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Abstract 

Proteins carry out most of the biochemical phenomena necessary for life as we know it. The majority of proteins 

do not function alone in the cell, but are instead subunits that assemble into complexes with copies of 

themselves and other proteins. For decades, due to limited evidence to support otherwise, the textbook model 

was that subunits have to be fully synthesised before they diffuse away and collide randomly with their partners 

to from a complex. More recently, however, increasing evidence has accumulated, revealing that this model is 

incomplete. We now understand that many subunits begin the assembly process during their translation on 

the ribosome. This phenomenon has important implications for the structure, function, and evolution of 

protein complexes, as well as for the understanding and the prediction of the mechanisms by which genetic 

mutations cause disease. 

The first chapter provides an overview of our current understanding of how and why proteins assemble into 

complexes. Two classes of complexes are discussed: homomers, which consist of genetically identical copies of 

a protein and exhibit structural symmetry, and heteromers, which involve the assembly of non-identical 

proteins and are more common in human cells. I review the historical experiments that contributed to the 

discovery of cotranslational assembly, including recent breakthroughs that have made its proteome-wide 

detection possible, which is of tremendous value to this thesis. I provide an overview of genetic mutations in 

the context of human disease, as the present work has considerable clinical applications beyond its 

contribution to fundamental biology. 

In the second chapter, I investigate the properties of subunit interfaces that influence cotranslational assembly 

using a combination of proteomic, structural, and computational approaches. I show that cotranslational 

assembly is particularly common between subunits that form large intermolecular interfaces. To test whether 

large interfaces have evolved to promote cotranslational assembly, as opposed to cotranslational assembly 

being a non-adaptive consequence of large interfaces, I compare the sizes of first and last translated interfaces 

of heteromeric subunits in the proteomes of three evolutionary distant species. This analysis reveals that 

N-terminal interfaces, on average, tend to be larger than C-terminal interfaces. Notably, the trend is significant 

in ancient subunits or those organised into operons in bacteria, suggesting that large N-terminal interfaces 

may have been selected for to seed the assembly pathway cotranslationally. 

The third chapter explores an important hypothesis regarding cotranslational assembly: can it counter the 

dominant-negative effect, whereby the co-assembly of mutant and wild-type subunits impairs the activity of a 

protein complex? First, I show that cotranslationally assembling subunits are much less likely to be associated 

with autosomal dominant relative to recessive disorders. Second, I observe that subunits with dominant-

negative disease mutations are significantly depleted in cotranslational assembly compared to those associated 

with loss-of-function mutations. Additionally, I find that complexes with known dominant-negative effects 

tend to expose their interfaces later during translation, lessening the likelihood of cotranslational assembly. 

Altogether, I find strong support for the hypothesis that the allele-specific nature of cotranslational assembly 

can buffer the effect of certain dominant mutations. 

In the fourth chapter, I synthesize the hallmarks of cotranslational assembly and discuss their mechanistic 

interpretations, highlighting the differences between neutralist and selectionist perspectives regarding their 

functional importance. Finally, in the fifth chapter, by combining a diverse range of gene-level features, I train 

a computational model for predicting proteins likely to be associated with non-loss-of-function (non-LOF) 
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disease mechanisms, with the aim of accelerating the discovery of novel disease variants. I first generate a 

model that utilizes protein complex structural data and showcase its ability to detect properties explicitly 

absent from the model but are linked to proteins that give rise to non-LOF disease mechanisms. Although the 

results reflect the idea that LOF and non-LOF mechanisms can be captured at the protein-level, the predictor 

is strongly limited by the availability of protein complex structural data. Due to this limitation, I introduce a 

new model architecture with a spectrum of surrogate features, notably excluding those based on experimental 

protein complex structure data.  

The resulting models enable the estimation of probabilities for a protein exhibiting loss-of-function, gain-of-

function, and dominant-negative molecular disease mechanisms across the entire proteome. In preliminary 

results, I demonstrate the practical applications of these models, including the prioritization of mutations with 

non-LOF-like properties in population genetic data and the detection of cryptic de novo dominant-negative 

mutations in developmental disorders. This thesis offers fresh insights into the molecular and evolutionary 

aspects of cotranslational assembly and its role in human disease. 
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Lay summary 

Our DNA encodes proteins that are the workhorses of our cells, performing a wide range of essential tasks, 

from breaking down food to fighting infections. To help put things into perspective, scientists often say that if 

we were to stretch out the DNA from a single human cell, it would be as long as two meters. Even more riveting 

is the fact that all the proteins in a single cell would span many kilometres if laid out end to end. They do not 

like to be stretched out, though. They curl up into compact shapes and often join forces with other proteins to 

form complexes, functioning like interlocking Lego pieces. If one protein were to be scaled up to the size of a 

person, the cellular space would be equivalent to hundreds of football fields densely packed with people. In 

such a vast expanse, if both you and your friend started walking, it is very unlikely that you would meet within 

a reasonable timeframe. However, there is a clever way to increase the chances of meeting: enter the football 

fields together. Similarly, recent discoveries have unveiled that protein complex formation begins even before 

proteins are fully synthesized by ribosomes, which are the cell's protein factories. This process, known as 

cotranslational assembly, enables proteins to efficiently and accurately form complexes. 

My research explores the world of protein complexes, specifically, how and why proteins come together and 

what factors determine the nature of their association. I review the experiments that revealed how proteins 

can form complexes during their synthesis, and how new methods can help us discover more examples of this 

process in different organisms. Thanks to these experiments, we now know that at least 4,000 proteins, a fifth 

of all the proteins encoded by our genes, use cotranslational assembly. I also explain how genetic mutations, 

which are changes in the DNA code that tells the cell how to make proteins, can affect the formation and 

function of protein complexes and lead to disease. Moreover, I aim to answer unresolved questions about 

cotranslational assembly. 

What makes some proteins more likely to form complexes during their synthesis than others? It turns out that 

proteins with larger contact areas between their subunits tend to join together earlier in the assembly process. 

Imagine building a Lego structure composed of pieces of various sizes. Larger pieces have broad knobs that 

seamlessly fit into the corresponding slots of other pieces. You find yourself attaching these together earlier in 

the building process, making sturdy connections that lay the foundation for the entire structure. Conversely, 

smaller pieces with narrower knobs demand greater precision and careful alignment to find their designated 

places, leading to their attachment later in the building process. This principle also applies to a single protein 

that interacts with multiple others. The larger contact area is usually at one end of the protein where its 

synthesis starts, which helps it form complexes sooner. I have found this pattern in bacteria, Baker’s yeast, and 

human cells, which goes to show that cotranslational assembly is an important process that has been conserved 

throughout evolution. 

Can cotranslational assembly reduce the likelihood of certain mutations leading to disease? In our DNA, we 

usually have two copies of each gene, one from each of our parents. If one copy carries a mutation and the 

assembly occurs randomly, approximately three-quarters of the complexes will contain at least one mutant, 

potentially leading to disease. These mutations, known as dominant-negative variants, can disrupt complex 

function. However, the fascinating nature of cotranslational assembly lies in its potential to counteract such 

mutations. When assembly is cotranslational, both gene products form complexes independently of each other, 

reducing the proportion of mutant-containing complexes to 50% and in turn decreasing the likelihood of 

disease. Through my research, I have analysed cotranslationally assembling proteins and human disease genes 

with dominant-negative variants, providing robust support for this hypothesis. Interestingly, complex-forming 
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proteins that do not start their synthesis with a large contact area seem to be more prone to such 

dominant-negative variants. This is because they form complexes after being made and because of this they 

can mix with other subunits in the cell, increasing the chance of being disrupted by mutants. 

Lastly, I explore the practical applications of my research in understanding and predicting the effects of disease 

mutations with specific molecular mechanisms. I develop computational models that utilize various protein 

properties, such as the contact area, to estimate the likelihood of a protein causing a disease by altering or 

negating its function. Through extensive testing on comprehensive datasets of genetic variants, the model 

shows its ability to identify proteins with properties that indicate function change or disruption upon mutation. 

My hope is that this work provides insights into the captivating process of protein complex formation, casting 

light on its impact on structure, function, and evolution. Moreover, it exemplifies how this knowledge can serve 

as a valuable tool in uncovering new mechanisms behind genetic diseases. 
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1 Introduction 

 

1.1 Principles of protein complex assembly 

1.1.1 Protein complex structural data 

The intracellular environment is a bustling realm where proteins and biological macromolecules constantly 

interact. These interactions vary greatly in terms of frequency, specificity, and duration. Some proteins come 

together to form stable assemblies with well-defined functions, allowing for experimental characterization. 

However, numerous transient and promiscuous interactions also take place within cells, often driven by the 

crowded nature of the intracellular space. While many of these fleeting interactions may lack biological 

relevance and evolutionary selection, some are vital for certain processes, particularly cell signalling. Given the 

dynamic nature of cellular activities and the multitude of interactions occurring, defining a protein complex 

becomes a challenging task. Are all interactions considered complexes, regardless of their transient or 

nonspecific nature? Moreover, if we aim to differentiate transient interactions from stable protein complexes, 

how do we establish a threshold (Marsh and Teichmann 2015)? Since obtaining a comprehensive picture of all 

interactions within a cell is not feasible (yet), our understanding of protein complexes heavily relies on the 

experimental methods employed for their characterization. Although defining a protein complex as a collection 

of proteins that consistently copurify in high-throughput experiments provides a starting point, gaining a 

deeper understanding of the structure-function relationships and the mechanisms of subunit assembly 

necessitates the use of experimental methods that offer structural data. 

The determination of protein structures has predominantly relied on x-ray crystallography, which has provided 

a vast collection of structural data. In this method, a crystals of a protein are grown in solution and its structure 

is determined by analysing the diffraction pattern of x-rays interacting with the crystal lattice. Depending on 

the definition of the asymmetric unit, the structures can be classified into three categories: monomers, which 

consist of one polypeptide chain; homomers, which are assemblies formed by multiple identical polypeptide 

chains; and heteromers, which are complexes comprising multiple distinct polypeptide chains. Interestingly, 

there was a notable surge in the discovery of new monomers and homomers in the early 2000’s, attributed to 

the proliferation of structural genomics projects focused on novel protein folds (Figure 1.1) (Marsh and 

Teichmann 2015). As these projects had successfully characterized a good portion of easily crystallisable 

protein folds, the annual discovery of new monomers and homomers had slowly plateaued. Meanwhile, 

exploration of the heteromeric quaternary structure space continues to be very active – in parallel with the 

technological advancements in the field. 

Two decades ago, nuclear magnetic resonance (NMR) emerged as the second most common method for protein 

structure determination. NMR structures primarily consist of monomers because large protein complexes pose 

challenges for the method (Figure 1.1). This is because they often give spectra with extensive signal overlap, 

leading to difficulties in resolving individual resonances. Additionally, the low molecular tumbling rates and 

inherent dynamics of larger complexes can further hinder the acquisition of high-quality data (Mainz et al. 

2009). However, new methods are being developed to overcome these challenges and obtain atom-level 

structural information on larger systems. For example, magic-angle spinning NMR, which improves the 
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spectral resolution of samples by spinning them at a high frequency and a specific angle to the magnetic field, 

has been successfully applied to complexes as large as a 10 megadalton HIV-1 capsid tube (Lu et al. 2020). 

 

Figure 1.1 Number of yearly releases in the PDB by oligomeric state and experimental method. 

The plots are based on a recent snapshot of the PDB (July 20, 2023) and only consider the nonredundant set of 

structures below 50% sequence identity. 

In recent years, cryo-electron microscopy (cryo-EM) has revolutionized our ability to visualize protein 

complexes with exceptional precision and in their near-native state. The technique is based on the idea that 

cooling the sample to the temperature of liquid nitrogen increases its tolerance to higher electron doses. 

However, directly resolving details from raw micrographs remained problematic for a long time. In a 

pioneering breakthrough, Henderson and Unwin tackled this issue by introducing a crystallographic approach: 

averaging images obtained from 2D crystals composed of many identical proteins (Unwin and Henderson 

1975). Since then, through addressing other limitations observed in traditional electron microscopy, cryo-EM 

has expanded our capacity to study larger assemblies, including ribosomes, whole viruses, and molecular 

machines. Additionally, the emergence of cryo-tomography allows the reconstruction of protein complexes 

within intact tissues, unveiling their spatial organization and dynamics (L. N. Young and Villa 2023). Given 

the success of cryo-EM techniques (Figure 1.1), it is highly likely that these structures will soon dominate the 

space of heteromeric protein complexes in the Protein Data Bank (Berman et al. 2000). 

These structure determination techniques, each with its strengths and limitations, have given us a relatively 

large compendium of protein structural diversity. The deposition and analysis of thousands of structures by 

scientists worldwide played an invaluable role in advancing the field. Collectively, these structures helped lay 

down the foundations of how protein complex subunits recognise one another (Chothia and Janin 1975) and 

made possible the exhaustive enumeration of protein complex topologies (Sebastian E. Ahnert et al. 2015). 

Very recently, a deep learning-based protein structure prediction method, AlphaFold, has swept through the 

community for its accurate predictions. The method exploits both the available protein structural data and 

residue coevolution in related sequences contained in the exponentially growing protein sequence universe. 

AlphaFold’s architecture relies on the Evoformer unit (Jumper et al. 2021), which jointly updates the 

representation of residue pairs in the sequence being “folded”, with a representation of many, evolutionarily 

similar sequences. Because a coevolutionary signal can be detected between residue pairs of subunits, 

AlphaFold and methods alike hold great promise for protein complex prediction (Humphreys et al. 2021). 
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1.1.2 Why do proteins assemble into complexes? 

The primary sequence of a protein is determined by the order of twenty proteinogenic amino acids. It, for the 

most part, assumes the secondary and tertiary structures. The former refers to the local conformation of the 

protein backbone (the alpha carbon trace) stabilised by main chain hydrogen bonding patterns, with the most 

common structural elements being alpha helices and beta strands. The latter refers to the protein’s 3D 

structure, which forms via further folding and stabilisation of secondary structure elements by noncovalent 

interactions, such as hydrogen bonds, salt bridges and van der Waals forces, occurring between amino acid 

side chains. It seems evolution has proteins quite well figured out – then why do so many proteins have a 

quaternary structure, too? The quaternary structure of a protein refers to the way in which two or more 

individual protein chains (subunits) are arranged in a complex with respect to each other. Remarkably, the 

majority of proteins in any given cell exhibit a quaternary structure (Lynch 2012). Several mutually inclusive 

arguments have been raised as to why they are so common, with some of the most compelling ones as follows.  

Oligomer formation builds larger proteins with less information (Crick and Watson 1957). Take, for example, 

hemolysin E, which is a homomeric toxin responsible for the haemolytic phenotype of several bacterial strains. 

Twenty-four subunits, 303 amino acids each, form one large pore-like complex (Mueller et al. 2009). Having 

a separate gene for each subunit or one large protein consisting of 7,272 amino acids would require 24-times 

the space in the genome as that of the single-copy subunit. This effect would be exacerbated in higher order 

eukaryotes, where intronic gene structure represents additional complexity to gene organization. 

Oligomer formation improves the chance of error-free protein synthesis (Crane 1950). All biological processes 

are susceptible to error, even RNA-polymerases and ribosomes make mistakes. In bacteria, they do so at a rate 

of approximately 10-5 and 10-4, respectively (W. Li and Lynch 2020; Parker 1989). Thus, factoring in 

processivity errors, over 97% of the hemolysin E subunits are correctly synthesized, with only about 3% 

potentially carrying a substitution. By contrast, if the whole complex was instead encoded by a single gene 

coding for a protein of 7,272 amino acids, the probability of having no missense mutation in any of the protein 

copies would be about 30%. Notably, these back-of-the-envelope calculations assume independence between 

transcription and translation, which is generally not the case. A single mRNA copy can, and usually does, 

template a protein multiple times. The point is that selective degradation of many large, faulty proteins would 

entail a far larger metabolic cost than that of occasionally faulty, short proteins. 

Oligomer formation allows subunit recycling. Many protein complexes assemble reversibly and their 

functions benefit hugely from this property. The most commonly used example is cytoskeletal proteins, such 

as tubulin. Assembly of tubulin subunits into microtubules is characterised by a process known as dynamic 

instability (Mitchison and Kirschner 1984), where microtubule ends can grow and shrink rapidly with newly 

depolymerized subunits continuously replenishing the subunit pool. The process obviates the need for 

synthesizing new proteins at the rate polymerization would require, which would take more time, energy, and 

resources. Synthesis of an equivalently large structure occupying the same functional niche by a single 

polypeptide chain would be an absurdly wasteful and probably unsuccessful strategy for the cell. Yet, this 

strategy is not always a concern for some cytoskeletal proteins that fulfil more static structural roles. For 

example, the giant muscle protein titin consists of 3,450 amino acids and almost 300 immunoglobulin- and 

fibronectin-like domain repeats. Titin also seems to defy the error-free synthesis argument, as each copy is 
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estimated to contain around 17 missense errors (Allan Drummond and Wilke 2009), meaning that, on average, 

human sarcomeres contain no error-free titin molecules at all. 

Oligomer formation is favoured because of biophysical reasons (Lynch 2013). Arguably, it is generally easier 

to fold multiple small proteins rather than a large one. Furthermore, complexation reduces the surface area to 

volume ratio of a protein, which can in turn reduce its vulnerability to denaturation and its propensity to 

engage in nonspecific interactions. In enzymes, oligomerisation could reduce the sensitivity of catalytic sites 

to internal fluctuations and enhance substrate specificity. Oligomerisation of enzymes can also create multiple 

catalytic sites, increasing the frequency of productive enzyme-substrate encounters. Finally, complexation 

presents opportunities for allosteric activity regulation (Jacques Monod, Changeux, and Jacob 1963), defined 

as cooperation (information transfer) between distant sites within or between proteins propagated by the 

residue network. 

In addition to the intuitive but predominantly adaptive arguments above, there is a nonadaptive theory for the 

existence of protein complexes, pioneered by Michael Lynch. He proposed a model whereby transitions 

between multimeric states of protein complexes exist in equilibrium in deep time (Lynch 2012). In his words: 

“Although we do not have the luxury of making such observations, provided enough evolutionary time has 

elapsed for the tree of life to have reached the steady-state distribution […] the number of transitions from a 

monomeric to a dimeric state should equal that in the opposite direction” (Lynch 2013). These transitions 

stochastically arise via the joint processes of mutation, random genetic drift (Kimura 1968), and constant 

directional selection. While there are clear examples that complexation can provide adaptive benefits, neutral 

processes are just as important and cannot be dismissed, especially in the light of accumulating evidence (Esin 

et al. 2018; Garcia-Seisdedos et al. 2017; Hochberg et al. 2020; Schulz et al. 2022). 

1.1.3 Quaternary structure topology 

When talking about protein complexes, topology refers to the spatial arrangement of the subunits. The complex 

can be made up of sequence-identical subunits, like in homomers, or of genetically distinct subunits, like in 

heteromers. The majority of homomeric complexes are symmetric and even most heteromers can be related to 

a simpler symmetric topology (Goodsell and Olson 2000; Marsh and Teichmann 2015). This is in part 

explained by the observation that many heteromeric interactions trace back to homomeric interactions of one 

gene that underwent duplication with the paralogue subsequently diverging in sequence but maintaining the 

interface (Pereira-Leal et al. 2007). Symmetry can be considered at the level of individual subunit interfaces. 

A twofold axis of rotational symmetry arises from dimerisation, creating an isologous (symmetric or head-to-

head) interface between two identical surfaces on homomeric subunits. On the other hand, cyclization leads to 

higher-order rotational symmetry and produces a heterologous (asymmetric or head-to-tail) interface between 

two different surfaces. Therefore, by definition, interfaces of heteromers are also heterologous. 

Symmetry can also be considered globally at the level of the protein complex (Figure 1.2). Homomeric 

symmetries are typically denoted with the Schönflies point group naming convention (Downward 1973), which 

are symmetry operations that can be performed without changing the initial subunit arrangement. In biology, 

because most molecules have an intrinsic handedness (e.g., left-handed amino acids and right-handed sugars), 

only two types of symmetry operators are relevant: rotation and translation. According to this, twofold dimeric 

complexes (C2) possess twofold rotational symmetry. Cyclic complexes (Cn [n>2]) display higher-order rotational 
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symmetry, like threefold (C3) or fourfold (C4), forming closed ring structures with heterologous interfaces. 

Dihedral complexes (Dn [n>1]) combine an n-fold axis of rotation with n perpendicular twofold axes, forming, 

for example, “dimer of dimers” from C2 homomers (D4) or “dimer of trimers” from C3 homomers (D6). Cubic 

symmetries include tetrahedral (T), octahedral (O), and icosahedral (I) complexes, which combine a number 

of higher-order rotational axes. Helical complexes (H) exhibit a screw-like symmetry composed of both 

rotational and translational axes. Helically symmetric complexes are topologically open and thus their subunits 

would polymerise endlessly under ideal conditions, explaining why they are commonly found in fibre-forming 

proteins, such as microtubules. While infinite assembly can have functional roles in cells, it appears to be 

negatively selected against (Garcia-Seisdedos et al. 2017), reflecting the aversion of random mutations that 

could create new interfaces with unlimited assembly potential. Lastly, asymmetric complexes (C1) lack 

significant rotational symmetry, with subunits found in topologically nonequivalent, i.e. non-bijective 

(Sebastian E. Ahnert et al. 2015) positions. Most of these non-bijective homomers are due to quaternary 

structure misassignment in the PDB, often as a result of the biological assembly, the physiologically relevant 

topology of the complex, being erroneously set to the asymmetric unit (Bergendahl and Marsh 2017). 

