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Abstract
Lexical understanding is an inalienable component of the translation process. In

order to correctly map the meaning of a linguistic unit to the appropriate target lan-

guage expression, the meaning of its constituent words has first to be identified and

disambiguated, followed by the application of compositional operations. This thesis

examines the competency of contemporary neural machine translation (NMT) models

on two core aspects of lexical understanding – word sense disambiguation (WSD) and

coreference resolution (CoR), both of which are well-established and much-studied

natural language processing (NLP) tasks. Certain linguistic properties that are under-

specified in a source language (e.g. the grammatical gender of a noun in English) may

need to be stated explicitly in the chosen target language (e.g. German). Doing so

correctly requires the accurate resolution of the associated ambiguities.

While recent modeling advances appear to suggest that both WSD and CoR are

largely solved challenges in machine translation, the work conducted within the scope

of this thesis demonstrates that this is not yet the case. In particular, we show that NMT

systems are prone to relying on surface-level heuristics and data biases to guide their

lexical disambiguation decisions, rather than engaging in deep language understanding

by correctly recognizing and leveraging contextual disambiguation triggers. As part

of our investigation, we introduce a novel methodology for predicting WSD errors

a translation model is likely to make and utilize this knowledge to craft adversarial

attacks with the aim to elicit disambiguation errors in model translations. Additionally,

we create a set of challenging CoR benchmarks that uncover the inability of translation

systems to identify referents of pronouns in contexts that presuppose commonsense

reasoning, caused by their pathological over-reliance on data biases.

At the same time, we develop initial solutions for the identified model deficien-

cies. As such, we show that fine-tuning on de-biased data and modifying the learning

objective of a model can significantly improve disambiguation performance by coun-

teracting the harmful impact of data biases. We furthermore propose a novel extension

to the popular transformer architecture that is found to strengthen its WSD capabilities

and robustness to adversarial WSD attacks by facilitating the accessibility of lexical

features across all layers of the model and increasing the extent to which contextual

information is encapsulated with its latent representations. Despite the so effected im-

provements to WSD and CoR, both tasks remain far from solved, posing a veritable

challenge for the current generation of NMT models, as well as for large language

models that have risen to prominence within NLP in recent years.
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Lay Summary

Translating text from one language into another necessarily requires a solid under-

standing of its constituent words. Since ambiguity is a pervasive feature of natural

language, the meaning of a word can vary depending on its context. The disambigua-

tion choice directly informs the choice of the corresponding target language expression

during the translation step, e.g. in case of ambiguous nouns that can express several

senses realized by different target language words, or pronouns that can point to dif-

ferent referents that must be explicitly marked in the generated translation. This thesis

examines the extent to which contemporary neural machine translation (NMT) systems

are able to correctly disambiguate polysemous words, a task commonly referred to as

word sense disambiguation (WSD), and identify the intended referents of ambiguous

pronouns, a task known as coreference resolution (CoR).

More specifically, the work presented herein proposes novel evaluation methods

and benchmarks that can be used to assess the WSD and CoR capabilities of NMT

systems. Evaluating models in this manner reveals that, rather than engaging in human-

like reasoning about the intended meaning of words, they are guided in their disam-

biguation decisions by undesirable biases and shallow heuristics. This, in turn, leads

to high error rates on the proposed evaluation suits and heightened vulnerabilities to

malicious inputs designed to elicit incorrect translations.

In addition to uncovering the shortcomings of translation systems with regard to

lexical language understanding, the thesis considers different ways of alleviating them.

This includes exposing models to training data that is demonstrably free of undesir-

able biases, explicitly encouraging correct disambiguation choices during model train-

ing, and modifying model design in a manner that encourages better utilization of the

disambiguation-relevant information contained within the translated text. While the

proposed strategies are shown to be effective, WSD and CoR continue to present a sig-

nificant challenge to computational models of various sizes, designs, and complexities,

requiring continued efforts from machine translation researchers.
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Chapter 1

Introduction

Anfangen ist leicht, Beharren eine Kunst.

German proverb

In recent years, the field of machine translation saw a rapid transition from phrase-

based statistical models to neural architectures utilizing dense representations of lin-

guistic units. Such neural machine translation (NMT) models extract relevant features

from the supplied training data according to the distributional hypothesis that posits

that the meaning of a linguistic unit, e.g. a word or a phrase, can be derived from

the contexts in which it occurs. Most often defined as a supervised task that relies on

parallel, multi-lingual datasets and incorporates a likelihood maximization1 objective,

NMT has lead to marked qualitative improvements of translations produced by auto-

mated systems, especially for language pairs for which abundant training resources

are available. But even in such ideal settings, NMT systems still struggle to adequately

handle certain sub-tasks that are integral to translation, such as word sense disambigua-

tion (WSD) and coreference resolution (CoR). Within the scope of this thesis, several

projects were completed with the goal of exploring the limitations of popular NMT

architectures through the lens of lexical understanding, i.e. errors and other deficien-

cies observed when reasoning about the meaning of words as part of the translation

process, as well as their potential causes.

Our focus on lexical understanding draws a connecting line between the individual

research projects completed as part of the PhD candidacy, leading up to the writing

of this thesis. Specifically, it foregrounds lexical ambiguity as a shared cause of chal-

lenges associated with both WSD and CoR (see Chapters 3 and 4, respectively), and

1Or, more precisely, negative likelihood minimization.

1
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highlights that improvements to NMT model design can improve the efficacy with

which this ambiguity is resolved (see Chapter 5). This, in turn, results in a more

self-contained and impactful contribution to a specific area of the highly diverse and

ever-evolving NLP research landscape.

The main disadvantage to this framing is the simplifying assumptions made by

the evocation of the term lexical. Although linguistic phenomena like WSD and CoR

are of primary relevance to the translation of specific lexical units, i.e. words that are

ambiguous in the source context but must be disambiguated as part of the translation

step, the language understanding capabilities required to competently navigate these

tasks extend beyond lexical boundaries by incorporating the wider context in which

said lexical units occur. Therefore, our use of lexical is a simplification aimed at the

outcome of the studied translation competencies, i.e. WSD and CoR, as their visible

and easily verifiable consequence. This assumes the understanding, on the part of

the reader, of the role played by the information found in the surroundings of the

ambiguous lexical units in their translation. Additionally, it must be noted that since

contemporary NMT systems predominantly operate on sub-word units (Sennrich et al.,

2016) rather than word tokens, it is not inherently obvious in how far the linguistic

notion of lexical units aligns itself with mechanistic realities of NMT implementations.

For the purposes of this thesis, we chose to subscribe to the notion of words as

lexical units to better connect our work with the larger body of past research in both

linguistics and NLP. Having thus established the intended meaning of lexical under-

standing as used within the context of this thesis, we hope that our chosen framing will

ultimately be beneficial rather than distracting to the reader.

Past machine translation research introduced a variety of methods for delineating

the limitations of translation systems. Among those, common strategies involve man-

ual analysis of model outputs (Shi et al., 2016; Liu et al., 2018; Yehudai et al., 2023),

examination of models’ internal representations such as layer activations or attention

distributions (Belinkov et al., 2017b,a; Marvin and Koehn, 2018; Tang et al., 2019), use

of benchmark datasets (Guillou and Hardmeier, 2016; Müller et al., 2018; Raganato

et al., 2019; He et al., 2020), and the engineering of adversarial attacks intended to

target assumed model weaknesses (Cheng et al., 2019; Stojanovski et al., 2020; Zhang

et al., 2020). Empirically verified insights into the deficiencies of best-performing

models are one of the central prerequisites for devising better, more capable meth-

ods, making them essential to the directed progress towards improved, robust, more

human-like translation quality. This thesis aims to contribute towards this goal, while
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also proposing extensions to popular NMT architectures that are intended to address

identified model shortcomings.

Despite gradual improvements in translation accuracy and over-promising claims

of human parity (Hassan et al., 2018), the landscape of commonly encountered ma-

chine translation errors remains a rich one. A non-exhaustive list includes premature

termination of the generated translations (Wu et al., 2016; Murray and Chiang, 2018),

failure to adequately translate terminology (Dinu et al., 2019; Skianis et al., 2020) and

figurative language (Toral and Way, 2018; Dankers et al., 2022), incorrect nominal

declination and verbal inflection (Moryossef et al., 2019; Voita et al., 2019a), halluci-

nations of target words not present in the input sentence (Wang and Sennrich, 2020;

Raunak et al., 2021), and the failure to correctly disambiguate ambiguous or polyse-

mous terms (Rios et al., 2017; Campolungo et al., 2022b). As addressing all possible

error types goes well beyond the scope of a thesis, our investigation instead focuses

on errors related to WSD and CoR, building upon and extending past work (Raganato

et al., 2019; Sakaguchi et al., 2020).

The decision to situate WSD and CoR at the core of this thesis may seem surpris-

ing, since both represent long-standing research areas within NLP and may appear to

offer little space for novel contributions as evidenced by saturated challenge sets (Ra-

ganato et al., 2019) or the apparent focus on long-tail phenomena in recent publications

(Sakaguchi et al., 2020). We argue that both research directions are far from "solved"

and attribute any indications to the contrary to insufficiently challenging benchmarks

and the often downplayed significance of model robustness to edge-cases.

As a translation step, WSD is concerned with the disambiguation of polysemous

source words given the available context, with the goal of producing an accurate tar-

get language translation that correctly captures the intended meaning of the input text.

CoR, on the other hand, describes the process of determining the meaning of a source

word (e.g. a pronoun) specifically by resolving its intended reference, i.e. by identify-

ing – within the source context – mentions of the same entity, object, or event that the

word in question points to. Given the ubiquity of ambiguity in natural language, com-

petent and robust ambiguity resolution capabilities of translation systems are essential

for ensuring the correctness of automatic translations. That such capabilities remain

far from guaranteed is evidenced by the following examples obtained from Google

Translate, a highly popular machine translation service that supports a large number of

translation directions:
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1. EN (input): The bat flew across the field after waking up.

DE (output): Der Schläger flog nach dem Aufwachen über das Feld.2

2. EN (input): The hurricane couldn’t blow over the windmill because it was weak.

DE (output): Der Hurrikan konnte die Windmühle nicht überwältigen, da sie

schwach war.

The first example represents an obvious WSD failure, where the English noun bat
is incorrectly translated into German as Schläger (i.e. in the "sports equipment" sense)

rather than as Fledermaus (i.e. in the "flying mammal" sense). The second example,

on the other hand, shows an instance of erroneous CoR, whereby windmill is wrongly

chosen to be the antecedent of the ambiguous pronoun it in the NMT translation, as

indicated by the agreement in grammatical gender between Windmühle (the German

translation of "windmill") and sie (one possible German translation of "it"). The re-

sulting translation is clearly incorrect as it violates commonsense assumptions despite

being grammatical. Although anecdotal, such evidence is symptomatic of the insuf-

ficient robustness of NMT models to disambiguation errors which, in our estimation,

necessitates continued research into topics such as WSD and CoR.

Translation errors can arise from a variety of causes, some of which have been

studied in depth. Among these, several stem from properties of the data that the model

is exposed to during training, e.g. gender bias (Stanovsky et al., 2019; Renduchin-

tala et al., 2021), positional bias (Stojanovski et al., 2020), low frequency phenomena

(Sennrich et al., 2016; Zhang et al., 2022), or domain mismatch in its various manifes-

tations (Müller et al., 2020; Saunders and Byrne, 2020). The other category includes

errors attributable to architectural and algorithmic choices made when designing the

model. Among this category are truncated translations due to the modeling of the end-

of-sequence tag (Newman et al., 2020) or large beam sizes during decoding (Murray

and Chiang, 2018), hallucinations due to exposure bias and domain shift (Wang and

Sennrich, 2020), and promotion of frequent patterns over infrequent – but more desir-

able – ones as a result of the loss minimization process (Vanmassenhove et al., 2021).

The goal of this thesis is to illuminate some of the understudied pathologies of

contemporary NMT systems, discuss their potential causes, and propose workable and

empirically verified solutions where feasible. Additionally, initial investigations are

conducted into whether translation challenges that were found to elicit undesirable

behaviour in traditional NMT models are equally problematic for the recently popu-

2Translations collected on 6.2.2024; EN = English, DE = German.



Chapter 1. Introduction 5

larized large language models (LLMs). The latter have been shown to perform com-

parably to state-of-the-art (SOTA) NMT systems on a variety of translation directions

(Hendy et al., 2023) and, as such, appear to present a valid alternative to conventional

translation models. In the following section, the content of the thesis is discussed in

greater detail, summarizing its main points and stating its intended contributions to the

field of natural language processing (NLP).

1.1 Structure of Thesis

The central contribution of this thesis is the principled discussion of several lexical
phenomena shown to pose a substantial challenge to contemporary NMT systems,

with a particular focus on the highly prolific transformer architecture (Vaswani et al.,

2017). Two of the projects discussed herein investigate the limitations of translation

models by uncovering their over-reliance on spurious correlations found in the training

data (Emelin et al., 2020; Emelin and Sennrich, 2021), while the third proposes a

simple architectural modification intended to improve lexical reasoning (Emelin et al.,

2019).

Chapter 2: Background: The study of lexical understanding in the context of ma-

chine translation and beyond received limited but consistent attention in recent years

from the academic community. The literature review provided in this chapter aims to

summarize findings and developments that are of relevance to studies discussed in sub-

sequent chapters and is intended to equip the reader with the prerequisite background

knowledge. As such, the review includes summaries of works on WSD in the con-

text of machine translation, commonsense CoR, transformer models that have risen to

uncontested prominence in NLP, as well as LLMs responsible for SOTA results on a

variety of language understanding and generation tasks.

Chapter 3: Over-fitting on Dataset Artifacts Facilitates Word Sense Disambigua-

tion Errors We propose that one prominent category of translation errors observed

in the output of NMT models – the incorrect disambiguation of polysemous nouns –

is the result of model behaviour being largely guided by correlations between individ-

ual word senses and context words that they frequently co-occur with during training.

As part of our investigation into the validity of this assumption, we introduce a new

statistical measure of the associative strength between any particular sense of an am-
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biguous word and the sentence context surrounding it, which we denote as a model’s

disambiguation bias (DB). We examine several strategies for calculating DB based on

different estimates of lexical correlation in the training data, showing their respective

efficacy for the prediction of WSD errors. Subsequently, we utilize our insights to

craft targeted, model-agnostic adversarial attacks that successfully exploit a transla-

tion model’s DB. Within the broader context of this thesis, this work sheds light onto

how the assumptions of distributional semantics that underpin the learning of lexical

representations in NMT can give rise to errors due to properties of the training data.

The chapter is complemented by a more recently conducted investigation into

whether LLMs are similarly susceptible to DBs and exhibit notable vulnerabilities

towards adversarial WSD attacks. The reported findings suggest that LLMs offer a

promising path towards translations that are more accurate and robust to WSD errors,

due to their superior lexical understanding capabilities.

The uncovered flaws in the lexical disambiguation step are a direct consequence

of the assumptions guiding the learning process. Complementing this finding, the

work presented in Chapter 4 lays out further causes for undesirable translation model

behavior.

Chapter 4: Deficits in Text Understanding Lead to Coreference Resolution Errors

The second type of translation errors examined in this thesis arises from a model’s

failure to correctly establish the coreference between a pronoun and its intended an-

tecedent, resulting in the incorrect translation of the pronoun into the target language.

A particularly challenging CoR setting are Winograd schemas (Winograd, 1972), since

they require the comprehender to apply commonsense reasoning (Sakaguchi et al.,

2020) in order to correctly identify the referent of an ambiguous pronoun among two

possible alternatives. While this task poses little difficulty for humans, it has been

found to confound computational models (Levesque et al., 2012) . We test NMT mod-

els in this setting on the assumption that their aptitude for solving difficult instances

of a task (such as CoR) is a useful indicator for their overall robustness and worst

case performance on said task. To enable this evaluation, we construct a challenge

set of English schemas paired with their translations into three typologically distinct

languages. Importantly, each target language enforces agreement between the gram-

matical gender of a pronoun and its referent. Models are evaluated based on whether

their translations of schema samples exhibit agreement between the translation of the

pronoun and its true referent. Across all examined translation directions, we find NMT
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models to perform close to chance. Expanding upon the conclusions drawn in Chap-

ter 3, we trace likely reasons for the observed errors to a combination of faulty model

behavior and inherent properties of the training data. More specifically, we find that

NMT models exhibit gender bias, frequently favouring masculine referent candidates

over their alternatives, and fail to identify words that provide the necessary context for

the disambiguation of the pronoun referent. By fine-tuning models on a small amount

of unbiased data and modifying their training objective, both shortcomings can be mit-

igated.

Building upon this evaluation of NMT models, a series of more recent experiments

examines the ability of a popular SOTA LLM to solve Winograd schemas, both across

different languages as well as when assessing the adequacy of contrasting translations.

Here, too, LLMs show promise as a new generation of translation engines by out-

performing traditional NMT models provided suitable prompting. Even so, however,

they remain far below human parity. Thus, translation that presupposes commonsense

reasoning remains a difficult challenge.

Taken together with the findings presented in Chapter 3, insights from this study

suggest that contemporary NMT architectures fall short of effectively utilizing lexical

information throughout the translation process. In Chapter 5, we consider a straight-

forward modification to the default transformer architecture (Vaswani et al., 2017) in

order to make embedding features more accessible and improve the leveraging of lex-

ical context, thereby aiding lexical reasoning.

Chapter 5: Better Access to Embedding Features in Transformers Improves Trans-

lation Quality Within the workflow of transformer models, features in the embedding

layer encode local information pertaining to a (sub-)word’s meaning in isolation from

any textual context. Through repeated application of the self-attention mechanism,

these initial features are enriched with relevant contextual information that may have

a disambiguating effect for polysemous and otherwise ambiguous words. Intuitively,

improving the extent to which an NMT model can access and utilize both local and

contextual information – represented by corresponding latent feature tensors – could

alleviate some of the observed word-level translation errors and improve overall trans-

lation quality. In this work, we propose a simple extension to the standard transformer

encoder-decoder model in the form of gated residual connections drawn between the

embedding layer and any of the subsequent layers. These lexical shortcut connections

can be deployed in the encoder of an NMT model, in its decoder, or both. We evaluate
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the resultant architecture on a variety of translation directions, finding that it outper-

forms the standard transformer on automatic metrics of translation quality, especially

for smaller models that are more limited in their representational capacity due to the

low dimensionality of their hidden states. Similarly, we observe notable improvements

in WSD accuracy. We furthermore verify that lexical shortcuts enable the transformer

to incorporate more contextual information into its hidden states as evidenced by diag-

nostic classifiers (Belinkov et al., 2017b).

To establish the usefulness of our modifications beyond the experiments included

in the original publication, we additionally benchmark the lexical shortcuts transformer

(LST) on the WSD and CoR benchmarks introduced in Chapters 3 and 4, comparing

its performance with that of the default transformer model. We discuss the results,

finding that they generally confirm the efficacy of shortcut connections for improved

lexical reasoning.

Chapter 6: Conclusion In the concluding chapter, we distill the main findings of

the thesis and discuss their implications for the current state of machine translation

research as well as their limitations. Lastly, we consider potential directions for future

research that could address some of the flaws of current NMT models identified here.

1.2 Contributions

The primary contributions made in this thesis to the field of machine translation and,

more generally, NLP are as follows:

• The presented work systematically uncovers and quantifies some of the under-
explored weaknesses and failure modes of contemporary NMT models, with

a focus on WSD and CoR

– Disambiguation bias is introduced as a novel concept and found to be

highly relevant to the prediction and elicitation of WSD errors in automatic

translation

– NMT models are shown to be incapable of applying commonsense reason-

ing to CoR as part of the translation step, instead relying on undesirable

data artifacts

• Novel resources in form of multiple challenge sets are constructed, verified,

and used to evaluate contemporary NMT models
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– Challenge sets can be used to assess WSD and CoR capabilities of models

across different domains and languages, offering a comprehensive coverage

– All challenge sets are constructed semi-automatically and can, therefore,

be expanded and modified to meet the requirements of subsequent studies

• A simple but effective extension of the transformer architecture is proposed

with the aim to improve lexical understanding capabilities of NMT models

– The extension demonstrably improves translation quality and WSD accu-

racy compared to the unmodified transformer

• A thorough evaluation of LLMs’ ability to perform cross-lingual WSD and
CoR is conducted that mirrors the presented NMT studies

– Findings suggest that LLMs generally outperform NMT models while nonethe-

less failing to demonstrate human-like competency



Chapter 2

Background: Lexical Understanding in

NMT

There is no greater impediment to the advancement of knowledge

than the ambiguity of words.

Thomas Reid, Thomas Reid’s Inquiry and Essays

This section outlines the necessary scientific background for the subsequent chap-

ters, presenting relevant work that motivated the hypotheses explored in this thesis and

paved the way for the conducted studies.

2.1 WSD and Biases in Neural Machine Translation

Polysemous terms represent a long-standing challenge for NMT. As such, various

WSD strategies have been employed in the past to improve the disambiguation accu-

racy of translation systems. As previously touched upon, the objective of WSD within

machine translation is to disambiguate polysemous source words by leveraging the

available source context, to ensure that the produced translations adequately capture

the intended meaning of the input text in the target language. More generally, WSD

is central to the task of language understanding and, as such, integral to a wide range

of NLP downstream tasks beyond machine translation, see e.g. (Bovi et al., 2015;

Shimura et al., 2019).

The study of WSD in NMT, which represents one of the foci of this thesis, can be

roughly subdivided into two categories – the evaluation of models’ WSD capabilities

as well as their improvement. Within the former category, past investigations have

10
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sought to understand the disambiguation process by analysing the internal represen-

tations of NMT models (Marvin and Koehn, 2018; Tang et al., 2019), or to quantify

their WSD efficacy through the use of challenge sets. Such evaluation datasets are

constructed either primarily through manual efforts as in (Lefever and Hoste, 2013;

Campolungo et al., 2022a; Futeral et al., 2022) or by relying on automated procedures

as in (Vickrey et al., 2005; Rios et al., 2017; Raganato et al., 2019), and usually task

the evaluated model with scoring a pair of contrastive translations that differ only in

the word sense assigned to a specific polysemous source word as indicated by its target

language translation. In contrast, works belonging to the latter category have either

relied on supervised learning with sense-annotated data (Campolungo et al., 2022b),

or leveraged external lexical knowledge resources such as WordNet (Pu et al., 2018)

as well as multi-modal data sources (Futeral et al., 2022) and large language models

(LLMs)(Iyer et al., 2023) in order to facilitate the correctness of WSD during transla-

tion. To our knowledge, no study prior to (Emelin et al., 2020) – discussed in Chapter 3

– has examined the interaction between training data artifacts and WSD performance.

Dataset artifacts, on the other hand, have been shown to enable models to make

correct predictions based on incorrect or insufficient information (McCoy et al., 2019;

Gururangan et al., 2018) by over-relying on spurious correlations present in the training

data. Within NMT, models were found to exhibit gender-bias that reinforces harmful

stereotypes (Vanmassenhove et al., 2018; Stanovsky et al., 2019; Sarti et al., 2023).

As a response, strategies have been proposed for de-biasing the training data (Li and

Vasconcelos, 2019; Le Bras et al., 2020), as well as for making models more robust to

data biases through adversarial training (Belinkov et al., 2019).

Adversarial attacks have previously been extended as an effective model analysis

tool from vision to language tasks (Samanta and Mehta, 2017; Alzantot et al., 2018;

Glockner et al., 2018; Zhang et al., 2019), including NMT (Cheng et al., 2019, 2020),

where the focus so far has been on strategies that require direct access to the loss

gradient or output distribution of the victim model. Recent surveys suggested that

state-of-the-art attacks often yield ungrammatical and meaning-destroying samples,

thus diminishing their usefulness for the evaluation of model robustness (Michel et al.,

2019; Morris et al., 2020). More specifically, targeted attacks on WSD abilities of

translation models have remained under-explored.
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2.2 CoR and Commonsense Reasoning in NLP

Closely related to WSD due to addressing ambiguity in natural language, the study of

coreference has a longstanding tradition in machine translation. In contrast to WSD,

CoR aims to identify the meaning of ambiguous words – such as pronouns – by de-

tecting mentions of the same entity, object, or event that the ambiguous word refers to

within the available text context, rather than by selecting its intended meaning from an

inventory of possible word senses. Likewise, past research into CoR focused on either

establishing the CoR capabilities and limitations of translation models, or on improv-

ing CoR performance either by incorporating auxiliary linguistic information into the

translation process, or by improving the extent to which the context surrounding am-

biguous words influences their translation.

As with WSD, CoR evaluation commonly utilizes contrastive test sets, due to the

insufficient sensitivity of popular translation quality metrics such as BLEU (Papineni

et al., 2002), since the impact of CoR errors is commonly confined to individual words

within any given sentence (Müller et al., 2018). Specifically, such benchmarks assess

CoR accuracy according to the likelihood assigned by the evaluated model to a pair of

contrasting translations – one where coreference has been resolved correctly resulting

in the intended translation of a particular ambiguous source word, and one where the

word in question is translated incorrectly due to failed CoR. Several such benchmarks

had been proposed in the past, including (Bawden et al., 2018; Guillou and Hardmeier,

2016; Müller et al., 2018; Stojanovski et al., 2020). Here, too, dataset construction

methods differ, ranging from manual (Bawden et al., 2018) to largely automated (Sto-

janovski et al., 2020). Among those, (Stojanovski et al., 2020) bears most relevance to

the work presented in Chapter 4 of this thesis. While their benchmark includes some

examples of coreference relations that require commonsense knowledge to be resolved

correctly, the corresponding test samples are constructed from a fixed set of templates

and remain limited to the EN-DE translation direction. Such limitations do not apply

to the Wino-X benchmark introduced in in Chapter 4.

Among strategies proposed to improve CoR in NMT, the currently dominant method-

ology involves incorporating document-level context of the source sentence – and, in

some cases, the target sentence – into the translation process by utilizing mechanisms

such as additional encoder and attention layers (Jean et al., 2017; Bawden et al., 2018;

Werlen et al., 2018; Stojanovski and Fraser, 2019; Herold and Ney, 2023) and two-

pass translation (Voita et al., 2019b), or by simply concatenating the source context



Chapter 2. Background: Lexical Understanding in NMT 13

with the sentence to be translated (Tiedemann and Scherrer, 2017). The related field of

document-level machine translation remains an active research area and its advance-

ment can be expected to lead to more effective and robust CoR in translation models

in the future.

While the success of CoR as a translation step manifests itself in whether indi-

vidual, ambiguous source words are disambiguated correctly or not within the target

language output, the disambiguation choice is informed by the context in which am-

biguous words occur, both within and outside the surrounding text (e.g. if the decision

is informed by commonsense or world knowledge). As such, lexical understanding

alone is not sufficient for CoR to be carried out – semantic and pragmatic reasoning

on sentence-, discourse-, and extra-textual level undoubtedly play an essential role, as

well. The framing of CoR as a competency predominantly linked to lexical under-

standing as assumed in this thesis is therefore a convenient shortcut that foregrounds

its outcome – i.e. the correct or incorrect choice of a specific target word – as a visible,

empirically verifiable reflection of the combined cognitive processes informing the

disambiguation step. Moreover, since the correctness and appropriateness of lexical

choices is one of the most immediately apparent indicators of the overall correctness

of translations, and the contributions of this thesis are centered around the limitations

of NMT systems with respect to the adequacy of their outputs, viewing CoR through

the lens of lexical understanding is a conscious, natural choice. However, we stress

that this is but one of the many aspects intrinsic to this complex, multifaceted task.

Winograd schemas, in turn, have been widely adopted in recent years for the study

of pronominal coreference and commonsense reasoning (Kocijan et al., 2020). Sev-

eral datasets had been proposed, differing in whether schemas are authored by experts

(Levesque et al., 2012; Wang et al., 2019) or composed by crowd-workers (Isaak and

Michael, 2019; Sakaguchi et al., 2020). Crucially, the majority of such resources is in

English, with the notable exception of (Amsili and Seminck, 2017; Bernard and Han,

2020; Melo et al., 2019) (each contain a few hundred examples).

Finally, while cross-lingual transfer in multi-lingual language models (MLLMs)

has received much attention in the past (Conneau et al., 2020, 2018; Hu et al., 2020;

Liang et al., 2020), research on commonsense reasoning in multiple languages re-

mains limited, with (He et al., 2020) being the only relevant machine translation study

known to us. Outside of the translation context, (Lin et al., 2021) examine whether

MLLMs can perform multilingual commonsense reasoning on tasks unrelated to Wino-

grad schemas.



Chapter 2. Background: Lexical Understanding in NMT 14

2.3 Transformer Models and Lexical Representations

The transformer architecture has been widely adopted by the NLP community, becom-

ing the de-facto workhorse for many applications, especially NMT. First introduced in

(Vaswani et al., 2017), it employs an attention mechanism to model the source and tar-

get contexts during translation, implicitly learning to align them. Parallel training and

scalability make it a popular choice for translation tasks with access to large quantities

of data where its use has yielded marked improvements in translation quality.

