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Abstract

In the current information age, where over 1 Petabyte of data is created every day on the
web, demand continues to rise for effective technological tools to aid end-users in consum-
ing information in a timely way. Automatic summarization is the task of consuming a text
document –or collection of documents– and presenting the user with a shorter text, the sum-

mary, that retains the gist of the information consumed. In general, a good summary should
present content bits that are relevant –be informative–, non-redundant -be non-repetitive–,
organized in a sensical way –be coherent–, and read as a unified thematic whole –be cohesive.

The particular information needs of each user prompted many variations of the sum-
marization task. Among them, extractive summarization consists of extracting spans of text
-usually sentences- from the input document(s), concatenating them, and presenting them
as the final summary. Traditionally, extractive systems focus their attention on presenting
highly informative content, regardless of whether content bits are repeated or presented in an
incoherent, non-cohesive manner. How to balance these properties remains an understud-
ied problem, even though the understanding of the trade-offs between them could enable a
system to produce text with relevant content that is also more readable to humans.

This thesis argues that extractive summaries can be presented in a non-redundant, co-
hesive way, and still be informative. We investigate the interaction between these summary
properties and develop models that balance their trade-off during document understand-
ing and during summary production. At the core of these models, an algorithm –inspired
by psycholinguistic models of memory– simulates how humans keep track of relevant con-
tent in short-term memory, and how cohesion and non-redundancy constraints are applied
among content bits in memory.

The results are encouraging. When modeling trade-off during document understand-
ing in an unsupervised scenario, we find that our models are able to detect relevant content,
reduce redundancy, and significantly improve cohesion in summaries, especially when the
input document exhibits high redundancy. Furthermore, we show that this balance can
be controlled through specific, interpretable hyper-parameters. In a similar reinforcement
learning scenario, we find that informativeness and cohesion can influence each other posi-
tively.

Finally, when modeling trade-off during summary extraction, our models are able to bet-
ter enforce cohesive ties between semantically similar text spans in neighboring sentences.
Our approach produces summaries that are perceived by humans as more cohesive and as
informative as summaries only built for informativeness. Catering to the need to process
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extremely long and redundant input, we design this system to be capable of consuming se-
quences of text of arbitrary length and test it on scenarios with single, long documents, and
multi-documents.
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Chapter 1

Introduction

The contemporary era is witnessing an unprecedented surge in the generation and consump-
tion of data globally, with a staggering 97 zettabytes produced in 2022 alone. This exponen-
tial trend is anticipated to persist, projecting a daily generation of 463 exabytes by 2025, of
which 80% is expected to constitute unstructured data, as reported by Statista and the Inter-
national Data Corporation (Taylor, 2023). This monumental influx of data has precipitated
a state of information overload (Gross, 1964) in the digital era, wherein individuals tasked
with decision-making find themselves flooded with excessive amounts of information, often
resulting in suboptimal or uninformed decisions.

In response to this pervasive challenge, there is a compelling need for technologies dedi-
cated to assisting both human users and software systems in comprehending vast quantities
of data. In this context, automatic text summarization emerges as a critical machine technol-
ogy. Developed with the specific aim of ingesting extensive textual information, automatic
summarization systems are designed to present end-users with a shorter text, the summary,
containing only the most important information and tailored to their distinct informational
needs. Notably, the inception of automatic summarization was motivated by the impera-
tive to alleviate information overload, particularly in domains where the synthesis of ever-
increasing amounts of content demanded considerable human effort (Luhn, 1958). This was
especially crucial in technical domains where expertise was requisite and qualified manpower
was limited.

Despite the commendable intent behind automatic summarization, its implementation
has encountered persistent challenges. These challenges include the escalating volume of
information to be processed, the identification of relevant and informative content aligned
with user needs and background knowledge, and the discernment and handling of redun-
dant information within the input text. Furthermore, despite the remarkable advances in
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generative Artificial Intelligence in recent years, summarization systems continue to struggle
with presenting text in a coherent and cohesive manner.

This chapter delves into the historical evolution of automatic summarization, exploring
prior research efforts and methodologies. Then, we examine the role played by text prop-
erties, such as redundancy and cohesion, in the construction of summaries, and elaborate
on why it is paramount to control these properties for enhancing the utility and usability of
summarization systems. Finally, this chapter concludes by laying out the thesis statement in
detail, as well as outlining of the entire thesis.

1.1 Overview of Automatic Text Summarization

Jones (1999) defines the task of automatic text summarization, in general terms, as

a reductive transformation of source text to summary text through content reduc-
tion by selection and/or generalisation on what is important in the source.

Such a complex task requires deep understanding of the concepts and information in the
source text, a criteria to select and condense only the content of most interest, and finally
write down a fluent and coherent summary text. Formally, Jones (1999) sets up the summa-
rization task as a process of three steps: (i) document understanding, (ii) content selection,
and (iii) production of the summary based on selected content. The process is then open to
design choices at each step, which encourages many variations of the summarization task. In
general, task variations can be divided according to the following criteria.

• Single vs Multi-document. In single-document summarization, the system will con-
sume one document, whereas in a multi-document, it will consume many documents
linked by the same topic, e.g. news articles talking about the same event.

• Generic vs Query-based. The summarization task is inherently a subjective one, since
different users will deem different content as relevant to them. As such, generic sum-
marization aims to circumvent this subjectivity by producing a one-size-fits-all sum-
mary aimed at a broad audience, relying instead on the intrinsic summary-worthiness
of content in the input. On the contrary, query-focused summarization tailors the se-
lected content to match a query the user provides. Hence, this criteria is dealt mainly
during step (ii) of the process.

• Extractive vs Abstractive. This criterion deals with the strategy followed to produce a
text summary– step (iii) of the process. On the one hand, extractive systems retrieve
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text spans -usually sentences- from the input, concatenate them, and present the joint
text as the summary. On the other hand, abstractive systems generate the summary
from scratch, conditioned on the input, oftentimes by paraphrasing and generating
novel tokens.

In this thesis, we develop extractive summarization systems that produce generic sum-
maries of long, single documents, taking special care of summary qualities like informative-
ness, redundancy, and cohesion. Before discussing the specific role and benefits of each of
these qualities, we first provide a brief account of how summarization has been tackled in
previous work.

Early Research. The earliest work in summarization –applied almost exclusively to En-
glish texts– was extractive , and modeled the summary worthiness of sentences through the
frequency of their composing words. Luhn (1958) hypothesized that a word of high “re-
solving power” should be in the middle range of word frequencies in a document, designed
to summarize highly technical text. Later, Edmundson (1969) proposed modeling the im-
portance of sentences as the linear combination of four features: frequency of its words,
position of sentence in the document, words appearing in article title or section headings,
and frequency of specific words in a curated list. Following work extended this feature set
to include sentence length and presence of upper-case words (Kupiec et al., 1995), inverse
document frequency of words, and occurrence of named-entities (Aone et al., 1997).

With the development of more robust machine learning techniques, summarization
was posed as a classification task to decide whether a sentence should be selected or not,
with promising results reported using naive-Bayes (Kupiec et al., 1995), decision trees (Lin,
1999), maximum entropy classifier (Osborne, 2002), maximum likelihood estimate based on
counts (Nenkova and Vanderwende, 2005), among others. Another early line of research de-
veloped summarizers which first identified the most important topics in a document –where
a topic was modeled as a group of semantically related words– and then extracted sentences
that maximized the coverage of those topics. Methods such as latent semantic analysis (Lan-
dauer et al., 1998) and lexical chains (Morris and Hirst, 1991; Barzilay and Elhadad, 1997) were
successfully applied to summarization.

Graph-based Methods. The rapid development of the world wide web prompted the
development of techniques to identify and rank relevant text content in vast collections of
documents. Notably, the PageRank algorithm (Page, 1998) modeled the relative relevance
of each element in an hyperlinked set of documents. The network was modeled as a di-
rected graph where each node represents a website and edges represent a website contained
an hyperlink to another. Then, the algorithm approximates the eigenvector centrality of
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each node in the network using an iterative strategy guaranteed to converge. The resulting
centrality score of each node can be interpreted as the probability to reach a website. The
algorithm was effectively ported to the unsupervised summarization scenario, in which a
document or collection of documents were represented as a graph of content units. The
TextRank algorithm (Mihalcea and Tarau, 2004) models a document(s) as an undirected
graph of sentences where edge weights quantify lexical overlap between sentences. Then,
the PageRank algorithm is applied and the score obtained is used as a proxy for the relevancy
of a sentence. Concurrently, a similar system, LexRank (Erkan and Radev, 2004), modeled
sentence similarity with TF-IDF followed by eigenvector centrality, reporting similar perfor-
mance to TextRank. More recently, PacSum (Zheng and Lapata, 2019) proposed training
a dedicated edge-weight model that learned to score the edge between two sentences, and
then apply the PageRank algorithm to obtain sentence centrality scores. The model em-
ploys a transformer-based model (Devlin et al., 2019) to encode sentence pairs and produce
an edge weight. Critically, all these approaches operate under the assumption that the whole
graph of content units is available at each iteration of the algorithm. As we will elaborate in
Chapter 3 and 4, the summarization systems proposed in this thesis maintain a data struc-
ture connecting a limited number of content units. This structure is incrementally updated
so as to simulate the content of human working memory at a particular moment of reading.

Discourse-based Methods. Prior research was directed at modeling the discourse struc-
ture of the input text (a stage corresponding to step (i), document understanding). These ef-
forts involved selecting a part of said structure (corresponding to step (ii), content selection),
and subsequently building a summary from it, either by concatenating the corresponding
text spans or by generating text conditioned upon this sub-structure.

The Rhetorical Structure Theory (RST; Mann and Thompson 1988) prominently fea-
tured in this context, wherein it was used to represent the discourse of a document as a di-
rected tree. In an RST tree, the leaves represent text spans functioning as elementary dis-
course units (EDUs), while non-terminal nodes denoted broader spans covering EDUs re-
lated by specific discourse relations. Crucial to the detection of relevant information, RST
assigns EDUs the status of nucleus or satellite; a nucleus being deemed the focal point of
the text at a given point in reading. Early summarization systems, predominantly of extrac-
tive nature, exploited this distinction in status. Techniques involved either rewarding nu-
clei or penalizing satellites (Ono et al., 1994; Marcu, 1998) to facilitate the extraction of the
most salient text spans. This approach proved to be effective for content selection in single-
document summarization of news and scientific articles (Marcu, 2000).

Later, Abstract Meaning Representation (AMR; Banarescu et al. 2013) was employed



1.1. Overview of Automatic Text Summarization 5

to represent a document as a directed graph of concepts with edges labeled according to
semantic roles. Similarly to RST-based summarizers, content selection is done by selecting
a sub-graph representing the most relevant concepts in the global graph. Although effective
for single and multi-document summarization (Liao et al., 2018; Mishra and Gayen, 2018),
the approach relies heavily on high-quality treebanks, which poses a challenge for knowledge
domains other than news as well as for other languages.

More recent lines of work combined these discourse structures with the representation
power of neural networks. Notably, DiscoBERT (Xu et al., 2020) employs graph neural
networks (Scarselli et al., 2009) to encode BERT representations (Devlin et al., 2019) of text
spans in an RST tree and a co-reference graph. In this thesis, we focus on the summariza-
tion of long documents with highly technical terms. This setup poses a challenge to models
like DiscoBERT given that the NLP tools (co-reference engine and an RST parser) have lim-
ited accuracy in domains other than newswire (for which they were trained) and because
these tools cannot process long documents. We take into account these limitations and pro-
pose models that gradually (throughout the course of this thesis) alleviate the dependency
on external NLP tools. Hence, the models proposed are specially designed to consume long
documents and perform empirically well on highly technical domains.

Psycholinguistic Methods. In psycholinguistics, summarization as a task is often used
as a method to investigate cognitive processes involved in text comprehension and produc-
tion (Kintsch and van Dijk, 1978; Kintsch, 1990; Lehto, 1996; Kintsch and Walter Kintsch,
1998; Ushiro et al., 2013; Spirgel and Delaney, 2016). Such processes are in charge of gen-
eralizing, synthesizing, and coherently organizing content units. Comprehension, in turn,
is modeled after psycholinguistic models of human reading comprehension (Kintsch and
van Dijk, 1978; Kintsch, 1988) which provide a rich and robust theoretical foundation on
how content units are discretized and manipulated by cognitive processes. For this reason,
comprehension models such as the Micro-Macro Structure (KvD; Kintsch and van Dijk
1978) and Construction-Integration theory (CI; Kintsch 1988), have drawn the attention
of researchers in automatic summarization in recent years (Fang and Teufel, 2014; Zhang
et al., 2016; Fang, 2019). These theories outline procedures to discretize content into seman-
tic propositions and build text representations that account for local and global coherence.
However, computational implementations proposed so far (Fang and Teufel, 2014; Zhang
et al., 2016) show a heavy reliance on NLP tools such as entity extractors and coreference reso-
lution systems, as well as external resources like WordNet (Miller, 1995). These requirements
greatly limit their application in highly technical domains such as scientific literature. Addi-
tionally, many design choices prevented these systems from exploiting properties of memory
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structures, modeling retrieval processes, or manipulating information at the right granular-
ity level, e.g. ranking words or sentences instead of semantic propositions.

Neural Networks. More recently, summarization approaches rely instead on neural
networks to obtain deep representations of content units by means of convolutional neu-
ral networks (Perez-Beltrachini et al., 2019; Narayan et al., 2019), recurrent neural networks
(Narayan et al., 2018a,b; Cheng and Lapata, 2016), Transformers (Song et al., 2019; Dong
et al., 2019) and lately by leveraging large pretrained language models (Zheng and Lapata,
2019; Liu and Lapata, 2019; Zhang et al., 2020). Building up on traditional methods, neural
summarization models leverage discourse (Clarke and Lapata, 2010; Cohan et al., 2018), topi-
cal (Narayan et al., 2019), and graph representations (Bichi et al., 2021; Qiu and Cohen, 2022).
Even though most research concentrates on summarization of middle-sized documents like
news articles and Reddit posts (Völske et al., 2017), recent work has shifted attention to long
document summarization and its challenges (Cohan et al., 2018; Sharma et al., 2019; Xiao
and Carenini, 2019; Fonseca et al., 2022).

Among recent efforts, it is worth mentioning architectures tailored to consume longer
inputs by reducing the time complexity of the attention mechanism (Beltagy et al., 2020;
Wang et al., 2020; Huang et al., 2021) or leveraging the structure of the input document
(Cohan et al., 2019; Narayan et al., 2020). The present work follows this line of research
by introducing summarization systems capable of consuming long documents or multiple
documents.

Large Language Models. In the last couple of years, the NLP field has witnessed the
rise of massive text-generating models trained over the language modeling task, dubbed large

language models, LLMs (Radford et al.; Touvron et al., 2023a; Jiang et al., 2023). These mod-
els are further finetuned to follow instructions and to be aligned to human preferences, re-
sulting in highly capable general-purpose, task-agnostic assistants, including of course the
summarization task. Given a text prompt with a query and optionally examples on how to
solve the task, these models —most of them consisting of decoder-only architectures (Tou-
vron et al., 2023a)– take the prompt as a prefix to continue generating text, in which the
solution to the task will be included. These capabilities, often referred to as reasoning, seem
to emerge as models are scaled in the number of parameters and training data size (Wei et al.,
2022a; Hoffmann et al., 2022). However, answering a query successfully when the input in-
cludes a long text remains challenging. For instance, LLMs find it difficult to find relevant
information that is located in the middle of a long prompt compared to relevant content
at the beginning or closer to the end of the prompt (Liu et al., 2024). In this long context
scenario, recent work has sought inspiration from comprehension processes as depicted by
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psycholinguistics, implemented in how the prompt is constructed and how generation is
steered. For instance, Chain of Thought (Wei et al., 2022b) first generates a step-by-step ex-
planation of how the solution is achieved before generating the answer to the query. It is
important to note that, even though the final answer might be correct, the reasoning chain
generated is not guaranteed to be correct or even faithful. Techniques such as ScratchPad
(Nye et al., 2022) and Self-Notes (Lanchantin et al., 2024) instead allow the model to pause
answer generation to generate partial reasoning spans, similarly to rehearsal in working mem-
ory (Goldstein, 2015). Going beyond a single LLM module, Lee et al. (2024) introduced an
agent that consumes the input in one chunk at a time, generates a short summary of it, and
stores it in a memory module. When asked to answer a query, the agent processes the inter-
mediate summaries and further re-processes the relevant chunks for more details. The work
in this thesis follows this line of work by introducing computational implementations of
cognitive processes that simulate how content is organized in human memory.

Lately, a persistent debate has emerged concerning the true capabilities of large language
models (LLMs) for summarization. One perspective posits that the summarization task is
mostly solved, supported by evidence that LLMs generate highly coherent and near-faithful
summaries (Pu et al., 2023). Conversely, concurrent work suggests that LLMs manifest signs
of being learning shortcuts instead of truly generalizing (Du et al., 2023; Bihani and Rayz,
2024). Notably, these systems exhibit a degradation of output quality at long input regimes
(> 10k tokens), particularly evident in coherence quality (Chang et al., 2024). Regardless,
consensus is reached on the limitation of current evaluation methodologies, making it dif-
ficult to draw conclusive insights. In this regard, recent efforts have followed suit on the
comprehensive evaluation of LLM output not only on the summarization task but also on
a plethora of tasks requiring different types of reasoning (Zellers et al., 2019; Srivastava et al.,
2023; Gao et al., 2023; Liang et al., 2023).

Extractive vs Abstractive. As mentioned earlier in this section, extractive summa-
rization systems extract content units (usually sentences) from the input document(s) and
present them concatenated as the final summary. In contrast, abstractive summarization sys-
tems generate a novel text, usually token by token.

Despite significant advances in generative capabilities in recent years, there are several
reasons why extractive systems are still attractive to the community. First, extractive sum-
maries consist of grammatically correct and fluent text chunks, hence ensuring readability
within these chunks. Moreover, extractive summaries are less prone to exhibit hallucinations
compared to abstractive ones (Zhang et al., 2023), given that an extractive summary presents
information from the source verbatim, particularly in highly technical domains. However,
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the complete summary might result incoherent and exhibit high content redundancy if these
aspects are not accounted for.

Second, in scenarios where the writing style of the summary is required to match that of
the input, extractive systems are guaranteed to produce a text with the same style. This as-
pect of modeling is becoming more prominent with recent large language models, which are
trained over a plethora of styles and domains. Recent work showed that LLMs still struggle
to replicate the writing style in the input or adhere to specifically requested styles (Cardenas
et al., 2023).

Finally, extractive systems can be more computationally efficient than abstractive sys-
tems. Regardless of the architecture, most current generation techniques are primarily au-
toregressive, i.e. the summary is generated token by token, a crucial bottleneck in long-text
generation setups. Furthermore, long inputs pose another bottleneck for decoder-only ar-
chitectures such as LLMs, where each generation step requires the processing of represen-
tations of every token in the input. Despite recent efforts in addressing these bottlenecks
(Cohan et al., 2018; Zaheer et al., 2020), long input processing and long text generation re-
main an open problem. In contrast, extractive systems focus on the representation of content
which, upon encoded and grouped into the desired candidate chunks, is promptly selected.

In this thesis, we consider summarization scenarios where the input text is dense in tech-
nical content, in which improving the readability, grammatically, and factuality of the sum-
maries is desirable. Moreover, we focus on the scenario where the produced summary pre-
serves the writing style of the input document(s). For these reasons, only extractive systems
are developed with a special focus on mechanisms to further control summary qualities.

1.2 The Role of Text Qualities in a Summary

In this section, we present a brief definition of the summary qualities we focus on in this
thesis and elaborate on their roles and impact on the communication objective of a sum-
mary. We start the discussion with informativeness and how it differs from relevancy, then
move to redundancy and repetition. Finally, the distinction and importance of coherence
and cohesion are highlighted.

1.2.1 Informativeness

According to Jones 1999, a summary is deemed informative when it effectively covers the
content within a source document. Informativeness, therefore, is inherently linked to cov-
erage. Later, Peyrard (2019) defined relevance as the similarity between content distributions
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between the summary and the source document; informativeness, instead, is defined as the
amount of new information relative to the background knowledge of the user. In the context
of general summarization, user background knowledge is assumed to align with the back-
ground knowledge of the intended target audience, and in some scenarios (e.g. scientific
articles) it is explicitly elaborated in the document. In such cases, relevance and informa-
tiveness become equivalent and thus we treat them interchangeably in this thesis.

Given the definitions above, the role of informativeness as a text property is to preserve
relevant information from the source. Systems prioritizing informativeness produce sum-
maries that function as information-rich substitutes for the documents or as previews aiding
in the decision of whether to read the document in full (Jones, 1999).

1.2.2 Redundancy and Repetition

It is important to note the distinction between repetition and redundancy. Repetition, also
known as linguistic or grammatical redundancy, refers to a linguistic mechanism that serves
functional roles in natural language. Tauste (1995) notes its significance in dialogue, where
repetition acts as a mechanism for comprehension checks, emphasis, reformulations, and
readjustments. Moreover, Walker (1993) argued that the occurrence of repetition in natural
language is attributed to human memory limitations and serves as a device to form cohesive
ties, either through direct repetition or synonymous expressions. In a public speech scenario
(e.g. giving a talk), Johnstone (1994) identified specific functions of repetition such as deal-
ing with interruptions or maintaining the floor while thinking of something to say. Similarly,
guides on technical writing portray repetition as a mechanism to complement complex con-
cepts and hence, improve comprehension (Knuth et al., 1989).

On the other hand, content or informational redundancy, often called simply redun-

dancy, refers to the seemingly purposeless use of repetition mechanisms. From a commu-
nicative point of view, redundant information does not add any new content unit to the
discourse and instead harms readability and conciseness (Walker, 1993).

Addressing redundancy is a challenging task in summarization, requiring the consid-
eration of semantic equivalence at various levels of granularity (Nenkova et al., 2007), with
previous work aiming at minimizing redundancy while maximizing coverage (Carbonell and
Goldstein, 1998a; Yogatama et al., 2015).
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1.2.3 Coherence

The discussion of the role of coherence in a text calls for an initial clarification of the terms
discourse and text. Discourse denotes the process of conceptual formulation where we use
our linguistic resources (i.e. natural language) to make sense of reality. Text, on the other
hand, is the linguistic product of a discourse process, serving as evidence of a pragmatic pro-
cess of a communicative interaction (Bublitz et al., 1999). Despite this distinction, linguistic
literature uses both terms interchangeably.

In this context, coherence is defined as the dynamic process of textual interpretation, in-
volving the mapping of linguistic units within a text onto concepts in the readers’ mental
representation of content, establishing connections therein. Interestingly, coherence is not
a text-inherent property but rather a process by which “meaning is read into a text” (Bublitz
et al., 1999) within a socio-cultural context and subject to the readers’ background knowl-
edge. As such, coherence is dependent on interpretation.

From a computational linguistic point of view, a text is coherent if its discourse structure
can be successfully reconstructed. Theoretical frameworks of discourse differ on the nature
of the structure itself and the scope it covers. For instance, Rhetorical Structure Theory
(Mann and Thompson, 1988) or Discourse Theory Representation (Kamp and Reyle, 1993)
model the discourse of the entire text, aiming to capture global coherence. In contrast, other
theories like Centering theory (Grosz et al., 1995), focus on the structure present in nearby
sentences, referred to as local coherence. In the context of summarization and other multi-
sentence generation tasks, coherence reflects how content is organized at a global level. This
discourse organization depends on the writing style, the target audience, and the purpose of
the text (Jones, 1999).

1.2.4 Cohesion

Cohesion is the property of a text that allows it to function as a unified whole, serving as
a mechanism through which the texture of a text is expressed (Hassan et al., 1976). This
mechanism ensures smooth transitions between semantic topics within a text through the
use of thematic links known as cohesive ties, which are established between clauses in nearby
sentences. These cohesive ties are explicitly indicated by grammatical constructions or lin-
guistic units. Contrary to coherence, cohesion is invariant and independent of interpretation
and instead relies on the explicit textualization of contextual connections. As such, cohesion
does not model the discourse structure of a text but instead can be considered a device for
achieving local coherence.
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The role of cohesion in reading comprehension, the process of constructing a mental
representation of content, has been extensively studied in psycholinguistics. Kintsch (1990)
observed that the absence of cohesive ties in a text leads humans to perform inference –a
cognitive process where prior knowledge is used to establish connections and make sense of
a text. This cognitive demand during reading was found to negatively impact the cohesion
of summaries written immediately after reading the text, a finding supported by subsequent
work (Lehto, 1996; Ushiro et al., 2013; Spirgel and Delaney, 2016).

In the context of summarization, cohesion plays a crucial role in enhancing the compre-
hension of a summary. From an evaluation point of view, cohesion facilitates the proper eval-
uation of text properties specific to the summarization task. The production of a cohesive
summary is the first step in ensuring that the content is comprehended before being judged
for another property, e.g. relevance or redundancy. Barzilay and Elhadad (2002) demon-
strated that humans prefer cohesive orderings of sentences in extractive summaries among
many permutations, with cohesion positively impacting text comprehension. Moreover, co-
hesion proves beneficial in conditional text generation. Krishna et al. (2021) found that fac-
tuality and fluency improved when generation was conditioned on contiguous chunks of
sentences rather than randomly selected, concatenated sentences. Zhang et al. (2020) ac-
knowledged the importance of masking a contiguous chunk of text instead of masking dis-
continuous sentences during pretraining of a neural network was crucial for downstream
summarization tasks.

1.3 Thesis Statement

In this thesis, we aim to develop extractive summarization systems equipped with mecha-
nisms to control text properties of the produced summary, for cases in which the in-
put text exhibits high content redundancy. The proposed control mechanisms are inspired
by cognitive processes in charge of organizing content in human memory according to the
Micro-Macro theory (Kintsch and van Dijk, 1978). Notably, these cognitive processes and
the associated memory structures they operate on were modeled as general purpose, appli-
cable to any task involving comprehension (reading) or production (written or spoken). As
such, the devised mechanisms in this thesis do not require explicit task supervision and al-
though in theory are task-agnostic, we address only the task of summarization. We imple-
ment these mechanisms at different stages of the summarization pipeline, namely during
document understanding and during summary production, and investigate their effect on
summary informativeness, redundancy, and cohesion.
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First, we focus on controlling content selection in an unsupervised way during docu-
ment understanding. At the core of our summarization system, an algorithm updates and
reinforces relevant content in working memory while consuming the document sentence by
sentence iteratively. Working memory is modeled as a tree of semantic propositions that is
capped in size to emulate constraints in human memory (Baddeley, 2018) and is updated with
fresh information in each iteration. Intuitively, propositions retained in working memory
for more iterations are more central to the argumentation of the text and hence more rel-
evant. Our key insight is that incorporating KvD-grounded intuitions into the estimation
of the summary-worthiness of a proposition results in a sufficiently strong signal to extract
highly relevant summaries in an unsupervised way. Furthermore, our system is capable of
controlling the level of generality or technicality of the extracted content by manipulating
the working memory capacity.

Next, we focus on the trade-offs summarization systems incur on when aiming to con-
trol redundancy and cohesion in summaries during document understanding, and their im-
pact on informativeness. Two optimization scenarios are investigated: (i) when the summary
property is modeled through proxies in an unsupervised setup, and (ii) when a specific sum-
mary property is optimized in a reinforcement learning setup. In the unsupervised setup, we
introduce novel computational implementations of the KvD theory that explicitly model
relevancy, non-redundancy, and cohesion among propositions in working memory. Similar
to our previous content selection system, relevance is modeled by pruning the working mem-
ory structure down to a fixed number of units, keeping only the most relevant units read so
far. Cohesion is modeled by ensuring that working memory consists of a connected graph
at each iteration, in which two proposition nodes are connected if they present lexical over-
lap or are related by a grammatical function. Finally, redundancy is controlled by discarding
redundant units from memory. When tested on single-document unsupervised summariza-
tion of scientific articles, our results show that our KvD systems manage to extract highly
cohesive summaries across increasing levels of document redundancy. Notably, tailored hu-
man evaluations comparing our systems with strong unsupervised baselines indicate that
KvD summaries were more informative and perceived as more cohesive. These results high-
light the benefit of modeling these two properties concurrently. In the reinforcement learn-
ing setup, we compare systems that aim to balance informativeness and redundancy, against
those which balance informativeness and local coherence. We model this trade-off as a lin-
ear combination of property-specific rewards, where the informativeness reward encourages
high lexical overlap with a reference summary and a cohesion reward encourages more sensi-
ble continuations between adjacent sentences of the summary. Notably, the cohesion reward
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consists of a classifier trained to distinguish between shuffled from unshuffled text, and acts
as a holistic quantifier of the preferred order a cohesive text should have. Extensive auto-
matic –both quantitative and qualitative– evaluation revealed that systems optimizing for
cohesion are better at organizing content in the produced summaries, compared to systems
only optimizing for informativeness or redundancy. Moreover, cohesion-optimized models
are able to obtain comparable –if not better– informativeness and coverage levels.

Finally, we focus on control summary properties with mechanisms implemented at dif-
ferent stages of the summarization pipeline. The first mechanism aims to control redun-
dancy during input understanding, and the second one aims to balance informativeness and
cohesion during summary extraction. On the one hand, summary redundancy is addressed
by controlling the redundancy levels of the input text, following previous findings (Car-
bonell and Goldstein, 1998b; Xiao and Carenini, 2020). Our pipeline consumes input text in
a cascaded way: first splitting the input into contiguous passages, then consuming passages
one at a time so as to minimize their semantic similarity with already selected passages. On
the other hand, informativeness and cohesion are directly modeled during summary extrac-
tion. Extraction is done in a sentence-by-sentence fashion, quantifying summary properties
independently at each step. Informativeness is quantified by a strong neural model trained
to select summary-worthy sentences in a supervised way. Cohesion, instead, is quantified
by a sentence selector that incrementally builds cohesive chains of noun phrases and models
chain interaction. Once again, the selection algorithm is inspired by KvD cognitive processes
organizing content in memory, this time during production. Working memory is modeled
as a limited-capacity buffer of lexical chains, forcing the model to keep only the most salient
chains and send the rest to long-term memory. Then, cohesion is quantified based on the
strength of semantic similarity between incoming units and units in active chains, encour-
aging connections to chains in working memory over chains in long term memory. Note
that this selector does not need supervision for quantifying cohesion, in contrast to the in-
formativeness quantifier.

We test our methodology on newswire multi-document summarization and single-long
document summarization of scientific articles, patents, and government reports. Across do-
mains, extensive experiments show that, first, our system is effective at incrementally build-
ing an input sequence with lower content redundancy, which translated to a significant re-
duction in summary redundancy. Second, the proposed sentence selector managed to main-
tain summaries informative while improving cohesion significantly, connecting more noun
phrases through cohesive ties compared to a greedy selector. Additionally, tailored human
evaluation campaigns revealed that cohesion has a positive impact on perceived informative-
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ness, and that our extracted summaries exhibit chains covering adjacent or near-adjacent sen-
tences. Closer inspection showed that topics flow smoothly across extracted summaries with
no abrupt change or jumps.

In summary, the main contributions of this thesis are the following.

• We propose a mechanism to control content selection in an unsupervised way, in-
spired by processes and structures in human memory according to the KvD theory.

• We introduce two novel computational implementations of the KvD theory operat-
ing during document understanding, tailored to the extractive summarization task.
The systems implement mechanisms to balance informativeness, cohesion, and re-
dundancy in the produced summaries.

• We propose a summarization system equipped with a sentence selector specialized in
modeling cohesion by simulation the KvD theory during production, as well as mech-
anisms to balance the trade-off between informativeness, cohesion, and redundancy.

1.4 Thesis Outline

This thesis is organized as follows:

• Chapter 2 presents background knowledge regarding the linguistic properties consid-
ered such as content redundancy, cohesion, and coherence. In addition, we elaborate
in detail about the psycholinguistic theory, KvD, and the cognitive structures to be
simulated throughout our experiments.

• Chapter 3 discusses our work on leveraging simulated cognitive structures for content
selection during document understanding.

• Chapter 4 expands on our approaches to balance redundancy and cohesion during
document understanding, and their impact on informativeness, under unsupervised
and reward-guided scenarios.

• In Chapter 5, we introduce our control methodology aimed at balancing informative-
ness and cohesiveness, this time during sentence selection. Experiments showed that
our approach was effective in single and multi-document summarization.

• Chapter 6 summarises our main findings, discusses the limitations of our approaches
and elaborates on future research directions.



Chapter 2

Background

The research presented in this thesis spans concepts in the areas of psycho-linguists, linguis-
tics, and computer science. Hence, a detailed definition of them and how they relate to the
summarization task is provided in this chapter, organized as follows. We start by elaborating
on the challenges reported in the literature concerning the modeling –and even measuring–
of summary properties. Then, we describe in detail the Micro-Macro theory of reading com-
prehension and make a case for its appropriateness to the summarization task, pointing out
key properties of the cognitive structures built during processing and how they can be ex-
ploited to model the summary properties we are concerned about in this thesis. Finally, stan-
dard metrics for measuring summary properties are explained and discussed.

2.1 Challenges in Controlling Summary Properties

2.1.1 Informativeness and Content Coverage

Previous research has sought to improve informativeness within a reinforcement learning
framework, using ROUGE scores as reward signals. This approach has been investigated
both in extractive (Narayan et al., 2018b; Zhou et al., 2018; Gu et al., 2022) and abstractive
summarization (Dong et al., 2018). However, relying solely on such reward signals can result
in deterioration of generation quality, leading to repetitive and potentially incoherent out-
put. To address this issue, previous work explored downweighting the reward loss during
training (Dong et al., 2018) or mixing it with reference-free rewards such as saliency (Pa-
sunuru and Bansal, 2018).

In the context of coverage control, previous work aimed at maximizing the coverage of
relevant topics within a document(s) by incorporating an explicit step for content selection

15
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or planning. The challenge inherent in controlling coverage can be seen from two fronts,
content unit detection and summary length control. Firstly, while it may be more straight-
forward to operate over text spans such as sentences (Kedzie et al., 2018; Fonseca et al., 2022)
or semi-structured input such as tables (Puduppully et al., 2019; Wiseman et al., 2017), con-
trolling coverage of entities proved to be challenging and domain restrictive (Narayan et al.,
2022). Secondly, previous work has focused on imposing constraints on summary length in
order to control coverage in a more controlled evaluation setup (Chan et al., 2021; Fonseca
et al., 2022), an approach we build upon in Chapter 3.

2.1.2 Redundancy

Controlling for content redundancy in a summary faces several challenges, including: (i) de-
termining the granularity level at which content is to be compared, (ii) establishing a thresh-
old for semantic overlap to ascertain when two concepts are the same, and (iii) distinguishing
whether the repetition of a concept is the product of a cohesive connection or, lacking any
functional purpose, is merely redundant.

Regarding the first point, prior work on semi-automatic evaluation (Nenkova et al.,
2007; Zhang and Bansal, 2021) provided a comprehensive framework for extracting and com-
paring content units at different levels of granularity, although at the expense of great man-
ual effort. Concerning the consideration of semantic overlap, approaches in extrative sum-
marization have integrated information about the already selected units at the lexical level
(Carbonell and Goldstein, 1998a; Paulus et al., 2018) and at the embedding level (Xiao and
Carenini, 2020; Gu et al., 2022), with positive results.

However, it is important to note that these and related approaches (Zhou et al., 2018;
Fabbri et al., 2019) aim to minimize repetitiveness and, more broadly, the presence of seman-
tically related units. Whilst minimizing content redundancy is desirable, the minimization
of linguistic redundancy can potentially hinder the communication efficacy of a summary.
As discussed in Chapter 1, linguistic redundancy has a defined role in the communication
pipeline. Hence, a cohesive text is likely to exhibit a non-trivial degree of repetitiveness,
which would be compromised if the latter were to be overly minimized. The synergy be-
tween repetitiveness and cohesion is acknowledged in Chapter 4, where we propose control
mechanisms that do not solely aim to minimize the repetitiveness in final summaries. In-
stead, these mechanisms aim to strike a balance with other properties, such as informative-
ness and cohesion.
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2.1.3 Coherence and Cohesion

Coherence is a long studied area, with early research modeling local coherence as lexical cohe-
sion (Barzilay and Lapata, 2008; Guinaudeau and Strube, 2013). In practice, these systems are
limited by data sparsity —the limited lexical matching between nouns and entities– and the
performance of coreference resolution models. More recent approaches have addressed these
limitations by using neural networks pretrained on massive amounts of text as their basis for
semantic similarity comparison (Mesgar and Strube, 2016; Zhao et al., 2023). Nevertheless,
most research efforts concentrate on measurement and evaluation (Zhang and Bansal, 2021;
Fabbri et al., 2021), aiming to develop metrics that highly correlate with human rankings of
coherence. This avenue is extremely challenging due to the lack of community-wide stan-
dards and the surprising little consensus on what each summary property should measure
(van der Lee et al., 2019).

Regarding the control of the local coherence in summary, previous work is limited. Wu
and Hu (2018) aimed to balance informativeness and local coherence in a reinforcement
learning setup, reporting heavy trade-off between the two properties. Coherence was mod-
eled by a shuffling scorer similar to the one later analysed by Steen and Markert (2022). Per-
taining global coherence, similar work in controlled generation has demonstrated that ac-
counting for planning helps dealing with discourse organization of final summaries (Goldfarb-
Tarrant et al., 2020; Sharma et al., 2019; Hua et al., 2021), although such insights come often-
times from qualitative analyses rather than automatic or human evaluation.

2.2 The KvD Theory of Human Memory

Proposed by Kintsch and van Dijk (1978), the Micro-Macro Structure theory describes the
cognitive processes involved in text (or speech) comprehension, and provides a principled
way to make predictions about the content human subjects would be able to recall later, for
instance, when asked to summarize the text.

