abundance of
indel mutations relative to other variant types (see Figure 3.2), as well as issues
involved in sequencing genomic loci of repetitive nucleotide constitution (Narzisi
and Schatz, 2015). Indeed, in contrast to the previous section, we are not aware
of any existing methods designed to estimate TIB from targeted gene panels. We
therefore investigate the performance of our method across a much wider range
(0-30Mb) of panel sizes, and find that we are able to accurately predict TIB with
larger panels. Our results also demonstrate that accurate classification of TIB
status is possible even with small gene panels.

We let Sindel be the set of all frame-shift insertion and deletion mutations, and
apply our method introduced in Section 3.2.3 with S̄ = Sindel. As in the previous
section, we assess regression and classification performance via R2 and AUPRC,
respectively, where in this case tumours are separated into two classes: high TIB
(10 or more indel mutations) and low TIB (otherwise). In the validation dataset,
this gives 57 (33.3%) tumours in the high TIB class.

Figure 3.13: Performance of our first-fit and refitted estimators of TIB as the
selected panel size varies. Left: R2, Right: AUPRC.

The results are presented in Figure 3.13. We comment first on the regression
performance: as expected, we see that the R2 values for our first-fit and refitted
estimators are much lower than what we achieved in estimating TMB. The refitted
approach improves for larger panel sizes, while the first-fit estimator continues
to perform relatively poorly. On the other hand, we see that the classification
performance is impressive, with AUPRC values of above 0.8 for panels of less
than 1Mb in size.

We now assess the performance on the test set of our refitted estimator of
TIB applied to a selected panel of size 0.6Mb, and we compare with a count-
based estimator and linear regression estimator. We do not compare with ecTMB
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here, since it is designed to estimate TMB as opposed to TIB. The count-based
estimator in this case scales the total number of non-synonymous mutations across
the panel by the ratio of the length of the panel to that of the entire exome,
and also by the relative frequency of indel mutations versus all non-synonymous
mutations in the training dataset:

`G
`P

∑n
i=1

∑
g∈G

∑
s∈Sindel

Migs∑n
i=1

∑
g∈G

∑
s∈SMigs

∑
g∈P

∑
s∈S

M0gs.

In Figure 3.14 we present the predictions on the test set of our refitted estimator
(R2 = 0.35); the count estimator (R2 = −44); and the linear regression estimator
(R2 = 0.15). We also include (shaded in red) the set of points for which 90%
prediction intervals contain the true value. In this case we find that 97.7% of test
set points fall within this region.

Figure 3.14: Estimation of TIB on the test dataset. Dashed blue (diagonal)
line represents perfect prediction, and the grey dashed lines indicate true and
predicted TIB values of 10.

3.3.5 A panel-augmentation case study

As discussed in Section 3.2.4, we may wish to include genes from a given panel,
but use our methodology to augment the panel to include additional genes with
goal of obtaining more accurate predictions of TMB (or other biomarkers). In
this section we demonstrate how this can be done starting with the TST-170
panel (∼0.4Mb) and augmenting to 0.6Mb in length, demonstrating impressive
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gains in predictive performance.
We apply the augmentation method described in Section 3.2.4, with P0 taken

to be the set of TST-170 genes and Q0 to be empty. The genes added to the
panel are determined by the first-fit estimator in equation (3.9). To evaluate
the performance, we then apply the refitted estimator on the test dataset, after
selecting the augmented panel of size 0.6Mb. For comparison, we apply our
refitted estimator to the TST-170 panel directly. We also present the results
obtained by the other estimators described above, both before and after the panel
augmentation, in Table 3.2. We find that by augmenting the panel we improve
predictive performance with our refitted T̂ estimator, both in terms of regression
and classification. The refitted estimator provides better estimates than any other
model on the augmented panel by both metrics.

Table 3.2: Predictive performance of models on TST-170 (0.4Mb) versus aug-
mented TST-170 (0.6Mb) panels on the test set.

Model Regression (R2) Classification (AUPRC)
TST-170 Aug. TST-170 TST-170 Aug. TST-170

Refitted T̂ 0.58 0.84 0.83 0.94
ecTMB 0.37 0.51 0.80 0.88
Count 0.18 0.18 0.83 0.94
Linear 0.47 0.74 0.78 0.89

3.4 Further testing in other cancer types
The aim of this section is to further demonstrate the performance of our proposed
framework in a number of other cancer types. We apply our method for estimating
TMB in six more cancer types, namely bladder cancer, breast cancer, colorectal
cancer, melanoma, prostate cancer and renal cell cancer. For each cancer, data
from two studies are used. Data from the first study is (randomly) split into a
training and validation set; the training data is used to construct our estimator
for a range of panel sizes, we then evaluate the predictive performance on the
validation set (note that in contrast to our analysis in Section 3.3, we do not
require a separate test set since the panel size is not selected based on the data).
Further, in order to test the robustness of our approach to study effects, for each
cancer type, we will also apply our fitted estimator (trained using data from the
first study) to predict TMB values for tumours from the second study.

The datasets used (with training, validation and external test sample sizes in
parentheses) are from the following studies:

• Bladder cancer: the bladder cancer dataset from the TCGA Pan-Cancer
Atlas7 (ntrain = 300, nval = 109) and Guo et al. (2013) (ntest = 99);

• Breast cancer: the breast cancer dataset from the TCGA Pan-Cancer Atlas
(ntrain = 700, nval = 300) and Kan et al. (2018) (ntest = 187);

7data available at https://www.cbioportal.org/study/clinicalData?id=blca_tcga_
pan_can_atlas_2018
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• Colorectal cancer: Giannakis et al. (2016) (ntrain = 500, nval = 119) and
Seshagiri et al. (2012) (ntest = 72);

• Melanoma: Cancer Genome Atlas Network (2015) (ntrain = 250, nval = 96)
and Krauthammer et al. (2012) (ntest = 91);

• Prostate cancer: Armenia et al. (2018) (ntrain = 700, nval = 312) and Kumar
et al. (2016) (ntest = 141);

• Renal cell cancer: the renal cell cancer dataset from TCGA Firehose8
(ntrain = 350, nval = 101) and Guo et al. (2011) (ntest = 98).

These datasets have a range of mutation rates, specifically the average TMB
values in the training datasets are 247 (bladder cancer), 91 (breast cancer), 339
(colorectal cancer), 568 (melanoma), 63 (prostate cancer) and 77 (renal cell can-
cer).

In Figure 3.15, the black lines plot the R2 values obtained on the internal
validation set from the first study for the six cancer types as the panel size
varies from 0.25Mb to 1.25Mb. The blue lines show the R2 values obtained when
predicting TMB for tumours in the external test set from the second study. We
see that the performance on the internal validation set is very good and broadly in
line with the performance we obtained for the NSCLC dataset (with the exception
of the renal cell cancer). The main factor effecting the performance appears to
be the overall mutation rate; our method performs very well in cancer types with
large mutation rates (colorectal cancer and melanoma), but less well in the cancers
with lower overall mutation rates (prostate and renal cell). The performance on
the renal cell dataset is particularly poor due to the combination of low sample
size and the low average mutation rate.

The results on the external test datasets are more mixed; there is a drop off in
performance in comparison with the internal validation results for breast cancer
and melanoma, but apparent improvement for prostate cancer. This highlights
that study effects, such as differences in patient demographics and clinical profiles,
as well as variations in sequencing technologies need to be considered carefully.
In practice, one should ensure that the patients in the training data used to fit
the model have similar characteristics to the intended test cohort.

3.5 Conclusions
We have introduced a new data-driven framework for designing targeted gene pan-
els which allows for cost-effective estimation of exome-wide biomarkers. Using the
non-small cell lung cancer datasets from Campbell et al. (2016), Hellmann et al.
(2018a), and Rizvi et al. (2015), we have demonstrated the excellent predictive
performance of our proposal for estimating tumour mutation burden and tumour
indel burden, and shown that it outperforms the state-of-the-art procedures. We
further tested the applicability and robustness of our method, by applying it to
datasets on several other cancer types. Our framework can be applied to any

8data available at https://www.cbioportal.org/study/summary?id=kirc_tcga
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Figure 3.15: The performance of our refitted TMB estimator in the six further
cancer types.

tumour dataset containing annotated mutations, and we provide an R package
(Bradley and Cannings, 2021b) which implements the methodology.

The main use of TMB is to help identify patients that are more likely to
respond to immunotherapy. While TMB is very convincingly associated with
response (Cao et al., 2019; Zhu et al., 2019), its predictive power alone may not
be enough to drive precision cancer efforts in immunotherapy. It is therefore,
of course, desirable to improve the predictive performance of TMB by includ-
ing other factors. For instance these may include cancer type (and subtype),
specific mutational signatures, aneuploidy and tumor histology, as well as other
variables, such as gender, age and exogenous factors. Indeed, Litchfield et al.
(2021) show that, by including markers of T-cell infiltration and other factors, a
multivariate predictor of response to immunotherapy significantly improves the
classification performance in comparison to using TMB alone. Nevertheless, one
would certainly like to include TMB (or a closely related measure) as a factor in
any classifier of response.