 

Figure 1.2 Quaternary structure topologies of symmetric homomers. 

PDB codes for the structures are: 1mg5 (C2), 1a9q (C3), 1a5z (D2), 601f (H), 1a1s (T), 1aew (O), and 1hqk (I). Symmetry 

axes were drawn with the AnAnaS software (Pagès, Kinzina, and Grudinin 2018) and the CGO arrow PyMOL plugin. 

What explains the strong tendency of protein quaternary structure topology to be symmetric? Monod, Wyman, 

and Changeux noted that each interaction in the interface of a symmetric dimer occurs twice (Jacque Monod, 

Wyman, and Changeux 1965), causing the net mutational effect to be larger and increasing in turn the rate 

with which evolution can act on the complex. André et al. have tested this hypothesis using docking simulations 
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and found that, while the energy associated with mutations is √2-fold greater for symmetric interfaces, there 

in an opposing effect: asymmetric interfaces can contain twice as many unique residues, which increases the 

mutational space available for evolutionary innovation (André et al. 2008). It has also been argued before that 

the lowest energy state of an assembly is a symmetrical one (Blundell and Srinivasan 1996; Cornish-Bowden 

and Koshland 1971). Lukatsy et al. investigated random interactions between two planar disks and showed that 

the energy is lowest if the disks interact with equivalent surfaces (symmetric) rather than different ones 

(asymmetric) when aligned along the same axis (Lukatsky, Zeldovich, and Shakhnovich 2006). Likewise, 

simulations by André et al. suggest that evolution has a higher chance of finding symmetric interfaces, because 

they appear to populate most of the energetically favourable interactions it can choose from (André et al. 

2008). More recently, an information theoretic approach to thinking about symmetry was developed 

(Johnston et al. 2022). To explain, the authors invoke the infinite monkey theorem, which claims that a 

monkey randomly hitting keys on a keyboard for an infinite amount of time will eventually type any given text, 

even the complete works of William Shakespeare (Isaac 1995). On a keyboard with 𝑚 keys, the probability of 

randomly typing a text of length 𝑛 is 1/𝑚𝑛. However, if the text is a computer script with instructions to repeat 

a character many times, the computer script will probably be more compact than all characters typed out, thus 

have a higher probability of being typed by chance. The authors estimated the Kolmogorov complexity (a 

measure of the shortest algorithmic expression) of biological assemblies in the PDB, and found a strong bias 

for low-complexity high-symmetry topologies. Nature's code remains the envy of any computer programmer. 

1.1.4 Theory of interface size 

Proteins collapse into their folded state because hydrophobic energy is gained by the reduction of surface in 

contact with water (Kauzmann 1959). This concept was later extended to interfaces of protein complex 

subunits. Chothia and Janin found that by far the largest contribution to the free energy of binding is made by 

hydrophobic bonding, accounting for approximately 25 cal/mol for every 1 Å2 of buried surface (Chothia and 

Janin 1975). Later, once enough protein complex structural data had been amassed, they showed that large 

interfaces are usually more hydrophobic (Janin and Chothia 1990). This can be explained by a more recent 

observation that larger interfaces tend to have more core residues, which grant most of their surface area to 

the interface and are more hydrophobic than rim residues (Levy 2010). While the size of the interface, that is, 

the average surface area removed from contact with water between subunits, can be used to estimate binding 

affinity (Janin 1995), it has limitations. A frequently raised argument is that interface size correlates less with 

affinity in subunits that undergo large conformational changes upon binding (Kastritis et al. 2011) and in 

heteromeric subunits (J. Chen, Sawyer, and Regan 2013). Although these limitations emphasize that other 

interfacial properties must not be overlooked (Kastritis and Bonvin 2013), interface size remains an easily 

calculable and versatile property of protein complexes with tremendous utility for hypothesis testing. 

To use interface size in structural, functional, and evolutionary analyses of protein complexes, one first has to 

study their dynamic assembly processes and assess how effective it is for their prediction. Advancements in 

electrospray ionisation mass spectrometry (ESI-MS) allowed for the monitoring of quaternary structure 

disassembly and the detection of intermediate subcomplexes at each step (Hernández and Robinson 2007). 

Application of ESI-MS to a set of homomers unveiled an interesting trend: the assembly intermediates could 

be inferred from the crystal structures by preserving the largest interfaces and breaking the smaller ones (Levy 

et al. 2008). Later, the method was performed on heteromeric complexes, with an iterative model in which 
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subunits are disassembled in a way that exposes the least amount of buried interface area (Marsh et al. 2013). 

Again, the majority of assembly intermediates were consistent with the interface size hierarchy predicted from 

available structural data. Moreover, the authors mapped gene fusion events onto complex assembly pathways, 

and found that they had a significant tendency to preserve subunit assembly order, suggesting evolutionary 

selection for ordered protein complex assembly in cells. This result was recapitulated in an analysis of bacterial 

operons, which found that gene order corresponds well to the predicted subunit assembly order (Wells, 

Bergendahl, and Marsh 2016). It seems evolution tends to stabilise interfaces that are functionally beneficial. 

Indeed, evolutionarily ancient subunits of protein complexes are larger than those that emerged in a lineage-

specific manner, and are thus more recent (Dayhoff et al. 2010). 

Essentially, these results suggest that the largest intersubunit interfaces are formed first during assembly, 

while the smaller ones are formed later, assuming the order in which new subunits are gained during the course 

of evolution. Why is interface size so effective at predicting assembly order given its imperfect agreement with 

experimentally measured binding affinity? One possibility is that assembly can only proceed by forming a 

limited number of possible interfaces, whose sizes can vary considerably. Therefore, only a weak correlation 

between affinity and interface size would be needed to account for the successful prediction of most assembly 

pathways (Marsh and Teichmann 2014a). Recently, it has been shown that the number of coevolving residues 

between subunits is an equally good predictor of assembly order (Mallik and Kundu 2017). The reason for this 

might be that interface core residues are often the most conserved (Levy 2010), and, since larger interfaces 

have a greater proportion of interface core residues, the number of coevolving residues serves simply as a proxy 

for interface size. However, while interface size requires protein complex structural data, residue coevolution 

requires sufficiently deep evolutionary signal from multiple sequence alignments; thus both methods have 

their limitations. 

1.2 Cotranslational protein complex assembly 

1.2.1 A brief history of cotranslational assembly 

In the past sixty years, strong evidence has been laid down supporting the idea that the assembly of protein 

complexes frequently occurs cotranslationally, while at least one of the component subunits is in the process 

of being translated. Proteins from both prokaryotes and eukaryotes, spanning a wide variety of folds, have been 

observed to undergo such assembly, for example, the bacterial beta-galactosidase (Zipser 1963), the viral outer 

capsid protein sigma-1 (Gilmore et al. 1996), the yeast fatty acid synthase (Shiber et al. 2018), the plant 

photosystem II protein D1 subunit (L. Zhang et al. 1999), and many mammalian nuclear transcription 

complexes (Kamenova et al. 2019). 

Over time, different experimental approaches have been designed to probe proteomes for their ability to 

produce cotranslationally assembled complexes. Duncan and Mata employed RNA immunoprecipitation to 

examine 31 proteins from fission yeast (Duncan and Mata 2011). The premise of the experiment was that, given 

a pair of interacting subunits, one would associate indirectly to the mRNA encoding the other. The association 

could be tested by purifying one protein and identifying the bound mRNA via a chip-based hybridisation 

technique (Keene, Komisarow, and Friedersdorf 2006) (Figure 1.3). Of the 31 proteins tested using this 

approach, 12 showed reproducible binding to other mRNAs, indicating potential cotranslational interactions. 

Although the target proteins were carefully selected to exclude known RNA-binding domains, and the authors 
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later validated the method’s ability to predict genuine protein-protein interactions (Duncan and Mata 2014), 

the result provided only inferential evidence for the widespread nature of cotranslational assembly. 

Our ability to interrogate cotranslational phenomena drastically increased with the development of ribosome 

profiling and its derivatives (Ingolia 2014). Shiber et al. applied selective ribosome profiling (SeRP) in budding 

yeast to analyse 12 heteromeric complexes for their assembly mode (Shiber et al. 2018). The method involves 

comparing the distribution of ribosome-protected mRNA fragments (footprints) from two fractions: one 

containing those of a selected set of ribosomes co-purified with a tagged interaction partner (selected 

translatome) and the other containing the remaining footprints of the target mRNA (total translatome) 

(Figure 1.3). The build-up of footprints in the selected relative to the total translatome reveals if 

cotranslational assembly occurs between two preselected proteins. The authors demonstrated that 9 out of the 

12 complexes underwent cotranslational assembly, providing the first direct indication that cotranslational 

subunit binding may be a common assembly mechanism. 

 

Figure 1.3 Methods to detect cotranslational assembly. 

(A) RIP-chip assay (ribonucleoprotein immunoprecipitation analysed with DNA chips) performed by Duncan and Mata 

(Duncan and Mata 2011). (B) SeRP performed by multiple studies for the detection of cotranslational assembly (Seidel et 

al. 2022; Shiber et al. 2018; Shieh et al. 2015). (C) DiSP performed by Bertolini et al. (Bertolini et al. 2021). 

Even more recently, the high-throughput survey of cotranslational assembly became possible via disome-

selective ribosome profiling (DiSP) (Bertolini et al. 2021) (Figure 1.3). In this, single ribosomes (monosomes) 

as well as double ribosomes tethered together via interacting nascent chains (disomes) are isolated from the 

total translatome. By sequencing the footprints contained in both fractions, it is possible to generate a 

monosome-to-disome enrichment profile for every transcript, which pinpoints the position of the assembly 

onset in the protein sequence. Using this powerful method, Bertolini et al. have identified over 4,000 human 

proteins with evidence for cotranslationally assembly, further strengthening the support for the phenomenon. 

1.2.2 Generalized mechanisms of cotranslational assembly 

Protein synthesis depends on an mRNA transcript that is translated vectorially from the N to the C terminus. 

The mRNA may be translated by multiple ribosomes at the same time in both prokaryotes (Barondes and 
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Nirenberg 1962) and eukaryotes (Warner, Rich, and Hall 1962). In the simplest case, considering binary 

interactions, this model can result in two different mechanisms of cotranslational assembly, which can be 

divided further into two categories based upon the maturity of the interaction partner (Figure 1.4). First, 

assembly can happen through cis- or trans-acting mechanisms; the former involves subunits from the same 

transcript binding to each other, while latter involves subunits from different transcripts. Second, the assembly 

can be categorised as either simultaneous (also referred to as “co-co” assembly), with both proteins being 

translated at the same time, or sequential (“co-post” assembly), with the partner protein having been released 

from the ribosome at the time of binding (Bertolini et al. 2021; Kamenova et al. 2019). Additionally, high 

complexity translation-coupled assembly modes involving multiple protein chains are known to exist (Halbach 

et al. 2009; Khan et al. 2022; Redick and Schwarzbauer 1995; Seidel et al. 2022), such as that of the major 

vault protein (Figure 1.4) (Mrazek et al. 2014), but their detection requires case-specific techniques, limiting 

the extent to which they have been studied so far. 

The four different modes of cotranslational assembly that result from binary protein interactions have all been 

observed in vivo. The first case of cotranslational assembly assumed to be in cis was identified in studies on 

the bacterial β-galactosidase (Kiho and Rich 1964; Zipser 1963), which assembles into a complex composed of 

four identical subunits, with two being necessary for the formation of an active site. By using sucrose density 

gradient centrifugation, researchers were able to isolate partially active polysome-bound protein, suggesting 

the presence of an assembly intermediate. This was the earliest indication that bacterial polysomes, which 

contain 70-80% of the ribosome pool (Kiho and Rich 1964), are not only protein factories but also potential 

sites of complex assembly. 

 

Figure 1.4 Cotranslational assembly modes. 

(A) Categories of binary interactions grouped by assembly mechanisms (cis and trans) and the maturity of the assembly 

partner (simultaneous and sequential). (B) High complexity cotranslational assembly modes involving multiple nascent 

chains. Top: Assembly of the major vault protein (Mrazek et al. 2014). Bottom: Hypothetical simultaneous assembly of 

three heteromeric subunits. 

Continuing the trend, researchers later identified a trans cotranslationally assembling subunit pair in chicken 

muscle cells (Isaacs et al. 1992). Using tritiated puromycin to label the protein titin, they found that native 

contacts with myosin had formed during its translation. However, these experiments could not determine if 

the assembly took place simultaneously or sequentially. By contrast, Redick and Schwarzbauer used pulse-
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chase labelling to follow the assembly of the protein tenascin into a six-armed structure known as the 

hexabrachion (Redick and Schwarzbauer 1995). They observed no assembly intermediates, suggesting that 

nascent tenascin polypeptides had associated before translation was complete, in a simultaneous manner 

(Figure 1.4). Finally, Young and Andrews introduced pause sites into the mRNA of the signal recognition 

particle receptor alpha subunit (SRα), which allowed for the identification of its sequential cotranslational 

assembly with the membrane-anchored SRβ subunit (J. C. Young and Andrews 1996). 

Currently, DiSP and SeRP are the most effective techniques for the detection of simultaneous and sequential 

assembly, respectively. Homomers, subunits that form complexes with other copies of themselves, are 

uniquely suited for DiSP, because multiple active ribosomes on their mRNA make an interaction between two 

nascent chains more likely, leading to the formation of a disome, which is the target of DiSP. This notion has 

been confirmed by Bertolini et al., who found that homomers are enriched in simultaneous assembly relative 

to heteromers (Bertolini et al. 2021). In sharp contrast to this, detection of sequential assembly by SeRP 

requires tagging a protein of interest to allow for its purification, making it less feasible for large-scale 

experiments. This technical bottleneck means that the proteome-wide detection of sequential assembly, which 

may be more common among heteromers (Shiber et al. 2018), has not yet been accomplished. 

1.2.3 Spatiotemporal and stoichiometric regulation of protein complex assembly 

Evolutionary selection for assembly order and the existence of cotranslational assembly in both prokaryotes 

and eukaryotes suggest it matters that subunits of complexes find each other at the right place and time. There 

are, however, two outstanding differences in eukaryotes: they lack operonal genome organisation and mRNA 

molecules have to leave the nucleus for translation. Hence, mRNAs of subunits belonging to the same complex 

should colocalise in order for the assembly to be less dependent on random diffusion. Colocalisation is even 

more important for subunits with large interfaces, because the large number of unburied contacts will increase 

their conformational entropy and render them more likely to favour the unfolded state (Miller, Lesk, et al. 

1987), which can lead to aggregation.  

The classical mechanism for partitioning mRNAs for localised translation is targeting to membrane-bounded 

organelles, like the ER or mitochondria. At the site, the protein can be cotranslationally translocated by an 

appropriate translocon (Rapoport, Li, and Park 2017) or become membrane-immersed by an insertion 

apparatus (Hegde and Keenan 2022). While the foregoing strategies typically require a signal peptide to 

emerge from the ribosome tunnel, there are processes capable of transporting the mRNA itself. Active 

transport of mRNA as part of ribonucleoprotein granules along the cytoskeleton is the most widely observed 

mechanism (de Heredia and Jansen 2004). Interestingly, the mRNA cargo can be translationally active, like 

in the case of pericentrin, whose mRNA is translated during its journey to the site of centrosome assembly 

(Sepulveda et al. 2018). In neurons, where protein activity is required at distant axonal locations, on-site 

production becomes particularly crucial for rapid synaptic transmission. This is achieved by long-range 

transport via dyneins and kinesins on microtubules, as opposed to short-range transport via myosins on actin 

filaments (Das, Singer, and Yoon 2019). There is now also abundant evidence for cis-regulatory elements in 

the 3’ UTR region of mRNAs (Mendonsa et al. 2023) being targeted by RNA binding proteins (RBPs), which, 

functionally analogous to bacterial operons, may give rise to RNA regulons (Keene 2007). Chen and Mayr 

proposed a model for how RBPs might orchestrate protein complex assembly (X. Chen and Mayr 2022). 

According to this, high valency RBPs create a mesh to form translationally active membraneless organelles in 
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the cytoplasm and recruit functionally related mRNAs. These RBPs can transiently retain proteins, thereby 

ensuring their colocalisation and facilitating their assembly into complexes with each other or with nascent 

chains of partner subunits. For example, TIGER domains are ER-associated granules that may fulfil this 

functional niche (Ma and Mayr 2018). 

One question naturally arises in the light of these precise colocalisation and cotranslation mechanisms: how 

do eukaryotic cells regulate protein complex stoichiometry? The balance hypothesis proposes that there is a 

non-negligible fitness cost to stoichiometric imbalances of protein complex subunits, making them more likely 

to be dosage sensitive (Papp, Pál, and Hurst 2003). Most protein complex components are produced at rates 

proportional to their stoichiometry, meaning that their abundances are precisely tuned at the synthesis-level 

to the amount required based on the number of copies in their complexes (Taggart and Li 2018). Exceptions 

include peripheral subunits, which have less effect on complex stability than core subunits (Bray and Lay 1997; 

Oberdorf and Kortemme 2009), or those part of multiple complexes, that is, have moonlighting activities 

(Matalon, Horovitz, and Levy 2014). Consequences of dosage control are evident through various phenomena, 

for example, the rapid degradation of surplus ribosomal subunits (Sung et al. 2016) and depletion of 

heteromers in regions with high copy number variation (Schuster-Böckler, Conrad, and Bateman 2010). Ample 

evidence points towards protein degradation as the primary mechanism for correcting subunit levels at the 

final step of gene expression, rather than at earlier stages (Ishikawa et al. 2017), although it has been argued 

that transcription feedback could influence protein synthesis rates (Veitia and Potier 2015). A notable 

exception is the condition of aneuploidy, where protein aggregation can be almost as effective as degradation 

in reducing the levels of excess proteins (Brennan et al. 2019). Surprisingly, some proteins are produced in 

excess by design. A recent analysis of protein age-dependent degradation revealed that proteins with non-

exponential degradation (NED) kinetics are enriched in heteromeric subunits and often become more stable 

with age (McShane et al. 2016). NED proteins show stronger coexpression with other subunits’ mRNA and 

assemble earlier during the complex assembly pathway. This suggests a model whereby only a portion of newly 

synthesized NED proteins is stabilised via complex formation, while the rest undergo degradation. 

Given the ribosome's role as a central hub that brings together mRNA, proteins, and hundreds of accessory 

factors, it is likely that translation-level quality control would evolve as a strategic checkpoint for the cell. 

Similar to mRNA control processes like nonsense-mediated decay, no-go decay, and non-stop decay in 

eukaryotes, we can expect translation-coupled regulatory mechanisms for proteins. For example, misfolded 

proteins on the ribosome can be destined for degradation via cotranslational ubiquitination or N-terminal 

modification (Varshavsky 2019). The extent to which nascent polypeptides are ubiquitinated was initially 

debated, arguing it may be as high as 30%. However, recent studies utilizing puromycin labelling in 

mammalian cells provided a more refined estimate of 12 to 15% (Duttler, Pechmann, and Frydman 2013; F. 

Wang, Durfee, and Huibregtse 2013). In a single cell, with just 50% of the 5 million ribosomes actively 

translating an mRNA encoding a 500-amino-acid protein at a rate of 5 amino acids per second, a staggering 

1.5 million proteins will be synthesized every minute (Harper and Bennett 2016). It is daunting to consider 

that more than a tenth of these may be degraded before they could even begin to function, but it goes to show 

how important quality, i.e. the intended function, is for the cell. As for protein complexes, the newly discovered 

mechanism of dimerisation quality control (DQC) permits detection and selective degradation of aberrantly 

paired subunits on the ribosome, leaving the native counterparts intact (Mena et al. 2020). Considering that 

DQC was discovered through the analysis of BTB (broad complex, Tramtrack, and Bric-à-brac) domains, which 
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cotranslationally assemble at high frequency (Bertolini et al. 2021), it is possible that cotranslational assembly 

and DQC are co-occurring phenomena. Thus, ribosomes are necessarily the most dynamic entities in the 

spatiotemporal regulation of protein complex assembly. 

1.3 The nature of genetic disease 

1.3.1 Mechanisms of genetic dominance 

Each of us inherits two alleles from our parents at any given autosomal locus, which may not be identical and 

carry different mutations relative to each other or to a reference sequence. If the two alleles are identical, the 

individual is considered homozygous for the allele, and heterozygous otherwise. The classical Mendelian 

definition for dominance only permits discrete traits where the phenotypes of the heterozygous state and the 

homozygous state of the dominance-causing allele are the same. In contrast, modern medical genetics defines 

dominant and recessive based upon the clinical consequences of the heterozygote, which is more suitable for 

rare diseases, as it is inclusive for intermediate phenotypes (Zschocke, Byers, and Wilkie 2023). However, 

strictly speaking, mutations are not in themselves dominant or recessive; these terms are more appropriate to 

describe the effect of a mutation on a given trait, which will determine the pattern of its inheritance. 

Autosomal recessive conditions occur when both alleles of a gene have a pathogenic variant, which can be 

homozygous or compound heterozygous, i.e. two different variants on each allele. This means that for an 

autosomal recessive condition to arise, either one of the parents has to have the disease and the other carry the 

variant, or both parents have to be carriers. In rare cases, even if only one parent is a carrier and the other is 

homozygous wild type, a de novo (spontaneously) occurring mutation in the parents’ germline or in the post-

zygotic embryo could lead to a rare compound heterozygous recessive disorder (Acuna-Hidalgo et al. 2015; 

Saito et al. 2017). Recessive variants on the X-chromosome are defined based on how the trait behaves in 

females, thus a homozygous pathogenic variant in females would be hemizygous in males but likewise 

considered recessive. When these recessive variants are missense, the disease typically results from loss of 

protein function, as both protein copies will become inactivated (Veitia, Caburet, and Birchler 2018). In rare 

cases, recessive variants can cause gain of function, such as the p.Arg544Gln substitution in the extracellular 

calcium-sensing receptor, which induces hyperactivity due to loss of a cation-π interaction (Cavaco et al. 2018). 