However, it is important to note that summarization as a task remains challenging for
humans, especially when the reader’s background knowledge is insufficient for successful
comprehension of all the details in the input text. Kintsch (1990) investigated summarization
as a learnable skill developed throughout the educational journey of human subjects, placing
into perspective the difficulty and knowledge requirements of the summarization task and
natural language understanding in general.
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2.2.1 Micro and Macro Level of Comprehension

In the KvD theory, discourse comprehension is performed at two levels, micro and macro-
level, and discourse is represented with a characteristic structure of content at each level. At
the micro level, content structure is modeled after working memory –a type of short-term
memory– and KvD defines precise mechanisms that update and reinforce content in the
structure. Content at this level is discretized in basic meaningful units by means of linguistic
propositions. A proposition is denoted as predicate(arg1,arg2,...) where argi is a
syntactic argument of the predicate (e.g. argument to a transitive verb). As such, proposi-
tions can be interpreted as clauses or short sentences and hence provide more expressivity
than words units during comprehension. The advantage of using propositions as content
units goes beyond the amount of information it can pack. A proposition can be linked to
another either syntactically or semantically, potentially building entire connected structures
of propositions. According to KvD theory, working memory holds a cohesive organization
of content units by making sure that all units are connected e.g. in a connected tree. Hence,
the resulting micro-structure models cohesive ties in the text.

At the macro level, content structure represents the global organization of the text, built
in a bottom-up matter starting from micro-propositions. The construction of this instruc-
tion is controlled by the scheme, the formal representation of the reader’s goals, capturing
the global discourse of a document. For instance, if the task is summarization, KvD de-
fines macro-processes concerned with generalization, fusion, insertion of details from back-
ground knowledge, among others. Similarly to micro-processing, macro-processing is iter-
ative, simulating multiple stages of content generalization, refinement, and planning that
humans perform.

In this thesis, we consider only the structures represented at the micro level and lever-
age them for the task of extractive summarization. Structures and processes at the macro
level would require human-like reasoning and intuition and even though recent work on
neuro-symbolic systems (Garcez and Lamb, 2020; Bengio, 2017) and common-sense reason-
ing (Speer et al., 2017; Bosselut et al., 2019) showed a promising development path, we leave
this path out of the scope of this thesis and for future work. Nevertheless, summarization
systems based solely on micro-processing have been successfully explored (Fang and Teufel,
2014; Zhang et al., 2016) for cases in which the scheme of a document is relatively fixed, e.g. a
scientific document is expected to be organized in sections. In such cases, content in micro-
propositions provides enough evidence to model summary properties of interest. Moreover,
a summarization system simulating micro-processes offers an interpretable model where re-
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searchers (or users) can track which concepts are connected or considered semantically simi-
lar, and which content units are considered relevant during reading or production. In case of
suboptimal results, an explainable model provides troubleshooting information a researcher
can gain insights on. For instance, if the input document is poorly written or contains highly
technical terms, a model simulating micro-processes provides a transparent account of which
units could not be connected, hence helping in deciding how to improve such connections,
e.g. by using an external knowledge graph.

The KvD theory provides a principled way to operationalize the manipulation of con-
tent units during reading and is precise in many aspects of the simulation, e.g. the nature
and properties of memory trees. However, Kintsch and van Dijk (1978) make clear that the
theory does not specify details of cognitive processes involving inference, i.e. the KvD theory
can tell you when an inference occurs and its end result will look like but the theory cannot
tell you how this result is arrived at. Examples include how to construct propositions from
text or how many nodes are retrieved by the recall mechanism. Hence, a computational im-
plementation of this theory calls for design choices that allow us to define a tractable model
with the NLP tools we have nowadays.

Throughout this thesis, we instantiate this theory by proposing computational imple-
mentations of it. First, we show how KvD can be used for document understanding, specif-
ically for obtaining a numerical score for each sentence. In Chapter 3, we investigate ways of
tailoring this scoring to better detect relevant content. In Chapter 4, we take a deeper look
into how KvD can be used to model relevancy, redundancy, and cohesion during document
reading. Finally, we show how KvD can be exploited during sentence selection to model
cohesive ties more explicitly. In the rest of this section, we elaborate on how KvD works at
the micro-level and provide an example simulating human reading step by step, highlighting
properties of memory structures and how they can be exploited for the summarization task.

2.2.2 Memory Simulation at Micro Level

At the micro level, content is organized in a data structure representing working memory
called the memory tree, where each node corresponds to a proposition and two propositions
are connected if any of their arguments overlap.

According to KvD, reading is carried out iteratively in memory cycles. In each cycle, only
one new sentence is loaded to the working memory, where its propositions are extracted
and added to the current memory tree. The limits of memory capacity is modeled as a hard
constraint in the number of propositions that will be preserved for the next cycle. Hence,
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the tree is pruned and some propositions are dropped or forgotten. However, if nodes cannot
be attached to the tree in upcoming cycles, forgotten nodes can be recalled and added to
the tree, serving as linking ideas that preserve the cohesiveness represented in the current
tree.1 Whenever the content in working memory is changed, whether adding propositions
or removing them, the root is reassigned to the node containing information central to the
argumentation represented in working memory. We now illustrate with an example how
content units are captured, forgotten, and recalled during a KvD simulation of reading.

Consider the first three sentences of the introduction section of a biomedical article,
along with its abstract, shown in Figure 2.1. At the beginning of cycle 1, propositions 1 to 7
are extracted from the incoming sentence and populate an empty working memory, resulting
in tree (1a). Note that the root, node 4, includes the main verb of the sentence and links the
main actors (antioxidants, species, and people). Note also that connected proposi-
tions present arguments in common, e.g. node 5 and 6 share the argument antioxidants.
Then, the memory capacity constraint is enforced by pruning nodes until the tree is of a pre-
determined size. In this example, we set the memory limit to 5 propositions per cycle. KvD
introduced the leading edge strategy for prunning, which traverses the tree in depth first or-
der starting from the root and selects only the most recent node (in order of reading) at each
step. In case a leaf node is reached and there is capacity left, the tree is traversed in breath first
order starting from the root and selects nodes with the same criteria, until capacity is reached.
In cycle 1, the selected nodes from tree (1a) are 4, 5, 7, 3, and 2, in that order. The remaining
nodes, 1 and 6, are pruned. Since content in working memory has been reduced, the root
must be reassigned if needed. However, node 4 remains central, hence it remains as root and
we move on to the next cycle with tree (1b) as memory tree. These pruned trees constitute
the final product of each cycle and will be used for our content selection experiments.

In cycle 2, propositions 8 to 13 are added to memory, tree (1b). In the presence of this
new information, the root is reassigned to a proposition central to all the propositions in
memory. In this case, node 7 is made root because it presents information common to both
sentences (nonenzimatic antioxidants), hence being central. Note also that the new
tree (2a) showcases clearly two ramifications of the current topic, namely that $7‘ control

a specific kind of molecules’ and ‘deficit of $7 causes certain condition’. Then, we apply the
leading edge strategy to select nodes 7, 10, 11, 12, and 13, in that order, and prune the rest.
Since the content of the working memory has changed again, node 10 is now deemed as
central and assigned root status, resulting in tree (2b).

1It is worth noting that Kintsch and van Dijk (1978) did not specify how many nodes can be recalled at a
single time, however recent implementations (Fang, 2019) limit this number to at most 1.
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Cycle 1
In healthy people, reactive oxidant species are controlled by a number of enzymatic and non-enzymatic antioxidants.

1: in people(healthy)

2: species(reactive)

3: species(oxidant)

4: are controlled(antioxidants,species,

people)

5: of(a number, antioxidants)

6: antioxidants(enzymatic)

7: antioxidants(non-enzimatic)

2

14

3

5 6
7

24

3

5 7

(1a) (1b)

Cycle 2
In patients with Cystic Fibrosis (CF), deficiency of nonenzymatic antioxidants is linked to malabsortion of lipid-soluble vitamins.

8: with(in patients, Cystic Fibrosis)

9: BE(Cystic Fibrosis,CF)

10: of(deficiency, $7)

11: is linked (deficiency,malabsortion, $8)

12: of (malabsortion,vitamins)

13: vitamins(lipid-soluble)

57

10

4 2

3

11

12

8 9

13

10

11 12 13

7(2a) (2b)

Cycle 3
Furthermore, pulmonary inflammation in CF patients also contributes to depletion of antioxidants.

14: inflammation(pulmonary)

15: inflammation(in:$8)

16: contributes($15,to:depletion)

17: of(depletion,antioxidants)

10

11 12 13

7

8 15 14

16 17

11 10

8 15 16

(3a) (3b)

Gold Summary
Patients with Cystic Fibrosis (CF) show decreased plasma concentrations of antioxidants due to malabsorption of lipid-soluble vita-
mins and consumption by chronic pulmonary inflammation.
Carotene is a major source of retinol and therefore is of particular significance in CF. ...

Figure 2.1: Simulation of KvD reading during three cycles. Each row shows the sen-

tence consumed (top), the propositions extracted (left), and memory trees before (1a,

2a, 3a) and after (1b, 2b, 3b) applying a memory constraint of 5 nodes. Argument $N

means that proposition N is used as argument. Squared nodes are recalled proposi-

tions. Solid lines connect nodes selected to keep in memory, and dotted lines connect

nodes to be pruned.

In cycle 3, the newly extracted nodes (14 - 17) cannot be attached to the current tree
because the linking node, $8, was pruned in the previous cycle. Therefore, proposition 8 is
recalled and re-attached to the tree, showed as a squared node in tree (3a) and (3b). Finally,
the selection strategy is applied and node 11 is selected as new root, obtaining (3b).
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2.2.3 Reproduction Probability

In each cycle, a proposition can either be selected to stay in the working memory tree or
removed from it and sent to long-term memory. At the end of the simulation, a previously
removed proposition can still be used in the summary if it was relevant enough.

KvD formalizes this intuition through reproduction probability, expressing the probabil-
ity of a proposition to be reproduced (i.e. written down) when asked to write the summary
of a text. Given a proposition p that was retained in working memory for k cycles (not nec-
essarily consecutive), let ρ be the probability of forgetting p in each cycle, i.e. sending it to
long-term memory. Then, the reproduction probability of p at the of the simulation is de-
fined as

rpk(p) = 1−(1−ρ)k. (2.1)

In practice, KvD defined ρ as constant throughout an entire simulation and for all proposi-
tions. We elaborate on a generalized version of this expression in Chapter 3, to better account
for the influence a proposition had on each cycle it participated on.

2.2.4 Properties Relevant to Summarization

The procedure for content manipulation described in § 2.2.2 imposes constraints on the
shape, size, and content of memory trees during simulation. Such constraints bestow mem-
ory trees with special properties relevant to the task of summarization, specifically with re-
spect to lexical cohesion, relevancy, and redundancy.

Local Coherence and Cohesion. A memory tree constitutes a connected structure in
which two propositions are connected if any two of their arguments refer to the same con-
cept. Connectivity, Kintsch and van Dijk (1978) argued, is a consequence of the text being
well-structured and locally coherent, although connectivity is not a necessary condition for
coherence –a disconnected structure can still be coherent for a reader. In this way, KvD en-
forces local coherence in a memory tree in the form of cohesive ties between the propositions
in it. For instance, proposition 8 in cycle 3 of Figure 2.1 serves as a bridge to keep the mem-
ory tree connected, since propositions talking about CF patients (propositions 8 and 9) were
discarded in the previous cycle.

This connectivity property has the following implication for cohesion in a final sum-
mary. By retaining a set of cohesive content units in working memory, their reproduction
probability is increased. Consequently, cohesive groups of propositions will present similar
scores at the end of the simulation, encouraging the selection of content that reads more
cohesive as a whole.
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Relevancy. In addition to being locally coherent, memory micro-structure takes the
form of a tree for the following reasons. KvD states that the root of a memory tree should
contain information central to the argumentation represented in the working memory; hence,
the root is deemed as the most relevant proposition in memory, and the more relevant a
proposition is, the closer to the root it will be. This property could be exploited by a sum-
marization system by designing a scoring function that takes the position of a tree node into
account. Additionally, tree branches can be seen as ramifications of the current topic, each
branch adding more specialized content as it grows deeper.

However, a KvD-based sentence ranking system that relies on proposition scoring would
first need to capture the right propositions in working memory. Let us look at the first sen-
tence of the gold summary in Figure 2.1). On the one hand, many propositions (7, 8, 12, 13,
and 15) appear verbatim in this sentence, although sometimes only partially (e.g. 7 and 15).
The capture of proposition 8 in cycle 3 highlights the importance of the recall mechanism
in KvD to bring back relevant information. On the other hand, fine-grained information
relevant to the summary might also be lost, such as node 14, in which a crucial property of
a noun is not captured (‘pulmonary’).

Redundancy. Finally, KvD processes influence redundancy reduction in two accounts.
First, propositions in a memory tree are connected such that each proposition adds new
details about a concept without encoding more redundant arguments than necessary. For
instance, consider again proposition 2 and 3 in Figure 2.1, where both propositions add rele-
vant details (reactive and oxidant) about a concept (species). Hence, memory trees constitute
a representation with the maximum amount of relevant details that can fit in working mem-
ory whilst minimizing the redundancy of arguments.

Second, in case the recall mechanism needs to be used, KvD retrieves only the minimum
amount of propositions to serve as a bridge and connect the incoming propositions. Specif-
ically, the recall mechanism only adds one recall path to the memory tree instead of many
other alternative paths. By not loading redundant paths into memory, a system could avoid
increasing the score of redundant content and update only one recall path at a time. This
behavior, as we will demonstrate later, contributes immensely to decreasing redundancy in
the final summary and becomes particularly important for highly redundant documents, e.g.
scientific articles that repeat information in several sections.
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2.3 Automatic Summary Evaluation

The automatic evaluation of summaries properties –and text properties in general– is an ac-
tive line of research (Fabbri et al., 2021; Steen and Markert, 2022), where a metric is good if
it correlates well with human judgments of that property. However, eliciting human judg-
ment in a controlled and reproducible setup is challenging, with many studies pointing out
the lack of consensus on what each summary quality should entail or represent (van der Lee
et al., 2019; Gehrmann et al., 2023), e.g. requesting subjects to judge grammaticality as a proxy
for coherence. In this section, we give a detailed account of the automatic metrics commonly
used in the literature to quantify summary properties.

2.3.1 Informativeness and Content Coverage

ROUGE. Standing for Recall-Oriented Understudy for Gisting Evaluation (Lin, 2004),
ROUGE is a framework providing a set of metrics that quantify the amount of content
overlap, modeled as n-grams, between summaries produced by summarization systems (sys-
tem summaries) and reference summaries (ideally written by human experts).

Given a system summary Ŝ and a set of reference summaries S, the following metrics are
defined in terms of recall, precision, and Fβ measure.

• ROUGE-N. Measuring n-gram overlap between Ŝ and reference summaries in S as

ROUGE-NR =

∑
S∈S |uN(Ŝ)∩uN(S)|∑

S∈S |uN(S)|

ROUGE-NP =

∑
S∈S |uN(Ŝ)∩uN(S)|

|uN(Ŝ)|

ROUGE-NFβ =
(1+β2)ROUGE-NR ·ROUGE-NP

ROUGE-NR+β2ROUGE-NP
, (2.2)

where uN(S) is the set of unique n-grams in S. Even though Lin (2004) introduced
ROUGE-N only as a recall measure (ROUGE-NR), subsequent summarization work
reported recall, precision, and F1 measures in order to coincide with the formulation
of ROUGE-L, explained below. WhenN= 1, ROUGE-1 operates over unigrams and
it is equivalent to compare bag of words between system and reference summaries.

• ROUGE-L.Measuring the longest common subsequence between each sentence s in
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reference summary S ∈ S and Ŝ, defined as

ROUGE-LR =
∑
s∈SLCS∪(s, Ŝ)

|S|

ROUGE-LP =
∑
s∈SLCS∪(s, Ŝ)

|Ŝ|

ROUGE-LFβ =
(1+β2)ROUGE-LR ·ROUGE-LP

ROUGE-LR+β2ROUGE-LP
, (2.3)

where |S| is the length of S in number of tokens and LCS∪(s, Ŝ) is the length of
the union longest common subsequence. This definition of ROUGE-L corresponds
to the summary-level flavour of the metric introduced in Lin (2004), also denoted
ROUGE-LSum in the rouge-score library.2

• The framework also includes other more elaborated metrics, such as ROUGE-W (a
ROUGE-L variant with weighted common subsequences rewarding consecutive span
matches), ROUGE-S (considering overlap of skip-grams), and ROUGE-SU (an ex-
tension to ROUGE-S that also includes unigram counting).

It is important to note the setup ROUGE was proposed for consisted of a summarization
setup where summaries were required to have closely similar lengths, and comparison against
more than one reference summary per sample was possible. This is no longer the evaluation
setup for modern summarization benchmarks such as the summarization of newswire (Her-
mann et al., 2015), scientific articles (Cohan et al., 2018), or books (Kryściński et al., 2022).
Hence, it can be said that ROUGE is a less reliable metric when comparing a single refer-
ence summary and candidate summaries that were generated without any length control.
Nevertheless, even though many issues have been identified when using ROUGE outside its
proposed setting (Liu and Liu, 2008; Cohan and Goharian, 2016; Schluter, 2017), ROUGE
has shown a high correlation with human judgments of relevancy and coverage (ROUGE-1
and ROUGE-2), as well as fluency (ROUGE-L; Graham (2015); ShafieiBavani et al. (2018);
Fabbri et al. (2021), in generation setups where the summary length is controlled to some
extent.

Usually, summarization research reports ROUGE-1, ROUGE-2, and ROUGE-LSum.
For content selection, and for extractive systems specifically, literature reports recall metrics
since systems have no mechanism to control for precision when extracting entire text spans
from the source.

2https://github.com/google-research/google-research/tree/master/rouge

https://github.com/google-research/google-research/tree/master/rouge
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BERTScore. One limitation of ROUGE is that it is not designed to appropriately re-
ward semantic and syntactic variation in summaries. In order to account for semantic vari-
ation and paraphrasing in the evaluation of generated text, Zhang et al. (2019) introduced
BERTScore, which calculates the average cosine similarity between contextual token em-
beddings given by a pretrained BERT model (Devlin et al., 2019).

Given tokenized system summary Ŝ= ⟨x̂1, .., x̂|Ŝ|⟩ and tokenized reference summaryS=
⟨x1, ..,x|S|⟩, let xi and x̂i be the token-level embedding of xi and x̂i, respectively. The metric
is defined in terms of recall, precision, and F1 measure, as follows.

BERTScoreR =

∑
xi∈S idf(xi)maxx̂j∈Ŝ xTi x̂j∑

xi∈S idf(xi)

BERTScoreP =
∑
x̂i∈Ŝ idf(x̂i)maxxj∈S xTj x̂i∑

x̂i∈Ŝ idf(x̂i)

BERTScoreF1 = 2
BERTScoreR ·BERTScoreP

BERTScoreR+BERTScoreP
, (2.4)

where idf(x) is the inverse document frequency score of token x computed from the test
corpus. In this way, BERTScore incorporates importance weighting in order to diminish
the effect of non-content words.

Previous work has pointed out limitations inBertScore (Hanna and Bojar, 2021; Nimah
et al., 2023), mostly related to the semantic significance of embedding similarity, e.g. favour-
ing lexically close but incorrect translations and penalizing lexically divergent but correct
translations. Nevertheless, BertScore has been proven a reliable metric when equipped
with importance weighting in highly technical domains such as medical texts (Miura et al.,
2021; Hossain et al., 2020). In all our experiments, we report scores using RoBERTa (Liu
et al., 2019) as underlying model unless otherwise stated, and apply importance weighting.

Lite3Pyramid. The Pyramid method (Nenkova et al., 2007) is a robust and compre-
hensive strategy to extract content units from summaries (both reference and system sum-
maries) and evaluate their relevance and coverage w.r.t. a source document(s). Despite its
effectiveness, the great amount of manual annotation the method requires has led the com-
munity to propose simplified alternatives (Passonneau, 2010; Shapira et al., 2019). In this
context, Zhang and Bansal (2021) introduced Lite3Pyramid, a metric that fully automates
the Pyramid method. The human annotation of summary content units (SCUs) is replaced
by the extraction of summary triplet units (STUs), i.e. semantic triplets obtained using a se-
mantic role labeling model. The step of verifying whether an SCU is present in a system
summary is replaced by the entailment probability given by a Natural Language Inference
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(NLI) model.
Let M be the set of STUs extracted from reference summary S, and let fNLI(e|a,b) be a

function that quantifies whether a is entailed by b. Then, the coverage of system summary
Ŝw.r.t. M is defined as

Lite3Pyramid =
1
|M|

∑
m∈M

fNLI(e|m, Ŝ). (2.5)

Empirically, Zhang and Bansal (2021) found that defining fNLI as the output probability of
the entailment class in a 3-class or 2-class setting worked best.

Auto-J. The outstanding capabilities demonstrated by large language models (LLMs)
have prompted their usage as generative judges, i.e. as flexible evaluators of text according to
predefined human preferences (Zhong et al., 2022; Fu et al., 2023). Li et al. (2023) proposed
Auto-J, an LLM fine-tuned to judge how aligned a query response(s) is w.r.t. human prefer-
ences of a predetermined criterion. The system, based on Llama 2 (Touvron et al., 2023b),
quantifies preference in the following two setups.

Pairwise Judgement. Auto-J is given a query and two responses and asked to write a well-
structured critique followed by a verdict of which response is preferred, stated as category
label ‘Win’, ‘Tie’, or ‘Lose’.

Single-Response Judgement. Similar to the pairwise setup, Auto-J is given a query and a
single response and asked to write a critique followed by a final rating on a scale of 1 to 10.

Even though Auto-J (Li et al., 2023) is capable of handling a plethora of task scenarios and
evaluation protocols, in this thesis we employ it to evaluate the perceived content coverage
in candidate summaries.

2.3.2 Redundancy

Content redundancy in a text is assessed with the following metrics, each of which computes
a value in the range of [0;1], where a higher value indicates higher redundancy in a text.

Inverse Uniqueness (IUniq). Defined as IUniq = 1 − Uniq, where Uniq refers to
uniqueness (Peyrard et al., 2017), a metric that measures the ratio of unique n-grams to the
total number of n-grams. We report the mean among values for unigrams, bigrams, and
trigrams.

Sentence-wise ROUGE (RdRL). Defined as the average F1 ROUGE-L score among
all pairs of sentences (Bommasani and Cardie, 2020). Given candidate summary Ŝ,

RdRL = average
(x,y)∈Ŝ×Ŝ,x̸=y

ROUGE-L(x,y).
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2.3.3 Local Coherence

We employ a scorer trained to perform the shuffling test to quantify local coherence. The
shuffling test, introduced by (Barzilay and Lapata, 2008), is a binary classification task that
assigns label y = 1 to a multi-sentence text if its sentences are presented in a coherence or-
der (i.e. in the original order) and y = 0 if they are presented in a permuted order. Recent
analyses of coherence measures (Steen and Markert, 2022) reported that such a shuffle test
classifier, dubbed CCL, can obtain promising correlations with human rankings of coher-
ence.

The CCL scorer receives a multi-sentence text and assigns a score between [0,1] quan-
tifying its local coherence, the higher the better. Following the methodology of Steen and
Markert (2022), we train a RoBERTa model (Liu et al., 2019) to distinguish shuffled from
unshuffled reference summaries. The model is trained in a binary classification setup with
chunks of N consecutive sentences as positive class and their shuffled versions as negative
class. Then, the cohesion score of a summary is defined as the positive class probability, av-
eraged over a window of N sentences taken with padding of one sentence.

Previous work (Jwalapuram et al., 2022; Steen and Markert, 2022) has pointed out that
local coherence models trained to score a short text might be sensitive to the total number
of tokens in the text, possibly scoring shorter texts higher. Steen and Markert (2022) iden-
tified the training objective as one of the possible reasons for such lack of robustness. Local
coherence models trained with a margin-based ranking loss (Moon et al., 2019; Mesgar et al.,
2021) required including shuffle and unshuffled versions of the same text in each mini-batch.
As such, this training procedure does not impose any constraint on the length difference be-
tween positive and negative examples in each batch, which results in a model biased towards
short texts. In contrast, local coherence models trained using a binary cross-entropy objec-
tive (Laban et al., 2021), such as CCL, can include positive (unshuffled) examples from one
document and negative (shuffled) examples from a different document. Steen and Markert
(2022) found that including positive and negative examples of varied length in each mini-
batch alleviated the model’s length bias almost in its entirety. In this thesis, we train CCL
models using the binary cross-entropy objective with a mixed-length batch recommended
by Steen and Markert (2022), hence addressing the reliability issue of metrics for coherence.

2.3.4 Cohesion

Finally, the following measures of cohesion are used in this thesis.

Extended Entity Grid (EEG). The Entity Grid (Barzilay and Lapata, 2008) models
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lexical cohesion in a text (as a proxy for local coherence) by obtaining the probability of an
entity appearing in a determined syntactic role (subject, object, or other) in a sentence, given
its role in the previous two sentences. Then, a discriminative model learns a score using
entity role transition probabilities and saliency features such as frequency. Later, the feature
set was extended to include entity-specific features such as the presence of proper mentions,
number of modifiers, among others Elsner and Charniak (2011).

Entity Graph (EGr). (Guinaudeau and Strube, 2013) Models a text as a graph of sen-
tences with edges connecting sentences that have at least one noun in common. Following
Zhao et al. (2023), averaged adjacency matrix is reported as a proxy for cohesion.

Lexical Graph (LGr). (Mesgar and Strube, 2016) Lexical Graph (LexG) computes the
adjacency matrix of the sentence graph of a text, where two sentences are connected if they
have at least two similar-enough content words, i.e. if the cosine similarity between their
embeddings is greater than a threshold (zero).

DiscoScore. Zhao et al. (2023) introduced two novel measures that aim to capture the
readers’ focus of attention when processing a summary. The first measure, FocusDiff (DS-
Focus), quantifies the semantic overlap between foci in a reference summary and a system
summary. The second measure, SentGraph (DS-Sent), computes the semantic similarity be-
tween foci in adjacent sentences, inversely weighted by the distance between sentences. In
both cases, foci are modeled as wordpiece tokens. Both measures showed promising correla-
tions with human judgments of coherence, with DS-Focus also being highly correlated with
coverage. In this thesis, we use the noun variants, DS-Focus[NN] and DS-Sent[NN], which
restrict foci to nouns.

Consecutive ROUGE (CoRL). Similar to RdRL, this metric calculates the ROUGE-L
F1 score between consecutive sentences. We discard unigrams composed of punctuation or
stopwords from the calculation of common subsequences.

In general, cohesion metrics rely on linking subsentential units (i.e. words or phrases)
located in different sentences. Hence, the reliability of these metrics depends on how well
these units can be identified. For instance, metrics EEG, EGr, and DiscoScore rely on noun
extraction, whereas LGr and CoRL rely on the identification of punctuation and stopwords
(usually pre-defined in a list). Given that the recognition of nouns, punctuation, and stop-
words is fairly accurate with modern NLP tools across domains, we can consider these cohe-
sion metrics reliable, especially when measuring lexical cohesion. However, as we will see in
Chapters 4 and 5, it is imperative to examine cohesion measurements along with redundancy
measurements in order to make an informed judgment about the cohesion of a summary.





Chapter 3

Content Selection as Human Memory

Simulation

Text summarization systems face the core challenge of identifying and selecting important
information in the original text. In this chapter, we focus on controllable content selection in
unsupervised extractive summarization of long, structured documents. We introduce sum-
marization strategies that leverage how information is discretized in content units and orga-
nized in human memory according to the Micro-Macro Structure theory (KvD; Kintsch and
van Dijk 1978). We find that these simulated structures of content in human memory can
be exploited to capture the relevance of content units in highly technical documents, and
use scientific document summarization as case study. Extensive automatic and human eval-
uations demonstrate that the proposed summarization system is capable of controlling the
level of generality or technicality of the extracted content by manipulating the constraints of
the memory structure.

3.1 Introduction

Content selection plays a pivotal role in the summarization pipeline, where the system deter-
mines the content units to be reproduced in the final summary. Following the discretization
of content in the source, content selection reduces this content pool to a subset by either
fusing or selecting parts of it.

When producing a general summary for informative purposes, the goal is to cover as
much relevant content from the source as possible, prioritized by relevance and subject to a
pre-determined length budget. In the context of extractive summarization, content selection
is reduced to the step of extracting text spans from the source document, usually sentences.

31
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Despite notable advances in recent years, neural networks still face challenges in selecting
content based on relevance. On the one hand, they often resort to learning task shortcuts
such as selecting based on sentence position or keyword presence (Narayan et al., 2018b;
Kedzie et al., 2018). On the other hand, modern summarization benchmarks such as CN-
N/DailyMail (Hermann et al., 2015) only provide one reference summary per document.
Hence, when training on these benchmarks, there is limited information on what a well-
covering summary should look like, compared to training scenarios where there is more than
one reference summary per document (Over et al., 2007).

Addressing these challenges, prior research (Fang and Teufel, 2014; Zhang et al., 2016;
Fang, 2019) took a step back and investigated how the human mind organizes and select
content. Their approaches sought to model key parts of the pipeline, such as source rep-
resentation and content selection, after cognitive processes known to be involved in mem-
ory management. Psycho-linguistic theories of human reading comprehension such as the
Construction-Integration (CI; Kintsch 1988) and the KvD theory (Kintsch and van Dijk,
1978) provide a rich theoretical foundation on how content is represented and selected from
human memory during tasks such as summarization.

In this chapter, we contribute to this line of research by leveraging how content is explic-
itly represented and organized in human working memory –a type of short-term memory–
according to the KvD theory, in order to inform a summarization model about which in-
formation bits are relevant in a document. According to KvD, human working memory
stores knowledge bits in discrete, indivisible units called ‘content units’ which we model as
semantic propositions. Furthermore, these content units are organized in a tree structure,
called memory trees, where edges represent cohesive ties among units. As reading progresses,
new content units are added to the memory tree, and older units are discarded. We exploit
the properties of nodes in these evolving trees to quantify relevance of content units in a
document, such as their position in the memory tree or their degree of connection.

In summary, we tackle the problem of content selection in single-document extractive
summarization in an unsupervised manner, taking as case study the summarization of scien-
tific articles from the Pubmed and arXiv dataset (Cohan et al., 2018), using the body of the
article as documents and their abstracts as summaries. This chapter presents the following
contributions:

• We investigate a range of system configurations that leverage structures of content
units obtained from a reading comprehension cognitive model.

• We demonstrate that these configurations are effective at ranking highly relevant con-
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tent units, which are then used to guide the production of extractive summaries from
long, structured documents.

• We formulate the problem of sentence selection as an optimization problem with a
budget in number of tokens as soft constraint. The resulting summaries present less
variability in length, hence ensuring a fairer comparison among models in terms of
automatic metrics.

Extensive experiments show that configurations of our summarizer exploiting properties
of memory trees outperform systems that rely only on frequencies in terms of informative-
ness and content coverage metrics. Further human evaluations and error analysis reveal that
our best system configuration provides users with less specific yet relevant key content.

3.2 Problem Setup

We formulate the problem of unsupervised content selection in extractive summarization
as the task of scoring sentences in a document followed by the selection of a subset of sen-
tences as the summary. In this section, we start by providing an overview of the proposed
summarization pipeline. Then, the procedure used to build propositions and the KvD algo-
rithm proposed by Fang and Teufel (2014) are briefly explained. Afterward, we introduce the
proposed sentence scoring strategies, inspired by KvD simulation, followed by our sentence
selection strategy.

3.2.1 Pipeline Overview

The pipeline of our summarization system is depicted in Figure 3.1. Input document D is
consumed one sentence at a time by the reading simulator. At each step, propositions are
extracted from the incoming sentence, and one memory cycle is executed. At the end of the
memory cycle, the scores of the propositions in the working memory tree are updated. Once
the document has been completely read, the final score of propositions is aggregated into
sentence scores, which are then used by our Knapsack selector to select the final summary.
Next, we elaborate on each step of the pipeline.

3.2.2 Proposition Building

The first step in our summarization pipeline consists of extracting KvD micro-propositions
of the form predicate(arg0,arg1,...) from each incoming sentence. We reproduce
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Sentence Selection

In healthy people, reactive oxidant species are controlled by 
a number of enzymatic and non- enzymatic antioxidants.

In patients with Cystic Fibrosis (CF) , deficiency of 
nonenzymatic antioxidants is linked to mal- absortion of 
lipid-soluble vitamins.

s1:

s2:

...

p1: in people(healthy)
p2: species(reactive)
p3: species(oxidant)

p4: are controlled(antioxidants,species, people)
p5: of(a number, antioxidants)

p6: antioxidants(enzymatic)
p7: antioxidants(non-enzimatic)

p8: with(in patients, Cystic Fibrosis)
p9: BE(Cystic Fibrosis,CF)

p10: of(deficiency, $7)
p11: is linked (deficiency, malabsortion, $8)

p12: of (malabsortion,vitamins)
p13: vitamins(lipid-soluble)

s1

s2

Occurrences(p2) = [ {score: c(p2,T
(1)), cycle: 1}]

Occurrences(p7) = [{score: c(p7,T
(1)), cycle: 1},

                {score: c(p7,T
(2)), cycle: 2} ]

Reading Simulation: FangKvD

Document D

Proposition Scores

Memory Cycle (x |D|)

p10

p11 p12

p7

p13

T(2): Memory Tree

Read s2

Update scores of
propositions in T(2)

Cycle 1
Cycle 2

Sentence Scoring

Occurrences(p1,y=Introduction)

SentScore(s1)

SentScore(s2)

Occurrence
Aggregation

PropScore(p1)

PropScore(p7)
PropScore(p8)

PropScore(p13)

Knapsack
Selector S

Occurrences(p7,y=Introduction)
Occurrences(p8,y=Discussion)

Occurrences(p13,y=Discussion)

Figure 3.1: Pipeline of the proposed summarization system consisting of KvD reading

simulation, sentence scoring, and sentence selection, using the simulation example in

Fig. 2.1.

the procedure proposed by Fang and Teufel (2014), which exploits grammatical dependen-
cies in dependency and constituency trees to aggregate subjects and complements of a pred-
icate into propositions.

The procedure returns proposition setP and consists of the following main steps, show-
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cased with the example in Figure 3.2,

• Starting from a dependency tree, children nodes are merged into their respective head
nodes if the children are nominal or non-core dependants, such as determiners, quan-
tifiers, negations, auxiliaries, or part of a multi-word expression. In Fig. 3.2a, single-
token modifiers are collapsed into their head nodes (e.g. this→model), and com-
pound phrases are joint (e.g. galaxy→formation).

• In case a coordination relation exists between two tokens, a new coordination node,
CONJ, is created and all coordinated nodes are transplanted under it. In Fig. 3.2c,
and: CONJ is created and coordinated nodesgalaxy formation andthe start

burst are transplanted under it.

• Head nodes are made into predicates with their children nodes as arguments. For spe-
cial coordination nodes, each coordinated node is propagated into the coordinating
parent proposition as an argument. In Fig. 3.2d, coordinated nodegalaxy formation

is propagated into predicts as its argument.

Moreover, the procedure unifies active and passive voice, clauses are treated as embedded
propositions, and objects in conjoined preprositional phrases are aggregated and attached
to their head nodes. Non-subsective and subsective adjectives (Kamp and Partee, 1995) are
also taken into account: subsective adjectives are turned into predicates with their respective
noun as an argument, whilst non-subsective adjectives are collapsed into their nouns like a
compound phrase. In order to make this distinction, the procedure makes use of the lexicon
proposed by Lin (1998). For more details, please refer to Appendix A in Fang (2019).

Proposition Overlap. Propositions are connected by quantifying the semantic overlap
between their functors –predicates and arguments. We reproduce the procedure in Fang and
Teufel (2016), which employs coreference chains (enhanced by lexical chains) and ‘semantic
transitions’ between two functors to quantify their degree of membership to a common se-
mantic concept. Proposition overlap is defined as the average overlap score calculated pair-
wise between functors in one proposition and functors in another, where functor overlap is
calculated in the following way.

Given documentD, the procedure starts by performing coreference resolution of all en-
tities and referring expressions inD. Then, coreference chains are expanded using the lexical
chaining algorithm proposed by Galley and McKeown (2003), although allowing verbs as
chain members. The chaining algorithm employs a disambiguation graph in which nodes
correspond to word types in a document and edges between words are labeled after their
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Input: ‘This semi - analytical model predicts galaxy formation and the star burst of galaxies’

<ROOT>

predicts

model

this

semi -

analytical

formation

galaxy burst

and the galaxies

of

VBZ
nsubj

amod

punctobl:npamod

det

obj

compound

star

conj

cc
det compound

nmod

case

predicts

this model

semi - analytical

galaxy formation

the star burst

and of: galaxies

conj

cc

predicts

this model

semi - analytical galaxy formation the star burst

and: CONJ

of: galaxies

1: predicts($3, galaxy formation)

2: predicts($3, $4)

3: semi - analytical(this model)

4: the star burst(of: galaxies)

5: and:CONJ(galaxy formation, $4)

(a) (b)

(c) (d)

root

NN NN

DT JJ NN NN

NN HYPH CC DT NN NNS

IN

Figure 3.2: Step-by-step construction of propositions from an input sentence, starting

from obtaining its dependency tree in Stanford Dependency format (a), merging depen-

dent nodes into head nodes (b), promoting coordinating conjunctions to head status (c),

to finally build propositions from non-leaf nodes (d).

semantic relation under any of their respective sense, possibly leading to multiple edges be-
tween nodes. Senses in edges are labeled using WordNet (Miller, 1995) but the algorithm
ultimately restrains all occurrences of a word in a document to take the same sense.

Then, let Gfunct be the disambiguation graph derived from D, p,q propositions ex-
tracted from D, and let a ∈ p and b ∈ q, be functors in their respective propositions.
The procedure defines functor overlap functionω : V[Gfunct]×V[Gfunct] 7→R with range
[0;1], where 0 denotes no semantic overlap between functors and 1 means that functors
refer to the same concept.

The objective of the procedure is to favour fewer semantic transitions between functors
a and b by defining distance de = α−t

overlap, where edge e connects a and b in Gfunct, and
αoverlap ∈ [0;1] is an attenuation factor. Hyper-parameter t is set depending on the semantic
relationship between a and b (encoded in the edge label) with empirical values defined in
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Dist. Param. (t) Noun Verb Derivation

0 synonymy - -
1 hypernymy synonymy noun-to-verb
2 sibling hypernymy -

Table 3.1: Configuration of the distance hyper-parameter t (Dist. Param.) dependent

on the semantic relation between nodes in the disambiguation graph. Reproduced from

Fang and Teufel (2016).