Our work also has the scope to help understand mutational processes. For
example, the parameters of our fitted model in Section 3.3.1 have interesting
interpretations: of the five genes highlighted in Figure 3.4 as having the highest
mutation rates relative to the BMR, two (TP53, CDKN2A) are known tumour
suppressors (Olivier et al., 2010; Foulkes et al., 1997) and KRAS is an oncogene
(Jancík et al., 2010). Furthermore, indel mutations in KRAS are known to be
deleterious for tumour cells (Lee et al., 2018) – in our work the KRAS gene
has a large negative indel-specific parameter (see Figure 3.5). Our methodology
identifies a number of other genes with large parameter estimates. Of course, any
such associations need to be carefully investigated in follow up studies.
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While there are means by which our framework could be extended, we believe
that future work in the field should move from further optimising the prediction of
TMB (from which marginal benefit can be gained beyond what has been achieved
here and elsewhere) and towards critically evaluating TMB’s role as a predictor
of response to immunotherapy. In particular, while TMB serves as a good proxy
of the impact of somatic mutations on immunotherapy response, more flexible
predictions may be made based on specific patterns of mutation and clinical
features that can be related directly to survival (as opposed to being related
to TMB as an intermediate). The need for this work forms the basis of the
investigation in Chapter 4.
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Chapter 4

Causal survival analysis in oncology

Overview

In this final chapter, we aim to target the questions motivating Chapter 3 in their
broader context. In particular, previously we have proceeded from an established
body of literature verifying the utility of TMB as a proxy biomarker for response
to immunotherapy. This has been advantageous in that is has allowed us not to
concern ourselves with directly showing our derived mutation-based predictors
are associated with improved response to immunotherapy (aside from in some
particular cases, such as in Figure 3.12). Indeed, in Chapter 3 we have been able to
leverage datasets that did not provide information on response to treatment with
immunotherapy. Instead, we’ve simply aimed to predict TMB as well as we can
from targeted panel data (often ‘artificial’ panel data derived from WES). This
has been especially convenient because TMB can be directly calculated fromWES
data and does not need to be provided by a study as a separate covariate. While
aiming to predict TMB has been a helpful simplification, broader methods are
required if we wish to more directly interrogate the relationship between genomic
features (including but not limited to TMB) derived from targeted sequencing
and clinical outcomes. Here we discuss in detail strategies for causal estimation
of treatment effect on survival from observational studies, the combination of
which is an active and evolving field of research. We review some basics of survival
analysis and causal inference, describe some recent developments in combining the
two, and demonstrate two very different methodological approaches on targeted
sequencing data.

4.1 Introduction

In order to more fully understand the relationship between somatic biomark-
ers such as TMB and clinical outcomes, two substantial hurdles are presented.
Firstly, in Chapter 3 we were able to utilise two small datasets for which binary
clinical outcomes (corresponding to ‘durable clinical benefit’) were available. In
general the measurement of clinical outcomes is not as simple. By far the most
common means of reporting is via survival-like clinical outcomes, including end-
points such as overall survival (OS) or progression-free survival (PFS). These
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outcomes are fundamentally restricted by the timespan of a given study period
such that not every sample has an associated endpoint observed. In survival
analysis this problem is known as censoring, and is discussed in Section 1.2.4.
Secondly, our reliance on TMB was motivated by extensive work establishing
TMB’s clinical utility in randomised treatment scenarios. We often don’t have
the resources to conduct a large randomised controlled trial (RCT), and so will
have to proceed by combining multiple observational datasets. This requires a
framework for causal inference, and the one we choose is known as HTE.

In this chapter, following on from the descriptions of causality (Section 1.2.3)
and survival analysis (Section 1.2.4) provided in the introduction, we first discuss
a group of methods for causality in prediction scenarios known as heterogeneous
treatment effect (HTE) estimation (Section 4.2). We review recent literature on
methods to combine HTE with survival analysis in Section 4.3. The main aim of
this chapter is to demonstrate an application of these methods to immunotherapy.
This is given in Section 4.4, where we combine two somatic mutation datasets to
produce flexible estimators of benefit from ICB therapy.

4.2 Causal inference and heterogeneous treatment
effects

Heterogeneous treatment effect (HTE) estimation refers to the discovery of in-
teractions between the effect of some intervention, or treatment, and some other
covariates. In particular we aim to predict, from some input covariates, the
change in outcome for a given sample upon applying a given intervention, while
by definition never being able to observe a sample when the given treatment has
both been applied and not been applied (referred to as the fundamental problem
for causal inference; Holland, 1986). We take as a starting point the content
of introductory Section 1.2.3 on modelling assumptions for causal inference and
average treatment effect (ATE). In particular, we continue with the notation of
A for a binary treatment variable. In this section we will assume that the space
Y is simple (e.g. the space of binary outcomes Y = {0, 1}), while later we will
deal with situations in which Y takes composite values as in survival analysis.
We first restate the two core propositions of causal inference:

1. Positivity: the propensity function is positive almost everywhere, i.e.

π(x) := P(A = 1|X = x) is such that π(X) ∈ (0, 1) almost surely.

2. No unmeasured confounders: treatment is ‘essentially random’ given X, i.e.

{Y (0), Y (1)} ⊥⊥ A|X.

This is also sometimes referred to as strong ignorability.
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4.2.1 Treatment with covariates

We now define HTEs, which will be our tool to make predictions at the individual
level. We define the treatment function τ : X → Y as follows:

τ(x) := E[Y (1)|X = x]− E[Y (0)|X = x]

= µ1(x)− µ0(x)

where µa(x) := E[Y (a)|X = x] is the conditional regression function for poten-
tial outcome A = a. Note that the logic demonstrated in the derivation of the
identifiability of the ATE applies to conditional treamtent effect and we can also
say that (under Assumptions 1 and 2) we have that µa(x) = E[Y |X = x,A = a].
This means that one viable strategy for estimation of HTEs is simply to estimate
µ0, µ1 with µ̂0, µ̂1 respectively, and τ with τ̂(x) := µ̂1(x)− µ̂0(x). We will discuss
this strategy, known as a T -Learner, and its potential shortcomings in the next
section.

While we’ve introduced HTEs in order to be able to make decisions at the
individual level, it is worth pointing out that they are in general distinct from
individual treatment effects (Vegetabile, 2021). In essence, since heterogeneous
effect only requires conditioning on some set of covariates satisfying the strong
ignorability assumption, it need not contain all relevant information about Y . In
particular, suppose we are given a variable X satisfying strong ignorability. Then
we can form X ′ = (X,Z) for any other covariate Z and estimate an identifiable
HTEs on the basis of X ′. To emphasise the difference between truly individual
treatment effects and those based merely on conditioning on some strongly ig-
norable set of variables, some authors use the term conditional average treatment
effect (CATE) (Vegetabile, 2021).

4.2.2 Meta-learner strategies

As mentioned in the above, we divide strategies for estimating HTEs into general
classes of meta-learner (Künzel et al., 2019; Curth and Schaar, 2021). Each of
these relies on some baseline strategy for fitting a regression function given a
training dataset of inputs and outputs (e.g. linear regression, random forests,
a neural network), and applies it to some combination of target functions. We
describe a few below.

1. T -Learners: this base strategy centred on the identifiability of the condi-
tional regression functions µ0, µ1. We simply split our dataset into two
portions such that, according to observed values, the treatment variable
takes the values A = 0 or A = 1. We then fit µ̂0(x), µ̂1(x) separately on
these two subsets, and define:

τ̂(x) := µ̂1(x)− µ̂0(x).

2. S-Learners: a small variation on T -Learners. With this approach we jointly
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fit µ̂(x, a) such that µ̂(x, 0) ≈ µ0(x) and that µ̂(x, 1) ≈ µ1(x), then define:

τ̂(x) := µ̂(x, 1)− µ̂(x, 0).

3. Methods based on pseudo-outcomes define some intermediate statistic that
can be estimated based on observed data. The simplest is based on the
Horvitz-Thompson transformation (Horvitz and Thompson, 1952), also known
as inverse-probability weighting (IPW). We define:

ỸIPW :=
( A

π̂(X)
− 1− A

1− π̂(X)

)
Y,

relying on the observation that, if π̂(x) = π(x), then E[ỸIPW |X = x] = τ(x).
The advantage of this approach is that the quantity ỸIPW only depends on
observable quantities, and so can be estimated from the full dataset.

4. Hybrid methods comprise some combination of strategies based on fitting
potential regression functions (for example via T -Learners) and pseudo-
outcomes. These include X-Learners as proposed by Künzel et al. (2019) –
for which special cases have been investigated further by Curth and Schaar
(2021) – and generalised ‘doubly robust’ estimators proposed by Kennedy
(2020). In this context, double robustness refers to a learner that produces
consistent estimates even if only one of µ̂ and π̂ are correctly specified.

5. Nie and Wager (2017) proposed an alternate hybrid method, termed an
R-Learner, that instead of estimates of propensity π̂(x) and conditional
regression functions µ̂0(x), µ̂1(x), uses estimates of π̂(x) and a marginal
regression function µ̂(x) := Ê[Y |X = x]. Their approach relies on fitting a
function τ̂ minimising the objective

n∑
i=1

((
Yi − µ̂(Xi)

)
−
(
Ai − π̂(Xi)

)
τ̂(Xi)

)2

where i ranges across the training dataset. This approach later served as
the basis for causal forests as developed by Athey et al. (2019).

6. Shalit et al. (2017) proposed a method based on distributional regularisa-
tion such that, by construction, information is shared between estimated
regression functions µ̂0 and µ̂1. This level of information sharing is tunable
via a regularisation parameter that may itself be selected by cross-validation
(more on this later).