In contrast, autosomal dominant diseases only require one mutant allele to manifest. When the dominant 

variant is missense and its effect is loss of protein function, the disease will be due to haploinsufficiency, i.e. 

dominant loss-of-function (LOF). As the name implies, the phenotype arises because the level of the protein 

provided by the nonmutant allele is not enough to maintain the intended function. It was recognised early by 

Sewall Wright (S. Wright 1934) that enzymes are largely resilient to dominant LOF mutations, which he 

correctly attributed to the law of diminishing returns in metabolic flux. In other words, because enzymes tend 

to be highly abundant and substrate concentrations are almost never saturating, halving the dose of an enzyme 

will not equate to halving the product concentration. On the other end of the spectrum are transcription factors, 

which are overly sensitive to dominant LOF mutations. The reason for this is thought to be that in order for 

transcription factors to attain transcriptional synergy (Veitia 2003), they must be expressed at specific levels, 

act cooperatively by binding to multiple sites on the target promoter, form cross-regulatory networks by 

binding to other transcription factors, and often autoregulate their own expression; all this amounts to 

substantial non-linearity and thus dose sensitivity (Pan et al. 2006; Seidman and Seidman 2002). 
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Dominant mutations can also exert their effects through other means, including gain-of-function (GOF) and 

dominant-negative (DN) effects, collectively referred to as non-LOF mechanisms. A dominant GOF mutation 

modifies an existing function or introduces a novel one, while a DN mutation directly or indirectly impairs the 

function of their wild-type counterpart. Many DN and GOF mutations can be referred to as “assembly-

mediated” (Backwell and Marsh 2022), where the molecular phenotype depends on complex formation with 

the mutant protein physically interacting with the wild type, as explored in the next section. However, some 

classical examples of GOF and DN mutations extend beyond complexes. For example, with our collaborators, 

we have described de novo GOF mutations in hexokinase 1, which are linked to a neurodevelopmental disorder 

(Poole et al. 2023). These mutations potentially affect the allosteric glucose 6-phosphate binding site, leading 

to the loss of autoregulatory function and therefore accumulation of glycolytic intermediates in the brain. 

Additionally, a non-assembly-mediated but competitive form of DN mutation is observed in the transcription 

factor PAX8, associated with congenital hypothyroidism. The p.Ser48Phe substitution is believed to neither 

destabilise the protein nor affect its affinity for DNA but instead competes with wild-type PAX8 for DNA 

binding, thereby disrupting the synergism of the wild type (Grasberger et al. 2005). 

Genetic diseases caused by mutations in a single gene are termed monogenic, often exhibiting a characteristic 

pattern in a pedigree consistent with Mendel's laws of inheritance. However, the aetiology of genetic diseases 

can be more intricate, categorized as oligo- or polygenic, and influenced by multiple genes or environmental 

factors, giving rise to what are known as complex traits (Badano and Katsanis 2002). Surprisingly, even when 

the genetic basis of a monogenic disease is well understood, its phenotype can be as complex as those seen in 

complex traits (Scriver et al. 1999). Moreover, mutations in a gene associated with a specific condition in one 

individual can lead to variable expressivity, resulting in sub-symptomatic phenotypes in other individuals. This 

phenomenon, known as incomplete penetrance, is thought to arise from randomness in biological processes, 

such as gene expression, contributing to both genetic and environmental diversity (Cooper et al. 2013; Raj et 

al. 2010). A recent analysis of 589,306 genomes identified asymptomatic individuals harbouring variants 

linked to highly penetrant Mendelian diseases (R. Chen et al. 2016), hinting at the presence of modifiers and 

protective variants. These findings underscore the complex interplay between genetic factors and the 

environment in shaping the landscape of human genetic diseases, which can now be investigated using 

genome-wide population genetics approaches. 

1.3.2 Protein complex assembly-mediated genetic effects 

The effect of a dominant mutation may depend on whether the protein assembles into a complex with more 

than one copy of itself. In such cases, the mutation is said to have an assembly-mediated effect (Backwell and 

Marsh 2022). Homomers are particularly vulnerable to such effects, as they interact with identical copies of 

themselves, but proteins present in heteromeric complexes with at least two copies can also exhibit these 

effects. Two relatively common effects include the assembly-mediated GOF, also known as the dominant-

positive (DP) effect (Backwell & Marsh, 2022), and the assembly-mediated DN effect. Competitive DN effects 

are likely less common than assembly-mediated DN effects, while simple GOF mechanisms are possibly just 

as, if not more, frequent than assembly-mediated DP effects. The reason behind this is that in the DN effect, 

the mutant protein must directly impact the function of the wild-type protein, which is most easily achieved 

through a physical contact, such as co-assembly (Veitia 2007). On the other hand, simple GOF mutations that 

affect autoregulatory binding sites, like in the case of hexokinase 1, or those altering substrate specificity in 
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catalytic binding sites, will inherently lead to GOF at the protein level, irrespective of whether the protein is 

part of a complex. If the protein is part of a complex and these mutations transmit their effects allosterically to 

adjacent subunits, then we observe an assembly-mediated DP effect. 

A unifying theme of the assembly-mediated DP effect may lie in its connection to complexes whose subunits 

collectively contribute to function. These complexes are characterized by their reliance on the combined efforts 

of all subunits to achieve their intended function, rather than each subunit functioning independently. Two 

examples of such complexes are membrane channels, where the central pore forms only upon cyclization of all 

subunits (Forrest 2015), and homomers with multi-chain binding sites, where at least two adjacent subunits 

form one ligand binding pocket (Abrusán and Marsh 2019). It is straightforward to rationalize an assembly-

mediated DP effect in these complexes, because in order for a new or altered function to arise, the effect of the 

mutation has to be intimately liked to function, unlike in a DN effect. For example, the DN mutation 

p.Glu504Lys in the mitochondrial aldehyde dehydrogenase (ALDH2), cause of the alcohol flush response and 

present at an allele frequency of 8% in Asian populations (C.-H. Chen, Kraemer, and Mochly-Rosen 2022), is 

thought to destabilise the holoenzyme (Crabb et al. 1989). Yet, the destabilization does not have to directly 

affect the catalytic function of the enzyme. Instead, it may happen through a generic mechanism whereby 

complexes that have incorporated mutant subunits undergo proteasomal degradation at a higher frequency, 

constitutively depleting the available wild-type subunits. 

Assuming that a single mutant subunit can confer DN or DP effects onto the wild-type complex upon co-

assembly, the mutant phenotype gets amplified with greater number of subunits in the complex (Bergendahl 

et al. 2019). Without cotranslational assembly, a homodimer will retain 25% wild-type activity in the cell after 

random pairing of mutant and wild-type subunits. In case of a homotrimer, the wild-type activity will 

theoretically decrease to only 12.5%. It is one of the key questions of this thesis whether cotranslational 

assembly is able to improve these ratios in favour of the wild type, as will be discussed in Chapter 3. 

Additionally, it is possible that function loss/gain lies on a continuous spectrum as a function of the number of 

subunits in the complex. This assumption has been recently tested in vivo using single-channel patch-clamp, 

an electrophysiology technique that allows quantification of the gating properties of individual membrane 

channels (Geng et al. 2023). The study focused on the p.GLy375Arg substitution, associated with Liang-Wang 

syndrome, in the calcium-activated potassium channel subunit alpha-1 protein that forms a tetrameric 

membrane channel. Indeed, hybrid wild-type:mutant complexes had an intermediate effect on potassium 

conductance, suggesting that mutant subunits incrementally titrate down the wild-type function. 

Our understanding of the properties of mutations associated with assembly-mediated effects is still incomplete 

and largely limited to missense substitutions. Generally, these mutations are expected to have milder structural 

consequences compared to LOF mutations since they should permit at least partial folding of the protein for 

successful assembly. This intuition is supported by a study on DN mutations causing Gillespie Syndrome in 

the inositol 1,4,5-trisphosphate receptor type 1 protein (McEntagart et al. 2016) as well as by a recent structural 

analysis from our group involving dozens of proteins associated with GOF and DN effects (Gerasimavicius, 

Livesey, and Marsh 2022). Exceptions to this trend are cases where the mutation affects a domain that folds 

independently from the domain responsible for forming the intersubunit interface. For example, the DN 

mutation p.Gly163Cys in the complement C1q tumor necrosis factor-related protein 5, associated with late-

onset retinal degeneration, is predicted to be highly destabilizing to the folding of the C1q domain. Yet, because 
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the protein's assembly into trimers is driven by the collagen-like domain, the mutation may not entirely prevent 

assembly (Stanton et al. 2017). 

Another notable characteristic of non-LOF mechanisms, including assembly-mediated effects, is the tendency 

of these mutations to exhibit spatial clustering within the protein structure. Initially reported for cancer genes, 

where mutations in tumour suppressor genes are often associated with LOF and those in oncogenes frequently 

lead to over-activation (GOF) (Stehr et al. 2011), this spatial clustering has also been observed beyond cancer. 

An analysis from our group has revealed that spatial clustering is an emergent property of non-LOF 

mechanisms (Gerasimavicius, Livesey, and Marsh 2022), and it has proven valuable for identifying de novo 

mutations with alternative dominant molecular mechanisms (Lelieveld et al. 2017). Understanding the 

properties of non-LOF, assembly-mediated or otherwise, mechanisms at both the gene- and the variant-level 

is key for advancing in this field. 

1.3.3 Contextualizing the human genetic variation 

The DNA of all people alive today contain almost every possible 9.3 billion single nucleotide variants (SNVs). 

Additionally, there are also numerous insertions and deletions, but small structural variants of 1-10,000 bases 

only account for about a fifth of the genetic variation (Mullaney et al. 2010). It is estimated that unrelated 

individuals differ from each other by as much as 20 million bases, with 3.6 million attributed to SNVs (Auton 

et al. 2015). Although much of this variation has been passed down over many generations, each person carries 

around 70 mutations not present in their parent's germline DNA, known as de novo mutations (Sasani et al. 

2019). Based on cDNA sequences from the CCDS database that correspond to UniProt canonical sequences, 75 

million missense mutations are reachable by SNVs. Notably, the genome aggregation database (gnomAD), an 

international consortium aiming to harmonize human genetic sequencing data, catalogues about 5.6 million 

missense SNVs (Karczewski et al. 2020), representing roughly 7% of the total. Nevertheless, as technological 

advancements continue and population sequencing studies expand globally, the fraction of known tolerated 

missense mutations in healthy humans is expected to increase. 

The majority of the possible SNVs are believed to be benign, ascribed to the selection to minimize deleterious 

effects of mutations during the early evolution of the universal genetic code (Haig and Hurst 1991). Some 

missense SNVs will remain unobserved, i.e. “incompatible with life” or “embryonic lethal”. These terms are 

commonly used in the literature to describe mutations that impair the function of cell-essential genes or those 

indispensable for instituting the developmental programme during the course of gestation. In many cases, 

mutations may not cause miscarriage but instead result in severe developmental phenotypes at an early age 

(McRae et al. 2017). Rarely, developmental errors arise when both parents are carriers of the variant, leading 

to a recessive disorder (H. C. Martin et al. 2018). However, approximately half the time, these errors are caused 

by de novo mutations, occurring primarily in dominant genes (Kaplanis et al. 2020). On average, of the 70 de 

novo SNVs per generation, up to 2 will be located in protein-coding genes, resulting in developmental disorders 

with a prevalence of approximately 1 in 300 births (McRae et al. 2017). Despite tremendous efforts over the 

last decade in utilizing trio sequencing data to establish a causal link between de novo missense variants and 

the associated phenotypes, 50% of patients remain undiagnosed (C. F. Wright et al. 2023). Because LOF 

mutations are easier to identify by their generally more damaging effect on protein structure (Gerasimavicius, 

Livesey, and Marsh 2022), there could be many cryptic de novo variants with alternative dominant molecular 

mechanisms. An important hypothesis to test in the future is the extent to which de novo mutations in biallelic 
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genes cause disease via assembly-mediated effects. Particularly, DN mutations are known to match the severity 

of the recessive phenotype (McEntagart et al. 2016), thus raising the question whether a fraction of variants is 

being missed on the account of the inheritance pattern typically associated with the gene. 

Genetic diseases beyond developmental disorders can lead to life-long illness, have a predisposing effect to 

certain conditions such as cancer, or exhibit their phenotype later in life. By extensively cataloguing mutations 

causally linked to diseases, it may be possible in the future to better predict interactions between them or utilize 

machine learning to anticipate the effects of yet-unobserved variants. A valuable resource for this purpose is 

ClinVar (Landrum et al. 2018), a database that aggregates information about genomic variation and its relation 

to human health. As of July 2023, ClinVar records about 50,000 missense variants that are “pathogenic” or 

“likely pathogenic” according to the American College of Medical Genetics and Genomics guidelines (Richards 

et al. 2015). With advances in laboratory and computational methods, the number of pathogenic missense 

mutations, just like the fraction of known tolerated missense mutations, is expected to increase. However, a 

pressing concern arises from “variants of uncertain significance” (VUS), which are variants identified in a 

patient's DNA, but whose clinical significance is unknown. Currently, missense VUS outnumber clinically 

relevant variants by 17-fold. Although a significant portion of these is likely to be benign, the ones that are not 

highlight the disparity between the efficiency with which we discover new variants and the ability of our 

methods to identify potentially pathogenic ones. 

Another source of genetic variation linked to disease are somatic mutations. Normal aging induces various 

changes that increase susceptibility to cancer and create a tissue microenvironment that fosters the growth of 

malignant cells (De Magalhães and Pedro 2013). Somatic cells tend to accumulate mutations 4 to 25 times 

faster than germline cells (Lynch 2010). For example, the intestinal epithelium has around 106 independent 

stem cells, each of which produces transient daughter cells every one to two weeks. As a result, the intestinal 

lining of a 60-year-old is predicted to contain more than 109 independent mutations, implying that nearly every 

genomic site in this single organ is likely to mutate in at least one cell by the age of 60 (Lynch 2010). Depending 

on the spectrum of mutations and their sequence of occurrence in a cell lineage, cancer initiation will occur at 

different times and the resultant cells will have different metabolic and proliferative potential. The question 

arises: can we predict the likelihood of cancer emerging in a tissue based on the frequency and fitness of 

somatic mutations? A recent study quantified the fitness of somatic mutations in haematopoietic stem cells 

from older individuals over a 12-year period (Robertson et al. 2022). Some mutations were found to confer 

different fitness advantages depending on the gene and the variant and the effects could be used to predict the 

future growth of clones as well as the time required for clinical monitoring. Understanding these dynamics 

could offer new insights into cancer prevention and personalized treatment strategies. 

The challenges posed by genetic diseases arising from de novo, inherited, or somatic mutations necessitate the 

establishment of a new coalition dedicated to collecting, standardising, and distributing the functional effect 

of mutations. This need has been realised through the Atlas of Variant Effects (AVE) Alliance, whose primary 

objective is to comprehensively understand the genome at the nucleotide level (Fowler et al. 2023). To achieve 

this goal, the alliance integrates data from independent laboratories conducting multiplexed assays of variant 

effect (MAVE) experiments. MAVEs comprise various methods, such as deep mutational scanning (DMS) 

experiments on proteins and massively parallel reporter assays on gene regulatory sequences. DMS, a relatively 

new fusion of deep sequencing and saturation mutagenesis, offers quantitative measurements of variant 

fitness, potentially providing values for all possible variants in a protein (Fowler and Fields 2014). Notably, 
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DMS technology has witnessed rapid advancements over the past decade, leading to several studies accurately 

recapitulating the effects of clinically validated variants (Findlay et al. 2018; Mighell, Evans-Dutson, and 

O’Roak 2018).  

While DMS is costly and laborious to perform for the entire proteome, computational variant effect predictors 

(VEPs) are showing promise as an accurate and scalable alternative (Livesey and Marsh 2023). By harnessing 

an increasing number of experimentally measured variant functional scores and enhancing the specificity of 

VEPs to identify pathogenic variants, a powerful synergy between the two methodologies is likely to emerge in 

the near future. DMS will be strategically employed for challenging genes and variants of clinical significance, 

while VEPs will continue to refine and complement by imputing variant scores that might have been missed 

by the experimental method. In this endeavour, gene-level predictors of alternative dominant molecular 

disease mechanisms, such as those introduced in this thesis, will be potentially very valuable, as they will allow 

us to identify DN or GOF variants with greater specificity, which can in turn help understand the properties of 

those variants better. This symbiotic approach holds the potential to contextualise the disease relevance of the 

human genetic variation and fuel a new era of biological discoveries and medical breakthroughs. 
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2 Large protein complex interfaces have evolved to promote 

cotranslational assembly 

 

2.1 Introduction 

The majority of proteins across all domains of life function as part of multimeric complexes. Although we have 

a comprehensive understanding of the diverse quaternary structure space occupied by complexes (Sebastian 

E. Ahnert et al. 2015), much less is known about where, when, and how their component subunits assemble. 

Continuing advances in cryo-electron microscopy, mass photometry, and genetic interaction mapping 

(Braberg et al. 2020) are facilitating a transition towards a structural view of proteomes (Levy and Vogel 2021). 

While, at the present, our structural analyses are primarily limited to structures of complexes in the Protein 

Data Bank (Berman et al. 2000), there is a new generation of multiscale protein complex modelling approaches 

(Evans et al. 2021; Gao et al. 2022; Humphreys et al. 2021) promising to fill the gap and accelerate structure-

based discovery. Our understanding of proteomes has also been dramatically improved by the development of 

ribosome profiling, which has provided us with quantitative measurements at the level of translation. 

Alterations of the technique revealed the cotranslational action of chaperones (Oh et al. 2011; Shiber et al. 

2018; Stein, Kriel, and Frydman 2019), shed light on the role of collided ribosomes in proteostasis (Arpat et al. 

2020; Han et al. 2020; T. Zhao et al. 2021), and supported the view of the ribosome as a signalling hub 

(D’Orazio and Green 2021). To the present work, however, it is of outstanding relevance that ribosome profiling 

has laid down strong evidence that the assembly of protein complexes often starts on the ribosome (Bertolini 

et al. 2021; Kamenova et al. 2019; Natan et al. 2017; Panasenko et al. 2019; Shiber et al. 2018). 

Two factors appear to be particularly important for cotranslational assembly: the proximity of nascent chains 

on adjacent (cis) or between juxtaposed (trans) ribosomes, and the localisation of interface residues towards 

the N-terminus of a protein, which allows more time for an interaction to occur during translation (Kamenova 

et al. 2019; Natan et al. 2018; Shieh et al. 2015). Recent findings demonstrated that homomers, formed from 

multiple copies of a single type of polypeptide chain, frequently assemble on the same transcript via the 

interaction of adjacent elongating ribosomes (Bertolini et al. 2021). This mechanism is highly effective because 

it takes advantage of the fact that homomeric subunits are identical; therefore nascent chains are essentially 

colocalised by the nature of their synthesis. Although homomers may benefit from polysome-driven assembly, 

it requires allocation of cellular resources to ensure at least two ribosomes are actively translating the same 

mRNA at any one time (Yansheng Liu, Beyer, and Aebersold 2016). On the other hand, heteromers, products 

of different genes that physically interact, can only employ the trans assembly mode in eukaryotes, providing 

mechanisms that colocalise their transcripts exist (X. Chen and Mayr 2022; F. Liu et al. 2016; Pizzinga et al. 

2019; G. Wang et al. 2020). In contrast to homomers, cotranslational assembly of heteromers may only require 

a single ribosome on each mRNA, which could allow lowly abundant regulatory proteins to cotranslationally 

assemble (Biever et al. 2020; Heyer and Moore 2016). Alternate ribosome usage and translation-coupled 

assembly can explain how cells achieve efficient construction of complexes with uneven stoichiometry, 

accounting for a substantial fraction of heteromeric complexes (Marsh et al. 2015). 

Despite growing evidence supporting the importance of cotranslational assembly, far less is known about the 

properties of the interfaces involved. It has been observed that cotranslationally binding subunits have a 
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tendency to fall out of solution or become degraded by orphan subunit surveillance mechanisms in the absence 

of their partner subunits (Choe et al. 2016; Juszkiewicz and Hegde 2018; Kamenova et al. 2019; Natan et al. 

2018; Shiber et al. 2018). This observation may be explained under two assumptions: N-terminal interfaces 

are aggregation prone due to interference with cotranslational folding (Ciryam et al. 2013; Jacobs and 

Shakhnovich 2017; G. Kramer, Shiber, and Bukau 2019; Kudva et al. 2018), and/or that cotranslationally 

forming interfaces possess unique structural properties that predispose them to aggregation in the absence of 

binding partners. Whilst there is evidence for the former (Natan et al. 2018), interfaces involved in nascent 

chain assembly have not been systematically studied before. Therefore, we cannot exclude the possibility that 

they have structural features that make them more susceptible to a cotranslational route. 