Table 3.1. Hence,ω(a,b) is defined as

ω(a,b) =


1∑

e∈Fde
if L(a) = L(b)

0 otherwise
(3.1)

where L(a) is the coreference chain a is member of, and F is the shortest path between a
and b inGfunct.

Finally, proposition overlap is calculated as follows. Let us assume that proposition p is
the parent of q in the memory tree, and letA∗(p,q) be the optimal alignment between all
functors inp and all arguments inq, i.e. the predicate of the child does not participate in the
alignment. AlignmentA∗ is defined as the maximum matching that can be obtained greedily
in the weighted bipartite graph formed from both comparing sets. Then, the proposition
overlap score between p and q,ϕFang(p,q), is defined as:

ϕFang(p,q) =
1

|A∗|

∑
⟨a,b⟩∈A∗

ω(a,b). (3.2)

It is important to note that ϕFang defines asymmetric overlap between propositions, a
property the simulation procedure exploits when searching for an appropriate place to attach
incoming propositions to the current memory tree. We elaborate more on this in the next
section.

3.2.3 FangKvD

In this part, we describe FangKvD, our proposed sentence scoring system simulating KvD
reading. Although the system reproduces KvD simulation as implemented by Fang (2019),
our contribution lies in strategies for proposition scoring that exploit the shape of memory
trees more efficiently for the task of summarization. The system incrementally builds a di-
rected graph where nodes represent propositions and edges represent proposition overlap.
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Working memory and long-term memory (LTM) are differentiated by a special attribute in
each node, indicating which nodes are ‘active’ or currently in working memory.

At a high level, FangKvD performs the following steps. Reading of documentD pro-
ceeds in memory cycles, one sentence at a time. In each cycle, propositions are extracted
from the incoming sentence and attached to the current memory tree, one by one to the
most promising candidate according to a criterion that favours the strength of proposition
overlap. Then, the algorithm prunes the memory tree to a predefined size following a strat-
egy that favours the most recently read propositions. At this point, the root of the tree is
adjusted if necessary, favouring more connected nodes as roots. Afterward, the score of the
remaining propositions is calculated considering their position in the memory tree. Then,
this score is updated in a dedicated data structure that keeps track of each proposition oc-
currence to aggregate their scores once reading is completed.

Before diving into the details of each of the aforementioned steps, let us lay down some
notation. Let sk be the sentence read in cycle k, G the proposition graph built until cycle
k−1, and T the working memory tree at the beginning of the cycle, with node set V[T ] ⊂
V[G] and edge set E[T ] ⊂ E[G]. Similarly, letGLTM be the long-term memory graph with
V[GLTM]⊂ V[G], E[GLTM]⊂ E[G], and V[T ]∩V[GLTM] = ∅.

Extracting and Attaching Incoming Propositions. Given sentence sk, proposition
setPk is extracted according to the procedure detailed in Section 3.2.2. Propositions inPk are
added to T one at a time in an iterative way. In each iteration, an attachment score is calcu-
lated for each (p,q) pair, where p ∈ P ′k – the set of nodes not yet attached– and q ∈ V[G].
The pair with the highest attachment score is chosen and attached accordingly. Formally,
the attachment score is defined as

AttachmentScore(p,q) = ϕfang(p,q) ·αdepth(p)
lvl ·αrecall(p)

rec (3.3)

where ϕfang(p,q) is the functor overlap function when p is added as a child of q, αlvl and
αrec are model parameters in range (0,1], and depth(p) is the depth of node p w.r.t. the root.
The term recall(p) is the cost of connecting q to p when p ∈ V[GLTM], i.e. when p is not
in the current memory tree and hence needs to be recalled. The recalling of p consists of
bringing the shortest path connecting p and any node in T back to T , with recall(p) being
the length of this path. As such, AttachmentScore(p,q) favours not only strong proposition
overlap but also the connection of incoming propositions to positions closer to the root, and
penalizes the recall of long proposition paths from long-term memory. Then, the optimal
attachment pair is defined as

(p∗,q∗) = argmax
p∈P ′

k,q∈V[G]
AttachmentScore(p,q). (3.4)
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Once all propositions in Pk have been attached to T , the procedure proceeds to control the
shape of the resulting memory tree. In practice, Fang (2019) restricts the recalling path to
have at most one non-activated node, i.e. only one proposition can be recalled from LTM,
for computational reasons.

Adjusting the Root. When adding all propositions to T during the first cycle, k = 0,
the root is chosen as follows. Taking T as a directed graph with edge weight set to
1/ϕfang(p,q),∀(p,q)∈ E[T ], the node with the highest closeness centrality is chosen as the
root. The closeness centrality of a node in a graph is defined as the inverse of the sum of all
shortest paths from said node to all other nodes in the graph. In this way, nodes with weak
proposition overlap with their neighbours will not be chosen as roots. In case of a tie, i.e.
two or more propositions having the same highest degree of centrality, the proposition with
functors closer to the root of the dependency tree is chosen.

Afterward, when k > 0, the root is changed only if the change promotes more nodes
closer to the new root than it demotes further away from the root. Let v be the root of T at
cycle k, Tv the subtree rooted at v, and children(v) the set of children nodes of v. Then, the
optimal candidate for new root is determined by the weighted size of its subtree,

u= argmax
û∈children(v)

ϕfang(v, û)
∑
z∈Tû

wz, (3.5)

wherewz is a weighting parameter set to 0.05 for nodes that were recalled from LTM (i.e.
non-active) and 1.0 otherwise. Overlap score ϕfang(v, û) takes into account the change in
edge direction when promoting û to root and v to its child. However, a root change is only
performed if the weighted size of Tu is greater than that of Tv, i.e. ifϕfang(v,u)

∑
z∈Tuwz >

ϕfang(u,v)
∑
z∈Tvwz. This procedure is applied recursively until no more root changes are

possible.
Pruning Working Memory. Next, memory tree T is pruned to have at most WM nodes.

The selection of which nodes remain follows KvD’s leading edge strategy. Starting from the
root, T is traversed in topological order until reaching a leaf node, selecting each node visited
along the way. At this point, if the amount of select nodes is less than WM, nodes are selected
in breadth-first traversing order (starting from the root) until capacity is reached or until all
nodes are traversed. Finally, nodes not selected are pruned from T and ‘moved’ to LTM, i.e.
they are deactivated.

Scoring of Proposition Occurrence. We call an occurrence of a proposition p during
simulation to every instance ofpwhere it appears as a node in a memory tree. Since a memory
cycle can keep a proposition in the tree for the next cycle, there can be many such instances
for a certain p.
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Given memory tree T, the following occurrence score functions c∗(p,T),∀p ∈ T , are
defined

ccnt(p) = 1,

clvl(p) =
1

depth(p)
,

cdeg(p) = degree(p),

csub(p) = |Tp|, (3.6)

where degree(p) is the total degree (indegree + outdegree) of p and Tp is the size of subtree
rooted at p.

Then, the occurrences of nodes in T are logged into an auxiliary data structure along
with its occurrence score and the cycle it was calculated on. Let us denote Occurrences(p)
the entry in the data structure for proposition p, which would return the set of occurrences
in the entire document, along with each occurrence information.

Aggregation of Occurrence Score. Once the document has been completely read,
we aggregate the scores of occurrences into a single proposition score to be used for sentence
selection. At this stage, the organization of the document is taken into account, e.g. whether
the document is divided into sections as is the case, for example, in scientific articles.

Occurrence scores are aggregated depending on whether we consider occurrences in the
entire document or occurrences by section, as follows

ncnt =
∑

x∈Occurrences(p)

c∗(x),

nwgt =
∑
y∈Y

ry ·
 ∑
x∈Occurrences(p,y)

c∗(x)

 ,

nexp =
∑
y∈Y

 ∑
x∈Occurrences(p,y)

c∗(x)

ry , (3.7)

where c∗(·) is any of the occurrence scoring strategies in Eq. 3.6. Term Occurrences(p,y)

is the set of occurrences of p during simulation of section y of the document, and ry is the
ratio of sentences in y. For instance, for the Introduction section of a scientific article,

ri =
Number of sentences in the introduction

Total number of sentences in the document
.

Finally, the score of a proposition p is defined as

PropScore(p) = 1−(1−ρ)n∗(p), (3.8)
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where n∗(·) is any of the aggregation strategies in Eq. 3.7 and ρ is a parameter denoting the
probability of reproducing any proposition during summary production. For ease of nota-
tion, PropScore(p) with strategy configuration ca andnb will be referred to as a-b. For in-
stance, system Lvl-Exp refers to a configuration that combines occurrence scoring by node
depth (clvl) and aggregates the scores by document section as an exponentially weighted
sum (nexp). Moreover, notation a-b[X] denotes an a-b system configuration with work-
ing memory capacity of X.

Note that Equation 3.8 can be interpreted as a generalization to the concept of reproduc-
tion probability proposed by KvD. As such, KvD’s expression in Equation 2.1 corresponds to
the case when using raw frequency counts, i.e. using occurrence scoring ccnt and aggregation
strategy ncnt. Moreover, the flexibility in configuration allows one to choose to exploit ei-
ther the shape of memory trees or to exploit the structure of a document, or both at the same
time. First, clvl, cdeg, and csub do exploit the shape and configuration of the trees, whereas
ccnt does not. Second, nwgt and nexp leverage the fact that the document is divided into
sections, whereas ncnt does not.

Sentence Scoring. Finally, the score of sentence si is defined as the sum of the score of
all its composing propositions, as follows

SentScore(si) =
∑
p∈Pi

PropScore(p), (3.9)

where Pi is the set of propositions extracted from si.

3.2.4 Sentence Selection

Previous work has pointed out that ROUGE score is sensitive to the length of the summary
and summarization models should only be compared against each other if they produce sum-
maries of similar length (Narayan et al., 2018a; Schumann et al., 2020). For this reason, we
extract summaries according to a budget of tokens instead of picking a fixed number of sen-
tences regardless of their length as is normally done in the literature.

We pose the problem of selecting a subset of sentences from a document as a 0-1 knap-
sack problem with a soft budget constraint, i.e. the optimal summary is allowed to have more
tokens than the budget as long as the length difference (in number of tokens) is minimal. In
other words, the objective is to maximize the total score of selected sentences while keeping
the total number of tokens as close to a budget B as possible. Our approach is simple and
is based on previous work applying knapsack optimization for sentence selection and com-
pression (Naserasadi et al., 2019; Shichel et al., 2021), with the crucial difference that we set a
soft budget constraint.
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Given documentD = ⟨s0, ..,s|D|⟩, where each sentence has a weight equal to its num-
ber of tokens and value SentScore(si); and given weight limit B, the objective is to obtain
sentence subset S= {si | xi = 1} that maximizes:∑

xi ·SentScore(si), s.t.

|
∑

i∈[0,|D|)

xi|si|−B|⩽ ϵ,xi ∈ {0,1} (3.10)

where |si| is the number of tokens in si and ϵ is the margin S is allowed to overflow the
budget.

3.2.5 Limitations

The proposed summarization system presents the following limitations. On the one hand,
the reproduced KvD reading simulator depends heavily on out-of-the-box NLP tools and
external linguistic resources. First, proposition quality crucially depends on the quality of
dependency and constituency parse trees, as well as an external adjective lexicon. Given that
the available parsers are domain-dependent, the quality of parse trees can be severely com-
promised when used in domains other than the ones they were trained for. In our case, the
parsers employed were trained over newswire, while being used on scientific text. Second,
the reproduced proposition overlap procedure heavily depends on an out-of-the-box coref-
erence resolution model. Word disambiguation during lexical chaining depends instead on
WordNet, which is quite limiting to use even in the newswire domain. Third, during read-
ing simulation, the constrained amount of content units in working memory at any given
time poses a limitation to how much information the system has access to when updating
the score of memory tree nodes. It is entirely possible that some propositions are pruned
away and never recalled again, in which case their score will be zero.

On the other hand, the proposed proposition scoring and sentence selection strategies
present the following limitations. Even though aggregation of occurrences over sections does
leverage document structure, its effectiveness depends on whether the document has clearly
separated sections, e.g. proper segmentation of sections in a scientific article. Finally, the
Knapsack sentence selection is quite effective at controlling the length of candidate sum-
maries, resulting in a length distribution with a very low standard deviation. While this
property results in an accurate and reliable calculation of ROUGE scores for instances with
reference summary length close to the pre-defined budget, the scores become less reliable as
reference summary length differs more and more from the budget. In practice, however, as
we show in our experiments, the reference summary length in the analyzed datasets shows
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low standard deviation, meaning that extreme differences between candidate and reference
length are the exception rather than the rule.

3.3 Experimental Setup

We investigate all possible combinations of the occurrence scoring and aggregation strategies
presented in Sect. 3.2.3. We refer as ‘FangKvD system’ to any instantiation of occurrence
scoring–aggregation configuration applied to the FangKvD reader alongside the Knapsack
selector.

3.3.1 Datasets

We use PubMed and arXiv datasets collected by Cohan et al. (2018), composed of scien-
tific articles in English with their abstracts as reference summaries. Articles with abstracts
with less than 50 tokens and more than 300 tokens were discarded, as well as articles with
documents with less than 100 tokens. We only consider the Introduction, Discussion, and
Conclusion sections in each article, as preliminary experiments showed that most informa-
tion needed to summarize the document is found there. After filtering out articles without
none of these sections, PubMed was left with 104814 articles in the training set, 5344 in
the validation set, and 6025 in the test set. For arXiv, these number were— respectively—
183799, 5623, and 5803. It is worth noting that we found a discrepancy in both datasets.
Text from the ‘article’ field (in theory the concatenated sections) would not always have
the same text as the ‘sections’ field. Hence, we chose data from the ‘sections’ field as
input document.

3.3.2 Implementation Details

Proposition Building and Overlap. The proposition extraction procedure employs Stan-
ford CoreNLP v3.9.2 (Manning et al., 2014) for parsing of constituency trees and depen-
dency trees in the Stanford Dependency formalism (De Marneffe et al., 2006). For propo-
sition overlap, the Stanford coreference resolver (Raghunathan et al., 2010) is used to ob-
tain initial coreference chains, which are then extended using the lexical chaining algorithm
proposed by Galley and McKeown (2003). Regarding hyper-parameters, we use the default
values stated in Fang and Teufel (2016), i.e. the attenuation factor αoverlap is set to 0.7.

FangKvD. In order to further account for section organization in scientific articles, we
start reading each section with an empty memory tree. This action allows us to generate
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memory trees that reflect only the argumentation of the current section but still have access
to the complete set of propositions in the document, in case a content unit is referenced back
to a previous section. In this way, the reading simulator produces memory trees with nodes
only relevant to the current section.

Similar to proposition building, hyper-parameters are set to their default values reported
in Fang (2019),αlvl = 0.6 andαrec = 0.05, and the recalling path is restricted to have at most
one non-activated node. Reproduction probability is set to 0.3, a value found empirically
by KvD for human summarization tasks (Kintsch and van Dijk, 1978). Working memory
capacity WM is set to values {5,20,50,100}. In terms of notation, as mentioned previously,
system a-b[X] denotes a configuration with strategies ca and nb, and WM= X.

For occurrence aggregation in PubMed, we set ratios of sentences per section to ri =
0.33, rd = 0.53, and rc = 0.14, pre-calculated from the training set. For arXiv, we set
ri = 0.62, rd = 0.16, and rc = 0.22. During sentence selection, we set budget B to 205 for
PubMed and to 190 for arXiv–the average reference summary length in each correspond-
ing training set. For both datasets, we set budget margin ϵ = 50, the standard deviation in
reference summaries.

3.3.3 Comparison Systems

We compare our models against unsupervised and supervised baselines. For all baseline sys-
tems, the Knapsack selector is applied on top of their respective sentence scores to ensure a
fair comparison between systems.

Extractive Oracle. The extractive oracle extracts candidate summary sentences that
maximize their ROUGE scores w.r.t. a reference summary. Knapsack selection is applied
over partial candidate summaries, where the score of candidate sentences is modeled as the
sum of ROUGE-1 and ROUGE-2 recall values of the partial summary w.r.t. a reference sum-
mary. This baseline is labeled as Ext-Oracle.

Unsupervised Baselines. We make the distinction between completely unsupervised
systems and unsupervised systems that require some form of finetuning using data in the
target knowledge domain, the latter being marked with (*). The following systems are com-
pared:

• Lead. First sentences until budget is reached.

• Random. The score of each sentence is its probability, drawn from a uniform distri-
bution. Then the selection strategy is applied.
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• Random-Wgt. The score of each sentence is its probability, proportional to the ratio
of the section it belongs to.

• NoTree. System configuration that counts proposition occurrences in the source
document instead of occurrences in memory trees.

• TextRank (Mihalcea and Tarau, 2004). Completely unsupervised system that mod-
els a document as a graph of sentences where an edge connects sentences si and sj if
they share content words (tokens left after discarding stopwords) with edge weight
E
(i,j)
TR defined as

E
(i,j)
TR =

|wk;wk ∈ si∧wk ∈ sj|
log(|si|)+ log(|sj|)

, (3.11)

where |si| denotes the number of content words in si. Then, TextRank employs the
PageRank algorithm (Brin and Page, 1998) with damping factor d = 0.85 to obtain
the eigen-vector centrality of nodes (sentences), which we then use asSentScore(si)
in Eq. 3.10 to be used by the Knapsack selector. Following GenSim (Rehurek and
Sojka, 2010), we remove stopwords and apply stemming.

• LexRank (Erkan and Radev, 2004). Similar to TextRank, LexRank models the rel-
evance of sentences in a document as the node eigen-centrality in a graph where the
edge weight between sentence nodes si and sj is defined as

E
(i,j)
LR = cos(TF-IDF(si),TF-IDF(sj)) (3.12)

where TF-IDF(si) is the TF-IDF vector representation of content words in sentence
si and cos(a,b) is the cosine similarity between a and b. This modeling corresponds
to the Continuous LexRank in Erkan and Radev (2004).

• PacSum (Zheng and Lapata, 2019). Also modeling a document as a sentence graph,
PacSum defines the unnormalized edge weight matrix as ÊPC, where Ê(i,j)PC = vTi vj rep-
resents the similarity between vector representations (as the dot product) of sentences
si and sj. Then, the normalized edge weight matrix is defined as

E
(i,j)
PC = max(0, Ê(i,j)PC −[minÊPC +β(maxÊPC −minÊPC)]). (3.13)

In contrast to TextRank and LexRank, PacSum models node centrality as the degree
centrality weighted by sentence relative position. Formally, the score of a sentence is
defined as

SentScorePC(si) = λ1
∑
j<i

E
(i,j)
PC +λ2

∑
j>i

E
(i,j)
PC , (3.14)
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where λ1 and λ2 are hyper-parameters controlling the contribution of similarity be-
tween previous sentences and future ones, respectively; and λ1 + λ2 = 1. For com-
putational purposes, we limit connection to sentences in a window of size 200.1 Fi-
nally, we report results for two sentence representation strategies investigated in Zheng
and Lapata (2019), TF-IDF and a BERT-based sentence embedding, which we initial-
ize with SciBERT (Beltagy et al., 2019). These systems are dubbed PacSum[TF-IDF]
and PacSum[SciBERT], respectively. We use the default hyper-parameters (λ1 =−2,
λ2 = 1, andβ= 0.6) reported in Zheng and Lapata (2019) and consider these systems
completely unsupervised.

• PacSum-FT∗. PacSum[SciBERT] system with hyper-parameters fine-tuned over a
sample of 1000 documents from each training set (uniformly sampled) following the
procedure therein. For PubMed, we set λ1 = 0.4, λ2 = 0.6, and β = 0.9, whereas
for arXiv, λ1 = 0.5, λ2 = 0.5, and β= 0.9.

Supervised Baseline. We add a linear classifier layer on top of SciBERT (Beltagy et al.,
2019) and fine-tune it over the same subset used for PacSum-FT, and dub this system Ext-
SciBERT. Similarly to Cohan et al. (2019), we consume each document in chunks of fixed
numbers of sentences and use the pretrained model served by HuggingFace.2 Fine-tuning is
performed for two epochs using a batch size of 8, and document chunk size of 5. For opti-
mization, we use Adam (Loshchilov and Hutter, 2019) with a fixed weight decay parameter
of 0.1. Additionally, we use a slanted triangular learning rate scheduling with 10% of total
training steps as warm-up and a top value of 1e−5. We accumulate gradients for 16 training
steps and clip gradients by norm value at 0.1.

Finally, it is important to note that, given the high technicality of the domain analyzed
in this chapter –the scientific domain–, we do not include supervised baselines that require
the calculation of coreference chains or rhetorical structure trees over the input document,
such as DiscoBERT (Xu et al., 2020), because of their limited applicability in out-of-domain
scenarios.

3.3.4 Automatic Evaluation

We report ROUGE recall scores (Lin, 2004) –instead of F1 scores– to evaluate lexical cov-
erage and lexical relevance, as well as BERTScore recall score (Zhang et al., 2019) for seman-

1Such a limitation was possibly not considered by Zheng and Lapata (2019) since their model was not de-
signed for long documents, and instead was tested on the CNN/DM dataset in which documents are 50 sen-
tences long in average.

2https://huggingface.co/allenai/scibert_scivocab_uncased

https://huggingface.co/allenai/scibert_scivocab_uncased
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tic relevance. Content coverage at the sub-sentential level is measured with Lite3Pyramid
(Zhang and Bansal, 2021), which calculates the average entailment score between a candi-
date summary and semantic triplets (STUs) extracted from the reference summary, as de-
tailed in §2.3. Following the recommended setup, we report the average probability of the
entailment class given by an NLI model without any finetuning, l3c,3 and finetuned on the
summary content unit coverage step annotated in TAC 2008 (Dang et al., 2008), denoted as
p2c.4

Furthermore, we measure content coverage at the propositional level by quantifying how
many propositions extracted by a system are also present in the extractive oracle summary.
Let P be the set of propositions present in the extractive oracle summary of document D,
and let P̂ be the set of propositions in candidate summary S. We define recall (R) and preci-
sion (P) as follows

R= |P∩ P̂|/|P|, P = |P∩ P̂|/|P̂|. (3.15)

A higher value ofRmeans that more summary-worthy content is being captured. Along
with recall and precision, we also report the F1 score.

Finally, statistical significance is tested using the Bootstrap method with a 95% confi-
dence interval and 1000 iterations, with metric scores reported corresponding to the mean
of the central bootstrap bin.

Metric Reliability. As mentioned in § 2.3, metrics such as ROUGE and BERTScore
present limitations that might impact their reliability if not properly accounted for.

For ROUGE, reliability is impacted by the length difference between reference sum-
maries and candidate summaries. In this chapter, we mitigate against this issue by discarding
dataset instances where the reference summary is too short or too long (see § 3.3.1) and by
employing a sentence selector that effectively maintains candidate summary length within a
tight range.

For BERTScore, reliability might be impacted by the quality of semantic representation
of domain-specific content words. In preliminary experiments, we employed SciBERT (Belt-
agy et al., 2019) as base model, given that SciBERT was pretrained over scientific text. The
system ranking obtained was the same as the one obtained using RoBERTa (Liu et al., 2019),
and hence we report the latter in this chapter.

3HuggingFace checkpoint: ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli.
4HuggingFace checkpoint: shiyue/roberta-large-tac08.
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3.3.5 LLM Agent Evaluation

In addition to quantifying coverage and informativeness using standard summarization met-
rics, we generate critiques stating an LLM agent’s preference w.r.t. content coverage. We em-
ploy Auto-J Li et al. (2023) to compare candidate summaries in pairwise and single-response
setups. We compared the best FangKvD configurations in each WM regime, as well as base-
lines NoTree, TextRank, and PacSum[SciBERT], labeled as simply PacSum, for a subset of
100 samples taken uniformly randomly from the test set of the analyzed datasets.

In the pairwise setup, we use a ranking protocol, commonly used in human evaluation
studies (Wu and Hu, 2018; Luo et al., 2019), to aggregate preferences, i.e. summaries with
‘Win’ labels are assigned a rank of 1 and those with ‘Lose’, a rank of 2, whereas both candi-
dates are assigned a rank of 1 when tied. All system pairs were compared and the final rank
of a system is defined as the average rank over all of its comparisons.

In the single-response setup, we report the final ranking assigned by Auto-J on a scale of
1 to 10. For all our generations, we employ the HuggingFace checkpoint
GAIR/autoj-scenario-classifier, which is in turn fine-tuned from
meta-llama/Llama-2-13b-chat-hf (Touvron et al., 2023b). Table 3.2 showcases the
complete prompt template employed in our experiments in both generation setups.

3.3.6 Human Evaluation

Finally, human judgment is elicited to evaluate the degree to which the proposed systems
capture key content in a scientific article. To this end, we employ a question-answering (QA)
paradigm (Clarke and Lapata, 2010; Narayan et al., 2018b, 2019) with Cloze style queries
instead of factoid questions (Hermann et al., 2015). Human subjects on Amazon Mechanical
Turk (AMT) were presented with a system summary and a query, and asked to write down
the answer to the query. Queries are constructed by replacing all occurrences of one factual
detail in the reference (gold) summary with an ‘X’.

We sampled 50 documents from the test set of PubMed and manually constructed 3
Cloze queries per document, for systems Oracle, Sub-Exp, NoTree, and
PacSum[SciBERT]. System Sub-Exp with tree size 20 is chosen because it had the highest
sum of Rouge-1 and Rouge-2 scores. Oracle is included because it gives us an upper-
bound as to how much information can be captured in the optimal scenario. Please refer to
Appendix B.1 for more details on the AMT campaign.

After collecting answers, we proceed to score them as follows. We expand the partial-
matching scoring system proposed by (Clarke and Lapata, 2010) with fine-grained error cat-



3.4. Results and Discussion 49

Pairwise-Response Setup

[INST]
You are assessing two submitted responses on a given user’s query and judging which response is better or they are tied. Here is the data:
[BEGIN DATA]
***
[Query]: Which response covers more content from the following reference text? Reference: {reference summary}
***
[Response 1]: {system summary A}
***
[Response 2]: {system summary B}
***
[END DATA]
Here are the instructions to assess and compare the two responses:
1. Pinpoint the key factors to distinguish these two responses.
2. Conclude your comparison by providing a final decision on which response is better, or they are tied. Begin your final decision statement with “So, the final decision is Response
1 / Response 2 / Tie”. Ensure that your decision aligns coherently with the comprehensive evaluation and comparison you’ve provided.
[/INST]

Single-Response Setup

[INST]
Write critiques for a submitted response on a given user’s query, and grade the response:
[BEGIN DATA]
***
[Query]: How much content does the response cover from the following reference text? Reference: {reference summary}
***
[Response]: {response}
***
[END DATA]
Write critiques for this response. After that, you should give a final rating for the response on a scale of 1 to 10 by strictly following this format: “[[rating]]”, for example: “Rating:
[[5]]”.

[/INST]

Table 3.2: Complete prompt template for generating coverage critique using Auto-J, for

pairwise comparison setup and single-response setup.

egories, showcased in Table 3.3. These categories aim to provide a better picture of the seman-
tic relation between human answers and reference answers. Each human answer is manually
labeled by the authors into one of these error categories and receives the score associated
with it. Then, the performance of a system is defined as the average score over all the answers
for that system. Statistical significance is tested using a one-way ANOVA (p < 0.01) with
posthoc Tukey-HSD tests and 95% confidence interval.

3.4 Results and Discussion

In this section, we report and discuss our findings from our automatic and human experi-
ments on modeling content relevance using the proposed KvD reader configurations.

3.4.1 Content Selection at the Sentence Level

We start by analyzing the performance of our systems at selecting relevant sentences from
the input document. Relevance and coverage metric scores are showcased in Table 3.4 and
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Category Score Description Example

Exact Match 1.0 Exact string match with reference
answer.

R: infected macrophages
A: infected macrophages

Synonymity 0.8 Answer is a synonym or a rephrase
of reference answer.

R: infected macrophages
A: contaminated macrophages

Specificity 0.6 Answer is a hypernym of reference
answer.

R: temporal lobe epilepsy
A: seizures

Incompleteness 0.3 Answer phrase is missing words R: anaphylaxis diagnosis and
management
A: anaphylaxis diagnosis

Incorrectness 0.0 Answer is totally unrelated. R: biomarker
A: measure

Not found 0.0 Answer could not be found on the
provided summary.

-

Table 3.3: Categories of human answers for the campaign.

Table 3.5 for PubMed and arXiv, respectively. Results are grouped by working memory
parameter, showing the best and worst FangKvDsystem configuration chosen according to
their average ROUGE recall scores ((R1-R+R2-RL-R)/3 ) in the corresponding validation
set.

Statistical significance at the system level is tested pairwise using Bootstrap with a 95%

confidence interval. For PubMed, Table 3.4, we found no pairwise statistical difference
between R1-R scores of systems Lvl-Exp[5], TextRank), and Sub-Exp[20]). Simi-
larly, no pairwise difference between Lvl-Exp[50], Lvl-Exp[100], and NoTree. For
arXiv, Table 3.5, no pairwise statistical difference in R1-R scores was found between systems
Cnt-Wgt[5], Cnt-Cnt[50], and Cnt-Cnt[50]; and between systems Lvl-Exp[100],
Random-Wgt, andNoTree. Analogously, Table 3.4 and Table 3.5 indicate system groups
in which no pairwise difference was found, one group per marker, for each metric reported.

FangKvD Configurations. First, when comparing amongst FangKvD systems, we
find that for everyWM setup, the worst system belongs to a configuration that only uses propo-
sition frequencies in the memory trees (ccnt) and not properties of the tree shape. In contrast,
all the best FangKvD systems employed configurations that score proposition occurrences
by exploiting tree shapes (csub, cdeg, clvl).

In PubMed, Table 3.4, subtree size-based aggregation yielded comparable informative-
ness and n-gram coverage in terms of ROUGE recall scores for working memory capacities
of 5 and 20 (Sub-Cnt and Sub-Exp), while BERTScore recall favours WM = 5. In terms
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of reference STU coverage, we observe comparable performance of all FangKvD systems
according to p2c and l3c, with Sub-Cnt exhibiting slightly higher coverage.

Similarly, in arXiv, Table 3.5, Lvl-Expwith WM= 20 outperforms other configurations
in terms of ROUGE recall scores. However, Cnt-Cnt with WM= 50 shows higher semantic
coverage, as indicated by BERTScore recall and p2c scores. It is also worth noting that, for
both datasets, p2c shows higher entailment scores than l3c across the board, confirming the
usefulness of finetuning an NLI model on the STU presence task (Zhang and Bansal, 2021).

Second, when comparing metrics scores across varying levels of working memory capac-
ity, we found a non-linear relationship between them, indicating that indeed there exists
a memory capacity optimal for content coverage modeling. We hypothesize that a smaller
memory tree forces the KvD reader to keep only the most relevant nodes at each memory
cycle, but too-small a buffer risks discarding potentially relevant nodes. In larger memory
trees, instead, more propositions get to accumulate scores during simulation, hence mak-
ing -potentially irrelevant- longer sentences obtain higher scores. In fact, a closer look at the
summary lengths revealed that the average number of sentences per summary decreased as
the WM parameter increased, for both datasets.

Note, however, that this memory capacity effect seems to only hold for arXiv, whereas
PubMed shows consistently lower ROUGE scores as the capacity is incremented. This
could be due to the slight difference in domain between both datasets, realized in the differ-
ence between section lengths. A closer inspection revealed that sections in PubMed articles
are 16.8 sentences long on average, whereas sections in arXiv, 28.8. Given that the mem-
ory tree is flushed at the beginning of each section during reading, processing a short section
with a large WM capacity would allow the model to keep all propositions read so far in mem-
ory. This means that potentially irrelevant content units are never discarded from working
memory. In PubMed, the sections seem to be short enough for this phenomenon to hap-
pen, whereas sections in arXiv are long enough to always prompt the model to discard units
while reading.

Unsupervised Baselines. Regarding standard heuristic baselines and unsupervised base-
lines, we observed the following. First, we observe that the organization of information in
scientific articles poses a challenge for trivial baselines. For instance, selecting the first sen-
tences of the introduction section (Lead) performs worse than randomly picking sentences
(Random and Random-Wgt). Second, note that all FangKvD systems perform better
in both datasets than baseline NoTree, which ranks propositions according to their fre-
quency in the document. This result highlights the importance of using the memory trees
to model the relevance of content units, regardless of the memory capacity or aggregation
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strategy employed.

Next, we turn our attention to baselines modeling content relevance through sentence
node centrality. In both datasets, LexRank and PacSum[TF-IDF] showed poor perfor-
mance on all metrics, even under-performing random baselines. In PubMed, TextRank
outperforms PacSum[SciBERT] on all metrics, and even slightly outperforms the best
FangKvDsystem,Sub-CntwithWM= 5, in terms of n-gram coverage according to ROUGE
recall. Regarding semantic coverage, however, TextRank and Sub-Cnt perform compara-
bly according to BERTScore recall, p2c, and l3c scores. In contrast, in arXiv, TextRank
and PacSum[SciBERT] do lag behind all best FangKvD systems on all metrics. Lastly,
regarding the choice of sentence representation in PacSum, using dense embeddings from a
pretrained neural model (PacSum[SciBERT]) improves upon –as expected– a sparse rep-
resentation (PacSum[TF-IDF]) in both datasets, although not enough to catch up to Tex-
tRank.

These rather mixed results indicate again the impact of restricting the update of scores in
each processing iteration. For FangKvD systems, each iteration corresponds to a memory
cycle and the update is limited to content in working memory. Whereas for baselines using
PageRank to calculate node centrality, the score of all nodes (in this case, sentences) in a
document graph is updated in each iteration, until convergence. Similarly, PacSum systems
calculate degree centrality using not only previous but also future sentences when processing
each sentence in turn. In contrast, our FangKvDsystems do not look forward when scoring
content and instead, a memory cycle is only allowed to look at content in working memory
and in long-term memory if needed –both consisting of already processed content.

Supervised and Non-Completely Unsupervised Baselines. Finally, consider the su-
pervised upper-bound in our analyses, Ext-SciBERT, and the fine-tuned PacSum-FT∗. As
expected, finetuning on in-domain data dramatically improves PacSum’s capacity to detect
relevant content –although still falling behind Ext-SciBERT–, with the improvement be-
ing striker for arXiv. InPubMed, PacSum-FToutperforms our best FangKvDsystem in
terms of ROUGE and BERTScore; however, both systems perform comparably in terms of
semantic coverage scores p2c and l3c. In contrast, in arXiv, Lvl-Exp gets the upper-hand
in all metrics.

3.4.2 Content Selection at the Proposition Level

In this analysis, we move on from quantifying coverage at the sentence level to evaluating
coverage at the proposition level using Equation 3.15. We comparedFangKvDsystems using
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System WM R1-R R2-R RL-R BSc-R p2c l3c

Sub-Cnt 5 44.10† 14.50† 39.39‡ 84.43† 0.25 0.15†
Cnt-Wgt 5 43.35 13.65‡ 38.55 84.28‡ 0.24 0.13

Sub-Exp 20 44.00† 14.70† 39.40‡ 84.28‡ 0.23‡ 0.14‡
Cnt-Wgt 20 42.90 13.44‡ 38.18§ 84.19 0.23‡ 0.14‡

Lvl-Exp 50 43.51‡ 13.99‡ 38.81 84.29‡ 0.24† 0.14‡
Cnt-Cnt 50 42.75 13.30 38.07§ 84.10 0.23‡ 0.14

Lvl-Exp 100 43.20‡ 13.46‡ 38.48 84.31‡ 0.24† 0.15†
Cnt-Cnt 100 42.72 13.18 37.99§ 84.05 0.23 0.13

Lead 41.12 13.36 36.72 83.90 0.24 0.13
Random 42.91 13.06 38.04 84.19 0.23 0.10
Random-Wgt 42.60 12.71 37.73 84.33 0.22§ 0.11
NoTree 43.20‡ 13.27 38.51 84.25 0.22§ 0.12
TextRank 44.10† 14.77† 40.45† 84.42† 0.24† 0.15†
LexRank 43.10‡ 13.82‡ 39.85† 84.20 0.22§ 0.13
PacSum[TF-IDF] 36.46 11.53 32.84 83.43 0.20 0.10
PacSum[SciBERT] 42.87 13.74 39.52 84.32 0.23 0.12

PacSum-FT[SciBERT]∗ 45.81 16.36 41.04 84.51 0.25 0.15†
Ext-SciBERT 47.16 17.37 42.88 84.68 0.26 0.19
Ext-Oracle 60.08 28.74 54.46 87.27 0.35 0.28

Table 3.4: Summary informativeness in terms of ROUGE recall (R1-R, R2-R, RL-R),

BERTScore recall (BSc-R), and coverage in terms of Lite3Pyramid’s p2c, l3c, over the

test set of PUBMED. Best (top) and worst (bottom) FANGKVD systems are presented

for each memory capacity WM. (†,‡,§): no statistical difference between system pairs in

the same column. Best completely unsupervised systems are bolded.

occurrence scorers that exploit a tree property (strategies csub, cdeg, and clvl) against those
using only frequency (ccnt), for tree size WM = 20. For completeness, baseline NoTree was
also included. Same as in previous analyses, statistical significance was tested pairwise using
the Bootstrap test with a 95% confidence interval.