Within recent literature, several strategies for altering the flow of information within

the transformer have been proposed, including adaptive model depth (Dehghani et al.,

2018), layer-wise transparent attention (Bapna et al., 2018), and dense inter-layer con-

nections (Dou et al., 2018). The investigation presented in Chapter 5 of this thesis

bears strongest resemblance to the latter work, by introducing additional connectivity

to the model. However, rather than establishing new connections between layers indis-

criminately, it explicitly seeks to facilitate the accessibility of lexical features across

network layers.

Likewise, studies investigating the role of lexical features in NMT have informed

parts of Chapter 5. Among them, (Nguyen and Chiang, 2018) note that improving ac-

cessibility of source words in the decoder benefits translation quality for low-resource

settings. In a similar vein, (Wu et al., 2018) attend both encoder hidden states and

source embeddings as part of decoder-to-encoder attention, while (Kuang et al., 2018)

provide the decoder-to-encoder attention mechanism with improved access to source

word representations. Research concerning itself with the analysis of the internal dy-

namics and learned representations within deep neural networks (Karpathy et al., 2015;

Qian et al., 2016; Shi et al., 2016; Bisazza and Tump, 2018) was equally relevant to the

chapter. Here, (Belinkov et al., 2017a) and (Belinkov et al., 2017b) serve as primary

points of reference by offering a thorough and principled investigation of the extent to

which neural translation models are capable of learning linguistic properties from raw

text. However, it must be noted that the effectiveness of diagnostic classifiers, e.g. as

used in (Belinkov et al., 2017b), has been called into question by more recent studies

(Dhar and Bisazza, 2020), published after (Emelin et al., 2019).

The view of the transformer as a model learning to refine input representations

through the repeated application of attention is consistent with the iterative estimation

paradigm introduced in (Greff et al., 2016). According to this interpretation, given

a stack of connected layers sharing the same dimensionality and interlinked through
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highway or residual connections, the initial layer generates a rough version of the

stack’s final output, which is iteratively refined by successive layers, e.g. by enriching

localized features with information drawn from the surrounding context. This anal-

ysis is supported and further extended by the findings presented in Chapter 5 which

indicate that individual layers can learn novel information provided there is sufficient

representational capacity to do so.

2.4 Large Language Models

Recent years saw the emergence of LLMs as one of the focal points of NLP research,

owing to their effectiveness on a variety of diverse language comprehension and gener-

ation problems (Zhao et al., 2023). The core defining characteristics of LLMs are their

large parameter count, usually in the billions, as well as the enormous quantities of data

used in their unsupervised (pre-)training, which can include up to trillions of tokens for

text-based models (Hoffmann et al., 2022). As a result of their unprecedented scale,

LLMs exhibit powerful emergent capabilities (Wei et al., 2022a) that can be invoked

via methods such as prompting (Brown et al., 2020) to solve complex tasks. Some of

the representative models falling within this category include the GPT family (Radford

et al., 2018, 2019; Brown et al., 2020; OpenAI, 2023), PaLM (Chowdhery et al., 2022;

Anil et al., 2023), Llama (Touvron et al., 2023), and Pythia (Biderman et al., 2023). For

most LLMs, the majority of training data originates from sources authored in English

(e.g. websites, books, or academic publications), with other languages making up a far

smaller fraction of training samples by comparison (Zhao et al., 2023). Nonetheless,

LLMs have been found to exhibit strong multilingual capabilities even if not explic-

itly optimized for this purpose, performing well on tasks such as multilingual natural

language generation and multilingual question answering in few-shot and fine-tuning

settings (Chowdhery et al., 2022).

One of the most studied and leveraged emergent abilities of LLMs is in-context

learning, i.e. the models’ capacity to generate appropriate responses for previously un-

seen tasks after being provided with a task instruction in natural language and several

demonstrations of the expected model behavior (Brown et al., 2020). Since the formu-

lation of the instruction as well as the properties of the selected demonstrations have

been found to notably impact model performance (Liu et al., 2023), much research has

been dedicated to developing strategies for optimal prompt construction, commonly

referred to as prompt engineering (White et al., 2023). One notable prompting strategy
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that has enabled LLMs to better handle complex reasoning tasks is Chain-of-Thought

(CoT) prompting (Wei et al., 2022b) where the prompt incorporates intermediate rea-

soning steps that directly motivate and inform the expected model output. Since both

WSD and CoR can require in-depth linguistic and commonsense reasoning within the

translation setting, CoR presents a potentially necessary tool for obtaining accurate

translations from LLMs that conventional NMT systems may be unable to yield.

Despite their impressive performance on a variety of NLP benchmarks, LLMs

adoption in machine translation has remained gradual. While several LLM have been

developed specifically with multilingual applications in mind, including such models

as mT5 (Xue et al., 2021) and BLOOM (Scao et al., 2022), they have not yet found

widespread adaptation in translation applications. Among publications exploring the

use of LLMs for NMT (e.g. (Guerreiro et al., 2023)), (Hendy et al., 2023) and (Zhang

et al., 2023) are of particular relevance to the experiments conducted within the scope

of this thesis. Specifically, (Hendy et al., 2023) demonstrate that the GPT-3 and Chat-

GPT LLMs perform on-par with the winning WMT221 (Kocmi et al., 2022) systems

with respect to the quality of the generated translations for high-resource directions,

but fare less well on low-resource languages underrepresented in their training data.

On the other hand, (Zhang et al., 2023) investigate the efficacy of different prompt-

ing strategies for the translation task, finding that relatively simple English prompts

that incorporate (up to ten) high-quality demonstrations work best empirically. LLM

studies conducted in this thesis are directly motivated by these findings in both model

selection and prompt design.

1Seventh Conference on Machine Translation: https://www.statmt.org/wmt22.



Chapter 3

Dataset Artifacts Inform Word Sense

Disambiguation Errors

Light boats sail swift, though greater hulks draw deep.

William Shakespeare, King Henry VI

Abstract: Word sense disambiguation is a well-known source of translation errors

in NMT. We posit that some of the incorrect disambiguation choices are due to mod-

els’ over-reliance on dataset artifacts found in training data, specifically superficial

word co-occurrences – rather than a deeper understanding of the source text – which

becomes particularly evident in sentence contexts that contain contrasting lexical dis-

ambiguation cues. We introduce a method for the prediction of disambiguation
errors based on statistical data properties, demonstrating its effectiveness across sev-

eral domains and model types. Moreover, we develop a simple adversarial attack
strategy that minimally perturbs sentences in order to elicit disambiguation errors to

further probe the robustness of translation models. Our findings indicate that disam-

biguation robustness varies substantially between domains and that different models

trained on the same data are vulnerable to different attacks.1

1This section is based on work previously published at EMNLP 2020 (Emelin et al., 2020). Experi-
mental codebase is available at http://github.com/demelin/detecting_wsd_biases_for_nmt.

17
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3.1 Introduction

Consider the sentence John met his wife in the hot spring of 1988. In this context, the

polysemous term spring unambiguously refers to the season of a specific year. Its ap-

propriate translation into German would therefore be Frühling (the season), rather than

one of its alternative senses, such as Quelle (the source of a stream). To contemporary

machine translation systems, however, this sentence presents a non-trivial challenge,

with Google Translate (GT) producing the following translation: John traf seine Frau

in der heißen Quelle von 19882.

Prior studies have indicated that neural machine translation (NMT) models rely

heavily on source sentence information when resolving lexical ambiguity (Tang et al.,

2019). This suggests that the combined source contexts in which a specific sense of an

ambiguous term occurs in the training data greatly inform the models’ disambiguation

decisions. Thus, a stronger correlation between the English collocation hot spring and

the German translation Quelle, as opposed to Frühling, in the training corpus may

explain this disambiguation error. Indeed, John met his wife in the spring of 1988 is

translated correctly by GT.

We propose that our motivating example is representative of an undesirable be-

haviour NMT systems have yet to overcome when performing word sense disambigua-

tion (WSD). Specifically, we hypothesize that translation models are unable to reliably

identify and utilise informative disambiguation triggers in source sentences contain-

ing multiple potential candidates, resulting in incorrect diambiguation of polysemous

source terms. We attribute this primarily to the models’ reliance on lexical correlations

observed in the training data and inability to generalize beyond them. As a result, dis-

ambiguation errors are likely to arise when an ambiguous word co-occurs with words

that are strongly correlated in the training corpus with a sense that differs from the

reference.

To test our hypothesis, we evaluate whether dataset artifacts are predictive of dis-

ambiguation decisions made in NMT. First, given an ambiguous term, we define a

strategy for quantifying how much its context biases NMT models towards its differ-

ent target senses, based on statistical patterns in the training data. We validate our

approach by examining correlations between this bias measure and WSD errors made

by baseline models. Furthermore, we investigate whether such biases can be exploited

for the generation of minimally-perturbed adversarial samples that trigger disambigua-

2Last verified to be the case on 7.8.2023.
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tion errors. Our method does not require access to gradient information nor the score

distribution of the decoder, generates samples that do not significantly diverge from the

training domain, and comes with a clearly-defined notion of attack success and failure.

The main contributions of this study are:

1. We present evidence for the misleading reliance of NMT systems on lexical
correlations when incorrectly translating polysemous source words.

2. We propose a method for quantifying WSD biases that can predict disambigua-

tion errors.

3. We leverage data artifacts for the creation of adversarial samples that facilitate

WSD errors.

3.2 Can WSD errors be predicted?

To evaluate whether WSD errors can be effectively predicted, we first propose a method

for measuring the bias of sentence contexts towards different senses of polysemous

words, based on lexical co-occurrence statistics of the training distribution. We restrict

our investigation to English→German, although the presented findings can be assumed

to be language-agnostic. To bolster the robustness of our results, we conduct experi-

ments in two domains - movie subtitles characterized by casual language use, and the

more formal news domain. For the former, we use the OpenSubtitles2018 (OS18) (Li-

son et al., 2019) corpus3, whereas the latter is represented by data made available for

the news translation task of the Fourth Conference on Machine Translation (WMT19)4

The WMT19 data is obtained by concatenating the Europarl v9, Common Crawl,

and News Commentary v14 parallel corpora. Basic data cleaning is performed for both

domains, which includes removal of pairs containing sentences classified by langid5 as

neither German or English and pairs with a source-to-target sentence length ratio ex-

ceeding 2. We create development and testing splits for the OS18 domain by removing

10K sentence pairs from the full, shuffled corpus in each case. For each domain, we

additionally hold out 20% of pairs to be used for the extraction of test pairs containing

homographs, as described in section 3.2.2. Final statistics for the OS18 domain are

reported in table 3.1, and in 3.2 for the WMT19 domain.

3http://opus.nlpl.eu
4http://statmt.org/wmt19
5http://github.com/saffsd/langid.py
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Statistic train dev test held-out

# sentences 14,993,062 10,000 10,000 3,751,765

# words (EN) 106,873,835 71,719 71,332 26,763,351

# words/sentence (EN) 7.13 7.17 7.13 7.13

# words (DE) 100,248,893 67,185 66,799 25,094,166

# words/sentence (DE) 6.69 6,71 6.68 6.69

Table 3.1: Corpus statistics for the OS18 domain.

Statistic train dev (test18) test14 test19 held-out

# sentences 4,861,743 2,998 3,003 1,997 1,215,435

# words (EN) 100,271,426 58,628 59,325 42034 25,057,036

# words/sentence (EN) 20.62 19.56 19.76 21.05 20.62

# words (DE) 93,900,343 54,933 54,865 42,087 23,467,086

# words/sentence (DE) 19.31 18.32 18.27 21.08 19.31

Table 3.2: Corpus statistics for the WMT19 domain.

Each dataset is subsequently tokenized and truecased using Moses (Koehn et al.,

2007) scripts6. For model training and evaluation, we additionally learn and apply BPE

codes (Sennrich et al., 2016) to the data using the subword-NMT implementation7,

with 32k merge operations and the vocabulary threshold set to 50.

3.2.1 Quantifying disambiguation biases

An evaluation of cross-lingual WSD errors presupposes the availability of certain re-

sources, including a list of ambiguous words, a lexicon containing their possible trans-

lations, and a set of parallel sentences serving as a disambiguation benchmark.

Resource collection

Since lexical ambiguity is a pervasive feature of natural language, we limit our study

to homographs - polysemous words that share their written form but have multiple,
6http://github.com/moses-smt/mosesdecoder
7http://github.com/rsennrich/subword-nmt
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unrelated meanings. We further restrict the set of English homographs to nouns that

are translated as distinct German nouns, so as to confidently identify disambiguation

errors, while minimizing the models’ ability to disambiguate based on syntactic cues.

English homographs are collected from web resources8, excluding those that do not

satisfy the above criteria. The full list of homographs used in our experiments is as

follows: anchor, arm, band, bank, balance, bar, barrel, bark, bass, bat, battery, beam,

board, bolt, boot, bow, brace, break, bug, butt, cabinet, capital, case, cast, chair,

change, charge, chest, chip, clip, club, cock, counter, crane, cycle, date, deck, drill,

drop, fall, fan, file, film, flat, fly, gum, hoe, hood, jam, jumper, lap, lead, letter, lock,

mail, match, mine, mint, mold, mole, mortar, move, nail, note, offense, organ, pack,

palm, pick, pitch, pitcher, plaster, plate, plot, pot, present, punch, quarter, race, racket,

record, ruler, seal, sewer, scale, snare, spirit, spot, spring, staff, stock, subject, tank,

tear, term, tie, toast, trunk, tube, vacuum, watch.

Homograph Sense 1 Sense 2 Sense 3

bat

Chiroptera, Fledertier,

Handflügler, Fledermaus,

Flattertier

Schlagstock, Schlagholz,

Baseballschläger, Baseballkeule,

Schläger

-

case

Karton, Kiste,

Päckchen, Packung,

Schachtel, Kasten,

Behälter, Box

Fall, Zustand,

Sache, Gegebenheit,

Lage, Kontext,

Umstand, Status,

Sachverhalt, Stand,

Situation

Prozess, Gerichtsverfahren,

Fall, Gerichtsverhandlung,

Sache, Prozeß,

Rechtsstreit, Ermittlung,

Antrag, Rechtsfall,

Gerichtsfall, Klage,

Verhör, Rechtssache

letter

Sendschreiben, Papierbrief,

Musterbrief, Anschreiben,

Post, Schreiben, Brief

Buchstabe, Großbuchstabe,

Charakter, Letter,

Kleinbuchstabe, Zeichen

-

spring

Ringfeder, Spiralfeder,

Sprungfeder, Feder,

Tellerfeder, Federung,

Gummifeder

Frühling, Lenz,

Frühjahr

Quelle, Brunnen,

Quell, Wasserquelle

vacuum

Vakuum, Nichts,

Unterdruck, Leerraum,

Leere, Luftleere

Industriestaubsauger, Staubsauger,

Handstaubsauger, Teppichkehrer,

Bodenstaubsauger, Allessauger,

Sauger, Kesselsauger

-

Table 3.3: Non-exhaustive examples of homograph-specific sense clusters.

8http://7esl.com/homographs, http://en.wikipedia.org/wiki/List_of_English_homographs
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We next compile a parallel lexicon of homograph translations, prioritizing a high

coverage of all possible senses. Similar to (Raganato et al., 2019), we obtain sense-

specific translations from cross-lingual BabelNet (Navigli and Ponzetto, 2010) synsets.

Since BabelNet entries vary in their granularity, we iteratively merge related synsets

as long as they have at least three German translations in common or share at least one

definition.9 This leaves us with multiple sense clusters of semantically related German

translations per homograph. To further improve the quality of the lexicon, we manually

clean and extend each homograph entry to address the noise inherent in BabelNet and

its incomplete coverage. Table 3.3 lists some of the identified sense clusters for several

homographs. All homographs used in our experiments have at least two sense clusters

associated with them.

In order to identify sentence contexts specific to each homograph sense, parallel

sentences containing known homographs are extracted from the training corpora in

both domains. We lemmatize homographs, their senses, and all sentence pairs using

spaCy (Honnibal and Montani, 2017) to improve the extraction recall. Homographs are

further required to be aligned with their target senses according to alignments learned

with fast_align (Dyer et al., 2013). Each extracted pair is assigned to one homograph

sense cluster based on its reference homograph translation. Pairs containing homo-

graph senses assigned to multiple clusters are ignored, as disambiguation errors are

impossible to detect in such cases.

Bias measures

It can be reasonably assumed that context words co-occurring with homographs in

a corpus of natural text are more strongly associated with some of their senses than

others. Words that are strongly correlated with a specific sense may therefore bias

models towards the corresponding translation at test time. We refer to any source word

that co-occurs with a homograph as an attractor associated with the sense cluster of the

homograph’s translation. Similarly, we denote the degree of an attractor’s association

with a sense cluster as its disambiguation bias (DB) towards that cluster. Table 3.4 lists

the most frequent attractors identified for the different senses of the homograph spring

in the OS18 training set.

Intuitively, if an NMT model disproportionately relies on simple surface-level cor-

relations when resolving lexical ambiguity, it is more likely to make WSD errors when

9A manual inspection found the clusters to be meaningful.
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season water source device

summer hot like

winter water back

come find thing

Table 3.4: Examples of attractors for spring.

translating sentences that contain strong attractors towards a wrong sense. To test this,

we collect attractors from the extracted parallel sentences, quantifying their DB using

two metrics: Raw co-occurrence frequency (FREQ) and positive point-wise mutual

information (PPMI) between attractors and homograph senses. FREQ is defined in

Eqn. 3.1, while Eqn. 3.2 describes PPMI, with w ∈V denoting an attractor term in the

source vocabulary10, and sc ∈ SC denoting a sense cluster in the set of sense clusters

assigned to a homograph. For PPMI, P(wi,sc j), P(wi), and P(sc j) are estimated via

relative frequencies of (co-)occurrences in training pairs.

FREQ(wi,sc j) =Count(wi,sc j) (3.1)

PPMI(wi,sc j) = max(
P(wi,sc j)

P(wi)P(sc j)
,0) (3.2)

The disambiguation bias associated with the entire context of a homograph is obtained

by averaging sense-specific bias values DB(wi,sc j) of all attractors in the source sen-

tence S = {w1,w2, ...,w|S|}, as formalized in Eqn. 3.3, where DB(wi,sc j) can be either

FREQ(wi,sc j) or PPMI(wi,sc j). Context words that are not known attractors of sc j,

i.e. that have not been observed in the training corpus as accompanying an occurrence

of the homograph corresponding to sc j, are assigned a disambiguation bias value of 0.

DB(S,sc j) =
1
|S|

|S|

∑
i=1

DB(wi,sc j) (3.3)

As a result, sentences containing a greater number of strong attractors are assigned a

higher bias score.

3.2.2 Probing NMT models

To evaluate the extent to which sentence-level disambiguation bias is predictive of

WSD errors made by NMT systems, we train baseline translation models for both
10We consider any word that co-occurs with a homograph in the training corpus as an attractor of the

homograph’s specific sense cluster, except for the homograph itself which is not regarded as an attractor
for any of its known sense clusters.
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domains. The baselines include Transformer (Vaswani et al., 2017), LSTM (Luong

et al., 2015), and convolutional Seq-to-Seq (ConvS2S) (Gehring et al., 2017) models

of comparable size. Table 3.5 provides implementation and training details for each

architecture. Same settings are used for training identical model types in different

domains. We use standard fairseq11 (Ott et al., 2019) implementations for all model

types and train them on NVIDIA 1080ti or NVIDIA 2080ti GPUs. Model translations

are obtained by averaging the final 5 model checkpoints and decoding using beam

search with beam size 5.

Parameter Transformer LSTM ConvS2S

batch size (subwords) 24,576 4,096 4,096

# total updates 100,000 600,000 600,000

# warm-up updates 4,000 - -

# updates between checkpoints 1,000 4,000 4,000

# epochs between validations 1 1 1

optimizer Adam Adam Adam

Adam betas 0.9, 0.98 0.9, 0.98 0.9, 0.98

learning rate scheduled (inverse_sqrt) 0.0002 (+ decay) 0.0003 (+ decay)

# total parameters (OS18) 60,641,280 59,819,008 64,548,328

# total parameters (WMT19) 61,714,432 60,892,160 66,696,728

embedding size 512 512 512

Tied embeddings Yes Yes Yes

hidden size 2,048 512 512

# encoder layers 6 5 (bidirectional) 8

# decoder layers 6 5 8

kernel size - - 3

dropout 0.1 0.2 0.2

label smoothing 0.1 0.1 0.1

Table 3.5: Training settings and model hyperparameters.

SacreBLEU (Post, 2018) scores given in Table 3.6 indicate that all models are

11http://github.com/pytorch/fairseq
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reasonably competent, being comparable to results previously reported for these test

sets. e.g. by (Gehring et al., 2017; Vaswani et al., 2017).

WMT

Architecture OS18 test test 2014 test 2019

Transformer 29.7 27.5 38.2

LSTM 27.7 24.1 34.3

ConvS2S 27.7 23.5 32.5

Table 3.6: EN-DE translation performance (BLEU).

Test sets for WSD error prediction are constructed by extracting parallel sentences

from held-out, development, and test data (see tables 3.1 and 3.2 for details). The pro-

cess is identical to that described in section 3.2.1, with the added exclusion of source

sentences shorter than 10 tokens, as they may not provide enough context. For each

source sentence, disambiguation bias values are computed according to equation 3.3,

with sc j corresponding to either the correct sense cluster (DB✓) or the incorrect sense

cluster with the strongest bias (DB✗). Additionally, we consider the difference DBDIFF

between DB✗ and DB✓ which can be interpreted as the overall statistical bias in a

source sentence towards an incorrect homograph translation. All bias scores are com-

puted either using FREQ or PPMI.

We examine correlations between the proposed bias measures and WSD errors pro-

duced by the in-domain baseline models. Translations are considered to contain WSD

errors if the target homograph sense does not belong to the same sense cluster as its

reference translation. We check this by looking up target words aligned with source

homographs according to fast_align. To estimate correlation strength we employ the

ranked biserial correlation (RBC) metric12 (Cureton, 1956) and measure statistical sig-

nificance using the Mann-Whitney U (MWU) test (Mann and Whitney, 1947).

In order to compute the RBC values, test sentences are divided into two groups -

one containing correctly translated source sentences and another comprised of source

sentences with incorrect homograph translations. Next, all possible pairs are con-

structed between the two groups, pairing together each source sentence from one group

with all source sentences from the other. Finally, the proportion of pairs f where the
12We additionally used the non-parametric generalization of the Common Language Effect Size (Rus-

cio, 2008) for correlation size estimation, but couldn’t detect any advantages over RBC in our experi-
mental setting.
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DB score of the incorrectly translated sentence is greater than that of the correctly

translated sentence is computed, as well as the proportion of pairs u where the oppo-

site relation holds. The RBC value is then obtained according to Eqn. 3.4.

RBC = f −u (3.4)

Statistical significance, on the other hand, is estimated by ranking all sentences in the

test set according to their DB score in ascending order while resolving ties, and com-

puting the U-value according to Eqn. 3.5 - 3.7, where R1 denotes to the sum of ranks

of sentences with incorrectly translated homographs and n1 their total count, while R2

denotes the sum of ranks of correctly translated sentences and n2 their respective total

count.

U = min(U1,U2) (3.5)

U1 = R1 −
n1(n1 +1)

2
(3.6)

U2 = R2 −
n2(n2 +1)

2
(3.7)

To obtain the p-values, U-values are subjected to tie correction and normal approxima-

tion.13

Model FREQ✓ PPMI✓ FREQ✗ PPMI✗ FREQDIFF PPMIDIFF Length

OS18 Transformer -0.532 -0.578 0.327 0.474 0.708 0.674 0.018

OS18 LSTM -0.468 -0.504 0.386 0.486 0.690 0.630 0.008

OS18 ConvS2S -0.477 -0.514 0.391 0.492 0.723 0.658 0.021

WMT19 Transformer -0.610 -0.668 0.415 0.579 0.687 0.677 -0.004

WMT19 LSTM -0.661 -0.698 0.376 0.574 0.725 0.708 -0.009

WMT19 ConvS2S -0.648 -0.678 0.408 0.599 0.731 0.710 0.000

Table 3.7: Rank biserial correlation between disambiguation bias measures and lexical

disambiguation errors.

Table 3.7 summarizes the results14, including correlation estimates between WSD

errors and source sentence length, as a proxy for disambiguation context size. Statis-

tically significant correlations are discovered for all bias estimates based on attractors
13We use Python implementations of RBC and MWU provided by the pingouin library (Vallat, 2018).
14Positive values denote a positive correlation between bias measures and the presence of disambigua-

tion errors in model translations, whereas negative values denote negative correlations. The magnitude
of the values, meanwhile, indicates the correlations’ effect size.
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(p < 1e-5, two-sided). Moreover, the observed correlations exhibit a strong effect size

(McGrath and Meyer, 2006). For all models and domains the strongest correlations are

observed for DBDIFF derived from simple co-occurrence counts.

A brief diversion is required to further elaborate upon our interpretation of model-

specific effect size thresholds. Whether the effect size of correlations between dichoto-

mous and quantitative variables can be considered strong depends on the size ratio

between the two groups denoted by the dichotomous variable, i.e. its base rate. As

the standard formulation of RBC is sensitive to the base rate, the estimated effect size

decreases as the base rate becomes more extreme (see (McGrath and Meyer, 2006) for

details). Applied to our experimental setting, this means that the observed correlation

values are sensitive to the number of sentences containing disambiguation errors rela-

tive to the amount of those that do not. This is an undesirable property, as we are only

interested in the predictive power of our quantitative variables, regardless of how often

disambiguation errors are observed. Thus, we adjust the thresholds for the interpreta-

tion of correlation strength to account for WSD errors being less frequent than WSD

successes overall, in analogy to (McGrath and Meyer, 2006). Doing so enables the

direct comparison of correlation strength between domains and model types, as each

combination of the two factors exhibits a different disambiguation success base rate.

A common practice for interpreting effect size strength that does not account for

base rate inequalities is the adoption of Cohen’s benchmark (Cohen, 2013), which

posits that the effect size d is large if d >= 0.8, medium if d >= 0.5, and small if d >=

0.2. To adjust these threshold values for the observed base rates, they are converted

according to Eqn. 3.8, where p1 and p2 represent the proportions of groups described

by the dichotomous variable, with p2 = 1− p1:

threshold =
d√

d2 + 1
p1,p2

(3.8)

The adjusted effect size interpretation thresholds for WSD error correlation values as

given in Table 3.7 are provided in Table 3.8.

Challenge set evaluation

To establish the predictive power of the uncovered correlations, a challenge set of

3,000 test pairs with the highest FREQDIFF score is subsampled from the full WSD

test pair pool in both domains. In addition, we create secondary sets of equal size

(i.e. 3,000 sentence pairs) by randomly selecting pairs from each pool. As Figure 3.1
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Model small medium large

OS18 Transformer 0.0542 0.1344 0.2121

OS18 LSTM 0.0666 0.1647 0.2581

OS18 ConvS2S 0.0710 0.1753 0.2740

WMT19 Transformer 0.0381 0.0949 0.1508

WMT19 LSTM 0.0458 0.1138 0.1803

WMT19 ConvS2S 0.0502 0.1247 0.1971

Table 3.8: Base-rate adjusted thresholds for the interpretation of WSD error prediction

correlations.

illustrates, our translation models exhibit a significantly higher WSD error rate - by a

factor of up to 6.1 - on the challenge sets as compared to the randomly chosen pairs.

While WSD performance is up to 96% on randomly chosen sentences, performance

drops to 77–82% for the best-performing model (Transformer). This suggests that

lexical association artifacts, from which the proposed disambiguation bias measure

is derived, can be an effective predictor of lexical ambiguity resolution errors across

model architectures and domains.

Figure 3.1: WSD errors in subsampled challenge sets.

The observed efficacy of attractor co-occurrence counts for WSD error prediction

may be partially due to sense frequency effects, since more frequent senses occur in
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more sentence pairs, yielding more frequent attractors. NMT models are known to un-

derperform on low-frequency senses of ambiguous terms (Rios et al., 2017), prompting

us to investigate if disambiguation biases capture the same information. For this pur-

pose, another challenge set of 3000 pairs is constructed by prioritizing pairs assigned to

the rarest among each homograph’s sense sets. We find that the new challenge set has

a 72.63% overlap with the disambiguation bias challenge set in the OS18 domain and

64.4% overlap in the WMT19 domain. Thus, disambiguation biases appear to indeed

capture some sense frequency effects, which themselves represent a dataset artifact,

but also introduce novel information.

Our experimental findings indicate that translation models can be mislead by surface-

level correlations found in the training data when resolving lexical ambiguity and are

prone to disambiguation errors in cases where learned statistical patterns are violated.

Next, we use these insights for the construction of adversarial samples that cause dis-

ambiguation errors by minimally perturbing source sentences.

3.3 Adversarial WSD attacks on NMT

Adversarial attacks probe model robustness by attempting to elicit incorrect predic-

tions with perturbed inputs (Zhang et al., 2020). By crafting adversarial samples that

explicitly target WSD capabilities of NMT models, we seek to provide further evidence

for their susceptibility to dataset artifacts.