4.2.3 Double robustness

In settings in which the CATE demonstrates complex structure, it is an important
challenge to provide estimators that are demonstrably robust and flexible. This
ideally includes robustness in cases of various forms of model misspecification.
Before we formally define the doubly robust (DR)-Learner proposed by Kennedy
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(2022), we heuristically motivate the cases of model misspecification it attempts
to address by considering two example simulation settings. As well as motivating
the discussion of double robustness that is to come, they also serve to develop our
intuition as to when some of the strategies described in Section 4.2.2, in particular
T -Learners and estimators based on IPW. They are as follows.

Example 4.2.1. (Simulation Setting 1) We model observations of the triple
(X,A, Y ), with X and Y taking values in R and A taking values in {0, 1}, as
independent triplet realisations of the joint distribution described as follows:

X ∼ Norm(0, 1)

A | (X = x) ∼ Bern
( 1

1 + exp(−x)

)
Y | (X = x) ∼

{
x2 + x where A = 1

x2 where A = 0

Example 4.2.1 aims to model a setting in which estimation of the individ-
ual conditional regression functions µa(x) is difficult, but estimation of both the
propensity function π(x) and the CATE τ(x) is simple. Note that here the func-
tions µa(x) are not intrinsically complex (we could easily fit them with polynomial
regression), but we will attempt to model them with linear regression models than
cannot adequately capture them. This is therefore a case of model misspecifica-
tion rather than one of functional complexity, but we will demonstrate the same
points. Kennedy (2022) gives similar examples in which more general nonpara-
metric models are used and the issue is genuinely one of functional complexity
without model misspecification, but the underlying phenomena and results are
the same.

Example 4.2.2. (Simulation Setting 2) We model observations of the triple
(X,A, Y ), with X and Y taking values in R and A taking values in {0, 1}, as
independent triplet realisations of the joint distribution described as follows:

X ∼ Norm(0, 1)

A | (X = x) ∼ Bern
( 1

1 + exp(− cos(2x))

)
Y | (X = x) ∼

{
3x/4 where A = 1

−x/4 where A = 0

Example 4.2.2, by constrast with Example 4.2.1, aims to model a setting in
which estimation of the propensity function π(x) is difficult, but estimation of
the conditional regression functions µa(x) is easy.

These example settings are by design such that for Example 4.2.1 the IPW
estimator defined in (3.) will outperform the T -Learner defined in (1.), and vice
versa for Example 4.2.2. We find that this does indeed bear out in Figure 4.1.
Here we have generated 100 samples from each of the models specified, applied
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each of the T -Learner and IPW strategies with linear regression models providing
each of the estimation procedures (and logistic regression applied to produce an
estimated propensity function π̂(x)), and applied the resultant estimated CATE
function to each of the training set data points. The true CATE function (in each
case τ(x) = x) is given for comparison. We do indeed see that our expectations
are borne out in each of these settings, with the IPWmethod performing very well
on Simulation Setting 1 and the T -Learner performing very well on Simulation
Setting 2.

These illustrative cases are representative of two potential sources of error
via model misspecification. The aim of double robustness is to create estimators
of CATE that work in each of the regimes we’ve illustrated. Formally, we aim
to produce consistent estimates even if one of π(x) or µa(x) are misspecified.
Practically, this tends to work via weighted combinations of IPW and T -Learner
estimates. Kennedy (2022), building upon work from Nie and Wager (2021) and
others, define the DR-Learner via the following two steps1 (again depending upon
an arbitrary regression method).

1. Nuisance function training:

• Construct estimates π̂ of the propensity scores π.

• Construct estimates (µ̂0, µ̂1) of the regression functions (µ0, µ1).

2. Pseudo-outcome regression: construct the pseudo-outcome

ỸDR :=
A− π̂(X)

π̂(X)(1− π̂(X))

(
Y − µ̂A(X)

)
+ µ̂1(X)− µ̂0(X),

and regress it on covariates X, yielding

τ̂DR(x) = Ê[ỸDR|X = x],

where the symbol Ê denotes estimated expectation under the chosen regres-
sion function.

Under certain conditions, the DR-Learner can be shown to produce optimal
convergence rates amongst classes of models based on composition of IPW and
conditional regression functions (Kennedy, 2022). We won’t go into these condi-
tions in detail here, but can begin to appreciate the underlying ideas by inves-
tigating the two extreme cases we’ve discussed. Firstly, let’s assume in Step (1)
of the DR-Learner, we correctly estimate propensity (i.e. π̂ = π) but do not
correctly estimate our conditional regression functions (i.e. (µ̂0, µ̂1) 6= (µ0, µ1)).

1Kennedy (2022) define an optional third to incorporate sample splitting and cross-
validation, but for simplicity we omit this here.
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Figure 4.1: Simulation Settings 1 and 2 with A: the response variable y, and
B: estimates of τ̂(x) for each simulated data point according to the T -Learner
(cross) and IPW (triangle) strategies. The true CATE, τ(x), is shown with a
grey dashed line.
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We can then write that

ỸDR =
A− π(X)

π(X)(1− π(X))

(
Y − µ̂A(X)

)
+ µ̂1(X)− µ̂0(X)

=
A− π(X)

π(X)(1− π(X))

(
A
(
Y (1) − µ̂1(X)

)
+ (1− A)

(
Y (0) − µ̂0(X)

))
+ µ̂1(X)− µ̂0(X)

and therefore that

E[ỸDR|X = x] =
1

π(x)(1− π(x))

(
E[AY (1) − Aµ̂1(x)− Aπ(x)Y (1) + Aπ(x)µ̂1(x) −

(1− A)π(x)Y (0) + (1− A)π(x)µ̂0(x) | X = x]
)

+ µ̂1(x)− µ̂0(x)

=
1

π(x)(1− π(x))

(
π(x)µ1(x)− π(x)µ̂1(x)− π(x)2µ1(x)+

π(x)2µ̂1(x)− (1− π(x))π(x)µ0(x) + (1− π(x))π(x)µ̂0(x)
)

+

µ̂1(x)− µ̂0(x)

=
1

π(x)(1− π(x))]

(
π(x)

(
µ1(x)− µ̂1(x)− π(x)(µ1(x)− µ̂1(x))

)
−

π(x)(1− π(x))
(
µ0(x)− µ̂0(x)

))
+ µ̂1(x)− µ̂0(x)

= (µ1(x)− µ̂1(x))− (µ0(x)− µ̂0(x)) + µ̂1(x)− µ̂0(x)

= µ1(x)− µ0(x) = τ(x),

where here in the first equality we are leveraging that A2 = A and (equivalently)
that A(1 − A) = 0, and in the second equality we make use of the fact that
Y ⊥ A | X and that µa(x) := E[Y (a)|X = x].

Secondly, let’s now assume we’ve estimated the conditional regression func-
tions well (so that (µ̂1, µ̂0) = (µ1, µ0)). Then we can say that

E[ỸDR|X = x] = E[
A− π̂(x)

π̂(x)(1− π̂(x)

(
A(Y (1) − µ1(x))+

(1− A)(Y (0) − µ0(x))
)
| X = x] + µ1(x)− µ0(x)

=
1

π̂(x)(1− π̂(x))
E[
(
A(Y (1) − µ1(x))− π̂(x)A(Y (1) − µ1(x)) −

π̂(x)(1− A)(Y (0) − µ0(x))
)
| X = x] + µ1(x)− µ0(x)

=
1

π̂(x)(1− π̂(x))
E[
(
π(x)(µ1(x)− µ1(x))−

π(x)π̂(x)(µ1(x)− µ1(x))−

(1− π(x))π̂(x)(µ0(x)− µ0(x))
)
| X = x] + µ1(x)− µ0(x)

= µ1(x)− µ0(x) = τ(x),
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where again we’ve used that A2 = A, A(1−A) = 0, the conditional independence
of A and Y (a), and the definition of the conditional regression functions Y (a).
Without elaborating further on the asymptotic properties of the doubly robust
estimator, we can see from the above where robustness to each type of model
misspecification arises. We reconsider Examples 4.2.1 and 4.2.2, with the DR-
Learner also included (Figure 4.2). While we don’t see the DR-Learner perform
the outright best in either scenario, we do see it lives up to its doubly robust
credentials, performing well in both cases. In scenarios where both propensity
and conditional regression estimates are misspecified, we cannot expect faithful
prediction of treatment effect.

4.2.4 Causal forests

Before we describe causal forests, which were developed and implemented as a
specific instance of so-called ‘generalised random forests’ (Athey et al., 2019;
Athey and Wager, 2019), we first describe briefly the process behind fitting (or
‘growing’) random forests in general. Random forests were introduced by Breiman
(2001) and have been in the standard repertoire of machine learning methods
ever since, noted in particular for their strong out-of-the-box performance with
little parameter tuning, even when applied to high-dimensional data. Here we’ll
discuss only the application of random forests to regression problems, although
classification forests proceed in a very similar fashion.