In PubMed, Lvl-Exp obtained an F1 score (%) of 29.80, closely followed by Sub-Exp
(29.79) and Deg-Exp (29.76). In contrast, FangKvD systems using only frequency,
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System WM R1-R R2-R RL-R BSc-R p2c l3c

Deg-Wgt 5 50.11 16.33† 44.10 84.69† 0.23 0.12†
Cnt-Wgt 5 49.53 15.54 43.44‡ 84.66 0.23 0.11‡

Lvl-Exp 20 51.04 16.94‡ 44.87† 84.58§ 0.24‡ 0.12†
Cnt-Cnt 20 49.66† 16.11† 43.53‡ 84.57§ 0.24‡ 0.11‡

Cnt-Cnt 50 49.57† 15.98 43.62‡ 84.72† 0.26 0.12†
Cnt-Wgt 50 47.75 14.16 41.81§ 84.51 0.25† 0.11‡

Lvl-Exp 100 48.69‡ 15.02 42.78 84.64† 0.25† 0.11‡
Cnt-Wgt 100 47.71 14.51§ 41.94§ 84.55§ 0.25 0.10§

Lead 44.91 12.52 39.08 83.85 0.17 0.07
Random 47.81 14.50§ 41.66§ 84.51 0.19§ 0.09§
Random-Wgt 48.25‡ 15.06 41.98§ 84.52 0.19§ 0.10§
NoTree 48.81‡ 14.28§ 42.45 84.20 0.22 0.09§
TextRank 47.27 16.20† 42.37 84.19 0.24‡ 0.11‡
LexRank 41.91 11.55 37.85 83.83 0.16 0.07
PacSum[TF-IDF] 38.87 12.01 33.40 83.79 0.19§ 0.05
PacSum[SciBERT] 44.19 13.38 39.88 84.04 0.20 0.08

PacSum-FT[SciBERT]∗ 50.05 16.70‡ 44.36† 84.03 0.24 0.07
Ext-SciBERT 53.32 18.93 48.01 84.97 0.27 0.12†
Ext-Oracle 70.08 35.35 62.82 87.92 0.38 0.25

Table 3.5: Summary informativeness in terms of ROUGE recall (R1-R, R2-R, RL-R),

BERTScore recall (BSc-R), and coverage in terms of Lite3Pyramid’s p2c, l3c, over the

test set of ARXIV. Best (top) and worst (bottom) FANGKVD systems are presented for

each memory capacity WM. (†,‡,§): no statistical difference between systems in the

same column. Best completely unsupervised systems are bolded.

Cnt-Exp (29.62) andNoTree (27.15), seem to capture fewer oracle propositions, although
they do not fall far away behind. Similar trends were observed inarXiv, for systemsSub-Cnt
(23.51), Deg-Cnt (23.49), and Lvl-Exp (23.11), followed by baselines Cnt-Cnt (21.28)
and NoTree (21.55).

In both datasets, scores from tree-informed systems (Sub-Exp, Deg-Exp, Lvl-Exp)
were found to be statistically different, pairwise, from scores from systems not informed by
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tree properties (Cnt-Exp, Cnt-Cnt, NoTree).

It is also worth noting that the proportion of oracle propositions captured by the systems
is low (23−30%). Preliminary experiments showed that, even though larger memory limit
setups capture a larger number of oracle propositions (around 70% for WM = 100), more
noise is also scored higher, hence making sentence selection harder.

3.4.3 LLM Agent Critique on Coverage

Next, we asked an LLM agent, specially fine-tuned to provide preference critiques, to judge
the coverage in candidate summaries w.r.t. reference summaries. We start our analysis with
results in both pairwise and single-response ranking, aggregated and averaged by system. Sys-
tem rankings in both setups were tested pairwise for statistical significance using a one-way
ANOVA (p < 0.01) with posthoc Tukey-HSD tests and 95% confidence interval. Finally,
we analyzed the distribution of coverage judgment categories to gain further insight into the
agent preferences in the pairwise setup.

Pairwise and Single-Response Ranking. Table 3.6 showcases the ranking results for
pairwise and single-response setups. In the pairwise setup, the difference in ranking scores
of systems Sub-Cnt[5], TextRank, PacSum, and NoTree was found statistically significant
from all other systems; as well as the difference between Sub-Exp[20] andLvl-Exp[100],
with all other pairs were found to be not significant. In the single-response setup, the differ-
ence between the following system pairs was found significant: (Sub-Cnt[5]-Lvl-Exp[100]),
(TextRank-Lvl-Exp[100]), as well as PacSum and NoTree against all other systems.

In PubMed, Auto-J preferred Sub-Cnt[5], with pairwise preference decreasing as WM
capacity increases. However, single-response ranking seems to increase with WM, a trend sim-
ilar to p2c and l3c which quantify coverage at the semantic triplet level. Note also that Tex-
tRank is ranked second to Sub-Cnt[5] in pairwise preference but at the same rank as the
least preferred FanKvD system in single-response ranking. Finally, baselines PacSum and
NoTree are significantly less preferred than FangKvD systems in both setups.

InarXiv, we find thatLvl-Exp[20] is slightly more preferred pairwise among FangKvD
systems, whereasLvl-Exp[50] is more preferred in the single-response setup. Again, single-
response ranking seems to correlate with coverage at the semantic triplet level. Note that
NoTree ranks better than TextRank in the pairwise setup and comparably in the single-
response setup. Moreover, both systems rank comparably to the least preferred FangKvD
system in the single setup. However, along with PacSum, these baselines are again less pre-
ferred than FangKvD systems in the pairwise setup.
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System
PubMed

System
arXiv

Pairwise↓ Single↑ Pairwise↓ Single↑

Sub-Cnt[5] 1.25(0.43) 3.71(0.57) Deg-Wgt[5] 1.23(0.42) 3.40(0.53)

Sub-Exp[20] 1.40(0.49) 3.68(0.63) Lvl-Exp[20] 1.22(0.42) 3.45(0.67)

Lvl-Exp[50] 1.42(0.49) 3.77(0.58) Cnt-Cnt[50] 1.23(0.42) 3.52(0.57)

Lvl-Exp[100] 1.45(0.50) 3.80(0.55) Lvl-Exp[100] 1.27(0.45) 3.33(0.62)

TextRank 1.31(0.46) 3.71(0.77) TextRank 1.68(0.47) 3.40(0.60)

PacSum 1.52(0.50) 2.76(0.68) PacSum 1.96(0.20) 3.28(0.80)

NoTree 1.82(0.38) 2.84(0.61) NoTree 1.65(0.48) 3.39(0.52)

Table 3.6: Preference ranking of content coverage by Auto-J when comparing system

summaries pairwise (Pairwise) and as standalone (Single) responses, for a subset of

the test set in PUBMED (left) and ARXIV (right). WM capacity is shown in squared brack-

ets, and standard deviation is shown in parentheses. (↑,↓): higher and lower is better,

respectively; best system in bold.

Pairwise Judgement Categories. To gain further insights into the critiques of Auto-J,
we analyzed the distribution of judgment categories, ‘Win’, ‘Tie’, and ‘Lose’, showcased in
Figure 3.3. On the one hand, in PubMed, we observed that all FangKvD systems have com-
parable win rates, although slightly decreasing asWM capacity increases. Notably,Sub-Cnt[5]
presents a significantly higher tie rate (and hence, a lower lose rate) than the other FangKvD
systems, indicating that WM capacity has a direct impact on the coverage of the extracted sum-
maries. This insight further adds evidence to our finding in the preceding sections, indicat-
ing that a lower WM capacity allows the system to keep less noise (potentially irrelevant in-
formation) in the memory tree. Note also that TextRank presents a similar distribution to
Sub-Cnt[5] but with a lower win rate.

On the other hand, inarXiv, we observed similar category distributions for all FangKvD
systems, with Lvl-Exp[100] showing a slightly lower win rate. Additionally, baselines Tex-
tRank and NoTree exhibit similar distributions, whereas PacSum shows an extremely low
win rate.

3.4.4 Human Evaluation and Error Analysis

Our Cloze QA evaluation obtained average accuracies of 72.78, 64.96, 62.58, and 57.87

(percentual points) for systems Oracle, Sub-Exp, NoTree, and PacSum, respectively.
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Figure 3.3: Distribution of coverage judgment categories (Win, Tie, and Lose) by Auto-J,

normalized by system, for pairwise response comparison in PUBMED (left) and ARXIV

(right).

All pairwise system comparison were found statistically significant using a one-way ANOVA
(p < 0.01) with posthoc Tukey-HSD tests and 95% confidence interval.

Regarding the error categorization, we found that, from a total of 1800 answers, 976

were exact matches, 110 were categorized as Synonymity, 74 as Specificity, 178 as In-
completeness, 307 as Incorrectness, and 155 as Not found, among all evaluated
systems.

Figure 3.4 provides a closer look into the distribution of answer categories per system.
This reveals that all systems obtain a comparable proportion of answers in Synonymity (be-
tween 5.5 and 6.4%) and Incompleteness (between 9.1 and 10.4%). Incorrect answers
are found to be high for NoTree (23.5%) and Sub-Exp (19.7%), followed by Oracle
(15.1%) and PacSum (9.7%). Most notably, we find that Sub-Exp obtains significantly
more Specificity answers (7.3%) than the closest system, NoTree (4%).

Two observations can be made from these results. First, we see that Oracle and Pac-
Sum are more reserved, precision-oriented systems given that they presented less non-exact-
match answers. However, PacSum summaries led to 103 empty or not-found answers,
hence the low accuracy of the system. In contrast, we find that Sub-Exp and NoTree
are more lenient, recall-oriented systems, given their higher number of non-exact-match an-
swers. However, NoTree summaries did not provide the appropriate content, hence the
higher number of incorrect answers.

Second, we observe that Sub-Exp summaries provided sentences with synonyms in the
same proportion asOracledid (6.4%) and led to fewer cases of incomplete content (9.1%).
In cases where sentences with the exact-match answer were not extracted, Sub-Exp provided
instead with less specific but relevant content, hence the higher number of Specificity
answers.
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Figure 3.4: Distribution of error categories in answers of human evaluation, aggregated

by evaluated system.

3.4.5 Summary Length Control

Next, we analysed the effectiveness of our Knapsack selector on controlling summary length
distribution. We compared the length distributions of FangKvD systems when using a
greedy selector against using our Knapsack selector.

Figure 3.5 presents the distribution of reference summaries and the best FangKvD con-
figurations at WM= 20 for each validation dataset. For PubMed, we show Sub-Exp and for
arXiv, Lvl-Exp. When using the Knapsack selector, summary lengths are heavily concen-
trated around the predefined budget, in both datasets. In contrast, summaries extracted by
a greedy selector exhibit lengths going way over the budget.

Furthermore, Table 3.5 presents the mean and standard deviation of these length dis-
tributions, as well as their corresponding informativeness performance in terms of average
ROUGE-F1 score. As mentioned before, previous work (Narayan et al., 2018b; Schumann
et al., 2020) pointed out that ROUGE scores are sensitive to summary length, with longer
summaries potentially inflating scores. Nevertheless, Narayan et al. (2018b) reported that
ROUGE-F1 is less sensitive to summary length, although its effect is still non-trivial. For
this reason, we opt for reporting F1 for this analysis instead of recall scores.5

The following insights can be drawn from these results. First, our Knapsack selector ex-
tracts summaries with a mean length much closer to that of the reference summaries and
with a much lower standard deviation, compared to the greedy selector, in both datasets.

5ROUGE recall is best for evaluation under fair comparison setups, e.g. when summary length is being
controlled for.
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Figure 3.5: Distribution of summary lengths (in number of tokens) in reference sum-

maries (Gold) and our best FANGKVD systems with WM= 20, extracted using our Knap-

sack selector (Knapsack) and a greedy selector (Greedy), for PUBMED (left) and ARXIV

(right) validation sets. The budget used is shown as a vertical red line.

Selector
PubMed arXiv

µ|S| σ|S| avg. R-F1 µ|S| σ|S| avg. R-F1

Gold 205.30 67.11 - 179.32 49.60 -

Greedy 224.61 20.46 28.76 208.04 22.86 29.45

Knapsack 199.34 8.16 28.69 185.47 16.25 28.68

Table 3.7: Performance of sentence selectors in terms of average ROUGE-F1 score

(avg. R-F1), as well as mean (µ|S|) and standard deviation (σ|S|) of the length distribu-

tions of their respective extracted summaries.

One immediate benefit from these properties is that ROUGE scores are much more reli-
able than scores obtained using a greedy selector. Second, the greedy selector obtains slightly
higher R-F1 scores (less than 0.8 points of difference). This can be attributed to the signifi-
cantly longer summaries it extracts, which ultimately inflates the ROUGE scores.

3.4.6 Qualitative Analysis

Finally, we present a qualitative analysis of system summaries to determine the extent they
cover summary content units in the corresponding gold summary. Figure 3.6 presents the
abstract (gold summary) of an article taken from PubMed, along with summaries extracted
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by TextRank, PacSum[SciBERT], and FangKvD system Sub-Expwith WM= 20. Each
system summary is presented along its respective ROUGE recall (R1-R and R2-R) and p2c

scores. Clauses covering the same gold summary content are coloured the same.

First, it is important to note that content coverage w.r.t. the reference summary is low
across all systems: roughly, content from over a quarter of reference sentences were covered
by any system summary, which could explain the rather low bigram coverage (R2-R) and
semantic triplet coverage (p2c) scores. Nevertheless, Sub-Exp exhibits the highest cover-
age among all systems, with 5 out of its 7 sentences covering content in the reference, com-
pared to a surprising 2/8 and 2/9 inTextRankandPacSum[SciBERT], respectively. The
higher content coverage of Sub-Exp is also reflected in its higher ROUGE-2 recall (R2-R)
and p2c scores. Upon closer inspection, we noticed that the extracted sentences are in close
vicinity of each other. This behaviour can be explained by the tendency of memory trees to
retain propositions reflecting the topic being discussed at certain point during the reading
simulation.

When comparingTextRankandPacSum[SciBERT], we observe the following. First,
both system summaries show relatively high unigram coverage (R1-R), even close toSub-Exp.
This can be attributed to their coverage of relevant tokens (e.g. ‘temperature’, ‘productiv-
ity’, ‘Nicaragua’) in otherwise less informative sentences. Second, although both summaries
seemingly show the same degree of coverage (two spans each), TextRank scores higher
ROUGE and p2c scores. We hypothesize that this difference is due to one content span
in TextRank (relationship between...,) having more lexical overlap with its correspondent
span in the reference (Heat stress also has...). In contrast, one content span in
PacSum[SciBERT] (This was part of a...) is found heavily rephrased int the reference (A

first assessment...). Such difference in metric values further highlights the limitations of cur-
rent automatic evaluation methodologies. Lastly, is it worth noting that these systems cover
similar topics, such as humidity information, recommendations, and the potential benefits
of implementing these recommendations. These topics, however, are not covered in the ref-
erence summary.

3.5 Summary

We considered the problem of content selection in unsupervised extractive summarization,
experimenting with long, structured documents–scientific articles in two datasets. We ex-
plored a wide variety of system configurations that exploit properties of tree structures of
content units as modeled by a psycho-linguistic model of reading comprehension, KvD
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(Kintsch and van Dijk, 1978). Our methodology included a specialized sentence selector
capable of maintaining summary length tight to a predefined budget, hence ensuring a fair
comparison at the system level. Results showed that systems leveraging tree properties, such
as node depth and size of subtree, perform better than systems using plain frequency counts
according to automatic metrics of informativeness and content coverage.

Furthermore, human evaluations and error analysis of human answers revealed that our
system preferred to provide less specific yet relevant content rather than content not relevant
at all, a behaviour confirmed by a thorough qualitative analysis.
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Gold
Background. Heat illness is a major cause of preventable morbidity worldwide. Workers exposed to intense heat can become unable
to activate compensation mechanisms, putting their health at risk. Heat stress also has a direct impact on production by causing poor
task performance and it increases the possibility of work-related morbidity and injuries. During the sugarcane harvest period, workers
are exposed to excessive sunlight and heat from approximately 6 am to 3 pm. A first assessment of heat stress during the 2006/2007
harvesting season served to redesign the existing rehydration measures. In this project, sugarcane workers were provided with more
rehydration solutions and water during their work schedule. Objective. To assess heat stress preventive measures in order to improve
existing rehydration strategies as a means of increasing productivity. Methods. A small group of 22 workers was followed up for 15
days during working hours, from 6 am to 3 pm. Selection criteria were defined: to have worked more than 50% of the day’s working
schedule and to have worked for at least 10 days of the follow-up period. A simple data recollection sheet was used. Information
regarding the amount of liquid intake was registered. Production output data were also registered. Temperature measurements were
recorded using a portable temperature monitoring device (EasyLog, model EL-USB-2). Results. The average temperature measure-
ments were above the Nicaraguan Ministry of Labour thresholds. Seven workers drank 78L of liquid, improving their production.
Output production increased significantly (p=0.005) among those best hydrated, from 5.5 to 8 tons of cut sugarcane per worker per
day. Conclusions. Productivity improved with the new rehydration measures. Awareness among workers concerning heat stress pre-
vention was increased.

TextRank (R1-R= 29.50, R2-R= 4.33, p2c = 0.13)
Historically, monitoring of toxins in the work environment has been the primary focus for identifying risks. However, the INETER
humidity data are quite different from the relative humidity registered on the farm located in western Managua. Temperature data
were not available at INETER’s website. Other authors have shown the relationship between heat stress health effects and the ability to
perform different tasks, as well as the increased risk of suffering work-related injuries (14). In this study, the workers drank more liquid
as temperature values increased to maximum peaks. Since dehydration reduces the capacity for absorption from the gut, workers
must be educated regarding the importance of drinking enough water during work and continuing generous rehydration during
off-duty hours (14). Certainly, more effort in terms of intervention strategies and scientific investigation needs to be carried out
among workers in Nicaragua who perform jobs in which they are exposed to high ambient temperatures. More funds should also
be designated by companies’ decision-makers for improving basic working conditions, in order to increase overall productivity (and
workers’ satisfaction in terms of better wages).

PacSum[SciBERT] (R1-R= 26.62, R2-R= 1.81, p2c = 0.04)
However, the INETER humidity data are quite different from the relative humidity registered on the farm located in western Man-
agua. Temperature data were not available at INETER’s website. In this study, the workers drank more liquid as temperature values
increased to maximum peaks. This was part of a rehydration process that was well planned in advance by the company’s decision-
makers. The basis of this principle is that drinking to satisfy thirst is not enough to keep a person well-hydrated. Some of the reasons
for this can be attributed to their low educational level, and feeling that nothing bad has ever happened to me before, etc. These
include farm workers, construction workers, miners, and fishermen, especially those employed in the informal sector, which occupies
about half of Nicaragua’s economically active population. More funds should also be designated by companies’ decision-makers for
improving basic working conditions, in order to increase overall productivity (and workers’ satisfaction in terms of better wages).
This would also translate into safer and healthier workers, less absenteeism from sick leave, fewer accidents, and other incidents.

FangKvD, Sub-Exp WM= 20 (R1-R= 30.22, R2-R= 6.50, p2c = 0.16)
Historically, monitoring of toxins in the work environment has been the primary focus for identifying risks. Some potential biomark-
ers linked to cell injury are immunological factors, lymphokines, growth factors, prostaglandins, endothelins, collagen, adhesion
molecules, thromboxanes, leukotrienes, platelet-activating factors, and heat shock proteins (10). As mentioned earlier, heat illness
is a major cause of preventable morbidity worldwide (1), and although human beings possess considerable ability to compensate for
naturally occurring heat stress, many occupational environments and/or physical activities expose workers to heat loads that are so
excessive as to threaten their health and productivity (11). Although only 22 subjects were followed up for a short period of time in this
study, important results were obtained. Other authors have shown the relationship between heat stress health effects and the ability
to perform different tasks, as well as the increased risk of suffering work-related injuries (14). In this study, the workers drank more
liquid as temperature values increased to maximum peaks. This was part of a rehydration process that was well planned in advance by
the company’s decision-makers.

Figure 3.6: Gold summary (abstract of the article) and summaries extracted by TEX-

TRANK, PACSUM[SCIBERT], and Sub-Exp with WM = 20, for an article taken from

PUBMED. Text spans mentioning the same content as the gold summary are colored

the same. Text was detokenized and truecased for ease of reading.



Chapter 4

Trade-off Control during Document

Understanding

Extractive summaries are usually presented as lists of sentences with no expected cohesion be-
tween them and with plenty of redundant information if not accounted for. In this chapter,
we investigate the trade-offs incurred when aiming to control for inter-sentential cohesion
and redundancy in extracted summaries, and their impact on their informativeness. As case
study, we focus on the summarization of long, highly redundant documents and consider
two optimization scenarios, reward-guided and with no supervision. In the reward-guided
scenario, we compare systems that control for redundancy and cohesion during sentence
scoring. In the unsupervised scenario, we introduce two systems that aim to control all three
properties –informativeness, redundancy, and cohesion– in a principled way. Both systems
employ novel implementations of the KvD theory that simulate how cohesion and non-
redundancy constraints are applied in short-term memory during reading. Extensive auto-
matic and human evaluations reveal that systems optimizing for –among other properties–
cohesion are capable of better organizing content in summaries compared to systems that op-
timize only for redundancy, while maintaining comparable informativeness. We find that the
proposed unsupervised systems manage to extract highly cohesive summaries across varying
levels of document redundancy, although sacrificing informativeness in the process. Finally,
we lay evidence as to how simulated cognitive processes impact the trade-off between the
analysed summary properties.

63
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4.1 Introduction

As discussed in Chapter 1, the task of automatic summarization can be divided into the fol-
lowing three general steps: (i) discretization of the information in the source document into
semantic content units and building a representation of these units, (ii) selection of content
units such that they are informative to the end-user and non-redundant among themselves;
and finally, (iii) production of a summary text that is coherent and cohesive. From the many
variations of the summarization task investigated in recent years (Litvak and Vanetik, 2017;
Shapira et al., 2017; Narayan et al., 2019; Xiao and Carenini, 2019; Amplayo et al., 2021), most
extractive summarization approaches choose sentences as the indivisible content unit, assign
a numerical score to each sentence, select a subset of them, and finally concatenate them into
a single text to be presented as the summary.

Even though recent advances in machine learning brought promising results –mostly in-
volving increasingly larger neural networks– in all stages of the summarization pipeline, core
challenges such as redundancy (Xiao and Carenini, 2020; Jia et al., 2021; Gu et al., 2022) re-
main critically open. Notably, Xiao and Carenini (2020) reported that modern extractive
summarization systems are prone to produce highly redundant excerpts when redundancy
is not explicitly accounted for. The problem becomes particularly acute when the source
document is highly redundant, i.e. information is repeated in many parts of the document.
Some examples of highly redundant documents include scientific articles, and in general,
long-structured documents. Consider the example in Figure 4.1 showcasing how informa-
tion is repeated across sections in a scientific article. Information redundancy is character-
istic of the writing style in scientific literature: the ‘Introduction’ section is expected to lay
down the research questions addressed in the paper, each of which will be elaborated upon
in the following sections, and the ‘Conclusion’ section (or equivalent) gathers insights and
summarizes the answers to each research question.

Another open challenge in summarization –and in open text generation in general– is
the production of coherent text (Sharma et al., 2019; Hua et al., 2021; Steen and Markert,
2022; Goyal et al., 2022). In particular, local coherence –the property by which a text con-
nects semantically similar content units between neighbouring sentences– has proven chal-
lenging to capture computationally (Moon et al., 2019; Jeon and Strube, 2020, 2022) and to
incorporate into the summarization task without sacrificing performance in other aspects
such as informativeness (Wu and Hu, 2018; Xu et al., 2020). When the connection between
adjacent sentences is not explicitly clued by linguistic units, humans resort to inference, the
cognitive process by which prior knowledge is incorporated in order to force a connection
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Introduction
Wolf Rayet (WR) stars are evolved, massive stars that are losing their mass rapidly through strong stellar winds (Conti, 1976).
In this scenario, hot, massive OB stars are considered to be the WR precursors that lose their external layers via stellar winds, leaving
exposed their He-burning nuclei and H-rich surfaces . . .
[At radio frequencies, the excess of emission is associated with the contribution of the free thermal emission coming from the ionized
and expanding envelope formed by the stellar wind]◦ . . .
In this chapter, we present [simultaneous, multi-frequency observations of a sample of 13 WR stars using the VLA at 4.8, 8.4, and
22.5 GHz]⋄, aimed at [disentangling the origin of their stellar wind radio emission through the analysis of their spectral index and
time variability by comparison with previous observations.]△
Observations
We performed [radio observations of a sample of 13 WR stars]⋄, listed in Table 1, [with the Very Large Array ( VLA )]⋄ of the National
Radio Astronomy Observatory (NRAO) . . .
Results
We observed a total of [13 WR stars]⋄ and [detected 12 of them at least at one frequency]• . . .
Summarizing, [we have found four T (...) , one NT (...) , and seven T/NT sources (...)]▽ . . .
as we mentioned in Section 1, [it is possible to estimate the free radiation emitted from ionized extended envelopes]◦ . . .
Discussion
[The results of our observations presented in Section 3 provide relevant information about the nature of the radio emission of the 12
detected WR stars]△ .
[The detected flux densities and spectral indices displayed by the sources of our sample indicate the existence of thermal, non-thermal
dominant, and composite spectrum sources]▽ . . .
Conclusions
We have presented [simultaneous, multi-frequency observations of 13 WR stars at 4.8, 8.4, and 23 GHz.]⋄
We have [detected 12 of the observed sources at least at one frequency]• . . .
[From the observed flux densities, spectral index determinations, and the comparison of our results with previous ones, we have
disentangled the nature of the emission in these WR stars]△ . . .

Figure 4.1: Sections of a scientific article taken from the ARXIV dataset showcasing

information redundancy and cohesion. Repeated content is marked by text chunks with

the same color and symbol, whilst consecutive sentences present cohesive phrases

underlined.

and make sense of a text. A special case of local coherence, cohesion, makes the connection be-
tween adjacent sentences explicit by means of cohesive ties (Hassan et al., 1976) such as word
repetitions, pronouns, anaphoric expressions, and conjunctions (Garrod and Sanford, 1977).
Psycholinguistic research has found that cohesion improves text comprehension –the build-
ing of a mental representation of content– especially when the subjects’ background knowl-
edge is insufficient to perform inference successfully (Kintsch, 1990; Garrod and Sanford,
1994). Critically, when human subjects were asked to read a document and write a summary
immediately after, higher cognitive demand during comprehension was found to severely
impact the cohesion and redundancy in the produced summaries (Lehto, 1996; Kintsch and
Walter Kintsch, 1998; Ushiro et al., 2013; Spirgel and Delaney, 2016).

In this chapter, we investigate the trade-offs automatic summarization systems incur on
when aiming to control for redundancy and cohesion in produced summaries, and the im-



66 Chapter 4. Trade-off Control during Document Understanding

pact on their informativeness. We focus on control strategies performed during sentence
scoring, resorting to greedy selection of the top-scoring sentences until a predefined budget
is met. We study the case of long, highly redundant documents from complex knowledge
domains –scientific articles collected from arXiv and PubMed (Cohan et al., 2018). Two
optimization scenarios are investigated, (i) when a specific summary property is optimized
for under a reinforcement learning (RL) setup, and (ii) when the summary property is mod-
eled through proxies in an unsupervised setup. The objective is to compare how properties
are learned and balanced when explicit property measures are provided during training vs
when no explicit measures are available.

In the RL setup, we compare systems that aim to balance informativeness and redun-
dancy, against those that balance informativeness and local coherence, in a cohesion setup
that goes beyond lexical cohesion ties. We build upon previous work that combines property-
specific rewards linearly (Xiao and Carenini, 2019; Wu and Hu, 2018) and propose a model
capable of combining a reward that encourages high ROUGE scores with a reward that en-
courages high local coherence.

In the unsupervised setup, we introduce two novel models that aim to control all three
properties –informativeness, redundancy, and local coherence –specifically, lexical cohesion.
These models implement the Micro-Macro Structure (KvD) theory of text comprehension
(Kintsch and van Dijk, 1978), which provides a principled way of discretizing content into
semantic units and organizing them in short and long-term memory. Similarly to Chap-
ter 3, reading is performed one sentence at a time in memory cycles, applying constraints to
a representation of working memory –a type of short-term memory– that explicitly model
relevancy, non-redundancy, and cohesion among content units. In each memory cycle, rel-
evancy is modeled by pruning working memory down to a fixed number of content units,
keeping only the most relevant units read so far; cohesion, by ensuring lexical overlap be-
tween units in memory; and non-redundancy, by discarding redundant units from memory.
Note that these models do not employ any reward signal and instead are completely unsu-
pervised.

In the reward-guided scenario, extensive automatic –both quantitative and qualitative–
evaluation revealed that systems optimizing for cohesion are better at organizing content
in the produced summaries, compared to systems only optimizing for informativeness or
redundancy. Moreover, cohesion-optimized models are able to obtain comparable –if not
better– informativeness and coverage levels. In the unsupervised scenario, we found that
simulated KvD reading is effective at balancing cohesion and redundancy during sentence
scoring, however at the expense of reduced informativeness. Most notably, the proposed
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KvD systems manage to extract highly cohesive summaries across increasing levels of doc-
ument redundancy. We corroborated our findings with two human evaluation campaigns
comparing our KvD systems against a strong unsupervised baseline that optimizes for cohe-
sion. In the first study, we found that participants find KvD summaries more informative
than summaries extracted with baselines based on node centrality, indicating the effective-
ness of constraining working memory to keep only the most relevant units, adding evidence
to our findings in Chapter 3. In the second study, annotators were able to identify signifi-
cantly more cohesive links connecting sentences in KvD summaries compared to the base-
lines, with KvD summaries also exhibiting a smooth topic transition between adjacent or
near-adjacent sentences. Finally, we lay extensive evidence as to how the simulated cognitive
processes impact the trade-off between informativeness, redundancy, and lexical cohesion in
final summaries.

The rest of the chapter is organized as follows. The problem formulation of the reward-
guided control scenario is presented in § 4.2, followed by that of the control strategies in
the unsupervised scenario in which we provide a detailed description of the KvD systems
proposed (§4.3). Lastly, Sections 4.4 and 4.5 describe our experimental setup and discuss
our results, respectively.

4.2 Reward-guided Control

In this section, we formulate the first scenario in which sentence scoring is guided by explicit
rewards that encourage informativeness, non-redundancy, and local coherence in candidate
summaries, in a reinforcement learning training setup. We posit the task of extractive sum-
marization as the task of scoring the sentences in a document followed by a selection step
in which an optimal set of sentences is chosen as the summary. The scoring step is formu-
lated as a sequence labeling task where each sentence in a document D= ⟨s0, ..,sk, ...,s|D|⟩
is labeled with yi ∈ {0,1}, indicating whether sentence si should be selected or not. A sum-
marization system M assigns score p(yi = 1 | si) indicating the preference in selecting si
according to a criteria modeled byM. Then, candidate summary Ŝ is obtained by concate-
nating the top-scoring sentences, selected greedily and with a predefined budget in number
of tokens. We focus on informativeness, non-redundancy, and local coherence, as preference
modeling criteria.

We build upon the model proposed by Xiao and Carenini (2020), consisting of an en-
coder that incorporates local and global context, a feed-forward layer as a decoder, and trained
with the Cross-Entropy loss (LCE) over the sequence labeling task outlined above. In the rest
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of this chapter, we refer to this supervised model as E.LG.

Then, we adapt previous work on reinforcement learning-based approaches that aim to
optimize for informativeness and either redundancy or local coherence. We define reward
rI, aimed at encouraging the selection of informative summaries (Dong et al., 2018), as

rI =
1
3

(
ROUGE-1+ROUGE-2+ROUGE-L

)
,

where ROUGE F1 scores are calculated using the reference summaries. Next, we provide de-
tails about the encoder modeling informativeness and define models employing policy gradi-
ent methods that maximize a reward function combining rI with redundancy or coherence-
aware rewards.

4.2.1 Informativeness Encoder

We employ the model proposed by (Xiao and Carenini, 2019) optimized to encode only in-
formativeness during sentence scoring. The model incorporates local and global informa-
tion by taking into account the document structure (e.g. section separation) and The model,
which we label E.LG in this chapter, consists of a document encoder and a decoder that clas-
sifies whether a sentence should be selected or not.

Document Encoder. Given document D = ⟨s0, ..,sk, ...,s|D|⟩, where si is a sequence
of tokens, sentence embedding hi, is defined as the average token embedding of its con-
stituent tokens. Then, global sentence representations are obtained using a bi-directional
RNN (Schuster and Paliwal, 1997) with GRU cells (Cho et al., 2014), i.e.hgi = [fi,bi], where
fi and bi are the forward and backward hidden state at step i, respectively. Moreover, let
d= [f|D|;b0] be the representation of the whole document.

The document structure is incorporated explicitly with section representations. Let D
bet organized in sections represented as a list of sentences, [[s0, ..,si], [si+1, ..,sj], [sj+1, ..sk]...],
the embedding of each section is defined as the difference of hidden states corresponding to
sentences in the section borders. For instance, the embedding of section [si+1, ..,sj] is de-
fined as l1 = [fj+1˘fi+1;bi+1 −bj].

Decoder. After obtaining sentence as well as global (the entire document) and local con-
text representations (sections), the decoder will combine them using attention, as follows.
Given document embedding d, sentence global embedding hgi , and section embedding lt,
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where si belongs to section t, the final sentence representation zi is obtained as follows,

edi = v
Ttanh(Wa[d;hgi ]),

eli = v
Ttanh(Wa[lt;h

g
i ]),

wdi =
edi

edi +e
l
i

,

wli =
eli

edi +e
l
i

,

ci =w
d
i d+w

l
ilt,

zi = [hgi ;ci], (4.1)

where vT ,Wa are weight parameters. Finally, the probability of selecting si is given by
p(yi = 1|si;θ) = σ(ReLU(Wozi)), where θ represents the model parameters and Wo

is a weight parameter.
The E.LG model just described is trained with the Cross-Entropy loss (CE) over the

sequence labeling task outlined at the beginning of this section.

4.2.2 Informativeness and Redundancy

We adapt MMR-Select+ (Xiao and Carenini, 2020), the strategy most capable of balanc-
ing informativeness and redundancy. Model E.LG is trained using a combined loss that aims
to minimize Cross Entropy loss and maximize the expected reward of greedily sampled sum-
mary Ŝ (Qian et al., 2019), defined as:

L= γR ·LR +(1−γR) ·LCE

LR =−(rI(Ŝ)− rI(S̄))
∑
si∈Ŝ

logp(yi | si)

where rI(S̄) is the informativeness of a baseline summary, used to improve convergence in a
self-critic fashion (Paulus et al., 2018). Baseline summary S̄ is extracted using greedy selection
directly over p(yi), whereas Ŝ is extracted greedily using redundancy-aware score pMMR:

pMMR(yi|si) = λR ·p(yi | si)−(1−λR) ·max
sj∈Ŝ

Sim(si,sj)

where Sim(si,sj) is the cosine similarity between embeddings of sentences si and sj and λR

controls the redundancy level in Ŝ. This scoring strategy is an extension of MMR (Carbonell
and Goldstein, 1998b) that aims to minimize semantic similarity between sentences in Ŝ. In
our experiments, we dub this model as E.LG-MMRSel+.
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4.2.3 Informativeness and Local Coherence

Building upon Wu and Hu (2018), we define a reward that combines informativeness and
local coherence, r = λLC · rI +(1− λLC) · rLC, where λLC controls the trade-off between
informativeness and coherence and rLC is the score assigned by the CCL classifier outlined
in § 2.3.3. Then, E.LG is trained using the REINFORCE algorithm (Williams, 1992) with
policy gradient:

∇L=−r(Ŝ)
∑
si∈Ŝ

∇ logp(yi | si)

where Ŝ is a candidate summary extracted greedily directly form p(yi | si). In our experi-
ments, we label this model as E.LG-CCL.

4.3 Cohesion Control through Memory Simulation

As mentioned in Chapter 2, the KvD theory provides a principled way to operationalize the
manipulation of content units during reading and is precise in many aspects of the simula-
tion, e.g. the nature and properties of memory trees.

In this section, two sentence scoring systems are introduced, TreeKvD and
GraphKvD, which at their core simulate human working memory during reading, accord-
ing to the KvD theory. We start by providing an overview of the implemented summariza-
tion pipeline. Then, we elaborate on the procedure used to build propositions from syntac-
tic structures automatically extracted from text. Finally, we present the proposed sentence
scoring systems in detail, discuss the design choices made, and complement the explanation
with a simulation example.

4.3.1 Pipeline Overview

The pipeline for sentence scoring is depicted in Figure 4.2. Input document D is consumed
one sentence at a time by the reading simulator. At each step, one memory cycle is executed
and the scores of the propositions in the working memory tree are updated. Once the doc-
ument has been completely read, the final score of propositions is aggregated into sentence
scores, which are then used to select the final summary.

Reading Simulation. The proposed KvD simulators model how content is moved
from working memory to long-term memory and vice versa. Working memory is represented
as a proposition tree, pruned at the end of each cycle in order to simulate short-term memory
limitations in humans. In contrast, long-term memory is represented as an undirected graph
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In healthy people, reactive oxidant species are controlled by 
a number of enzymatic and non- enzymatic antioxidants.

In patients with Cystic Fibrosis (CF) , deficiency of 
nonenzymatic antioxidants is linked to mal- absortion of 
lipid-soluble vitamins.

s1:

s2:

...

p1: in people(healthy)
p2: species(reactive)
p3: species(oxidant)

p4: are controlled(antioxidants,species, people)
p5: of(a number, antioxidants)

p6: antioxidants(enzymatic)
p7: antioxidants(non-enzimatic)

p8: with(in patients, Cystic Fibrosis)
p9: BE(Cystic Fibrosis,CF)

p10: of(deficiency, $7)
p11: is linked (deficiency, malabsortion, $8)

p12: of (malabsortion,vitamins)
p13: vitamins(lipid-soluble)

s1

s2

PropScore(1)(p2) = c(p2,T
(1))

PropScore(2)(p7) = PropScore
(1)(p7) +

                c(p7,T
(2))

Reading Simulation

Document D

Proposition Scores

Memory Cycle (x |D|)

p10

p11 p12

p7

p13

T(2): Memory Tree

Read s2

Update scores of
propositions in T(2)

Cycle 1
Cycle 2

Sentence Scoring

PropScore|D|(p1)

SentScore(s1)

SentScore(s2)

Figure 4.2: Pipeline of KvD reading simulation and sentence scoring for simulation

example in Fig.2.1.

of propositions populated by nodes demoted from working memory as reading progresses.
The outline of the the simulation procedure is presented in Algorithm 4.1. The algo-

rithm consumes a document D= ⟨s0, . . . ,sk, . . . ,s|D|⟩ iteratively in memory cycles, updat-
ing working memory and long-term memory in each cycle. At the beginning of cycle k, the
algorithm reads sentence sk, extracts its proposition tree Pk (Line 6), and attaches it to the
current memory tree T (Line 7). The resulting tree is pruned to a constant size (Line 10) in
order to simulate human memory constraints, and pruned nodes are added to the long-term
memory graphG. Then, the score of proposition t in cycle k (Line 11) is updated to

PropScorek(t) = PropScorek−1(t)+c(t,T),∀t ∈ T , (4.2)

where c(t,T) quantifies the relevance of proposition t by taking into account its position
in T . We generalize the idea of reproduction probability in § 2.2.3 by incrementally scor-
ing propositions based on how often they appeared in memory trees and in which part of
said trees they were attached. Then, simulation continues to the next cycle until all sen-
tences in D are consumed. The specific behavior of subroutines getPropositionTree,
attachPropositions, memorySelect, andupdateScore is instantiated byTreeKvD
and GraphKvD and their details will be elaborated upon in the following parts of this sec-
tion.