3.3.1 Generating adversarial WSD samples

Our proposed attack strategy is based on the assumption that introducing an attractor

into a sentence can flip its inherent disambiguation bias towards the attractor’s sense

cluster. Thus, translations of the so perturbed sentence will be more likely to contain

WSD errors. The corresponding sample generation strategy consists of four stages:

1. Select seed sentences containing homographs to be adversarially perturbed.

2. Identify attractors that are likely to yield fluent and natural samples.

3. Apply perturbations by introducing attractors into seed sentences.

4. Predict effective adversarial samples based on attractor properties.



Chapter 3. Dataset Artifacts Inform Word Sense Disambiguation Errors 30

The targeted attack is deemed successful if a victim model accurately translates the ho-

mograph in the seed sentence, but fails to correctly disambiguate it in the adversarially

perturbed sample, instead translating it as one of the senses belonging to the attractor’s

sense cluster. This is a significantly more challenging attack success criterion than the

general reduction in test BLEU typically employed for evaluating adversarial attacks

on NMT systems (Cheng et al., 2019). Samples are generated using homographs and

attractors collected in section 3.2.1, while all test sentence pairs extracted in section

3.2.2 form the domain-specific seed sentence pools. Attack success is evaluated on the

same baseline translation models as used throughout section 3.2.

Seed sentence selection

In order to generate informative and interesting adversarial samples, we focus on seed

sentences that are likely to be unambiguous. We thus apply three filtering heuristics to

seed sentence pairs:

• Sentences have to be at least 10 tokens long.

• We mask out the correct homograph sense in the reference translation and use a

pre-trained German BERT model (Devlin et al., 2019)15 to predict it. Pairs are

rejected if the most probable sense does not belong to the correct sense cluster

which suggests that the sentence context may be insufficient for correctly disam-

biguating the homograph. As a result, WSD errors observed in model-generated

translations of the constructed adversarial samples are more likely to be due to

the applied adversarial perturbations.

• 10% of pairs with the highest disambiguation bias towards incorrect sense clus-

ters are removed from the seed pool.

Setting the rejection threshold above 10% can further reduce WSD errors in seed sen-

tences. At the same time, it would likely render minimal perturbations ineffective, due

to the sentences’ strong bias towards the correct homograph sense. Thus, we aim for a

working compromise.
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IH During this first spring, he planted another tree that looked the same.

RH A hot new spring will conquer the dark nights of winter.

InH Come the spring, I will be invading the whole country called Frankia.

RnH After a long, eternal fallow winter, spring has come again to Fredericks Manor.

Table 3.9: Perturbation examples; seed sense: season, adversarial sense: water

source. Insertion/replacement in red.

Perturbation types

Naively introducing new words into sentences is expected to yield disfluent, unnatu-

ral samples. To counteract this, we constrain candidate attractors to adjectives, since

they can usually be placed in front of English nouns without violating grammatical

constraints. We consider four perturbation types:

• Insertion of the attractor adjective in front of the homograph (IH)

• Replacement of a seed adjective modifying the homograph (RH)

• Insertion of the attractor adjective in front of a non-homograph noun (InH)

• Replacement of a seed adjective modifying a non-homograph noun (RnH)

Replacement strategies require seed sentences to contain adjectives, but can potentially

have a greater impact on the sentence’s disambiguation bias by replacing attractors

belonging to the correct sense cluster. Examples for each generation strategy are given

in Table 3.9, with homographs highlighted in blue and added attractors in red.

Attractor selection

Since adjectives are subject to selectional preferences of homograph senses, not every

attractor will yield a semantically coherent adversarial sample. For instance, insert-

ing the attractor flying in front of the homograph bat in a sentence about baseball will

likely produce a nonsensical expression, whereas an attractor like huge would be more

acceptable. We attempt to control for this type of disfluency by only considering attrac-

tors that had been previously observed to modify the homograph in its seed sentence

15We use the implementation provided by the Transformers library (Wolf et al., 2020). We do not
fine-tune BERT, as our use case corresponds to its original masked language modeling objective.
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sense. For non-homograph perturbations, attractors must have been observed modi-

fying the non-homograph noun. This is ensured by obtaining a dependency parse for

each sentence in the English half of the training data and maintaining a list of modifier

adjectives for each known target homograph sense set and source noun.16

Lastly, to facilitate the fluency and naturalness of adversarial samples, the genera-

tion process incorporates a series of constraints:

• Comparative and superlative adjective forms are excluded from the attractor

pool.

• Attractors may not modify compound nouns due to less transparent selectional

preferences.

• Attractors are not allowed next to other adjectives modifying the noun, to avoid

violating the canonical English adjective order.

As all heuristics rely on POS taggers or dependency parsers,17 they are not free of

noise, occasionally yielding disfluent or unnatural samples.

We restrict the number of insertions or replacements to one, so as to maintain a

high degree of semantic similarity between adversarial samples and seed sentences. A

single seed sentence usually yields several samples, even after applying the aforemen-

tioned constraints. Importantly, we generate samples using all retained attractors at

this stage, without selecting for expected attack success.

Post-generation filtering

To further ensure the naturalness of generated samples, sentence-level perplexity is

computed for each seed sentence and adversarial sample using a pre-trained English

GPT2 (Radford et al., 2019) language model.18 Samples are rejected if their perplexity

exceeds that of their corresponding seed sentence by more than 20%. In total, we

obtain a pool of ∼500k samples for the OS18 domain and ∼3.9M samples for the

WMT19 domain. Each sample is translated by all in-domain models.
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Model FREQ✗ PPMI✗ FREQDIFF PPMIDIFF

OS18 Transformer 0.307 0.367 0.438 0.306

OS18 LSTM 0.258 0.261 0.375 0.227

OS18 ConvS2S 0.228 0.174 0.325 0.165

WMT19 Transformer 0.241 0.241 0.264 0.224

WMT19 LSTM 0.278 0.256 0.316 0.231

WMT19 ConvS2S 0.304 0.270 0.328 0.216

Table 3.10: Rank biserial correlation between attractors’ disambiguation bias and attack

success.

3.3.2 Identifying effective attractors

The success of the proposed attack strategy relies on the selection of attractors that

are highly likely to flip the homograph translation from the correct seed sense towards

an adversarial sense belonging to the attractors’ own sense set. To identify such at-

tractors, we examine correlations between attractors’ disambiguation biases and the

effectiveness of adversarial samples containing them. The attractors’ bias values are

based either on co-occurrence frequencies (Eqn. 3.1) or PPMI scores (Eqn. 3.2) with

the homographs’ sense clusters. In particular, we examine the predictive power of an

attractor’s bias towards the adversarial sense cluster (DB✗) as well as the difference

between its adversarial and seed bias values (DBDIFF). As before, RBC and MWU

measures are used to estimate correlation strength, with Table 3.10 summarizing the

results. The corresponding base-rate adjusted effect size interpretation thresholds are

summarized in Table 3.11.

Similarly to the findings reported in section 3.2.2, all uncovered correlations sur-

pass the large effect size thresholds, and are statistically significant with p < 1e-5.

Importantly, FREQDIFF exhibits the strongest correlation in all cases.

We are furthermore interested in establishing which of the proposed perturbation

methods yields most effective attacks. For this purpose, we examine the percentage

of attack successes per perturbation strategy in Figure 3.2, finding perturbations prox-

16This assumes correctness of homograph reference translations, which is unfortunately not always
guaranteed.

17We use spaCy in all cases.
18As implemented in the Transformers library.
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Model small medium large

OS18 Transformer 0.0339 0.0846 0.1345

OS18 LSTM 0.0338 0.0842 0.1340

OS18 ConvS2S 0.0328 0.0817 0.1301

WMT19 Transformer 0.0166 0.0414 0.0661

WMT19 LSTM 0.0178 0.0446 0.0712

WMT19 ConvS2S 0.0219 0.0548 0.0874

Table 3.11: Base-rate adjusted thresholds for the interpretation of attack success cor-

relations.

imate to the homograph to be most effective.

Figure 3.2: Successful attacks per perturbation.

Challenge set evaluation

Having thus identified a strategy for selecting attractors that are likely to yield suc-

cessful attacks, we construct a challenge set of 10,000 adversarial samples with the

highest attractor FREQDIFF scores that had been obtained via the IH or RH perturba-

tions. To enforce sample diversity, we limit the number of samples to at most 1,000

per homograph. Additionally, we create equally-sized, secondary challenge sets by

drawing samples at random from each domain’s sample pool. Figure 3.3 illustrates the

attack success rate for both categories, while Table 3.12 shows some of the successful

attacks on the OS18 transformer. Tables 3.13 - 3.18 list further examples of successful



Chapter 3. Dataset Artifacts Inform Word Sense Disambiguation Errors 35

Source input / Original output / Perturbed output Seed sense Adv. sense

S: We played the songs again until we felt they sounded right, worked out all the (nasty) bugs.

O: Wir spielten die Lieder wieder, bis sie sich richtig anhörten und alle Fehler✓ ausarbeiteten.

P: Wir spielten die Lieder wieder, bis sie sich richtig anhörten und alle bösen Käfer✗ ausarbeiteten. error insect

S: The driver gets out, opens the (large) boot, takes some flowers out to deliver.

O: Der Fahrer steigt aus, öffnet den Kofferraum✓, nimmt ein paar Blumen zum Ausliefern mit.

P: Der Fahrer steigt aus, öffnet den großen Stiefel✗, nimmt ein paar Blumen zum Ausliefern mit. trunk shoe

S: The doctor somehow got that wig mixed up with the newspapers and (different) letters.

O: Der Arzt verwechselte die Perücke mit den Zeitungen und Briefen✓.

P: Der Arzt verwechselte die Perücke mit den Zeitungen und anderen Buchstaben✗. message character

S: And he will not cease until every last race of the Four Lands is destroyed.

O: Und er wird nicht aufgeben, bis jede Rasse✓ der Vier Länder ausgelöscht ist.

P: Und er wird nicht aufhören, bis jedes letzte Rennen✗ der Vier Länder zerstört ist. ethnic group contest

Table 3.12: Examples of successful attacks on the OS18 transformer. Homographs are

blue, attractors are red.

adversarial attacks across the examined model architectures and dataset domains and

are included at the end of this chapter for readability.

Figure 3.3: Successful challenge sets attacks.

The success rates are modest, ranging from 4.62% to 24.39%, but nonetheless

showcase the capacity of targeted, minimal perturbations for flipping correct homo-

graph translations towards a specific sense set. Since our attacks do not require access

to model gradients or predictive score distributions, fall within the same domain as

the models’ training data, and have a strict notion of success, direct comparisons with

previous work are difficult. Crucially, compared with a random sample selection strat-
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egy, subsampling informed by attractors’ disambiguation bias is up to 4.25 times more

successful at identifying effective adversarial samples.

While the relative improvement in attack success rate over the random baseline is

comparable in both domains, the OS18 models are more susceptible to attacks in ab-

solute terms. This may be due to their lower quality, or the properties of the training

data, which can suffer from noisiness (Lison et al., 2019). Interestingly, the relative

robustness of individual model architectures to WSD attacks also differs between do-

mains, despite similar quality in terms of BLEU (see Table 3.6). A more thorough

investigation of architecture-specific WSD vulnerabilities is left for future work.

3.3.3 Sample quality analysis

To examine whether our adversarial samples would appear trivial and innocuous to

human translators, automatic and human evaluation of samples included in the chal-

lenge set is conducted. Following (Morris et al., 2020), we use a grammar checker19

to evaluate the number of cases in which adversarial perturbations introduce gram-

matical errors. In the OS18 domain, only 1.04% of samples are less grammatical than

their respective seed sentences, whereas this is the case for 2.04% of WMT19 samples,

indicating a minimal degradation.

We additionally present two bilingual judges with 1,000 samples picked at ran-

dom from adversarial challenge sets in both domains and 1,000 regular sentences from

challenge sets constructed in section 3.2.2. For each adversarial source sentence, anno-

tators were asked to choose whether the homograph’s translation belongs to the correct

or adversarial seed cluster. For each regular sentence, the choice was between the cor-

rect and randomly selected clusters. Across both domains, annotator error rate was

11.23% in the adversarial setting and 11.45% for regular sentences. As such, the gen-

erated samples display a similar degree of ambiguity to natural sentences that are likely

to elicit WSD errors in NMT models. Annotator agreement was substantial (Cohen’s

kappa = 0.7).

The same judges were also asked to rate the naturalness of each sentence on a

Likert scale from 1 to 5. Perturbed sentences were assigned a mean score of 3.94,

whereas regular sentences scored higher at 4.18. However, annotator agreement was

low (weighted Kappa = 0.17). The observed drop in naturalness is likely due to the

selection of attractors that are not fully consistent with the selectional preferences of

19http://languagetool.org
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homograph senses during sample generation. We attribute this to WSD errors in ref-

erence translations. For instance, we find that the attractor vampire is occasionally ap-

plied to seed sentences containing the homograph bat in its sporting equipment sense,

which can only occur if the attractor has been observed to modify this sense cluster in

the training data (see 3.3.1). Annotator instructions for both tasks are included at the

end of this chapter.

3.3.4 Transferability of adversarial samples

An interesting question to consider is whether translation models trained on the same

data are vulnerable to the same adversarial samples. We evaluate this by computing

the Jaccard similarity index between successful attacks on each baseline model from

the entire pool of adversarial samples described in section 3.3.2. We find the similarity

to be low, raging between 10.1% and 18.2% for OS18 and between 5.7% and 9.1%

for WMT19 samples, which suggests that different model architectures appear to be

sensitive to different corpus artifacts, possibly due to differences in their inductive

biases.

Considering the observed discrepancy in vulnerabilities between architectures, a

natural follow-up question is whether two different instances of the same architecture

are susceptible to the same set of attacks. We investigate this by training a second

transformer model for each domain, keeping all settings constant with the initial mod-

els, but choosing a different seed for the random initialization. While the similarity

between sets of successful adversarial samples is greater for two models of the same

type, with 25.2% in the OS18 and 12.4% in WMT19 domain, is it still remarkably low.

3.3.5 Comparison with other adversarial attack strategies

As indicated in Chapter 2, this work joins previous efforts dedicated to identifying

effective adversarial attacks on NMT models, and NLP models more broadly. This

section briefly discusses the advantages and disadvantages of the proposed methodol-

ogy compared to other existing adversarial attack strategies and considers the ways in

which the former complements the latter. Since an extensive survey of adversarial at-

tack methods in NLP goes well beyond the scope of this thesis, we refer the interested

reader instead to relevant publications such as (Roth et al., 2021).

Following the taxonomy of adversarial attacks presented in (Shayegani et al., 2023),

the attack methodology introduced in this chapter falls within the word-level category,
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but remains markedly distinct from related methods in that it does not utilize gradient

information (Samanta and Mehta, 2017), importance scores (Jin et al., 2020), or ran-

dom perturbations (Kuleshov et al., 2018), instead relying entirely on the properties of

a model’s training data to guide the construction of adversarial samples. As a black box

method, its main advantage lies in not necessitating access to the internals of the victim

model for the identification of effective attractor tokens and their placement within the

modified source sentence. This, in turn, makes it broadly applicable to a wide range of

NMT models trained on the same data (e.g. the widely used public datasets supplied

by the yearly Workshops for Machine Translation (WMT) (Bojar et al., 2018; Kocmi

et al., 2022)), thus reducing the need for the crafting of model-specific attack samples.

Furthermore, the proposed attack methodology could be equally leveraged for the de-

tection of vulnerabilities in translation system capabilities beyond WSD, such as the

modeling of subject-verb agreement where attractors may introduce translation errors

by flipping the inflection of the verb (Zacharopoulos et al., 2023), or on-target transla-

tions in multilingual NMT systems where attractors could effect target language drift

leading to off-target translations (Sennrich et al., 2023).

The proposed attack method does, however, require access to the training data

of the victim model, which – e.g. in case of proprietary translation systems – may

not be easily available. This, together with the (one-time) manual annotation efforts

required to refine BabelNet synsets, represents its primary disadvantage. Another po-

tential weakness of the method is the reliance of the attractor detection protocol on the

correctness of reference translations, particularly for settings where a model’s training

data had been collected from noisy sources, as is the case for the popular OpenSubti-

tles dataset (Lison et al., 2019). Overcoming these limitations represents a promising

research direction for future work concerned with adversarial attacks on NMT models.

In addition to representing a novel class of adversarial attacks, attractor-based

strategies can be complimentary to methods relying on gradient information or im-

portance scores (e.g. as provided by attention weights). Specifically, strong attractors

identified within the victim model’s training data can be preferentially inserted in po-

sitions determined via the analysis of model gradients and other importance markers,

potentially resulting in more effective adversarial attacks than can be constructed by

utilizing the corresponding attack methods in isolation. Moreover, combining attacks

that were obtained via a diverse set of strategies, e.g. white-box attacks exploiting

model gradients and black-box attacks based on training data properties, can be ex-

pected to produce a more challenging robustness benchmark for NMT (and NLP) mod-
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els compared to benchmarks relying on a single category of attacks, thus facilitating

the development of more reliable, consistent, and accurate translation models.

3.4 Conclusion

We conducted an initial investigation into leveraging data artifacts for the prediction of

WSD errors in machine translation and proposed a simple adversarial attack strategy

based on the presented insights. Our results show that WSD is not yet a solved problem

in NMT, and while the general performance of popular model architectures is high, we

can identify or create sentences where models are more likely to fail due to data biases.

The effectiveness of our methods owes to neural models struggling to accurately

distinguish between meaningful lexical correlations and superficial ones. As such, the

presented approach is expected to be transferable to other language pairs and transla-

tion directions, assuming that the employed translation models share this underlying

weakness. Given the model-agnostic nature of our findings, this is likely to be the case.

As a continuation to this work, we intend to evaluate whether multilingual transla-

tion models are more resilient to lexical disambiguation biases and, as a consequence,

are less susceptible to adversarial attacks that exploit source-side homography. Extend-

ing model-agnostic attack strategies to incorporate other types of dataset biases and to

target natural language processing tasks other than machine translation is likewise a

promising avenue for future research. Lastly, the targeted development of models that

are resistant to dataset artifacts is a promising direction that is likely to aid generaliza-

tion across linguistically diverse domains.

Annotator instructions

The judges were presented with the following instructions for the described annotation

tasks:

Your first task is to judge whether the meaning of the homograph as used in the

given sentence is best described by the terms in the SENSE 1 cell or by those in the

SENSE 2 cell. Please use the drop-down menu in the WHICH SENSE IS CORRECT?

column to make your choice. If you think that neither sens captures the homograph’s

meaning, please select NONE from the options in the drop-down menu. If you think

that the homograph as used in the given sentence can be equally interpreted both as

SENSE 1 or SENSE 2, please select BOTH.
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We’re also asking you to give us your subjective judgment whether the sentence

you’ve been evaluating makes sense to you, i.e. whether it’s grammatical, whether it

can be easily understood, and whether it sounds acceptable to you as a whole. Typos

and spelling mistakes, on the other hand, can be ignored. Specifically, we would like

you to assign each sentence a naturalness score, ranging from 1 to 5, according to the

following scale:

• 1 = Completely unnatural (i.e. sentence is clearly ungrammatical, highly im-

plausible, or meaningless / incoherent)

• 2 = Somewhat unnatural (i.e. sentence is not outright incoherent, but sounds

very strange)

• 3 = Unsure (i.e. sentence is difficult to judge either way)

• 4 = Mostly natural (i.e. sentence sounds good for the most part)

• 5 = Completely natural (i.e. a well-formed English sentence)

For instance a sentence like "John ate ten pancakes for breakfast." may get a rank-

ing between 4 and 5, as it satisfies all of the above criteria. A sentence like "John ate

green pancakes for breakfast." is grammatical but somewhat unusual and may there-

fore get a score between 3 and 4. "John ate late pancakes for breakfast.", on the other

hand, does not sound very natural since pancakes cannot be "late" and may therefore

be rated as 1 or 2. For this judgment we ask you to pay special attention to words in

the neighborhood of the homograph. To submit your judgment please select the appro-

priate score from the drop-down menu in the DOES THE SENTENCE MAKE SENSE?

column.

Examples of successful adversarial samples

Tables 3.13 - 3.18 list examples of successful adversarial attacks across the examined

model architectures and dataset domains. As before, homographs are highlighted in

blue, whereas the introduced attractors are emphasized in red.
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Source input / Original output / Perturbed output Seed sense Adv. sense

S: The Penguin was beating him with an (old) bat, but it was Gordon that pulled the trigger.

O: Der Pinguin hat ihn mit einem Schläger✓ geschlagen, aber Gordon hat abgedrückt.

P: Der Pinguin hat ihn mit einer alten Fledermaus✗ geschlagen , aber Gordon hat abgedrückt. club animal

S: I’m not going to relax until that thing its back in its (simple) case.

O: Ich werde mich nicht entspannen, bis dieses Ding nicht seinen Rücken in seinem

Koffer✓ hat.

P: Ich werde mich nicht entspannen, bis das Ding nicht seinen Rücken in seinem

einfachen Fall✗ hat. container instance

S: "They rest in their mother’s (hot) lap, enjoying the ultimate bliss"

O: "Sie ruhen im Schoß✓ ihrer Mutter, genießen das ultimative Glück"

P: "Sie ruhen in der heißen Runde✗ ihrer Mutter, genießen das ultimative Glück" body part circuit

S: That’s mighty neighbourly, but I got to play the (big) organ for the parson tonight.

O: Das ist mächtig nachbarschaftlich, aber ich muss heute Abend Orgel✓ für den

Pfarrer spielen.

P: Das ist mächtig nachbarschaftlich, aber ich muss heute Abend das Organ✗ für den

Pfarrer spielen. instrument body part

S: I’m just gonna write a (high) note, and then we’ll go.

O: Ich schreibe nur einen Zettel✓ und dann gehen wir.

P: Ich schreibe einen hohen Ton✗ und dann gehen wir. writing tone

Table 3.13: Additional examples of successful attacks on the OS18 transformer. Homo-

graphs are blue, attractors are red.



Chapter 3. Dataset Artifacts Inform Word Sense Disambiguation Errors 42

Source input / Original output / Perturbed output Seed sense Adv. sense

S: I only sell (good) arms to people who fight clean wars! sure!

O: Ich verkaufe nur Waffen✓ an Leute, die saubere Kriege bekämpfen.

P: Ich verkaufe nur gute Arme✗ an Leute, die saubere Kriege bekämpfen. weapon body part

S: We’ve heard they’re trying to raise (new) capital to rebuild their armies.

O: Wir haben gehört, sie wollen Kapital✓ sammeln, um ihre Armeen aufzubauen.

P: Wir haben gehört, dass sie eine neue Hauptstadt✗ aufziehen wollen, um ihre Armeen

aufzubauen. money city

S: Did you charge the Donellys for five (closed) cases of vodka?

O: Haben Sie die Donellys für fünf Kisten✓ Wodka berechnet?

P: Haben Sie die Donellys für fünf geschlossene Fälle✗ Wodka berechnet? container court case

S: All units, repeat. that is a battered yellow van, no (separate) plates.

O: An alle Einheiten, das ist ein gegrillter gelben Van, keine Nummernschilder✓.

P: An alle Einheiten, das ist ein gegrillter gelben Van, keine getrennten Teller✗. number plate dish

S: Um, (old) seals tell the truth, but a sea lion’s always lyin’?

O: Robben✓ sagen die Wahrheit, aber ein Seelöwen lügt immer ?

P: Alte Siegel✗ sagen die Wahrheit, aber ein Seelöwen lügt immer? animal emblem

Table 3.14: Examples of successful attacks on the OS18 LSTM. Homographs are blue,

attractors are red.

Source input / Original output / Perturbed output Seed sense Adv. sense

S: - Oh, well, keep the (small) change and have a drink on me.

O: Behalten Sie den Rest✓ und trinken Sie auf mich.

P: Oh, nun, behalte die kleine Veränderung✗ und trink einen auf mich. coins development

S: Do you know how that (specific) date went, by any chance?

O: Wissen Sie, wie das Date✓ gelaufen ist?

P: Wissen Sie, wie das Datum✗ gelaufen ist? meeting calendar date

S: Goal! (public address) An amazing last-minute third goal that takes Greenock

into the (strong) lead.

O: Ein erstaunliches drittes drittes Ziel, das Greenock in die Führung✓ führt.

P: Ein erstaunliches drittes Ziel, das Greenock in die starke Spur✗ führt. first place clue

S: I mean, you seem like someone who plots out every (fucking) move.

O: Ich meine, Sie scheinen jemand zu sein, der jeden Schritt✓ aussticht.

P: Ich meine, Sie scheinen jemand zu sein, der jede verdammte Bewegung✗

ausschüttet. action movement

S: You know, if we get hungry, we eat some chips, have some (crazy) punch ...

O: Weißt du, wenn wir hungrig werden, essen wir ein paar Chips, haben etwas Punsch✓ ...

P: Weißt du, wenn wir hungrig werden, essen wir ein paar Chips, haben einen

verrückten Schlag✗ ... drink hit

Table 3.15: Examples of successful attacks on the OS18 ConvS2S. Homographs are

blue, attractors are red.
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Source input / Original output / Perturbed output Seed sense Adv. sense

S: Copenhagen - Copenhagen, Denmark’s (financial) capital, wants to be the world’s first

CO2-neutral city by 2025.

O: Kopenhagen - Kopenhagen, die Hauptstadt✓ Dänemarks, will bis 2025 die

erste CO2-neutrale Stadt der Welt sein.

P: Kopenhagen - Kopenhagen, das Finanzkapital✗ Dänemarks, will bis 2025 die erste

CO2-neutrale Stadt der Welt sein. city money

S: This is done by pricking the earlobe with a small lancet and taking a (real) drop of blood.

O: Dies geschieht, indem der Ohrwurm mit einem kleinen Lancet geprickt wird und ein

Tropfen✓ Blut eingenommen wird.

P: Dies geschieht, indem der Ohrwurm mit einem kleinen Lancet geprickt wird und ein

richtiger Blutabfall✗ entsteht. drop of liquid decrease

S: One (small positive) note was from the Republic of Ireland, which saw its PMI grow to

57.3, its highest level since the end of 1999.

O: Eine positive Anmerkung✓ war die aus der Republik Irland, wo das PMI auf 57,3

anstieg, das höchste Niveau seit Ende 1999.

P: Ein kleiner Schein✗ stammt aus der Republik Irland, wo das PMI auf 57,3 anstieg,

das höchste Niveau seit Ende 1999. remark paper money

S: His epoch-making (full) record "Free Jazz" was released by Atlantic Records at the

dawn of that decade.

O: Seine epochale Platte✓ "Free Jazz" wurde zu Beginn des Jahrzehnts von

Atlantic Records veröffentlicht.

P: Seine epochale Aufzeichnung✗ "Free Jazz" wurde zu Beginn des Jahrzehnts von

Atlantic Records veröffentlicht. musical medium document

S: After winter delivered an early dose of (natural) spring last week, temperatures

dropped again on Monday to a high of just 15.8C in the city.

O: Nachdem der Winter vergangene Woche eine frühe Frühjahrsdosis✓

geliefert hatte, fielen die Temperaturen am Montag wieder auf einen Höchstwert von nur

15,8C in der Stadt.

P: Nachdem der Winter letzte Woche eine frühe Dosis Naturquelle✗ lieferte, fielen die

Temperaturen am Montag wieder auf einen Höchstwert von nur 15,8C in der Stadt. season water source

Table 3.16: Examples of successful attacks on the WMT19 transformer. Homographs

are blue, attractors are red.
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Source input / Original output / Perturbed output Seed sense Adv. sense

S: A Thousand Splendid Suns is a story of two women’s lives in Afghanistan, where women

are equal, as a table or the (last) chair.

O: Ein Thousand Splendid Seine ist eine Geschichte von zwei Frauen in Afghanistan, wo

Frauen gleich sind, als Tisch oder Stuhl✓.

P: Ein Thousand Splendid Seine ist eine Geschichte von zwei Frauen in Afghanistan, wo

Frauen gleich sind, als Tisch oder als letzter Vorsitzender✗. furniture chairperson

S: See a (small rapid) drop in your CO level once you stop smoking.

O: Sehen Sie sich einen schnellen Rückgang✓ Ihrer CO-Ebene an, sobald Sie das

Rauchen einstellen.

P: Sehen Sie einen kleinen Tropfen✗ auf Ihrem CO-Niveau, sobald Sie aufhören,

Rauchen zu beenden. decrease drop of liquid

S: And moreover - each of our guests will get a (different small) present!
O: Und darüber hinaus wird jeder unserer Gäste ein kleines Geschenk✓ bekommen!

P: Und darüber hinaus wird jeder unserer Gäste eine andere Gegenwart✗ bekommen! gift current time

S: A (new) record of every transaction made is kept, allowing for a complete audit if

necessary.

O: Ein Datensatz✓ jeder Transaktion wird gehalten, so dass erforderlichenfalls

eine vollständige Prüfung möglich ist.

P: Ein neuer Rekord✗ jeder Transaktion wird gehalten, so dass erforderlichenfalls

eine vollständige Prüfung möglich ist. document achievement

S: Britain’s new trade deals with non-EU countries would also probably involve

(political worse) terms.

O: Die neuen Handelsvereinbarungen Großbritanniens mit Nicht-EU-Ländern würden

wahrscheinlich auch schlechtere Bedingungen✓ beinhalten.