Random forest models are ensembles (weighted combinations) of decision
trees. Decision trees rely on a recursive partition of the domain space (in our
case X ) into rectangular subsets known as ‘branches’ (see Figure 4.3 for a visual
example), with the elements of the final partition referred to as ‘leaves’. Within
each leaf, a representative value is used as the regression output, typically the
mean of all training sample output values within that leaf. Branching of the tree
is determined by choosing a threshold at which to subdivide the covariate space.
This is often chosen so as to minimise the variance of the resultant within-branch
training sample outputs. The set of candidate covariates on which to threshold is
chosen out of a random subset whose size is a hyperparameter of the algorithm.
Other hyperparameters determine how deep and wide a decision tree is allowed
to grow. Random forests, as the name suggest, average over the predictions of
many trees, each trained on a randomly selected subset of the training data. For
a given number of trees B, each tree (generically labelled b ∈ {1, . . . , B}) nat-
urally produces a partition function Lb : X → 2X which, given a point x ∈ X ,
maps to the leaf of the tree b in which x resides, so that for all x ∈ X it holds
that x ∈ Lb(x). A prediction for a point x from tree b is given by the weighted
average

n∑
i=1

1{Xi ∈ Lb(x), i ∈ Sb}Yi
|{j : Xj ∈ Lb(x), j ∈ Sb}|

,

where Sb is the random subsample of the training set chosen for tree b. We can
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Figure 4.2: Simulation Settings 1 and 2 with A: the response variable y, and
B: estimates of τ̂(x) for each simulated data point according to the T -Learner
(cross), IPW (triangle), and DR-Learner (circle) strategies. The true CATE,
τ(x), is shown with a grey dashed line.
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Figure 4.3: Example of a recursive partition of a space into ‘leaves’ in two dimen-
sions, reproduced from Reeve et al. (2021).

then say that a prediction from the entire random forest for a point x is given by

1

B

B∑
b=1

n∑
i=1

1{Xi ∈ Lb(x), i ∈ Sb}Yi
|{j : Xj ∈ Lb(x), j ∈ Sb}|

=
n∑
i=1

αi(x)Yi,

where αi(x) :=
1

B

B∑
b=1

1{Xi ∈ Lb(x), i ∈ Sb}Yi
|{j : Xj ∈ Lb(x), j ∈ Sb}|

.

This framing, in which we reverse the order of summation and consider prediction
with a random forest as an x-dependently weighted mean of outcomes, will be
useful in Section 4.3.1.

Causal forests, produced by an adaptation of the random forests algorithm,
are inspired by the R-Learner approach of Nie and Wager (2017). To motivate
this approach we note that, under the standard causal assumptions,

Y − µ(X) = Y (1) + (1− A)Y (0) − π(X)E[Y (1)|X]− (1− π(X))E[Y (0)|X]

= AY (1) + (1− A)Y (0) − E[Y (0)|X]− π(X)τ(X)

= A(Y (1) − E[Y (1)|X]) + (1− A)(Y (0) − E[Y (0)|X]) + (A− π(X))τ(X)

= (Y − E[Y |X,A]) + (A− π(X))τ(X).

Here the first term (Y − E[Y |X,A]) is the intrinsic variation due to randomness
in Y after all controls. Nie and Wager (2017) therefore propose first estimating
the propensity function π̂(x) and (marginal) regression function µ̂(x). These are
then combined into a target for optimisation, such that τ̂ is selected satisfying2

τ̂ ∈ arg min
τ

{ 1

n

n∑
i=1

((
yi − µ̂(xi)

)
−
(
ai − π̂(xi)

)
τ(xi)

)2}
.

To adapt this method to the regression forest setting, Athey et al. (2019) first
fit forests for µ̂ and π̂, and in growing their output forest select for each leaf
a constant value of τ minimising the expression above. To eliminate bias, at
each point they replace µ̂(x) and π̂(x) with their out-of-bag estimates µ̂(−i)(xi)
and π̂(−i)(xi), where in the given regression forests only leaves not containing the
given training sample are used for prediction3.

2The original authors also included a regularisation term, which we omit for simplicity.
3If not in the context of random forests, ‘out-of-bag’ may equally be replaced by ‘out-of-fold’
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4.2.5 Regularisation

Another view of the two heuristic extremes described in Section 4.2.3 is as a
balance between ‘information sharing’ across the estimated conditional regression
functions µ̂0 and µ̂1, and allowing them to be as flexible as possible in order to
capture nuances to the difference between them (i.e. the treatment effect). Shalit
et al. (2017) proposed a method based on representation learning, in which three
functions are learned: Φ(x),m0(x),m1(x), such that µ̂a(x) := ma(Φ(x)). In this
way information is shared between µ̂0 and µ̂1 via the embedding Φ. The strength
of this sharing is determining by applying a regularisation term to the loss function
when fitting all three functions simultaneously, which penalises distributional
divergence between Φ(X) | A = 1 and Φ(X) | A = 0.

We let τΦ,m0,m1(x) := m1(Φ(x)) − m0(Φ(x)) to refer to the CATE estimate
derived from these functions. Here we measure the success of this estimate with
expected precision in estimation of heterogeneous treatment effect, as defined in
Hill (2011):

εPEHE(Φ,m0,m1) :=

∫
X

(
τ̂Φ,m0,m1(x)− τ(x)

)2
p(x)dx,

where p(x) is the marginal density of the variable X over its domain X . Here we
assume that Φ: X → R is a one-to-one twice differentiable function with imageR
and inverse Ψ: R → X . We define pA=a

Φ (r) := pΦ(r|A = a) to be the conditional
density of the image R = Φ(X) under treatment A = a.

As mentioned above, our strategy will be to regularise the distributional dis-
tance between the distributions R|A = 1 and R|A = 0. To do so, we will need
an appropriate distance measure. For this, we employ the integral probability
metric (IPM) family. These are defined for two density functions p, q over the
domain R. For a family G of functions g : R → R, let

IPMG(p, q) := sup
g∈G

∣∣∣ ∫
R
g(s)

(
p(s)− q(s)

)
ds
∣∣∣.

The IPM metrics include, for an appropriate choice of function family G, the
maximum mean discrepancy (Gretton et al., 2008) and the Wasserstein distance
(Villani, 2009; Sriperumbudur et al., 2012; Cuturi, 2013). The aim of regularis-
ing the distributional distance between the distributions of our two conditional
representations is to bound the divergence betwwen ‘factual’ and ‘counterfactual’
loss. To do so, we let L : Y × Y → R be a loss function and `Φ,m0,m1 : X ×
{0, 1} → R be the expected loss at the point (x, a), i.e. `Φ,m0,m1(x, a) :=∫
Y L(y(a),ma(Φ(x)))p(y(a)|X = x)dy(a). We then define factual and counterfac-

for cross-validated models.
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tual losses εF (Φ,m0,m1) and εCF (Φ,m0,m1) respectively via

εa=1
F (Φ,m0,m1) :=

∫
X
`Φ,m0,m1(x, 1)pa=1(x)dx,

εa=0
F (Φ,m0,m1) :=

∫
X
`Φ,m0,m1(x, 0)pa=0(x)dx,

εa=1
CF (Φ,m0,m1) :=

∫
X
`Φ,m0,m1(x, 0)pa=1(x)dx,

εa=0
CF (Φ,m0,m1) :=

∫
X
`Φ,m0,m1(x, 1)pa=0(x)dx,

εF (Φ,m0,m1) := uεa=1
F (Φ,m0,m1) + (1− u)εa=0

F (Φ,m0,m1),

εCF (Φ,m0,m1) := (1− u)εa=1
CF (Φ,m0,m1) + uεa=0

CF (Φ,m0,m1),

where u := P(A = 1). Shalit et al. (2017) prove that under certain conditions
on the likelihood `Φ,m0,m1 and the function family G, there exists a constant BΦ

such that the counterfactual and factual losses defined above can be related via

εCF (Φ,m0,m1) ≤ (1− u)εa=1
F (Φ,m0,m1) + uεa=0

F (Φ,m0,m1)

+BΦIPMG(pa=1
Φ , pa=0

Φ ).

Their proof relies on Φ having a well-defined inverse Ψ, although in practice
this is not always chosen to be the case. The key result here is that we have now
bounded the counterfactual loss (by definition unobserved) with quantities that
can be directly estimated from observed data; namely, the estimated average loss
on treated patients, the estimated average loss on untreated patients, and the
observed distributional distance between the two conditional representations. As
a direct consequence of this, Shalit et al. (2017) are able to show that

εPEHE(Φ,m0,m1) ≤ 2
(
εa=1
F (Φ,m0,m1)+εa=0

F (Φ,m0,m1)+BΦIPMG

(
pa=1

Φ , pa=0
Φ

)
−K

)
,

where K does not depend on the choices of functions Φ,m0,m1. They therefore
propose empirically minimising the objective

1

n

n∑
i=1

wiL(mai(Φ(xi)), yi) + αIPMG

(
{Φ(xi)}i:ai=0, {Φ(xi)}i:ai=1

)
,

where wi =
ai
2u

+
1− ai

2(1− u)
, u =

1

n

n∑
i=1

ai.

Here α is now a tunable parameter to be optimised by (for example) cross-
validation.
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4.3 Heterogeneous treatment effects applied to sur-
vival analysis

Having summarised several concepts and approaches for HTE estimation, we
now turn to two specific (and very different) examples from recent literature
on adapting estimation methods to the prediction of discrepancies in survival.
These follow on from the last two examples from the previous section, namely
causal forests and neural network-based distributional regularisation. As well as
using different underlying methodologies, they produce starkly different outputs.
Causal survival forests, like causal forests in general, learn only the target function
τ̂ , whereas the regularisation approach learns two distinct stochastic functions for
survival outcomes. Notably, neither are based on a parametric statistical model
for survival such as proportional hazards or accelerated failure time.

4.3.1 Forests again

Cui et al. (2022) propose causal survival forests (CSFs) for HTE estimation in
the presence of censored data. Based on causal forests and implemented via
the same R package grf (Tibshirani et al., 2023), their first major contribution
is to propose a weighting scheme similar to the IPW approach introduced in
Section 4.2.2. They then proceed to describe a correction for double robustness
under misspecification of the learned censoring function. This corrective term is
too technically verbose to describe in full here, so having introduced the concept
of double robustness in Section 4.2.3 we limit ourselves here to an outline of what
is achieved by this correction.