Sentence Scoring. Once the document has been completely read, the final score of
propositionp is PropScore(p) = PropScore|D|(p). We define the score of sentence sk as the
sum of the score of all its composing propositions as
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Algorithm 4.1 KvD reading simulation. Subroutines getPropositionTree,

attachPropositions, memorySelect and updateScore are instantiated by
TreeKvD and GraphKvD.
Require: D, source document as a list of sentences
Require: WM, size of working memory
Require: Ψ, maximum tree persistence

1: procedure runSimulationKvD(D,WM,Ψ)
2: T ←∅ ▷ Memory tree, initially empty
3: G←∅ ▷ Long-term memory, initially empty
4: ψ← 0 ▷ Tree persistance counter
5: for sk ∈D do
6: Pk← getPropositionTree(sk)
7: T ,attached← attachPropositions(Pk,T ,G)
8: if attached then
9: adjustRoot(T )

10: memorySelect(WM,T )
11: updateScore(T )
12: ψ← 0

13: else
14: ψ←ψ+1

15: if ψ= Ψ then
16: T ←∅

SentScore(sk) =
∑

p∈V[Pk]
PropScore(p), (4.3)

where V[Pk] is the set of nodes in proposition tree Pk extracted from sk.
Sentence Selection. We resort to a greedy selection strategy, i.e. selecting the top-scoring

sentences according to Eq. 4.3 until the budget of B tokens is met.

4.3.2 Proposition Building

Propositions are obtained by recursively merging and rearranging nodes in dependency trees,
extending the procedure outlined in § 3.2.2. Given sentence s = ⟨w0,w1, ...,wN⟩ and its
corresponding dependency treeQwith nodes {q0, ..,qN},1 the objective is to obtain propo-
sition tree P with nodes {p0, ...,pM},M⩽N, as follows.

First, we merge dependent nodes into head nodes inQ in a bottom-up fashion. Given
u,v ∈Qwhereu is head of v, operation merge(u,v) adds all tokens contained in v to node
u and transplants children(v) –if any– to children(u). Let dep(u,v) be the grammatical

1We follow Universal Dependencies (Nivre et al., 2017), a dependency grammar formalism.
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relation between u and v, dependant v is merged into head u if and only if

• Node u is a nominal or non-core dependant of a clausal predicate and v is a function
word or a discourse modifier (e.g. interjections or non-adverbial discourse markers).

• Nodeu is any kind of dependant of a clausal predicate andv is a single-token modifier.

• Nodes u and v form part of a multi-word expression or a wrongly separated token
(e.g. dep(u,v) = goeswith).

Consider the example in Figure 4.3. Starting from dependency tree Q (Fig. 4.3a), single-
token modifiers are collapsed into their head nodes (e.g. merge(model,this) and
merge(galaxy,of)), and compound phrases are joint (e.g. merge(formation,galaxy)).

Second, we promote coordinating conjunctions to head status as follows. Given u,v ∈
Q, let v be a node with relation cc among children or grandchildren of u. We transplant
node v to u’s position and put u and all its children with relation conj as children of v. In
our example (Fig. 4.3.b), node ‘and’ is promoted and nodes ‘galaxy formation’ and ‘the
star burst’ are transplanted as its children. Note that at this point in the procedureQ is
still a tree (Fig. 4.3.c) but its nodes might now contain more than one token.

Then, for each non-leafu∈Qwe build propositionp=wu(argv0
,argv1

, ...), wherewu
is the sequence of tokens contained in nodeu and vi ∈ children(u). We set argvi =wvi if v
is a leaf node, otherwise argvi is a pointer to the proposition obtained from vi. For instance,
proposition 3 in Fig. 4.3.d, and(galaxy formation,$4), presents proposition 4 as one
of its arguments since node ‘the start burst’, from which proposition 4 is derived, is
not a leaf.

Finally, edges between nodes inQ are used to connect their corresponding propositions
and form proposition treeP, and we say that two propositions are connected if one proposi-
tion has among its arguments a pointer to the other proposition. For instance, proposition
1 in Fig. 4.3.d points to propositions 2 and 3 and hence, they are connected in P.

Under this procedure, connection among propositions in the same sentence takes a syn-
tactic nature. However, propositions from different sentences –and hence different propo-
sition trees– can still be connected if the lexical overlap amongst their arguments is strong
enough. Next, we define connection through proposition overlap and how it is quantified.

Proposition Overlap. Differently to the overlap strategy outlined in § 3.2.2 forFangKvD,
in this section we present a simplified procedure that does not rely on external linguistic re-
sources. We connect propositions from different sentences by quantifying the lexical over-
lap between their functors –predicates and arguments. Let functors(p) be the set of the
functors –predicate and arguments– in proposition p. Given p1 ∈ Px and p2 ∈ Py, let
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Input: ‘This semi - analytical model predicts galaxy formation and the star burst of galaxies’

<ROOT>

predicts

model

this

semi -

analytical

formation

galaxy burst

and the galaxies

of

root

nsubj

amod

punctamod

det

obj

compound

star
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cc det compound nmod

case

predicts

this model

semi - analytical

galaxy formation

the star burst

and of galaxies

conj

cc

predicts

this model

semi - analytical galaxy formation the star burst

and

of galaxies

1

2

4

3

1: predicts($2, $3)

2: this model(semi - analytical)

3: and(galaxy formation, $4)

4: the star burst(of galaxies)

(a) (b)

(c) (d)

Figure 4.3: Step-by-step construction of proposition tree from an input sentence, start-

ing from obtaining its dependency tree in UD format (a), merging dependent nodes into

head nodes (b), promoting coordinating conjunctions to head status (c), to finally build

propositions from non-leaf nodes (d).

A∗(p1,p2) be the optimal alignment between functors(p1) and functors(p2). Alignment
A∗ is defined as the maximum matching that can be obtained greedily in the weighted bi-
partite graph formed from sets functors(p1) and functors(p2). The edge weight between
two functors is defined as e(a,b) = jaccard(La,Lb), the Jaccard similarity between their
sets of lemmas after discarding stopwords, punctuation, and adjectives –La and Lb. Then,
the average overlap score between p1 and p2,ϕ(p1,p2), is defined as:

ϕ(p1,p2) =
1

|A∗|

∑
⟨a1,a2⟩∈A∗

jaccard(a1,a2). (4.4)

This overlap score function becomes useful when searching an appropriate place to attach
incoming propositions to the current memory tree or to pull propositions from long-term
memory. We elaborate more on this in the next section.
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4.3.3 TreeKvD

In this part, we introduceTreeKvD, the first sentence scoring system simulating KvD read-
ing. The system models working memory and long-term memory as two separate weighted
undirected graphs where each node represents a proposition and an edge connecting two
propositions indicates the existence of overlap between their arguments, with the edge weight
quantifying this overlap. Furthermore, working memory is constrained to be a tree, whereas
long-term memory is modeled as a forest of trees pruned from memory trees during simu-
lation. Let sk be the sentence read in cycle k, T the working memory tree at the beginning
of the cycle, with node set V[T ] and edge set E[T ]. Similarly, let G be the long-term mem-
ory graph with V[G] and E[G] as node and edge set, respectively. We now elaborate on the
details of each step of the TreeKvD’s implementation of Algorithm 4.1.

Extracting and Attaching Incoming Nodes. First, subroutinegetPropositionTree
(Line 6) receives sk as input (as a sequence of tokens) and returns its corresponding propo-
sition tree Pk following the procedure presented in section 4.3.2.

Then, subroutine attachPropositions (Line 7) attempts to attachPk to T , receiving
as input structuresPk, T , andG, and returning the updated tree T along with flag attached
to indicate whether T was modified or not. The attachment of Pk to T and proceeds as fol-
lows. We define the optimal place to attachPk to T as the pair (t∗,p∗)where t∗ ∈V[T ],p∗ ∈
V[Pk] such that

(t∗,p∗) = argmax
t∈V[T ],p∈V[Pk]

ϕ(t,p), (4.5)

where ϕ(·) is the proposition overlap function defined in Equation 4.4. In case that no
attachment pair can be found, i.e.ϕ(t,p) = 0,∀t ∈ V[T ]∧∀p ∈ V[Pk],
attachPropositions resorts to two cascaded backup plans.

As first backup attachment plan, the procedure recalls a path of forgotten propositions
from long-term memoryG to serve as bridge to connect Pk and T . Let F(R) be the set of all
paths of length at mostR inG, we define the optimal attachment place aided by f ∈ F as the
tuple (t∗, f∗,p∗), such that

(t∗, f∗,p∗) = argmax
t∈V[T ],p∈V[Pk],f∈F(R)

ϕ(t,f1)+
n∑
i=2

ϕ(fi−1,fi)+ϕ(fn,p),

where f = ⟨f1, ...,fn⟩,fi ∈ V[G]∧n ⩽ R. In this way, Pk is attached to T by retrieving a
path f∗ fromG with at most R forgotten nodes that maximizes argument overlap between
placement candidates t∗ and p∗.

In case that no suitable recall path can be found (total overlap score is still zero), proce-
dureattachPropositions resorts to a second backup attachment strategy, which consists
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of deciding whether to keep T as memory tree during the current cycle or whether to replace
it completely with Pk. Among both trees, we keep the one whose root node presents the
highest closeness centrality. The closeness centrality of a node in an undirected graph is de-
fined as the inverse of the sum of all shortest paths from said node to all other nodes in the
graph. As we will discuss in the root adjustment section, a root closer to all other nodes is an
indication of a well-balanced tree and allows for efficient pruning, hence a desirable property.
In case T is not replaced, the procedure returns flag attached as False.

Now consider the case when attachPropositions fails to attach propositions to T
for more than one consecutive cycle. We name this phenomenon tree persistence. A highly
persistent tree is undesirable since it can potentially block important connections between
more recently read propositions. In order to avoid this scenario, we reset the memory tree
(line 16 in Algorithm 4.1) if its persistence reaches the maximum permissible value, Ψ. Fur-
thermore, we avoid over-scoring nodes in persistent trees by only updating their score if any
form of attachment took place (Line 8).

Choosing and Adjusting the Root. After attachment takes place, subroutine
adjustRoot will select the most appropriate node in the updated T as the root (Line 9).
An important property of working memory trees in the KvD theory is that the root conveys
the most central topic at the time of reading. We build upon Fang (2019) criteria and model
this property by selecting the node that presents the highest closeness centrality as the root.
Such a root would facilitate reaching all nodes in the least amount of steps –in average–, a
desired property during pruning.

Pruning Working Memory. Next, subroutine memorySelect (Line 10) receives as
input memory capacity parameter WM and memory tree T , and proceeds to select at most WM
nodes from T in the following manner. Starting from the root, T is traversed in topological
order until reaching a leaf node, selecting each node visited along the way. At this point, if
the amount of select nodes is less than WM, nodes are selected in breath-first traversing order
(starting from the root) until capacity is reached or until all nodes are traversed. Finally,
nodes not selected are pruned from T and moved toG.

Proposition Scoring. Following Eq. 4.2, reproduced here for convenience, the score of
propositions is updated as

PropScorek(t) = PropScorek−1(t)+c(t,T),∀t ∈ T ,

in which subroutine updateScore (Line 11) defines the updating term c(·) as

c(t,T) =
|Tt|

|T |
exp

(
1

depth(t)

)
, (4.6)
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where depth(t) is the depth of node twith respect to the root and |Tt| is the size of the subtree
rooted in t. In this way, nodes closer to the root as well as nodes holding more information
in their subtree are scored higher.

Limitations. The presented system closely follows mechanisms of memory organiza-
tion theorized by (Kintsch and van Dijk, 1978). As such, the system presents a number of
processing limitations inherent to the KvD theory itself which we now elaborate on.

First, the constrained amount of content units in working memory at any given time
poses a limitation to how much information the system has access to when updating the
score of memory tree nodes. It is entirely possible that some propositions are pruned away
and never recalled again, in which case their score will be zero.

Second, Kintsch and van Dijk (1978) define the recall mechanism as a routine capable of
pulling an unlimited number of propositions from long-term memory. Additionally, propo-
sitions might not be recalled verbatim but simplified, given that the difficulty to recall spe-
cific details increases over time (Postman and Phillips, 1965). In system TreeKvD, we limit
ourselves to recall previously read propositions verbatim and further limiting the maximum
number of propositions to recall. This design choice limits the possibility of recalling im-
portant propositions back into working memory.

Third, attachment of an incoming proposition tree to the current memory tree is done
by connecting one node in memory tree to one node in the incoming tree. Whilst this strat-
egy guarantees that the resulting structure remains a tree, as KvD requires, many potentially
useful connections are ignored. We address these limitations in the design of the next system.

4.3.4 GraphKvD

The second proposed system, GraphKvD, considers instead a single underlying structure
for long-term memory and short-term memory. Working memory is modeled as a subgraph
of long-term memory that preserves properties of KvD micro-structure, i.e. a tree with con-
strained size. Such modeling of memory modules allows for richer connections between
incoming proposition trees and working memory, in addition to giving the system efficient
access to nodes neighboring memory tree nodes, significantly increasing the coverage of con-
tent during scoring. We now proceed to elaborate on how GraphKvD instantiates Algo-
rithm 4.1.

Extracting and Attaching Incoming Nodes. In the same fashion as in TreeKvD,
procedure getPropositionTree extracts Pk from incoming sentence sk (line 6). Then,
procedure attachPropositionswill first attempt to connectPk to T directly, falling back
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to two cascaded strategies if unsuccessful.

In contrast with TreeKvD, all nodes inPk are allowed to connect to T . Hence, for each
p ∈ V[Pk], its optimal place to be attached to T is node t∗ = argmaxt∈V[T ]ϕ(t,p), where
ϕ(·) is again the proposition overlap function defined in Equation 4.4. In case no node in
Pk could be connected to any node in T , attachPropositions employs again two backup
plans. Note that these plans are not triggered if at least one node in Pk was connected to T .

The first plan consists of a recall mechanism that retrieves paths fromG connecting each
node in Pk to each node in T . For each node p ∈ V[Pk], its the optimal attachment place
t∗ ∈ V[T ] aided by path f∗ = ⟨f1, ...,fn⟩, fi ∈ V[G]∧n⩽ R, is defined as

(t∗, f∗) = argmax
t∈V[T ],f⊂G

ϕ(f1,t)+c(t,T)

 |f|∑
i=2

ϕ(fi−1, f̂i)

exp(−|f|)+ϕ(fn,p).

Note that GraphKvD defines the optimal attachment place differently from TreeKvD in
two respects. First, GraphKvD explicitly favours the attachment of recall paths to highly
relevant nodes inT , i.e. highc(·) value. This encourages the memory tree to expand on infor-
mation about relevant content rather than non-relevant ones. Second,GraphKvD includes
an exponential decay length penalty (exp(−|f|)) to favour the retrieval of shorter recall paths.
This penalty is inspired by recent research on how content is gradually forgotten (‘decays’)
in human memory and becomes harder to retrieve (Berman et al., 2009), an idea also applied
in the optimization of neural networks (Loshchilov and Hutter, 2019). In this way, we avoid
populating T with long proposition chains that may contain only marginally relevant and
potentially redundant information. Moreover, this approach aims to save memory capacity
for other potentially informative attachments.

As second backup plan, procedure attachPropositions will replace T with Pk if
|V[Pk]| > |V[T ]| and the closeness centrality of the root of Pk is greater than that of the
root of T . T will also be replaced if the tree persistence has reached its allowed limit,ψ= Ψ.
In case Pk is chosen, we enrich it by retrieving single nodes from G and connecting them
to P, in a similar fashion to the construction stage in the Construction-Integration theory of
comprehension (Kintsch, 1988). For each nodep∈V[Pk], we retrieve candidate nodes in the
following order. First, nodes from the local context, i.e. from the current paragraph or arti-
cle section, are retrieved. Then, nodes are retrieved in inverse order of processing recency, i.e.
propositions from sentences processed at the beginning of the simulation are retrieved first.
For each node, searching stops when the argument overlap score of a candidate is greater
than zero.2

2Experimentally, increasing this threshold does not impact downstream performance significantly.
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This particular retrieval order follows free recall accuracy in human subjects (Glanzer,
1972).3 The tendency to accurately recall the first processed items is known as the priming

effect (Harley, 1995), and is said to depend on long-term memory. Instead, the tendency to
accurately recall the most recent items is called the recency effect, and it depends on short-term
memory.

Updating Memory Structures. After attachment, long-term memory graphG is up-
dated with nodes and edges in T . Note that after executing the attachment procedures de-
scribed above, the updated memory graph T might no longer be a tree. However, as men-
tioned before, the KvD theory models that a valid working memory structure as a tree.
Hence, we reduce T to its maximum spanning tree using the argument overlap score be-
tween propositions as edge weights. Similarly to TreeKvD, the node with maximum close-
ness score is chosen as new root. Then, T is pruned down to have at most WM nodes using the
same strategy as in Section 4.3.3.

Proposition Scoring. The score of nodes in working memoryT is updated according to
Eq. 4.2 and Eq.4.6. However, GraphKvD will also update the score of nodes neighboring
those in T . In this way, propositions that contribute to the understanding of nodes in T are
reinforced, and the more a proposition is selected the more its connections are updated. For
each node t ∈ V[T ], we define

N(t) = {u;u ∈ V[G]\V[T ], s.t. (u,v) ∈ E[G]}

the set of nodes neighboring t located inG. Then, the updated score of neighbor nodeu is:

PropScorek(u) = PropScorek−1(u)+β ·c(t,T),∀u ∈N(t) (4.7)

where β < 1 is a decay factor. The consideration of neighboring nodes and a decayed scor-
ing strategy follows the integration and spreading processing proposed in the Construction-
Integration theory. The objective is to integrate peripheral or related concepts into the mem-
ory cycle and spread minimal attentional resources to them in the form of score value, where
parameter β controls how much attention is leaked.

4.3.5 Simulation Example

Next, we illustrate the procedures outlined in previous sections with an example, showcased
in Figure 4.4. The example takes two sentences from a scientific article and simulates two

3Free recall is a technique used in psycholingusitic studies of human memory in which a subject is presented
with a string of items and is free to recall them in any order; in contrast, serial recall requires the subject to recall
the items in order.
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memory cycles with TreeKvD (left) and GraphKvD (right). The propositions involved
(middle row) in the cycles are presented alongside the corresponding gold summary (bottom
row). Propositions not directly mentioned in the simulation but necessary for content in-
terpretation are showed in italic. First, we analyse the processes involved during attachment
in a memory cycle, including how recall mechanism operates. Then, we relate the properties
a memory tree should exhibit according to the KvD theory, and the properties of memory
trees obtained with TreeKvD and GraphKvD.

Memory Cycles. In cycle k, both systems manage to attach the incoming proposition
tree P directly to the current memory tree Tk−1, with such connections illustrated as red
dotted lines in Figure 4.4. Notice that TreeKvD is allowed to make only one connection
(79 7→ 81) so that the resulting structure, T ′, remains a tree. In contrast, GraphKvD is
allowed to connect each node in P back to Tk−1 (e.g. 84 7→ 79, 85 7→ 71), which results in
structure G ′, an undirected weighted graph. After choosing the new root (node 81), the
retention process (function memorySelect) selects the new memory tree Tk.

In the next cycle, k+ 1, the incoming P cannot be attached directly to Tk and hence,
the recalled mechanism is used. TreeKvD recalls a 3-node path to connect node 88 to 81,
linking information about proposed models (‘models for turbulence’ in 81) to methodology
(‘scaling methods’ in 25,24,21) and hypothesis exploration (‘we try to see if these suggest’ in
88). In contrast, GraphKvD recalls a single node linking the studied phenomenon (‘MHD

turbulence’ in 81) to its properties of interest (‘such relations’ in 79, making reference to
information in 75) and to the specific property being studied (‘bridge relations’ in 90).

Properties of Memory Trees. Properties of memory structures at the micro level, as
discussed in Section 2.2.4, have the potential to greatly influence the level of lexical cohe-
sion and redundancy in output summaries, in addition to identifying relevant content to be
included. We now elaborate on how this influence manifests in our example.

First, regarding lexical cohesion, a connected memory tree is evidence that content units
currently held in memory are not a disjoint set of mutually exclusive concepts but a set that
can be interpreted in a coherent manner. For instance, the content in Tk−1 could be verbal-
ized in the following manner:

We examine dynamic multiscaling...in a shell model for 3D MHD [71,72] and
scalar turbulence [80]. Dynamic multiscaling exponents are related by linear
bridge relations to equal-time multiscaling exponents [75]. We have not been able
to find such relations for MHD turbulence so far [77,78,79].

where the propositions used to verbalize each phrase or sentence are indicated inside square
brackets. As can be seen, the text above reads smoothly and exhibits an acceptable level of



4.3. Cohesion Control through Memory Simulation 81

Cycle k : ‘Therefore, we obtain equal-time and time-dependent structure functions for a shell model for 3D
MHD turbulence and, from these, equal-time and dynamic multiscaling exponents. ’

71

80

77 78 79 81 82 83
84 86 85 87

81 84 86 85 87

71

80

77 78 79 81 82 83
84 86 85 87

T ′ = aP( Tk−1 , P ,F)

Tk =

TreeKvD GraphKvD

81 84 86 85 87Tk =

G ′ = aP( Tk−1 , P ,G)

Cycle k+1: ‘We then try to see if these suggest any bridge relations. ’

81 84 86 85 87 88 89 90

25 81 84 86 85

T ′ = aP( Tk , P ,F)

TreeKvD GraphKvD

81 84 86 85 87

G ′ = aP( Tk , P ,G)

25 24 21

Tk+1 =

81 84 86 85 87 88 89 90
79

Tk+1 =

Propositions
24: must be generalized(that, $21, $25)
21: the simple scaling($22)
22: see(we, at most critical points)
25: to multiscaling(in turbulence)
71: behooves(therefore, it, us, $72, $75, $77)
72: to examine first the dynamic multiscaling(of structure functions,
$73)
73: in a shell model for MHD(three dimensional, 3D MHD)
75: are related(dynamic multiscaling exponents, by linear bridge re-
lations to equal time multiscaling exponents)
77: have not been able(we, $78)

78: to find($79, so far)
79: such relations(for MHD turbulence)
80: and($71; scalar turbulence)
81: obtain(therefore, we, $82, $84)
82: and(equal time, $83)
83: time _dependent structure functions(for a shell model)
84: for 3D MHD turbulence from these(and, $86)
85: equal time (dynamic, $87)
86: and($85)
87: multiscaling(exponents)
88: try(then, we, $89)
89: to see($90)
90: suggest(if, these, any bridge relations)

Gold Summary
We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic
Magnetohydrodynamic (MHD) turbulence in three dimensions . We generalize the formalism that has been developed for analogous
studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-
dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling
exponents .

Figure 4.4: Simulation example showcasing input sentence, propositions, and memory

tree, per cycle. Common content between propositions and the gold summary is shown

in blue. Solid line: edge in final memory tree; dotted line: pruned edge; red dotted

line: edge connecting T and P. Squared nodes: propositions recalled from long-term

memory; underlined node: new root of tree. aP: attachPropositions (Alg. 4.1).
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lexical cohesion and co-referential coherence. By updating the score of a set of propositions
capable of forming a coherent text, a KvD system encourages the similar ranking of mutu-
ally coherent propositions. Hence, a content selector is also encouraged to select a set of
sentences exhibiting a non-trivial level of lexical cohesion.

A similar reasoning can be applied to explain the influence of memory simulation over
redundancy in output summaries. As claimed in Section 2.2.4, a memory tree constitutes
a non-redundant set of propositions, with each proposition adding details of an entity or
topic shared with the propositions it is connected to. For instance, node 81 adds infor-
mation about ‘MHD turbulence’ to Tk−1 when connected to node 79. Moreover, when
the recall mechanism is used in cycle k+ 1, only one recall path is added to Tk (25,24,21

in TreeKvD and 79 in GraphKvD) instead of many potentially redundant recall paths.
Hence, by updating the score of a minimally redundant set of propositions in each cycle, a
KvD system encourages non-redundant content to be ranked closely and by extension, the
content selector is encouraged to select sentences with an acceptable level of redundancy.

Finally, memory trees are capable of identifying and ranking relevant propositions, hence
encouraging a selector to pick sentences with relevant content. In our example, we observe
that both TreeKvD and GraphKvD retain propositions 81, 84, 85, 86 in Tk and Tk+1.
These propositions cover information directly mentioned in the gold summary, coloured in
blue in Figure 4.4.

4.4 Experimental Setup

In this section we present the experimental setup for assessing the trade-off between infor-
mativeness, redundancy, and cohesion, under the two control scenarios defined in previous
sections, reward-guided and unsupervised. We evaluate our models on the task of extrac-
tive summarization of scientific articles and define appropriate automatic evaluation met-
rics to capture the analyzed summary properties. Moreover, we design two human evalua-
tion campaigns aimed to quantify the perceived informativeness and cohesion of summaries
produced by the proposed unsupervised systems, TreeKvD and GraphKvD. In the fol-
lowing, we elaborate on the datasets used and the preprocessing employed, the comparison
systems, and the setup for automatic and human evaluation.

4.4.1 Datasets

We used PubMed and arXiv datasets (Cohan et al., 2018), consisting of scientific articles
in English in the Biomedical and Computer Science, Physics domains, respectively. For each
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article, the source document is defined as the concatenation of all section texts, and the ab-
stract is used as reference summary. We further preprocessed both datasets after noticing
substantial sentence tokenization errors and pollution of latex code. Similar to the previous
chapter, articles with abstracts with less than 50 tokens and more than 300 tokens were dis-
carded, as well as articles with documents with less than 100 tokens. Sentences are capped to
200 tokens, and sentences with more than 3 latex code keywords (e.g. usepackage, document-

class) and less than 5 tokens are ignored. Following previous work (Xiao and Carenini, 2020;
Gu et al., 2022), we use a budget of B= 200 tokens for both arXiv and PubMed.

4.4.2 Comparison Systems

In addition to the discussed and proposed models, we report results on a range of standard
heuristic and unsupervised baseline systems. As heuristic baselines we include the follow-
ing: extractive oracle, Ext-Oracle, which consists on greedily selecting a set of sentences
that maximize the sum of ROUGE-1 and ROUGE-2 F1 scores w.r.t. the reference summary;
Lead, selecting the leading sentences of a document until the budget is met; and Random,
randomly sampling sentences following a uniform distribution. Next, we elaborate on the
training details and hyper-parameter configuration of our reward-based and unsupervised
systems.

Supervised and Reinforcement Learning Systems. We report performance of E.LG
as a reference for an informativeness-oriented baseline, and use the checkpoints provided
by Xiao and Carenini (2020). For redundancy-oriented model E.LG-MMRSel+, we use
the default hyper-parameter configuration (Xiao and Carenini, 2020) and set λR = 0.6,
γR = 0.99. For local coherence-oriented model E.LG-CCL, we tune λLC over validation
sets and set it to λLC = 0.2. Both models were trained using Adam optimizer (Loshchilov
and Hutter, 2019), batch size of 32, learning rate of 10−7, and trained for 20 epochs, with
the best checkpoint selected based on the sum of ROUGE-1 and ROUGE-2 F1 scores.

In addition, we compare against MemSum (Gu et al., 2022), a model that employs a
multi-step episodic Markov decision process that samples a candidate summary sentence
by sentence instead of sampling the complete summary via a single action (Narayan et al.,
2018b; Dong et al., 2018). Crucially, MemSum incorporates an extraction history module
that informs the agent about the information already selected and hence, minimize redun-
dancy in the final summary. Although the model is trained to produce a stop action, we stop
extraction once the budget is met in order to have a fairer comparison with other baselines
in terms of summary length.
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Finally, similarly to the previous chapter, we do not include supervised baselines that
require the calculation of coreference chains or rhetorical structure trees over the input doc-
ument, such as DiscoBERT (Xu et al., 2020), because of their limited applicability in out-
of-domain scenarios and their inability to process documents of the length analyzed in this
chapter.

Unsupervised Systems. For the proposed KvD systems, we perform hyper-parameter
tuning over the validation sets, and set the maximum recall path lengthR= 5, maximum tree
persistenceΨ= 8, working memory capacityWM= 100 for bothTreeKvDandGraphKvD.
For proposition scoring inGraphKvD, decay factor is set toβ= 0.01. During proposition
building, we use UDPipe 2.0 (Straka, 2018) to extract dependency trees.

Similarly to the experimental setup in Chapter 3, we differentiate between completely

unsupervised systems and unsupervised systems that require some form of finetuning using
data in the target knowledge domain, the latter being marked with (*). Regarding completely
unsupervised systems, we compare against TextRank (Mihalcea and Tarau, 2004) and Pac-
Sum (Zheng and Lapata, 2019) with a SciBERT sentence embedder. These systems model
a document as a graph of sentences and employ node centrality (eigen-vector and weighted
degree centrality, respectively) as a proxy for informativeness. As a non-completely unsu-
pervised system, we report results for PacSum-FT∗, finetuned over a sample of 1000 docu-
ments following the procedure therein. For more details about these systems, please refer to
§ 3.3.

Moreover, we investigate the appropriateness of constraining the size of working mem-
ory during KvD simulation, and define baseline FullGraph, which simulates all steps of
KvD reading in Alg. 4.1 except subroutine memorySelect. Similarly to PacSum, proposi-
tion connection is limited to those in the previous 200 sentences. Finally, we compared our
proposed models against a previous implementation of the KvD theory (Fang, 2019), labeled
as FangKvD. This system is equivalent to a reader configuration Cnt-Cnt in Chapter 3.

4.4.3 Automatic Evaluation

We evaluate the intrinsic performance of the analyzed models in terms of informativeness,
redundancy, local coherence, and lexical cohesion. For more details on the following metrics,
please refer to § 2.3.

Informativeness. We report F1 ROUGE (Lin, 2004) for n-gram overlap-based rele-
vance, and F1 BertScore (Zhang et al., 2019) for semantic relevance. In all our experiments,
we report scores using RoBERTa (Liu et al., 2019) as underlying model, and apply impor-
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tance weighting to diminish the effect of non-content words, e.g. function words.4

Redundancy. We assess redundancy in summaries with Inverse Uniqueness (IUniq)
and Sentence-wise ROUGE (RdRL). For IUniq, we report the mean among values for uni-
grams, bigrams, and trigrams. For RdRL, we use ROUGE-L F1 score as base.

Cohesion. Lexical cohesion in summaries is measured using the Entity Grid (EEG)
model (Barzilay and Lapata, 2008) and the Entity Graph (EGr) model (Guinaudeau and
Strube, 2013). For EEG, we employ the implementation part of the Brown Coherence Toolkit5,
using the extended features setup (Elsner and Charniak, 2011) and train models over 50000

samples uniformly chosen from each training set. For EGr, we use the spaCy wrapper over
UDPipe 6 to perform POS tagging and ultimately to extract nouns.

Local Coherence. The local coherence of a summary is assessed using the CCL scorer
(CCL; Steen and Markert 2022) using a window of 3 sentences taken with padding of one
sentence. We train separate CCL models for each dataset analyzed.

Metric Reliability. The automatic metrics used in this chapter present the following
limitations that might impact their reliability. For informativeness, as mentioned in § 3.3.4,
ROUGE is impacted by the difference in length between reference summaries and candidate
summaries. In this chapter, similarly to Chapter 3, this issue is mitigated by discarding dataset
instances where the gold summary is too short or too long and by setting a hard budget for
the summary length.

Regarding metrics of lexical cohesion, their reliability depends on the accuracy of noun
extraction. EEG employs a co-reference resolution tool (Ng and Cardie, 2002) that uses lex-
ical, grammatical, and semantic features, in order to extract and link nouns from sentences.
This method –rather limited to modern NLP standards– is complemented by metric EGr,
which instead employs strong neural taggers for noun extraction.

In the case of local coherence, reliability might be impacted by the length (in wordpieces)
being scored at a time by the model (Steen and Markert, 2022). In this chapter, we train
our CCL scorers using binary cross-entropy with positive and negative examples taken from
different documents, hence mitigating the model bias for chunk length.

4.4.4 Human Evaluation

We elicit human judgments to assess informativeness and cohesion in two separate studies
conducted on the Amazon Mechanical Turk platform. We sampled 30 documents from the

4IDF statistics were obtained from documents in the training set of each dataset.
5https://web.archive.org/web/20200505174052/https://bitbucket.org/melsner/browncoherence
6https://spacy.io/universe/project/spacy-udpipe

https://spacy.io/universe/project/spacy-udpipe
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test set of PubMed and the respective summaries extracted by unsupervised systems opti-
mizing for cohesion, i.e. TreeKvD, GraphKvD, and PacSum.

In order to ensure the quality of annotations, we put in place catch controls (reading con-
firmation and annotation time), i.e. annotations that did not pass the control were discarded.
For more details on catch trials, instructions, and examples, please refer to Appendix B.2. We
now elaborate on the details of each study.

Informativeness. In the first study, subjects were shown the abstract and the introduc-
tion of a scientific article along with two system summaries. Subjects were then asked to
select the most informative summary among them with the possibility to select both in case
of a tie, following previous work (Wu and Hu, 2018; Luo et al., 2019; Fabbri et al., 2021). In
each system pair comparison, a system is assigned rank 1 if its summary was selected as most
informative, and rank 2 otherwise. In case of a tie, both systems are assigned rank 1. Then,
the score of a system is defined as its average ranking. We collected three annotations per
system-pair comparison and made sure that the same annotator was not exposed to the same
document twice. As an additional catch trial, we included in each annotation batch an extra
instance with summaries extracted by the extractive oracle and the random baseline.

Cohesion. Lexical chains are sequences of semantically related words (Morris and Hirst,
1991), and the distribution of these chains across a text has been shown to be a strong indi-
cator of cohesion (Barzilay and Elhadad, 1997; Galley and McKeown, 2003). We relax the
concept of lexical chains and extend it to that of chains of summary content units (SCUs),
where all SCUs in a chain cover semantically related content.

In our second study, we aimed to capture cohesive ties between sentences in a system
summary by asking participants to identify SCU chains. Following previous work on semi-
automation of the pyramid method (Zhang and Bansal, 2021), we employ propositions –as
extracted in Section 4.3.2– as surrogates for SCUs. Hence, a propositional chain is defined
as a set of propositions that exhibit semantically related arguments.

Participants were shown a single system summary as a list of sentences where tokens that
belonged to the same proposition were colored the same, as depicted in the example in Fig-
ure 4.5. Then, the task consists of selecting chains of colored text chunks that shared content
among them. For instance, in our example proposition chain {0,6,7} is connected through
information about the proposed method, whereas chain {1,3,6}, through optic nerve segmen-

tation. Chains were allowed to be non-exclusive, i.e. propositions can be selected in more
than one group. Similarly to the previous study, we collected three annotations per system
summary and include the gold summary of an extra system in the campaign.

Finally, based on annotations of propositional chains, we define the following measure-
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ments of lexical cohesion: (i) chain spread, defined as the average number of sentences be-
tween two consecutive propositions in a chain; (ii) chain density, the number of chains cov-
ering the same sentence7; and (iii) sentence coverage, the number of sentences covered by at
least one chain. Intuitively, a text with less spread propositional chains exhibits cohesive ties
that link sentences that are closer to each other, making the topic transition between sen-
tences smoother (Hassan et al., 1976). Chain density can be interpreted as an indicator of the
topic density in a sentence as well as how well a sentence connects to preceding and posterior
sentences, e.g. by connecting to a preceding sentence through one chain and connecting to a
posterior one though another chain. Finally, sentence coverage constitutes a straightforward
measurement of how many sentences are connected through cohesive ties in a summary.

Agreement between human annotators is obtained by calculating the average text over-
lap between proposition chains, as follows. Given candidate summary Ŝ, letCA andCB be
sets of chains extracted from Ŝ by annotatorsA and B, respectively. Given chains a ∈ CA
and b ∈ CB, we define Precision, Recall, and F1 score as follows,

Pov(a,b) =

∑
p∈amaxq∈b |LCS(p,q)|∑

p∈a |p|

Rov(a,b) =

∑
q∈bmaxp∈a |LCS(p,q)|∑

q∈b |q|

Fov1 (a,b) =
2 ·Pov ·Rov

Pov+Rov

where p and q are propositions included in chains a and b, respectively, LCS(p,q) is the
longest token sequence common top andq, and |p| indicates the number of tokens covered
by p. Then, the overlap score between annotatorA and B is defined as

ChainOverlap(A,B) =
1

|CA| · |CB|
∑

a∈CA,b∈CB

Fov1 (a,b). (4.8)

Finally, we report the average overlap score over all pair of annotators, averaged over all system
summaries.

4.5 Results and Discussion

In this section, we present results for our proposed systems, TreeKvD and GraphKvD,
and comparison systems on the PubMed and arXiv datasets. First, we discuss the trade-
offs systems incur when aiming to balance informativeness, redundancy, and lexical cohe-
sion, under varying setups of training supervision. Then, we investigate how systems apply

7We say that a chain covers a sentence if at least one of the chain’s proposition belongs to said sentence.
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A well-established method for diagnosis of glaucoma is the examination of the optic 
nerve head based on fundus image as glaucomatous patients tend to have larger cup-to-
disc ratios.

0  A method (well established; for diagnosis of glaucoma)
1  the examination ($0; is; of the optic nerve head based on fundus 
   image; as glaucomatous patients)
2  tend to have ($1; larger cup-to-disk ratios)

3  The difficulty (of optic segmentation )
4  is due to ($3; $5)
5  and (the fuzzy boundaries; peropapillary atrophy(PPA))

The difficulty of optic segmentation is due to the fuzzy boundaries and peripapillary 
atrophy (PPA).