P: Großbritanniens neue Handelsabkommen mit Nicht-EU-Ländern würden

wahrscheinlich auch politische Begriffe✗ beinhalten. demand expression

Table 3.17: Examples of successful attacks on the WMT19 LSTM. Homographs are

blue, attractors are red.
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Source input / Original output / Perturbed output Seed sense Adv. sense

S: Not to mention (non) uniform loading and soring fingers, contaminated with

(common) lead.

O: Ganz zu schweigen von (nicht) einheitlichen Lade- und Sortierfingern, die mit

Blei✓ kontaminiert sind.

P: Ganz zu schweigen von (nicht) einheitlichen Lade- und Sortierfingern, die mit einer

gemeinsamen Führung✗ kontaminiert sind. metal first place

S: If the symbol "&gt" is displayed, keep entering (greek) letters until predictive options

are displayed.

O: Wenn das Symbol "&gt" angezeigt wird, erhalten Sie die Eingabe von Buchstaben✓,

bis prognostizierte Optionen angezeigt werden.

P: Wenn das Symbol "&gt" angezeigt wird, erhalten Sie immer wieder Grußbriefe✗,

bis prognostizierte Optionen angezeigt werden. character message

S: This film is not about dialogue or a (little stringent) plot, but all about atmosphere -

a feverish dream that has become a film.

O: In diesem Film geht es nicht um einen Dialog oder um eine strenge Handlung✓, sondern

um die Atmosphäre - ein feverser Traum, der zu einem Film geworden ist.

P: In diesem Film geht es nicht um Dialog oder ein wenig Grundstück✗, sondern alles über

die Atmosphäre - ein feverser Traum, der zu einem Film geworden ist. story tract of land

S: Manufacture of products from silicone and rubber, Production of springs,

Manufacturing of springs, Winding of (small) springs.

O: Herstellung von Produkten aus Silikon- und Gummi, Herstellung von Quellen,

Herstellung von Quellen, Federn✓.

P: Herstellung von Produkten aus Silikon- und Gummi, Herstellung von Quellen,

Herstellung von Quellen, Winding von kleinen Quellen✗. device water source

S: In 1980, financial assets - (large) stocks, bonds, and bank deposits - totaled around 100%

of GDP in the advanced economies.

O; Im Jahr 1980 belief sich das Finanzvermögen - Aktien✓, Anleihen und

Bankeinlagen - in den hochentwickelten Volkswirtschaften rund 100% des BIP.

P: Im Jahr 1980 belief sich das Finanzvermögen - große Bestände✗, Anleihen und

Bankeinlagen - in den hochentwickelten Volkswirtschaften rund 100% des BIP. investment inventory

Table 3.18: Examples of successful attacks on the WMT19 ConvS2S. Homographs are

blue, attractors are red.

3.5 Post-Publication Comments

Despite being a relatively recent development, LLMs that have been pretrained on

data from multiple languages (Liu et al., 2020; Xue et al., 2021; Scao et al., 2022;

OpenAI, 2023) have shown some potential as versatile and controllable translation

engines (Zhang et al., 2023; Hendy et al., 2023). Translation capabilities appear to

emerge and improve in LLMs as a function of model scale, data size, and data variety,

and are not contingent on any specialized optimization function other than the standard,
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monolingual language modeling objective (OpenAI, 2023).

Within the context of this chapter, the question of whether this new variety of trans-

lation models is less susceptible to WSD errors arises naturally. However, for most

SOTA LLMs, accessing the training data for the estimation of disambiguation biases is

not possible due to its proprietary nature and difficult-to-replicate data pre-processing

steps. Moreover, given that LLM training relies heavily on monolingual text across dif-

ferent languages, identifying effective attractors for individual senses of polysemous

terms becomes particularly challenging, as it is no longer possible to rely on the prop-

erties of parallel data alone, as done in Section 3.2.1. Consequently, the methodologies

for the prediction of WSD errors and for the crafting of adversarial WSD attacks pre-

sented in this chapter with application to NMT models can not be applied to LLMs

without significant modifications.

Nevertheless, given that OS18 and WMT19 data are both easily accessible online

and are of reasonably high quality, both are highly likely to be included in the training

distribution of a recent LLM trained on large quantities of crawled web data. As a

consequence, the LLM’s WSD preferences could reflect some of the biases associated

with these collections of parallel text. To examine whether this is indeed the case, chal-

lenge sets referenced in Sections 3.2.2 (i.e. 3k naturally occurring sentences containing

homographs) and 3.3.1 (i.e. 10k of synthetic sentences constructed as adversarial at-

tacks on NMT models) were translated using the commercial ChatGPT API provided

by OpenAI (OpenAI, 2022), with gpt-3.5-turbo as the backend model20. The API al-

lows for convenient access to a much-studied and reported on, proprietary SOTA LLM

and was therefore deemed as the preferred method for collecting model responses.

Moreover, the GPT model family has been recently found to achieve highly compet-

itive translation quality, which makes it an attractive subject for studying translation

abilities in LLMs (Hendy et al., 2023).

To obtain translations of English sentences making up the aforementioned chal-

lenge sets, ChatGPT was provided with a task-specific prompt reproduced in Table

3.19. The prompt is limited to a concise task description and states the main require-

ments to be fulfilled by the generated response. It is subsequently referred to as the

basic prompt. Furthermore, the model was given 10 examples (i.e. "shots") for the

OS18 and 4 examples for the WMT19 data, since the latter contains on average much

longer and less noisy sentences. These demonstrations were selected at random from

each respective challenge set and subsequently excluded from the evaluation.

20All ChatGPT queries reported in this manuscript were issued in June - August 2023.
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U: Your task is to generate a valid German translation for the provided English sentence. The correct

translation must fully and accurately capture the meaning of the English sentence, be fluent, and

grammatical. Your response should not contain anything else. English sentence to translate: ["My

dad would jump overboard with an anchor before he ever talks to me again."]

S: [Mein Vater würde mit einem Anker über Bord springen, bevor er wieder anfängt mit mir zu

reden.]

Table 3.19: Basic translation prompt used with ChatGPT. U = User, S = System.

Segments given in square brackets are placeholders for in-context learning examples

("shots") provided to the model.

Dataset # API failures (%) # Invalid translations (%) # Valid translations (%)

OS18 natural samples 83 (2.77%) 181 (6.03%) 2,736 (91.2%)

WMT19 natural samples 66 (2.2%) 78 (2.6%) 2,856 (95.2%)

OS18 adversarial samples 683 (6.83%) 776 (7.76%) 8,541 (85.41%)

WMT19 adversarial samples 539 (5.39%) 577 (5.77%) 8,884 (88.84%)

Table 3.20: Fractions of successful and unsuccessful WSD queries addressed to Chat-

GPT via the web API. Invalid translations refers to cases where the model did not pro-

duce a translation, instead returning an explanation as to why a translation can not be

provided (e.g. due to toxicty).

We note that it was not possible to obtain valid model replies for all of our queries.

This can be attributed to several reasons, including the API timing out or returning an

error code, the input sentence being considered impossible to translate by the model

(e.g. because of limited context, fragmented language, slang expressions, or typos and

misspellings), or the input containing words or phrases deemed inappropriate by the

model (e.g. mentions of reproductive anatomy, slurs and other offensive language). We

jointly refer to the latter two categories in the following as invalid replies. Table 3.20

reports the percentage of samples based on whether ChatGPT returned a valid response

to the API query, an invalid one, or whether the API call had failed altogether. For all

of the evaluated challenge sets, 85%+ of samples were successfully translated.21 As

such, while the translation step eliminated some of the challenge samples from the

21Here, valid translations count represents the intersection of valid translations obtained using basic
prompting and Chain-of-Thought prompting discussed in subsequent paragraphs of this section, to en-
sure a fair comparison between the two prompting methods. Some of the samples were successfully
translated with one prompt format but yielded an invalid translation with the other, which explains the
elevated API request failure rate.
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evaluation, we deem the remaining set to be sufficiently large to offer useful insights

into the LLM’s WSD behaviour as well as its potential flaws. At the same time, we

note that the omission of samples makes any comparison with results reported in the

earlier sections of this chapter incomplete and approximate.

OS18 natural OS18 adversarial WMT19 natural WMT19 adversarial

10.14% 15.4% 10.68% 3.21%

Table 3.21: ChatGPT failure rate for the examined WSD challenge sets.

As summarized in Table 3.21, ChatGPT remains somewhat susceptible to WSD

errors despite its advanced language understanding capabilities. Still, it obtains a sub-

stantially better WSD accuracy on natural, non-adversarial samples compared to the

best-performing NMT transformer model – 10.14% vs. 23.4% in the OS18 domain

and 10.68% vs. 17.93% in the WMT19 domain. Unfortunately, these results do not

indicate whether the improvement is primarily due to a fundamental superiority of the

LLM’s lexical disambiguation capabilities, the inclusion of the test sentences in its

training data22, or a difference in the models’ disambiguation bias arising from differ-

ent training distributions. On adversarial examples, ChatGPT similarly improves over

the evaluated NMT transformer models – 15.4% vs. 24.39% in the OS18 domain and

3.21% vs. 4.62% in the WMT19 domain. These results also imply a certain degree of

overlap in the disambiguation biases between ChatGPT and the examined translation

models which, in turn, makes it more likely that the observed improvements on non-

adversarial samples are due to the LLM being the superior lexical disambiguator23.

It is, however, possible that the basic prompt used so far to elicit translations from

the LLM (see Table 3.19) could be modified to further improve WSD accuracy, in light

of the demonstrable importance of prompt formats in a variety of NLP tasks (White

et al., 2023). To investigate whether this is the case, CoT prompting (Wei et al., 2022b)

was leveraged to encourage the model to reason about homographs present in the input

sentence and determine which of their senses is the most appropriate given the sen-

tence context. The corresponding CoT prompt is reproduced in Table 3.22. In contrast

to the initial prompt, it asks the LLM to identify relevant homographs, decide on their

22However, as the model’s performance remains far from perfect, the model does not appear to have
memorized reference translations within the OS18 and WMT19 corpora.

23As none of the challenge sets used to evaluate the WSD capabilities of ChatGPT in this section are
accessible online, their potential inclusion in the LLM’s training distribution is not a valid explanation
for the observed performance difference compared to NMT models.
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intended meaning, and incorporate these considerations when generating the transla-

tion hypothesis. We also manually construct four prompting examples representative

of the intended reasoning format that are used together with both natural and adver-

sarial samples across both test domains, selecting the underlying samples at random.

The system response included in 3.22 represents one of the prompting examples. We

ensure a fair evaluation of the impact the CoT prompt may have on the LLM’s WSD

accuracy relative to the previously examined basic prompt, by only taking into account

samples that were successfully translated with both prompting strategies.

U: Your task is to return a valid German translation for the provided English sentence. The cor-

rect translation must fully and accurately capture the meaning of the English sentence, be fluent,

and grammatical. Before providing your translation, you should reason about the ambiguous nouns

(specifically homographs) found in the sentence and decide on their meaning within the sentence

context, which should then inform your translation. Here are some examples of what this should

look like. English sentence: "I’ve been dragging you through time like an anchor and now it’s time

to cut you loose."

S: A homonym present in this sentence is the English noun "anchor". In this sentence, "anchor"

refers to a heavy object that is difficult to drag, and should therefore be translated as the German

noun "Anker" which can be defined as a heavy object used to moor a ship to the bottom of the sea.

Thus it follows that the German translation of the full English sentence is: "Ich habe dich wie einen

Anker durch die Zeit gezogen und jetzt ist es an der Zeit, dich loszulassen."

Table 3.22: CoT prompt used with ChatGPT with a focus on accurate WSD. U = User,

S = System.

Table 3.23 reports WSD error rates across the four challenge sets, showing mixed

results. While a substantial improvement in robustness to adversarial attacks can be

observed in the OS18 domain, vulnerability to attacks increases marginally in the

WMT19 domain. For non-adversarial data, CoT prompting yields negative results

in both evaluated domains, with failure rate increasing by up to 1.26%. Consequently,

it cannot be asserted with certainty that CoT prompting represents a superior response

elicitation method for WSD-sensitive translation, unlike for other NLP tasks. It is,

however possible, that a differently structured CoT prompt would obtain markedly dif-

ferent results, which is left for future work to investigate. Concrete examples of CoT

prompting rectifying disambiguation errors are provided in Tables 3.24 - 3.27. Inter-

estingly, in some cases, the CoT prompt is effective even if the LLM fails to identify

valid homographs and explicitly reason about their meaning. One of such examples is

included at the bottom of Table 3.26.
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OS18 natural OS18 adversarial WMT19 natural WMT19 adversarial

10.69% (+0.55%) 13.88% (-1.52%) 11.94% (+1.26%) 3.4% (+0.19%)

Table 3.23: ChatGPT failure rate on the examined WSD challenge sets, using CoT

prompting. Changes in failure rate relative to the basic prompt are given in parentheses.

Based on theses additional findings we can conclude that leveraging LLMs as trans-

lation engines is a highly promising path towards improved robustness of automatic

translations to lexical disambiguation errors. While sophisticated prompting methods

that facilitate lexical reasoning can yield improvements in WSD accuracy, understand-

ing the full breath of their utility requires further research. Since the observed improve-

ments can likely be at least in part attributed the LLM’s scale and the vast amount of

training data it had been exposed to, in contrast to conventional NMT models that

are limited in scale and rely on – by comparison – small amounts of highly curated

data, integrating LLMs into translation pipelines may become essential for obtaining

high-quality translations in cases where WSD is a concern.

Follow-Up Work

The publication of (Emelin et al., 2020) has in part motivated a number of noteworthy

follow up works. Among these, (Campolungo et al., 2022b) propose a strategy for inte-

grating word sense annotations into the NMT training pipeline without requiring them

at inference. In doing so, they demonstrate improvements to the lexical disambiguation

capacity and robustness against adversarial WSD attacks of the evaluated NMT sys-

tems according to the evaluation strategy defined in (Emelin et al., 2020). On the other

hand, (Vamvas and Sennrich, 2021) describe a reference-free method for detecting lex-

ical disambiguation pathologies in translation models that parallels the construction of

adversarial WSD attacks in (Emelin et al., 2020). Using this method, they find that

sequence-level knowledge distillation (Kim and Rush, 2016) amplifies undesirable bi-

ases of the teacher model in its student. In a related vein, (Zeng and Xiong, 2021)

conduct an investigation into model biases that drive WSD errors, extending the find-

ings of the analysis conducted in (Emelin et al., 2020) among others. They reach the

conclusion that NMT models are most susceptible to attacks on the source sentence po-

sitions aligned with the front positions of the respective target sentences and leverage

these insights to craft effective adversarial WSD attacks.
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Source / Reference translation / Basic Prompt reply / CoT reply

S: You can shut down the matches, but only for a little while.

R: Sie können die Wettkämpfe verbieten, aber nur für kurze Zeit.

BP: Du kannst die Streichhölzer ausmachen, aber nur für eine kurze Zeit.

CoT: In this sentence, the word "matches" can be understood as either referring to a contest or competition, or to the objects

used to start a fire. To determine the intended meaning, we can look at the context of the sentence. Since the sentence is about

shutting down the matches, it suggests that it is referring to a contest or competition. Therefore, the word "matches" should

be translated as "Wettkämpfe" in German. The German translation of the full English sentence is: "Du kannst die Wettkämpfe

beenden, aber nur für eine kurze Zeit."

S: If not, why, in a moment look to see the blind and bloody soldier with foul hand defile the locks of your shrill-shrieking

daughters.

R: Wo nicht, erwartet Augenblicks zu sehen den blinden und blutigen Soldaten mit rauer Hand, besudeln die Locken eurer

gellend schreienden Töchter.

BP: Falls nicht, dann schau in diesem Moment, wie der blinde und verblutende Soldat mit dreckigen Händen das Schloss

deiner laut kreischenden Töchter beschmutzt.

CoT: A homonym present in this sentence is the English noun "locks". In this sentence, "locks" refers to the hair of someone’s

head, and should therefore be translated as the German noun "Locken" which can be defined as a curl of hair. Thus it follows

that the German translation of the full English sentence is: "Wenn nicht, dann schau in diesem Moment zu, wie der blinde und

blutige Soldat mit dreckiger Hand die Locken deiner schrill-schreienden Töchter entweiht."

S: Any clown on the street could tell you that battery charge won’t stick.

R: Jeder Trottel auf der Straße könnte Ihnen sagen, dass diese Anklage wegen einer Tätlichkeit nicht halten wird.

BP: Jeder Trottel auf der Straße kann dir sagen, dass die Akkuladung nicht hält.

CoT: A homograph present in this sentence is the English noun "charge". In this sentence, "charge" refers to a formal

accusation brought against someone, and should therefore be translated as the German noun "Anklage" which can be defined

as a formal accusation or charge made in a court of law. Thus it follows that the German translation of the full English sentence

is: "Jeder Clown auf der Straße könnte dir sagen, dass die Anklage nicht halten wird."

Table 3.24: Examples of non-adversarial OS challenge set translations elicited from

Chat-GPT, where the CoT prompting strategy improves over the basic prompt. Ho-

mographs are underlined, correct WSD choices are coloured blue, incorrect ones are

colored red.
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Source / Reference translation / Basic Prompt reply / CoT reply

S: They sat there with small arms folded with dirty looks on their face and I swear to God ...

R: Sie saßen da mit verschränkten Armen und haben mich geil angestarrt.

BP: Sie saßen da mit verschränkten Waffen und finsterem Blick im Gesicht und ich schwöre bei Gott ...

CoT: A homograph present in this sentence is the English noun "arms". In this sentence, "arms" refers to a person’s limbs,

specifically their arms, and should therefore be translated as the German noun "Arme" which can be defined as the part of the

human body between the shoulder and the hand. Thus it follows that the German translation of the full English sentence is:

"Sie saßen dort mit verschränkten Armen und schmutzigen Blicken im Gesicht, und ich schwöre bei Gott ..."

S: I put a new vacuum inside a temporal field until a world developed.

R: Ich habe ein Vakuum in ein temporales Feld gesteckt bis sich eine Welt entwickelt hat.

BP: Ich habe einen neuen Staubsauger in ein zeitliches Feld gestellt bis sich eine Welt entwickelt hat.

CoT: In this sentence, the noun "vacuum" is ambiguous. It can refer to a space with no matter or particles (a vacuum), or to a

household cleaning device (a vacuum cleaner). Based on the context of the sentence, where the vacuum is put inside a temporal

field and a world develops, it is more likely that the intended meaning is a "vacuum" as an empty space. Therefore, the German

translation would be: "Ich habe ein neues Vakuum in einem zeitlichen Feld platziert, bis sich eine Welt entwickelte."

S: The good spring bubbling up you saw me drink from?

R: Die Quelle, von der du mich hast trinken sehen?

BP: Der gute Frühling, aus dem ich getrunken habe?

CoT: The provided English sentence contains some ambiguities, making it difficult to determine the precise meaning without

more context. However, assuming that "spring" refers to a natural source of water and "bubbling up" is used figuratively, it

can be translated as: "Den guten Quell, aus dem du mich hast trinken sehen?"

Table 3.25: Examples of adversarial OS challenge set translations elicited from Chat-

GPT, where the CoT prompting strategy improves over the basic prompt. Homographs

are underlined, attractors are set in cursive, correct WSD choices are coloured blue,

incorrect ones are colored red. Note, the reference translation corresponds to the orig-

inal source sentence without the attractor term.
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Source / Reference translation / Basic Prompt reply / CoT reply

S: There are also quite a few races and individuals who have attained immortality after leading a mortal existence.

R: Andererseits gibt es eine ganze Reihe Völker und Wesen, die nach einem Leben als Sterbliche die Unsterblichkeit erlangt

haben.

BP: Es gibt auch viele Rennen und Einzelpersonen, die Unsterblichkeit erlangt haben, nachdem sie ein sterbliches Leben

geführt haben.

CoT: A homonym present in this sentence is the English noun "races". In this sentence, "races" refers to different groups or

species of beings, and should therefore be translated as the German noun "Rassen". However, it is important to note that the

concept of immortality and leading a mortal existence can be tricky to express in German. To accurately capture the meaning,

it is recommended to rephrase the sentence. Thus, the German translation of the full English sentence can be: "Es gibt auch

einige Rassen und Individuen, die nach einem sterblichen Dasein Unsterblichkeit erlangt haben."

S: Currently, the record for image resolution among camera phones is 10 megapixels.

R: Aktuell liegt der Auflösungsrekord unter Kamera-Handys bei 10 Megapixeln.

BP: Die derzeitige Aufzeichnung für Bildauflösungen bei Kamerahandys beträgt 10 Megapixel.

CoT: A homonym present in this sentence is the noun "record." In this sentence, "record" refers to the highest achieved level

or value, and should therefore be translated as the German noun "Rekord." Thus the correct translation of the full English

sentence is: "Derzeit liegt der Rekord für die Bildauflösung bei Handykameras bei 10 Megapixeln."

S: Its emblem, a stylized crane, is recognized almost everywhere as the symbol of the Polish flag carrier.

R: Ihr Logo, ein stilisierter Kranich, ist weltweit als Symbol der polnischen Fluggesellschaft bekannt.

BP: Das Emblem, ein stilisierter Kran, wird nahezu überall als das Symbol des polnischen Staatsfliegers anerkannt.

CoT: The English noun "crane" can be interpreted as a bird or as a machine used for lifting heavy objects. In this context,

"crane" refers to a bird. Thus, the German translation for "Its emblem, a stylized crane, is recognized almost everywhere

as the symbol of the Polish flag carrier." is: "Sein Emblem, ein stilisierter Kranich, wird nahezu überall als das Symbol der

polnischen Fluggesellschaft erkannt."

S: The mountain spring in May / June brings lush flower-filled meadows and sprinkles the higher slopes with gentians and all

kinds of anemones.

R: Der Bergfrühling im Mai / Juni bringt üppige Blumenwiesen im Tal und in der Höhe mit Enzianen und Anemonen aller

Art übersäte Hänge.

BP: Im Mai und Juni bringt die Gebirgsquelle üppige Blumenwiesen mit sich und besprüht die höheren Hänge mit Enzianen

und allerlei Anemonen.

CoT: There are no ambiguous nouns in this sentence. The correct German translation of the sentence is: Der

Gebirgsfrühling im Mai / Juni bringt üppige, blumenreiche Wiesen und besprengt die höheren Hänge mit Enzianen und

allerlei Anemonen.

Table 3.26: Examples of natural WMT challenge set translations elicited from Chat-

GPT, where the CoT prompting strategy improves over the basic prompt. Homographs

are underlined, correct WSD choices are coloured blue, incorrect ones are colored red.
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Source / Reference translation / Basic Prompt reply / CoT reply

S: In every national race we intend to thrill people and inspire them by our strength of purpose and our team spirit.

R: Rennen für Rennen wollen wir so die Menschen mitreißen und mit unserem Willen und unserem Teamgeist anstecken.

BP: In jeder nationalen Rasse beabsichtigen wir, die Menschen zu begeistern und durch unsere Zielstrebigkeit und unseren

Teamgeist zu inspirieren.

CoT: A homonym present in this sentence is the English noun "race". In this sentence, "race" refers to a competition among

individuals or teams, and should therefore be translated as the German noun "Rennen" which can be defined as a competition

involving speed. Thus it follows that the German translation of the full English sentence is: "Bei jedem nationalen Rennen

beabsichtigen wir, die Menschen zu begeistern und sie mit unserer Zielstrebigkeit und unserem Teamgeist zu inspirieren."

S: - Acknowledges with interest the first note from the Presidency on the Science and Technology cooperation between the

European Union and Mediterranean third countries;

R: Nimmt mit Interesse den Vermerk des Vorsitzes zur wissenschaftlichen und technischen Zusammenarbeit zwischen der

Europäischen Union und Drittländern im Mittelmeerraum zur Kenntnis;

BP: - Anerkennt mit Interesse die erste Note der Präsidentschaft zur Zusammenarbeit in Wissenschaft und Technologie zwis-

chen der Europäischen Union und den Mittelmeer-Drittländern;

CoT: A homonym present in this sentence is the English noun "Note". In this sentence, "Note" refers to a written communi-

cation or message sent from one party to another, and should therefore be translated as the German noun "Notiz" which can

be defined as a brief written record of something. Thus it follows that the German translation of the full English sentence is:

"- nimmt mit Interesse die erste Notiz des Vorsitzes über die wissenschaftliche und technologische Zusammenarbeit zwischen

der Europäischen Union und den Mittelmeerländern Dritter zur Kenntnis;

S: I wish to place on new record for Mr Bourlanges and for the House that the majority of my group was disposed to vote for

the strategy in paragraph 8.

R: Ich möchte für Herrn Bourlanges und das Haus zu Protokoll geben, daß die Mehrheit meiner Fraktion für die in Absatz 8

erläuterte Strategie stimmen wollte.

BP: Ich möchte einen neuen Rekord für Herrn Bourlanges und für das Haus aufstellen, dass die Mehrheit meiner Gruppe

bereit war, für die Strategie in Absatz 8 zu stimmen.

CoT: A homonym present in this sentence is the English noun "record". In this sentence, "record" refers to an official

documented statement, and should therefore be translated as the German noun "Protokoll" which can be defined as a written

account of a meeting or session. Thus it follows that the German translation of the full English sentence is: "Ich möchte ein

neues Protokoll für Herrn Bourlanges und für das Parlament anführen, dass die Mehrheit meiner Gruppe bereit war, für die

Strategie im Absatz 8 zu stimmen."

Table 3.27: Examples of adversarial WMT challenge set translations elicited from Chat-

GPT, where the CoT prompting strategy improves over the basic prompt. Homographs

are underlined, attractors are set in cursive, correct WSD choices are coloured blue,

incorrect ones are colored red. Note, the reference translation corresponds to the orig-

inal source sentence without the attractor term.



Chapter 4

Lacking Text Understanding Leads to

Coreference Resolution Errors

Common sense is not so common.

Voltaire, Dictionnaire Philosophique

Abstract: Winograd schemas are a well-established tool for evaluating coreference

resolution (CoR) and commonsense reasoning (CSR) capabilities of computational

models. So far, schemas remained largely confined to English, limiting their utility

in multilingual settings. This work presents Wino-X, a parallel dataset of German,
French, and Russian schemas, aligned with their English counterparts. We use

this resource to investigate whether neural machine translation (NMT) models can per-

form CoR that requires commonsense knowledge and whether multilingual language

models (MLLMs) are capable of CSR across multiple languages. Our findings show

Wino-X to be exceptionally challenging for NMT systems that are prone to undesir-

able biases and unable to detect disambiguating information. We quantify biases using

established statistical methods and define ways to address both of these issues. We fur-

thermore present evidence of active cross-lingual knowledge transfer in MLLMs,

whereby fine-tuning models on English schemas yields CSR improvements in other

languages.1

1This section is based on work previously published at EMNLP 2021 (Emelin and Sennrich, 2021).
The Wino-X dataset and experimental codebase are available at https://github.com/demelin/Wino-X.
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4.1 Introduction

Originally introduced in (Winograd, 1972), Winograd schemas (schemas from here

on) have become an established tool for probing the ability of computational models

to reason about natural language. Either viewed through the lens of coreference (CoR)

as in (Levesque et al., 2012) or, more recently, framed as a gap-filling task (Sakaguchi

et al., 2020), schemas are assumed to require commonsense knowledge to be resolved

correctly.

Consider the following schema: The trophy doesn’t fit into the brown suitcase be-

cause it is too [large / small]. Here, the pronoun it has two possible antecedents (trophy

/ suitcase), with the choice of the antecedent determined by the trigger word (large /

small). To connect the pronoun to its true antecedent, a model must ’know’ that objects

that are too large cannot fit into containers and that containers that are too small cannot

house objects.

When translating an instance of a schema (i.e. the schema with a fixed trigger

word) into languages such as German, where pronouns and their antecedents must

agree in their grammatical gender, translation models must implicitly perform the CoR

step to produce accurate translations. A competent translation model is, therefore, ex-

pected to identify the correct antecedent as reflected by the target pronoun choice. The

capacity to access and utilize everyday knowledge in a task-oriented manner, e.g. for

CoR as in the aforementioned example, is commonly referred to as commonsense rea-

soning (Sakaguchi et al., 2020), and has been shown to emerge in language processing

models trained on the next word prediction objective, in particular LMs of sufficiently

large scale (Bhagavatula et al., 2019; Sakaguchi et al., 2020; Emelin et al., 2021). It is

not yet clear whether NMT models – commonly trained on modest amounts of parallel,

highly curated data – can exhibit this emergent capability but, given its importance for

the translation process, an investigation into the commonsense reasoning capabilities

of translation models is necessary to guide model development towards accurate and

robust translation performance.

In the first part of this work, we construct cross-lingual instances by aligning En-

glish instances with their translations into morphologically rich languages, so as to

probe the robustness of CoR in current NMT models, as illustrated in Figure 4.1 (top

half). In doing so, we show that models follow simplistic heuristics when attempting

to resolve coreference, while failing to detect disambiguating information.