Firstly, we note that in most medical (or indeed any other) survival analyses,
some maximum time horizon for uncensored data is often present. For example, in
a clinical study spanning ten years, any time points greater than ten years must
be censored. We may not, then, expect to be able to recover any meaningful
treatment effect for this range of values. Cui et al. (2022) therefore introduce
a time horizon h, a deterministic transformation γ, and attempt to estimate an
altered HTE funtion

τ γ,h(x) := E[γ(T (1), h)− γ(T (0), h)|X = x].

Here the transformation γ is restricted to satisfy γ(t, h) ≥ γ(h, h) for all t ≥ h > 0.
The choice of the function γ induces variations in the effect being measured,
with γ(t, h) = min{t, h} inducing estimation of difference in restricted mean
survival time (RMST) and γ(t, h) = 1{t ≥ h} inducing estimation of differences
in survival probability. In our later analyses we investigate the application of CSFs
to estimation heterogeneous effects on survival probabilities with time horizons
of one and two years.

In its simplest form the method of Cui et al. (2022) draws inspiration from
inverse probability of censoring weighting (IPCW), the core tenet of which is to
first estimate the censoring function

SCa (s|x) = P(C ≥ s|A = a,X = x).
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We refer to this estimate as ŝa(t|x). We may do this using only censored data.
We could then use uncensored data to fit a causal forest for τ . In the language
introduced in Section 4.2.4, we could express this forest as a weighted sample-wise
sum with weightings

αi(x) =
1

B

B∑
b=1

1{Xi ∈ Lb(x), i ∈ Sb}
|{i : Xi ∈ Lb(x), i ∈ Sb}|

}.

We may then simply replace this weighting αi(x) with αi(x)/ŝAi
(γ(Ti, h)|Xi).

This has the effect of more highly prioritising observations which were unlikely to
have been uncensored, and has been shown empirically to be broadly successful
in eliminating censoring bias (Van Der Laan and Robins, 2003).

While the IPCW strategy may be a good baseline, it suffers from two key
drawbacks: firstly, each of its censoring and treatment functions can only be
learned on a subset of the available training data. Secondly, it is vulnerable to
misspecification/poor fit of the censoring function ŝa(t|x). The solution proposed
by Cui et al. (2022) entails the joint estimation of several more ‘nuisance’ functions
detailing different aspects of the censoring distribution. These can be estimated
using all the available data, and taken together are shown to provide double
robustness – an analogue to the double robustness demonstrated in Section 4.2.3.
Here the two potential sources of misspecification are the censoring function and
the propensity function.

4.3.2 Regularisation again

Our second example of a modern strategy for enabling survival HTE estima-
tion returns to the distributional regularisation method proposed by Shalit et al.
(2017) and discussed in Section 4.2.5. Chapfuwa et al. (2021) proposed an ex-
tension, counterfactual survival analysis (CSA)4, applicable to survival data that
retains the same overall structure: learning a representation Φ: X → R of input
data X taking values in X that serves to ‘share information’ between two condi-
tional regression functions defined by compositions of the representation function
Φ with treatment-specific functions m0,m1. The same regularisation term, based
on integral probability metric (IPM) families which include the Wasserstein dis-
tance, is used to force the learned representations R = Φ(X) to be distributionally
similar regardless of the assigned treatment.

The required extension to survival analysis is provided by replacing the deter-
ministic functions m0,m1 with flexible regression functions (in this case provided
by neural networks) dependent on a separate random input ε. This allows for
a non-parametric specification of the distribution of survival times, as described
in Section 1.2.4. The adapted survival loss from Chapfuwa et al. (2018) is used,

4They also provide a further extension, CSA-INFO, to deal with informative censoring; we
omit this for simplicity.
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giving a strategy defined by minimising the objective

1

n

n∑
i=1

wiL(mai(Φ(xi), ε), yi, δi) + αIPMG

(
{Φ(xi)}i:ai=0, {Φ(xi)}i:ai=1

)
,

with L(t, y, δ) := δ|y − t|+ (1− δ) max{0, y − t}

and wi, u defined as in Section 4.2.5. In the experiments presented in later sec-
tions, we use an adapted PyTorch (Paszke et al., 2019) implementation of these
metods provided by (Chapfuwa et al., 2021).

4.4 Application to immunotherapy

We now put the methods described across previous sections into practice by
demonstrating the use of two techniques for causal survival analysis in an oncology
setting. To do so, we use publicly available clinical and somatic mutation data
combining studies in which immunotherapy treatment (ICB therapy based on PD-
L1 and CTLA-4 checkpoints) has been used and in which it hasn’t. This is used
more as a platform to assess the strengths and vulnerabilities of each method than
as a demonstration of novel findings. Indeed, the limitations of these datasets
(discussed in detail later in this section) serve as good talking points for the
difficulty in applying these methods in practice. We begin by describing our data
sources, then proceed to give results firstly of validating the role of TMB as a
biomarker and then of producing more general somatic mutation-based predictors
associated with immune response. We conclude with a discussion of the pros and
cons of each method and their aforementioned shared limitations.

4.4.1 Data sources

We compare two datasets comprising mutation and clinical data derived from
late stage cancer patients. The first dataset, produced by Zehir et al. (2017), is
derived from a large cohort treated at the memorial Sloan Kettering cancer centre
(MSKCC). It was produced in order to inform decisions around experimental
treatment regimes for patients whose tumours had been refractory to standard
care. The second, produced by Hellmann et al. (2018a), describes a smaller
(but still substantial) cohort of patients at similar disease stages who were then
treated with ICB. While there are differences between the two datasets in both
the availability of clinical data and the specifics of patient trajectory, the two
studies provide usefully comparable data sources for patients that were and were
not treated by immunotherapy. Crucially, since both analyses were performed
using the MSK-IMPACT targeted sequencing panel, their mutation profiling is
very comparable. We describe further characteristics of each dataset below.

Zehir et al.

This study by MSKCC provides somatic mutation data, as well as some clinical
covariates, for over 10,000 patients with late stage cancer of a variety of types.
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These patients were, by entry criteria, those who would be eligible to participate in
clinical trials for experimental drugs. After the sequencing study was conducted,
a minority (11%; 527 patients) did indeed go on to be matched to further trials on
the basis of their mutation profile. OS statistics are provided relative to a baseline
given by the time point at which the procedure for recovering the sequencing
sample was performed. Many samples were taken from metastatic sites, and some
patients had multiple samples recovered. The fact that all tumours sequenced
in the study were those of late stage cancers is emphasised by the authors as
allowing a fuller picture of the mutations associated with cancer development
and response to first-line treatment. Clinical features available include detailed
cancer type information, metastatic status, sex, and smoking history.

Hellman et al.

This dataset describes advanced cancer patients who did receive ICB treatment
based on inhibition of PD-L1, CTLA-4, or both. For these patients, OS was
measured from the date of first ICB treatment. Clinical features available include
sex, age, and drug type.

4.4.2 Validation with TMB

We begin by investigating the extent to which the methods we’ve described for
HTE estimation can recapitulate the known relationship between TMB and ben-
efit from immunotherapy. This is a valuable benchmark for any modelling ap-
proach, because basing predictions on TMB alone (alongside any available general
clinical features) means working with an input of low dimension, which should
present a smaller challenge to any estimation method.

We begin by applying the causal survival forests method of Cui et al. (2022).
To restrict the focus of this demonstrative application, we consider only NSCLC
patients from each of the datasets described above. To simplify matters further,
we consider only patients without missing data for time-to-event, censoring sta-
tus, sex, or TMB values, and where multiple samples are available for a given
patient we take only the sample with the highest sequencing coverage. After these
restrictions we are left with samples from 129 immunotherapy-treated patients,
and 603 not treated with immunotherapy. We take 75% of these samples (96 im-
munotherapy, 452 non-immunotherapy) as a training dataset. We apply causal
survival forests to predict differences in probability of survival after one and two
years, as described in Section 4.3.1.

We present out-of-bag predictions of difference in survival probability for sur-
vival after one and two years for each patient in the training set using this method
in Figure 4.4. For two year survival we see a substantial improvement in ex-
pected benefit from immunotherapy with increased TMB at low BMR, before a
plateau at around 20mut/Mb. Sex, the only clinical covariate available across
both datasets (more on this later), appears to play a role fairly independently
from TMB. Within this trend, male patients appear to be consistently benefiting
more from immunotherapy across TMB values.
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Figure 4.4: Out-of-bag CSF predictions of difference of probability of one- and
two-year survival (left and right panels respectively) after treatment with im-
munotherapy for non-small cell lung cancer patients.

Interestingly, while a strong dependence on TMB is observed, the highest level
of estimated benefit from immunotherapy is fairly low, and indeed for the major-
ity of patients with low TMB we estimate negative benefit from immunotherapy
treatment. We hypothesise that this is due to uncaptured differences in typi-
cal clinical features between the two datasets. As mentioned above, to perform
this analysis we were only able to utilise clinical factors that were recorded across
both studies. As a conglomeration of multiple studies itself, the Zehir et al. (2017)
dataset in particular did not make available several pieces of data that would be
expected to impact disease trajectories significantly. The two most important of
these, which would certainly be necessary to strengthen any associations learned
here, would be patient age, and disease stage. Systematic variation in either
would be likely to impact the difference in average rate of two-year survival be-
tween the two data sources and skew overall estimation of immunotherapy benefit
(even if the relationship with TMB was accurately captured). This same trajec-
tory is observed for one-year survival but the lack of overall ascribed benefit to
immunotherapy is even clearer; in this case for no values of TMB does the in-
ferred survival benefit exceed net neutrality. The overall variation in benefit with
increased TMB is also lower, despite the similar shape of the inferred response
curve. It is not clear why the overall (presumed) underestimate of benefit from
immunotherapy is so much more pronounced after twelve months than twenty
four. It has been noted that ICB-type immunotherapy can particularly effective
at producing long-term survival benefits to the subset of patients who receive
some benefit (Putzu et al., 2023). This, if the case here, may explain to some
degree this qualitative difference.