6  is proposed (A novel method for optic nerve head segmentation )A novel method for optic nerve head segmentation is proposed.

The method of vessel erasing in the ROI is based on PDE inpainting which will make 
the boundary smoother.

7  The method (of vessel erasing in the ROI)
8  is based ($8; on PDE inpainting; $9)
9  will make (which; the boundary smoother)

PropositionsCandidate Summary

Chain: "the proposed method"
Chain: "optic nerve segmentation"

Figure 4.5: Example of proposition chain annotation in our cohesion evaluation cam-

paign. Each coloured chunk in the candidate summary corresponds to a pre-extracted

proposition. Users are tasked to group text chunks that share information by clicking on

them. Best seen in colour.

these trade-offs across increasing levels of source document redundancy. Finally, we present
a thorough analysis, both quantitative and qualitative, of how properties of simulated cog-
nitive processes affect final summaries.

4.5.1 Informativeness, Redundancy, and Cohesion

We start by analyzing the performance of our models in terms of relevancy, redundancy, and
cohesion. Results on informativeness are summarized in Table 4.1, whereas results on redun-
dancy, cohesion, and local coherence metrics are presented in Table 4.2. Both tables are or-
ganized in three sections: heuristic systems (Heur.), supervised and reinforcement learning-
based systems (Sup., R.L. ), and unsupervised systems (Unsup.). Systems are color-coded
according to which summary properties they aim to optimize, such as informativeness (I),
redundancy (R), and cohesion (C). For completeness, we also report redundancy and co-
hesion of reference summaries (Gold, last row in Table 4.2) to have a reference point for a
desirable level of redundancy and cohesion.

Statistical significance at the system level is tested pairwise using Bootstrap resampling
(Davison and Hinkley, 1997) with a 95% confidence interval. For PubMed, we found no
pairwise statistical difference between R1 scores of systemsTreeKvD andGraphKvD; and
between systems E.LG, E.LG-MMRSel+, and E.LG-CCL. For arXiv, no pairwise statisti-
cal difference in R1 scores was found between systems TreeKvD and GraphKvD; and be-
tween systems E.LG, E.LG-MMRSel+, MemSum, and E.LG-CCL. Analogously, Table 4.1
and 4.2 indicate system groups in which no pairwise difference was found, one group per
marker, for each metric reported.
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PubMed arXiv
Aim System

R1 R2 RL BSc R1 R2 RL BSc

- Ext-Oracle 59.62 35.14 54.52 88.22 58.66 30.28 52.28 87.12
- Lead 37.07 12.73 33.28 82.94 36.46 9.78 32.02 82.58
- Random 36.11 10.43 32.70 82.21 33.02 6.52 30.09 80.51

I E.LG 47.34‡ 21.04‡ 42.42‡ 85.17‡ 46.38‡ 18.66‡ 40.77 85.01‡
I,R E.LG-MMRSel+ 47.55‡ 21.20‡ 42.70‡ 85.21‡ 46.52‡ 18.69‡ 41.06‡ 85.00‡
I,R MemSum 48.02 22.06 43.16 85.63 46.69‡ 19.50 41.02‡ 85.13
I,C E.LG-CCL 47.42‡ 21.21‡ 42.57‡ 85.34 46.35‡ 18.74‡ 40.80 85.05‡
I,C PacSum-FT ∗ 40.05 13.66 36.29 83.86 38.05 9.87 34.18 83.06

I FullGraph 35.48 11.06 30.28 81.89 27.44 6.61 22.75 78.73
I TextRank 41.51 15.37 35.78 83.59 40.32 12.67 34.06 82.68
I,C PacSum 37.01 10.07 33.55 82.98 33.41 6.54 30.48 81.70
I,R,C FangKvD 35.80 10.94 30.97 82.17 32.76 8.31 27.81 80.60
I,R,C TreeKvD (ours) 37.22† 11.40† 32.37† 82.61† 34.90† 9.06† 29.85† 81.16†
I,R,C GraphKvD (ours) 37.21† 11.42† 32.25† 82.57† 34.98† 9.19† 29.73† 81.14†

Table 4.1: Performance of systems over PUBMED and ARXIV test sets in terms of

ROUGE F1 (R1, R2, RL) and BERTScore (BSc). Optimization Aim (Aim) indicates

whether a system was optimized for (I)nformativeness, (R)edundancy, Cohesion (C),

or a combination of these, grouped by color. Best models in each section are bolded.

(†,‡): no statistical difference between systems in the same section and column. (*):

non-completely supervised system.

Heuristics. It is worth noting that the extractive oracle, Ext-Oracle, even though
optimized for informativeness by design, can still be used as a good-enough reference for re-
dundancy in an extractive summary, given that RdRL and IUniq scores remain tightly close
to those of Gold. However, note that summaries extracted by Ext-Oracle need not be
lexically cohesive, as indicated by its lower CCL scores than systems optimized for cohesion.
Instead, Lead does obtain high EEG, EGr, and CCL scores, and low RdRL and IUniq
scores, a trend also present in Gold. These measures indicate that such a trend is proper
of cohesive text. Notice, however, that source documents in arXiv might showcase lower
lexical cohesion than those in PubMed, as indicated by their EEG and EGr scores. Finally,
it can be observed that the organization of information in scientific articles poses a challenge
for trivial baselines, as evidenced by the low ROUGE scores of Lead and Random.

Supervised and Reinforcement Learning Systems. When optimizing one extra sum-
mary property besides informativeness in a reinforcement learning setup, the following in-
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PubMed arXiv
Aim System

RdRL IUniq EEG EGr CCL RdRL IUniq EEG EGr CCL

- Ext-Oracle 14.07 18.72 0.76 0.84 0.58 14.98 18.78 0.71 0.72 0.40
- Lead 12.75 18.25 0.72 0.78 0.76 13.95 19.32 0.68 0.96 0.77
- Random 11.36 18.29 0.63 0.69 0.41‡ 10.78 20.67 0.61 0.61 0.24

I E.LG 16.19 21.60‡ 0.75‡ 1.03 0.18 16.71† 21.20‡ 0.70 1.01 0.21‡
I,R E.LG-MMRSel+ 15.03 20.69 0.75‡ 0.96 0.16 14.58 20.66 0.71† 0.91 0.21‡
I,R MemSum 17.24 24.01 0.75 0.75 0.48 16.80† 21.89‡ 0.69 1.03 0.44†
I,C E.LG-CCL 16.92 21.21‡ 0.75‡ 1.04† 0.51 16.92† 21.21‡ 0.70‡ 1.05 0.45†
I,C PacSum-FT∗ 12.92 18.76 0.73 0.77 0.61 11.42‡ 16.93 0.72 0.67‡ 0.56

I FullGraph 15.82 23.79 0.73 0.68 0.45 11.65‡ 33.22 0.56 0.67‡ 0.24
I TextRank 22.08 26.76 0.78 1.05† 0.41‡ 17.55 22.25 0.72† 1.02 0.26
I,C PacSum 11.66 20.84† 0.64 0.71‡ 0.49† 10.17 19.27 0.62 0.44 0.40
I,R,C FangKvD 12.59 20.45† 0.74 0.70‡ 0.50† 12.15 26.11 0.66 0.69 0.34
I,R,C TreeKvD (ours) 13.06 20.62† 0.75† 0.83 0.49† 12.72 24.22† 0.70‡ 0.83† 0.36
I,R,C GraphKvD (ours) 13.74 21.00‡ 0.75† 0.85 0.44 13.46 24.57† 0.71† 0.84† 0.31

Gold 13.54 19.12 0.70 0.96 0.91 14.83 17.27 0.72 0.87 0.89

Table 4.2: Redundancy (RdRL, IUniq), cohesion (EEG, EGr), and local coherence

(CCL) levels in candidate summaries over PUBMED and ARXIV test sets. See Table

1 for details on Optimization Aim (Aim) and color coding. Best models in each section

are bolded, according to redundancy (those closest to GOLD), cohesion and coherence

(the higher the better). (†,‡): no statistical difference between systems in the same sec-

tion and column. (*): non-completely supervised system.

sights can be drawn. First, it is possible to reduce redundancy or improve lexical cohesion
without losing informativeness: E.LG-MMRSel+ and E.LG-CCL obtain comparable
ROUGE scores to E.LG, a supervised system optimized only for informativeness. E.LG-
MMRSel+ obtains the lowest redundancy scores (RdRL and IUniq) and E.LG-CCL, the
highest cohesion and local coherence scores in terms of EGr and CCL, respectively. How-
ever, optimizing for redundancy or informativeness alone incurs a huge sacrifice of in terms
of cohesion, as indicated by the low CCL scores. On the other hand, optimizing for cohesion
entails maintaining a non-trivial level of redundancy, as indicated by the RdRL and IUniq
scores in E.LG-CCL, which are higher than those of E.LG and E.LG-MMRSel+.

Second, we find that tackling redundancy in the model architecture itself, i.e.Memsum,
works consistently better than using a redundancy-aware reward during training, i.e. E.LG-
MMRSel+. Not only doesMemsumobtain higher ROUGE scores, but seems to better bal-
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ance cohesion and redundancy. Even though Memsum’s CCL scores are lower than E.LG-
CCL in both datasets, they are significantly higher than those of E.LG-MMRSel+. Once
again, we observe the trade-off between cohesion and redundancy, as indicated by the higher
redundancy scores in Memsum.

Unsupervised Systems. When comparing proxies for relevancy, we find that sentence
centrality (as in TextRank and PacSum-FT) performs better than sentence scoring based
on reading comprehension, such as in our proposed KvD systems. However, whilst Tex-
tRank obtains the highest ROUGE-1 and 2 scores in both datasets, it also obtains the high-
est redundancy scores (in terms of RdRL) and low CCL scores (lowest in PubMed and
second to lowest in arXiv). A similar trend can be observed for FullGraph. Since both
FullGraph and TextRank use PageRank to rank content, we can conclude that lexical
overlap at the sentence level is more beneficial than overlap at the proposition argument
level, as done by FullGraph. Interestingly, EEG and EGr scores for TextRank are sur-
prisingly high in both datasets. Upon closer inspection, we found that EEG detects very few
entity chains –most of the time a single one– with high probability. For EGr, this translates
into having a sentence graph where edges are a result of co-occurrence of the same very few
nouns. This phenomenon can be interpreted as a sign of poor content coverage and high
redundancy.

Consider now systems PacSum and PacSum-FT. First, we notice that perhaps unsur-
prisingly, finetuning over in-domain data gives huge improvements in relevancy and a bet-
ter cohesive-redundancy trade-off. Second, unlike the supervised scenario, we observe that
adding a proxy for cohesion during training significantly hurts relevancy. This can be ob-
served by the higher ROUGE-1 and 2 scores of TextRank against PacSum-FT. Notice,
however, that fluency (ROUGE-L) and semantic relevancy (BertScore) do experiment an
improvement. Moreover, PacSum-FTobtains more cohesive summaries thanExt-Oracle
and even the supervised baseline optimized for local coherence, E.LG-CCL. We hypothesize
that PacSum and PacSum-FT model a strong proxy for cohesion by encouraging strong
connections between neighboring sentences.

When comparing KvD systems in terms of relevancy scores (ROUGE-1 and 2), we ob-
serve that GraphKvD and TreeKvD significantly outperform other unsupervised base-
lines, exceptTextRank. Notice, once again, thatPacSumobtains better fluency (ROUGE-
L) and semantic relevancy (BertScore). Whilst PacSum aims to optimize local coherence, it
does not explicitly encourage lexical cohesion, as indicated by its EEG and EGr scores, lower
than KvD systems. In contrast, KvD systems improve lexical cohesion, which translates in
higher EEG and EGr scores and in turn, slightly higher redundancy scores. The contrast
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is more defined when the source documents present low lexical cohesion, as is the case for
arXiv.

It is worth noting the advantage of the proposed KvD systems against a previous imple-
mentation of the KvD theory, FangKvD. We hypothesize of two reasons behind this result.
First, FangKvDrelies on external domain-dependant resources like WordNet, which makes
it hard to apply in highly domain-specific applications such as the scientific domain. Sec-
ond, GraphKvD and TreeKvD score propositions based on their position on the mem-
ory tree during simulation, whereas FangKvD only counts how many times a proposition
has appeared in a memory cycle. Note also that our proposed KvD systems outperform
FullGraph, highlighting the importance of constraining working memory in each cycle.
In terms of cohesion-redundancy trade-off, we observe that TreeKvD obtains a compara-
ble balance to FangKvD in PubMed but a better balance for arXiv. Notice that in both
datasets, GraphKvD obtains redundancy scores closest to Gold w.r.t. RdRL but lower
CCL scores than TreeKvD. In contrast, EEG and EGr scores indicate that GraphKvD
maintains a comparable level of lexical cohesion to TreeKvD.

4.5.2 Effect of Document Redundancy

Next, we take a closer look at the redundancy and cohesion levels in summaries extracted
from increasingly redundant documents. Figure 4.6 shows performance of summarization
systems in terms of informativeness (average ROUGE score, (ROUGE-1 + ROUGE-2 +
ROUGE-L)/3), redundancy (RdRL), and local coherence (CCL) across different levels of
document redundancy (IUniq). Test sets were divided in bins according to their document
redundancy score and the average metric value per bin is reported. For simplicity, we only
plot performance of representative systems in each section.

Reinforcement Learning Systems. In general, we observe that performance in infor-
mativeness and redundancy degrades slightly but surely as redundancy increases in the source
document. Most notably, E.LG-MMRSel+ and E.LG-CCL show comparable robustness
in informativeness and redundancy, whilst E.LG-CCL shows significantly better robustness
in local coherence, highlighting the importance of optimizing for cohesion instead of redun-
dancy.

Unsupervised Systems. In PubMed, we observe that PacSum and TextRank are
highly susceptible to document redundancy, showing quick degradation in informativeness
and redundancy as document redundancy increases. Whilst PacSum remains robust in
terms of cohesion, TextRank exhibits a significant drop. In contrast, TreeKvD and
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Figure 4.6: Informativeness (left), summary redundancy (mid), and summary local co-

herence (right) across increasing levels of document redundancy. Metric values are

averaged over each document redundancy range.

GraphKvD show more robustness w.r.t. informativeness, remain closer in redundancy to
Gold, and show local coherence levels comparable to E.LG-CCL. Notably, our KvD sys-
tems show comparable redundancy to the RL-based baselines at low and mid levels of docu-
ment redundancy. This indicates that our systems manage to successfully balance informa-
tiveness, redundancy and cohesion across increasing levels of document redundancy.

In arXiv, however, a few differences can be observed. First, PacSum shows notable
robustness to document redundancy, and remains closer in redundancy to Gold than all
other unsupervised systems. Our KvD systems exhibit a degradation in informativeness and
redundancy, although robustly keeping high levels of cohesion. We hypothesize that KvD
systems prioritize cohesion above informativeness and redundancy. In addition, we point
out that arXiv is composed of noisier text than PubMed, exhibiting a number of prepro-
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cessing errors that might affect the quality of the proposition extraction.8

4.5.3 Human Evaluation

The results of our human evaluation campaigns are showcased in Table 4.3. In both studies,
statistical significance between system scores was assessed by making pairwise comparisons
between all systems using a one-way ANOVA (p < 0.01) with posthoc Tukey tests with
95% confidence interval.

Informativeness. After discarding annotations that failed the controls, we are left with
229 out of 270 instances (30 documents, 3 system pairs, and 3 annotations per pair). Inter-
annotator agreement –Krippendorff’s alpha (Krippendorff, 2011)– was found to be 0.73.

We found that humans showed significantly higher preference forTreeKvD summaries
compared to PacSum summaries, highlighting the advantage of modeling informativeness
using KvD reading simulation compared to using a sentence centrality proxy in an unsuper-
vised setup. All other system pair differences are not statistically significant.

Lexical Cohesion. We obtained 343 out of 360 summary-level annotation instances
(30 documents, 4 systems –including gold summaries–, and 3 annotations per summary)
after applying the control filters. In average, annotators identified 2.71 groups per summary
and 3.89 propositions per group. Chain overlap, as defined in Equation 4.8, was calculated
at 0.97. Score differences between system pairs TreeKvD–PacSum and GraphKvD–
PacSum were found to be statistically significant, for all the analysed measurements of co-
hesion. Similarly, gold summary scores are significantly different from all systems in chain
spread and chain density, and different from PacSum in sentence coverage.

The following insights can be drawn from these results. First, gold summaries present
chains that span sentences that are either adjacent to each other or separated by one other
sentence, as indicated by its chain spread scores. Chains in GraphKvD summaries mostly
span adjacent sentences, in stark contrast with PacSum chains which are separated by two
sentences in average. Second, chain density scores indicate that sentences in gold summaries
are covered by either one or two chains, whereas GraphKvD summary sentences are cov-
ered by two chains in average. On the one hand, this indicates that KvD summaries present
a smooth topic transition by linking a summary sentence to the previous one through one
chain and to the following sentence though another chain. On the other hand, we note
that gold summaries show lower chain density than GraphKvD summaries in average. We
hypothesize that the lower chain density in gold summaries is due to the high technicality

8Such errors include sentence tokenization errors, incomplete equations, bibliography text included in the
document, among others. Even though we re-processed the dataset, many of these errors persisted.
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Criteria TreeKvD GraphKvD PacSum Gold
(I) Ranking ↓ 1.44 1.47 1.59 -

(C) Chain Spread ↓ 1.15 1.08 2.14 1.59
(C) Chain Density ↑ 1.89 2.29 0.95 1.63
(C) Sent. Coverage (%) ↑ 72.10 77.33 54.64 73.82

Table 4.3: Informativeness ranking (I) and cohesion scores (C) as a function of propo-

sitional chain properties, according to human judgements.(↑,↓): higher, lower is better.

of the scientific domain, making it harder for annotators to identify cohesive ties of non-
lexical nature. Nevertheless, sentence coverage scores indicate that chains in TreeKvD and
GraphKvD cover a comparable amount of sentences as chains in gold summaries. In con-
trast, the low chain density and low sentence coverage scores of PacSum indicate that fewer
sentences (around only 54% of them) in its summaries are connected through cohesive links,
the rest being perceived as isolated.

In summary, explicitly modeling lexical cohesive links during reading allows our KvD
systems to extract summaries that exhibit a smooth topic transition between adjacent or
near-adjacent sentences, with cohesive links connecting significantly more sentences than
PacSum summaries.

4.5.4 Qualitative Analysis

We performed a qualitative analysis of system summaries extracted by the compared systems
(Figure 4.7 and 4.8) by annotating the lexical chains in them and analysing the spread of
chains as well as their relevance and coverage. Each sample is accompanied by its gold sum-
mary, informativeness (average ROUGE score), redundancy (RdRL), and local coherence
level (CCL).

Reinforcement Learning Systems. Consider the example in Figure 4.7, showing sum-
maries extracted by E.LG-MMRSel+, E.LG-CCL, and MemSum from a document in
PubMed. First, it can be observed that the gold summary covers 6 lexical chains (all colored
differently) and that these chains can appear throughout the entire text but always spanning
windows of three to four sentences at a time. Note that chains spanning more than sentence
implies a non-trivial level of redundancy, as showed by RdRL> 0. These smooth transitions
are detected by the local coherence classifier –which scores a text by sliding a window of 3
sentences– and assigns a high CCL score.

Second, we can observe how E.LG-MMRSel+ trades off informativeness for redun-
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dancy by noting that the candidate summary exhibits one dominant chain ({miRNA ex-
pression}), possibly regarded as most promising relevancy wise. Redundancy reduction is
translated in poor coverage of other chains (e.g. {miRNA}, {analysis}), being also too spread
out (e.g. {biomarkers}), which is reflected in the low cohesion score of the summary. In stark
contrast, E.LG-CCL exhibits most chains spreading in spans of three sentences whilst still
favouring a highly relevant chain ({miRNA expression}). Note that this improvement in co-
hesion implied an increment in redundancy, as showed by the higher CCL score and slightly
higher RdRL score.

Finally, MemSum exhibits two dominant chains ({miRNA expression} and {CAD pa-
tients}) which are highly informative, justifying the high ROUGE score of the system. How-
ever, we observed lower cohesion score compared to E.LG-CCL, which can be explained by
how the chains are spread out in the summary. Whilst some chains do span adjacent sen-
tences (e.g. the two dominant chains), others spread further (e.g. {biomarkers}, {control}).
In terms of redundancy, the higher levels can be explained by the fact that chains have items
with longer n-grams. This could lead to higher RdRL scores since the metric calculates
the longest common n-gram subsequence in two strings. Moreover, one particular chain
({miRNA}) contains a high number of items, increasing the chance of higher lexical overlap
between the sentences this chain covers.

Unsupervised Systems. Consider the example in Figure 4.8, showing summaries ex-
tracted by TextRank, TreeKvD, and GraphKvD from a highly redundant document
(IUniq = 63.34%) in arXiv. As observed in the previous example, the gold summary ex-
hibits abundant lexical chains, although with varying degrees of coverage. We notice two
main chains spanning the entire summary, with the rest being mentioned only once or twice.
This sign of seemingly low cohesion was observed to be a common property in arXiv arti-
cles, perhaps attributed to the rather mathematical formality in the writing style, as opposed
to articles in PubMed. Nevertheless, our cohesion classifier is able to pick non-lexical cues
and assign a high cohesion score.

Regarding TextRank, we observe that its centrality-based scoring steer the model to
focus mainly on two chains, although only one of them ended up being informative ({fre-
quencies}). The high ROUGE scores and extremely high redundancy score confirms that
centrality is a strong proxy for relevancy but without any redundancy reduction mechanism,
the system will degrade into selecting repeating content. High repetition, in turn, proves to
affect local coherence negatively, as indicated by the low CCL score. Most critically, Tex-
tRank is susceptible to select sentences with high –if not complete– token overlap between
them, e.g. ‘monopole’, ‘frequency’, and ‘ground state’. Upon closer inspection, we found that
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some documents present repeated sentences in different sections, e.g. repeating a claim or
conclusion.

In contrast, TreeKvDshows noticeably less repetitions and a more balanced coverage of
lexical chains, as indicated by the lower redundancy score and comparable ROUGE score.
Most of the chains spread consistently across the entire summary, which translates into a
perceived and measured improvement in cohesion. Moreover, the system manages to recover
the same two main chains present in the gold summary, and even covers short chains not
covered by TextRank ({Boson}, {Stringari’s result}). Upon closer inspection, we found
that groups of extracted sentences are never more than two sentences apart.

Finally, GraphKvD exhibits a decrease in the spreading of lexical chains, showing in-
stead a clear and smooth transition across the summary. This translated into an increase
in local coherence, as indicated by a higher CCL score, which also impacts the redundancy
score. Similarly to MemSum, the higher redundancy score can be explained by the longer
common n-grams between sentences.

4.5.5 How Simulated Cognitive Processes Affect Final Summaries

The KvD theory describes cognitive processes involved in short-term memory manipulation
and constraints over memory structures. While it is well understood how these processes
and constraints would influence reading comprehension in a simulated environment, it is
less intuitive to establish how they influence summary properties through sentence scoring.
In this section, we shed light on how final summaries are affected by the following KvD
processes. First, we investigate the impact of capacity in working memory and the impact
of the strategy of proposition scoring used. Then, the mechanisms in charge of recall and
memory replacement (tree persistance) are discussed. Finally, we investigate what kind of
argument overlap strategy is best leveraged by our KvD systems.

Working Memory Capacity. Intuitively, the more memory capacity a KvD system has,
the more propositions it will be able to retain in memory, increasing the chances that rele-
vant propositions are scored higher and are eventually selected for the final summary. This
is evidenced by the consistent increase in ROUGE scores for increasing memory capacity,
WM, as showed in Figure 4.9. However, we did observe an optimal capacity for redundancy
and cohesion levels. This indicates that, as the memory capacity increases, maintaining non-
redundant information in the memory tree becomes more challenging.

Moreover, as seen in Table 4.1, KvD systems with WM = 100 obtain consistently higher
relevancy scores than FullGraph, a system that does not simulate working memory and



98 Chapter 4. Trade-off Control during Document Understanding

which scoring strategy has access to all the propositions in a document at all times. This
indicates that constraining the size of the memory tree in each iteration encourages KvD
systems to retain only information relevant to the current local context.

Another aspect greatly influenced by working memory capacity is that of how much in-
formation in the source document can be covered. As noted in Section 4.3.3, it is possible that
some propositions are pruned away and never recalled again, in which case their final score
will be zero. We say that a proposition is covered by a KvD system if such proposition ap-
pears at least once in a pruned memory tree during simulation. Furthermore, we define doc-
ument coverage as the ratio of covered propositions over the total number of propositions
in a document. Not surprisingly, we found that increasing working memory capacity in-
creased document coverage in both TreeKvD andGraphKvD. When WM= 5, TreeKvD
is able to cover 62% of all document propositions in the arXiv test set, and up to 96%

when WM = 100. GraphKvD further improves coverage to 78% at WM = 5 and 97% at
WM= 100. However, we found that FangKvD exhibits a much lower coverage: 22% when
WM = 5 and up to 44% when WM = 100. We hypothesize that the drastic improvement in
GraphKvD is due to the diffusion mechanism that updates scores of direct neighbours of
memory tree nodes. Similar trends were observed in the PubMed dataset. These results lay
down evidence that the proposed computational implementations of KvD theory are effec-
tive at covering most –if not all- content units in a document during simulation.

So far in our analysis we have considered memory capacity as a hyper-parameter of a
KvD system, expected to remain fixed throughout the entire simulation and fixed for all
documents in an evaluation set. The following question then arises when looking at each
sample individually: what is the right capacity of working memory in order to produce a
summary with the most relevant content? We attempt to answer this question by select-
ing for each sample in the validation set, the working memory size WM that yields the high-
est sum of ROUGE-1 and ROUGE-2 scores. The results are encouraging: when using the
best possible WM per sample in arXiv, TreeKvD exhibits an increase in absolute points of
3.19 in ROUGE-1, 2.36 in ROUGE-2, and 2.86 in ROUGE-L. This is compared to the
best performing configuration, i.e. when using WM= 100 for all samples. Most surprisingly,
the distribution of best WM per sample is rather balanced, with 26.5% of samples preferring
a WM = 100, 26.7% a WM = 50, 24.11% a WM = 20, and 22.5% a WM = 5. GraphKvD
exhibits a similar increase of 3.06, 2.33, 2.75 in ROUGE-1, ROUGE-2, and ROUGE-L,
respectively. A similar trend was observed on the validation set of PubMed. However, it
should be noted that we did not find any strong correlation between working memory ca-
pacity and ROUGE or BertScore scores, which indicates that the ability of a KvD system to
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produce relevant summaries is not influenced by its working memory capacity. Instead, we
suspect that memory capacity might be an indicator of text difficulty or cognitive easiness,
however the exploration of this hypothesis falls out of the scope of this work and we leave it
to future investigations.

Working Memory as a Tree. Next, we investigated the impact of leveraging the po-
sition of a node in the memory tree structure during proposition scoring. We compared
scoring function c(·) in Eq. 4.6, labeled as Tree, against two other strategies. The first one,
denotedFreq, consists of a frequency heuristic, c(t,T) = 1,∀t∈ T , which only counts how
many memory cycles a proposition participates in. The second strategy, denoted Eigen,
scores nodes based on their eigen-vector centrality as:

c(t,T) =
1
λ

∑
v

s.t. (t,v)∈E[T ]

c(v,T)

where λ is the largest eigen-value of the adjacency matrix of T .9

Figure 4.9 shows the performance of our KvD systems over the validation set of PubMed
and arXiv. Systems using scoring function c(t,T) in Eq. 4.2 are labeled with Tree, e.g.
TreeKvD[Tree]. First, we observe that Tree scoring significantly outperforms Eigen
and Freq scoring, for all values of working memory capacity in both datasets. This results
demonstrates the advantage of modeling memory as a tree structure and leveraging the posi-
tion of a node for scoring, compared to just considering memory as a bag of content units (as
Freq does) or even using node centrality strategies, as done by Eigen. However, it is worth
noticing that forGraphKvD, the gap betweenTree and Eigen diminishes as WM increases,
even performing comparably in PubMed. This might indicate that GraphKvD is superior
than TreeKvD at placing highly influential (i.e. relevant) nodes closer to the root, in which
case the proposition ranking given by Tree and Eigen is highly similar.

In conclusion, Tree scoring enables our implementations of KvD not only to better
keep track of relevant information but also to better model cohesion in the memory tree,
which translates to lower redundancy scores and higher cohesion scores in final summaries.

Recall Mechanism and Tree Persistence. Additionally, we investigated the effect of
allowing our KvD systems to retrieve longer node paths during recalls, as well as the effect
of allowing systems to persist memory trees for more cycles. Whilst (Kintsch and van Dijk,
1978) do not define a limit for how many propositions can be recalled, (Fang, 2019) lim-
its recall to only one proposition for computational efficiency. In this experiment, we test
TreeKvD and GraphKvD with WM = 100 and Tree scoring, and set the maximum al-

9We use the eigen-vector centrality implementation in the NetworkX Python library.
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System PubMed arXiv
R1 R2 RL IUniq CCL R1 R2 RL IUniq CCL

TreeKvD
w/ Lex. Overlap 35.93 12.63 31.53 19.05 0.53 35.40 9.84 30.08 22.36 0.46
w/ XLNet 35.60 13.53 31.39 18.79 0.57 34.47 9.74 29.29 21.94 0.46
GraphKvD
w/ Lex. Overlap 36.11 12.97 31.65 19.49 0.49 35.60 10.12 30.14 22.56 0.38
w/ XLNet 35.75 12.66 31.34 19.02 0.51 34.77 9.37 29.32 22.55 0.38
Gold - - - 18.94 0.92 - - - 17.15 0.89

Table 4.4: Effect of using lexical overlap and semantic similarity in argument overlap

calculation, as measured by ROUGE F1 scores, redundancy (IUniq), and coherence

(CCL), over the validation sets of PUBMED and ARXIV.

lowed number of recalled nodes toR= [2,5,8,10] and the maximum persistence parameter
to Φ = [2,5,8,10]. When compared in the validation set of both datasets, no statistical
difference was found within TreeKvD and GraphKvD varieties. Absolute differences in
average ROUGE scores were at most 0.1, whereas differences in IUniq redundancy were
at most 0.2 percentual points. These results indicate that our implementations of the KvD
theory are robust to recall and memory replacement parameters, an encouraging result when
planning to use these systems in other domains.

Lastly, it is worth pointing out an additional benefit of the tree persistence mechanism,
observed empirically in Figure 4.9. Tree persistence can be seen as a mechanism that guaran-
tees that the content in WM changes periodically, providing the model with robustness to
the length of an article section in a scientific article, and adding evidence to its applicability
to other domains. As mentioned in the previous chapter, sections in PubMed articles are
shorter than those in arXiv (16.8 vs 28.8 on average). In PubMed, performance converges
at WM = 150, at which point there is enough capacity to keep all propositions read in the
section so far. However, contrary to the behavior of FangKvD in the previous chapter,
performance is not hurt at high capacity regimes, with the persistence mechanism refreshing
WM periodically. InarXiv, sections are long enough for high WM capacity to be a problem,
at which point WM starts storing noisy information which eventually hurts performance.

Effect of Argument Overlap Strategy. Finally, we investigated the effect of employ-
ing more sophisticated strategies to calculate argument overlap in propositions. We com-
pared our proposed strategy –based in lexical overlap– against a strategy using a pretrained
Transformer-based encoder (Vaswani et al., 2017) to calculate semantic similarity. We replace
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the Jaccard similarity between two arguments in Eq. 4.4 by the maximum pairwise cosine
similarity between wordpiece embeddings of said arguments. Each sentence is encoded in-
dependently using XLNet (Yang et al., 2019) with the previous three sentences as context.
Recent work (Jeon and Strube, 2020, 2022) showed the advantage of using XLNet against
other Transformer-based architectures when modeling local coherence in contexts a few sen-
tences long.10

Table 4.4 presents the results for TreeKvD and GraphKvD. In both cases, we observe
a reduction of relevancy and redundancy scores when using embedding-based similarity in
argument overlap. In PubMed, both KvD systems obtain higher cohesion scores with XL-
Net, whilst cohesion remains unchanged inarXiv. These results indicate that employing se-
mantic similarity in argument overlap hurts informativeness in greedily selected summaries,
in line with similar findings by Fang (2019).

We hypothesize that employing embedding-based similarity allows to connect arguments
that are not semantically related but might be close in embedding space, hence resulting in
spurious proposition connections during attachment. Naturally, with memory trees pol-
luted with irrelevant propositions, KvD systems struggle to keep track on truly relevant in-
formation and informativeness will be impacted.

In conclusion, this section laid evidence as to how simulated cognitive processes im-
pact properties (informativeness, redundancy, and cohesion) of the final summary. First,
we pointed out the importance of constraining memory capacity in covering relevant con-
tent and dealing with redundant information. Then, we highlighted the benefits of model-
ing working memory as a tree and how this affects the cohesion-redundancy trade-off. We
demonstrated the robustness of the proposed systems to parameters controlling recall from
long-term memory. Finally, the sensitivity of the systems to spurious connections between
propositions was assessed, and demonstrated that limiting connections through selective lex-
ical overlap provides the best conditions for our systems to better balance informativeness,
redundancy, and lexical cohesion in summaries.

4.6 Summary

In this chapter, we studied the trade-off between redundancy and lexical cohesion in sum-
maries produced by extractive systems, and how this trade-off impacts informativeness. We
focused on the case when the input is a long document that exhibits information redundancy
among the parts it is divided into. As a case study, we experimented with scientific articles

10Indeed, preliminary experiments using SciBERT (Beltagy et al., 2019) showed poor results.
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for which the main body –divided into sections– is considered as the input document and
the abstract is used as the reference summary.

Two optimization scenarios were investigated and compared, (i) when a summary prop-
erty is optimized with a tailored reward in a reinforcement learning setup, and (ii) when a
summary property is optimized through proxies inspired by a psycholinguistic model in an
unsupervised setup. In the first scenario, the trade-off between informativeness and cohe-
sion was modeled as a linear combination between a reward optimizing for ROUGE score
w.r.t. the reference summary and a classifier-based reward optimizing for cohesion. We found
that models that optimize cohesion are capable of better organizing content in summaries
compared to systems that optimize redundancy, whilst maintaining –if not improving– in-
formativeness and coverage.

In the second scenario, we introduced two unsupervised summarization systems that im-
plement explicit proxies that capture relevancy, non-redundancy, and lexical cohesion. The
proposed systems closely simulate human memory during KvD reading. Extensive quanti-
tative and qualitative analysis showed that our systems are able to extract summaries that are
highly cohesive and as redundant as reference summaries, however at the expense of sacri-
ficing informativeness. Finally, human evaluation campaigns revealed that KvD summaries
exhibit a smooth topic transition between sentences as signaled by proposition chains –an
extension to lexical chains–, with chains spanning adjacent or near-adjacent sentences, and
each sentence being connected to a previous one with at least one chain and to the next sen-
tence with another chain.
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System Avg. ROUGE RdRL CCL

Gold Summary - 12.6 0.86

Coronary artery disease (CAD) is the largest killer of males and females in the United States. There is a need to develop innovative diagnostic markers
for this disease. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in im-
portant cellular processes, and we hypothesized that the miRNA expression profile would be altered in whole blood samples of patients with CAD.
We performed a microarray analysis on RNA from the blood of 5 male subjects with CAD and 5 healthy subjects (mean age 53 years). Subsequently,
we performed qRT-PCR analysis of miRNA expression in whole blood of another 10 patients with CAD and 15 healthy subjects. We identified 11
miRNAs that were significantly downregulated in CAD subjects (p< .05). Furthermore, we found an association between ACEI/ARB use and
downregulation of several miRNAs that was independent of the presence of significant CAD. In conclusion, we have identified a distinct miRNA
signature in whole blood that discriminates CAD patients from healthy subjects. Importantly, medication use may significantly alter miRNA ex-
pression. These findings may have significant implications for identifying and managing individuals that either have CAD or are at risk of developing
the disease.

E.LG-MMRSel+ 31.60 16.13 0.20

We sought to compare miRNA expression in whole blood of patients with angiographically significant CAD to that of healthy aged-matched
controls. We performed an initial exploratory microarray analysis in 5 cases and controls and then further examined the most highly expressed
miRNAs in an additional 15 cases and controls. The present study provides insight into whole blood levels of miRNAs in patients with CAD
compared to healthy subjects and demonstrates their potential utility as biomarkers for vascular disease. Thus, miRNA expression signatures in
tissues and blood have a potential role in the diagnosis, prognosis, and assessment of therapy. Study participants were recruited as part of the
Emory Cardiology Biobank, consisting of 3492 consecutive patients enrolled prior to undergoing elective or emergent cardiac catheterization across
three Emory Healthcare sites, between 2003 and 2008. Validation of the changes in miRNA expression observed here in larger studies will be a
necessary step to confirm their candidacy as biomarkers and therapeutic targets. Although we were able to detect some differences in whole blood
miRNA levels between healthy subjects and CAD patients (miR-584, in particular), our microarray data suggest that, similar to other reports,
levels of miRNAs in the blood are low and microarrays may lack the sensitivity to adequately identify miRNAs that might serve as vascular disease
biomarkers.

E.LG-CCL 31.82 18.90 0.60

Thus, miRNA expression signatures in tissues and blood have a potential role in the diagnosis, prognosis, and assessment of therapy. In this study, we
sought to compare miRNA expression in whole blood of patients with angiographically significant CAD to that of healthy aged-matched controls.
We performed an initial exploratory microarray analysis in 5 cases and controls and then further examined the most highly expressed miRNAs in an
additional 15 cases and controls. Study participants were recruited as part of the Emory Cardiology Biobank, consisting of 3492 consecutive patients
enrolled prior to undergoing elective or emergent cardiac catheterization across three Emory Healthcare sites, between 2003 and 2008. Although
we were able to detect some differences in whole blood miRNA levels between healthy subjects and CAD patients (miR-584, in particular), our
microarray data suggest that, similar to other reports, levels of miRNAs in the blood are low and microarrays may lack the sensitivity to adequately
identify miRNAs that might serve as vascular disease biomarkers. The present study provides insight into whole blood levels of miRNAs in patients
with CAD compared to healthy subjects and demonstrates their potential utility as biomarkers for vascular disease. Validation of the changes in
miRNA expression observed here in larger studies will be a necessary step to confirm their candidacy as biomarkers and therapeutic targets.