A second category of models that is expected to correctly identify coreference in
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Figure 4.1: Wino-X examples. Cross-lingual samples are used to evaluate translation

models, whereas multilingual instances are compatible with MLLMs. Coreferent words

are highlighted with the same color, while disambiguating trigger words are underlined.

multiple languages are multilingual language models. Where translation models learn

to map their input to semantically equivalent sequences in the target language, MLLMs

are trained on a mask-filling objective and learn to encode sentences drawn from differ-

ent languages into a shared semantic space. Accordingly, schema instances correctly

solved by MLLMs in one language should be equally solvable in other languages, by

leveraging the same, language-agnostic representations. Similarly, improvements to

model performance in one language should transfer to other languages via the shared

latent space. In the second part of our work, we empirically put these assumptions

to the test with multilingual schema instances, as shown in Figure 4.1 (bottom half),

finding evidence of active commonsense knowledge transfer across languages.

Our primary contributions are as follows:

1. We introduce Wino-X: A dataset containing Winograd schemas in German,
French, and Russian, aligned with their English analogues.

2. We benchmark the CoR performance of NMT models for each language pair,

finding it to be close to chance.
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3. We identify two causes underlying the poor performance of the evaluated

NMT models and define ways to mitigate them.

4. We show that Wino-X presents a challenge for MLLMs, and observe active

transfer of commonsense knowledge across languages.

4.2 Wino-X : A Contrastive Dataset of Multilingual Wino-

grad Schemas

In order to maximize the coverage and quality of Wino-X, we derive multilingual

schemas from WinoGrande (Sakaguchi et al., 2020), a large-scale, crowd-sourced cor-

pus of English Winograd schemas. Notably, WinoGrande uses a gap token in place

of an ambiguous pronoun in each schema, which can be filled by one of two pre-

ceding nouns. Based on the chosen noun, the resulting sentence either satisfies or

violates commonsense constraints. Schemas are divided into two domains - social and

physical. Those belonging to the former category predominantly feature names of in-

dividuals (e.g. Mary or Tom) as fillers, whereas physical samples feature objects or

entities (e.g. vase or cat). Constructing cross-lingual schemas suitable for evaluating

translation models requires replacing the gap with the ambiguous pronoun it, which is

not possible for the social domain. Consequently, we focus our attention on the physi-

cal subset of WinoGrande that contains 19,260 unique samples (9,630 schemas), with

each sample representing a single instance of a monolingual, English schema.

4.2.1 Sample Formats

Wino-X includes samples in two formats - one for the evaluation of translation mod-

els and another for the evaluation of MLLMs. In both cases the dataset assumes a

contrastive evaluation setup (Rios et al., 2017; Gardner et al., 2020), whereby evalu-

ated models are used to rank two minimally different alternatives. Models are scored

according to how frequently they rank the correct alternative above the incorrect one.

For the evaluation of NMT models, we replace the gap token with the ambiguous

it in each sample, and pair the result with two contrastive translations. The translated

it agrees in gender with a different antecedent in each case. For our investigation, we

focus on German, French, and Russian as morphologically rich, high-resource target

languages. In the following, we refer to these cross-lingual samples as MT-Wino-X.
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Evaluation of MLLMs, on the other hand, adopts the WinoGrande format. We

translate samples without additional modifications, obtaining a set of samples for each

target language that we align with their English equivalents. We refer to such multi-

lingual samples as the LM-Wino-X set. Example of MT-Wino-X entries are provided in

Table 4.1, while Table 4.2 contains LM-Wino-X entries.

Dataset Sample

EN-DE
Source Sentence: I dusted the dresser in the bedroom with a rag until it was free of dust.

Correct Translation: Ich staubte die Kommode im Schlafzimmer mit einem Lappen ab, bis sie staubfrei war.

Incorrect Translation: Ich staubte die Kommode im Schlafzimmer mit einem Lappen ab, bis er staubfrei war.

EN-FR
Source Sentence: Stacey used the company credit card to buy a plane ticket, but it was declined.

Correct Translation: Stacey a utilisé la carte de crédit de l’ entreprise pour acheter un billet d’ avion, mais elle a été refusée.

Incorrect Translation: Stacey a utilisé la carte de crédit de l’ entreprise pour acheter un billet d’ avion, mais il a été refusé.

EN-RU

Table 4.1: MT-Wino-X examples. Highlighting signifies coreference.

Dataset Sample

EN-DE

EN Context: Adam chose to sleep on a sofa instead of a bed because _ was much more comfortable.

Correct Filler: the sofa
Incorrect Filler: the bed

DE Context: Adam entschied sich dafür, auf einem Sofa statt auf einem Bett zu schlafen, weil _ viel bequemer war.

Correct Filler: das Sofa
Incorrect Filler: das Bett

EN-FR

EN Context: The bartender poured the juice from the blender into the cocktail glass until _ was full.

Correct Filler: the glass
Incorrect Filler: the blender

FR Context: Le barman versa le jus du mixeur dans le verre à cocktail jusqu’à ce que _ soit plein.

Correct Filler: le verre
Incorrect Filler: le mixeur

EN-RU

Table 4.2: LM-Wino-X examples. Highlighting signifies coreference.

4.2.2 From Monolingual to Multilingual

We find that not all WinoGrande samples are suitable for the inclusion in Wino-X, as

replacing the gap with it can yield ungrammatical or disfluent sequences. To obtain
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grammatical sentences after this replacement operation, we exclude WinoGrande sam-

ples from Wino-X if:

• Either referent is animate (e.g. teacher, baker)

• The gap token is part of a compound noun or a noun phrase

• Either referent is a plural noun

• The gap token is modified by an adjective

To improve the quality of our constructed cross-lingual and multilingual schemas, we

aim to reduce potential sources of noise by furthermore excluding samples if:

• The translated it or gap-filler is not in the nominative case

• Either antecedent denotes an activity (e.g. singing or playing the piano) (due to

issues it presents to morphological analyzers)

Additionally, we use a grammar checker2 to ensure that the insertion of it does not

introduce grammatical errors. We furthermore ignore samples where the gap is not

located in the same sentence as its antecedents, to allow for a fair evaluation of models

trained on sentence-level data. To reduce dataset artifacts in Wino-X, both instances of

a schema are removed if a single one of them is filtered-out.

To obtain contrastive translations, the gap token is replaced with one of its fillers

(which serve as the antecedents of it) before passing the sample through a translation

engine. For all target languages, translations are obtained via the Google Translate

API3, due to its relative domain generality. Afterwards, the previously inserted filler

is replaced with a pronoun of the same grammatical gender, yielding the final con-

trastive translation included in MT-Wino-X. For LM-Wino-X samples, the inserted filler

is replaced with the gap token.

Following the translation step, we remove MT-Wino-X samples where the translated

it has the same gender in both translations, resulting in an undecidable sample.4 In

contrast, for EN-FR and EN-RU portions of LM-Wino-X, we only remove samples

where translations of both fillers have a different gender, as models could otherwise

exploit gender agreement of verbs and adjectives to identify the correct filler. Table

2LanguageTool: https://pypi.org/project/language-tool-python/
3https://cloud.google.com/translate
4We use Stanza (Qi et al., 2020): https://stanfordnlp.github.io/stanza/index.html, for the linguistic

analysis.
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4.3 reports the primary properties of the final dataset, whereas Table 4.4 provides fine-

grained, sequence-level statistics.

MT-Wino-X LM-Wino-X

EN-DE EN-FR EN-RU EN-DE EN-FR EN-RU

# Schemas 1,887 1,499 1,119 2,917 1,396 743

# Samples 3,774 2,988 2,238 5,834 2,792 1,486

Table 4.3: Composition of the final Wino-X dataset.

MT-Wino-X LM-Wino-X

Mean Sentence

Length

Mean Trans.

Length

Mean EN

Context Length

Mean X

Context Length

Mean EN

Filler Length

Mean X

Filler Length

EN-DE 17.8 (2.86) 17.15 (3.1) 17.84 (2.86) 17.16 (3.11) 2.04 (0.19) 2 (0.0)

EN-FR 17.85 (2.9) 20 (3.87) 18.01 (2.86) 20.24 (3.74) 2.02 (0.13) 2 (0.0)

EN-RU 17.73 (2.87) 14.86 (2.99) 18.06 (2.97) 15.34 (3.07) 2.02 (0.14) 2 (0.0)

Table 4.4: Dataset statistics. X stands for the language aligned with English for each

language pair (DE: German, FR: French, RU: Russian)

. Length is computed in tokens based on Moses-tokenized sentences. Values in

parentheses denote standard deviation.

To estimate whether the constructed samples are solvable by humans, we recruited

two bilingual raters for each language pair and asked them to select correct translations

for a randomly drawn subset of 100 MT-Wino-X samples. For EN-DE, mean rater

accuracy was 0.84, 0.88 for EN-FR, and 0.87 for EN-RU. Inter-rater agreement was

0.69, 0.75, and 0.77 respectively, according to Cohen’s Kappa (Cohen, 1960). For

readability, rater instructions are included at the end of this chapter. We note that since

the construction of Wino-X relies on automated translation and linguistic analysis, the

dataset is not completely free of noise. However, its impact on human performance

remains within limits.

Like monolingual Winograd schemas, samples included in Wino-X represent par-

ticularly challenging instances of the CoR problem. However, how models handle such

examples is indicative of their general language understanding capabilities. For a com-

putational model to achieve true human parity on the translation task, it must be robust

to high levels of semantic ambiguity, given that it poses little difficulty to human raters.
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Next, we leverage Wino-X for the evaluation of coreference robustness in NMT

models and of commonsense knowledge transfer in MLLMs.

4.3 Testing CoR in NMT with Cross-Lingual Schemas

To probe whether NMT models can accurately identify coreference in cases requiring

commonsense knowledge, contrastive translations are scored according to perplexity

assigned to them by the evaluated model, as in Eqn. 4.1, where X is the source se-

quence and Y is the candidate translation:

PPL(Y |X) = exp(− 1
|Y | ∑

|Y |
i=1 logφ(yi|y<i;X)) (4.1)

Accuracy is based on the number of instances in which the correct translation is as-

signed the lower perplexity score.

4.3.1 Experimental Setup

Our evaluation focuses on transformer NMT models (Vaswani et al., 2017), due to their

current dominance in the field. For a comprehensive examination of the relationship

between model quality and CoR accuracy, we examine three model categories for each

language pair: 1. transformer-BASE (BASE), 2. transformer-BIG (BIG) models

distributed as part of the fairseq library5, and 3. mBART50, a multilingual translation

model built on top of a pre-trained mBART6 (Tang et al., 2020). The inclusion of

mBART50 follows the assumption that extensive pre-training may endow models with

commonsense knowledge, as previously indicated for large-scale monolingual LMs

(Bhagavatula et al., 2019; Huang et al., 2019; Sakaguchi et al., 2020).

BASE models are randomly initialized and trained on the WMT news training

data7. As can be seen from Table 4.5, models differ noticeably in their size, amount

of training data, and translation quality.8 EN-DE and EN-RU models are trained on

the concatenation of WMT20 news task data, with newstest2019 used for development

5We use single-best models in place of ensembles for the WMT19 models: https://github.com/
pytorch/fairseq/tree/master/examples/translation.

6We use the mbart-large-50-one-to-many-mmt checkpoint distributed as part of the Transform-
ers library (Wolf et al., 2020).

7http://www.statmt.org/wmt[14,20]/translation-task.html
8Notably, the EN-FR BIG model had not been trained on back-translated data, unlike its EN-DE and

EN-RU counterparts. We elected to tolerate this to allow for easy replication of our experiments using
the same openly available, pre-trained NMT models, as well as to reduce the computational overhead
and environmental impact incurred by our study.
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EN-DE EN-FR EN-RU

BASE BIG mBART BASE BIG mBART BASE BIG mBART

# Parameters (M) 65.5 363.5 610.9 67.7 313.1 610.9 72.5 317.9 610.9

# Training pairs (M) 39.7 538.7* 42.6 140.6 36 36.8 34.3 162* 13.9

Test BLEU 29.9 36.2 25.6 40.2 41.1 36 21.3 25.5 20.6

Table 4.5: Overview of the evaluated NMT models. Training size estimates were taken

from corresponding publications (Ott et al., 2018; Ng et al., 2019; Tang et al., 2020).

* denotes inclusion of back-translated parallel data. For mBART50, training size does

not include monolingual data used in pre-training. BLEU scores were computed with

SacreBLEU (Post, 2018).

and newstest2020 serving as the text set. For EN-DE, we exclude the Wiki Titles v2

corpus. The EN-FR model, on the other hand, is trained on the WMT14 news task data,

augmented with ParaCrawl v89. We use newstest2013 as the development set and test

on newstest2014. All data is cleaned by removing sentence pairs with a source-to-

target length ratio exceeding 2 or identified as belonging to unrelated languages by

langid10. We tokenize all datasets using Moses scripts11 and employ the subword-nmt

library12 (Sennrich et al., 2016) to segment words. Subword segmentation used 32k

merge operations and a vocabulary threshold of 50.

Hyper-parameter settings for all the models are provided in Table 4.6. The only

exception is the use of tied embeddings for EN-DE and EN-FR, but not EN-RU, as

recommended in (Ng et al., 2019). Parameters specific to the transformer architecture

(e.g. layer size, number of attention heads) correspond to the BASE configuration in

(Vaswani et al., 2017). Other hyper-parameters not covered in Table 4.6 use the default

fairseq settings for the ’transformer’ architecture. All models were trained on NVIDIA

RTX 2080 Ti cards until convergence according to early stopping (∼20 hours each).

4.3.2 Results and Discussion

The results of the contrastive evaluation on the full MT-Wino-X dataset are summarized

in Table 4.7. All models perform at chance level (a randomly guessing model would

9https://paracrawl.eu/
10https://github.com/saffsd/langid.py
11https://github.com/moses-smt/mosesdecoder
12https://github.com/rsennrich/subword-nmt
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Hyper-parameter Value

LR 7e-4

LR schedule inverse_sqrt

Batch size 4,096 tokens

# Gradient accumulation steps 6

Optimizer Adam

Adam betas 0.9, 0.98

Dropout p 0.1

Warm-up updates 4k

Max # Epochs 1k

Validation frequency 5k updates

Early stopping patience 3

Random seed 42

Table 4.6: Hyper-parameters for training BASE models.

be 50% accurate), without any observable effect of language pair, model size, training

data, or monolingual pre-training.

EN-DE EN-FR EN-RU

BASE BIG mBART BASE BIG mBART BASE BIG mBART

Accuracy 0.5032 0.5093 0.5048 0.4960 0.5107 0.5030 0.4973 0.5009 0.5049

Table 4.7: Model performance on the full MT-Wino-X dataset. Best results per language

pair are in bold.

One likely explanation is that models fall back on exploiting surface-level patterns

when trying to identify the antecedent of it, rather than engaging in deeper language

understanding. Such undesirable behaviour is facilitated by dataset biases that models

are exposed to during training (Emelin et al., 2020). In their study of coreference,

(Stojanovski et al., 2020) indicate that gender and positional biases can influence model

behavior. To verify whether this is the case for cross-lingual Winograd schemas, we

examine how strongly pronoun gender and the relative antecedent position correlates

with model preference. In contrast to prior work, we quantify model bias explicitly
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as the absolute effect size of the observed correlation (i.e. its ‘magnitude’), allowing

us to directly compare between individual models and language pairs. Correlation

significance is computed according to the Mann-Whitney U test (Mann and Whitney,

1947), whereas the effect size is estimated as the Rank Biserial Correlaton (RBC)

score13 (Cureton, 1956).

EN-DE EN-FR EN-RU

Bias Type BASE BIG mBART BASE BIG mBART BASE BIG mBART

Gender (|RBC|) 0.33 0.27 0.37 0.24 0.05 0.05 0.31 0.48 0.44

Positional (|RBC|) 0.16 0.17 0.14 0.05 0.07 0.15 0.07 0.06 0.05

Table 4.8: Model bias identified for MT-Wino-X samples. Higher values indicate a

stronger correlation between antecedent features and model choice, and thus a greater

bias. All values are statistically significant (p < .05). Bold values denote a large effect

/ bias size, underlined values a medium one.

By construction, Wino-X is free of gender or positional bias, since the translated

it is guaranteed to agree with each antecedent in exactly one instance per schema,

depending on the trigger word. Thus, each gender and positional category corresponds

to the correct choice just as frequently as to the wrong one. As such, preferences of an

unbiased NMT system should show no correlation with either property, corresponding

to an |RBC| score of 0. As Table 4.8 shows, this is not the case for the evaluated

models, as we observe moderate to strong gender bias for EN-DE and EN-RU, but not

EN-FR, as well as a trivial, but statistically significant positional bias.

Based on these observations, we can draw several conclusions: 1. While both

bias types influence model behaviour, gender bias usually dominates positional bias,

2. Neither extensive pre-training nor multilingual training result in bias reduction for

individual language pairs, and 3. The magnitude of biases in CoR is closer associated

with training data properties than model properties. We verify the last point by exam-

ining the frequency with which different pronoun forms occur in the training data of

our BASE models, finding that gender preferences exhibited when scoring MT-Wino-X

mirror the pronoun gender distribution in the training data. Specifically, for EN-DE,

our BASE model strongly favours neutral antecedents, preferring them over the alter-

native in ∼48% of samples, while they represent the correct choice in just ∼31% of

the dataset. Looking at the training data, we find that translations of it are 4.5-12 times

13As implemented in the pingouin library (Vallat, 2018).
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more likely to have the neutral gender than female and male, respectively. A similar

trend can be observed for EN-FR, where it is translated as male in ∼63% of samples

favoured by the model (which is correct in ∼50% of the dataset), with translations into

the male gender being 3.2 times more likely than female in the training data. Male

gender is even more dominant for EN-RU, where it is preferred by the model in ∼79%

of instances (and correct in just ∼40% of the dataset).

Importantly, the likelihood of it being translated as male or female in the EN-RU

training data is roughly equal, with translation into male being 1.05 times more likely,

yet the absolute frequency of the male pronoun is roughly twice as high compared

to the female form. A similar picture emerges for the EN-FR data, where the male

pronoun is 3.6 times more frequent than its female analogue, overall. It is difficult to

estimate the absolute frequency of the German female pronoun, as it is highly polyse-

mous. Table 4.9 summarizes the corresponding statistics.

EN-DE EN-FR EN-RU

Masc. Fem. Neut. Masc. Fem. Masc. Fem. Neut.

# preferred
by model

982

(26.02%)

985

(26.1%)

1,807

(47.88%)

1,893

(63.35%)

1,095

(36.65%)

1,674

(79.37%)

311

(14.75%)

124

(5.88%)

# reference it
translations

175.6k

(6.39%)

473.9k

(17.24%)

2.1M

(76.38%)

4.7M

(77.05%)

1.4M

(22.95%)

236.4k

(41.9%)

225.6k

(40%)

102.2k

(18.1%)

# abs. reference
occurrences

1.8M -* 4.5M
21.7M

(78.34%)

6M

(21.66%)

1M

(59.76%)

508.1k

(30.36%)

165.4k

(9.88%)

Table 4.9: Pronoun frequencies in MT-Wino-X translations preferred by BASE models

and found in the training data; Fractions of respective total counts are given in paren-

theses, where possible.

*The German sie is highly polysemous and, as such, not included in the absolute

counts, since disambiguation via linguistic analysis of ∼10M candidate sentences

(e.g. with Stanza) was computationally prohibitive.

Importantly, absolute pronoun form frequencies appear to matter more than the

likelihood of it being translated into a particular gender. This suggests that the fre-

quency prior underlying the models’ gender bias is surprisingly simple and, at least

partly, based on raw occurrence statistics.

While model reliance on surface-level patterns provides one possible explanation

for the challenging nature of MT-Wino-X, we also investigate whether models consider

trigger terms to be especially salient when translating ambiguous pronouns.
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4.3.2.1 Statistical Analysis

To estimate the statistical significance of the correlation between the gender of the

translated it and model preference, the Mann-Whitney U test combines translations

preferred by the model (i.e. those assigned the lower PPL) and those rejected by the

model and ranks them according to the numerical ID that corresponds to the gender

of the it translation (i.e. 1=masculine, 2=feminine, 3=neutral). Subsequently, the U-

value is computed according to Eqn. 4.2 - 4.4, where R1 denotes the sum of ranks of

translations preferred by the model and n1 their total count, while R2 denotes the sum

of ranks of translations rejected by the model and n2 their respective total count.

U = min(U1,U2) (4.2)

U1 = R1 −
n1(n1 +1)

2
(4.3)

U2 = R2 −
n2(n2 +1)

2
(4.4)

To obtain the p-values, U-values are subjected to tie correction and normal approxi-

mation. Significance of the positional bias is computed following the same procedure,

with ranking taking place according to the relative antecedent location.

In order to compute the RBC values, test sentences are divided into two groups

- one containing translations that are preferred by the model and another comprised

of the rejected translations. Next, all possible pairs are constructed between the two

groups, pairing together each translation from one group with all translations in the

other. The proportion of pairs f where the pronoun ID of the preferred translation is

greater than that of the rejected translation is computed, as well as the proportion of

pairs u where the opposite relation holds. The RBC value is obtained according to Eqn.

4.5.

RBC = f −u (4.5)

As we are only interested in the effect size and not in the direction of the effect, we

take its absolute value to signify bias strength. Positional bias is estimated in the same

manner.

A common practice for interpreting effect size strength is the adoption of Cohen’s

benchmark (Cohen, 2013), which posits that the effect size d is large if d >= 0.8,

medium if d >= 0.5, and small if d >= 0.2. It is, however, not inherently applicable

to the interpretation of RBC, due to its insensitivity to the base rate - the size ratio

between the two groups denoted by the dichotomous variable, i.e. whether a translation
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is preferred or rejected by the model. For a detailed discussion, see (McGrath and

Meyer, 2006). To apply the aforementioned thresholds to RBC, we use the conversion

formula in Eqn. 4.6 (McGrath and Meyer, 2006), where p1 and p2 represent the

proportions of groups described by the dichotomous variable, with p1 = p1 = 0.5.

Within the contrastive evaluation setting, the base rate is guaranteed to equal 1, since

for each sample, one translation will be preferred by the model while the other one is

rejected.

threshold =
d√

d2 + 1
p1 p2

(4.6)

The adjusted effect size thresholds are, therefore, as follows: small if d >= 0.1,

medium if d >= 0.24, and large if d >= 0.37.

4.3.3 Do Models Recognize Coreference Trigger Words?

For the estimation of salience of individual source words for the translation of it, we

adopt the prediction difference (PD) technique (Li et al., 2019), shown to provide in-

formative explanations of model behaviour by (Li et al., 2020). To apply PD to the

study of coreference, we compare the probabilities assigned by the model to the cor-

rect it translation (w) conditioned on 1. the full source sentence (X) and 2. the source

sentence without the trigger term (X\t). To ’remove’ a trigger word, its embedding is

replaced with a zero vector of equal size. Salience is computed according to Eqn. 4.7,

as the difference between the two probabilities.14

Salience(t;w,X) = P(w|X)−P(w|X\t) (4.7)

In order to quantify the overall relative importance of trigger tokens compared to

non-trigger words per model, we compute importance scores, defined as the standard-

ised difference between the means of salience score distributions assigned to trigger

tokens and words present in both contrastive translations (i.e. non-triggers). Formally,

we compute Cohen’s D effect size measure, by subtracting the means of the compared

distributions µT and µNT and dividing the result by the pooled standard deviation s, as

in Eqn. 4.8. Table 4.10 reports the results.

D =
µT −µNT

s
(4.8)

14We average the salience of constituent sub-words for segmented words.
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EN-DE EN-FR EN-RU

BASE BIG mBART BASE BIG mBART BASE BIG mBART

Scores 0.03 0.11* 0.12* 0.16* 0.01 0.2* 0.02 0.35* 0.08*

Table 4.10: Trigger importance. * denotes statistically significant differences according

to paired t-tests (p < .05).

Across all models and language pairs, importance scores remain low15 with the

difference between salience scores lacking statistical significance in several cases. On

the sentence level, this corresponds to models failing to identify trigger words required

to establish coreference, as illustrated in Figure 4.2 for the BIG EN-DE model.

Figure 4.2: Salience maps for two MT-Wino-X samples (DE side is omitted for clarity).

Words that are more salient for the translation of it are highlighted in a deeper shade of

orange. Blue frames indicate trigger words that resolve coreference ambiguity.

Therefore, the failure of models to perform well on the MT-Wino-X benchmark

can be partially attributed to their inherent inability to identify information relevant for

establishing coreference.

4.3.4 Improving CoR by Reducing Biases and Enhancing Model

Awareness

Finally, we set out to improve coreference resolution in NMT models by addressing

undesirable biases and enhancing their ability to detect disambiguating information.

Since MT-Wino-X is constructed to be unbiased towards antecedent gender, a straight-

forward way to mitigate model bias is to fine-tune models on a fraction of the dataset,

building upon the methodology proposed in (Saunders and Byrne, 2020). Given its

limited size, extensive fine-tuning on MT-Wino-X is not feasible. However, to investi-

15Cohen’s D values < 0.5 are considered to be trivial to small (Cohen, 2013).
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gate whether bias reduction alone is sufficient to improve CoR that presupposes com-

monsense knowledge, we conduct a series of few-shot fine-tuning experiments.

For this purpose, we split language-specific MT-Wino-X datasets into training, de-

velopment, and test sets, taking care that both instances belonging to the same schema

are assigned to the same split. For all experiments, development and test sets are fixed,

containing 200 and 1k samples, respectively. Training set size is varied in increments

of 500 up to 2k for EN-DE, 1.5k for EN-FR, and 1k for EN-RU. All models are fine-

tuned until convergence as determined by early-stopping. We focus on the BIG models,

measuring the effect of increased training size on accuracy and translation quality.

To fine-tune the BASE and BIG NMT models, we use the same settings as provided

in 4.6, but set the learning rate to 1e-7, reduce the total batch size to 8 sentence pairs,

and forego any warm-up steps. Models are fine-tuned to convergence according to

early-stopping, with patience set to 3 validation steps. Validation takes place after

each completed training epoch. The optimal LR was determined via grid search over

[1e-5, 1e-6, 1e-7].

Settings for fine-tuning mBART are summarized in table 4.11. Hyper-parameters

not covered use the default setting in HuggingFace Transformers.

Hyper-parameter Value

LR 1e-5

# Gradient accumulation steps 1

Batch size 16 sentence pairs

Max # Epochs 1k

Validation frequency 1 epoch

Early stopping patience 3

Random seed 42

Table 4.11: Settings used to fine-tune mBART50 on the MT-Wino-X data.

As shown in Figure 4.3, fine-tuning yields slight improvements in accuracy for all

language pairs, up to 3.2% for EN-RU. In parallel, we observe a substantial reduction

in gender bias in fine-tuned models, using the methodology from §4.3.2. Exposing

translation models to 2.5k samples for EN-DE and 1k for EN-RU reduces gender bias
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by 71% and 73%, respectively, from 0.24 to 0.07 and from 0.49 to 0.13.16 Still,
debiasing alone is not sufficient to substantially increase CoR accuracy.

Figure 4.3: Few-shot fine-tuning results on MT-Wino-X. Red lines denote accuracy, blue

lines correspond to BLEU.

We also note that fine-tuning has a mixed effect on test BLEU which increases for

EN-DE but degrades for EN-FR and, to a lesser extent, EN-RU. An analysis of EN-

DE test translations before and after fine-tuning shows an increased pronoun coverage

for the fine-tuned model, with most pronounced improvements detected for masculine

and feminine pronoun forms (Table 4.12), corroborating the quantitative reduction in

gender bias.

Source Feminine Masculine Neutral

Reference 340 476 380

Pre-trained 270 410 321

Fine-tuned 290 420 326

Table 4.12: Pronoun frequencies in BIG EN-DE translations, compared to the new-

stest2020 reference.

Since bias reduction alone does not suffice to address the unique challenges pre-

sented by MT-Wino-X, we additionally experiment with equipping translation models

with an inductive bias that facilitates accurate pronoun translation. To accomplish this,

we define the Pronoun Penalty (PP) objective that actively penalizes translation mod-

els for assigning higher probability to an incorrect pronoun form during training.17, so

as to encourage models to better utilize trigger words. The objective is defined in Eqn.

4.9, where CE is the smoothed cross-entropy loss, λ is the scaling factor, r ∈ R are

correct target pronouns found in the reference translation, and a ∈ A are alternative,

16Initial gender biase values (i.e. 0.24 and 0.49) are recomputed on test sets used in the few-shot
experiments. Given the low initial gender bias in EN-FR BIG (0.024), fine-tuning has no noticeable
effect.

17For simplicity, we only consider singular pronouns in the nominative case, e.g. [er, sie, es] for DE.
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incorrect pronoun forms for each correct pronoun (e.g. [er, es] if the correct German

pronoun is sie).