We also fitted neural network-based conditional regression functions as de-
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Figure 4.5: Selection of α penalisation parameter for CSA model. A value of
α = 101 was selected.

scribed in Section 4.3.2. This was done performed using a neural network with
a single hidden layer of dimension 10 and an output also of dimension 10 for
Φ(x). The functions m0,m1 were also neural networks with a single hidden layer
of dimension 10. The random input ε was of size ten, with each element inde-
pendently distributed according to U [0, 1]. The Sinkhorn distance (Cuturi, 2013)
was used for IPM regularisation. We performed selection of the regularisation
parameter α by likelihood minimisation on the validation set across the range
α ∈ {10−1, 100, 101, 102, 103}. We report the output of these runs in Figure 4.5,
and selected α = 101. We then used this fitted model to sample 200 estimated sur-
vival times under each treatment for covariates corresponding to each patient in
the training set, and from these calculated the estimated differences in survival
probability after one and two years (as for the causal forests example above).
These predictions are given in Figure 4.6.

Firstly, we see a clearly similar overall picture of response to increased TMB
in estimated treatment benefit as in the previous analysis. In both cases benefit
rises with TMB, with a plateau after around 20mut/MB in the case of one-year
survival. Strikingly, the predicted range of benefit is much higher than in the
causal forests analysis; here for both one- and two-year survival there are very few
samples with a predicted negative treatment effect. This may well be principally
driven by more pessimistic predictions of overall survival time. Particularly in
the two-year survival case, many input data points are assigned zero probability
of survival beyond two years under either treatment regime. This is difficult
to compare directly with causal survival forests, since the latter method does
not provide predictions of survival, instead providing simply an prediction of the
difference in survival probabilities.

Finally, in order to provide a baseline we also demonstrate the results of
naively applying a Cox proportional hazards model to each of the two datasets and
directly comparing survival predictions between a model fitted to immunotherapy
patients and one fitted on non-immunotherapy patients. These differences in
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Figure 4.6: CSA neural network predictions of difference of probability of 1-
and 2-year survival (left and right panels respectively) after treatment with im-
munotherapy for non-small cell lung cancer patients.

probabilities are shown in Figure 4.7. We observe broadly similar patterns –
increase in estimated immunotherapy benefit with increased TMB, and negative
estimated benefit at low values of TMB – with the obvious caveat that these
constituent Cox models are only capable of describing linear trends. In order to
keep consistency with other experiments, we restricted to TMB and patient sex as
confounders/predictors, but we would have been able to fit individual Cox models
on the basis of a larger set of covariates for each dataset, not being restricted only
to use those covariates that were shared between the two (for a demonstration of
the entire breadth of clinical information available for immunotherapy patients,
see for example Chowell et al., 2022).

4.4.3 Exploring more general markers

In order to explore models of response depending on more than just on clinical
factors and TMB, we include non-synonymous mutation counts for each gene in
the MSK-IMPACT gene panel. This panel consists of 341 gene targets. Some
samples in the given datasets were profiled with more extensive gene panels, so
we restricted our analysis only to the genes covered by all panels. We fitted CSFs
based on these mutation counts, patient sex, and TMB. For this application case
forests were chosen in order to leverage easily interpretable measures of covariate
importance. We computed these variable importance measures for each gene and
clinical covariate included in the joint datasets, with all non-zero values shown in
Figure 4.8.

We see that, while no individual gene target is of the predictive importance of
TMB or sex in this larger combined model, but several come close. These include
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Figure 4.7: Difference-of-Cox proportional hazards model predictions of proba-
bility of 1- and 2-year survival (left and right panels respectively) between im-
munotherapy treated and non-immunotherapy treated non-small cell lung cancer
patients.

Figure 4.8: Top ∼20 genomic and clinical predictors of heterogeneous survival
treatment effect, alongside their estimated within-forest importance metrics.
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Figure 4.9: Total number of mutations observed in each gene target across the
training set, vs percentage of predictive importance in the resultant causal sur-
vival forest ascribed to each target (targets with importance > 0 labelled).

several usual suspects such as TP53, KRAS, STK11, and KEAP1. In order to
understand the relationship between a gene’s influence on the causal survival
forest model and its BMR, we compared variable importance scores with total
mutation counts across the training dataset for each gene in the MSK-IMPACT
panel, with outputs shown in Figure 4.9. While we observe some anomalies, such
as EGFR, we do see broadly that all highly weighted genes are those with elevated
mutation rate. We note in the case of the EGFR gene that mutations are found
frequently throughout large portions of the gene region, whereas for a comparably
mutated gene such as KRAS mutations are almost exclusively at one locus (see
Figure 4.10), and hypothesise that this specificity of mutation contributions might
be related to KRAS’s drastically higher model contribution score. Additionally,
it is worth emphasising that there is (as was the theme of Chapter 3) substantial
correlation between mutation scores in some genes and TMB. However, the gene
with the highest observed correlation with TMB, ERBB4 (with a correlation of
0.423), does not appear in the top predictors in Figure 4.9. We can therefore be
confident that correlation with TMB is not the only influential property of the
inferred genes.
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Figure 4.10: Top: Lollipop plot for mutations in the EGFR gene in Zehir et al.
(2017). Bottom: As above, but for the KRAS gene.

4.5 Conclusions

In this work we’ve utilised recent developments for causal survival analysis in
oncology. Our first aim was to validate these methods by recapitulating the
known causal dependence of immunotherapeutic treatment effect on TMB. This
we have done successfully; for each method and prediction target employed we
have clearly seen a positive trend in the relationship between immunotherapy
benefit and TMB, notwithstanding differences in calibration of overall benefit.
We’ve then taken first steps towards exploring the utility of more generic mutation
features than TMB in theranostic decision settings. This, similarly, has garnered
results than pass a ‘sniff check’ for viability, recapitulating the impact of several
known driver genes. It remains for further investigation to see how well this
method can detect high-impact, low-frequency mutations.

The principal limitation of this pilot study, which is common amongst at-
tempts to bring together disparate clinical datasets, is the poor consistency of
available clinical features. Here we were able to use patient sex to demonstrate
the role of a shared, potentially confounding, covariate, but by itself this is clearly
inadequate. It is hard to imagine that none of age, cancer progression stage, or
prior treatment would play a confounding role in the propensity of patients to
belong to one treatment arm or the other. It seems likely that patients enrolled
in immunotherapy trials are in general more sick, have received more previous
lines of treatment, and have been more refractory to the treatments that they
have received. This may to some extent explain an overall underestimate of im-
munotherapy benefit. Intriguingly, this seems to be shown far more clearly in
CSF analysis than CSA. Further work is required to understand exactly what
leads to these discrepancies in estimation of overall average treatment effect, and
to what extent it may be representative of an increased sensitivity to confounding
by the random forests approach.

In attempting to decompose the reasons for prediction differences between
the two methods exhibited, it is worth noting their very different properties with
respects to interpretability and adaptability. While on the whole random forests
are typically considered more interpretable than neural networks (particular with
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a subtly controlled joint representation layer), causal survival forests predict only
the given treatment effect whereas Chapfuwa et al. (2021)’s method effectively
produces generative models for survival under each of the treatment arms. In the
case of the CSA-INFO method (omitted in this chapter for simplicity), we attain
further treatment-specific generative models of censoring status. In practice this
means that it is far easier to untangle these model’s behaviours in different setting.
It also greatly simplifies the procedure of model fitting for a particular target (e.g.
difference in two-year survival probability). While CSFs require refitting for each
potential time horizon h and transform γ, all of this analysis can be performed
via sampling after fitting a CSA model.

In the context of causal prediction models, validation in general provides a
very difficult challenge. While there are natural ways to validate the performance
of each of these model types, they are natural attuned to the performance of
their own model type and may translate poorly to the other. In general two
strategies have emerged for cross-model comparison: firstly, simulated or semi-
simulated analyses; and secondly, analyses geared towards recapitulating a known
phenomenon or causal association. In our case we have chosen the latter, although
more extensive simulation studies comparing these two methods alongside more
simple procedures described earlier in the chapter would also be beneficial.

As a final note, in general the more complex the mechanisms underpinning
a model’s training, prediction, and validation, the more difficult it is for such a
model to attain useful real-world implementation. It is out of scope for our work
here to give a full analysis of difficulties in translating clinical prediction models
beyond single studies all the way to deployment. However, these difficulties are
reflected in the specific (and in our case largely unmet) demands on data type
and quality to enable truly reliable usage of the models described. This comes
even though the stated purpose of such models is, to some extent, to ease the
need for expensive and arduous collection of controlled data tailored to the de-
sired prediction task. It remains to be seen whether there is a place for models
complex enough to deal with messy and only partially cohesive ‘real-world data’,
or whether their complexity will render them fragile enough that they would only
become practically useful when sufficient data collection has occurred to enable
simpler analyses regardless.
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Appendix A

Computational workflow for LAMP
assay analysis

In this appendix we discuss software and computational aspects of the analysis
presented in Chapter 2. This is divided into two sections.