MemSum 34.16 22.34 0.33

We sought to compare miRNA expression in whole blood of patients with angiographically significant CAD to that of healthy age-matched controls.
This analysis included miR-150, miR-584, miR-21, miR-24, miR-126, miR-92a, miR-34a, miR-19a, miR-145, miR-155, miR-222, miR-378, miR-29a,
miR-30e-5p, miR-342, and miR-181d. Among these, we found that miR-19a, miR-584, miR-155, miR-222, miR-145, miR-29a, miR-378, miR-342,
miR-181d, miR-150, and miR-30e-5p were significantly downregulated in the blood of patients with CAD compared to healthy subjects (Figure 2).
Several recent studies have indicated that there is a potential role for circulating miRNA levels as valuable biomarkers for different disease processes,
including cancer, cardiomyopathy, and acute myocardial infarction. In this study, we wanted to address the hypothesis that miRNA expression
levels in blood could predict the presence of significant coronary artery disease in human subjects. We identified 11 miRNAs whose expression was
significantly downregulated in patients with angiographic evidence of significant atherosclerosis compared to healthy subjects that were matched
for age and gender. The present study provides insight into whole blood levels of miRNAs in patients with CAD compared to healthy subjects and
demonstrates their potential utility as biomarkers for vascular disease.

Figure 4.7: Summaries extracted by reinforcement learning-based systems for a

PUBMED sample with informativeness (average ROUGE score), redundancy (RdRL),

and local coherence (CCL) scores. Text is annotated with color-coded lexical chains,

and was detokenized and truecased for ease of reading.
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System Avg. ROUGE RdRL CCL

Gold Summary - 21.49 0.91

We study the collective excitations of a neutral atomic Bose-Einstein condensate with gravity-like interatomic attraction induced by elec-
tromagnetic wave. Using the time-dependent variational approach, we derive an analytical spectrum for monopole and quadrupole mode
frequencies of a gravity-like self-bound Bose condensed state at zero temperature. We also analyze the excitation frequencies of the Thomas-
Fermi gravity (tf-g) and gravity (g) regimes. Our result agrees excellently with that of Giovanazzi et al., which is obtained within the sum-rule
approach. We also consider the vortex state. We estimate the superfluid coherence length and the critical angular frequencies to create a
vortex around the X axis. We find that the tf-g regime can exhibit the superfluid properties more prominently than the g regime . We find
that the monopole mode frequency of the condensate decreases due to the presence of a vortex.

TextRank 38.99 45.02 0.23

The gravity-like potential is balanced by the wave interaction strength. The ground state energy per particle varies as @xmath. The
monopole and quadrupole frequencies obtained from the variational approach are similar to the exact numerical values. The trap po-
tential and wave interaction can be neglected. The total ground state energy is @xmath. The ground state energy per particle varies as
@xmath. One can use the time-dependent variational approach to describe the vortex state. The critical angular frequency vs. the di-
mensionless scattering parameter is shown in Fig.4. Tf-g regime: for large wave scattering length, kinetic energy can be neglected. The
critical angular frequencies for @xmath and @xmath are @xmath and @xmath respectively. The monopole mode frequency for an ordi-
nary atomic bec in the tf regime is independent of the vortex. The monopole mode frequency for @xmath is @xmath. The @xmath is
also less than the monopole mode frequency in the vortex free condensate. In the tf regime of an ordinary atomic bec, the monopole and
quadrupole mode frequencies are independent of the scattering length.

TreeKvD 39.87 14.62 0.36

In this system, the gravity-like attraction balances the pressure due to the zero point kinetic energy and the short range interaction potential.
The bec of charged Bosons confined in an ion trap can be described by the above mentioned Lagrangian if we set @xmath, where @xmath
is the electronic charge. To calculate the excitations spectrum of an atomic bec with gravity-like interaction, we will use the time-dependent
variational method. This technique has been first used to calculate the low-lying excitations spectrum of a harmonically trapped atomic
bec in @xref. The result obtained from the variational method matches with Stringari’s result within the sum-rule approach. In @xref, it
is shown that the oscillation frequencies obtained from the exact ground state and a Gaussian Ansatz are in good agreement. One can use
the time-dependent variational approach to describe the vortex state. In these regimes, we have calculated the lower bound of the ground
state energy, sound velocity, monopole and quadrupole mode frequencies.

GraphKvD 39.73 21.65 0.51

Most of the properties of these dilute gas can be explained by considering only two-body short range interaction which is characterized by
the S-wave scattering length. Therefore, we expand around the time dependent variational parameters around the equilibrium widths in
the following way, and @xmath. The time evolution of the widths around the equilibrium points are @xmath is the first order fluctuations
around the equilibrium points of @xmath. One can use the time-dependent variational approach to describe the vortex state. The vortex
state play an important role in characterizing the superfluid properties of Bose system. The critical angular frequency required to produce
a vortex state is where is the energy of a vortex states with vortex quantum number and is the energy with no vortex. In these regimes, we
have calculated the lower bound of the ground state energy, sound velocity, monopole and quadrupole mode frequencies.

Figure 4.8: Summaries extracted by unsupervised systems for an ARXIV sample with

informativeness (average ROUGE score), redundancy (RdRL), and local coherence

(CCL) scores. Text is annotated with color-coded lexical chains, and was detokenized

and truecased for ease of reading.
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Figure 4.9: Effect of proposition scoring strategy (TREE, EIGEN, and FREQ) and work-

ing memory capacity (WM) on summary informativeness (average ROUGE scores; left),

redundancy (IUniq; middle), and local coherence (CCL).





Chapter 5

Trade-off Control during Summary

Extraction

Following on our work on trade-off control of summary properties, we now turn our at-
tention to control during sentence selection. In this chapter, we aim to enforce cohesion
whilst controlling for informativeness in summaries, in cases where the input exhibits high
redundancy. The pipeline controls for content redundancy in the input as it is consumed,
and balances informativeness and cohesion during sentence selection. Our sentence selector
simulates human memory to keep track of topics –modeled as lexical chains– while building
the summary, enforcing cohesive ties between noun phrases. Extensive experiments, both au-
tomatic and human, revealed that it is possible to extract highly cohesive summaries without
sacrificing informativeness significantly, compared to summaries optimizing only for infor-
mativeness. The extracted summaries exhibit smooth topic transitions between sentences as
signaled by lexical chains, with chains spanning adjacent or near-adjacent sentences.

5.1 Introduction

In previous chapters, we showcased the challenges of selecting the appropriate content units
so that the summary covers relevant topics, or to control trade-offs between summary prop-
erties during document understanding. In this chapter, we focus on modeling and con-
trolling summary properties during summary production, focusing on informativeness and
cohesion. As discussed in Chapter 1, the modeling of summary coherence previously relied
on capturing discourse patterns in nearby sentences (Barzilay and Lapata, 2008; Steen and
Markert, 2022; Zhao et al., 2023). Cohesion, a special case of local coherence, relies on the
explicit textualization of contextual connections called cohesive ties, making a text read as a

107
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unified whole (Hassan et al., 1976).

In this chapter, we introduce an extractive summarization methodology that implements
two control mechanisms at different stages of processing: the first one to control redundancy
during input understanding, and the second one to control the trade-off between informa-
tiveness and cohesion during summary extraction. When building extractive summaries by
concatenating sentences, we argue that controlling for cohesion is a better-defined task than
aiming to control coherence, especially if no sort of post-editing (e.g. replacing discourse
markers) is applied (Zajic et al., 2007; West et al., 2019; Mallinson et al., 2020). A poten-
tial benefit of producing a more cohesive text is that it is easier to read and understand for
humans, especially when the knowledge domain is highly technical, as reported by previ-
ous work in psycholinguistics (Kintsch, 1990) and automatic summarization (Barzilay and
Elhadad, 2002).

In our pipeline, summary properties are controlled in the following way. On the one
hand, summary redundancy is addressed by controlling the redundancy levels of the in-
put text, following previous findings (Carbonell and Goldstein, 1998b; Xiao and Carenini,
2020). The pipeline consumes input text in a cascaded way: first splitting the input into
contiguous passages, then consuming passages one at a time so as to minimize their seman-
tic similarity with already selected passages.

On the other hand, informativeness and cohesion are directly modeled during summary
extraction. Extraction is done in a sentence-by-sentence fashion, quantifying summary prop-
erties independently at each step. The objective is to select a highly cohesive sentence that
is informative enough. We introduce a sentence selector that incrementally builds cohesive
chains of noun phrases and models chain interaction. The selector, KvD-Select, keeps
track of chains currently active by simulating KvD production, i.e. the cognitive processes
involved in the handling of human memory during text production. Contrary to previous
chapters, working memory is modeled as a limited-capacity buffer of lexical chains, forcing
the model to keep only the most salient chains and send the rest to long-term memory.

We test our methodology on newswire multi-document summarization and single-long
document summarization of scientific articles, patents, and government reports. Across do-
mains, extensive experiments show that, first, our system is effective at incrementally build-
ing an input sequence with lower content redundancy, which translated to a significant re-
duction in summary redundancy. Second, the proposed sentence selector managed to main-
tain summaries informative while improving cohesion significantly: over 15% more noun
phrases and over 20% more sentences were connected through cohesive ties w.r.t a greedy
selector. Tailored human evaluation campaigns revealed that cohesion has a positive impact
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on perceived informativeness, and that our extracted summaries exhibit chains covering ad-
jacent or near-adjacent sentences. Closer inspection showed that topics flow smoothly across
extracted summaries with no abrupt change or jumps.

In summary, the contributions of this chapter are as follows:

• We propose a cascaded encoder capable of consuming arbitrary long textual input that
controls the level of content redundancy the rest of the pipeline is exposed to.

• We propose a summary extraction method that models informativeness and cohesion
independently and allows to control the balance between the two when building the
summary.

• Automatic and human experiments show the effectiveness of our control mechanisms
and how summary properties can be balanced according to user needs in a straightfor-
ward way.

5.2 Problem Setup

Continuing the formulation presented in previous chapters, we tackle the task of extractive
summarization as a sentence-scoring step followed by a selection step. Figure 5.1 shows the
pipeline of the system, in which sentences are scored in a cascaded fashion, as follows. First,
the input is segmented into blocks of contiguous sentences to be selected based on their rel-
evancy and their redundancy w.r.t. already selected blocks. Then, a local encoder obtains
block-level representations for each sentence in the block. After all document blocks are
processed, the encodings are concatenated into a single embedding sequence and passed to
the global context encoder, which will obtain a document-aware representation of each sen-
tence. Finally, a selection module will extract a subset of sentences and present them as the
summary in the order they were extracted. The pipeline is designed to be capable of con-
suming documents of arbitrary length, offering further control over levels of information
redundancy the sentence selector is exposed to. We now proceed to elaborate on each mod-
ule of the proposed pipeline.

Document Segmentation and Block Selection. Processing starts by segmenting the
input document(s)D into fixed-length overlapping blocks, each of which includes preced-
ing and subsequent wordpieces in order to provide surrounding context. Then, blocks are
selected iteratively until a predefined budget (e.g. total number of wordpieces) is met. At step
m, the optimal block selection is defined as the trade-off between a block relevancy term and
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Figure 5.1: Extraction pipeline of the proposed system. InputD is consumed one block

at a time. At block selection step m, the local encoder adds at most N local sentence

embeddings from block bm to the global sentence sequence D ′. After the whole input

has been consumed, the summary extractor module builds Ŝ one sentence at a time.

For KVDSELECTOR, the selector simulates one KvD memory cycle at each sentence

selection step i.

a redundancy term,

bm = argmax
b∈B\B̂

[λbLR(b)−(1−λb)max
bj∈B̂

Sim(b,bj)] (5.1)

where B̂ is the set of blocks already selected, Sim(x,y) is the cosine similarity between TF-
IDF vectors of blocks x and y, and hyper-parameter λb allows to control the mix of both
terms. Function LR(b) represents the continuous LexRank score of block b (Erkan and
Radev, 2004) obtained when modelingD as a complete graph in which each node is a block
and edges quantify TF-IDF similarity between blocks, and calculating the centrality of each
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node with the PageRank algorithm (Page, 1998). Formally,

LR(b) =
d

|B|
+(1−d)

∑
v∈adj[b]

Sim(b,v)∑
z∈adj[v] Sim(z,v)

LR(v) (5.2)

where d is the damping factor and adj(b) is the set of block nodes adjacent to b. In this
way, this module provides a straightforward way to balance block relevancy (as proxied by
centrality) and input redundancy by linearly combining quantifications of these properties.
After an optimal block is selected, it is send to the local extraction module.

Local Encoder (LE). Given block b as a sequence of wordpieces spanning contiguous
sentences, the local encoder will obtain representations for each of the sentences covered in
b. This module is trained as a local extractive summarizer itself, in order to obtain sentence
representations tailored for the task. We posit the local extraction task as a sequence labeling
task where each sentence in the block is labeled as yℓi = {0,1} to indicate whether sentence
si should be selected or not. Then, sentence representationhi is defined the average embed-
ding over wordpiece embeddings in si obtaining from a LongT5 encoder (Guo et al., 2022).
Finally, the probability of si being selected is defined as P(yℓi|si,b;θℓ) = σ(Wℓ ·hi), and
the module is trained using cross-entropy loss independently from the rest of the pipeline.
During inference, the local encoder consumes one block, selectsN sentences and adds them
toD ′ –containing all locally selected sentences so far–, and their corresponding embeddings
toHℓ.

Global Context Encoder (GCE). Given the sequence of local sentence embeddings
Hℓ, this module obtains the sequence of globally-aware representationsHg as follows. Each
local embedding in Hℓ is passed through a self-attention layer (Vaswani et al., 2017), i.e.
gi = SelfAttn(hi,Hℓ),∀hi ∈ Hℓ. Similarly to the local extraction module, the summary-
worthiness of sentence si is modeled as P(ygi | si,D

′;θg) = σ(Wg ·gi), where ygi ∈ {0,1}

indicates whether si is selected or not for the final, global summary, and also trained using
cross-entropy loss.

Summary Extractor. Finally, candidate summary Ŝ is built by selecting one sentence at
a time fromD ′, taking into account the informativeness and cohesiveness of each candidate
sentence w.r.t. the already selected sentences. At selection step t, the optimal sentence is
given by

st = argmax
s∈D ′\Ŝt−1

λselfI(s)+(1−λsel)fC(Ŝ
t) (5.3)

where function fI estimates the informativeness of candidate sentence s, fC estimates the
cohesion of candidate summary Ŝt = [Ŝt−1;s], and λsel ∈ [0,1] is a parameter that allows
to control their trade-off. Following previous work (Xiao and Carenini, 2020), we take the
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probability of selecting s given by the global context encoder module as a proxy for informa-
tiveness, i.e. fI(s) = P(y

g | s,D ′;θg). In the next section, we elaborate on how fC models
and enforces cohesion during sentence selection.

5.3 KvD Select: Cohesion during Summary Extraction

Cohesion is a language mechanism that enables a sequence of sentences to function as a
unified whole (Hassan et al., 1976). It does so by linking semantic units in a text through
cohesive ties, regardless of the grammatical or discourse structure these units are part of. In
particular, lexical cohesion links units with the same lexical form, synonyms, or units in the
same semantic field. Furthermore, units tied cohesively can be grouped in chains by their
semantic similarity. Whilst the mere presence of two or more chains does not guarantee
a cohesive effect, their interaction can be a reliable proxy for cohesion (Morris and Hirst,
1991; Barzilay and Elhadad, 1997). In this chapter, we focus on modeling lexical cohesive
ties between noun phrases in nearby sentences of a summary by controlling the interaction
between lexical chains.

The proposed selector, KvD-Select, calculates cohesion score fC by simulating the
processes in working memory during text production according to the KvD theory. Simi-
larly to previous chapters, we implement processes happening at the micro-level, which deal
with the movement of content in and out of working memory.

Let T be working memory and G long-term memory (LTM), where both are separate
sets of cohesive chains, and each chain as a set of noun phrases (NPs). At selection step t, the
algorithm extracts NPs from st and connects them to the chains in T and G, constraining
the number of active chains in T afterward. Cohesion score fC then depends on the average
similarity between units added to T and those added to G. We now elaborate on each step
of the algorithm.

Extracting Noun Phrases. Given sentence st ∈D ′, we obtain P, the set of extracted
nominal chunks, obtained by merging nominal nodes in dependency trees with their chil-
dren. Specifically, given that node u is nominal dependent of a clausal predicate, u will have
its child v merged if eitherv is a function word, a single-token modifier, or u and v form part
of a multi-word expression.

Adding Content to Memory. Next, cohesive ties between st and Ŝt−1 are enforced
by adding each NP in P to the chain with the highest element-wise semantic similarity. For-
mally, the optimal chain to add a ∈ P to is C∗ = argmaxC∈T {ϕ(p,C)}, where ϕ is the
average BERTScore (Zhang et al., 2019) between a and each NP inC. In order to make sure
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that chains maintain an acceptable level of semantic similarity between elements, a is added
to chainC only ifϕ(a,C)⩾ ν, whereν is the minimum admissible similarity. This way the
algorithm can control the similarity length between chain members, and avoid a single, long
chain.

If similarity with chains in T is not strong enough, we look at chains in G, in which
case the chosen chain is moved back to T . This step is analogous the the recall mechanisms
implemented in previous chapters. If still no chain in G meets the similarity requirement,
we proceed to create a brand new chain in T with a as its sole element. By searching for a
good enough candidate chain first in T and then inG, we encourage cohesive ties between
NPs in nearby sentences.

Updating Memory. After adding incoming NPs to chains in memory, T is updated
to retain only the WM most recent chains, where recency of a chain is defined as the id of the
selection step in which this chain was last retained in T . For instance, a chain currently in T is
more recent (higher step id) than a chain inG discarded in an earlier step. This design choice
mimics the recency effect behaviour during free recall tasks in human subjects (Glanzer, 1972),
a behaviour attributed to short-term memory. Finally, discarded chains are moved to G,
concluding the selection step.

Candidate Scoring. Next, we define cohesion score fcoh which will be used to discrim-
inate amongst possible continuations to Ŝt−1. The objective is to encourage NPs in P to be
assigned to recent chains, in turn encouraging chains to cover nearby sentences in the final
summary. In addition, we want to score down candidate sentences with NPs added to chains
in long-term memory.

LetAT = {a;a∈ P,Ca ∈ T }, whereCa is the chainawas added to. Similarly, letAG =

{b;b ∈ P,Cb ∈ G}. Then, let rec(C) be the number of selection steps passed since the last
time chainCwas retained in T . Quantity rec(C) functions as a proxy for how spread chain
C is, i.e. how far away two sentences covered byC are. Then,

fcoh =
1

|AT |

∑
a∈AT

ϕ(a,Ca)
rec(Ca)

+
γrec
|AG|

∑
b∈AG

ϕ(b,Cb)
rec(Cb)

. (5.4)

Hence, the cohesive score depends on the contribution of each cohesive tie formed. For each
chunk in AT and AG, its contribution depends directly on the strength of similarity to its
assigned chain and inversely on the spread of said chain. The contribution of chunks in
AG is scaled down by hyper-parameter γrec ∈ [0;1] as to simulate the higher cognitive cost
incurred when retrieving information from long-term memory.
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5.4 Experimental Setup

In this section, we describe the datasets employed in our experiments, the hyper-parameters
and training details of our pipeline, comparison systems, and evaluation methodology, both
automatic and human-based.

5.4.1 Datasets

Our analysis includes datasets for single-document summarization of long, highly redun-
dant documents as well as multi-document summarization in a variety of domains, as fol-
lows.

• PubMed. Scientific articles in the biomedical domain collected from PubMed (Co-
han et al., 2018). As in Chapter 3(REF), we employ text from the ‘sections’ field as
input document We use text from all sections as the source document and the abstract
as reference summary.

• BigPatent. Patents in several industry domains (Sharma et al., 2019). We restrict our
analysis to the Chemistry and Metallurgy domain (subset ‘C’).

• GovReport. Long legislature reports (Huang et al., 2021) of U.S. bills summarized
by experts.

• MultiNews. Consisting of collections of news articles in a topic paired with human-
written summaries (Fabbri et al., 2019).

For all datasets, we homogenize the source-target length distributions by discarding sam-
ples with references that were too short (less than 3 sentences, not useful for our cohesion
analysis) or too long (more than 500 tokens in all datasets except GovReport, for which
this threshold is set to 1000). Similarly, samples with short input documents (less than 3
sentences or less than 30 tokens in total) were also discarded. Sentences were re-split using
spaCy1 and trimmed to 100 tokens, whilst sentences with less than 5 tokens were discarded.
Table 5.1 presents the statistics of all dataset in terms of number of tokens.

5.4.2 Pipeline Parameters

Hyper-parameters were tuned over the validation sets of each dataset. See Table A.1 (Ap-
pendix A.1) for a comprehensive list of hyper-parameter values, including word budgets and
architecture details.

1https://spacy.io/

https://spacy.io/
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Dataset
Input Length Target Len.

Avg. Max. Q90 Avg.

PubMed 3150 119875 5844 206

BigPatent.C 4534 72835 8655 119

GovReport 8840 206622 15752 580

MultiNews 2057 525348 3846 260

Table 5.1: Dataset statistics in terms of number of tokens showing average, maximum,

and 90% quantile (Q90).

Document Segmentation and Block Selection. During document segmentation, we
use a block size of B = 2048 and context size C = 200 pieces. During block selection, we
set λb = 0.2 for both datasets after finetuning it over their respective validation set. Finally,
we set a budget of 1000 sentences or 16384 wordpieces in order to make our analysis com-
parable to previous work in long-document summarization (Guo et al., 2022; Beltagy et al.,
2020).

Local Encoder and Global Context Encoder. The block encoder in LE is initialized
with a pretrained checkpoint of LongT5 with transient-global attention (Guo et al., 2022),2

and an output layer of size 200.

The LE module is trained independently from the GCE module, with LE being trained
first, then GCE trained whilst LE remains frozen. In both cases, we used the Adam optimizer
(Loshchilov and Hutter, 2019), a constant learning rate of 1e−6, effective batch size of 64,
and 50k training steps. During inference, we extract a maximum ofN= 10 local sentences
per block and a maximum of 1000 sentences in total.

Summary Extractor. We set λsel = 0.8, working memory WM= 6, recall cost γrec =

0.01, and a minimum NP similarity of ν = 0.6. Word budget is set to 200, 100, 650, 250

for PubMed, BigPatent.C, GovReport, MultiNews, respectively.

5.4.3 Comparison Systems

We compare against the standard extractive oracle, Ext-Oracle, obtained by greedily se-
lecting sentences maximizing ROUGE-1+ROUGE-2 F1 against gold summaries until the
word budget is met. For cohesion analysis, we also report metric values over the gold sum-
maries, labeled as Gold.

2HuggingFace, google/long-t5-tglobal-base
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The impact of cohesion modeling is assessed by employing a greedy selector over GCE
scores, equivalent to set fC = 0 in Eq. 5.3, dubbed LT5-Casc. Similarly, our cascaded extrac-
tion approach is contrasted against a LongT5 encoder and topped with a classification layer
that consumes the whole input at once, dubbed LT5-Flat. Moreover, similarly to previous
chapters, we do not include supervised baselines that require the calculation of coreference
chains or rhetorical structure trees over the input document, such as DiscoBERT (Xu et al.,
2020), because of their limited applicability in out-of-domain scenarios and their inability
to process documents of the length analyzed in this chapter.

Finally, the complete LongT5 encoder-decoder architecture is reported as an abstractive
baseline, dubbed LT5-Abs. In terms of sentence selectors, we compare against the following.

MMR-Select. (Xiao and Carenini, 2020) Reduces redundancy by selecting si (candi-
date sentence at selection step i) such that cosine similarity w.r.t. the partially extracted sum-
mary Ŝ is minimized. Informativeness and redundancy are balanced in the same way as in
Eq. 5.3.

N-gram passing (NPass). Encourages repetition by allowing p percent of n-grams in
si to overlap with Ŝ. When p = 0, this method reduces to n-gram blocking, whereas when
p= 1.0, to greedy selection. We report bi-gram passing with p= 0.8.

Semantic Similarity Distribution (KL-Dist). Models the intuition that noun phrases
in siwill be more semantically similar to some units in Ŝwhilst dissimilar to others (Taboada,
2004). Let Q̂i be the similarity distribution obtained when comparing every NP in si against
every NP in Ŝ. Similarly, let Q be the distribution of similarity between NPs in different
sentences in gold summaries. Then, fC = exp(−DKL(Q||Q̂i))−1, whereDKL is the Kull-
back–Leibler divergence. Higher values of fC indicate lower diverge, encouraging Ŝ to have a
cosine similarity distribution similar to those seen in gold summaries. All distributions were
discretized into 20 bins covering values from −1.0 to 1.0.

Shuffle Classifier (CCL-Select). Holistically quantifies local coherence using CCL
(Steen and Markert, 2022), a scorer trained to distinguish shuffled from unshuffled text. We
use RoBERTa (Liu et al., 2019) as underlying model and use a window of 3 consecutive sen-
tences. A dedicated model is trained for each of the datasets analyzed.

5.4.4 Automatic Evaluation

We employ the following metrics to quantify summary quality in terms of informativeness,
redundancy, cohesion, and local coherence.

Informativeness. Summaries are evaluated using ROUGE F1 score (Lin, 2004), and
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semantic relevancy is assessed by means of BertScore F1 (Zhang et al., 2019) with importance
weighting (IDF). For underlying BERTScore models, we use RoBERTa (Liu et al., 2019)
and DeBERTa v2 XLarge-MNLI (He et al., 2021), with HuggingFace checkpoint names
roberta-large and deberta-xxlarge-mnli, respectively. Previous work found that
DeBERTa obtained higher correlation with human scores than RoBERTa. 3

Redundancy. We report content redundancy scores according to sentence-wise ROUGE
(RdRL) and inverse Uniqueness (IUniq). Each metric considered computes a value in the
range of [0,1], the higher it is the more redundant a text will be.

Cohesion. Cohesion is evaluated with the followed metrics: CoRL, the average ROUGE-
L F1 between consecutive sentences; and Entity Graph (EGr) (Guinaudeau and Strube, 2013),
which models a text as a sentence graph with edges between sentences with nouns in com-
mon, using the average edge weight as a proxy for cohesion.

Local Coherence. Finally, we report local coherence scores using our CCL scorers (Steen
and Markert, 2022).

5.4.5 Human Evaluation

We elicit human judgments to assess overall quality, informativeness, and cohesion in two
separate studies following the methodology in Chapter 4. We sampled 30 documents from
the test set of PubMedand compare systemsLT5-Casc,MMR-Select, andKvD-Select.
We now elaborate on the details of each evaluation campaign.

Ranking Campaign. Following a ranking setup (Wu and Hu, 2018; Luo et al., 2019),
subjects were shown the abstract and the introduction of a scientific article along with two
system summaries, and then then asked to select the best summary (or select both in case of
tie) according to three criteria: (i) overall quality, (ii) informativeness, and (iii) cohesion. In
this setup, cohesion is evaluated as a holistic property of the text, as perceived by a reader.
For more details on catch controls, instructions, and examples, please see Appendix B.3.

Chaining Campaign. We employ the same evaluation setup outlined in § 4.4.4, in
which subjects were shown a single summary and were asked to annotate chains of sum-
mary content units (SCUs). As chain metrics, we report chain spread, chain density, and
sentence coverage.

Agreement between human annotators is obtained by calculating the average lexical over-
lap between chains, expressed in F1 score. We report the average overlap score over all pair
of annotators, averaged over all system summaries. For this campaign, we include reference

3https://github.com/microsoft/DeBERTa

https://github.com/microsoft/DeBERTa
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summaries as one more analysis system in order to obtain a point of reference in terms of
cohesive measurements across domains.

5.5 Results and Discussion

Next, we discuss the results of our analyses, both quantitative and qualitative, and the out-
come of the human evaluation campaigns.

5.5.1 Reducing Redundancy in Input Blocks

We start with the first control mechanism in the pipeline, the block selection module, and
analyze its effectiveness in reducing content redundancy in the input. The following block
selection strategies were compared: (i) Original, consisting of selecting blocks in their orig-
inal order in the source document;4 (ii) Oracle Selection, which selects the block that maxi-
mizes ROUGE F1 scores (mean of ROUGE-1 and ROUGE-2) w.r.t. the reference summary;
(iii) Max. Redundancy, which selects the most similar block possible (by flipping the sign in
Eq. 5.1); and finally, (iv) BlockSelect, the proposed strategy.

The analysis, showcased in Figure 5.2, evaluates input redundancy at each block selec-
tion step, as well as informativeness and redundancy of summaries extracted from the blocks
available at each step, using a greedy selector. The results indicate that the strategy used to
select input blocks has a direct impact not only on input redundancy –as intended– but also
on summary redundancy. This insight complements previous findings (Xiao and Carenini,
2020) that greedy selectors are highly sensitive to input redundancy.

Notably, BlockSelect is effective at incrementally building an input sequence with
lower content redundancy. Compared to the other strategies, ours has a clear impact on
summary redundancy, enabling the pipeline to consistently extract summaries that are sig-
nificantly less redundant.

5.5.2 Trading off Informativeness and Cohesion

Next, we turn to the summary extraction module. Tables 5.2 and 5.3 present the perfor-
mance of all compared system in terms of informativeness, whereas Tables 5.4 and 5.5, for
redundancy and cohesion, respectively.

In all our experiments, statistical significance at the 95% confidence level is estimated
using Mann–Whitney U tests (p < 0.05). For all datasets, we found no pairwise statistical

4For multi-document datasets, we use the order provided in the dataset release.
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Figure 5.2: Effect of block selection strategy over input redundancy (left), summary

informativeness (mid), and summary redundancy (right), as block selection proceeds

for PUBMED, BIGPATENT.C, GOVREPORT, and MULTINEWS.

difference between R1 scores of systems LT5-Casc, +MMR-Select, +NPass, and +CCL-
Select. Analogously, Tables 5.2, 5.3, 5.4, 5.5 indicate system groups in which no pairwise
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difference was found for each metric reported.

First, note the impact on cohesion when controlling for redundancy. MMR-Select
indeed manages to obtain comparable informativeness levels to LT5-Casc, being most ef-
fective for BigPatent.C. However, minimizing sentence similarity comes at the expense of
a significant decrease in cohesion (CoRL) and local coherence (CCL). Second, we find that
NPass is the only one capable of obtaining comparable or better ROUGE scores but CoRL
and EGr scores indicate that lexical passing is not enough to improve cohesion. Next, note
that KL-Dist employs a seemingly more aggressive trade-off between ROUGE and CoRL
in all datasets except PubMed. We hypothesize that its cohesion term, fC, saturates the final
candidate score during trade-off, which prompts the selector to pick candidates with lower
informative scores.

When guiding selection with a holistic shuffle scorer, as expected, CCL-Select obtains
remarkably high CCL scores, closing the gap w.r.t. Ext-Oracle in most datasets and even
surpassing it for BigPatent.C. However, note that this selector does show a significant re-
duction in CoRL and EGr scores w.r.t. LT5-Casc, indicating that CCL is measuring also
discourse organization, possibly in the form of rhetorical role ordering –first background,
then method, and so on. Hence, it can be said that summaries in CCL-Select are better
organized in terms of rhetorical roles but exhibit lower cohesion than greedily selected sum-
maries.

Finally, KvD-Select manages to strike an even more aggressive trade-off between in-
formativeness and cohesion. Across datasets, the selector exhibits lower ROUGE scores but
the best CoRL, EGr scores (except for PubMed), and second highest CCL score after CCL-
Select.

Complementary Cohesion Measures. At this point in the analysis, it is important to
note the limitations of the reported measures of cohesion so far. CoRL is capable of captur-
ing cohesive ties in consecutive sentences, potentially missing ties between sentences farther
apart; whereas EGr relies on lexical repetition of nouns to connect sentences, potentially
missing ties between lexically different but semantically similar nouns. For this reason, we
report complementary results for Lexical Graph (LGr) (Mesgar and Strube, 2016) and the
noun variants of DiscoScore (DS) (Zhao et al., 2023), DS-Focus[NN] and DS-Sent[NN].

Table 5.6 presents results for the additional metrics in all datasets and systems. Similarly
to the previous section, Table 5.6 indicates system groups, one marker per group, in which
no pairwise difference was found for each metric reported.

In terms of LGr scores, we find that KvD-Select outperforms all systems in all datasets
except PubMed, indicating that consecutive sentences in summaries extracted by our sys-
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System
PubMed BigPatent.C GovReport MultiNews

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

Ext-Oracle 65.10 37.99 60.76 53.85 23.20 46.90 72.66 40.90 69.36 62.66 33.73 57.93
LT5-Abs 46.27 20.92 42.40 37.63 15.67 32.84 51.72 24.79 49.03 45.72 17.70 41.86

LT5-Flat 48.15 21.45 44.49 39.54 13.25† 34.30† 59.33 25.94 56.29 47.07 17.54 42.96
LT5-Casc 46.16† 19.74† 42.49† 39.57† 13.25† 34.26† 59.73† 26.21† 56.50† 46.80† 17.21† 42.66†

+MMR-Select 46.14† 19.63† 42.47† 39.59† 13.29† 34.30† 59.79† 26.30† 56.56† 46.76† 17.13† 42.59†
+NPass 46.38† 19.92† 42.74† 39.59† 13.26† 34.29† 59.79† 26.25† 56.56† 46.91† 17.27† 42.78†
+KL-Dist 46.00† 19.62† 42.32† 39.25† 13.07† 33.89† 59.46† 25.85† 56.15† 46.63† 16.97† 42.45
+CCL-Select 45.91† 19.60† 42.45† 39.16† 12.95 33.92† 59.72† 26.24† 56.50† 46.85† 17.29† 42.71†
+KvD-Select 44.90 18.47 41.27 38.37 12.41 33.13 57.88 23.66 54.57 45.85 16.13 41.62

Table 5.2: Informativeness in terms of ROUGE scores (R1, R2, RL). †: no stat. differ-

ence between systems in the same column. Best systems are bolded; systems better

than LT5-CASC shown in blue and worse, in red.

tem contain more cohesive ties connecting highly semantically similar nouns. Differences
between systems in terms of DS-Foc and DS-Sen scores are much less clearer, with DS-Foc
seemingly being more indicative of content coverage and DS-Sen more indicative of cohe-
sion. Nevertheless, KvD-Select is consistently competitive across datasets, even obtaining
the highest DS-Sen score for MultiNews.

Effect of Parameter λsel. Next, we analyze how summary properties vary across increas-
ing levels of λsel, showcased in Figure 5.3 for all datasets. Note that when λsel = 0 selectors
depend entirely on fC, and λsel = 1.0 is equivalent to a greedy selector. As expected, infor-
mativeness is higher as fI is weighted up (higherλsel) with all selectors exceptMMR-Select.
This indicates that it is possible to increase cohesion without incurring a significant loss in
informativeness. Interestingly, KvD-Select seems robust to λsel in terms of CoRL and
RdRL. We hypothesize that KvD-Select benefits from a signal indicating which cohesive
ties are informative and worth enforcing.

Impact of Cascaded Processing. Next, we investigated the impact of processing input
blocks in a cascaded fashion vs concatenating them into a flat sequence and processing all
of them at once. The results on informativeness, redundancy, and cohesion are presented
in Tables 5.7, 5.8, and 5.9, respectively. Similarly to previous analyses, we indicate system
groups, one marker per group, in which no pairwise difference was found for each metric
reported.

We found that cascaded processing exhibits lower ROUGE scores than flat processing in
PubMed andMultiNews, and comparable performance for BigPatent.C andGovRe-
port. However, LT5-Casc shows slightly higher CoRL scores in all datasets. This indicates



122 Chapter 5. Trade-off Control during Summary Extraction

System PubMed BigPatent.C GovReport MultiNews
RoB DeB RoB DeB RoB DeB RoB DeB

Ext-Oracle 88.44 80.20 85.83 73.80 88.30 80.06 88.69 80.04
LT5-Abs 85.71 73.94 84.09 70.16 86.49 76.52 85.13 74.22

LT5-Flat 85.71 74.16 83.77 69.81 86.44 75.95 86.03 74.34
LT5-Casc 85.05 73.08 83.65† 69.75† 86.46† 76.06† 85.97 74.10

+MMR-Select 85.05 73.07† 83.66† 69.78† 86.49 76.08 85.93† 74.04
+NPass 85.13 73.21 83.67† 69.76† 86.47† 76.08 86.01 74.17†
+KL-Dist 85.02† 73.02† 83.52 69.57 86.30 75.84 85.94† 74.07
+CCL-Select 84.99† 72.98 83.63 69.62 86.47† 76.05† 85.91† 74.18†
+KvD-Select 84.76 72.43 83.34 69.15 85.99 75.17 85.72 73.67

Table 5.3: Semantic relevance of system summaries in terms of BERTScore F1 using

RoBERTa (RoB) and DeBERTa (DeB) as base models. Best systems are bolded. See

Table 5.2 for formatting details.

System
PubMed BigPatent.C GovReport MultiNews

RdRL IUniq RdRL IUniq RdRL IUniq RdRL IUniq

Ext-Oracle 13.91 20.36 14.70 19.51 14.20 29.14 10.08 16.98
LT5-Abs 16.15 21.24 38.04 39.40 15.89 26.15 12.60 20.00

LT5-Flat 16.49 23.43 19.76 21.32 15.78 32.46 12.24 20.63
LT5-Casc 17.08† 22.94† 20.15† 21.46† 16.34 31.68 12.26 20.59

+MMR-Select 16.99† 22.85† 19.17† 21.09† 16.16 31.53 12.05 20.50
+NPass 16.39 21.66 19.79† 21.18† 16.24 31.42 12.03 19.92†
+KL-Dist 16.83 22.08 20.30† 21.44† 16.49† 31.35 12.57 20.22
+CCL-Select 16.63 22.42 18.97 20.87 16.31 31.65 11.93 20.29
+KvD-Select 16.24 21.53 21.09 21.65† 16.69† 30.97 12.97 19.97†

Gold 13.54 19.12 18.11 20.85 13.37 28.78 9.72 16.35

Table 5.4: Summary redundancy in terms of sentence-wise ROUGE (RdRL) and in-

verse uniqueness (IUniq). †: no stat. difference between systems in the same column.