Hydrophobic surfaces play a key role in nucleation theory (Chandler 2005; Hermann 1972; Tanford 1978) and 

protein folding (Chothia 1975; Gething and Sambrook 1992; Privalov and Khechinashvili 1974), but more 

importantly, hydrophobicity remains the founding principle of protein-protein recognition theory (Chothia 

and Janin 1975; Kauzmann 1959). Defined as the buried surface area between subunits, interface size shows 

correspondence to hydrophobic area because larger interfaces contain more interface core residues (Levy 

2010). Conveniently, interface area is relatively simple to compute from structural data (Hubbard SJ 1993; 

Kleinjung and Fraternali 2005; Mitternacht 2016; Winn et al. 2011). Whilst the relationship between interface 

area and measured affinity is non-linear (Brooijmans, Sharp, and Kuntz 2002; Eisenberg and Mclachlan 1986; 

Horton and Lewis 1992; Vangone and Bonvin 2015), interface area shows remarkable correspondence with 

subunit dissociation energy, and is reflective of the evolutionary history of subunits within complexes (Levy et 

al. 2008). 

We hypothesised that cotranslational interactions may be distinguished from others based upon the areas of 

the interfaces involved. The size hierarchy of interfaces in protein complexes can be used to predict the order 

in which their subunits assemble, in good agreement with experimental data (Levy et al. 2008; Marsh et al. 

2013; Wells, Bergendahl, and Marsh 2016). According to this theory, the largest interfaces in a complex 

correspond to the earliest forming subcomplexes within the assembly pathway, irrespective of the binding 

mode. While specific contacts that increase affinity would introduce compositional biases into the sequence 

space, exerting undue selection pressure on proteomes, variability in interface size can emerge from 

nonadaptive processes as the organising principle of cotranslational assembly (S. E. Ahnert et al. 2010; Conant 

2009; Gray et al. 2010; Hochberg et al. 2020; Leonard and Ahnert 2019; Lynch 2013). 

In the present study, we address this idea by analysing experimental data on cotranslationally assembling 

human proteins (Bertolini et al. 2021). Our results establish a strong correspondence between cotranslational 

assembly and subunit interface size. To test whether large interfaces could represent an evolutionary 

adaptation to cotranslational assembly, we took advantage of the many protein complex subunits that have 

more than one interface. We compared the areas of first and last translated interfaces in bacterial, yeast, and 

human heteromeric subunits and found a clear tendency for the first interface to be larger across all species. 

This finding suggests that large protein complex interfaces have evolved to promote cotranslational assembly. 
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2.2 Results 

2.2.1 Cotranslationally assembling subunits are characterized by large interfaces 

In a recent study, a novel ribosome profiling method was used to identify over 4000 cotranslationally 

assembling human proteins (Bertolini et al. 2021). By design, the method can identify subunits that undergo 

cotranslational assembly when both subunits are in the process of translation. As recently proposed 

(Kamenova et al. 2019), we refer to this mode of binding as “simultaneous” assembly (Figure 2.1A/B). 

 

Figure 2.1 Cotranslationally assembling subunits are characterised by large interfaces. 

(A) Schematic representation of (cis) simultaneous cotranslational assembly in homomers. (B) Schematic representation 

of (trans) simultaneous cotranslational assembly in heteromers. (C) Interface size differences between cotranslationally 

assembling and all other subunits of homomeric symmetry groups and heterodimers. Error bars represent standard error 

of the mean (SEM) and labels on bars show the number of proteins in each group. The p-values were calculated with two-

sided Wilcoxon rank-sum tests. Pictograms show the basic structure of symmetry group members, with the blue dots 

representing isologous and red dots representing heterologous and heteromeric interfaces. (D) Interface size 

distributions of cotranslationally assembling and all other subunits of C2 homodimers and heterodimers, subset by the 

terminal location of the interface. The p-values were calculated with two-sided Wilcoxon rank-sum tests. 

To investigate if interface area correlates with simultaneous assembly, we computed the buried surface areas 

of homomeric and heterodimeric subunits and subset the results by whether or not the protein was detected 

to cotranslationally assemble (Figure 2.1C). The arrangement of homomeric subunits with respect to one or 

more rotational axes allows their classification into symmetry groups. The three most common groups are the 

twofold symmetric (Schönflies notation, C2), cyclic (Cn>2), and dihedral (Dn>1) complexes, which all have 

distinct structural and functional characteristics (Bergendahl and Marsh 2017; Goodsell and Olson 2000; Levy 
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and Teichmann 2013) and should therefore be considered separately. For example, members of the cyclic and 

dihedral symmetry tend to have larger buried surfaces, because they interface with more than one subunit, 

while C2 symmetric homodimers tend to have larger interfaces than heterodimers (Jones and Thornton 1996). 

C2 homodimers represent the most highly populated symmetry group and their single isologous interface (i.e. 

symmetric or head-to-head) makes the analysis simple to perform. In line with our expectation, C2 symmetric 

subunits that assemble during translation expose 20% larger areas than those that do not (Figure 2.1C; 

p = 7.2×10-7, Wilcoxon rank-sum test). Considering that the cotranslational assembly annotations are derived 

from a laboratory technique that uses extensive biochemical fractionation, it is important consider the 

possibility that larger interfaces would be more persistent to these procedures. We therefore controlled for the 

potential confounding effect of larger interfaces by setting incrementally higher interface area cutoffs 

(Appendix 2.1A), to which the trend appears robust. Note that we have not tested the effects of similar 

interface cutoffs for the other symmetry groups, due to their much smaller dataset size. 

Higher-order cyclic complexes are centred on a rotational axis so that every subunit has two distinct interfaces, 

each with an adjacent protomer. Both interfaces are heterologous (i.e. asymmetric or head-to-tail) and 

approximately the same size. Cyclic symmetry is potentially confounded by its tendency to form ring-like 

structures, which are ubiquitous components of biological membranes (Forrest 2015). As a result, membrane-

bound complexes are enriched in non-polar amino acids that form the interface with the alkane core of the 

lipid bilayer. We focused on the analysis of cyclic homomers that do not localise to the plasma membrane, 

owing to competing hydrophobic forces exerted by protein-lipid interactions. Despite the limited number of 

structures available, we detect a significant difference in interface area among soluble members of the cyclic 

symmetry group (Figure 2.1C), with the mean of cotranslationally forming subunits being 24% larger 

(p = 0.039, Wilcoxon rank-sum test). Notably, we did not observe a trend in plasma membrane-localised cyclic 

complexes (Appendix 2.1B). 

Dihedral symmetry can be thought of as the stacking of a dimeric or cyclic complex through the acquisition of 

a twofold axis. All dihedral complexes have isologous interfaces, and those with at least six subunits can have 

both isologous and heterologous interfaces (e.g., D3 dimers of cyclic trimers). We find that cotranslationally 

assembling dihedral complexes have on average 33% larger interfaces than those assumed to assemble after 

their complete synthesis (Figure 2.1C; p = 1.6×10-6, Wilcoxon rank-sum test). A dihedral complex is likely to 

have evolved from a C2 homodimer if its largest interface is isologous and, conversely, when its heterologous 

interface is largest, the complex probably arose via a cyclic intermediate (Levy et al. 2008; Marsh and 

Teichmann 2014b). When dihedral complexes are grouped by their evolutionary history, the trend is present 

in both groups (Appendix 2.1B), consistent with that observed in C2 homodimers and cyclic complexes. 

We pooled all remaining homomers, including those with helical and cubic symmetry, and those that are 

asymmetric, into a single “other” category, due to their relatively low representation in the human proteome. 

Altogether, cotranslationally assembling subunits in this heterogeneous category present 25% larger interface 

areas than other members (Figure 2.1C; p = 0.026, Wilcoxon rank-sum test). Thus, the interface size trend 

in cotranslationally assembling complexes appears to hold up across all types of homomers.  

Because in heteromers simultaneous assembly requires two different transcripts positioned in trans (Figure 

2.1B), we were curious if they, too, showed a correspondence between cotranslational assembly and interface 

size. Due to the diverse quaternary structures and assembly pathways associated with heteromeric complexes 
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(Sebastian E. Ahnert et al. 2015), we focused on the simplest cases, the heterodimers, which form a single 

heterologous interface via the interaction of two different proteins. When compared, heterodimers that 

simultaneously assemble reveal a 15% larger interface area on average than those not detected to 

cotranslationally assemble (Figure 2.1C; p = 7.9×10-3, Wilcoxon rank-sum test). Similar to C2 homodimers, 

the trend in heterodimers is also robust to incremental interface area cutoffs (Appendix 2.1A), making it 

unlikely to be an artefact. 

The weaker effect size in heterodimers relative to C2 homodimers may be explained by the combination of two 

factors. First, previous experimental evidence suggests that heteromers commonly employ the “sequential” 

mode of assembly, whereby a subunit in the process of translation recruits a fully synthesised and folded 

subunit (Kamenova et al. 2019; Shiber et al. 2018). This mode of assembly has not yet been experimentally 

probed on a proteome-wide scale, and it is possible that many heterodimers lacking cotranslational assembly 

annotations in our dataset employ sequential assembly. As a result, assuming that interface size plays a role in 

sequential assembly as well, these unannotated proteins weaken the effect we can detect. Second, it is plausible 

that another biological process, yet uncharacterised in detail, is responsible for the colocalisation of transcripts 

and the subsequent subunit assembly (X. Chen and Mayr 2022; G. Wang et al. 2020), which could make 

assembly in heteromers less reliant on interface area. 

We considered three potentially confounding variables of the ribosome profiling method, which was used to 

detect cotranslationally assembling proteins. First is protein length, in part because long polypeptide chains 

take more time to translate, making it more likely for a cotranslational interaction to come about, and partly 

because bigger proteins tend to form larger interfaces. Long proteins are also encoded by long transcripts on 

which structures called di-ribosomes (two ribosomes connected by interacting nascent chains) may persist for 

a longer time period, potentially leading to their survivorship bias to the observer. In Appendix 2.1C, we 

present an analysis where both C2 homodimers and heterodimers are binned by their length into bins 

containing equal number of structures and subset by cotranslational assembly. With the exception of long 

heterodimers, all bins follow the expected interface size trend. More importantly, for both types of complexes, 

the middle bin, which contains approximately 350-720 residue long proteins and thus covers a large fraction 

of the human proteome, shows the strongest effect size. 

The second variable we accounted for is the confidence-based classification of the cotranslational assembly 

data set. Bertolini et al., 2021 employed an elaborate strategy to assign high or low confidence to the protein 

candidates (details in (Bertolini et al. 2021)). However, these high confidence proteins only make up a fifth of 

the data, which prohibits their exclusive use in our analyses. To address this, we leveraged homology models 

from the SWISS-MODEL repository (Bienert et al. 2017) to increase the number of available structures for 

analysis. With this supplemented structural data set, we found the difference between high confidence and all 

other subunits (excluding low confidence) to be statistically significant at symmetry level for all homomers 

(Appendix 2.1D), but not for heterodimers, consistent with the weaker effect size for heterodimers observed 

earlier. There are no significant differences observed between high and low confidence proteins for any of the 

groups. Although we might expect that high confidence proteins should, on average, have larger interfaces than 

low confidence proteins (assuming that a greater fraction of them represent true cases of cotranslational 

assembly), we note that the size of the high confidence set is relatively small, especially when split by symmetry 

group, and that the average interface size of the high confidence proteins is larger for all homomers, except in 

the very small dihedral group. Overall, we think that the small differences between high and low confidence 
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sets, as well as the small size of the high confidence set, justify our use of the combined sets throughout this 

study. 

The third potential confounder is the location of the interface relative to protein termini. Interactions via 

N-terminal interfaces are translated first, therefore increasing the time available for cotranslational assembly. 

Given that cotranslationally forming interfaces identified by ribosome profiling are known to be significantly 

enriched towards the N terminus of proteins (Bertolini et al. 2021), but that overall, homomeric interfaces tend 

to be enriched towards the C terminus (Natan et al. 2018), we wished to control for interface location. We 

classified all interfaces as occurring on either the N- or C-terminal halves of proteins, based on the position of 

the interface midpoint, which is the residue at which half of the buried surface area of an interface is reached. 

This comparison is presented for C2 homodimers and heterodimers in Figure 2.1D. In all groups, there is a 

clear interface size trend wherein cotranslationally assembling subunits have a larger interface area. More 

interestingly, however, the trend is only significant and much larger in effect between N-terminally localised 

interfaces. In fact, N-terminal interfaces are significantly larger than C-terminal interfaces in cotranslationally 

assembling homodimers (p = 0.021, Wilcoxon rank-sum test). One possible explanation for this is that 

N-terminally localised interfaces are far more likely to represent cases of genuine cotranslational assembly. 

2.2.2 Interface area is more important than other interfacial contact-based properties for 

explaining cotranslational assembly 

To rule out that interface size is masking a more important property of cotranslationally assembling subunits, 

we explored other interface features using the same set of C2 symmetric homodimers (n = 1,486) and 

heterodimers (n = 1,640) as shown in Figure 2.1C, which are abundant in the structural data and possess 

only a single interface, making the results simple to interpret. Because hydrophobicity is essential to protein-

protein interactions (Chothia and Janin 1975), we calculated the apolar interface area and compared it to the 

total area (Figure 2.2A/B). We found that, while the difference in apolar interface area shows a stronger 

effect among homodimers than the total size (Wilcoxon effect size 0.24, p = 1.8×10-7, vs 0.228, p = 7.2×10-7), 

the opposite is observed among heterodimers (Wilcoxon effect size 0.054, p = 0.262, vs 0.127, p = 7.9×10-3). 

The origin of this sharp contrast is likely the fact that heteromeric interfaces are less hydrophobic (Jones and 

Thornton 1996), and thus complexation is less likely to be primarily driven by the size of the hydrophobic patch 

of the interface. We also looked at the absolute number of residue-residue contacts within a 5.5 Å radius 

(Vangone and Bonvin 2015), which echoes the results we obtained with total interface size, but with weaker 

effects (Figure 2.2C; Wilcoxon effect size 0.211 for C2, p = 4.4×10-6, and 0.083 for heterodimers, p = 0.08). 

Next, we employed a contact-based model to estimate binding affinity from the number and character of 

residue-residue contacts (Vangone and Bonvin 2015). As expected, this analysis revealed that cotranslationally 

assembling subunits have higher predicted affinities, or lower ΔG of binding (Figure 2.2D), among both 

homo- and heterodimers (Wilcoxon effect size 0.166 for C2, p = 3.1×10-4, and 0.122 for heterodimers, 

p = 0.011), although these differences are also weaker than those observed with interface size. 
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Figure 2.2 Interface area is more important than other interfacial contact-based 

properties for explaining cotranslational assembly. 

All panels show the sample mean ± standard error of the mean (SEM) for cotranslationally assembling and all other 

subunits of human C2 symmetric homodimers and heterodimers. The p-values were derived from two-sided Wilcoxon 

rank-sum tests in panels (A–D) and (I), and from two-sided Dunn’s test of multiple comparisons in panels (E–H). 

Labels on bars in panel (A) represent sample sizes. The following parameters are shown. (A) Total interface size (Å2). (B) 

Apolar interface size (Å2). (C) The absolute number of interfacial contacts. (D) Predicted Gibbs free energy (ΔG) of 

binding (kcal/mol). (E) Fraction of residue-residue contacts by chemical character, in descending order of prevalence. 

(F) Specific interaction density (count/1000 Å2), in descending order of prevalence. (G) Non-interacting surface apolar 

(NISa) and charged (NISc) residue per cent. (H) Fractional content of positively (Arg+Lys) and negatively (Asp+Glu) 

charged amino acids in the full-length sequence. (I) Protein isoelectric point determined with continuum electrostatics 

on the full monomeric structures. 
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We further dissected interfacial contacts based upon chemical character (Figure 2.2E) and interaction type 

of the residues (Figure 2.2F). The differences within these categories are again weaker than with interface 

size, the only exception being the contribution of salt bridges to the cotranslational assembly of heterodimers 

(Dunn’s test effect size 0.173, p = 7.7×10-5), which is similarly reflected in the differences between the fraction 

of charged-apolar and charged-charged contacts. By contrast, the only non-negligible contribution to binding 

in the cotranslational assembly of homodimers is that of pi–pi interactions (Dunn’s test effect size 0.115, 

p = 7.1×10-3). While these observations are interesting, they are broadly explained by the apolar interface areas 

presented in Figure 2.2B. On the one hand, this trend suggests that homodimeric interfaces are made up of 

more hydrophobic residues, which in turn leave less space for other types of residues, for example charged 

amino acids that may form salt bridges. This compositional bias in isologous interfaces can, by exclusion, 

naturally increase the frequency of pi–pi stacked aromatic side chains, a phenomenon that impacts the 

mutational and evolutionary landscape of symmetric homomers (Goodsell and Olson 2000; Jacque Monod, 

Wyman, and Changeux 1965; Ponstingl et al. 2005). On the other hand, heterodimers, whose interfaces are 

less hydrophobic, accommodate more polar and charged residues that may give rise to specific interactions, in 

accord with the higher frequency of hydrogen bonds and salt bridges. This notion is consistent with the weak 

correlation between interface size and binding affinity in heteromers (Brooijmans, Sharp, and Kuntz 2002), 

because in heteromeric protein-protein recognition, interface complementarity is likely to play a more 

important role. Nevertheless, as demonstrated here, interface size shows tremendous utility in discriminating 

cotranslationally assembling subunits because it is easily calculable and it is a fundamental property of 

protein-protein interactions, unlike salt bridges or pi-pi interactions, which do not necessarily occur at every 

interface. 

A linear model developed for the estimation of binding affinity from residue-residue contacts at the interface 

(Vangone and Bonvin 2015) incorporates coefficients for the terms “non-interfacial surface apolar/charged” 

(NISa and NISc, respectively), which are the fraction of apolar or charged surface residues of a subunit in 

complex, and they have been shown to influence binding affinity (Kastritis et al. 2014). We found significant 

differences in the NISc parameter between cotranslationally assembling and all other subunits among both 

homo- and heterodimers (Figure 2.2G), suggesting that cotranslationally assembling subunits possess a 

larger proportion of charged residues on the surface than other subunits. To investigate this further, we 

calculated the fractional content of positively (Arg+Lys) and negatively (Asp+Glu) charged amino acids from 

protein sequences to see if one charge group in particular is responsible for the trend. This analysis is possible 

because other than the relatively rare internal charges (Hendsch and Tidor 1994; Kajander et al. 2000), most 

charges tend to be on the surface, an assumption that is supported by our structural data, in which nearly 83% 

of charged residues have more than 25% relative accessible surface area in the monomeric protein (Levy 2010). 

We found that negatively charged amino acids in cotranslationally assembling subunits are overrepresented 

relative to other subunits (Figure 2.2H; Dunn’s test of multiple comparisons, C2, p = 7.1×10-5 and 

heterodimers, p = 4.1×10-7), and we also detect a small but significant enrichment in positively charged amino 

acids, but only in homodimers (p = 6.0×10-3). We further support these observations with isoelectric points 

calculated in continuum electrostatics at physiological pH and salt concentration from the human AlphaFold 

structures (Tunyasuvunakool et al. 2021), which represent the full-length monomers translated on ribosomes. 

This analysis revealed that the net enrichment in charged amino acids on the surfaces of cotranslationally 

assembling heterodimeric subunits results in a lower isoelectric point than in other subunits (Figure 2.2I; 

Wilcoxon rank-sum test, p = 9.1×10-5). 

https://elifesciences.org/articles/79602#fig2
https://elifesciences.org/articles/79602#fig2
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What may explain the finding that cotranslationally assembling subunits display more negative surface charges 

than other proteins? We believe there are four mutually non-exclusive hypotheses that are compatible with the 

observation. The first is based on the work of Kastritis et al., 2014, who proposed based on alanine scanning 

mutagenesis experiments that polar and charged residues of non-interacting surfaces contribute to binding 

affinity. Second, one might argue that the role of charged residues on the surface is to counteract the strong 

water-orientation forces exerted at large interfaces by supporting protein solubility through favourable 

interactions with water molecules (R. M. Kramer et al. 2012) and ions (Linse et al. 1988). The third idea 

concerns the ribosome:nascent chain interaction, where negative charges could help avoid unproductive 

interactions with the ribosome surface (Cassaignau et al. 2021; Deckert et al. 2021), thus facilitating 

cotranslational folding and assembly. The fourth scenario would be attributable to a proteome-wide effect, 

whereby the higher the abundance of a protein, the more its surface has been shaped by evolution for optimal 

“stickiness” to combat non-specific interactions upon molecular crowding (Levy, De, and Teichmann 2012). 

While further analysis of this effect is out of the scope of this study, using pooled homo- and heterodimers, we 

detect a weak but significant Spearman correlation of 0.18 (p = 1.7×10-23) between the NISc parameter and 

HEK293-specific active ribosome count (Clamer et al., 2018), which corroborates the fourth hypothesis. 

2.2.3 Larger and earlier-assembling interfaces tend to form cotranslationally in heteromeric 

subunits with multiple interfaces 

Having confirmed that subunit interface size correlates with cotranslational assembly, we next wanted to see 

if this trend applies within single subunits that have more than one interface. In other words, do multi-interface 

heteromeric subunits also employ their largest interface during the course of simultaneous assembly? A multi-

interface heteromeric subunit forms at least two distinct interfaces with two other proteins in a complex that 

contains at least three subunits. Because of the interface hierarchy that exists within protein complexes (Levy 

et al. 2008; Marsh et al. 2013), we hypothesised that the largest interface, which is most likely to assemble 

earliest, should also be more likely to cotranslationally assemble. 

To perform an analysis at the multi-interface level, we made use of the assembly-onset positions determined 

for every protein in the cotranslational assembly dataset (Bertolini et al. 2021). An assembly-onset is a single 

residue in the protein sequence, whose codon is being decoded by the ribosome at the time of cotranslational 

assembly. In order to identify which interface the assembly-onsets belongs to, we mapped them to the closest 

interface midpoint in the linear protein sequence, as illustrated in Figure 2.3A. This is to avoid biases from 

large interfaces, which have many more interface residues and therefore a higher probability that an assembly-

onset would map to them if the interface was not compressed into a single midpoint residue. 