In Chapter 2 we discuss the generation of several primer/amplicon features,
each a function of a given primer/amplicon pair’s sequences. To ensure that
this is reproducible and usable by other researchers, we produced an R package,
LAMPPrimerFeatures, encapsulating the above functionality. In section A.1 we
discuss the design and use of this package, working with a very small example
dataset provided alongside the package.

Beyond from the core functionality of producing primer features, we wanted
the code-level specifics of all analysis presented in Chapter 2 to be available,
understandable, and reproducible. In Section A.2 we demonstrate how we made
use of the targets framework in R to achieve these goals.

Regrettably, at the time of submission neither of these codebases have been
made available publicly (while both are intended to be), due to the need for final
approval from industrial collaborators. We have therefore decided to include this
appendix, and interested readers should contact the author if they wish to receive
special access to the two repositories associated with each section.

A.1 R package LAMPPrimerFeatures

A.1.1 Goals

We developed the R package LAMPPrimerFeatures (to be released publicly in the
near future) with three goals. Firstly, we aimed to make consistent the process
for mapping from amplicon and primer sequences to the features described in
Table 2.2. This allows for simple and concise code to perform the subsequent
modelling analysis, and easy integration of extra features in future analyses should
they be required. Secondly, we were required to make our feature generation
pipeline amenable to analysis of multiple data formats generated by different
experimental setups. In particular, we need to be able to deal both with primer
specification datasets in which FIP/BIPP primer sets are varied for each target,
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and for which each of F3/B3, FIP/BIP, and LF/LB are varied once per target.
Thirdly, we set out to automate several aspects of manual work common to primer
analysis, including generation of complement/reverse complement sequences and
identification of F1/F2 (B1/B2) subsequences of FIP (BIP) primers.

A.1.2 Implementation and dependencies

The typical analysis workflow for use of LAMPPrimerFeatures comprises three
steps. Firstly, primer sequences are aligned with their respective amplicon se-
quences. This necessitates the identification of amplicon regions associated with
F3, B3, LF, LB, F1, B1, F2, and B2 sequences, where F1/F2 and B1/B2 may have
to be identified within given FIP/BIP primer sequences. Secondly, where nec-
essary comparison sequences are generated, such as reverses, complements, and
reverse complements for each relevant sequence. Finally, these sets of processed
sequences are provided to functions producing each of the required features. We
provide wrappers to each of these functions such that they can be applied at scale
across a dataset.

The LAMPPrimerFeatures package has various dependencies, including sev-
eral packages in the tidyverse ecosystem such as dplyr for data manipulation,
stringr for string processing, and purrr for efficient application of functions to
multiple inputs. For string alignment algorithms, Biostrings is used from the
Bioconductor project. Finally, UNAFold (Markham and Zuker, 2008) is a com-
mand line tool for approximate free energy calculations. It is available free for
researchers, and can be purchased for commercial use.

A.1.3 Example use case

The development version of LAMPPrimerFeatures can be installed (with correct
permissions) from GitHub with:

# i n s t a l l . packages (" dev too l s ")
dev too l s : : i n s t a l l_g i thub (" cobrbra /LAMPPrimerFeatures ")

An example dataset is provided to demonstrate a typical workflow (output in
Table A.1):

d ev too l s : : l oad_al l ( )
l i b r a r y ( t i dyv e r s e )
l i b r a r y ( kn i t r )

kable ( example_primer_data )

primer target primer_set_id name sequence amplicon_raw
F3 TP53 1 TP53_F3_1 AGT CCGACTCCC
B3 TP53 1 TP53_B3_1 AGTC CCGACTCCC
FIP KRAS 1 KRAS_FIP_1 AACC AGCCTTGA

Table A.1: Dataframe example_primer_data.
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Firstly, we generate alignments of primer sequences with their amplicon refer-
ence, and use these to identify subregions and create new F1/F2/B1/B2 primers
(output in Table A.2):

a l ignments <− get_al ignments ( example_primer_data )
#> a l i g n i n g sequences
#> f i nd i n g s t a r t /end po in t s
#> done !
subprimers <− generate_subprimers ( a l ignments )

kable ( subprimers )

primer target name sequence amplicon_raw
F3 TP53 TP53_F3_1 AGT CCGACTCCC
B3 TP53 TP53_B3_1 AGTC CCGACTCCC
FIP KRAS KRAS_FIP_1 AACC AGCCTTGA
F1 KRAS KRAS_FIP_1R1 TT AGCCTTGA
F2 KRAS KRAS_FIP_1R2 CC AGCCTTGA

Table A.2: Example primers with relevant subsequences identified. Note the
sequence AA in FIP has been complemented to TT in F1, as technically FIP is
formed of F1c → F2.

We then generate amplicon and stem endpoints. These are only relevant for
F1/F2/B1/B2, and are used downstream to ascertain stem length and loop length
for an individual experimental setup. Output is shown in Table A.3.

amplicon_endpoints <− get_amplicon_endpoints ( subprimers )
kable ( amplicon_endpoints )

primer target . . . sequence amplicon_raw stem_end amplicon_end
F3 TP53 . . . AGT CCGACTCCC NA NA
B3 TP53 . . . AGTC CCGACTCCC NA NA
FIP KRAS . . . AACC AGCCTTGA NA NA
F1 KRAS . . . TT AGCCTTGA 6 NA
F2 KRAS . . . CC AGCCTTGA NA 3

Table A.3: Example primers with amplicon and stem endpoints identified.

We may then write to file comparison sequences (complements, reverses, re-
verse complements) and use them to calculate free energies. We do this in a
temporary directory, as we will not need these written files after free energy
properties are calculated. For this step UNAFold must be installed.

# Run with UNAFold i n s t a l l e d

# . old_wd <− setwd ( tempdir ( ) )
# write_sequences ( example_primer_data )
# f r e e_ene r g i e s <− amplicon_endpoints %>%
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# ca l cu l a t e_ f r e e_ene rg i e s ( )
# setwd ( . old_wd)
#
# kable ( f r e e_ene r g i e s )

Finally we can add k-mer complexities. Here we analyse 2-mers as we only
have very short example primer sequences (output in Table A.4).

c omp l ex i t i e s <− amplicon_endpoints %>%
ca l cu l a t e_comp l ex i t i e s ( l en = 2 , r e f e r e n c e = "AGTAGTCAACCTTCCGAGAG")

kable ( c omp l ex i t i e s )

primer target . . . sequence amplicon_raw . . . complexity_2
F3 TP53 . . . AGT CCGACTCCC . . . 0.3750
B3 TP53 . . . AGTC CCGACTCCC . . . 0.5000
FIP KRAS . . . AACC AGCCTTGA . . . 0.9166
F1 KRAS . . . TT AGCCTTGA . . . 1.0000
F2 KRAS . . . CC AGCCTTGA . . . 0.7500

Table A.4: Example primers with complexities provided.

A.2 Implementation of LAMP analysis with targets

A.2.1 Goals

In enabling a reproducible, modular and extensible piece of computational anal-
ysis in Chapter 2, we aimed to produce a codebase such that readers would
be able to re-run the entire analysis (from raw data) with little or no manual
work. While simple execution and reproduction was key, we also wanted it to be
easy to understand the tools applied at each processing step without having to
run the entire analysis themselves. To do this, we used the R package targets
(Landau et al., 2023), a workflow management system with which users define
a dependency graph tracking the relationships between quantities of interest in
an analysis. This is useful for external readers/users to build an intuitive un-
derstand of the processed underlying the analysis, but also during development
and computation – the targets framework is able to track which sub-analyses
have and haven’t been run, as well as the impact on downstream quantities of
changing functions/input data earlier in the analysis, e.g. in preprocessing.

A.2.2 Specifying a dependency graph

At the core of the targets approach is the specification of a dependency graph.
This directed acyclic graph relates quantities of interest throughout the analysis.
For example, in the workflow accompanying our LAMP analysis we have targets

154



Figure A.1: An example (partially complete) targets dependency graph for the
LAMP analysis project in Chapter 2.

for raw and processed clinical data, single-target models, multi-target models,
and figures. A dependency graph is specified in a file “targets.R”, in which the
relationships between targets are defined in terms of functions within targets
project’s scope. See Figure A.1 for an example dependency graph from this
project.

A.2.3 Running and tracking analyses

The dependency graph as described is useful for ensuring an analysis is modular
and flexible (any function for moving from one target to another can be inves-
tigated, tweaked or replaced), but also entirely reproducible. At any point, all
targets can be completely updated by running targets :: tar_make(). Further-
more, targets is a fantastic resource for tracking the current status of a project
(particularly when some constituent processes take a long time). Note that in
Figure ??, some nodes are blue while others are grey. Blue nodes here indicate a
portion of the analysis that has not yet been performed. We are able to automat-
ically track whether any targets need re-running (or running for the first time)
via a system of hashes of objects and relating functions. For example, upon
altered a preprocessing function for clinical data, we arrive at the dependency
graph shown in Figure A.2. The node corresponding to this altered preprocessed
data and all its downstream children are now due for updating the next time
targets :: tar_make() is run.
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Figure A.2: An example (partially complete) targets dependency graph for the
LAMP analysis project in Chapter 2, after changes have been made to a prepro-
cessing step.
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Appendix B

Extended model summaries for
LAMP assay analysis

In this appendix we give more thorough model summaries than were provided in
the text of Chapter 2.