Best systems are bolded. For all metrics, lower is better. See Table 5.2 for formatting

details.

that cascaded processing puts a greedy selector in a better position to extract more cohesive
summaries at the expense of a slight decrease in informativeness.

Finally, we assessed the impact of architectural choice for the Local Encoder module
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Systems
PubMed BigPatent.C GovReport MultiNews

CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL

Ext-Oracle 14.68 0.99 0.43 15.94 0.68 0.34 16.54 1.92 0.58 10.85 0.68 0.51
LT5-Abs 19.17 0.96 0.86 42.58 0.82 0.81 18.54 1.60 0.81 14.25 0.78 0.78

LT5-Flat 16.59 1.10 0.24 19.76 0.75 0.32 16.06 2.01 0.31 12.25 0.91 0.25
LT5-Casc 17.47† 1.07† 0.25† 20.27† 0.73 0.37† 16.45† 2.04† 0.30† 12.51 0.90 0.24

+MMR-Select 16.89 1.07 0.23 18.83 0.73 0.33† 15.88 2.03† 0.30 11.83 0.88† 0.22
+NPass 16.66 1.07 0.25 19.92† 0.73 0.37† 16.38† 2.04 0.31† 12.18 0.89† 0.24
+KL-Dist 17.31† 1.08† 0.26† 20.54† 0.73 0.39† 16.87 2.05 0.31† 12.82 0.95 0.24
+CCL-Select 17.28† 1.06† 0.66 19.42 0.71 0.88 16.73† 2.04† 0.65 11.94 0.86 0.63
+KvD-Select 17.33† 1.05† 0.27 22.20 0.78 0.40† 18.88 2.15 0.32 14.22 0.99 0.28

Gold 14.45 0.96 0.91 19.20 0.78 0.92 16.20 1.95 0.87 10.45 0.71 0.90

Table 5.5: Summary cohesion in terms of consecutive ROUGE-L score (CoRL) and

EntityGraph (EGr), as well as coherence (CCL). For all metrics, higher is better. See

Table 5.2 for formatting details.

in our pipeline by comparing MemSum (Gu et al., 2022), and LLaMA with 7B parame-
ters (Touvron et al., 2023a). Using LLaMA as local encoder allows our system to select –
greedily– sentences that have little lexical overlap between them, prompting low summary
redundancy scores and in turn lowering cohesion scores. Moreover, the coverage is severely
impacted as seen by the low ROUGE scores. These results might indicate that finetuning a
large pretrained model like LLaMA does not necessarily translate to better informativeness,
performing much lower than a smaller model pretrained on the summarization task. Per-
haps unsurprisingly, task-specific, smaller models can be competitive to massive foundation
models trained on 1000x more data.

Using MemSum as the local encoder had a similar outcome, although not as severe as
when using LLaMa. Summaries in Gu et al. (2022) were obtained in a scenario where only
up to 500 sentences were consumed in the order they appear in the document. In contrast, in
our setup, the compared systems consume up to 16384 pieces of input text in the order the
block selector module retrieves. The performance gap between the results in Gu et al. (2022)
and the ones we report can then be explained by input length and ordering conditions.
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Systems
PubMed BigPatent.C GovReport MultiNews

LGr DS-Foc DS-Sen LGr DS-Foc DS-Sen LGr DS-Foc DS-Sen LGr DS-Foc DS-Sen

Ext-Oracle 1.1463 0.5185 0.9692 0.8022 0.5642 0.9499 1.9735 1.7069 0.9973 0.7488 0.3684 0.9789
LT5-Abs 1.0953 1.2290 0.9262 0.8411 5.0947 0.9106 1.6333 7.9962 0.9896 0.8492 0.7973 0.9602

LT5-Flat 1.2467 1.0925 0.9350 0.8084 1.0244† 0.9256† 2.0583 3.8380 0.9949 0.9687† 0.7623 0.9642
LT5-Casc 1.2204† 1.0219† 0.9303† 0.7858† 1.0291† 0.9228† 2.0838† 3.4428† 0.9947† 0.9628† 0.7353† 0.9629†

+MMR-Select 1.2203† 1.0117† 0.9300† 0.7803 1.0108 0.9239† 2.0797 3.4391 0.9948† 0.9464 0.7348† 0.9632†
+NPass 1.2153‡ 0.9833 0.9306† 0.7837† 1.0246† 0.9229† 2.0823† 3.4129 0.9946 0.9595 0.7183‡ 0.9630†
+KL-Dist 1.2196‡ 1.0048† 0.9296‡ 0.7773 1.0218† 0.9204‡ 2.0949 3.3835 0.9945‡ 1.0219 0.7361† 0.9617
+CCL-Select 1.2075§ 0.9970† 0.9305† 0.7623 0.9869 0.9233† 2.0867† 3.4481† 0.9948† 0.9323 0.7150‡ 0.9638
+KvD-Select 1.1933§ 0.9948† 0.9298‡ 0.8207 1.0644 0.9210‡ 2.1824 3.5580 0.9945‡ 1.0536 0.7235 0.9651

Gold 1.1088 0 1.0000 0.8368 - 1.0000 1.9990 - 1.0000 0.7756 - 1.0000

Table 5.6: Summary cohesion in terms of Lexical Graph (LGr; Mesgar and Strube

(2016)) and DiscoScore’s (Zhao et al., 2023) DS-Focus[NN] (DS-Foc) and DS-Sent[NN]

(DS-Sen). For all metrics, higher value is better except for DS-Foc. (†,‡,§): no stat.

difference between systems in the same column. Best extractive systems are bolded;

systems better than LT5-CASC shown in blue and worse, in red.

System
PubMed BigPatent.C GovReport MultiNews

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

LED-Abs 45.31 20.73 41.82 35.89 14.66 31.45 54.34 24.78 51.48 46.73 18.93 43.11
LT5-Abs 46.27 20.92 42.40 37.63 15.67 32.84 51.72 24.79 49.03 45.72 17.70 41.86

LT5-Flat 48.15 21.45 44.49 39.54† 13.25† 34.30† 59.33† 25.94† 56.29† 47.07† 17.54 42.96
LED-Flat 40.20 13.87 36.85 36.65 11.07 31.94 57.59 23.40 54.56 45.28 15.78 41.35

MemSum-Casc 40.29 14.85 37.09 36.07 10.79 30.97 54.91 19.66 51.75 44.47 15.28 40.32
LLaMA-Casc 37.60 11.86 34.51 36.82 11.24 32.00 54.20 19.02 50.90 45.02 15.48 41.00
LT5-Casc 46.16 19.74 42.49 39.57† 13.25† 34.26† 59.73† 26.21† 56.50† 46.80† 17.21 42.66

Table 5.7: Informativeness in terms of ROUGE F1 scores (R1, R2, RL), for Flat and

Cascaded block-processing systems. Best extractive systems are bolded. †: no stat.

difference between systems in the same column.

5.5.3 Human Evaluation

In both studies, statistical significance between system scores was assessed using a one-way
ANOVA with posthoc Tukey tests with 95% confidence interval (p < 0.01). Results are
presented in Table 5.10.

Ranking. Krippendorff’sα (Krippendorff, 2011) showed an inter-annotator agreement
of 0.68. For overall quality, subjects showed a significant preference for KvD-Select over
LT5-Casc. For cohesion, KvD-Select was perceived as more cohesive compared to LT5-
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Figure 5.3: Informativeness (left), redundancy (mid), and cohesion (right) across differ-

ent values of the trade-off parameter λsel for all datasets.
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System
PubMed BigPatent.C GovReport MultiNews

RdRL IUniq RdRL IUniq RdRL IUniq RdRL IUniq

LED-Abs 15.00 20.83 38.23 44.82 16.55 31.33 8.37 23.19
LT5-Abs 16.15 21.24 38.04 39.40 15.89 26.15 12.60 20.00

LED-Flat 14.70 21.86 17.62 20.07 14.94 31.01 11.25 19.06
LT5-Flat 16.49 23.43 19.76† 21.32† 15.78 32.46 12.24† 20.63

MemSum-Casc 12.58 19.39 19.41 21.23 13.77 27.47 12.29† 19.28
LLaMA-Casc 11.61 19.40 17.51 18.96 12.43 26.64 10.87 19.46
LT5-Casc 17.08 22.94 20.15† 21.46† 16.34 31.68 12.26† 20.59

Table 5.8: Summary redundancy in terms of sentence-wise ROUGE (RdRL) and in-

verse uniqueness (IUniq), for Flat and Cascaded block-processing systems. For all

metrics, lower is better. Best systems are bolded. †: no stat. difference between sys-

tems in the same column.

Systems
PubMed BigPatent.C GovReport MultiNews

CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL

LED-Abs 17.86 0.93 0.85 42.24 0.94 0.77 19.81 1.75 0.75 8.47 0.53 0.83
LT5-Abs 19.17 0.96 0.86 42.58 0.82 0.81 18.54 1.60 0.81 14.25 0.78 0.78

LED-Flat 15.18 1.00 0.36 17.67 0.69 0.35† 15.06 1.91 0.30 11.31 0.81 0.30
LT5-Flat 16.60 1.10 0.26 19.76† 0.75† 0.37† 16.06 2.00 0.28† 12.25† 0.91 0.26†

MemSum-Casc 12.87 0.75 0.25 20.56 0.62 0.34 13.93 1.72 0.29 13.16 0.84 0.26†
LLaMA-Casc 12.18 0.70 0.27 17.54 0.70 0.39 12.53 1.58 0.28† 11.15 0.77 0.25
LT5-Casc 17.47 1.07 0.26 20.26† 0.73† 0.39 16.46 2.04 0.27† 12.51† 0.90 0.26†

Table 5.9: Cohesion of extracted summaries in terms of consecutive ROUGE-L score

(CoRL) and EntityGraph (E.Gr.), as well as coherence (CCL), for Flat and Cascaded

block-processing systems. For all metrics, higher is better. Best systems are bolded.

†: no stat. difference between systems in the same column.

Casc, and LT5-Casc was more cohesive than MMR-Select.
Chaining. Chain overlap was calculated at 0.90. Differences between LT5-Casc and all

other systems, as well as MMR-Select–Gold and KvD-Select–LT5-Casc were found
to be significant, for all measurements of cohesion. Moreover, the number of NPs anno-
tated per chain was 2.30, 2.33, 2.80, and 2.55, for systemsLT5-Casc,MMR-Select,KvD-
Select, and Gold, respectively.

We found thatKvD-Select summaries exhibit more active and denser chains and better-
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System
Ranking Chaining

Ov↓ I↓ C↓ Spr↓ Den↑ Cov↑

LT5-Casc 1.59 1.56 1.59 1.93 1.29 57.12

+MMR-Select 1.50 1.48 1.47 2.36 1.28 53.21

+KvD-Select 1.41 1.46 1.44 2.05 1.40 68.78

Gold - - - 1.91 1.36 69.65

Table 5.10: Ranking (left) w.r.t. (Ov)erall quality, (I)nformativeness, and (C)ohesion;

and properties of annotated chains (right): spread (Spr), density (Den), and sentence

coverage (Cov,%). Best systems are bolded. (↑,↓): higher, lower is better.

covered sentences than the baselines. Note that LT5-Casc obtains the lowest chain spread
but also low coverage, indicating that its summaries exhibit very few chains that happen to
be close to each other. In contrast, MMR-Select obtains the highest chain spread and low
number of chains, indicating content with low diversity and sparsely presented.

5.5.4 Qualitative Analysis

Finally, the output of systems Gold, MMR-Select, and KvD-Select is qualitatively an-
alyzed in more detail. Table 5.11 showcases a reference summary along with candidate sum-
maries extracted from a MultiNews sample. For each system summary, we report its in-
formativeness, redundancy, and cohesion level, quantified by automatic metrics. Moreover,
each summary is manually annotated with lexical chains, and each sentence is presented with
the IDs of the chains covering them. We now proceed to analyze each system summary in
turn.

Starting with the gold summary, it exhibits six chains (1,2,3,4,5,11) that always cover adja-
cent or near-adjacent sentences. Whilst most chains span windows of two to four sentences,
we do observe one dominant chain, {company}, covering almost the entire summary. How-
ever, chains 2 ({phone business}) and 3 ({reporter}) also show high predominance.

Next, the MMR-Select summary exhibits seven chains (1,2,4,6,7,8,10), however show-
ing extensive coverage gaps. Chains 1 and 2 are again dominant, evidence that the system is
able to capture relevant content. Nevertheless, irrelevant content is still selected (chain 6,
{crawl}), possibly due to the redundancy-reduction term in Eq.X encouraging semantically
dissimilar sentences to be selected.

In contrast, the KvD-Select summary exhibits five chains (1,2,8,9,10), all of them cov-
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ering adjacent or near-adjacent sentences and spanning windows of two to three sentences.
Interestingly, although chains 1 and 2 are the dominant chains, chain coverage is rather uni-
form across the summary. As a consequence, topics flow smoothly across the summary, with
no abrupt change in chain presence as seen in MMR-Select.

Finally, we observe the following from the automatic metrics. The presence of highly in-
formative chains (1 and 2) inKvD-SelectandMMR-Select summaries give them a similar
average ROUGE score. Nevertheless, MMR-Select’s relevancy is slightly higher, possibly
due to the presence of chain 5 ({Stephen Elop}), also present in Gold. When looking at the
cohesion score, Gold shows a relatively low CoRL score. This is to be expected given that
CoRL is based on n-gram overlap and it is not equipped to capture cohesive ties other than
lexical reiteration. However, CoRL is able to capture the ties presented by KvD-Select
which scores higher than MMR-Select, demonstrating the efficacy of modeling cohesion
of the former.

5.6 Summary

In this chapter, we presented an extractive summarization algorithm that controls each sum-
mary quality independently, in scenarios where the input is highly redundant. Redundancy
is controlled as the input is consumed, and informativeness and cohesion are balanced during
sentence selection.

Results show that our input processing strategy is effective at retrieving non-redundant
yet relevant passages, reducing the redundancy levels the rest of the pipeline is exposed to.
We found that even a greedy sentence selector benefits greatly from such control, obtaining
encouraging improvements in summary informativeness and summary redundancy when
compared against strong block retrieval strategies. In addition, our sentence selector emu-
lates human memory to keep track of cohesive chains while building the summary, enforcing
ties between noun phrases directly. Extensive automatic and human experiments revealed
that it is possible to extract highly cohesive summaries that are as informative as summaries
optimizing only for informativeness. Interestingly, the scorers for informativeness and cohe-
sion –independently modeled– seem to complement each other. We hypothesize that our
selector benefits from a signal indicating which cohesive ties are more informative and worth
enforcing.
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System Summary Chain IDs

Gold (Avg. ROUGE=-; RdRL=8.3; CoRL=6.63)
Why did Microsoft buy Nokia’s phone business? 1,2
We now know Microsoft’s answer: the computing giant released a 30-slide presentation to-
day arguing that the move will improve Microsoft’s margins on Windows phones, which
will allow it to invest more in the platform, which will accelerate sales and market share
growth, The Washington Post reports.

1,2,3,5

But John Herrman at BuzzFeed has another explanation: "fear of dying alone." 3
Here’s what he and other pundits are saying: the presentation "manages to sound both in-
sane and uninspiring, outlining modest goals that still sound unrealistic," Herrman argues
- like capturing a whole 15% of the smartphone market.

2,3,5

"It’s a fitting end for the close of Microsoft’s Ballmer era, during which the com-
pany...missed out on the most important change in consumer electronics in decades" while
remaining profitable in unglamorous ways.

1,2,4

Like everyone, Microsoft is trying to ape the Apple model, MobileOpportunity observes. 1,3
But it’s not so sure that’s a good idea. 3
"There already is an Apple," the blog points out, and other software/hardware hybrid com-
panies, like Palm and BlackBerry, have been crushed under its heel.

1,3

Maybe Microsoft should have tried to patch up its tried-and-true strategy of licensing its
OS.

1,2

The move risks complicating Microsoft’s crucial relationships with other PC and device
manufacturers, one analyst tells ZDNet.

1,2,3

But he adds that "Microsoft needed to make a bold move" or face "certain terminal decline,"
and that the price it paid for Nokia "seems extremely reasonable."

1,3

Meanwhile, Matthew Yglesias at Slate digs up a fairly interesting memo from Nokia CEO
(and, perhaps, Microsoft heir apparent) Stephen Elop, in which he uses the story of a Deep-
water Horizon worker leaping from the burning oil platform - a seemingly desperate, yet
necessary move - to explain the company’s shift from its own failed OS to Windows Phone.

1,2,3,4,11

Of course, Yglesias notes, that move "was basically a total failure." 3,11

Table 5.11: Reference summary, along with summaries extracted by MMR-SELECT and

KVD-SELECT for a MULTINEWS sample with informativeness (average ROUGE score),

redundancy (RdRL), and cohesion (CoRL) scores. Each sentence is annotated with

lexical chains, color-coded in the text and IDs shown to the right. Text was detokenized

and truecased for ease of reading.(continues)
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System Summary Chain IDs

MMR-Select (Avg. ROUGE=28.25; RdRL=8.31; CoRL=11.98)
Summary: Microsoft’s acquisition of Nokia is aimed at building a devices and services strat-
egy, but the joint company won’t take the same form as Apple.

1,2,10

This crawl was run at level 1 (URLs, including their embeds, plus the URLs of all outbound
links, including their embeds).

6

Today’s sale price, which includes 1.65 billion euros in patents, is just 5.44 billion euros. 2,7
It’s been a rough decade. -
Microsoft is buying Nokia’s cell phone business and licensing its patent portfolio, according
to both companies.

1,2

In 2003, Nokia’s cell phone market share exceeded 35%. 1,2
That same year, its phone business alone posted an operating profit of 5.48 billion euros. 2,7
Nokia lashed itself to Microsoft’s mast after losing out to iOS and Android in the smart-
phone market share stakes and with the limited success of the Lumia range so far, enough
to keep interest in Windows Phone alive, most analysts are seeing a certain amount of in-
evitability to the acquisition, even if they are split on what its biggest implications are.

1,2,8,10

The seed for this crawl was a list of every host in the Wayback Machine. 6
The WARC files associated with this crawl are not currently available to the general public. 6
Five years ago was the year the App Store first opened. 2
Windows Phone has barely dented the now much larger smartphone market. 2
Many at the time wondered if Stephen Elop’s time at Nokia would be spent grooming the
company for purchase —a foreigner in all possible ways, he began his time at the company
with a memo rightly but offensively declaring Nokia’s proud platform a failure and quickly
pledged the company’s commitment to the still-tiny Windows Phone.

1,2,4

Table 5.11: (continued)
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System Summary Chain IDs

KvD-Select (Avg. ROUGE=26.33; RdRL=12.48; CoRL=14.41)
Summary: Microsoft’s acquisition of Nokia is aimed at building a devices and services strat-
egy, but the joint company won’t take the same form as Apple.

1,2,10

Microsoft has been working on its evolution into a devices and services company, moving
away from the services business it has traditionally been, for several years now with limited
success.

1,2,8

Nokia lashed itself to Microsoft’s mast after losing out to iOS and Android in the smart-
phone market share stakes and with the limited success of the Lumia range so far, enough
to keep interest in Windows Phone alive, most analysts are seeing a certain amount of in-
evitability to the acquisition, even if they are split on what its biggest implications are.

1,2,8,10

Owning the desktop (via Windows) and building additional services on top, like Office
or Search, has been vital for Microsoft’s strategy until now, so, as our interest shifts from
the desktop to the tablet or smartphone, it’s essential to Microsoft’s broader business (even
Azure) that it can retain that connection in some form.

1,2,9

But he said Microsoft’s challenge remains how to unite the myriad services and brands -
Windows, Nokia, Live, Surface, Xbox, Bing, and more - into a cohesive experience that will
command and cement customer loyalty.

1,2,9

It felt like a radical about-face, but no matter: Nokia and Microsoft were going to save each
other.

1,9

Table 5.11: (continued)





Chapter 6

Conclusions

The escalating demand for performant automatic summarization systems has spurred sig-
nificant advancements in the field in order to cater to the diverse information needs of end-
users. Specifically, when considering human end-users, summarizers are required not only to
deliver informative content but also to ensure that the resulting text is easily comprehensible,
i.e. to be coherent and cohesive. This requirement poses substantial challenges for extractive
summarizers, where the detection and selection of content units are critical, and their pre-
sentation demands coherence and cohesion.

The Micro-Macro theory of text comprehension and production serves as a comprehen-
sive framework, providing detailed operationalizations of cognitive processes that model in-
teractions among content units, both in close proximity and over extended spans. Through-
out this thesis, we presented evidence of the potency of these simulated processes as effective
mechanisms for controlling summary properties.

In the rest of this chapter we elaborate on the main conclusions drawn from our efforts
in this area, discuss the limitations of our approaches, and delineate potential avenues for
future work.

6.1 Conclusions

In this thesis, we investigated whether summary properties could be controlled in a prin-
cipled way to better fit the information needs of human end-users. To this end, we devel-
oped generic, extractive summarization systems equipped with mechanisms to control the
text properties of the produced summary. The proposed mechanisms are inspired by cog-
nitive processes that model the interactions among content units in human memory –both
short-term and long-term– according to the Micro-Macro theory, KvD. As a case study, we

133
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investigated the scenario in which the input document(s) is long and contains redundant
content. The resulting summarization systems allow the trade-off among informativeness,
content coverage, redundancy, and cohesion in summaries through interpretable parame-
ters. Furthermore, our models are interpretable, offering the option to researchers (or users)
to track which concepts are considered relevant, cohesive among each other, or redundant.

First, we focused on the problem of content selection during unsupervised summariza-
tion of highly technical long documents, such as scientific articles. In Chapter 3, we repro-
duced a robust KvD reader, a system simulating KvD processes during document under-
standing, and equipped it with mechanisms designed to exploit the properties of memory
trees during simulation. Our results demonstrated that the KvD reader configurations using
these mechanisms perform comparably or better than strong unsupervised baselines on rank-
ing highly relevant content units. Additionally, through comprehensive human evaluation
and analysis, we observed that our system preferred to provide less specific yet relevant con-
tent rather than content not relevant at all. Moreover, we implemented a control mechanism
capable of maintaining summary lengths close to a predefined budget, in order to ensure a
fair comparison at the system level. The resulting summaries exhibit a length distribution
with significantly low variance, centered around the budget, in contrast to a greedy sentence
selector.

Next, we shifted our focus to mechanisms to balance redundancy and cohesion during
document understanding, and the impact of these on informativeness in both unsupervised
and reinforcement learning scenarios. In Chapter 4, we introduced two novel computa-
tional implementations of unsupervised KvD reading, addressing many limitations of pre-
vious implementations, including reliance on external NLP tools. Deep analyses revealed
how the implemented cognitive processes trade-off informativeness for improved cohesion
while still maintaining acceptable levels of repetitiveness. Notably, the proposed KvD sys-
tems excel at extracting highly cohesive summaries even at increasing levels of document re-
dundancy, with humans perceiving the extracted summaries as more informative and more
cohesive than strong unsupervised baselines. In a reinforcement learning scenario, we found
that strong neural baselines are able to effectively optimize for informativeness and cohesion,
obtaining improvements for both properties and showcasing their complementary nature.

Finally, we focused on controlling summary qualities at various stages of the summariza-
tion pipeline simultaneously, presenting two mechanisms for achieving this in Chapter 5.
The first mechanism addresses input redundancy in a cascaded way, similar to information
retrieval pipelines, indirectly reducing redundancy in the final summary. The second control
mechanism consists of a summary extractor that quantifies informativeness and cohesion in-
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dependently, employing a linear combination approach to balance them. The proposed ex-
tractor models informativeness using strong neural encoders, while cohesion is modeled by a
novel KvD production simulator – a module simulating working memory during summary
sentence selection that enforces cohesive ties between candidate sentences. When tested on
both single and multi-document scenarios, the proposed control mechanisms are effective
at extracting highly cohesive summaries, albeit at the expense of informativeness in terms of
automatic metrics. However, the extracted summaries were still perceived as informative as
baseline summaries by human evaluators, highlighting the limitation of automatic metrics
in evaluating equally useful summaries with varying wordings.

In conclusion, this thesis offers a compelling option for summarization of long docu-
ments using extractive techniques that proved itself relevant in a highly changing generative
landscape where abstractive techniques are dominant. The extractive systems proposed in
this thesis have the advantage of producing more faithful summaries in terms of factuality
and writing style w.r.t. the input document. Additionally, the decisions our systems make
can be easily interpreted by inspecting the contents in the memory structures, providing
invaluable insights during troubleshooting or when aiming to adapt our models to other
usages or domains.

6.2 Limitations and Future Work

The research discussed in this thesis presents the following noteworthy limitations. In first
instance, the proposed system for content selection, described in Chapter 3, still relies on
external NLP tools, such as constituency and dependency parsers, to build semantic propo-
sitions. This reliance introduces a limitation, particularly when processing text in domains
significantly distant from those on which the tools were originally trained. Throughout this
thesis, we gradually reduced this dependence on external tools. Potential avenues for im-
provement in this area could be directed to simulate KvD reading over text spans, single
wordpieces, or clusters of them. Recent work has yielded promising results on enforcing
foci, modeled as wordpieces, in nearby sentences to be close in the embedding space (Jeon
and Strube, 2022; Zhao et al., 2023).

Another limitation pertains to the high technicality of the analyzed domain, i.e. scien-
tific articles and government patents and reports. In closed-book scenarios, where only the
source document is used for inference without any access to external knowledge, the domain
specificity hampers the capacity of automated systems to detect relevant content units or as-
certain the equivalence of two concepts. An exciting avenue for future work in this context
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involves extending the summarization task to an open-book scenario, wherein rich knowl-
edge sources are available at any stage of the summarization process. Recent work on lay
summarization of biomedical articles (Goldsack et al., 2023) has shown promising results by
leveraging external knowledge graphs to associate domain-specific concepts with their cor-
responding descriptions.

The results and conclusions derived throughout this thesis are also subject to the inher-
ent limitations of the current human evaluation methodologies. Notably, concerns raised by
Gillick and Liu (2010) regarding the quality differences between crowd-sourced and expert
annotations have been acknowledged. Later, Fabbri et al. (2021) confirmed this issue while
providing evidence that results from both levels of expertise can lead to the same meaning-
ful conclusions. These insights were considered throughout our evaluation efforts, prompt-
ing us to adopt a middle-ground approach by recruiting crowd-sourced subjects with basic
knowledge in the target domain, e.g. to have worked in the healthcare or medical sector be-
fore.

Finally, regarding the presentation format and usefulness of extractive summaries pro-
duced in this thesis, the following can be stated. First, the proposed system extracts complete
sentences and concatenates them to form the final summary. We do not perform any kind
of post-editing of discourse markers that might break coherence in the summary. However,
as we saw in Chapters 4 and 5, our results show that the extracted summaries are still per-
ceived as cohesive by humans. Nevertheless, post-editing is an interesting focus for future
work. Second, we argue about the usefulness of an extractive system in a generative land-
scape where large language models are predominant. Recent large language models have
shown impressive capabilities at producing coherent, assertive text, some even capable of
consuming long sequences of tokens. However, hallucinations are a pervasive problem in
these systems, especially in highly technical domains like the ones considered in this thesis.
In this scenario, an extractive summary has the advantage of presenting information from the
source verbatim and hence, with reduced –albeit still present– hallucination (Zhang et al.,
2023). Moreover, extracted summaries preserve the writing style of the input as well as tech-
nical, domain-specific terms, avoiding altogether the problems of over-simplification and
style drifting.



Appendix A

Optimization and Implementation

Details

In this appendix, we elaborate on the training and optimization details of the models de-
scribed in this thesis.

A.1 Trade-off Control during Summary Extraction

In this section, we provide pipeline details and complementary results for models in Chap-
ter 5. The local encoders in the cascaded retrieval module were trained in the following man-
ner.

Models based in LongT5 were finetuned from pretrained Huggingface’s checkpoint
google/long-t5-tglobal-baseusing one NVIDA A100 (80GB of GPU memory) Sim-
ilarly, LLama-based baselines were finetuned using 4 A100s from the official weights.1 The
global context encoder is trained from scratch. Table A.1 provides a comprehensive account
of hyperparameter values used for training and inference in our experiments, for all datasets.

Regarding the abstractive baselines, training of LongT5-Abs was done for 10k steps
with batch size of 128, AdamW optimizers, and constant learning rate of 1E-3, using the
Huggingface’s checkpoints google/long-t5-tglobal-base. Inference was done using
a beam size of 5 and length penalty of 0.5, 0.5, 2.0, and 1.0 for PubMed, BigPatent.C, Gov-
Report, and MultiNews, respectively.

1https://github.com/facebookresearch/llama/tree/llama_v1
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Parameter Value

Block Selection
Block length in tokens 2048

Overlapping context size in tokens 200
Damping factor (d) 0.85
Trade-off param. (λb) 0.2

Local Context Extractor
Optimizer Adam
Learning rate 1E-06
Learning rate scheduler Const.
Batch size 64
Max. gradient norm 2
Training steps 100000

Max. input length in tokens 2048

Max. # of sentences extracted 10

Global Contetext Encoder
# Attention heads 8
# Layers 1
Output layer size 200
Dropout 0.1
Optimizer Adam
Learning rate 1E-06
Learning rate scheduler Const.
Max. input length in tokens 16384

Max. input length in sentences 1000

Batch size 64
Max. gradient norm 1
Training steps 50000

Sentence Selector
All selectors. Trade-off param. (λsel) 0.8
Summary budget in number of tokens

PubMed 200
BigPatent.C 100
GovReport 650
MultiNews 250

KL-Dist. # of histogram bins 40
KvD-Selector.
Working memory (WM) 6
Min. NP cos. similarity (ν) 0.6
Recall cost (γrec) 0.01

Table A.1: Hyper-parameter values for all modules in the summarization pipeline de-

scribed in Chapter 5.



Appendix B

Human Evaluation Campaigns

In this appendix, we elaborate on the human evaluation campaigns run to asses content se-
lection (Chapter 3), overall quality and cohesion in an unsupervised scenario (Chapter 4),
and informativeness and cohesion in a supervised scenario (Chapter 5).

B.1 Assessing Content Selection

In this section, we provide details about the content selection campaign described in Chap-
ter 3.

B.1.1 Campaign Interface

We use Amazon Mechanical Turk to ask human subjects if a specific key content is present
in a system summary. We employ a question-answering (QA) paradigm (Clarke and Lap-
ata, 2010; Narayan et al., 2018b, 2019) with Cloze style queries instead of factoid questions
(Hermann et al., 2015). In each Human Intelligence Task (HIT), subjects are asked to read
a system summary and a query, and write down the answer to said query. Queries are con-
structed by replacing one factual detail from the reference (gold) summary with an ‘X’, as
can be seen in the example in Table B.1.

In regards to qualification criteria, we required annotators to have an HIT approval rate
higher than 99%, a minimum of 10000 approved HITs, be proficient in the English lan-
guage, and have worked in the healthcare or medical sector before. The payment is set to
$15/hourwhich translates to $0.50 per task at an average of 2 minutes per task. This tim-
ing was determined through a pilot internal run.

In regards of the content of the HIT’s, we randomly sampled 50 documents from the
test set and manually constructed three queries per document, blurring only one piece of in-
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formation per query. Each document-system-query combination was answered by three
subjects, for systems Oracle, Sub-Exp (tree size 20), NoTree, and PacSum, a total of
1800 HIT’s. We deployed the task items in batches (one system-query combination at a
time) to ensure that any single participant is not exposed to system summaries of the same
document or queries built from the same reference summary.

The answers obtained from subjects, as well as the gold answers, were cleaned by stem-
ming and removal of stopwords and whitespaces.

B.1.2 Answer Categories

Table B.2 presents a complete break-down of number of answers per category, as defined in
§ 3.3.6, for all systems.

B.2 Assessing Informativeness and Cohesion in an Un-

supervised Scenario

In this section, we provide further details of the evaluation campaigns described in Chap-
ter 4. The first one evaluated informativeness using a ranking approach, whereas the second,
cohesion through annotation of content unit chains.

B.2.1 Catch Controls

The two studies were deployed in the Amazon Mechanical Turker (AMT) platform. Anno-
tators were awarded $1 per Human Intelligence Task (HIT), translating to more than $15 per
hour. These rates were calculated by measuring the average annotation time per HIT in a
pilot study. Similar to the study described in the previous section, we ensured the quality of
annotations by requiring annotators to have an HIT approval rate higher than 99%, a min-
imum of 10000 approved HITs, be proficient in the English language, and have worked in
the healthcare or medical sector before. Furthermore, we implemented the following catch
controls: (i) we asked participants to check checkboxes confirming they had read the instruc-
tions and examples provided, and (ii) we discard HITs that were annotated in less than 5 min-
utes.1 Annotations that failed the controls were discarded in order to maximize the quality.

1Time threshold obtained from pilot study measurements.
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Task Description

You will be given the abstract of a scientific article along with a short text. The abstract is missing one key information bit (replaced
by "X"). Find a contiguous span that contains X and write it (or copy-paste it) in the text entry

Example

Article Excerpt
The higher prevalence in the series of Barba et al. compared to ours may either reflect a difference in the definition of PLA or a selection
bias since all patients in their study had undergone intracranial electrode implantation.
Sampled the insula in 50 consecutive patients with TLE on the basis of ICTAL symptoms or SCALP VEEG data suggesting an
early spread of seizures either to the suprasylvian opercular cortex (e.g., lip and face paresthesiae, tonic-clonic movements of the face,
dysarthria, motor aphasia, gustatory illusions, hypersalivation, and postictal facial paresis) or the infrasylvian opercular cortex (e.g.,
auditory hallucinations, early sensory aphasia).
The retrospective nature of this study may be associated with a recall bias for the incidence and characteristics of SSA/PLA.
Finally, as mentioned previously, our data does not allow drawing conclusions about the prognosis of SSA/PLA in non-lesional
temporal lobe-like epilepsy as numbers are too small.
Most patients with pharmacoresistant lesional TLE appear to have a favorable outcome following temporal lobectomy, even in the
presence of SSA and PLA.

Abstract
Purpose. Somatosensory (SSA) and pharyngolaryngeal auras (PLA) may suggest an extratemporal onset (e.g., insula, second so-
matosensory area).
We sought to determine the prognostic significance of SSA and PLA in X patients undergoing epilepsy surgery.
Methods. Retrospective review of all patients operated for refractory X at our institution between January 1980 and July 2007 com-
paring outcome between patients with SSA/PLA to those without.
Results. 158 patients underwent surgery for pharmacoresistant X in our institution.
Eleven (7%) experienced SSA/PLA as part of their seizures.
All but one had lesional (including hippocampal atrophy/sclerosis ) X.
Compared to patients without SSA or PLA, these patients were older (p= 0.049), had a higher prevalence of early ICTAL motor
symptoms (p= 0.022) and prior CNS infection (p= 0.022), and were less likely to have a localizing spect study (p= 0.025).
A favorable outcome was achieved in 81.8% of patients with SSA and/or PLA and 90.4% of those without SSA or PLA (p> 0.05).
Conclusion . Most patients with pharmacoresistant lesional X appear to have a favorable outcome following temporal lobectomy,
even in the presence of SSA and PLA.

Content X: [‘answer here’]

Table B.1: Example task from the human evaluation campaign on content selection,

described in Chapter 3. ‘Article Excerpt’ is a system summary and ‘Abstract’ is the gold

summary modified as query.

B.2.2 Campaign Interface

Figure B.1 depicts the instructions given to annotators for each campaign, whereas Figure B.2
and B.3 present example HITs.
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Category Model Total

Oracle Sub-Exp NoTree PacSum

Exact match 286 237 237 216 976

Synonymity 29 29 25 27 110

Specificity 7 33 18 16 74

Incompleteness 47 41 46 44 178

Incorrectness 68 89 106 44 307

Not found 13 21 18 103 155

Table B.2: Break-down of human answers by category, for summarization systems an-

alyzed in the human campaign on content selection over the PUBMED dataset.

B.3 Assessment of Summary Qualities in a Supervised

Scenario

In this section, we further elaborate on the ranking evaluation campaign described in Chap-
ter 5, which aimed at evaluating summary qualities –overall quality, informativeness, and
cohesion– in a holistic manner. Moreover, we provide details about the chaining campaign.

B.3.1 Catch Controls

Similarly to previous sections, both campaigns were run on AMT, where Turkers were re-
quired to have a HIT approval rate higher than 99%, a minimum of 10000 approved HITs,
be proficient in the English language, and have worked in the healthcare or medical sector
before. Annotators were awarded $1 per HIT, translating to more than $15 per hour. These
rates were calculated by measuring the average annotation time per HIT in a pilot study. Fur-
thermore, we implemented the following catch controls: (i) we asked participants to check
checkboxes confirming they had read the instructions and examples provided, and (ii) we
discard HITs that were annotated in less than 5 minutes, with the time threshold obtained
from pilot study measurements. Annotations that failed the controls were discarded in order
to maximize the quality.

B.3.2 Ranking Campaign

We collected three annotations per system-pair comparison and made sure that the same
annotator was not exposed to the same document twice. As an additional catch trial, we in-
cluded in each annotation batch an extra instance with summaries extracted by the extractive
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a Ranking Campaign

b Chaining Campaign

Figure B.1: Instructions given to annotators in the ranking (top) and chaining campaigns

(bottom) in Chapter 4.
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Figure B.2: Example task from the informativeness ranking campaign on Amazon Me-

chanical Turk, described in Chapter 4.

oracle and the random baseline. After discarding annotations that failed the controls, we are
left with 708 out of 810 instances (30 documents, 3 system pairs, 3 dimensions, and 3 anno-
tations per pair). Figure B.4 depicts the instructions given to annotators for each campaign,
and Figure B.5 presents and example.
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Figure B.3: Example task from the chaining campaign on Amazon Mechanical Turk,

described in Chapter 4.
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Figure B.4: Instructions given to annotators in the ranking campaign in Chapter 5.
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Figure B.5: Example task from the ranking campaign on Amazon Mechanical Turk,

described in Chapter 5.
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