L(S) =CE(S)+λ

|R|

∑
r=1

PP(r) (4.9)

PP(r) = 1− P(r)
N

+
maxa∈A P(a)

N
(4.10)

N = P(r)+
|A|

∑
i=1

P(ai) (4.11)

We fine-tune the BIG models on the largest training set for each language pair with

this enhanced objective, and present the results in Table 4.13.18 The new objective

substantially improves accuracy for EN-DE and EN-FR, by 4-7%, while no noticeable

difference can be observed for EN-RU. Crucially, the observed improvements correlate

with an increase in trigger word importance. Reusing the method introduced in §4.3.3,

we find trigger importance increase by a factor of 1.5 for EN-DE and 4.25 for EN-FR

compared to models fine-tuned without PP, from 0.12 to 0.18 and 0.04 to 0.17.19

Regime EN-DE EN-FR EN-RU

Pre-trained 0.51 (36.2) 0.51 (41.1) 0.5 (25.5)

Fine-tuned 0.52 (36.9) 0.52 (37) 0.53 (25.3)

+ PP 0.56 (36.6) 0.59 (39.4) 0.53 (25.3)

Table 4.13: MT-Wino-X accuracy of models with different training regimes. Test BLEU

in parentheses.

Overall, our findings indicate that coreference remains an unsolved challenge in

machine translation, especially in cases requiring commonsense knowledge. While
debiasing models leads to improved CoR accuracy, inductive biases that enable
models to detect disambiguating information can be more important still.

4.4 Testing Cross-Lingual Transfer in MLLMs

Having thus probed the capacity and limitations of NMT models for solving cross-

lingual Wino-X samples, we now turn to MLLMs.
18λ = 100 for all language pairs.
19As with bias values, initial trigger importance scores are re-computed on test sets used in few-shot

experiments. Fine-tuning has a limited effect on EN-RU which had the highest initial importance scores.



Chapter 4. Lacking Text Understanding Leads to Coreference Resolution Errors 73

4.4.1 Experimental Setup

Our investigation seeks to answer two questions: 1. To what extent can MLLMs solve

Winograd schemas in different languages? and 2. Does commonsense knowledge ac-

tively transfer across languages? Should the latter be the case, it could substantially

reduce the need for language-specific commonsense knowledge bases that usually re-

quire significant human effort to construct and expand (Speer et al., 2017). Our exper-

iments focus on the XLM-RoBERTa (XLM-R) model introduced in (Conneau et al.,

2020). Structurally similar to the decoder of a transformer NMT model, XLM-R is

trained on monolingual as well as parallel data covering 100 diverse languages, to in-

duce language-agnostic representations in a shared semantic space. Intuitively, sharing

representations across languages should facilitate commonsense knowledge transfer,

although it is yet unclear to what extent this holds true for Winograd schemas.

Analogous to our evaluation of NMT models, MLLMs are examined in the con-

trastive setting. As input, models receive a schema instance containing a gap, as de-

picted in Figure 4.1 (bottom half), which is replaced with a model-specific <MASK>

token used during pre-training. Conditioned on this input, we compute sentence-level

pseudo-perplexities (PPPL) (Salazar et al., 2020) for two completions of the input se-

quence, each with a different filler that replaces the <MASK> token. The completion

assigned the lowest PPPL indicates the model’s preference towards a specific gap-filler,

which informs model accuracy.

4.4.2 Results

As a first step, we measure the zero-shot performance of XLM-R BASE (∼270M pa-

rameters) and LARGE (∼550M parameters) models20 on the full LM-Wino-X datasets,

summarizing the results in Table 4.14. Accuracy remains comparatively low across

the board, with the BASE model scoring close to chance level. On the other hand,

the XLM-R LARGE variant substantially outperforms its BASE analogue and demon-

strates roughly comparable performance across all examined languages.

4.4.3 Is Monolingual Data Enough for Multilingual CSR?

Of central interest to our investigation is whether fine-tuning models on schema in-

stances in a primary language, e.g. EN, also improves CSR in a transfer language, e.g.

20We use the Transformers library.
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EN-DE EN-FR EN-RU

EN DE EN FR EN RU

BASE 0.53 0.53 0.54 0.53 0.52 0.52

LARGE 0.62 0.61 0.63 0.6 0.62 0.59

Table 4.14: XLM-R accuracy on LM-Wino-X. Since dataset composition and size differs

between language pairs as detailed in §4.2.2, for EN-X, EN denotes model performance

on the EN side of the pair-specific dataset, and X on the aligned non-EN language.

DE, and how this improvement compares to directly fine-tuning the model on the lat-

ter. We conduct a series of few-shot experiments to answer this question, while explor-

ing the relationship between cross-lingual commonsense knowledge transfer and the

amount of fine-tuning data. Due to its greater efficiency, our investigation is focused

on XLM-R BASE21. Analogous to experiments in §4.3.4, we split the LM-Wino-X data

into training, development, and test sets, keeping development and test sizes fixed at

200 and 1k samples, while varying the size of the training set in increments of 500.

Instances derived from the same schema are assigned to the same set.

Figure 4.4: Few-shot fine-tuning results on LM-Wino-X. EN->X denotes zero-shot

knowledge transfer to language X after training the model on EN samples only.

To adopt XLM-R to the studied task, it is fine-tuned on target sequences contain-

ing the correct gap-filler with the masked language modeling objective. Models are

trained until convergence as determined by early-stopping. We provide the fine-tuning

hyper-parameters in Table 4.15. As before, settings not covered in the table corre-

spond to their default values in Huggingface Transformers. Same settings are used for

all language pairs. The optimal LR was determined via grid search over [1e-5, 1e-6,

21We were unable to train XLM-R LARGE as our hardware could not accommodate its significant
size outside of inference.
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1e-7].

Hyper-parameter Value

LR 1e-7

# Gradient accumulation steps 1

Batch size 16 sentence pairs

Max # Epochs 1k

Validation frequency 1 epoch

Early stopping patience 3

Random seed 42

Table 4.15: Settings used to fine-tune XLM-R on the LM-Wino-X data.

We treat EN as the primary language and evaluate knowledge transfer toward DE

and FR22, summarizing the results in Figure 4.4. Improved accuracy is observed for

all models. However, fine-tuning benefits EN models most as the amount of training

samples increases, which may be linked to EN being the dominant language in the

XLM-R pre-training corpus (Conneau et al., 2020). More importantly, we can observe

a substantial transfer of commonsense knowledge between languages. Models fine-

tuned on EN and evaluated on DE / FR often achieve higher accuracy than models

directly fine-tuned on the transfer language.

To shed light on commonsense knowledge transfer beyond the few-shot setting, we

additionally fine-tune instances of XLM-R on the entirety of WinoGrande and evalu-

ate them on the few-shot test sets.23 As can be seen from Table 4.16, commonsense

knowledge transfer benefits from the increase in training data, with improvements in

the transfer languages being roughly half of those observed for the primary language.

This indicates that large-scale, monolingual commonsense resources can signifi-
cantly contribute towards building models capable of CSR in a wide variety of
languages.

22Due to its limited size, EN-RU data is excluded from the few-shot evaluation.
23Excluding samples found in each test set from training.
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EN-DE EN-FR EN-RU

EN DE EN FR EN RU

Accuracy FT 0.67 0.60 0.67 0.59 0.65 0.57

Accuracy ∆ 14% 7% 13% 6% 13% 5%

Table 4.16: Test accuracy of XLM-R BASE fine-tuned on WinoGrande (English only).

DE, FR, and RU are transfer languages not seen during fine-tuning. ∆ denotes the

accuracy increase compared to the first row of Table 4.14.

4.5 Conclusion and Outlook

In this work, we introduced Wino-X, a dataset containing cross-lingual and multilin-

gual Winograd schemas. Based on this resource, we showed that NMT models strug-

gle to correctly resolve coreference that presupposes commonsense knowledge, due

to over-reliance on dataset artifacts and general inability to detect disambiguating in-

formation. We defined methods to quantify biases and trigger word importance in a

principled way, and proposed strategies for reducing the former while increasing the

latter. For MLLMs, we presented evidence of commonsense knowledge transfer, show-

ing that transferring knowledge from English to another language can lead to similar

(or greater) improvements as directly fine-tuning on transfer languages. Overall, our

study identifies existing difficulties in cross-lingual CoR and CSR, discusses potential

causes, and offers initial ways to mitigate them.

In future work, we intend to further improve the handling of coreference in NMT

by reducing undesirable biases and introducing useful ones. For MLLMs, future ef-

forts can be directed towards identifying categories of knowledge that do not benefit

from cross-lingual transfer to effectively guide data collection in lower-resourced lan-

guages. This category includes commonsense knowledge that varies across cultures

and geographic regions, e.g. wedding and funeral customs, where existing work such

as (Yin et al., 2022) offers valuable pointers for data acquisition and curation.

Ethical Considerations

Since our work introduces a novel resource, we include a Data Statement (Bender and

Friedman, 2018) as a concise overview of its provenance and construction. We hope

this will motivate the research community to adopt the dataset for projects relating to
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cross-lingual natural language understanding by increasing transparency.

A. CURATION RATIONALE: We discuss the filtering criteria applied to Wino-

Grande samples and their translations in §4.2.2. In enforcing conservative selection

criteria, our aim is to ensure grammaticality of the semi-automatically constructed

samples and to minimize the percentage of undecidable or disfluent instances.

B. LANGUAGE VARIETY: The collected dataset contains English, German, French,

and Russian sentences. English sentences were authored by human crowd-workers,

while translations into other languages were obtained from an online translation ser-

vice. Since (Sakaguchi et al., 2020) do not provide demographics of workers involved

in data collection, we cannot report on the dominant variety of English. Due to their

origin, translations into DE, FR, and RU are likely to exhibit features of neural trans-

lationese (Graham et al., 2020).

C. SPEAKER DEMOGRAPHIC: N/A

D. ANNOTATOR DEMOGRAPHIC: We appropriate this section to summarize the

demographics of raters involved in evaluating the dataset quality, as detailed in §4.2.2.

Of the 6 annotators involved (two per language pair), all were bilingual speakers with

native or native-like proficiency in both English and German / French / Russian. All

six were of European origin, between 25-35 years of age, and held a graduate degree.

Four of the raters identified as female and two as male.

E. SPEECH SITUATION: The dataset was constructed semi-automatically using

scripts distributed in the project’s repository. Raters submitted their judgments in the

course of a single week and had the opportunity to contact the primary author with

clarifying questions.

F. TEXT CHARACTERISTICS: Wino-X contains a collection of cross-lingual and

multilingual Winograd schemas for the study of coreference resolution and common-

sense reasoning in NMT models and MLLMs. Due to the relative simplicity of sce-

narios described by the schemas, it is highly unlikely for the dataset to have significant

ethical implications.

G. RECORDING QUALITY: N/A

H. OTHER: N/A

I. PROVENANCE APPENDIX: According to (Sakaguchi et al., 2020), WinoGrande

was collected through the Amazon Mechanical Turk (AMT) platform. Workers had to

meet a minimum qualification that required 99% approval rate and 5k AMT approvals

in total. For composing twin sentences corresponding to a single schema, workers

were awarded $0.4. Each collected sample was subsequently validated by three other
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crowd-workers, with 68% of samples deemed to be valid. For each sentence validation,

workers were reimbursed with $0.03. See (Sakaguchi et al., 2020) for a more extensive

discussion of WinoGrande.

Rater instructions

Once you open the form you were given a link to, you will see a sheet containing ∼100

rows, with each row representing an individual sample for you to annotate. Each row

is subdivided into 4 fields: SENTENCE, TRANSLATION_1, TRANSLATION_2, and

WHICH TRANSLATION IS BETTER?

Please begin the annotation of each row by first reading the sentence given in the

SENTENCE field. Each SENTENCE should contain the English pronoun “it” as well

as several nouns. One of the nouns should be identifiable as the referent of “it”, i.e.

as denoting the object or entity that “it” clearly refers to. For instance, given the

SENTENCE “The trophy does not fit into the suitcase because it is too small”, the

bolded it clearly refers to suitcase rather than trophy, since a suitcase can be too small

to fit a trophy, but a trophy cannot be too small to fit inside a suitcase.

TRANSLATION_1 and TRANSLATION_2 provide two alternative, minimally dif-

ferent translations of SENTENCE. The primary difference between both translations

is the gender of the pronoun representing the translation of the ambiguous “it” in

SENTENCE. Continuing with our running example, TRANSLATION_1 could be “Die

Trophäe passt nicht in den Koffer, weil er zu klein ist”, while TRANSLATION_2 could

be “Die Trophäe passt nicht in den Koffer, weil sie zu klein ist”. In TRANSLATION_1,

“it” has been translated as the German pronoun er that unambiguously refers to Kof-

fer (corresponding to the English “suitcase”), as both are masculine in gender. On the

other hand, in TRANSLATION_2, “it” is translated as the German pronoun sie that

unambiguously refers to Trophäe (corresponding to the English “trophy”), as both are

feminine in gender. Given that things cannot usually be too small to fit into receptacles,

TRANSLATION_1 should be judged as correct, rather than TRANSLATION_2.

When annotating each example, please select the most appropriate option from the

drop-down menu in the WHICH TRANSLATION IS BETTER? column. If you think

that TRANSLATION_1 is accurate or have a preference towards it (e.g. based on your

world knowledge / common sense), please choose “1”. If you think that TRANSLA-

TION_2 is accurate or have a preference towards it, please choose “2”. If both trans-

lations are perfectly equally likely, please choose “BOTH”. If the translation quality
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is insufficient for you to make a confident judgment, please select “BAD SAMPLE”.

Since the translations were machine-generated, we ask you to be lenient towards

translation errors that do not affect the pronoun disambiguation. If the translation is

not perfect, e.g. containing odd structure or mistranslated words, but you’re still able

to identify the correct pronoun translation, please indicate your translation choice,

rather than marking the sample as bad.

TRANSLATION_1 and TRANSLATION_2 will always differ as to how “it” is trans-

lated, but may have other surface-level differences, as well. As long as both transla-

tions convey similar content, we encourage you to ignore any differences other than

the translation of “it” for the purpose of your judgments.

4.6 Post-Publication Comments

As discussed in Section 3.5, modern LLMs can be increasingly considered as a valid al-

ternative to traditional NMT models, achieving competitive translation quality. Given

their exposure to large quantities of data across a variety of domains and languages,

they might additionally be more adept at performing cross-lingual commonsense rea-

soning within the translation setting, since LLMs have previously been shown to per-

form well on a variety of monolingual commonsense knowledge benchmarks (Srivas-

tava et al., 2022; Li et al., 2022). To establish if this is indeed the case, we examined

whether the proposed MT-Wino-X benchmark presents a challenge for the current gen-

eration of LLMs. Additionally, we utilized the LM-Wino-X portion of the dataset to

probe whether more recent LLMs demonstrate an improved ability to resolve corefer-

ence ambiguity within a monolingual setting as compared to the XLM model tested

in Section 4.4.3. Similarly to the WSD study described in Section 3.5, we utilize the

ChatGPT API in all of the conducted experiments.

By utilizing an API, we no longer have access to the LLM’s internal representations

such as logits and token-wise probabilities. Consequently, we modify the format used

to query the model with MT-Wino-X samples, re-framing the task as a multiple choice

question, as opposed to the original method of comparing model perplexity assigned to

contrastive translations. Specifically, we use a prompt containing the task description

to prime the model, followed by a total of six training samples corresponding to three

distinct Winograd schemas. The prompt is shown in Table 4.17, accompanied by one

of the examples. All prompting examples were selected from their respective datasets

at random, making sure that each two samples belong to the same schema.



Chapter 4. Lacking Text Understanding Leads to Coreference Resolution Errors 80

U: Your task is to pick the correct [German / French / Russian] translation of an English sentence

out of two alternatives presented to you. The correct translation should fully and accurately capture

the meaning of the English source sentence. Please identify the preferred translation in your

response without providing any additional information. Here are some examples of what this

should look like:

English sentence:

"The woman looked for a different vase for the bouquet because it was too large."

Translation 1:

"Die Frau suchte nach einer anderen Vase für den Blumenstrauß, weil sie zu groß war."

Translation 2:

"Die Frau suchte nach einer anderen Vase für den Blumenstrauß, weil er zu groß war."

Which is the better translation?"
S: Translation 2

Table 4.17: Basic prompt used to elicit ChatGPT’s judgments regarding the correctness

of contrastive Winograd schema instance translations sampled from MT-Wino-X, with-

out intermediate reasoning steps. The LLM was prompted with four examples in total.

U = User, S = System.

A similar approach was taken for the evaluation of LM-Wino-X, where the choice

presented to the model is between two possible gap fillers, rather than two potential

translations. Again, the model was provided with a prompt and six examples repre-

senting three different schemas to prime it for the task, as shown in Table 4.18. While

the context sentence and gap fillers could be either English, German, French, or Rus-

sian, depending on the subset of LM-Wino-X, the instruction text remained English

throughout to ensure consistency.

Here, too, it must be mentioned that valid model replies could not be obtained

for all queries due to issues such as API timeouts and model restrictions, as had been

the case for WSD queries in Section 3.5. The fraction of successful queries for each

subset of Wino-X is documented in Table 4.19. It is important to note that the ex-

clusion of samples used for prompting and those for which no model judgment could

be obtained precludes the observed LLM accuracy from being directly compared to

the NMT model results in Table 4.8. Nonetheless, given that model replies were col-

lected for the vast majority of the challenge set, the conducted evaluation offers useful

insights into the LLM’s CoR capabilities and limitations.

As Table 4.20 indicates, ChatGPT scores poorly on the MT-Wino-X task, falling

slightly behind the significantly smaller, debiased NMT models described in Section
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U: Your task is to pick the correct [English / German / French / Russian] term out of two alterna-

tives presented to you in order to fill the gap in the provided context sentence. The gap to be filled

is represented by the word <GAP>. The completed sentence should be grammatical, fluent, and

make sense within the context of an everyday situation. Please identify the preferred gap filler in

your response without providing any additional information. Here are some examples of what this

should look like:

Context sentence:

"The woman looked for a different vase for the bouquet because <GAP> was too large."

Filler 1: "the vase"

Filler 2: "the bouquet"

Which is the more appropriate gap filler?"

S: Filler 2

Table 4.18: Basic prompt used to elicit ChatGPT’s judgments regarding the correctness

of contrastive Winograd schema instance gap fillers sampled from LM-Wino-X, without

intermediate reasoning steps. The LLM was prompted with four examples in total. U =

User, S = System.

4.3.4. By contrast, the LLM substantially outperforms XLM-LARGE on the LM-Wino-

X task, with improvements on non-English languages ranging from 5.56% for the Rus-

sian side of the EN-RU split to 16.9% for the French side of the EN-FR split. On the

English parts of the challenge set, accuracy gains of up to 19.22% can be observed.

This discrepancy indicates that ChatGPT is, in principle, capable of performing com-

monsense reasoning required to solve cross-lingual Winograd schemas, but is unable

to leverage this competency for MT-Wino-X24.

CoT prompting, previously discussed in 3.5, is one potential pathway towards facil-

itating the required reasoning steps within the MT-Wino-X setting. To investigate if this

prompting strategy improves the LLM’s performance on the benchmark, a CoT prompt

and four prompting examples corresponding to two Winograd schemas were manually

constructed for each translation direction, based on randomly selected schemas that

were subsequently excluded from the evaluation. Table 4.21 reproduces the prompt

accompanied by one of the prompting examples (each API call to the model included

all four examples).

As before, we report the fraction of valid replies obtained via he API for each

24While the generally good performance of ChatGPT on the LM-Wino-X challenge sets suggests that
Wino-X may have been included in the LLM’s training data, its subpar accuracy on the MT-Wino-X
split suggests otherwise. Unfortunately, as ChatGPT’s training data is not not publicly available, it is
impossible to verify whether Wino-X samples were seen by the model during the pre-training stage.
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Dataset # API failures (%) # Invalid replies (%) # Valid replies (%)

MT-Wino-X EN-DE 17 (0.5%) 20 (0.5%) 3,750 (99%)

MT-Wino-X EN-FR 20 (0.65%) 20 (0.65%) 2,944 (98.7%)

MT-Wino-X EN-RU 6 (0.3%) 10 (0.5%) 2,228 (99.2%)

LM-Wino-X EN | DE 83 (1.4%) | 95 (1.6%) 5 (0.09%) | 5 (0.09%) 5,747 (98.58%) | 5,734 (98.35%)

LM-Wino-X EN | FR 17 (0.61%) | 37 (1.33%) 2 (0.07%) | 7 (0.25%) 2,774 (99.46%) | 2,749 (98.57%)

LM-Wino-X EN | RU 23 (1.55%) | 0 (0%) 0 (0%) | 1 (0.07%) 1,448 (97.64%) | 1,470 (99.12%)

Table 4.19: Fractions of successful and unsuccessful Wino-X queries addressed to

ChatGPT via the web API. Invalid replies refers to cases where the model did not pro-

duce a reply that corresponded to one of the two possible choices.

MT-Wino-X EN-DE MT-Wino-X EN-FR MT-Wino-X EN-RU

55.63% 56.93% 52.71%

LM-Wino-X EN | DE LM-Wino-X EN | FR LM-Wino-X EN | RU
79.55% | 75.93% 80.03% | 76.90% 81.22% | 64.56%

Table 4.20: ChatGPT accuracy for the different subsets of the Wino-X benchmark.

dataset in Table 4.22, thus ascertaining that the amount of rejected samples remains

small. Similar to the mixed results on the WSD task, CoT prompting does not improve

ChatGPT’s accuracy on MT-Wino-X, as can be seen from the results summarized in Ta-

ble 4.23. Specifically, using the CoT prompt causes a substantial drop in accuracy, of

3.39%, for the EN-DE direction, which suggests that the extended prompt is not only

ineffective, but can be actively detrimental to the LLM’s cross-lingual commonsense

CoR ability. It is possible that the inclusion of target language terms into the prompt

confounds the model or, alternatively, the close integration of the CoR and translation

steps within the prompt is complicating the reasoning steps, rendering them ineffec-

tive. To investigate whether this is indeed the case, an alternative prompting strategy

is introduced, motivated by the high accuracy achieved by the LLM on LM-Wino-X,

which we refer to as Chain-of-Tasks (CoTA).

In contrast to the CoT prompt, the CoTA prompt introduces monolingual CoR

on the (English) source side as an explicit intermediate step to be completed by the

model prior to the selection of the preferred translation. The so constructed prompt

is shown in Table 4.24, followed by one of the four prompting examples that were

created analogously to the CoT examples. In essence, the prompt converts the English



Chapter 4. Lacking Text Understanding Leads to Coreference Resolution Errors 83

User: Your task is to pick the correct [German / French / Russian] translation of an English

sentence out of two alternatives presented to you. Prior to making your selection, you should

reason about the differences in the presented translations and why one of them is preferable to

the other. The correct translation should fully and accurately capture the meaning of the English

source sentence. Here are some examples of what this should look like:

English sentence:

"The woman looked for a different vase for the bouquet because it was too small.",

Translation 1:

"Die Frau suchte nach einer anderen Vase für den Blumenstrauß, weil sie zu groß war."

Translation 2:

"Die Frau suchte nach einer anderen Vase für den Blumenstrauß, weil er zu groß war."

Which is the better translation?"
System: In translation 1, the English pronoun "it" is translated as "sie" which agrees in its gram-

matical gender with the referent noun "Vase" that corresponds to the English noun "vase" as both

are feminine in German. On the other hand, in translation 2 "it" is translated as "er" which agrees

in its grammatical gender with the masculine German noun "Blumenstrauß" corresponding to the

English noun "bouquet". It is more likely that the woman would look for a different vase if the

vase does not fit the bouquet due to the small size of the vase. Therefore, it follows that the correct

translation is translation 1.

Table 4.21: CoT prompt used to elicit ChatGPT’s judgments regarding the correctness

of contrastive Winograd schema instance translations sampled from MT-Wino-X. Four-

shot prompting was used for all samples.

side of the MT-Wino-X samples into the LM-Wino-X format, since ChatGPT obtained

high accuracies on the latter. The decision to situate the CoR step on the English side

was motivated by the consistently higher English CoR accuracy values observed in the

LM-Wino-X experiments (see Table 4.20). A reasonable assumption is that this is due

to the vast majority of ChatGPT’s training data being English (OpenAI, 2023).

The inclusion of an intermediate task into the model prompt leads to notable im-

provements over the basic prompt and CoT prompting alike, as evidenced by the results

presented in Table 4.26. The corresponding fraction of successful API calls is reported

in Table 4.25. The extent of the observed improvements varies between the evaluated

translation directions, with EN-RU scoring lower than EN-DE and EN-FR, similarly

to previous experiments, which may be in part due to the difference in target language

script (Hendy et al., 2023). The accuracy gains furthermore suggest that CoTA prompt-

ing is able to leverage some of the commonsense reasoning processes employed by the

LLM to resolve lexical ambiguity in the LM-Wino-X samples, although not fully, as the
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Dataset # API failures (%) # Invalid replies (%) # Valid replies (%)

MT-Wino-X EN-DE 38 (0.98%) 74 (1.96%) 3,658 (97.03%)

MT-Wino-X EN-FR 36 (1.21%) 38 (1.27%) 2,909 (97.52%)

MT-Wino-X EN-RU 38 (1.7%) 30 (1.34%) 2,169 (96.96%)

Table 4.22: Fractions of successful and unsuccessful Wino-X CoT queries addressed

to ChatGPT via the web API.

MT-Wino-X EN-DE MT-Wino-X EN-FR MT-Wino-X EN-RU

52.24% (-3.39) 57.3% (+0.37) 52.88% (+0.17)

Table 4.23: ChatGPT accuracy for the different subsets of the Wino-X benchmark with

CoT prompting. Values in parentheses denote changes compared to prompting without

CoT.

MT-Wino-X task still appears to pose a greater challenge to ChatGPT. Overall, CoTA

prompting, or more generally the dissection of a complex cross-lingual task into sim-

pler, partly monolingual sub-tasks constitutes a valid strategy for obtaining meaningful

translations that are consistent with commonsense assumptions about the world.

In order to illustrate the effectiveness as well as shortcomings of CoTA prompting,

Tables 4.27 - 4.29 show model responses across all considered prompting methods for

selected MT-Wino-X samples. While CoTA prompting is, on average, more effective

than basic and CoT prompting, cases can be identified for all three strategies where

one is successful while the other two fail. As such, Table 4.27 shows instances where

the basic prompt alone elicits the expected model judgment, while Table 4.28 does the

same for CoT prompting and Table 4.29 for CoTA prompts. One interesting takeaway

from these examples is that additional reasoning steps are not always beneficial and

may, in fact, confuse the model. Furthermore, the reasoning presented by the model

may be logically sound but grounded in an incorrect reading of the input sentence,

thus leading to CoR errors. In other cases, the reasoning itself is faulty, ultimately

causing the model to draw incorrect conclusions about the referent of the ambiguous

pronoun. On the whole, the introduction of explicit reasoning steps can demonstrably

improve model performance and utility, but only if done in a manner that can be ef-

fectively leveraged by the LLM. As such, one promising avenue for future work could

be investigating the types of information that are either beneficial or detrimental to
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User: Your task is to pick the correct [German / French / Russian] translation of an English

sentence out of two alternatives presented to you. Prior to making your selection, you should

identify the ambiguous pronoun in the English sentence that can refer to different entities, and

reason about which of the possible referents is the correct one, as that will determine the choice of

the correct translation. Here are some examples of what this should look like:

English sentence:

"The woman looked for a different vase for the bouquet because it was too small.",

Translation 1:

"Die Frau suchte nach einer anderen Vase für den Blumenstrauß, weil sie zu groß war."

Translation 2:

"Die Frau suchte nach einer anderen Vase für den Blumenstrauß, weil er zu groß war."

Which is the better translation?"
System: If we replace the ambiguous pronoun "it" in the English sentence with a gap, then the two

possible gap fillers would be ether "vase" or "bouquet". The correct filler in this case is "vase",

since a vase that is too small would not be able to fit a bouquet. Since the German translation

of "vase" is the feminine Noun "Vase" that agrees grammatically in its gender with the German

pronoun "sie", it follows that the correct translation is translation 1.

Table 4.24: CoTA prompt used to elicit ChatGPT’s judgments regarding the correctness

of contrastive Winograd schema instance translations sampled from MT-Wino-X. Four-

shot prompting was used for all samples.

Dataset # API failures (%) # Invalid replies (%) # Valid replies (%)

MT-Wino-X EN-DE 30 (0.8%) 3 (0.08%) 3,740 (99.13%)

MT-Wino-X EN-FR 24 (0.8%) 2 (0.07%) 2,961 (99.13%)

MT-Wino-X EN-RU 18 (0.8%) 2 (0.09%) 2,217 (99.11%)

Table 4.25: Fractions of successful and unsuccessful Wino-X CoTA queries addressed

to ChatGPT via the web API.

MT-Wino-X EN-DE MT-Wino-X EN-FR MT-Wino-X EN-RU

60.72% (+5.09 / +8.48) 65.05% (+8.12 / +7.75) 57.92% (+5.21 / +5.04)

Table 4.26: ChatGPT accuracy for the different subsets of the Wino-X benchmark with

CoTA prompting. Values in parentheses denote changes compared to basic prompting

/ CoT prompting.

LLM behaviour if incorporated into prompts, especially for complex multi-lingual or
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multi-modal tasks.