Using this method, we identified 281 interfaces of multi-interface heteromeric subunits that may form in a 

simultaneous cotranslational fashion. To see if these correspond to the largest interfaces within each protein, 

we calculated the mean interface area for all other interfaces on these subunits to be able to perform a paired 

statistical test. Our results show that the identified cotranslationally assembling interfaces are indeed larger 

by 19% than other interfaces on these subunits (Figure 2.3B; p = 0.018, Wilcoxon signed-rank test). 
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Figure 2.3 Larger and earlier-assembling interfaces tend to form cotranslationally 

in heteromeric subunits with multiple interfaces. 

(A) Visual representation of the interface mapping protocol. The area plot shows the cumulative interface area build-up 

of individual interfaces during translation, which are shown in different colours, with dots representing their midpoints. 

Assembly-onsets determined by Bertolini et al. are mapped to the nearest midpoint on condition that it is not a 

homomeric interface. (B) Pairwise comparison of cotranslationally forming (in the simultaneous mode) interfaces of 

multi-interface heteromeric subunits to the mean of all other heteromeric interfaces on them. For visual aid, see line 

diagram under panel (C). Error bars represent standard error of the mean (SEM) and labels on bars show the number of 

proteins in each group. The p-value was calculated with the Wilcoxon signed-rank test. (C) Pairwise comparison of the 

normalised assembly order in 201 complexes between cotranslationally forming and all other heteromeric interfaces. The 

p-value was calculated with the Wilcoxon signed-rank test. (D) Two examples of simultaneous cotranslational assembly 

between subunit pairs in heteromeric complexes: the subunits E and B1 of the V-type ATPase (pdb: 6wm2), and 

importin-9 with histone H2A (6n1z). 

We wished to put these interfaces into the context of their full complexes. Do simultaneously forming interfaces 

represent early forming subcomplexes that then initiate further assembly events, since the first step of a protein 

complex assembly pathway is the most likely to occur cotranslationally (Wells, Bergendahl, and Marsh 2015)? 

Although the largest interface in a complex is always predicted to assemble earliest in the assembly pathway, 

subsequent steps are non-trivial because they can involve multiple subunit:subunit interfaces (Sebastian E. 

Ahnert et al. 2015; Levy et al. 2008; Marsh et al. 2013). To answer this question, we predicted the assembly 

steps of the complexes on the basis of their structures (Wells et al., 2016). This analysis revealed that the 

identified interfaces tend to form much earlier than other heteromeric interfaces in the complexes (Figure 

2.3C; p = 0.01, Wilcoxon signed-rank test). Another interpretation of this can be given by classifying assembly 

steps into “early” and “late”, depending on their normalised assembly order (McShane et al. 2016), which is a 

0-to-1 scale indicating the first-to-last steps of a pathway, where we defined early steps with values less than 

or equal to 0.5. According to this, a simultaneously forming interface is 1.7 times more likely to form early 

(180 [67%] of 270 vs 633 [54%] of 1171; p = 9.5×10-5, Fisher’s exact test). 
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Some of the identified interfaces belong to complexes that have been shown to use cotranslational assembly 

routes, such as the proteasome (Panasenko et al. 2019) and subunits of the transcription initiation complex 

(Kamenova et al. 2019). However, many are not yet described in the literature, for example, the loading of 

histone H2A onto importin-9 (Figure 2.3D), which has been reported to act as a storage chaperone while 

transporting a histone dimer to the nucleus (Padavannil et al. 2019). More recently, cotranslational binding of 

importins to cargo has been suggested to play a role in protecting nascent nuclear proteins from degradation 

(Seidel et al. 2023). Another example is the V-type ATPase (Figure 2.3D), whose catalytic A and B subunits 

have been tested for their ability to assemble in the sequential mode with a negative result (Shiber et al., 2018), 

but our structural approach using the assembly-onset identified the E1 subunit to form in the simultaneous 

mode with the catalytic B subunit. Although these two subunits can undergo major structural rearrangements 

in the complex, the B subunits stay in contact with the same E1 subunits across all the observed conformational 

states (Vasanthakumar et al. 2022). In fact, such large post-translational conformational rearrangements may 

be common in cotranslationally forming interfaces, given that proteins with larger interfaces will have an 

inherent tendency to be more flexible (Marsh and Teichmann 2014b) 

2.2.4 Evolutionarily ancient subunits are more likely to undergo cotranslational assembly 

Protein complexes are under evolutionary selection to minimise misassembly (Leonard and Ahnert 2019; 

Marsh et al. 2013), meaning that over evolutionary timescales, ordered subunit assembly has been prioritised 

in cells (Wells, Bergendahl, and Marsh 2016). These findings have led to the formulation of the interface size 

hypothesis, which posits that the assembly pathway of a protein complex parallels with its evolutionary history. 

A simple proxy for predicting the steps of such pathways is interface size, which demonstrates exceptional 

correspondence with in vitro complex assembly-disassembly analyses (Levy et al. 2008; Marsh et al. 2013). 

Naturally related to the interface size hypothesis is another trend that reflects the time it takes for a newly 

emerged interface to become strengthened by evolution, either because of a functional association between the 

proteins, or via entrenchment in a neutral ratchet (Dayhoff et al. 2010; Hochberg et al. 2020; W. K. Kim et al. 

2006). To address this, we grouped heteromeric protein complex subunits based on the phylogenetic class in 

which a protein’s encoding gene first appeared, that is protein age (Liebeskind, McWhite, and Marcotte 2016). 

In addition to the human proteins, we also employed a dataset of yeast complexes. Due to the smaller size of 

the yeast dataset, we supplemented it with heteromeric models computed for yeast core complexes, which were 

determined using residue coevolution inferred from paired multiple sequence alignments, followed by deep 

learning-based structure prediction of subunit pairs with experimental evidence to interact (Humphreys et al. 

2021). In Figure 2.4A, we show that the average interface size of the groups, for both human and yeast, is 

ordered almost perfectly according to evolutionary age of both homo- and heteromers. When we ask what 

percentage of each protein age group was found to assemble cotranslationally by Bertolini et al. there is a 

remarkable agreement between older proteins with larger interfaces having a higher frequency of 

cotranslational assembly (Figure 2.4B). Older subunits are also more likely to be found in more than one 

complex than younger subunits (Drew, Wallingford, and Marcotte 2021; Saeed and Deane 2006); hence 

cotranslationally assembling proteins are expected to be enriched in moonlighters. Indeed, it has recently been 

shown among components of the nuclear pore complex that some subunits preferentially assemble 

cotranslationally with one partner, but not with a different partner from another complex (Seidel et al. 2023). 
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Figure 2.4 Evolutionarily more ancient subunits of complexes are more likely 

to undergo cotranslational assembly. 

(A) Average (mean ± SEM) interface sizes of yeast and human homo- and heteromeric subunits grouped by the 

evolutionary age of the protein. Age group labels coloured in red are defined as “more recent” proteins, while those in 

black represent “ancient” proteins. Numbers under labels represent the number of distinct proteins in the given age 

group. Homomeric interface sizes are a pool of experimentally determined structures and SWISS-MODEL homology 

models. (B) The frequency (%) of cotranslational assembly, as detected by Bertolini et al. in the different protein age 

groups, split into homo- and heteromers. Heteromer annotations were supplemented with those contained in hu.MAP2.0 

(Drew et al., 2021). Fractions under labels denote the number of cotranslationally assembling proteins out of the total in 

the given age group. Error bars are 68% Jeffrey’s binomial credible intervals. 

2.2.5 N-terminal interfaces tend to be larger than C-terminal interfaces supporting evolutionary 

selection for cotranslational assembly 

There are two possible explanations for the observation that cotranslationally forming interfaces tend to be 

larger. First, larger interfaces may be inherently more likely to form cotranslationally because their assembly 

is more energetically favourable. In this scenario, cotranslational assembly has not been evolutionarily selected 

for; instead, the larger interfaces are simply more likely to be formed while the protein is still in the process of 

being translated, without providing any functional benefit. Alternatively, cotranslational assembly may have 

been selected for, for example, because it increases the efficiency of assembly and avoids potentially damaging 

non-specific interactions. Here, large interfaces have evolved to increase the level of functionally beneficial 

cotranslational assembly. 

One way to distinguish between these two scenarios is to compare the sizes of N- and C-terminal interfaces. 

Regardless of whether cotranslational assembly occurs simultaneously (Figure 2.1A/B) or sequentially 

(Figure 2.5A), due to vectorial synthesis on the ribosome, N-terminal regions of proteins are more likely to 

be involved in binding events during translation. Therefore, if cotranslational assembly is adaptive, we would 

expect that N-terminal interfaces in multi-interface heteromeric subunits, which will be translated first, should 

show a significant tendency to be larger than C-terminal interfaces, as illustrated in Figure 2.5B. 
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Figure 2.5 N-terminal interfaces tend to be larger than C-terminal interfaces 

supporting evolutionary selection for cotranslational assembly. 

(A) Schematic representation of sequential cotranslational assembly in homomers. (B) Diagrammatic representation of 

the hypothesis test of the adaptive model of cotranslational assembly. (C) Area differences between the first and last 

translated interfaces in multi-interface heteromeric subunits across the species. Panels are ordered by the area cutoffs, 

400, 1,000, and 2,000 Å2, which are satisfied if either the first or the last interface is larger than the given cutoff. Error 

bars represent standard error of the mean (SEM) and labels on bars show the number of proteins in each group. The 

p-values were calculated with Wilcoxon signed-rank tests. (D) Bootstrap distributions of the area difference between the 

first and the last translated interfaces. The p-values were calculated from 104 bootstrap resamples with correction for 

finite testing. (E) Example of an operon-encoded complex, the RecBCD nuclease (pdb: 5ld2). 
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To address the question, we selected experimentally determined heteromeric complex structures from three 

model proteomes: Escherichia coli, Saccharomyces cerevisiae (yeast), and Homo sapiens (human). For each 

heteromeric subunit, we defined the first interface as the one that exposes the most N-terminal interface 

residue in the linear protein sequence, and, to treat the termini symmetrically, the last interface was defined 

as the one that exposes the last interface residue, that is the first interface residue from the C-terminal 

direction. 

When we compare the areas of the first and last translated interfaces in heteromeric subunits across species, 

we find the first interface to be larger (Figure 2.5C). The strongest effect is measured in E. coli, where the 

first interface is larger than the last interface in 60% of cases, and on average is 205 Å2 (15%) larger 

(p = 5.6×10-3, Wilcoxon signed-rank test). In humans, the trend is weaker, with the first interface larger in 52% 

of cases, being 147 Å2 (13%) larger on average (p = 0.022). In yeast, although the first interfaces are 130 Å2 

(9%) larger on average, the difference is not significant. Averaging over the three species, we observe first 

interface to be larger than the last interface in 54% of multi-interface subunits. 

The above analysis includes all multi-interface heteromeric subunits. However, some of these contain only very 

small interfaces, and would therefore be unexpected to undergo cotranslational assembly via either interface, 

thus reducing the observed tendency for N-terminal interfaces to be larger. Indeed, when we filter the subunits 

to exclude those with only small interfaces, including only those where the size of at least one of the two 

interfaces is larger than 1,000 or 2,000 Å2, we find that the trend gets much larger across all three species 

(Figure 2.5C, full distribution in Appendix 2.2A). When using the 2,000 Å2 filter, we observe that 

N-terminal interfaces are on average 23%, 31%, and 19% larger for E. coli, human, and yeast, respectively, 

significant for all. Averaging over the three species, we find the first interface to be larger than the last interface 

in 64% of cases. Thus, when considering multi-interface heteromers where at least one interface is >2,000 Å2, 

the N-terminal interface is larger than the C-terminal interface nearly two-thirds of the time. 

Building on our earlier observation that cotranslationally assembling proteins tend to be older in evolutionary 

terms (Figure 2.4B), we asked if a protein’s age could also influence the size of the N-terminal interface, 

assuming that over time selection would work to minimise misassembly by favouring larger first translated 

interfaces and ensuring cotranslational assembly between the correct subunit pair. We split the multi-interface 

subunits from human and yeast into “ancient” and “more recent” categories. We then generated bootstrap 

distributions of the area difference between the first and the last translated interfaces in yeast and human 

multi-interface heteromeric subunits within the respective age categories. The analysis revealed that the 

difference between the areas of the first and last translated interfaces is significantly larger in ancient proteins 

in both yeast and human (Figure 2.5D; mean difference of 163 Å2, p = 0.015 and 192 Å2, p = 0.026, 

respectively), but not in younger heteromers. We speculate that this is because there has not been enough time 

for selection to considerably act on the assembly of these subunits, or because newer subunits tend to be 

required less for cotranslational interactions due their later assembly or functional roles they play. Thus, these 

analyses support that large, typically ancient, interfaces have evolved to promote cotranslational assembly. 

Our attention was next drawn to E. coli, which demonstrated the strongest first versus last interface size trend. 

In prokaryotes, many heteromeric complexes are encoded by operons, where the different subunits are 

translated off of the same polycistronic mRNA molecules. Early studies in bacteria indicated that operon gene 

order is correlated to physical interactions between the encoded proteins (Dandekar et al. 1998; Mushegian 
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and Koonin 1996). Further investigation laid down theoretical, mechanistic, and evolutionary evidence in 

support of this (Shieh et al. 2015; Sneppen et al. 2010; Wells, Bergendahl, and Marsh 2016). Cotranslational 

assembly is likely to be particularly common in operon-encoded heteromers, given that the translation of 

different subunits is inherently colocalised. We hypothesised that the tendency for N-terminal interfaces to be 

larger should be stronger in operon-encoded E. coli heteromers, compared to those that are not. 

We illustrate the example of the RecBCD nuclease in Figure 2.5E. Genes of the subunits are located in 

adjacent loci encoding transcriptional units for RecC and RecB/D. One study reported that purification of RecD 

is complicated by the formation of inclusion bodies, while the other two subunits remain in the soluble fraction 

(Masterson et al. 1992). Moreover, a genetic analysis suggested that partially folded RecC and RecD might 

interact during translation, or that RecC forms a complex with RecB first, onto which RecD is then assembled 

(Amundsen, Taylor, and Smith 2002). The regulatory subunit RecD has two interfaces well separated in the 

sequence, where the interface with RecC is translated first. One might imagine that the nascent chain of RecD 

forms a complex with mature subunit of RecC, having double the interface area to accommodate RecC than 

that for RecB. In this scenario, the assembly efficiency is not only maximised by gene order reducing 

stochasticity, but also by cotranslational assembly minimising the need for post-translational association. 

To further test whether large interfaces could have been selected to promote cotranslational assembly, we 

acquired annotations derived from RNA sequencing datasets (Chetal and Janga 2015) to group heteromers 

from E. coli according to whether or not they are encoded by operons. We generated bootstrap distributions of 

the area difference between the first and the last translated interfaces to visualise and derive a probability 

(Figure 2.5D). In agreement with the above idea, we found that the size difference between the two interfaces 

is significantly larger in operon-encoded multi-interface heteromeric subunits, favouring the first interface 

(mean area difference of 317 Å2, p = 0.011). 

We speculate that the first versus last interface trend may be the hallmark of sequential cotranslational 

assembly (Figure 2.5A) rather than that of the simultaneous mode (Figure 2.1B). Bertolini et al. have 

suggested that simultaneous assembly is predominantly employed for the formation of homomeric protein 

complexes, which could mean sequential assembly is the more common cotranslational assembly mode in 

heteromers. The strong trend in E. coli also supports this idea, because polycistronic gene structure is more 

compatible with sequential cotranslational assembly (Shieh et al. 2015). In eukaryotes, large complexes and 

subunits of lowly abundant complexes may require an additional biological process to ensure their transcripts 

are colocalised for simultaneous assembly and to facilitate further assembly steps (X. Chen and Mayr 2022). 

Sequential assembly, on the other hand, may have evolved to exploit large interface areas for the recruitment 

of partner subunits. This can be conceptualised as the “bait and prey strategy” of cotranslational assembly, in 

which a nascent interface represents the “bait” bound by a fully folded “prey” subunit. Although a proteome-

scale dataset of cotranslationally assembling proteins is not available for yeast, we have identified case studies 

of five multi-interface heteromers in yeast that use the sequential assembly mode, and found that all five 

subunits follow the first versus last interface size trend (Table 2.1). To substantiate the model further, we 

removed from the human dataset those proteins that were identified by Bertolini et al. to simultaneously 

assemble. Strikingly, removal of these proteins increases the size difference between the first and the last 

translated interfaces from 13% to 18% (Appendix 2.2B; p = 0.014, Wilcoxon signed-rank test). One 

explanation consistent with the model is that the remaining heteromers are enriched in sequential assembly. 
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Study Nascent chain Mature partner First (Å2) Last (Å2) Source 

Halbach et al., 2009 Set1 uncertain 1,467 1,025 6bx3 

Shiber et al., 2018; Fischer et 
al., 2020 

Fas2 Fas1 4,226 484 6ql9 

Shiber et al., 2018 Pfka1 Pfk2 7,796 5,749 3o8o 

Shiber et al., 2018 Gcn3 Gcd2 1,210 687 
Humphreys 
et al., 2021 

Panasenko et al., 2019 Rpt2 Rpt1 4,226 484 6fvt 

Table 2.1 Table of yeast multi-interface heteromeric subunits, 

which have been shown to utilise the sequential mode of cotranslational assembly. 

The yeast Set1, part of the COMPASS complex, binds multiple partners during its translation process (Halbach et al., 

2009), but the order of these assembly steps is uncertain. In a partial structure of the histone methyltransferase complex, 

Set1 is found to have two biologically significant interfaces, the first with Swd3 and the last with Swd1. For the rest of the 

cases, the mature partners are known and the available structural data support a model where the first translated 

interface is larger relative to the last translated interface, likely to promote cotranslational subunit recruitment. 

A property that would be consistent with the above model is interface separation. The later the translation of 

the last interface starts relative to the first, the higher the chance that assembly of the first interface will be 

undisturbed, free of competition with the partner subunit of the last interface. Therefore, we hypothesised that 

the distance between translation start points of the first and last interfaces, which are the earliest emerged 

interface residues of each, should correlate with the size difference in favour of the first interface. Because of 

large variances in protein length and interface size, we normalised the translational distance between the first 

and last interfaces as the percentage of the protein’s sequence length, and scaled the area difference by the sum 

of both interfaces. 

 

Figure 2.6 Separation between the first and last translated interfaces. 

Correlation between the relative distance of translational start points and the relative area difference of the first and last 

translated interfaces. Shaded lines represent the 95% confidence interval of the regression line. The Pearson’s correlation 

coefficient r, its p-value, and the regression coefficient β1 are shown in the panels. 

Figure 2.6 shows the correlation between the separation of translation start points and the area differences 

of the first and the last interfaces (absolute values in Appendix 2.2C). As expected, increasing the distance 

between the interfaces monotonically increases the extent of the area difference across all species. To rule out 

that the interface separation metric is confounded by sequence length, we split the structures into less and 

more than 400 amino acids, which is the pan-species mean of sequence lengths. In both subsets, there is a 

pronounced preference for a larger first interface when the separation is high (Appendix 2.2D). The causal 
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direction of this effect, whether it reflects that cotranslational assembly happens more often in high degrees of 

interface separation, or that separation is driven by selection for cotranslational assembly, remains to be 

addressed. 

2.3 Discussion 

It has long been understood that interface area is important for assembly, but the capacity in which it shapes 

the hierarchy of individual interfaces on subunits remained elusive. In this study, we first combined 

information from ribosome profiling with structural data on protein complexes to probe the importance of 

interface area in the process of cotranslational assembly. Our results demonstrate a strong correspondence 

between interface size and cotranslational subunit binding. Inspired by this, we set out to test an important 

question about the biological significance of cotranslational assembly: do large interfaces give rise to 

cotranslational assembly because of simple energetic reasons or do they reflect an evolutionary adaptation for 

a functional benefit? We found a clear trend across three evolutionarily distant species for the first translated 

interface of heteromeric subunits to be larger, suggesting that large interfaces have evolved to promote 

cotranslational assembly. 

While our results support the adaptive hypothesis of interface size, it is not entirely inconceivable that 

cotranslational assembly represents a ratchet-like mechanism of constructive neutral evolution (Gray et al. 

2010; Hochberg et al. 2020), whereby a drift in interface properties creates ideal conditions for assembly on 

the ribosome. Reversion to the post-translational route is prevented by the accumulation of mutations that are 

neutral in the subunit entrenched in cotranslational assembly, but would otherwise be deleterious in the 

ancestor. A similar neutral process may sustain the differences in interface area presented in this study. 

In light of current knowledge of bacterial operon structure and translation regulation, it is not surprising that 

we observed the strongest trend among E. coli heteromers with respect to the size of the interface that first 

emerges from the ribosome. Supposedly, the effect is attributable to the widespread sequential assembly 

between mature subunits and nascent chains, reflecting the mechanism of effective subunit recruitment by 

large N-terminal “bait” interfaces. An interesting question for laboratory experiments is whether operon-

encoded heteromers can assemble in the simultaneous mode, providing that the structural organisation of the 

bacterial polysome allows for such a precise coordination (Brandt et al. 2009). 