B.1 Prior checks
We begin by displaying prior predictive check plots for single-target models spec-
ified in Section 2.2.3. Prior predictive checks are used to make sure that the
distribution of outcomes implicitly postulated by the choices of priors suitably
covers the true observed distribution. We show these for models of rate (Fig-
ure B.1) and of cycle offset (Figure B.2).

Figure B.1: Prior predictive plots for each of the 25 single-target models fitted of
rate B̂ij, summarised in Table 2.4 in the main text.
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Figure B.2: Prior predictive plots for each of the 25 single-target models fitted of
offset Ĉij, summarised in Table 2.3 in the main text.

B.2 Posterior Checks
We next give posterior predictive check plots for the same set of 25 models. These,
rather than simply aiming to show a distribution encompassing the range of the
observed distribution, aim to show a fitted distribution that closely matches it.
Once again, we show posterior summaries for models of rate (Figure B.3) and of
cycle offset (Figure B.4).
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Figure B.3: Posterior predictive plots for each of the 25 single-target models fitted
of offset Ĉij, summarised in Table 2.4 in the main text.

Figure B.4: Posterior predictive plots for each of the 25 single-target models fitted
of offset Ĉij, summarised in Table 2.3 in the main text.

B.3 Model Convergence
Finally, we present HMC convergence summaries for each of the 25 single-target
models of both rate and cycle offset.
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Figure B.5: Model convergence summaries for each of the 25 single-target rate
models summarised in Table 2.4.
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Figure B.6: Model convergence summaries for each of the 25 single-target rate
models summarised in Table 2.4 (continued).
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Figure B.7: Model convergence summaries for each of the 25 single-target rate
models summarised in Table 2.4 (continued).
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Figure B.8: Model convergence summaries for each of the 25 single-target rate
models summarised in Table 2.4 (continued).
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Figure B.9: Model convergence summaries for each of the 25 single-target offset
models summarised in Table 2.3.
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Figure B.10: Model convergence summaries for each of the 25 single-target offset
models summarised in Table 2.3 (continued).
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Figure B.11: Model convergence summaries for each of the 25 single-target offset
models summarised in Table 2.3 (continued).
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Figure B.12: Model convergence summaries for each of the 25 single-target offset
models summarised in Table 2.3 (continued).
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Appendix C

Open-source software accompanying
TMB estimation

In this appendix we discuss software and computational aspects of the analysis
presented in Chapter 3.

C.1 R package ICBioMark

In this section we’ll demonstrate use of the R package ICBioMark (Bradley and
Cannings, 2021b) on a toy example containing simulated data. The same core
workflow, applied to real data, will form almost all of the results described
throughout the remained of the chapter.

The package ICBioMark is available via the R repository CRAN and so can
be installed and loaded with:

i n s t a l l . packages ( ‘ ICBioMark ’ )
l i b r a r y ( ICBioMark )

or from GitHub with:

i n s t a l l . packages ( ‘ devtoo l s ’ )
dev too l s : : i n s t a l l_g i thub ( ‘ cobrbra /ICBioMark ’ )
l i b r a r y ( ICBioMark )

(note that the GitHub version is development and may not be as stable as the
CRAN release, but may contain more features). The toy dataset we use here
comes pre-loaded with the package, but just comes from the data simulation
function generate_maf_data(), which allows for a variety of choices of dataset
size and shape.

Our example dataset, called example_maf_data, is a list with two elements:
maf and gene_lengths. These two pieces of data are required for most of the
tasks performed by ICBioMark. They are organised as follows:

1. The dataset maf is a data frame in mutation annotated format. For a set
of sequenced tumour/normal pairs, this means a table with a row for every
mutation identified, with columns corresponding to properties such as the
sample ID for the tumour of origin, the gene, chromosome and nucelotide
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location of the mutation, and the type of mutation observed. In the real
world, MAF datasets often have lots of extra information beyond this, but
for our example we only include sample, gene and mutation type. See the
first five rows in Table C.1 – generating code below:

head ( example_maf_data$maf , 5)

Tumor_Sample_Barcode Hugo_Symbol Variant_Classification
SAMPLE_96 GENE_14 Missense_Mutation
SAMPLE_73 GENE_14 Frame_Shift_Ins
SAMPLE_55 GENE_4 Missense_Mutation
SAMPLE_96 GENE_3 Missense_Mutation
SAMPLE_38 GENE_7 Missense_Mutation

Table C.1: First five rows of example_maf_data$maf.

2. The data frame gene_lengths contains the names (referred to by Hugo
Symbol) of genes to be included in downstream modelling, alongside their
length. As discussed above, gene length is a complex and subtle quantity to
define – we advise using coding length as defined in the Ensembl database
(Yates et al., 2020). For this example, however, gene lengths are again
randomly chosen by the simulating function. Example rows are given in
Table C.2 with accompanying code snippet below:

head ( example_maf_data$gene_lengths , 5)

Tumor_Sample_Barcode Hugo_Symbol
GENE_1 961
GENE_2 1009
GENE_3 1011
GENE_4 976
GENE_5 1016

Table C.2: First five rows of example_maf_data$gene_lengths.

User-provided gene length datasets, which we recommend extracting from the
Ensembl database (Yates et al., 2020), are permitted to contain values for more
genes than are observed in the accompanying MAF dataset. In general, if a few
genes covered by a WES experiment are missing gene length information it will
not drastically impact model performance, but lots of missing values will begin to
cause issues with model accuracy. Later versions of this ICBioMark will address
missing gene length data.

In our next step we specify training/validation/test split and build model
matries. The MAF format is widely used and standardised, but not especially
helpful for sample(/patient)-level prediction. The ideal format for our data is a
matrix in which every row corresponds to a sample, every column corresponds
to a gene/mutation type combination, and each entry corresponds to how many

170



mutations in that sample, gene and type were identified by sequencing. At the
same time as this, we’d like to separate our training data from separately reserved
validation and test data. We do this using the function get_mutation_tables().

Our procedure, described in Section 3.2.2, models different mutation types
separately, so in theory one could have separate parameters for each muta-
tion type (e.g. ‘Missense_Mutation’ or ‘Frame_Shift_Ins’). However, do-
ing so would vastly increase the computational complexity of fitting a generative
model. It is also not particularly informative to fit parameters to extremely
scarce mutation types. Mutations types are grouped and filtered by the func-
tion get_mutation_dictionary(). In general we recommend separately modelling
indel mutations (so that we can predict TIB later), synonymous mutations (as
these don’t count towards TMB or TIB), and grouping together all other non-
synonymous mutation types. The function get_mutation_dictionary() allows for
the production of a list of mutation types, with labels for their groupings.

Next we produce our training, validation and test sets. Again, for this ex-
ample workflow these are availbale pre-loaded, but can also be produced with
the ‘get_mutation_tables’ function. The object produced has three elements:
‘ train ’, ‘ val ’ and ‘ test ’. Each of these contains a sparse mutation matrix
(‘matrix’) and other information describing the contents of the matrix (‘sample_list’,
‘gene_list’, ‘mut_types_list’, and ‘col_names’). See example code below.

example_tables <− get_mutation_tables (
example_maf_data$maf ,
sample_l i s t = paste0 ("SAMPLE_" , 1 : 100 )

)
p r i n t ( head ( example_tables$train$col_names , 10) )

> [ 1 ] ‘GENE_1_NS’ ‘GENE_1_I’ ‘GENE_1_I’ ‘GENE_2_NS’
> [ 5 ] ‘GENE_2_I’ ‘GENE_2_S’ ‘GENE_3_NS’ ‘GENE_3_I’
> [ 9 ] ‘GENE_3_S’ ‘GENE_4_NS’

At this point we are ready to fit a generative model, for which we need only to
provide gene lengths data and training data to the function fit_gen_model(). We
can visualise output of our model with vis_model_fit() (see Figure C.1). Since
this is a small example, we don’t get a particularly strong signal, but we do see
an optimum level of penalisation.

example_gen_model <− fit_gen_model (
gene_lengths = example_maf_data$gene_lengths ,
t ab l e = example_tables$tra in

)

p r i n t ( vis_model_fit ( example_gen_model ) )

We now construct a first-fit predictive model. The parameter lambda controls
the sparsity of each iteration, so it may take some experimentation to get a good
range of panel lengths. From this, we can construct a range of refit estimators.

example_first_pred_tmb <− p r ed_ f i r s t_ f i t (
gen_model = example_gen_model ,
lambda = exp ( seq (−9 , −14, l ength . out = 100) ) ,

171



Figure C.1: Output example showing the variation in cross-validated generative
model fit for a model fitted to example simulated data.

t ra in ing_matr ix = example_tables$tra in$matr ix ,
gene_lengths = example_maf_data$gene_lengths

)
example_ref it_range <− pred_ref i t_range (

p r ed_f i r s t = example_first_pred_tmb ,
gene_lengths = example_maf_data$gene_lengths

)

With a predictive model fitted, we can use the function get_predictions()
along with a new (validation or test) dataset to produce predictions on that
dataset. We then provide several functions including get_stats() to analyse the
output compared to true values (example results in Figure C.2).

example_ref it_range %>%
get_pred i c t i ons (new_data = example_tables$val ) %>%
get_stats (

biomarker_values = example_tmb_tables$val ,
model = "T" ,
th r e sho ld = 10

) %>%
ggplot ( aes ( x = panel_length , y = s t a t ) ) +

geom_line ( ) +
facet_wrap (~metr ic ) +
theme_minimal ( ) +
labs (

x = "Panel Length " ,
y = " Pr ed i c t i v e Performance"

)
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Figure C.2: Example prediction summary statistics from ICBioMark estimators
applied to simulated data.
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