In light of the findings presented in this section, it is clear that Wino-X remains

a valuable and useful resource following the advent of LLM-powered machine trans-

lation. The cross-lingual MT-Wino-X portion of the challenge set, in particular, ap-

pears to pose a veritable challenge to contemporary LLMs, since it requires complex

multi-stage reasoning that can, in part, be facilitated by prompts targeting the relevant

reasoning steps. Nonetheless. despite demonstrable improvements in model accu-

racy enabled by CoTA prompting, LLMs – as represented by ChatGPT – fall short of

human-like performance on translations that incorporate commonsense knowledge.

Follow-Up Work

Findings and resources presented in (Emelin and Sennrich, 2021) have found fruitful

application in subsequent research. Particularly worth noting is the extensive use of

the Wino-X benchmark in (Yehudai et al., 2023) for the purpose of comparing the

efficacy of monolingual coreference resolvers with that of NMT models. As part of

their investigation, the authors find CoR that presupposes commonsense reasoning to

be especially difficult for both model classes, thereby showcasing the enduring utility

and broad applicability of the benchmark. The central finding of the work, partly

enabled by the evaluation conducted on Wino-X, is that integrating labels obtained

from monolingual resolvers into the NMT pipeline as a form of direct supervision

markedly improves CoR in the generated translations. A contrasting application of the

Wino-X data is its inclusion in ACES, a compehensive evaluation suite for machine

translation quality metrics (Amrhein et al., 2022). In particular, the included samples

were either directly adopted or derived from Wino-X and used to estimate the ability

of evaluated metrics to adequately capture the capacity of machine translation models

for commonsense CoR, thereby widening the utility of the original dataset.
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Source / Translation 1 / Translation 2 / Basic Prompt reply / CoT reply / CoTA reply

S: The syrup irritated his throat, but the pill made it feel better, because it was so soothing.

T1: Der Sirup reizte seinen Hals, aber durch die Pille fühlte es sich besser an, weil er so beruhigend war.

T2: Der Sirup reizte seinen Hals, aber durch die Pille fühlte es sich besser an, weil sie so beruhigend war.

BP: Translation 2 is better because "sie" refers to "Pille" which is feminine.

CoT: In translation 1, the English pronoun "it" is translated as "es" which agrees in its grammatical gender with the referent

noun "Hals" (throat) that corresponds to the English word "throat" as both are masculine in German. On the other hand,

in translation 2 "it" is translated as "sie" which agrees in its grammatical gender with the feminine noun "Pille" (pill)

corresponding to "pill" in English. Since the pronoun "it" refers to the throat (Hals) here, which is masculine in German,

translation 1 is the better choice.

CoTA: If we replace the ambiguous pronoun "it" in the English sentence with a gap, then the two possible gap fillers

would be either "his throat" or "the syrup". To determine which is the correct filler, we need to consider the logic of the

sentence. The syrup is mentioned as the cause of irritation, so it makes sense that the pill would make "his throat" feel

better. Therefore, "his throat" is the correct interpretation of the pronoun "it" in this context. Since the German translation

of "his throat" is "seinen Hals", which is masculine, and the German pronoun "er" agrees grammatically with masculine

nouns, the correct translation is Translation 1.

S: Bob went to the vehicle dealer to trade his truck for a motorcycle, because it was new.

T1: Bob ging zum Fahrzeughändler, um seinen LKW gegen ein Motorrad zu tauschen, weil es neu war.

T2: Bob ging zum Fahrzeughändler, um seinen LKW gegen ein Motorrad zu tauschen, weil er neu war.

BP: Translation 1 is better.

CoT: In translation 2, the English pronoun "it" is translated as "er" which agrees in its grammatical gender with the

masculine German noun "LKW" corresponding to the English noun "truck". On the other hand, in translation 1 "it" is

translated as "es" which agrees in its grammatical gender with the neuter German noun "Motorrad" corresponding to the

English noun "motorcycle". Since the referent noun in the source sentence is the truck, it is more appropriate to use

translation 1 where "it" is translated as "er". Therefore, the correct translation is Translation 2.

CoTA: In this sentence, the ambiguous pronoun "it" refers to either "his truck" or "a motorcycle" in the English sentence.

To determine which translation is better, letś analyze the meaning of the sentence. If we interpret "it" as referring to "his

truck," the sentence means that Bob went to the vehicle dealer to trade his truck for a motorcycle because his truck was

new. In this case, the truck is the focus of the sentence, and translation 1 would be the better option because the pronoun

"er" (masculine pronoun) agrees with the German word "LKW" (masculine noun) which means "truck." However, if we

interpret "it" as referring to "a motorcycle," the sentence means that Bob went to the vehicle dealer to trade his truck for a

motorcycle because the motorcycle was new. In this case, the focus shifts to the motorcycle, and translation 1 would be the

better option because the pronoun "es" (neuter pronoun) agrees with the German word "Motorrad" (neuter noun) which

means "motorcycle." Based on the context, it is more likely that the sentence is emphasizing the condition of Bobś truck.

Therefore, translation 2 is the better translation.

S: The afternoon breeze was less dangerous than the wind because it was a lot stronger.

T1: Die Nachmittagsbrise war weniger gefährlich als der Wind, weil sie viel stärker war.

T2: Die Nachmittagsbrise war weniger gefährlich als der Wind, weil er viel stärker war.

BP: Translation 2 is the better translation.

CoT: In this case, both translations are grammatically correct and convey the same meaning. However, when it comes to

the pronoun "it" referring to the afternoon breeze, translation 1 ("sie") is more preferable because it agrees in gender with

the feminine German noun "Nachmittagsbrise," whereas translation 2 ("er") uses a masculine pronoun that does not align

with the gender of the noun. Therefore, the better translation is translation 1.

CoTA: In this sentence, the ambiguous pronoun is "it". If we replace "it" with a gap, the two possible gap fillers are either

"afternoon breeze" or "wind". To determine the correct referent, we need to consider the comparison made in the sentence.

The sentence states that the afternoon breeze was less dangerous than the wind because it was a lot stronger. This implies

that the afternoon breeze is the one that is a lot stronger. Therefore, the correct translation is Translation 1.

Table 4.27: Examples of Chat-GPT replies elicited through different prompting methods.

Here, the basic prompt produced the correct response, as opposed to CoT and CoTA.

Correct CoR steps are coloured blue, incorrect ones are colored red.
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Source / Translation 1 / Translation 2 / Basic Prompt reply / CoT reply / CoTA reply

S: The piercing on the tongue got infected but the ear didn’t because it was dirtier.

T1: Das Piercing auf der Zunge wurde infiziert, das Ohr jedoch nicht, weil es schmutziger war.

T2: Das Piercing auf der Zunge wurde infiziert, das Ohr jedoch nicht, weil sie schmutziger war.

BP: Translation 1 is better.

CoT: In translation 1, the English pronoun "it" is translated as "es" which agrees in its grammatical gender with the neuter

noun "Ohr" (ear) and not with the feminine noun "Zunge" (tongue). This does not correctly reflect the meaning of the

English sentence. In translation 2, the pronoun "it" is translated as "sie" which agrees in gender with the feminine noun

"Zunge" (tongue). This correctly reflects the meaning of the English sentence, stating that the tongue was dirtier and

therefore the piercing on the tongue got infected while the ear remained unaffected. Therefore, the better translation is

Translation 2.

CoTA: In this sentence, the ambiguous pronoun "it" can refer to either "ear" or "piercing." Since the ear is the subject of

the second clause ("the ear didnt́ [get infected]"), it would be grammatically incorrect for the pronoun to refer back to the

ear in the first clause. Therefore, the pronoun "it" refers to the piercing, which got infected. Based on this reasoning, the

better translation would be Translation 1.

S: After abandoning the hostage, the criminal hid in the alley after leaving the basement, because it was safe.

T1: Nachdem er die Geisel verlassen hatte, versteckte sich der Verbrecher in der Gasse, nachdem er den Keller verlassen

hatte, weil sie sicher war.

T2: Nachdem er die Geisel verlassen hatte, versteckte sich der Verbrecher in der Gasse, nachdem er den Keller verlassen

hatte, weil er sicher war.

BP: Translation 2 is better.

CoT: In this sentence, the English pronoun "it" refers to the location "the alley". In translation 1, "it" is translated as

"sie" which agrees with the feminine noun "Gasse" (alley). In translation 2, "it" is translated as "er" which agrees with

the masculine noun "Keller" (basement). However, the intended meaning is that the alley was safe, not the basement.

Therefore, the correct translation is translation 1.

CoTA: If we replace the ambiguous pronoun "it" in the English sentence with a gap, then the two possible gap fillers would

be either "alley" or "basement". To determine the correct translation, we need to consider which location is being referred

to as safe. The sentence states that the criminal hid in the alley after leaving the basement because "it" was safe. In this

context, "safe" refers to the alley, not the basement. Translation 1 incorrectly uses the feminine pronoun "sie" to refer to the

alley, while Translation 2 correctly uses the masculine pronoun "er" to refer to the alley. Therefore, the better translation

is Translation 2.

S: The man decided to immigrate from his homeland to the foreign country, because it was experiencing a war.

T1: Der Mann beschloss, aus seiner Heimat ins Ausland auszuwandern, weil sie einen Krieg erlebte.

T2: Der Mann beschloss, aus seiner Heimat ins Ausland auszuwandern, weil es einen Krieg erlebte.

BP: Translation 2 is better.

CoT: Both translations are grammatically correct and convey the general meaning of the English sentence. However, when

referring to the reason for the manś decision to immigrate, translation 1 uses the pronoun "sie" which refers to "Heimat"

(homeland), while translation 2 uses the pronoun "es" which refers to "Ausland" (foreign country). Considering the context

of the sentence, the pronoun "sie" in translation 1 seems more appropriate because the homeland is the entity experiencing

the war, not the foreign country. Therefore, the better translation is Translation 1.

CoTA: If we replace the ambiguous pronoun "it" in the English sentence with a gap, then the two possible gap fillers would

be ether "homeland" or "foreign country". The correct filler in this case is "foreign country", since the manś decision to

immigrate is based on the fact that the foreign country is experiencing a war, not his own homeland. Since the German

translation of "foreign country" is the neuter noun "Ausland" that agrees grammatically in its gender with the German

pronoun "es", it follows that the correct translation is translation 2.

Table 4.28: Examples of Chat-GPT replies elicited through different prompting methods.

Here, the CoT strategy produced the correct response, as opposed to the basic prompt

and CoTA. Correct CoR steps are coloured blue, incorrect ones are colored red.
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Source / Translation 1 / Translation 2 / Basic Prompt reply / CoT reply / CoTA reply

S: Per the contract, the business had to pay the bank thousands of dollars, as it had lost the lawsuit.

T1: Laut Vertrag musste das Unternehmen der Bank Tausende von Dollar zahlen, da sie die Klage verloren hatte.

T2: Laut Vertrag musste das Unternehmen der Bank Tausende von Dollar zahlen, da es die Klage verloren hatte.

BP: Translation 1 is correct.

CoT: In this case, both translations are quite similar. The only difference is the choice of the pronoun for "it". In Translation

1, "it" is translated as "sie", which refers to the feminine noun "das Unternehmen" (the company). In Translation 2, "it" is

translated as "es", which refers to the neuter noun "Vertrag" (contract). Considering the context of the sentence, it is more

logical for "it" to refer to the company rather than the contract. The company is the subject of the sentence and it is the one

that lost the lawsuit. Therefore, the better translation in this case is Translation 1.

CoTA: The ambiguous pronoun in the English sentence is "it". If we replace the pronoun with a gap, the two possible gap

fillers would be "business" or "bank". To determine the correct filler, we need to identify the subject that wlost the lawsuit.

In this case, it is the business that has lost the lawsuit, not the bank. Therefore, the correct translation is Translation 2.

S: James cannot write the essay within the time given to him because it is short.

T1: James kann den Aufsatz nicht innerhalb der ihm vorgegebenen Zeit schreiben, da er kurz ist.

T2: James kann den Aufsatz nicht innerhalb der ihm gegebenen Zeit schreiben, weil sie kurz ist.

BP: Both translations are acceptable, but Translation 1 is slightly better.

CoT: In this instance, both translations are grammatically correct and convey the intended meaning. However, there is a

subtle difference between the two translations in terms of the cause-effect relationship. Translation 1 uses the conjunction

"da" which implies a cause-and-effect relationship. It suggests that James cannot write the essay within the given time

because the essay itself is short. Translation 2 uses the conjunction "weil" which also indicates a cause-and-effect rela-

tionship. However, it suggests that James cannot write the essay within the given time because the time itself is short.

Considering the context and intended meaning of the sentence, it is more likely that the intended meaning is that James

cannot write the essay within the given time because the essay itself is short. Therefore, Translation 1 is the better transla-

tion.

CoTA: The ambiguous pronoun in the English sentence is "it". If we replace "it" with a gap, the two possible gap fillers

are "essay" and "time". In this case, the correct filler is "time" since James cannot write the essay within the given time.

Since the German translation for "time" is the feminine noun "Zeit" that agrees grammatically with the German pronoun

"sie", the correct translation is Translation 2.

S: The man threw away the cheese and only ate the bread because it was moldy.

T1: Der Mann warf den Käse weg und aß nur das Brot, weil er schimmelig war.

T2: Der Mann warf den Käse weg und aß nur das Brot, weil es schimmelig war.

BP: Both translations are grammatically correct, but Translation 2 is slightly better as it uses a more common phrasing

"because it was moldy."

CoT: Both translations correctly convey the meaning of the English sentence. However, when translating the pronoun

"it" referring to the bread being moldy, translation 2 uses the neuter pronoun "es," while translation 1 uses the masculine

pronoun "er." In this case, the bread is a neuter noun in German, which would make translation 2 more accurate. Therefore,

the better translation is translation 2.

CoTA: If we replace the ambiguous pronoun "it" in the English sentence with a gap, then the two possible gap fillers would

be either "cheese" or "bread". The correct filler in this case is "cheese", since it is the cheese that was moldy and not the

bread. Since the German translation of "cheese" is the masculine noun "Käse" that agrees grammatically in its gender with

the German pronoun "er", it follows that the correct translation is translation 1.

Table 4.29: Examples of Chat-GPT replies elicited through different prompting methods.

Here, the CoTA strategy produced the correct response, as opposed to the basic prompt

and CoT. Correct CoR steps are coloured blue, incorrect ones are colored red.



Chapter 5

Direct Access to Embedding Features

Improves Lexical Reasoning

To get the right word in the right place is a rare achievement.

Mark Twain, Mark Twain’s Letters, Volume 2

Abstract: The transformer is a state-of-the-art neural translation model that uses

attention to iteratively refine lexical representations with information drawn from
the surrounding context. Lexical features are fed into the first layer and propagated

through a deep network of hidden layers. We argue that the need to represent and
propagate lexical features in each layer limits the model’s capacity for learning
and representing other information relevant to the task. To alleviate this bottle-

neck, we introduce gated shortcut connections between the embedding layer and

each subsequent layer within the encoder and decoder. This enables the model to

access relevant lexical content dynamically, without expending limited resources on

storing it within intermediate states. We show that the proposed modification yields

consistent improvements over a baseline transformer on standard WMT translation

tasks in 5 translation directions (0.9 BLEU on average) and reduces the amount of
lexical information passed along the hidden layers. We furthermore evaluate differ-

ent ways to integrate lexical connections into the transformer architecture and present

ablation experiments exploring the effect of proposed shortcuts on model behavior.1

1This section is based on work previously published at WMT 2019 (Emelin et al., 2019). Experi-
mental codebase is available at https://github.com/demelin/transformer_lexical_shortcuts.
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5.1 Introduction

Since it was first proposed, the transformer model (Vaswani et al., 2017) has quickly

established itself as a popular choice for neural machine translation, where it has been

found to deliver state-of-the-art results on various translation tasks (Bojar et al., 2018).

Its success can be attributed to the model’s high parallelizability allowing for signifi-

cantly faster training compared to recurrent neural networks (Chen et al., 2018), supe-

rior ability to perform lexical disambiguation, and capacity for capturing long-distance

dependencies on par with existing alternatives (Tang et al., 2018).

Recently, several studies have investigated the nature of features encoded within

individual layers of neural translation models (Belinkov et al., 2017a,b). One central

finding reported in this body of work is that, in recurrent architectures, different layers

prioritize different information types. As such, lower layers appear to predominantly

perform morphological and syntactic processing, whereas semantic features reach their

highest concentration towards the top of the layer stack. One necessary consequence

of this distributed learning is that different types of information encoded within input

representations received by the translation model have to be transported to the layers

specialized in exploiting them.

Within the transformer encoder and decoder alike, information exchange proceeds

in a strictly sequential manner, whereby each layer attends over the output of the imme-

diately preceding layer, complemented by a shallow residual connection. For input fea-

tures to be successfully propagated to the uppermost layers, the translation model must

therefore store them in its intermediate representations until they can be processed. By

retaining lexical content, the model is unable to leverage its full representational capac-

ity for learning new information from other sources, such as the surrounding sentence

context. We refer to this limitation as the representation bottleneck.

To alleviate this bottleneck, we propose extending the standard transformer archi-

tecture with lexical shortcuts which connect the embedding layer with each subse-

quent self-attention sub-layer in both encoder and decoder. The shortcuts are defined

as gated skip connections, allowing the model to access relevant lexical information

at any point, instead of propagating it upwards from the embedding layer along the

hidden states.

We evaluate the resulting model’s performance on multiple language pairs and

varying corpus sizes, showing a consistent improvement in translation quality over

the unmodified transformer baseline. Moreover, we examine the distribution of lexical
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information across the hidden layers of the transformer model in its standard con-

figuration and with added shortcut connections. The presented experiments provide

quantitative evidence for the presence of a representation bottleneck in the standard

transformer and its reduction following the integration of lexical shortcuts.

While our experimental efforts are centered around the transformer, the proposed

components are compatible with other multi-layer NMT architectures.

The contributions of our work are as follows:

1. We propose the use of lexical shortcuts as a simple strategy for alleviating the
representation bottleneck in NMT models.

2. We demonstrate significant improvements in translation quality across multi-

ple language pairs as a result of equipping the transformer with lexical shortcut

connections.

3. We conduct a series of ablation studies, showing that shortcuts are best applied

to the self-attention mechanism in both encoder and decoder.

4. We report a positive impact of our modification on the model’s ability to perform

word sense disambiguation.

5.2 Proposed Method

5.2.1 Background: The transformer

As defined in (Vaswani et al., 2017), the transformer is comprised of two sub-networks,

the encoder and the decoder. The encoder converts the received source language sen-

tence into a sequence of continuous representations containing translation-relevant fea-

tures. The decoder, on the other hand, generates the target language sequence, whereby

each translation step is conditioned on the encoder’s output as well as the translation

prefix produced up to that point.

Both encoder and decoder are composed of a series of identical layers. Each en-

coder layer contains two sub-layers: A self-attention mechanism and a position-wise

fully connected feed-forward network. Within the decoder, each layer is extended with

a third sub-layer responsible for attending over the encoder’s output. In each case,

the attention mechanism is implemented as multi-head, scaled dot-product attention,
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Figure 5.1: Integration of lexical shortcut connections into the overall transformer archi-

tecture.

which allows the model to simultaneously consider different context sub-spaces. Ad-

ditionally, residual connections between layer inputs and outputs are employed to aid

with signal propagation.

In order for the dot-product attention mechanism to be effective, its inputs first

have to be projected into a common representation sub-space. This is accomplished

by multiplying the input arrays HS and HT by one of the three weight matrices K,

V , and Q, as shown in Eqn. 5.1 - 5.3, producing attention keys, values, and queries,

respectively. In case of multi-head attention, each head is assigned its own set of keys,

values, and queries with the associated learned projection weights.

Q =W QHS (5.1)

K =W KHT (5.2)

V =WV HT (5.3)

In case of encoder-to-decoder attention, HT corresponds to the final encoder states,

whereas HS is the context vector generated by the preceding self-attention sub-layer.
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For self-attention, on the other hand, all three operations are given the output of the pre-

ceding layer as their input. Eqn. 5.4 defines attention as a function over the projected

representations.

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V (5.4)

To prevent the magnitude of the pre-softmax dot-product from becoming too large,

it is divided by the square root of the total key dimensionality dk. Finally, the translated

sequence is obtained by feeding the output of the decoder through a softmax activation

function and sampling from the produced distribution over target language tokens.

5.2.2 Lexical shortcuts

Given that the attention mechanism represents the primary means of establishing pa-

rameterized connections between the different layers within the transformer, it is well

suited for the re-introduction of lexical content. We achieve this by adding gated con-

nections between the embedding layer and each subsequent self-attention sub-layer

within the encoder and the decoder, as shown in Figure 5.1.

To ensure that lexical features are compatible with the learned hidden represen-

tations, the retrieved embeddings are projected into the appropriate latent space, by

multiplying them with the layer-specific weight matrices W KSC

l and WV SC

l . We account

for the potentially variable importance of lexical features by equipping each added

connection with a binary gate inspired by the Gated Recurrent Unit (Cho et al., 2014).

Functionally, our lexical shortcuts are equivalent to highway connections of (Srivastava

et al., 2015) that span an arbitrary number of intermediate layers.

KSC
l =W KSC

l E (5.5)

V SC
l =WV SC

l E (5.6)

Kl =W K
l Hl−1 (5.7)

Vl =WV
l Hl−1 (5.8)

rK
l = sigmoid(KSC

l +Kl +bK
l ) (5.9)

rV
l = sigmoid(V SC

l +Vl +bV
l ) (5.10)

K′
l = rK

l ⊙KSC
l +(1− rK

l )⊙Kl (5.11)

V ′
l = rV

l ⊙V SC
l +(1− rV

l )⊙Vl (5.12)
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After situating the outputs of the immediately preceding layer Hl−1 and the embed-

dings E within a shared representation space (Eqn. 5.5 - 5.8), the relevance of lexical

information for the current attention step is estimated by comparing lexical and latent

features, followed by the addition of a bias term b (Eqn. 5.9 - 5.10). The respective

attention key arrays are denoted as KSC
l and Kl , while V SC

l and Vl represent the cor-

responding value arrays. The result is fed through a sigmoid function to obtain the

lexical relevance weight r, used to calculate the weighted sum of the two sets of fea-

tures (Eqn. 5.11 - 5.12), where ⊙ denotes element-wise multiplication. Next, the key

and value arrays K′
l and V ′

l are passed to the multi-head attention function as defined

in Eqn. 5.4, replacing the original Kl and Vl .

Figure 5.2: Modified attention inputs. Top: lexical shortcuts, bottom: lexical shortcuts +

feature-fusion. Dashed lines denote splits along the feature dimension.

In an alternative formulation of the model, referred to as feature-fusion from here

on, we concatenate E and Hl−1 before the initial linear projection, splitting the result

in two halves along the feature dimension and leaving the rest of the shortcut definition

unchanged2. This reduces Eqn. 5.5 - 5.8 to Eqn. 5.13 - 5.14, and enables the model

to select relevant information by directly inter-relating lexical and hidden features. As

such, both KSC
l and Kl encode a mixture of embedding and hidden features, as do

the corresponding value arrays. While this arguably diminishes the contribution of

2The feature-fusion mechanism is therefore based on the same principle as the Gated Linear Unit
(Dauphin et al., 2017), while utilizing a more expressive gating function.
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the gating mechanism towards feature selection, preliminary experiments have shown

that replacing gated shortcuts with gate-less residual connections (He et al., 2016)

produces models that fail to converge, characterized by poor training and validation

performance. For illustration purposes, figure 5.2 depicts the modified computation

path of the lexically-enriched attention key and value vectors.

KSC
l ,Kl =W K

l [E;Hl−1] (5.13)

V SC
l ,Vl =WV

l [E;Hl−1] (5.14)

Other than the immediate accessibility of lexical information, one potential ben-

efit afforded by the introduced shortcuts is the improved gradient flow during back-

propagation. As noted in (Huang et al., 2017), the addition of skip connections between

individual layers of a deep neural network results in an implicit deep supervision effect

(Lee et al., 2015), which aids the training process. In case of our modified transformer,

this corresponds to the embedding layer receiving its learning signal from the model’s

overall optimization objective as well as from each layer it is connected to, making the

model easier to train.

5.3 Experiments

5.3.1 Training

To evaluate the efficacy of the proposed approach, we re-implement the transformer

model and extend it by applying lexical shortcuts to each self-attention layer in the en-

coder and decoder. The majority of our experiments is conducted using the transformer-

BASE configuration, with the number of encoder and decoder layers set to 6 each,

embedding and attention dimensionality to 512, number of attention heads to 8, and

feed-forward sub-layer dimensionality to 2,048. We tie the encoder embedding ta-

ble with the decoder embedding table and the pre-softmax projection matrix to speed

up training, following (Press and Wolf, 2017). All trained models are optimized us-

ing Adam (Kingma and Ba, 2014) adhering to the learning rate schedule described in

(Vaswani et al., 2017). We set the number of warm-up steps to 4,000 for the baseline

model, increasing it to 6,000 and 8,000 when adding lexical shortcuts and feature-

fusion, respectively, so as to accommodate the increase in parameter size.

We also evaluate the effect of lexical shortcuts on the larger transformer-BIG model,

limiting this set of experiments to EN→DE due to computational constraints. Here,
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the baseline model employs 16 attention heads, with attention, embedding, and feed-

forward dimensions doubled to 1,024, 1,024, and 4,096. Warm-up period for all big

models is 16,000 steps. For our probing experiments, the classifiers used are sim-

ple feed-forward networks with a single hidden layer consisting of 512 units, dropout

(Srivastava et al., 2014) with p = 0.5, and a ReLU non-linearity. In all presented ex-

periments, we employ beam search during decoding, with beam size set to 16.

Model # Parameters Words / sec.

transformer-BASE 65,166k 29,698

+ lexical shortcuts 71,470k 26,423

+ feature-fusion 84,053k 23,601

transformer-BIG 218,413k 10,215

+ feature-fusion 293,935k 6,769

Table 5.1: Model size and training speed of the compared transformer variants.

All models are trained concurrently on four Nvidia P100 Tesla GPUs using syn-

chronous data parallelization. Delayed optimization (Saunders et al., 2018) is em-

ployed to simulate batch sizes of 25,000 tokens, to be consistent with (Vaswani et al.,

2017). Each transformer-BASE model is trained for a total of 150,000 updates, while

our transformer-BIG experiments are stopped after 300,000 updates. Validation is per-

formed every 4,000 steps, as is check-pointing. Training base models takes ∼43 hours,

while the addition of shortcut connections increases training time up to ∼46 hours

(∼50 hours with feature-fusion). Table 5.1 details the differences in parameter size

and training speed for the different transformer configurations. Parameters are given

in thousands, while speed is averaged over the entire training duration.

Validation-BLEU is calculated on a reference which we pre- and post-process fol-

lowing the same steps as for the models’ inputs and outputs. All reported test-BLEU

scores were obtained by averaging the final 5 checkpoints for transformer-BASE and

final 16 for transformer-BIG.

5.3.2 Data

We investigate the potential benefits of lexical shortcuts on 5 WMT translation tasks:

German → English (DE→EN), English → German (EN→DE), English → Russian

(EN→RU), English → Czech (EN→CS), and English → Finnish (EN→FI). Our choice
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is motivated by the differences in size of the training corpora as well as by the typo-

logical diversity of the target languages.

To make our findings comparable to related work, we train EN↔DE models on the

WMT14 news translation data which encompasses ∼4.5M sentence pairs. EN→RU

models are trained on the WMT17 version of the news translation task, consisting of

∼24.8M sentence pairs. For EN→CS and EN→FI, we use the respective WMT18

parallel training corpora, with the former containing ∼50.4M and the latter ∼3.2M

sentence pairs. We do not employ backtranslated data in any of our experiments to

further facilitate comparisons to existing work.

We tokenize, clean, and truecase each training corpus using scripts from the Moses

toolkit3, and apply byte-pair encoding (Sennrich et al., 2016) to counteract the open

vocabulary issue. Cleaning is skipped for validation and test sets. For EN↔DE and

EN→RU we limit the number of BPE merge operations to 32,000 and set the vocabu-

lary threshold to 50. For EN→CS and EN→FI, the number of merge operations is set

to 89,500 with a vocabulary threshold of 50, following (Haddow et al., 2018)4. In each

case, the BPE vocabulary is learned jointly over the source and target language, which

necessitated an additional transliteration step for the pre-processing of Russian data5.

Throughout training, model performance is validated on newstest2013 for EN↔DE,

newstest2016 for EN→RU, and on newstest2017 for EN→CS and EN→FI. Final

model performance is reported on multiple tests sets from the news domain for each

direction.

5.3.3 Translation performance

The results of our translation experiments are summarized in Tables 5.2-5.3. To ensure

their comparability, we evaluate translation quality using sacreBLEU (Post, 2018). As

such, our baseline performance diverges from that reported in (Vaswani et al., 2017).

We address this by evaluating our EN→DE models using the scoring script from the

tensor2tensor toolkit6 (Vaswani et al., 2018) on the tokenized model output, and list

the corresponding BLEU scores in the first column of Table 5.2.