How does a large interface area help translating ribosomes find one another? Its benefit in homomers for 

facilitating cotranslational assembly is clear, because the subunits are localised to the same mRNA, and large 

interfaces are more likely to form interactions before translation is complete. In heteromers, one hypothesis 

argues the involvement of RNA-binding proteins that orchestrate transcript colocalisation (X. Chen and Mayr 

2022; Keene 2007), from where similar rules may apply to heteromer assembly as for homomers. A more 

parsimonious hypothesis is formed on the observation that cotranslational assembly can result in transcript 

colocalisation, which is ablated when subunit affinity is decreased (Heidenreich et al. 2020). This may suggest 

that affinity, which correlates strongly though imperfectly with interface size (Brooijmans, Sharp, and Kuntz 

2002; Vangone and Bonvin 2015), can play a role in the colocalisation of transcripts belonging to the same 

complex. 

Many more topics of inquiry remain open for future studies. Analogous to protein folding, cotranslational 

assembly can be thought of as a hydrophobic collapse that shapes the quaternary structure of the complex. As 
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with folding in the cell, the involvement of other factors must not be overlooked. A wide array of ribosome-

associated chaperones are vital for nascent chain homeostasis (Döring et al. 2017; Koldewey, Horowitz, and 

Bardwell 2017; G. Kramer, Shiber, and Bukau 2019) and the degree to which they choreograph assembly steps 

is yet to be elucidated. 

Attention should be paid to the far-reaching genetic consequences of cotranslational assembly (Natan et al. 

2017). How much does allele-specific assembly buffer the dominant-negative effect, and what does it mean in 

the context of human genetic disease (Bergendahl et al. 2019)? This effect requires mutant subunits to be stable 

enough to assemble into complexes, and thus the impact of the mutations tends to be milder at the structural 

level than of other pathogenic mutations (McEntagart et al. 2016), making them exceptionally difficult to detect 

using the existing variant effect predictors (Gerasimavicius, Livesey, and Marsh 2022). Interestingly, 

cotranslational assembly should actually make the dominant-negative effect less common in homomers, 

because it can limit the mixing that occurs between wild-type and mutant subunits. It remains to be seen 

whether dominant-negative mutations are in fact less common in cotranslationally assembling complexes. 

Finally, our results build on evidence from the past decade and emphasise the importance of protein complex 

assembly at the translatome level. Although evolutionary selection against N-terminal interface contacts to 

avoid premature assembly was previously found in homomers (Natan et al. 2018), here we report an opposite 

phenomenon in which proteins that do cotranslationally assemble sustain large N-terminal interfaces in order 

to promote cotranslational subunit recruitment. We expect our observation to be supported by experiments 

once the proteome-wide detection of sequentially assembling heteromers is made possible. 

2.4 Methods 

Protein structural datasets 

Starting from the entire set of structures in the Protein Data Bank (PDB, (Berman et al. 2000)) on 2021-02-

18, we searched for all polypeptide chains longer than 50 residues with greater than 90% sequence identity to 

H. sapiens, S. cerevisiae, and E. coli canonical protein sequences. When proteins mapped to multiple chains, 

we selected a single chain sorting by sequence identity, then by the number of unique subunits in the complex, 

and then by the number of atoms present in the chain. Only biological assemblies were used and symmetry 

assignments were taken directly from the PDB. Polypeptides formed by cleavage were excluded. In the 

generation of the multi-interface heteromeric subunit datasets, to exclude proteins with yet uncharacterised 

interfaces, chains with an at least 70% complete structure were considered and only included if they formed 

interface pairs >800 Å2 with at least two different subunits. To supplement the smaller yeast dataset, 

computed structures of yeast core complexes were downloaded from the ModelArchive link provided by 

(Humphreys et al. 2021). For downstream analysis, mmCIF files were converted into standard Brookhaven 

PDB format and the chains were mapped to genes using the table provided on ModelArchive. Homology 

models of yeast and human homomeric complexes were obtained from the SWISS-MODEL repository (version 

2022_02) (Bienert et al., 2017; Waterhouse et al., 2018). When a protein’s UniProt accession number mapped 

to multiple homology models, we selected a single model ranking by the number of subunits in the complex, 

followed by the length of the modelled chain. Symmetry groups of the homology models were assigned with 

the software AnAnaS (Pagès and Grudinin 2018; Pagès, Kinzina, and Grudinin 2018). In the analysis of 

N- versus C-terminal interface sizes, we excluded very large heteromeric complexes, defined as those 

containing ≥10 subunits. This is because of the previous evidence that predicting assembly order based on 

https://elifesciences.org/articles/79602#bib10
https://elifesciences.org/articles/79602#bib121
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interface size in very large complexes is not as accurate (Sebastian E. Ahnert et al. 2015; Marsh et al. 2013), 

likely because of the many intersubunit interfaces these complexes possess. 

Calculation of interface area-related properties 

Interface areas of SWISS-MODEL homology models were calculated with FreeSASA (Mitternacht 2016) using 

the default surface probe radius of 1.4 Å. Residue-level pairwise interfaces in complexes derived from the PDB 

and from (Humphreys et al. 2021) were calculated between all pairs of subunits using AREAIMOL from the 

CCP4 suite (Winn et al. 2011) with a probe radius of 1.4 Å. The interface was defined as the difference between 

the solvent accessible surface area of each subunit in isolation and within the context of the full complex. Apolar 

interface area was calculated from the residue-level data by classifying A, F, G, I, L, V, M, P, and Y amino acids 

as apolar (Vangone and Bonvin 2015). An interface area cutoff of >400 Å2 was used for homomeric subunits 

and multi-interface heteromeric subunits derived from the PDB to exclude potential crystallographic interfaces 

and restrict the analysis to biologically significant interfaces. Assembly order was computed by predicting the 

assembly pathway assuming additivity of pairwise interfaces in each complex (Marsh et al. 2013), and 

implemented with the assembly-prediction Perl package (Wells, Bergendahl, and Marsh 2016). 

The relative interface location was calculated according to the formula: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =  (𝑖 –  1) / (𝐿 –  1) 

where 𝑖 marks the residue at which half of the cumulative buried surface area of the interface is passed (i.e. 

interface midpoint), and 𝐿 is the sequence length.  

The normalised distance between translational start points of two interfaces was calculated as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  (𝑓𝐥𝐚𝐬𝐭 – 𝑓𝐟𝐢𝐫𝐬𝐭) / 𝐿 

where 𝑓 marks the first residue of the given interface and 𝐿 is the sequence length.  

Area differences between the first and the last interface were normalised according to the equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  (𝐵𝑆𝐴𝐟𝐢𝐫𝐬𝐭 –  𝐵𝑆𝐴𝐥𝐚𝐬𝐭 ) / (𝐵𝑆𝐴𝐟𝐢𝐫𝐬𝐭  +  𝐵𝑆𝐴𝐥𝐚𝐬𝐭) 

where 𝐵𝑆𝐴 is the buried surface area of the corresponding interface. 

Calculation of interfacial contact-related properties 

To make sure all software runs without errors, we converted the human structure files of homo- and 

heterodimers obtained by our pipeline from the Protein Data Bank to standard Brookhaven PDB format by 

taking the first atom locations in case of multiple AltLoc entries, converting non-canonical amino acids into 

equivalent standard names, renaming chain pairs with identical chain identifiers, and stripping files to only 

contain ATOM, TER and END lines, thus excluding heteroatoms. Interfacial residue contacts were determined 

with the software PRODIGY (Vangone and Bonvin 2015; Xue et al. 2016), using default settings. The software 

RING 3.0 (Clementel et al. 2022) was used to compute residue interactions between the subunits. The network 

policy was set to “closest” and all interactions were returned for a contact using the flag --all_edges. 

Determining isoelectric point from structure 

Predicted structures of human proteins were acquired from the AlphaFold database (Tunyasuvunakool et al. 

2021) in PDB format, which were converted into PQR files with PDB2PQR (Dolinsky et al. 2004) using the 
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PARSE force field. The PQR files were piped into the software BLUUES (Walsh et al. 2012), and the .ddg output 

was kept, containing the pH ~ charge titration data. Then, each protein’s isoelectric point (pI) was calculated 

by interpolating from the pH ~ charge curve for charge = 0, using the approx() function in R. For proteins 

that are longer than 2700 amino acids we took the mean pI across the fragments. 

Protein localisation 

We obtained annotations for plasma membrane, cytoplasmic, and nuclear localisations directly from the 

UniProt FTP site (Bateman et al. 2021). Canonical UniProt entries with the gene ontology terms plasma 

membrane (GO:0005886), cytoplasm (GO:0005737), and nucleus (GO:0005634) were considered. 

HEK293 active ribosome count 

Normalised ribosome protected fragments of actively translating ribosomes specific to Human Embryonal 

Kidney 293 lineage were determined by (Clamer et al. 2018); the data is available at the NCBI Gene Expression 

Omnibus under the accession GSE112353. We used averages from two biological replicates. 

Protein age 

The ages of proteins were obtained from the work of (Liebeskind, McWhite, and Marcotte 2016), at the link 

https://github.com/marcottelab/Gene-Ages/tree/master/Main. The main_HUMAN and the main_YEAST 

comma separated value files were parsed and the modeage column was used in our analyses. We combined the 

mode age into two categories, where “ancient” proteins are those whose genes are common to all cellular life 

(“Cellular_organisms”), whose genes were transferred horizontally from bacteria after eukaryotes diverged 

from archaea (“Euk+Bac”), and whose genes emerged in the clades of eukaryotes and archaea (“Eukaryota” 

and “Euk_Archaea”). The other four age groups, ranging from genes emerged in the classes Opisthokonta to 

Mammalia in the human proteome, and from Ascomycota to Saccharomyceta in the yeast proteome, were 

classified as “more recent”. 

hu.MAP2.0 heteromers 

Drew et al. integrated large-scale affinity purification mass spectrometry datasets, biochemical fractionation 

data, proximity labelling and RNA hairpin pulldown data to generate a complex map with >7,000 complexes 

(Drew, Wallingford, and Marcotte 2021), freely available at http://humap2.proteincomplexes.org/. 

Mapping bacterial subunits to operons 

Operon annotations were downloaded from OperomeDB (Chetal and Janga 2015). Genes were mapped to 

UniProt identifiers using E.coli proteome-specific mapping from the UniProt FTP site (Bateman et al. 2021). 

Molecular graphics 

Visualisation of structures was performed with UCSF ChimeraX version 1.1 (Pettersen et al. 2021). 

Statistical analysis 

Data exploration and statistical analyses were carried out in RStudio (Rstudio 2022) version 2022.02.0+443 

"Prairie Trillium" Release, using R version 4.2.1 (R Core Team 2023). The R packages used for analyses are 

tidyverse, tidytable, rsample, rstatix, scales, and ggbeeswarm. The Wilcoxon rank-sum or signed-rank 

tests were used for A/B testing of interface size distributions, because although they appear log-normal, they 

are also left-bounded because of the minimum interface size cutoff, thus a non-parametric test was required. 

Wilcoxon signed-rank tests were one-tailed, and their main assumption that the data are symmetric around 

https://github.com/marcottelab/Gene-Ages/tree/master/Main
http://humap2.proteincomplexes.org/
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the median was supported by boxplot distributions. In Dunn’s test of multiple comparisons the Holm-

Bonferroni method (Holm, Sture 1979) was used to correct for family wise error rate. The effect sizes were 

defined as the Z-score computed from the p-value over the square root of sample size (Tomczak and Tomczak 

2014). In the bootstrap analyses, data were stratified for protein age or operonal localisation in 104 resamples. 

The p-value was calculated by determining the fraction of point estimates (difference in area) greater than 0, 

with correction for finite sampling (Buckland, Davison, and Hinkley 1998). In the regression analysis, 

conditions for statistical inference, including linearity of the relationship between variables, the independence 

and normality of the residuals, and homoscedasticity were met; validations can be found in the analysis script 

deposited with all data on OSF at https://osf.io/x5b2n/. 
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3 Buffering of genetic dominance by allele-specific protein 

complex assembly 

 

3.1 Introduction 

Almost half of the proteins with experimentally determined structures interact with other copies of themselves 

to form homomeric complexes (Bergendahl and Marsh 2017) and more than one-third of heteromeric 

complexes with known structures contain sequence identical repeated subunits (Marsh et al. 2015). 

Considering the human proteome, about one-fifth of proteins have been detected to cotranslationally assemble 

in a simultaneous fashion (Bertolini et al. 2021), whereby two subunits interact while still being translated on 

the ribosome. Cotranslationally assembling homomers are thought to predominantly undergo cis-assembly, 

yielding allele-specific complexes (Bertolini et al. 2021; Gilmore et al. 1996; Nicholls et al. 2002). Repeated 

subunits in a heteromeric complex are also more likely to have come from the same transcript, especially when 

their assembly is seeded cotranslationally, reducing the chance of a single complex containing subunits from 

two alleles. We are beginning to understand the properties that make subunits more likely to undergo assembly 

on the ribosome. These include N-terminally exposed interface residues, a large interface area, a high alpha 

helix content and presence of coiled-coil motifs (Bertolini et al. 2021) or domain invasion motifs (Seidel et al. 

2022). While many studies have shed light on the functional and evolutionary aspects of cotranslational 

assembly, our understanding of its allele-specific nature and its impact on genetics is very limited. 

Previously, a potential genetic consequence was proposed on theoretical grounds (Natan et al. 2017; Nicholls 

et al. 2002; Perica et al. 2012). According to the hypothesis, cotranslational assembly should reduce the 

likelihood of dominant-negative (DN) disease mechanisms. A DN effect occurs when expression of a mutant 

allele disrupts the activity of the wild-type allele (Herskowitz 1987; Veitia, Caburet, and Birchler 2018), causing 

disproportionate function loss and thus a dominant mode of inheritance. Observational evidence has long 

suggested that DN effects are common in homomers (Veitia 2007), likely because incorporation of a mutant 

subunit into a complex along with wild-type subunits is enough to “poison” it. This assembly-mediated DN 

effect can lead to a reduction in functional activity exceeding the 50% that would be expected for a simple 

heterozygous loss-of-function (LOF) mutation. However, cotranslational assembly can result in complexes 

whose subunits are allele specific, i.e. made up entirely of either wild-type or mutant subunits, potentially 

reducing the harmful effects of an otherwise DN mutations (Figure 3.1). This ability of cotranslational 

assembly can be considered its "buffering capacity" against DN mutations. 

Some gain-of function (GOF) mutations have a molecular mechanism similar to the assembly-mediated DN 

effect. At the protein-level, the phenotypic effect of GOF mutations is the consequence of the mutant protein 

functioning differently from the wild type, e.g., through increased protein activity. However, formation of 

mixed wild-type:mutant complexes can lead to GOF in a similar manner to the DN effect, but instead of the 

mutant blocking the activity of the wild-type, the GOF is conferred to the whole complex. An example is the 

L171R mutation in the G protein-activated inward rectifier potassium channel 2, implicated in the Keppen-

Lubinsky syndrome, which reduces ion selectivity, thus allowing sodium and calcium to pass the channel 

(Horvath et al. 2018). This mechanism can be referred to the assembly-mediated dominant-positive effect 

(Backwell and Marsh 2022), and, just like the DN effect, should be subject to genetic buffering via allele-
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specific assembly. However, there are far fewer reports of this phenomenon, so most of this study will be 

focused on DN effects. 

 

Figure 3.1 Genetic consequence of allele-specific protein complex assembly. 

Left: Consider a homodimer with one allele of its gene carrying a heterozygous mutation with DN properties. When 

complex assembly occurs after the subunits have been fully translated and folded (posttranslational random assembly), 

the maximum entropy configuration of the subunits dictates that mixed complexes will make up half of all complexes. 

This means that pure wild-type and mutant complexes form only 25% of the time. However, when the homodimer 

cotranslationally assembles, both complexes will form independently in an allele-specific manner, increasing the ratio of 

fully functional complexes to virtually 50%. Right: This relationship is illustrated on a phenotype versus function loss 

landscape diagram. Allele-specific assembly of homomers and repeated subunit heteromers may alleviate the effects of 

heterozygous LOF mutations by reducing the mixing between the products of wild-type and mutant genes. 

The detectability of genetic buffering against assembly-mediated DN and dominant-positive effects may be 

influenced by two molecular phenomena. First, peri-translational or localised assembly, which occurs when 

subunits assemble shortly after translation near the parent mRNA (Natan et al. 2017), could also make it more 

likely that subunits of a complex are allele specific. This effect is likely to be more common in highly abundant 

proteins, whose transcripts have high ribosome densities and are translated more efficiently than those of lowly 

abundant proteins (Riba et al. 2019; Schwanhäusser et al. 2011). Second, subunit exchange may increase the 

entropy of subunit stoichiometry post-assembly via shuffling of wild-type and mutant subunits (Tusk, Delalez, 

and Berry 2018), resulting in proportions expected from random posttranslational assembly. However, 

because the likelihood of subunit exchange is determined by the dissociation constants of the subunits 

involved, it should be less likely to occur in cotranslationally assembling complexes, which tend to have larger 

interfaces (Badonyi and Marsh 2022) and thus generally higher binding affinities. 

Overall, cotranslational assembly may counter the DN effect, which can have an appreciable impact on how 

genes with inherited and de novo missense variants are prioritised in clinical sequencing pipelines. To address 

this idea, we used a set of experimentally determined cotranslationally assembling proteins and formulated 

two hypotheses based upon the above lines of thought. First, genes with an autosomal dominant (AD) disease 

inheritance pattern should be less likely to assemble cotranslationally compared to autosomal recessive (AR) 

genes, given that a large fraction of them are likely to be associated with DN effects. Second, protein subunits 

with known DN disease mutations should have the lowest rate of cotranslational assembly compared to other 

genes with autosomal dominant inheritance. Here, we show that both hypotheses are upheld. Examination of 
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the structural properties of complexes associated with DN mutations suggests that their interfaces are exposed 

relatively late during translation, which should strongly disfavour cotranslational assembly. Using a 

knowledge-based approach, we trained a regression model to prioritise genes whose mutations are expected 

to be associated with non-LOF disease mechanisms. We hope that our work will be of interest to clinical 

geneticists and accelerate the prediction and discovery of variant-level molecular mechanisms. 

3.2 Results 

3.2.1 AD genes are depleted in cotranslationally assembling subunits 

We started with a set of 9,053 human proteins, of which 6,562 (72%) physically interact with copies of 

themselves to form homomeric complexes. The remaining 2,491 (28%) are repeated subunits of heteromers, 

meaning that they are present in heteromeric complexes in more than one copy. Both types of proteins have 

the potential to be associated with assembly-mediated DN or dominant-positive effects, as the mutant and 

wild-type proteins can co-assemble within the same complex. We obtained genetic inheritance modes from the 

OMIM database (Amberger et al. 2015) and defined a gene as AD if it had any disease inherited in an AD 

pattern, which could possibly be caused by assembly-mediated dominant-negative or positive mutations. We 

defined a gene as AR if it had mutations inherited exclusively in an AR pattern, which are almost certain to be 

associated only with loss of function. 

Our initial hypothesis was that, amongst human disease-associated genes that encode homomers or repeated 

subunits of heteromers, those known to exhibit AD inheritance would have lower levels of cotranslational 

assembly compared to those with exclusively AR inheritance. Although using AD inheritance as a proxy for the 

DN effect is a simplification, assembly-mediated DN effects are believed to play an important role in AD 

disorders (Bergendahl et al. 2019). Our analysis shows that 24% of AD subunits undergo cotranslational 

assembly compared to 35.6% with AR inheritance (p = 2×10-10; hypergeometric test). We calculated the odds 

ratio (OR) to assess the strength of the difference between the groups. Overall, the OR of 0.57 implies that the 

odds of cotranslational assembly for a randomly selected AD subunit are almost half as that for an AR subunit. 

In Figure 3.2A, we show this analysis grouped by the three main sources of the subunits: homomers with 

experimentally characterised structures [Protein Data Bank (PDB) homomers], homomers with non-structural 

evidence (other, which includes SWISS-MODEL homology models and evidence for homo-oligomerisation 

from different databases) and repeated subunits of heteromers (see Methods). The strongest effect was found 

in PDB homomers (OR = 0.46, p = 7.5×10-7), followed by repeated subunits (OR = 0.6, p = 4.4×10-4) and other 

homomers (OR = 0.61, p = 1.5×10-3). We speculate that the stronger trend in PDB homomers is due to their 

enrichment in biologically important interfaces, making a higher fraction of this group compatible with the 

buffering of assembly-mediated effects. Nonetheless, the results show that the trend is consistent across all 

groups, despite slight variations in effect size. 

Protein abundance can bias both cotranslational assembly and its detection. Ribosome density tends to be 

higher in abundant proteins (Riba et al. 2019), resulting in more ribosome footprints for sequencing. Proteins 

that are more abundant might exhibit a higher level of peri-translational assembly, which could also affect the 

degree of allele-specific complex formation. Therefore, it is important to control for abundance in our analysis, 

in case the enrichment of highly abundant proteins in the cotranslationally assembling group is affecting our 

results. We examined the median abundance of AD and AR homomers and repeated subunits, finding no 



BUFFERING OF GENETIC DOMINANCE BY ALLELE-SPECIFIC PROTEIN COMPLEX ASSEMBLY  42 

significant difference between them (Appendix 3.1A, p = 0.658; Wilcoxon rank-sum test). We then divided 

subunits into quartiles based on their approximate intracellular concentration, ranging from 0.005 nanomolar 

to 180 micromolar, and found that the trend of AD subunits having lower cotranslational assembly rates than 

AR subunits held across all quartiles, with the strongest effect in the highest abundance bin (OR = 0.43, 

p = 3.2×10-7) (Figure 3.2B). These results were mirrored by a complementary analysis using active ribosome-

protected fragment counts specific to HEK293 cells (Appendix 3.1B) (Clamer et al. 2018), employed by 

(Bertolini et al. 2021) for the detection of cotranslational assembling proteins. 

 

Figure 3.2 AD genes are depleted in cotranslationally assembling subunits. 

(A) Level of cotranslational assembly in homomers and repeated subunits among AD versus AR genes grouped by 

subunit source (see Methods). Bar values are percent level of cotranslational assembly; error bars are Jeffrey’s 68% 

binomial credible intervals. The p-value from the hypergeometric test and the OR (in bold) and its 95% confidence 

interval are shown above the bars. Labels on bars are the count of cotranslationally assembling subunits (top) and all 

other subunits (bottom). (B) to (D) have the same parameters. (B) Level of cotranslational assembly binned into protein 

abundance quartiles. Each bin corresponds to 25% of proteins by count, and the corresponding approximate nanomolar 

concentration intervals are shown in brackets. (C) Level of cotranslational assembly in genes of homomers and repeated 

subunits with AD and AR disease inheritance split by symmetry groups: cyclic (Cn>2), twofold (C2), dihedral (Dn>1), and 

other. (D) Comparison of the level of cotranslational assembly in genes of homomers and repeated subunits on 

autosomes and the X chromosome. 

Symmetry plays an important role in the formation of homomers, with each symmetry group exhibiting unique 

sequence and structural features that influence their functional roles (Bergendahl and Marsh 2017; Goodsell 

and Olson 2000). The three most common symmetry groups in the human proteome are twofold (Schönflies 

notation: C2), higher-order cyclic (Cn>2), and dihedral symmetry (Dn>1). In a previous study, we showed that 

cotranslationally forming complexes tend to have large interfaces across the symmetry groups (Badonyi and 
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Marsh 2022). However, there are also symmetry-level differences, with members of the cyclic symmetry being 

the least likely to undergo cotranslational assembly (Appendix 3.1C). When we divided the AD and AR 

homomers based upon their symmetry group, we observed substantial variation in the level of cotranslational 

assembly (Figure 3.2C). For instance, if we randomly select a cyclic complex with AD inheritance, the odds 

of cotranslational assembly are 0.24 times lower compared to an AR cyclic complex (p = 9.6×10-5). In contrast, 

the odds of cotranslational assembly for a dihedral complex are only 0.51 times lower (p = 0.045). Symmetries 

that have a low representation in the human proteome, such as helical, cubic and asymmetric homomers, were 

grouped into the “other” category. We did not find a significant trend in this group, which may be due to the 

heterogeneous properties of their members. 

For example, torsin-A is a chaperone involved in synaptic vesicle recycling and it forms a helical complex with 

8.5 subunits per turn (Demircioglu et al. 2019). The DN mutation E303del in torsin-A results in the deletion 

of a glutamate near the C terminus involved in early-onset torsion dystonia (Torres et al. 2004). Because 

complexes with helical symmetry are topologically open, they would undergo unlimited polymerisation under 

ideal conditions (Marsh and Teichmann 2015). Despite torsin-A having been detected to cotranslationally 

assemble (Bertolini et al. 2021), the large number of subunits and the nature of fibre assembly will likely render 

it susceptible to the DN effect, analogous to tubulin subunits that make up helical microtubules (Attard, 

Welburn, and Marsh 2022). This contrasts with comparably large complexes with a closed topology that could 

benefit from cotranslational assembly, such as the dihedral (D39) major vault protein, which has been observed 

to be readily assembled by the polyribosome (Mrazek et al. 2014). 

We also considered the genetic dominance of mutations on autosomes and the X chromosome. Autosomal 

genes typically exist in two copies, either homozygous or heterozygous, with one allele on each chromosome. 

Genes on the X chromosome, on the other hand, are hemizygous in males and present in two copies in females, 

where one allele is usually silenced, excluding a subset of genes that escape X-inactivation in a tissue-specific 

manner. This means that cotranslational assembly is unlikely to be effective in buffering X-linked dominance, 

since there is no wild-type allele to counteract the phenotype. Our findings support this idea, as we did not find 

a significant difference in the level of cotranslational assembly between X-linked dominant and recessive genes 

of homomers and repeated subunits (Figure 3.2D; OR = 1.06, p = 0.639). 

Finally, we examined a range of confounding variables to ensure the robustness of the results, including protein 

length, the confidence-based classification of cotranslationally assembling proteins (Bertolini et al. 2021), and 

presence of coiled-coil motifs. Similar to the analysis of protein abundance in Figure 3.2B, we controlled for 

protein length, because AD homomers and repeated subunits tend to be longer than AR (Appendix 3.1D, 

p = 7.1×10-10; Wilcoxon rank-sum test). Since longer proteins take more time to translate and could form larger 

subunit interfaces than shorter proteins, the difference in length between AD and AR subunits would actually 

favour the cotranslational assembly of AD subunits. When we split the subunits into length quartiles, we found 

that AD subunits have a significantly lower proportion of cotranslational assembly across the four bins 

(Appendix 3.1E), suggesting that the overall trend is not confounded by protein length. 

Bertolini et al. have provided a confidence-based classification for the cotranslationally assembling proteins 

(Bertolini et al. 2021). However, relying entirely on the high confidence candidates is prohibitive to these 

analyses, as they make up only one-fifth of the detected proteins. To address potential biases coming from low 

confidence candidates, we divided the subunits into high and low confidence groups (Appendix 3.1F). The 
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high confidence group excludes all low confidence proteins, and similarly, the low confidence group excludes 

high confidence proteins altogether. The results showed a significant reduction in the level of cotranslational 

assembly in AD compared to AR subunits in both the high confidence group (OR = 0.66, p = 7.7×10-3) and the 

low confidence group (OR = 0.55, p = 5×10-10). One possible explanation for the stronger trend in the low 

confidence group is that they are enriched in membrane-bound complexes. These complexes tend to adopt 

cyclic symmetry, which has the strongest buffering capacity among the symmetry groups, as demonstrated in 

Figure 3.2C. On the other hand, high confidence candidates are limited to exclusively cytoplasmic or nuclear 

proteins by design (Bertolini et al. 2021), and thus may not reflect the full diversity of protein complexes. 

Coiled-coil motifs are highly enriched among cotranslationally assembling proteins (Bertolini et al. 2021). Our 

analysis showed that homomers and repeated subunits participating in cotranslational assembly are 

significantly enriched in alpha helices (effect size = 0.161, p = 1.5×10-52; Wilcoxon rank-sum test), and this 

remains unchanged even after the removal of coiled-coil motif containing proteins from the data (effect 

size = 0.155, p = 9.6×10-44). To account for a potential bias from alpha helix content, we divided the subunits 

into four quartiles and re-examined the trend (Appendix 3.1G). The results support the trend across the bins, 

although with a lack of statistical significance in the quartile with the lowest alpha helix content. 

Thus, our analyses suggest that none of the potential confounding factors have a significant impact on the 

trend, reinforcing the idea that the allele-specific assembly of protein complex constituents can act as a buffer 

for certain dominant mutations. 

3.2.2 Subunits with DN disease mutations are less likely to assemble cotranslationally than 

subunits with heterozygous LOF mutations 

Given the lower occurrence of cotranslational assembly in AD genes compared to AR genes, we sought to 

investigate further the molecular mechanisms underlying this trend. Nearly all mutations with dominant 

inheritance cause disease via one of three broad mechanisms: heterozygous loss of function (LOF, or 

haploinsufficiency), gain of function (GOF) and the dominant-negative effect (DN) (Backwell and Marsh 

2022). We hypothesized that subunits with DN disease mutations should show a reduction in cotranslational 

assembly compared to genes with LOF mutations. This is because cotranslational assembly reduces the mixing 

of wild-type and mutant subunits, therefore lessening the likelihood that the mutant will interfere with the 

function of the wild type and inflict a DN effect. 

To begin, we classified 1,185 AD genes (66% of known AD genes) into LOF, GOF and DN mechanisms using 

text-mining approaches and manual curation of the corresponding evidence (detailed in Methods). For 

example, a DN mutation in the ferritin light chain complex, which stores iron in a readily available form, has 

been linked to neurodegenerative disorders associated with iron accumulation in the brain (Curtis et al. 2001). 

Specifically, the F167SerfsX26 mutation replaces a C-terminal short helix with a stretch of disordered residues, 

which is thought to have a DN effect by creating large pores in the complex (Figure 3.3A), thus affecting its 

iron storage ability. Although the mutation has severe functional consequences, it does not impede assembly. 

By contrast, the LOF mutation L2067P in neurofibromin 1, observed in spinal neurofibromatosis (Kaufmann 

et al. 2001), affects the protein’s folded core and dimer interface (Figure 3.3B). Mutations like these may 

escape nonsense-mediated decay, and either lead to aggregation of the protein before assembly can occur or 

render its interface incompatible with assembly, hence have no effect on the wild type. 
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Figure 3.3 Subunits with DN disease mutations are less likely to assemble 

cotranslationally than subunits with heterozygous LOF mutations. 

(A) Known examples of protein-level genetic disease mechanisms. Top: Structure of the p.Phe167SerfX26 mutant ferritin 

light chain complex (PDB ID: 4v6b) overlaid on the wild type (2ffx). Bottom: Structure of the wild-type neurofibromin 1 

dimer (7mp6) shown as surface (top subunit) and as cartoon (bottom subunit), with the LOF mutation–associated 

residue Leu2067 highlighted. (B) Level of cotranslational assembly in homomers and repeated subunit heteromers 

according to dominant molecular mechanisms and AR inheritance. Bar values are percent level of cotranslational 

assembly; error bars are Jeffrey’s 68% binomial credible intervals. The p-value from the hypergeometric test and the OR 

(in bold) and its 95% confidence interval are shown for the DN versus LOF comparison. Labels on bars are the count of 

cotranslationally assembling subunits (top) and all other subunits (bottom). 

We first evaluated the suitability of the gene sets for analysis by examining properties known to be associated 

with the different molecular mechanisms, such as the change in Gibbs free energy (ΔΔG) upon pathogenic 

mutations and their clustering in 3D space (Gerasimavicius, Livesey, and Marsh 2022). It was previously 

observed in a subset of membrane proteins that DN mutations tend to have low predicted ΔΔG values, 

consistent with the fact that the mutant protein needs to remain stable enough to assemble into complexes 

(McEntagart et al. 2016). In agreement with this, we found that DN mutations in homomers and repeated 

subunits have significantly lower predicted ΔΔG values compared to LOF mutations (Appendix 3.2A; 

p = 1.3×10-16; Wilcoxon rank-sum test). In terms of 3D clustering, non-LOF mutations are often concentrated 

in specific regions of a protein, such as interfaces and functional sites, while LOF mutations tend to be more 

dispersed throughout the structure (Gerasimavicius, Livesey, and Marsh 2022). Consistent with this, DN 

mutations in our data exhibit higher 3D clustering than LOF mutations (Appendix 3.2B; p = 4.7×10-4; 

Wilcoxon rank-sum test) and are enriched at homomeric interfaces (Appendix 3.2C; p = 1.3×10-18; 

hypergeometric test). 

We next addressed our hypothesis by calculating the fraction of cotranslationally assembling subunits in each 

molecular mechanism group, shown in Appendix 3.2D. As expected, the fraction is markedly lower among 

DN (20.9%) compared to LOF subunits (32.4%, OR = 0.55, p = 1.5×10-3, hypergeometric test) and AR subunits 

(35.6%, OR = 0.49, p = 6.9×10-8). At the molecular level, AR and heterozygous LOF mutations are very similar 

in their effect. Recessive disorders are almost always due to biallelic (homozygous or compound heterozygous) 

loss of function, with a few rare examples of biallelic gain of function (Cavaco et al. 2018; Drutman et al. 2019; 



BUFFERING OF GENETIC DOMINANCE BY ALLELE-SPECIFIC PROTEIN COMPLEX ASSEMBLY  46 

Wishner et al. 1975). Our results indicate that the level of cotranslational assembly in subunits with monoallelic 

and biallelic LOF mutations is similar, but subunits with DN mutations are observed to assemble 

cotranslationally less frequently. Therefore, allele-specific protein complex assembly may prevent some 

mutations from exhibiting a clinical phenotype caused by certain heterozygous variants. Interestingly, while 

there is no statistically significant difference in cotranslational assembly between the GOF and LOF classes 

(26.5% vs 32.4%, p = 0.11), we observed a significant depletion in the GOF class relative to AR (26.5% vs 35.6%, 

OR = 0.65, p = 4.7×10-3). We speculate that this discrepancy may be due to the assembly-mediated 

dominant-positive effect that often underlies GOF mutations (Backwell and Marsh 2022). 

Cyclic symmetry is found at a much higher frequency in GOF homomers than the LOF class (Appendix 3.2D; 

21.3% vs 6.4%, p = 3.9×10-3; Fisher’s exact test). Interestingly, this symmetry group has the lowest level of 

cotranslational assembly (18.4%) in comparison to twofold homodimers (27.3%) and dihedral complexes 

(31.2%) (Appendix 3.1C). For this reason, we investigated the potential confounding effect of structural 

symmetry, and found distinct preferences among the molecular mechanisms (Appendix 3.2E). DN 

homomers, similar to GOF, are enriched in cyclic symmetry relative to LOF (20.4% vs 6.4%, p = 4×10-3; 

Fisher’s exact test). However, dihedral symmetry is highly enriched in AR homomers compared to DN 

homomers (12.6% vs 4.8%, p = 1.3×10-3; Fisher’s exact test). We suspect that these symmetry group 

compositions are reflective of biases in protein function, because the relationship between disease mechanisms 

and protein function is well established. For example, disorders caused by genes encoding enzymes are 

primarily recessive (Jimenez-Sanchez, Childs, and Valle 2001), genes encoding transcription factors are more 

likely to be haploinsufficient (Seidman and Seidman 2002) and those of membrane channels commonly give 

rise to non-LOF disease mechanisms (Celesia 2001). These admittedly broad functional classes have been 

linked to structural properties, with metabolic enzymes being enriched in dihedral symmetry, transcription 

factors in twofold symmetry, and membrane channels in cyclic symmetry (Bergendahl and Marsh 2017; Forrest 

2015; Goodsell and Olson 2000). Our investigation into protein functional classification confirmed these 

assumptions (Appendix 3.2E). Metabolic enzymes are overrepresented in AR subunits (AR vs all other, 

OR = 4.27, p = 3.9×10-40; Holm-Bonferroni corrected Fisher’s exact test), membrane transporters among GOF 

and DN subunits (OR = 2.96, p = 4.8×10-9 and OR = 1.99, p = 4.8×10-6, respectively), and transcription factors 

have 6.9-fold higher odds to be associated with the LOF class than a subunit sampled randomly from the 

disease gene pool (p = 2.15×10-19). When homomers in the different molecular mechanism classes are grouped 

by their symmetry, the level of cotranslational assembly is consistently lower among DN subunits than in LOF 

or AR subunits (Appendix 3.2F). The only exception is the LOF class with cyclic symmetry, where the rate of 

cotranslational assembly cannot be reliably estimated because no cotranslationally assembling member has 

been identified. 

Lastly, we split the analysis into homomers and repeated subunits of heteromers. We found that repeated 

subunits with DN mutations exhibit a non-significant reduction in cotranslational assembly relative to the LOF 

class (Appendix 3.2G; OR = 0.74, p = 0.188) and a significant reduction relative to the AR class 

(OR = 0.55, p = 3.3×10-3). As expected, homomers with DN disease mutations are more strongly depleted in 

cotranslational assembly compared to these classes (OR = 0.44, p = 1.1×10-3 and OR = 0.43, p = 2×10-6, 

respectively). Overall, the results demonstrate that the genetic buffering capacity of cotranslational assembly, 

despite evident differences in structural symmetry, is neither confounded by symmetry nor is it exclusive to 

homomers, but extends to repeated subunits of heteromeric complexes. 
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3.2.3 Interfaces of homodimers with DN disease mutations are C-terminally shifted 

To further understand the observation that subunits with DN disease mutations are less likely to undergo 

cotranslational assembly, we investigated the impact of interface area, which we have previously established 

as an important correlate of cotranslational assembly (Badonyi and Marsh 2022). Homomeric complexes with 

larger subunit contact areas are more hydrophobic and experience a stronger drive to assemble early on the 

ribosome. Due to the known confounds of structural symmetry, we performed the analysis split by homomeric 

symmetry groups. The analysis revealed that subunits associated with DN mutations do not have smaller 

interfaces than other disease-related subunits (Appendix 3.3A). On the contrary, the interfaces of LOF 

homomers are significantly smaller relative to DN subunits across the main symmetry groups. This finding is 

consistent with the enrichment of pathogenic mutations at interfaces of DN subunits (Appendix 3.2C), 

which, assuming a random mutation model, would be less likely to occur if the interfaces were small. However, 

larger interface areas for GOF and DN subunits could also reflect biological importance, given that their 

molecular mechanisms depend on complex formation. Conversely, subunits in the LOF group may have a 

higher proportion of crystallographic interfaces, which are typically smaller (Prasad Bahadur et al. 2004). 

We next examined the interface location of the subunits, because the idea that N-terminal regions of proteins 

are more likely to be involved in cotranslational interactions has received strong experimental support 

(Bertolini et al. 2021; Kamenova et al. 2019; Natan et al. 2018; Shiber et al. 2018). We hypothesised that 

interfaces of homomeric subunits with DN disease mutations should be C-terminally shifted, reflective of their 

lower tendency to assemble cotranslationally. To test this, we calculated the relative interface location for all 

homomeric subunits and the average interface location for the different symmetry groups (Badonyi and Marsh 

2022) (Appendix 3.3B). We found that the interfaces of homodimers with DN disease mutations are 

significantly more C-terminal compared to what is expected from the symmetry group (p = 0.025; Holm-

Bonferroni corrected Wilcoxon rank-sum test against basemean). To quantify this difference, we resampled 

the homodimer dataset with replacement and calculated confidence intervals. 

 

Figure 3.4 Interfaces of homodimers with DN disease mutations are C-terminally shifted. 

(A) Bootstrap distributions of the difference between the relative interface location of the symmetry mean and the 

observed value for C2 symmetric homodimers in the different classes. Error bars represent 95% confidence intervals of 

the percentile method, and the p-value was calculated from the resamples. (B) Cumulative interface exposure of the 

enzyme RPE65 during the translation process. Half of its final interface area (1,604 Å2) is reached 22.6% later than what 

is expected from in the C2 symmetry group. 
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Figure 3.4A shows the bootstrap distribution of the relative interface shift, i.e. distance from the symmetry 

mean (raw relative interface location shown in Appendix 3.3C). The relative interface shift can be interpreted 

as a percentage, where +5% indicates that the interface is C-terminal to its expected value by 5% of the protein’s 

length. According to this, subunits of homodimers with DN disease mutations are 6% more C-terminal 

compared to the symmetry group mean (p = 7 × 10-3, resampling p-value). We exemplify this finding in 

Figure 3.4B. The retinoid isomerohydrolase (RPE65) is an enzyme critical for phototransduction in the 

retinal pigment epithelium. Retinitis pigmentosa has been linked to both recessive and dominant mutations 

in RPE65, making heterozygous mutations in the gene less likely to be caused by simple LOF mechanisms. The 

DN mutation D477G was found to exert a DN effect and delay chromophore regeneration (Bowne et al. 2011). 

Notably, the interface of RPE65 during translation is exposed 22.6% later than what would be expected from 

an average homodimer, which creates a condition that disfavours cotranslational assembly. The observation is 

consistent with the absence of cotranslational assembly in RPE65 (Bertolini et al. 2021) and supports a model 

whereby subunits that expose their interfaces later in the translation process are less likely to assemble 

cotranslationally, and are in turn more susceptible to DN mutations. 

3.3 Discussion 

Cotranslational assembly of homomers is thought to result in complexes whose subunits originate from the 

same allele (Bertolini et al. 2021; Gilmore et al. 1996; Mrazek et al. 2014). A possible consequence of this 

mechanism is that subunits harbouring pathogenic heterozygous mutations may be sequestered into half of 

the protein complex pool rather than mixing with the wild type and inflicting functionally harmful effects. By 

comparing the fraction of cotranslationally assembling subunits associated with Mendelian diseases, we 

showed that genes of homomers and repeated subunits with mutations inherited in an AD pattern are 

significantly depleted in this mode of assembly compared to AR genes. Moreover, among AD genes of 

homomers, those that exert a DN effect are the least likely to cotranslationally assemble compared to other 

protein-level molecular mechanisms of disease, but importantly, to those that predominantly harbour 

heterozygous LOF mutations. Our results therefore reveal a previously hypothesised genetic buffering 

mechanism (Natan et al. 2017; Perica et al. 2012), whereby complexes undergoing cotranslational assembly 

are to some extent protected from the deleterious consequences of DN mutations. 

We observe AR complexes to have consistently high levels of cotranslational assembly regardless of their 

structural symmetry. It was first proposed by Wright (S. Wright 1929) and Haldane (Haldane 1930), whose 

ideas were developed further by Hurst and Randerson (Hurst and Randerson 2000), that recessivity is a 

consequence of selection for larger amounts of protein, because the high abundance of enzymes is a “safety 

factor” (Kacser and Burns 1981) that increases their robustness to dominant mutations. It is possible that the 

abundance and the structural properties of metabolic enzymes, such as their preference for dihedral symmetry 

(Bergendahl and Marsh 2017), necessarily lead to frequent cotranslational assembly events, representing an 

additional safety factor against the deleteriousness of dominant, especially DN mutations. Although the 

evolution of protein oligomeric state can arise from nonadaptive processes (Hochberg et al. 2020; Lynch 2013), 

it is not implausible that biological phenomena such as this impose weak selection. 