Our evaluation shows that the introduction of lexical shortcuts consistently im-

proves translation quality of the transformer model across different test-sets and lan-

3https://github.com/moses-smt/mosesdecoder
4We do not use synthetic data, which makes our results not directly comparable to theirs.
5We used Lingua Translit for this purpose: https://metacpan.org/release/Lingua-Translit
6https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/get_ende_bleu.sh
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sacreBLEU

Model nt2014
tokenized

nt2014 nt2015 nt2016 nt2017 nt2018
test

mean

transformer-BASE 27.3 25.8 28.5 33.2 27.3 40.4 31.0

+ lexical shortcuts 27.6 26.1 29.5 33.3 27.5 41.1 31.5

+ feature-fusion 28.3 26.8 29.9 34.0 27.7 41.6 32.0

transformer-BIG 28.7 27.2 30.1 34.0 28.1 41.3 32.1

+ lexical shortcuts

+ feature-fusion
29.4 27.8 30.3 33.2 28.4 41.3 32.2

Table 5.2: BLEU scores for the EN→DE news translation task; nt = newstest.

DE→EN EN→RU EN→CS EN→FI

Model nt2014 nt2017 nt2017 nt2018 nt2015 nt2018 nt2015 nt2018

transformer-BASE 31.1 32.3 27.9 24.2 23.4 21.1 18.7 14.0

+ lexical shortcuts 31.3 32.3 28.4 24.9 24.1 21.4 19.5 14.5

+ feature-fusion 31.7 32.9 28.9 25.3 24.3 21.6 19.8 14.8

Table 5.3: Effect of lexical shortcuts on translation quality for different language pairs,

as measured by sacreBLEU; nt = newstest.

guage pairs, outperforming transformer-BASE by 0.5 BLEU on average. With feature-

fusion, we see even stronger improvements, yielding total performance gains over

transformer-BASE of up to 1.4 BLEU for EN→DE (averaging to 1.0), and 0.8 BLEU

on average for the other 4 translation directions. We furthermore observe that the rel-

ative improvements from the addition of lexical shortcuts are substantially smaller for

transformer-BIG compared to transformer-BASE. One potential explanation for this

drop in efficacy is the increased size of latent representations the wider model is able

to learn, which we discuss in section 5.4.1.

Furthermore, it is worth noting that transformer-BASE equipped with lexical con-

nections performs comparably to the standard transformer-BIG, despite containing

fewer than half of its parameters and being only marginally slower to train than our

unmodified transformer-BASE implementation.

Concerning the examined language pairs, the average increase in BLEU is highest

for EN→RU (1.1 BLEU) and lowest for DE→EN (0.6 BLEU). A potential explanation
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for why this is the case could be the difference in language topology. Of all target

languages we consider, English has the least complex morphological system where

individual words carry little inflectional information, which stands in stark contrast to

a highly inflectional language with a flexible word order such as Russian. It is plausible

that lexical shortcuts are especially important for translation directions where the target

language is morphologically rich and where the surrounding context is essential to

accurately predicting a word’s case and agreement. With the proposed shortcuts in

place, the transformer has more capacity for modeling such context information.

To investigate the role of lexical connections within the transformer, we conduct a

thorough examination of our models’ internal representations and learning behaviour.

The following analysis is based on models utilizing lexical shortcuts with feature-

fusion, due to its superior performance.

5.4 Analysis

5.4.1 Representation bottleneck

The proposed approach is motivated by the hypothesis that the transformer retains

lexical features within its individual layers, which limits its capacity for learning and

representing other types of relevant information. Direct connections to the embed-

ding layer alleviate this by providing the model with access to lexical features at each

processing step, reducing the need for propagating them along hidden states. To inves-

tigate whether this is indeed the case, we perform a probing study, where we estimate

the amount of lexical content present within each encoder and decoder state.

We examine the internal representations learned by our models by modifying the

probing technique introduced in (Belinkov et al., 2017a). Specifically, we train a

separate lexical classifier for each layer of a frozen translation model. Each clas-

sifier receives hidden states extracted from the respective transformer layer7 and is

tasked with reconstructing the sub-word corresponding to the position of each hidden

state. Encoder-specific classifiers learn to reconstruct sub-words in the source sen-

tence, whereas classifiers trained on decoder states are trained to reconstruct target

sub-words.

The accuracy of each layer-specific classifier on a withheld test set is assumed to be

indicative of the lexical content encoded by the corresponding transformer layer. We

7We treat the output of the feed-forward sub-layer as that layer’s hidden state.
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expect classification accuracy to be high if the evaluated representations predominantly

store information propagated upwards from the embeddings at the same position and

to decrease proportionally to the amount of information drawn from the surrounding

sentence context. Figure 5.3 offers side-by-side comparisons of the accuracy scores

obtained for each layer of the base transformer and its variant equipped with lexical

shortcut connections.

Figure 5.3: Left: Layer-wise lexical probe accuracy measured on transformer-BASE

for EN→DE (newstest2014); Right: Layer-wise lexical probe accuracy measured on

transformer-BASE for EN→RU (newstest2017 )

Based on the observed classification results, it appears that immediate access to

lexical information does indeed alleviate the representation bottleneck by reducing the

extent to which (sub-)word-level content is retained across encoder and decoder layers.

By introducing shortcut connections, we effectively reduce the amount of lexical infor-

mation the model retains within its intermediate states, thereby increasing its capacity

for exploiting sentence context. The effect is consistent across multiple language pairs,

supporting its generality. Additionally, to examine whether lexical retention depends

on the specific properties of the input tokens, we track classification accuracy condi-

tioned on part-of-speech tags and sub-word frequencies. Our working hypotheses are

that 1.) processing of low-frequency tokens may benefit more from the introduction of

lexical shortcuts due to the model being less practiced at integrating their embedding

features into its latent representations, and 2.) processing of tokens belonging to dif-

ferent POS categories may be impacted by the presence of lexical shortcuts to varying

degree according to differences in their relative, average semantic complexity.
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For the former feature category, we first parse our test-sets with TreeTagger (Schmid,

1999), projecting tags onto the constituent sub-words of each annotated word. For

frequency-based evaluation, we divide sub-words into ten equally-sized frequency

bins, with bin 1 containing the least frequent sub-words and bin 10 containing the

most frequent ones. We do not observe any immediately obvious, significant effects

of either POS or frequency on the retention of lexical features, and are thus unable

to establish any empirical support for either of the aforementioned hypotheses. While

classification accuracy is notably low for infrequent sub-words, this can be attributed to

the limited occurrence of the corresponding transformer states in the classifier’s train-

ing data. Evaluation for EN→DE models is done on newstest2014, while newstest2017

is used for EN→RU models. Figures 5.6 and 5.7 illustrate representative results for

the frequency-based classification. Examples of accuracy scores conditioned on POS

tags are visualized in Figure 5.8.8 For readability, the figures are included at the end

of this chapter.

We also investigated the activation patterns of the lexical shortcut gates. How-

ever, despite their essential status for the successful training of transformer variants

equipped with lexical connections, we were unable to discern any distinct patterns in

the activations of the individual gates, which tend to prioritize lexical and hidden fea-

tures to an equal degree regardless of training progress or (sub-)word characteristics.

Another observation arising from the probing analysis is that the decoder retains

fewer lexical features beyond its initial layers than the encoder. This may be due to

the decoder having to represent information it receives from the encoder in addition to

target-side content, necessitating a lower rate of lexical feature retention. Even so, by

adding shortcut connections we can increase the dissimilarity between the embedding

layer and the subsequent layers of the decoder, indicating a noticeable reduction in the

retention and propagation of lexical features along the decoder’s hidden states.

A similar trend can be observed when evaluating layer similarity directly, which

we accomplish by calculating the cosine similarity between the embeddings and the

hidden states of each transformer layer. Echoing our findings so far, the addition of

lexical shortcuts reduces layer similarity relative to the baseline transformer for both

encoder and decoder. Cosine similarity scores between the embedding layer and each

successive layer in transformer-BASE and its variant equipped with lexical shortcuts

are summarized in Figure 5.5, provided at the end of this chapter.

8Additional plots reporting results for other model states as well as the EN→RU translation direction
can be found in Emelin et al. (2019).
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Overall, the presented analysis supports the existence of a representation bottleneck

in NMT models as one potential explanation for the efficacy of the proposed lexical

shortcut connections.

5.4.2 Model size

Model newstest
2017

newstest
2018

test
mean

transformer-SMALL 25.2 37.0 28.6

+ lexical shortcuts 25.7 38.0 29.3

+ feature-fusion 25.7 38.5 29.6

Table 5.4: sacreBLEU scores for small EN→DE models; test mean denotes the average

of all test sets in table 5.2.

Next, we investigate the interaction between the number of model parameters and

improvements in translation quality afforded by the proposed lexical connections. Fol-

lowing up on findings presented in section 5.3.1, we hypothesize that the benefit of

lexical shortcuts diminishes once the model’s capacity is sufficiently large. To es-

tablish whether this decline in effectiveness is gradual, we scale down the standard

transformer, halving the size of its embeddings, hidden states, and feed-forward sub-

layers. Table 5.4 shows that, on average, quality improvements are comparable for the

small and standard transformer (1.0 BLEU for both), which is in contrast to our ob-

servations for transformer-BIG. One explanation is that given sufficient capacity, the

model is capable of accommodating the upward propagation of lexical features with-

out having to neglect other sources of information. However, as long as the model’s

representational capacity is within certain limits, the effect of lexical shortcuts remains

comparable across a range of model sizes. With this in mind, the exact interaction

between model scale and the types of information encoded in its hidden states remains

to be fully explored. We leave a more fine-grained examination of this relationship to

future research.

5.4.3 Shortcut variants

Until now, we focused on applying shortcuts to self-attention as a natural re-entry point

for lexical content. However, previous studies suggest that providing the decoder with
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direct access to source sentences can improve translation adequacy, by conditioning

decoding on relevant source tokens (Kuang et al., 2018; Nguyen and Chiang, 2018).

To investigate whether the proposed method can confer a similar benefit to the

transformer, we apply lexical shortcuts to decoder-to-encoder attention, replacing or

adding to shortcuts feeding into self-attention. Formally, this equates to fixing E to

Eenc in Eqn. 5.5 - 5.6 and can be regarded as a variant of source-side bridging pro-

posed by (Kuang et al., 2018). As Table 5.5 shows, while integrating shortcut con-

nections into the decoder-to-encoder attention improves upon the base transformer, the

improvement is smaller than when we modify self-attention. Interestingly, combining

both methods yields worse translation quality than either one does in isolation, indicat-

ing that the decoder is unable to effectively consolidate information from both source

and target embeddings, which negatively impacts its learned latent representations. We

therefore conclude that lexical shortcuts are most beneficial to self-attention.

Model newstest
2017

newstest
2018

test
mean

transformer-BASE 27.3 40.4 31.0

+ self-attn. shortcuts 27.7 41.6 32.0

dec-to-enc shortcuts 27.6 40.7 31.5

+ self-attn. shortcuts 27.7 40.5 31.4

non-lexical shortcuts 27.1 40.6 31.3

Table 5.5: sacreBLEU for shortcut variants of EN→DE models; test mean denotes the

average of all test sets in table 5.2.

A related question is whether the encoder and decoder benefit from the addition

of lexical shortcuts to self-attention equally. We explore this by disabling shortcuts in

either sub-network and comparing the so obtained translation models to one with intact

connections. Figure 5.4 illustrates that best translation performance is obtained by

enabling shortcuts in both encoder and decoder. This also improves training stability,

as compared to the decoder-only ablated model. The latter may be explained by our use

of tied embeddings which receive a stronger training signal from shortcut connections

due to deep supervision, as this may bias learned embeddings against the sub-network

lacking improved lexical connectivity.

While adding shortcuts improves translation quality, it is not obvious whether this
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Figure 5.4: Effect of disabling shortcuts in either sub-network on validation BLEU.

is predominantly due to improved accessibility of lexical content, rather than increased

connectivity between network layers, as suggested in (Dou et al., 2018). To isolate the

importance of lexical information, we equip the transformer with non-lexical short-

cuts connecting each layer n to layer n − 2, e.g. layer 6 to layer 4.9 As a result,

the number of added connections and parameters is kept identical to lexical shortcuts,

whereas lexical accessibility is disabled, allowing for minimal comparison between the

two configurations. Test BLEU reported in Table 5.5 suggests that while non-lexical

shortcuts improve over the baseline model, they perform noticeably worse than lexi-

cal connections. Therefore, the increase in translation quality associated with lexical

shortcuts is not solely attributable to a better signal flow or the increased number of

trainable parameters.

5.4.4 Word-sense disambiguation

Beyond the effects of lexical shortcuts on the transformer’s learning dynamics, we

are interested in how widening the representation bottleneck affects the properties of

the produced translations. One challenging problem in translation which intuitively

should benefit from the model’s increased capacity for learning information drawn

from sentence context is word-sense disambiguation.

We examine whether the addition of lexical shortcuts aids disambiguation by eval-

uating our trained DE→EN models on the ContraWSD corpus (Rios et al., 2017). The
9The first layer is connected to the embedding layer, as there is no further antecedent.
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contrastive dataset is constructed by paring source sentences with multiple translations,

varying the translated sense of selected source nouns between translation candidates.

A competent model is expected to assign a higher probability to the translation hypoth-

esis containing the appropriate word-sense.

While the standard transformer offers a strong baseline for the disambiguation task,

we nonetheless observe improvements after adding direct connections to the embed-

ding layers. Specifically, our baseline model reaches an accuracy of 88.8%, which

improves to 89.5% with lexical shortcuts.

5.5 Conclusion

In this chapter, we have proposed a simple yet effective method for widening the repre-

sentation bottleneck in the transformer by introducing lexical shortcuts. Our modified

models achieve up to 1.4 BLEU (0.9 BLEU on average) improvement on 5 standard

WMT datasets, at a small cost in computing time and model size. Our analysis suggests

that lexical connections are useful to both encoder and decoder, and remain effective

when included in smaller models. Moreover, the addition of shortcuts noticeably re-

duces the similarity of hidden states to the initial embeddings, indicating that dynamic

lexical access aids the network in learning novel, diverse information. We also per-

formed ablation studies comparing different shortcut variants and demonstrated that

one effect of lexical shortcuts is an improved WSD capability.

The presented findings offer new insights into the nature of information encoded

by the transformer layers, supporting the iterative refinement view of feature learning.

In future work, we intend to explore other ways to better our understanding of the

refinement process and to help translation models learn more diverse and meaningful

internal representations.



Chapter 5. Direct Access to Embedding Features Improves Lexical Reasoning 107

Figure 5.5: Left: Cosine similarity measured on transformer-BASE for EN→DE (new-

stest2014); Right: Cosine similarity measured on transformer-BASE for EN→RU (new-

stest2017)

Figure 5.6: Frequency-based classification accuracy on states from the EN→DE en-

coder.
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Figure 5.7: Frequency-based classification accuracy on states from the EN→DE en-

coder + lexical shortcuts.

Figure 5.8: Left: POS-based classification accuracy on states from the EN→DE en-

coder; Right: POS-based classification accuracy on states from the EN→DE encoder

+ lexical shortcuts

5.6 Post-Publication Comments

In light of the demonstrated improvements to the translation quality afforded by the

addition of lexical shortcut connections to the original transformer architecture, we

elected to conduct a more thorough examination of the shortcuts’ impact on lexical

understanding after the publication of the conference paper presented in this chap-

ter. Specifically, we evaluated the WSD capabilities of the lexical shortcut transformer
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(LST) in a setting that is more challenging than the ContraWSD benchmark, by follow-

ing the methodology outlined in Chapter 3, as well as its capacity for commonsense

CoR using the benchmark introduced in Chapter 4. We discuss our findings in this

section, offering further evidence for the strengths and limitations of the LST and the

utility of the evaluation methods developed in the context of the PhD candidacy.

Model Test SacreBLEU % WSD Error % Attack Success

WMT19 transformer 36.0 17.65 3.96

+ lexical shortcuts 37.0 (+1.0) 15.25 (-2.4) 3.17 (-0.79)

OS18 transformer 29.0 24.17 17.32

+ lexical shortcuts 29.2 (+0.2) 22.46 (-1.71) 16.6 (-0.72)

Table 5.6: Results of the WSD evaluation of the LST model, following the methodology

discussed in Chapter 3. Bold numbers represent improvements over the baseline.

The results of the WSD evaluation are summarized in Table 5.6. All evaluated mod-

els were implemented using the fairseq toolkit. This included a re-implementation of

the LST which we found to perform on-par with the original models used in (Emelin

et al., 2019) on the WMT14 data10. For the WSD study, models are trained and evalu-

ated on the same datasets as in Sections 3.2 and 3.3.1. Hyperparameters were set to be

identical to those provided in Table 3.5.

Overall, we observe that the introduction of lexical shortcuts yields notable im-

provements in test BLEU and greater resilience to adversarial WSD attacks. Likewise,

the frequency of WSD errors is substantially reduced in the LST compared to baseline

models. Of note are the differences in the extent of the observed performance gains

between the two examined domains – news (WMT19) and subtitles (OS18) – with the

former benefiting more from the addition of shortcuts. One possible explanation for

this contrast is that individual sentences are, on average, significantly longer in the

news domain than in the subtitles domain (19.31 vs. 6.69 tokens per sentence). Con-

sequently, more contextual information must be compressed into latent representations

by the WMT transformer in order to encode the source sentence and model the target

sequence, leading to increased competition for representational capacity of the hidden

states with the propagated embedding features. As the latter can be accessed directly

via lexical shortcuts in the LST, the model is able to allocate more space for learn-

10https://github.com/demelin/sct_fairseq
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ing more informative representations of sentence context, thereby achieving greater

translation quality.

Interestingly, we observe minor differences in the behaviour of our baseline mod-

els compared to (Emelin et al., 2020). In particular, the WMT19 baseline transformer

was reported to achieve 38.2 BLEU on test2019, the same test set as used in the cur-

rent evaluation, i.e. superceding results in 5.6 by 2.2 BLEU. Additionally, the OS18

baseline transformer in (Emelin et al., 2020) is more susceptible to adversarial attacks,

with 24.39% of challenge set attacks eliciting flipped translations. The reimplemen-

tation of the same model evaluated in Table 5.6 is comparatively more resilient, suc-

cessfully defending against 6.74% more attacks. While all referenced models were

implemented using the same toolkit and evaluated following the same evaluation pro-

tocol, the fairseq version in (Emelin et al., 2020) precedes the one used in the current

set of experiments, suggesting that the observed differences may stem from changes

in the underlying codebase. Another potential explanation is that the randomness of

model initialization has caused the final model parameters in the different training runs

to substantially diverge. The difference in model robustness to adversarial attacks in

the OS18 domain, on the other hand, can potentially be explained by the impact of

model initialization on the success of individual adversarial attacks, as noted in Sec-

tion 3.3.4 of Chapter 3.

Model Test BLEU EN-DE Test BLEU EN-FR Test BLEU EN-RU

WMT20 transformer 31.88 39.27 22.28

+ lexical shortcuts 32.9 (+ 1.02) 37.93 (-1.34) 22.24 (-0.04)

Wino-X EN-DE
Accuracy

Wino-X EN-FR
Accuracy

Wino-X EN-RU
Accuracy

WMT20 transformer 50.32% 49.97% 50.27%

+ lexical shortcuts 50.21% (-0.11%) 49.93% (-0.04%) 48.39% (-1.88%)

Table 5.7: Results of the CoR evaluation of the LST model on the Wino-X benchmark,

following the methodology discussed in Chapter 4. Bold numbers represent improve-

ments over the baseline.

Table 5.7 reports the findings of our post-publication evaluation of the LST on the

MT-Wino-X benchmark. All CoR experiments used the same fairseq model implemen-

tations as the WSD experiments. Training and evaluation followed the same protocol
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as described in Section 4.3, using the same data and hyperparameters (see Table 4.6).

Perhaps unsurprisingly, lexical shortcuts do not improve model performance on

Wino-X. This can be potentially explained by Wino-X probing for CoR capabilities that

explicitly presuppose commonsense reasoning, which is generally observed to emerge

in large-scale neural models trained on extraordinary amounts of data, such as LLMs,

rather than due to altered neural architecture design (Brown et al., 2020). Interestingly,

improvements to translation quality as denoted by test BLEU are inconsistent, differing

between the examined translation directions. While a substantial improvement can

be observed for EN-DE as in 5.6, BLEU drops noticeably for EN-FR and remains

largely unchanged for EN-RU. Together with the results presented in Table 5.3, this

suggests that while the addition of lexical shortcuts, generally speaking, positively

impacts translation performance, the specifics of their contribution are contingent on a

variety of factors, such as the target language or training data size, and are best verified

empirically.

Taking this additional evaluation of the proposed LST into account, we can con-

clude that lexical shortcuts represent a computationally lightweight, easy to implement,

and predominantly beneficial addition to the base transformer architecture. While their

efficacy varies when evaluated on different aspects of language understanding as well

as between target languages and amounts of training data, the overall improvements in

translation quality and WSD accuracy provide compelling evidence for their deploy-

ment in sufficiently small neural translation models.
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Conclusion

Alles hat ein Ende, nur die Wurst hat zwei.

German proverb

Taken as a whole, the work presented in this thesis had been conducted with the

aim to explore, identify, and quantify some of the current challenges in NMT, while

also proposing strategies for alleviating them via changes to model architectures and

training regimes. In doing so, the focus of the individual studies remained on lexical

language understanding as represented by the WSD and CoR tasks. Unambiguously

identifying the intended meaning of every lexical unit within a text requires strong

competency in both of these areas. Thus, they should be considered integral to under-

standing the semantics of natural language and, consequently, to faithfully mapping the

meaning of text authored in one language into another language, in other words, to the

process of translation. Findings summarized in Chapters 3 and 4 indicate that, despite

major advances in deep learning, conventional NMT systems are incapable of consis-

tently reasoning about lexical semantics, instead relying on shallow heuristics that are

informed by undesirable biases to perform WSD and CoR alike. At the same time,

recently popularized LLMs demonstrate a superior performance on both tasks owing

to their immense scale, which suggests a future where LLMs either fully supplant or

complement conventional NMT models.

With respect to challenges in WSD, research discussed in Chapter 3 showed that

NMT models suffer from disambiguation bias that significantly informs their choices

when disambiguating polysemous terms. Rather than engaging in deeper reasoning

about the intended sense of a homograph by jointly leveraging all available context

cues, models instead rely on shallow heuristics such as co-occurrence counts of word

112
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senses with specific context words. Once parameterized, model-specific DB can guide

the discovery of naturally occurring source language sentences which are likely to elicit

WSD errors from evaluated translation models. Furthermore, DB can be effectively

exploited to craft synthetic adversarial attacks intended to trigger WSD errors through

minimal perturbations of sentences containing ambiguous terms. These observations

have been validated across different model architectures and translation domains, sug-

gesting that DB is a pathology that is intrinsic to neural translation models and likely

constitutes a side effect of the distributional hypothesis that drives the learning of lex-

ical representations that inform WSD choices.

Similarly, work presented in Chapter 4 found that conventional NMT systems are

unable to successfully identify referents of ambiguous pronouns as part of the trans-

lation process in cases where the CoR step requires commonsense reasoning. Rather

than taking into consideration properties of entities denoted by the linguistic expres-

sions and their relations to each other, NMT models are guided in their CoR decisions

by superficial biases that arise from artifacts present in their training distribution. Ex-

perimental results show that among the identified bias sources, grammatical gender of

potential referents informs model behavior to a greater extent than their position within

the translated sentence. At the same time, strategies aiming to reduce such biases

are shown to improve CoR accuracy. Given the exploratory nature of this research,

it is likely that future work may be able to uncover additional CoR biases in NMT

systems, complementing these initial findings. Compared to NMT models, MLLMs

pre-trained on data from a diverse set of languages stand out as the superior corefer-

ence resolvers, exhibiting a highly promising capacity for cross-lingual commonsense

knowledge transfer.

As a potential avenue for improving lexical reasoning in NMT models, research

documented in Chapter 5 explored a simple yet effective extension to the popular trans-

former architecture. Gated shortcut connections introduced between the embedding

layer and each subsequent layer within the encoder and the decoder allow lexical fea-

tures to be accessed dynamically for the computation of individual layer activations,

instead of having to sequentially traverse the layer stack to be accessible across the

model. Freeing up the representational capacity of transformer layers in this manner

enables the translation model to better capture the contextual information within the

source and target sentences, resulting in improved translation quality. Experimental

findings furthermore indicate greater lexical understanding in models equipped with

lexical shortcuts, based on their superior WSD capabilities. Post-publication experi-
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ments further support these findings by demonstrating that the incorporation of lexical

shortcuts into the transformer architecture reduces WSD errors attributable to DB and

improves models’ resilience to adversarial WSD attacks.

Following the completion of studies comprising the main chapters of this thesis,

additional experiments were conducted so as to evaluate whether the proposed chal-

lenge sets and evaluation methodologies remain effective if applied to LLMs, which

have recently came to prominence as highly capable language compreheders and gen-

erators. Overall, LLMs are found to offer superior lexical reasoning capabilities com-

pared to conventional NMT models, especially when used in combination with ad-

vanced prompting techniques, such as the proposed chain-of-tasks prompting. In par-

ticular, explicit deliberation of the intended homograph sense in the source sentence

can improve the robustness of LLMs to adversarial WSD attacks, albeit not consis-

tently. Similarly, a positive trend can be observed when tasking LLMs with translations

that require commonsense reasoning to successfully resolve coreference. While basic

prompting yields no substantial improvements over much smaller, conventional NMT

systems, CoTA prompting can be effectively leveraged to raise CoR accuracy. Of note

is the impressive performance of LLMs on the LM-Wino-X challenge sets intended to

evaluate monolingual CoR, which appears to be far less challenging than CoR within

the translation context, as represented by the MT-Wino-X challenge sets, despite con-

taining many of the same samples albeit in a different format. This suggests that while

CoTA prompting is an effective tool for eliciting semantically consistent translations

from LLMs, it fails to fully leverage the lexical understanding capabilities of LLMs.

Ultimately, despite improving upon NMT models, LLMs remain prone to WSD and

CoR errors with much room left for improvement on both tasks, which substantiates

the utility of methods and resources introduced in this thesis.

As with any scientific endeavor, the work presented here is not without its limi-

tations. One of them is that uncovering the DB of a model is a labor-intensive, in-

herently noisy process that relies on several tools and resources that are imperfect

and may introduce errors. Similarly, constructing adversarial WSD attacks that are

natural-sounding and coherent remains a challenge, with the proposed methodology

occasionally producing sub-par samples that are of limited utility for model evalua-

tion. Commonsense reasoning as part of CoR, on the other hand, has been shown to

benefit from model scaling and may pose less of a challenge for sufficiently large NMT

models, which our study was unable to verify due to unavailability of such resources

at the time. Efficient integration of LLMs into NMT systems is likewise an approach
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that could potentially alleviate some of the challenges uncovered in this thesis. Finally,

while lexical shortcuts demonstrably improve translation quality and lexical reason-

ing in smaller transformer models, current NLP research is becoming increasingly

dominated by massive models with billions of parameters. For models of this scope,

limited representational capacity is unlikely to be an issue, which limits the utility of

the proposed LST architecture. However, in settings where space and compute are

constrained, such as embedded devices, lexical shortcuts may find a fruitful practical

application.

A potential guideline for future research motivated by the central findings presented

in this thesis, therefore, emphasizes the creation, extension, and maintenance of chal-

lenging evaluation benchmarks that target specific linguistic capabilities of translation

models. Ensuring that translation systems are capable of successfully completing the

individual sub-steps involved in the translation process – including, but not limited

to, lexical comprehension – is essential for attaining human-like translation quality

through iterative changes to model design and learning objectives.

Ultimately, WSD and CoR represent unsolved challenges in machine translation

and will remain such until models are capable of language understanding that is not de-

facto shortcut learning in disguise. In order to ensure that our evaluations of model ca-

pabilities remain objective and accurate, more challenging and comprehensive bench-

marks are needed. Work introduced in Chapters 3 and 4 represents such evaluation

efforts and offers valuable insights into potential methodologies for the construction of

future cross-lingual benchmarks, adaptation of existing monolingual benchmarks for

the multi-lingual use case, and strategies for the targeted evaluation of the word-level

language processing capabilities of NMT models and LLMs. While the methods dis-

cussed in Chapter 3 are challenging to apply to models trained on vast quantities of

data or on proprietary data sources inaccessible to the public, they can nevertheless

be effectively leveraged for small- and medium-scale fine-tuning data frequently em-

ployed to adapt a foundation model to a target domain or application. As such – jointly

with the model-agnostic benchmarks presented in Chapter 4 – they remain a valuable

analysis tool within the ever-evolving AI landscape. Conclusions drawn from evalu-

ations based on these and similar resources can in turn motivate model development

and refinement.

Undoubtedly, the field of machine translation will continue to advance, incorporat-

ing and spurring future innovations in the field of NLP. The newly available LLMs, in

particular, represent a powerful tool to be considered for inclusion into the translation
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pipeline. As such, it is paramount to keep identifying the weaknesses of prominent

models and finding ways to address them, in order to ensure that this technology func-

tions as a reliable bridge between human communities, enabling a free and unburdened

exchange of ideas by bridging linguistic divides.
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