Our results hint at the extraordinary regulation of protein complex assembly within cells. Allele-specific 

assembly in homomers may emerge from the inherent colocalisation of their nascent chains, although certain 

protein structural features appear to predispose subunits to the process. Interestingly, we also observed 
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repeated subunits of heteromeric complexes to exhibit genetic buffering by cotranslational assembly. 

According to one hypothesis, subunits may combine information in their mRNAs and protein sequences to 

increase the efficiency of assembly mediated by RNA-binding proteins (Bourke, Schwarz, and Schuman 2023; 

X. Chen and Mayr 2022; K. C. Martin and Ephrussi 2009). A range of membraneless compartments have been 

put forward as putative sites of intense protein complex assembly under physiological conditions, including 

TIS granules (Ma and Mayr 2018), assemblysomes (Panasenko et al. 2019) and translation factories (Chouaib 

et al. 2020), which may well represent the same type of organelles (reviewed in (Morales-Polanco et al. 2022)). 

Across diverse proteomes, interface contacts of homomers are enriched towards the C terminus, which is 

thought to be the product of evolutionary pressure on folding to happen before assembly (Natan et al. 2018). 

By contrast, N-terminal protein interfaces have been found to favour cotranslational assembly (Badonyi and 

Marsh 2022; Bertolini et al. 2021; Kamenova et al. 2019; Natan et al. 2018; Shiber et al. 2018). Interestingly, 

our structural analysis suggests that interfaces of homodimers with DN disease mutations are significantly 

shifted towards the C terminus relative to what is expected from their symmetry group. As a possible 

consequence, their interfaces become exposed in nascent polypeptides relatively late during translation, 

strongly reducing the likelihood of cotranslational assembly, as illustrated in Figure 3.5. This observation 

represents a survivorship bias, so that we tend to observe subunits cause disease via a DN mechanism when 

they “escape” cotranslational assembly and co-assemble with wild-type subunits. 

 

Figure 3.5 Mechanistic interpretation of C-terminally shifted interfaces in homodimers. 

A mutant subunit is more likely to assemble posttranslationally when it exposes its interface residues late in the 

translation process, which can increase the level of mixing with the wild-type subunit. 

Ongoing efforts to develop variant effect predictors focusing on the molecular consequences of protein-coding 

variants should consider whether the subunit assembles cotranslationally or, providing that structural data is 

available, the properties of interfaces in order to prioritise those with a possible DN effect. As demonstrated in 

this study, a substantial fraction of subunits with mutations inherited in an AD pattern display a DN phenotype, 

likely including many of those that have not yet been characterised and classified under one of the molecular 

mechanism classes. Additionally, current clinical sequencing pipelines frequently identify inherited and de 

novo heterozygous variants in recessive genes, which are ranked lower under the assumption that they would 

not be pathogenic in a heterozygous state (Birgmeier et al. 2020; Eilbeck, Quinlan, and Yandell 2017; Paila et 

al. 2013; G. T. Wang, Peng, and Leal 2014; K. Wang, Li, and Hakonarson 2010; Zemojtel et al. 2014). However, 

a DN effect is possible if the gene encodes a homomer or repeated subunit heteromer (Backwell and Marsh 

2022), and especially if its complex does not assemble cotranslationally. 
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Ultimately, our results shine light onto the fascinating connection between inheritance, which determines the 

genetic traits of an individual, and protein complex assembly, which takes place only after the genetic 

information has been decoded. Further research is needed to measure directly the effect of allele-specific 

assembly on wild-type and mutant subunits in vivo. 

3.4 Methods 

Structural data 

We searched the Protein Data Bank (PDB, on 2021-02-18 for all polypeptide chains >50 amino acids and >90% 

sequence identity to human canonical sequences in the UniProt proteome UP000005640. For genes that map 

to multiple chains, we selected a single chain ranking by sequence identity, the number of unique subunits in 

the complex, and by the number of atoms present in the chain. In every case, we used the first biological 

assembly and its symmetry assignment was taken from the PDB. The interface area was calculated at residue-

level between all pairs of subunits with AREAIMOL from the CCP4 suite (Winn et al. 2011), using a probe 

radius of 1.4 Å. The interface was defined as the difference between the solvent accessible surface area of the 

subunit in isolation and within the context of the full complex. Subunits with interfaces >400 Å2 were 

considered for analysis to exclude potentially crystallographic interfaces. 

We extended the PDB dataset with homology models of human homomeric complexes in the SWISS-MODEL 

repository (Bienert et al. 2017) (UniProt release 2022_02). Models based on isoform sequences were excluded. 

The software AnAnaS (Pagès and Grudinin 2018; Pagès, Kinzina, and Grudinin 2018) was run on default 

settings to determine the number of subunits and the symmetry group of the complexes. In rare cases when 

symmetry was not detected, we assigned the symmetry group of the PDB template used to model the complex. 

If a protein was found in multiple homology models, we selected the one with the largest number of subunits 

followed by the length of the modelled chain. The interface area was calculated at residue-level between all 

pairs of subunits with FreeSASA 2.0.3 (Mitternacht 2016) using a probe radius of 1.4 Å. We performed pairwise 

alignments between the modelled chain and the paired UniProt sequence to confirm residue correspondence 

to the canonical sequence, because any mismatch in residue numbering could influence the relative interface 

location metric. Similarly to the PDB structure data, only subunits with interfaces >400 Å2 were included in 

the analyses. When the SWISS-MODEL dataset was pooled with the PDB dataset, we prioritised the 

homomeric subunit with the larger interface area. 

Relative interface location 

The relative interface location is a value between 0 and 1 indicating the location of the interface relative to the 

protein termini (N=0 and C=1), and it was calculated as previously described (Badonyi and Marsh 2022). To 

ensure the analysis is not biased by homologous proteins, we generated a distance matrix based on the 

sequences of the chains from the structures using Clustal Omega 1.2.4 (Sievers et al. 2011).The distances were 

converted to per cent identities and the matrix was filtered to below 50% using a redundancy-filtering 

algorithm. Only those structures were included in the analysis that passed the homology cutoff. 

FoldX free energy calculation 

FoldX 5.0 (Delgado et al. 2019) was used to calculate the change in Gibbs free energy of ClinVar (Landrum et 

al. 2018) missense mutations in AlphaFold predicted structures of human proteins (Tunyasuvunakool et al. 

2021). The RepairPDB command was first run to minimise structures followed by the BuildModel command 
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on the repaired structures. The final Gibbs free energy change was calculated as the average of ten replicates, 

and in subsequent analyses residues with pLDDT < 50, which are predicted to be disordered in solution (Akdel 

et al. 2022), were excluded. 

3D clustering of missense pathogenic mutations 

The extent of disease clustering (EDC) metric expresses the proximity of every disease non-associated protein 

residue to a known disease-associated residue, and it was calculated as previously described from AlphaFold 

predicted structures (Gerasimavicius, Livesey, and Marsh 2022). Briefly, for each residue with pLDDT > 50, 

we calculated the alpha carbon distance to all other residues with a known ClinVar disease mutation, selecting 

the shortest distance. The final metric is derived as the ratio of the common logarithm of non-disease and 

disease average distances. Values ≤1 indicate that the mutations are dispersed and those >1 suggest a degree 

of spatial clustering. Only proteins with at least 3 pathogenic or likely pathogenic mutations in ClinVar were 

included. 

Alpha helix content 

The percentage of alpha helix residues was calculated from the AlphaFold predicted structures of human 

proteins using DSSP 2.2.1 (Kabsch and Sander 1983). 

Gene-level inheritance patterns 

Gene-disease inheritance relationships were obtained from OMIM (Amberger et al. 2015). Gene-specific XML 

files were retrieved via the OMIM API in four batches over consecutive days ending on 2022-07-07. 

Inheritances were extracted from the “phenotypeInheritance” node of each XML file. 

Gene set of homomers and repeated subunits 

We extended the gene set of homomers identified by our structural mapping pipeline with genes that have 

non-structural evidence to form homo-oligomers or are present in >1 copy in a complex. For homomers, we 

used UniProt (Bateman et al. 2021), EMBL-EBI ComplexPortal (Meldal et al. 2019), CORUM (Giurgiu et al. 

2019), the OmniPath database (Dénes et al. 2021), as well as single spanning membrane homodimers from the 

Membranome 3.0 database (Lomize et al. 2022). For repeated subunits, we extracted protein chains that 

appear in multiple copies in the biological units of complexes in the PDB (Marsh et al. 2015), and included 

proteins that have a stoichiometry >1 in the OmniPath database. Homomers were removed from the repeated 

subunit list to create a non-redundant dataset. 

Gene-level classification of dominant molecular mechanisms 

We classified autosomal dominant genes into molecular disease mechanisms via text-mining PubMed 

(https://pubmed.ncbi.nlm.nih.gov/) titles and abstracts and OMIM XML gene entries. We searched PubMed 

using the keywords “dominant negative” for the dominant-negative (DN) mechanism, “gain of function” OR 

“activating mutation” for the gain-of-function (GOF) mechanism, and “haploinsufficiency” OR 

“haploinsufficient” OR “dosage sensitivity” OR “dosage sensitive” OR “heterozygous loss of function” for the 

loss-of-function (LOF) mechanism. The same workflow was applied to OMIM entries. The resulting corpus 

was tokenised into sentences and, to facilitate downstream data curation, we filtered for lines that explicitly 

mention the keywords, thus keeping the most descriptive lines for each gene. The LOF class was appended 

with genes annotated in the ClinGen database (Rehm et al. 2015) as “Sufficient evidence for dosage 

pathogenicity” (as of 2022-07-07), and a supporting evidence was added from the ClinGen entry. The raw 

https://pubmed.ncbi.nlm.nih.gov/
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evidence lines were manually reviewed and obvious false positives were removed. For example, in the LOF 

class a line may be: “… individuals harboring a heterozygous deletion in ATAD3A are unaffected suggesting a 

dominant-negative pathogenic mechanism or a gain-of-function mechanism for de novo missense variants 

rather than haploinsufficiency” (Harel et al. 2016), which explicitly dismisses haploinsufficiency as a molecular 

mechanism. Importantly, we noticed that a significant proportion of GOF and DN evidence lines pertained to 

artificial constructs employed in biological research and were not linked to human disease, requiring additional 

manual curation for verification. In overlap cases, when genes belong to multiple categories, we employed a 

hierarchical strategy to create a non-redundant gene list: DN>GOF>LOF. 

Protein functional classes 

Functional classification of proteins were retrieved from PANTHER version 17.0 (Mi et al. 2021). In the 

category “Transporter” we included the classes “transporter”, “transmembrane signal receptor” and 

“membrane traffic protein”. In the category “Metabolic enzymes” we grouped “nucleic acid metabolism 

protein”, and “metabolite interconversion enzyme”. Finally, the category “TF/chromatin regulator” represents 

the combined classes of “gene-specific transcriptional regulator” and “chromatin/chromatin-binding, or 

“regulatory protein”. 

Protein abundance 

Protein abundances were obtained from the integrated human dataset (version 2021) of PAXdb (M. Wang et 

al. 2015). Parts per million (ppm) values were converted to molar concentration based on the equation given 

by (Dubreuil, Matalon, and Levy 2019). 

HEK293 active ribosome profile 

Normalised active ribosome protected fragments in the Human Embryonal Kidney 293 lineage were 

determined by (Clamer et al. 2018). The data is available via the NCBI Gene Expression Omnibus (Edgar, 

Domrachev, and Lash 2002) under accession GSE112353. Values were averaged over the two biological 

replicates and transcripts with values <1 were excluded from the analysis. 

Cotranslationally assembling proteins in HEK293 cells 

The gene set was downloaded from the supplemental material of reference (Bertolini et al. 2021). 

Coiled coil motif containing proteins 

Coiled-coil motif containing proteins were retrieved from UniProt, using the search terms:  

(keyword:KW-0175) AND (organism_id:9606) AND (reviewed:true). 

Position of genes on chromosomes 

Genes were mapped to chromosomes using the consensus coding sequence (CCDS) database (Pujar et al. 2018) 

downloaded via the NCBI FTP site. 

Molecular graphics 

Visualisation of structures was performed with UCSF ChimeraX version 1.5 (Pettersen et al. 2021). 

Statistical analyses 

Data exploration and statistical analyses were carried out in RStudio "Elsbeth Geranium" release, using R 

version 4.2.2. The R packages used for analyses were: tidyverse, tidytable, rsample, rstatix, scales, 
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ggridges, and ggbeeswarm. Error bars in bar charts represent 68% Jeffrey’s binomial credible intervals and 

the probabilities between the proportions of cotranslationally assembling subunits were calculated from the 

hypergeometric distribution. The 95% confidence interval for the odds ratio was calculated with the standard 

error method, where the value of the 97.5th percentile point of the normal distribution (~1.96) was derived as 

stats::qnorm(0.975) in R. In Wilcoxon rank-sum tests the effect size was defined as the z-score computed 

from the p-value over the square root of sample size. In multiple comparisons, the Holm-Bonferroni method 

was used to correct for familywise error rate. In the bootstrap analysis, data were stratified for molecular 

mechanisms in 10,000 resamples. The p-value was calculated by determining the fraction of point estimates 

indicating a C-terminal interface shift, with correction for finite sampling. The 95% confidence intervals of the 

bootstrap estimates were derived using the percentile method (Jung et al. 2019). 
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4 Hallmarks and evolutionary drivers of cotranslational protein 

complex assembly 

 

 

Graphical abstract of the FEBS Journal review article (Badonyi and Marsh 2023b). 

 

4.1 The hallmarks of cotranslational assembly 

In the previous chapters, I showed that protein complex subunits with larger interfaces tend to assemble 

cotranslationally more often, and that mutations in proteins that cotranslationally assemble give rise to disease 

through the dominant-negative effect less often. Aside from these important attributes, just how much do we 

know about the properties of this assembly mechanism? Based upon our current understanding of the process, 

cotranslational assembly can be distinguished by five hallmarks that encompass spatial, temporal, energetic, 

compositional and topological aspects (Figure 4.1). Some molecular features can be clearly assigned to a 

single hallmark, while others may exhibit characteristics that are shared by two or more hallmarks, depending 

on how we interpret its contribution to the assembly process. Additionally, many features are supported by 

independent experimental observations, whereas others, however intuitive they may be, remain weakly 

supported or speculative. In this section, I delve into each of the hallmarks and the evidence supporting their 

role in cotranslational assembly. 
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Figure 4.1 Hallmarks of cotranslational assembly. 

The illustration depicts selected features in each hallmark. (1) Spatial: The spatial hallmark of cotranslational assembly 

involves the synergistic organization of mRNAs, ribosomes and nascent chains in the confined translational milieu. 

N-terminal interface location (top) and transcript colocalisation (bottom) are shown. (2) Temporal: The temporal 

hallmark of cotranslational assembly includes factors that delay or accelerate a process, such as the length of the ORF (as 

shown), cotranslational chaperone activity, mRNA structure effects on translation, local codon context-dependent 

translational slowdowns and functional ribosome collisions. (3) Energetic: The energetic hallmark of cotranslational 

assembly involves the subunit affinity, which is determined by the strength of the interactions between two proteins and 

can be approximated by the size of the interface (as shown) between two subunits. (4) Compositional: The compositional 

hallmark of cotranslational assembly involves the higher frequency of cotranslational assembly in proteins with 

coiled-coil motifs, and the tendency for cotranslationally assembling subunits to have a higher proportion of alpha helices 

than other proteins (as shown). (5) Topological: The topological hallmark of cotranslational assembly includes the 

influence of structural symmetry and may include intertwined associations (as shown). 

4.1.1 Spatial 

The spatial hallmark of cotranslational assembly comprises the supramolecular organisation of mRNAs, 

ribosomes and nascent chains in the cell, which synergistically create optimal conditions in the confined space 

of the translational milieu (Natan et al. 2017). In prokaryotes, genes encoding heteromeric subunits are often 

organised into operons, which are transcribed into a single polycistronic mRNA, warranting their 

cotranslation. Because higher order eukaryotes lack operonal genome structure, other processes have evolved 

to facilitate cotranslation of functionally related mRNAs when necessary (Bourke, Schwarz, and Schuman 

2023; X. Chen and Mayr 2022; K. C. Martin and Ephrussi 2009). Evidence suggests that colocalisation of 

mRNAs can be mediated by specific cis-regulatory elements, or “zip codes”, in their sequences (Mendonsa et 

al. 2023), which can become physically linked in the cell through RNA binding proteins to form so-called RNA 

regulons (Keene 2007). Another interesting phenomenon is that of densely packed polysomes in both bacteria 

and humans (Brandt et al. 2009, 2010), which appear to adopt configurations that maximise the distance 

between ribosome exit tunnels. This organisational level may be in place to prevent non-productive 

interactions between nascent chains, but it is possible that they coordinate their folding and assembly in 

parallel. A third spatial feature of cotranslational assembly in our classification is an N-terminally localised 

interface (Wells, Bergendahl, and Marsh 2015), which has been extensively corroborated by 

experiments (Bertolini et al. 2021; Kamenova et al. 2019; Natan et al. 2018; Seidel et al. 2022; Shiber et al. 

2018). While an N-terminal interface can spatially favour assembly on the ribosome, it also serves as a temporal 
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determinant by allowing more time for an interaction to develop. We will discuss N-terminal interface location 

and its bearings on evolution in the following section. 

4.1.2 Temporal 

A property may be considered a temporal hallmark of cotranslational assembly if its functional contribution is 

realised through either delaying or accelerating a process. For example, the length of the open reading frame 

(ORF) in the mRNA, i.e. the length of the eventual polypeptide, is a temporal determinant, because a 

cotranslational interaction is more likely to occur if the ribosome dwell time is long. This is reflected in the 

earliest discovered cotranslationally assembling proteins, which, being filamentous components of the 

cytoskeleton, are some of the longest proteins in the human proteome (Isaacs et al. 1992; Redick and 

Schwarzbauer 1995; Veis and Kirk 1989). Similarly, cotranslational chaperone activity may be considered a 

temporal determinant. Ribosome-associated chaperones, such as the bacterial trigger factor and the yeast Ssb, 

are thought to increase the efficiency of folding by binding to hydrophobic patches emanating from the exit 

tunnel and thereby transiently halting their folding (Agashe et al. 2004; Döring et al. 2017; Oh et al. 2011). 

Shiber et al. proposed that Ssb binding may be coordinated with assembly so that interface residues, which are 

generally hydrophobic, are shielded from premature assembly until folding of the full domain is 

completed (Shiber et al. 2018). Other temporal determinants may include mRNA structure effects (Faure et al. 

2016; Nissley and O’Brien 2014), local codon context-dependent translational slowdowns (Bertolini et al. 2021; 

Panasenko et al. 2019), and functional ribosome collisions unrelated to mRNA decay pathways (Arpat et al. 

2020; Han et al. 2020; T. Zhao et al. 2021). These factors can influence cotranslational assembly by modulating 

the elongation rate, the folding pathway of the nascent chain, and ultimately the time available for partner 

protein association. However, very little is known about how translation dynamics control the cotranslational 

assembly process, making it an area that requires more attention. 

4.1.3 Energetic 

The energetic hallmark of cotranslational assembly incorporates the strength of the interactions between two 

proteins. This subunit affinity is the primary determinant of the rate at which complexation will occur, 

although other factors, such as chaperone activity can overlap with it through kinetic control of the energy 

landscape. While the factors that determine affinity can be complex and difficult to quantify (Brooijmans, 

Sharp, and Kuntz 2002; Erijman, Rosenthal, and Shifman 2014; Vangone and Bonvin 2015), previous research 

has found that the size of the interface between two subunits corresponds well with the energy of hydrophobic 

bonding (Chothia 1974; Chothia and Janin 1975), which is a key contributor to overall affinity in protein 

complexes (Fersht et al. 1985). As a result, using interface size as an approximation of the hydrophobic bonding 

energy has been successful at predicting assembly and disassembly pathways of protein complex 

subunits (Levy et al. 2008; Marsh et al. 2013; Wells, Bergendahl, and Marsh 2016). Recently, we proposed that 

cotranslationally assembling proteins should have large interfaces, thus higher affinities, to explain their 

strong drive to assemble early on the ribosome, and found the hypothesis to be upheld for both homomers and 

heteromers detected by Bertolini et al. (Badonyi and Marsh 2022; Wells, Bergendahl, and Marsh 2015). This 

supports the idea that a large subunit interface can contribute to creating energetically favourable conditions 

for cotranslational assembly. 
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4.1.4 Compositional 

A compositional hallmark of cotranslational assembly has also emerged from the data. Bertolini et al. have 

observed proteins with coiled-coil motifs to frequently assemble on the ribosome (Bertolini et al. 2021). This 

potentially helps to explain why many cytoskeletal proteins containing these motifs were among the first cases 

of cotranslational assembly to be discovered. Coiled-coil motifs are common protein structural elements, 

characterised by two or more alpha helices wrapped around one another and held together by hydrophobic 

interactions (Burkhard, Stetefeld, and Strelkov 2001). One possible explanation for the higher frequency of 

cotranslational assembly in proteins with coiled-coil motifs is that the alignment of heptad repeats – the 

regularly alternating patterns of amino acids that form the basis of these motifs – would not occur correctly by 

chance if their assembly relied on random collisions in the cell. Interestingly, our analysis suggests that 

cotranslationally assembling subunits, irrespective of coiled-coil motifs, tend to have a higher proportion of 

alpha helices than other proteins (Badonyi and Marsh 2023a). This may be due to two factors. First, for alpha 

helices, the loss of accessible surface area upon folding is smaller compared to beta strands (Chothia 1976), 

which will result in a larger contribution of buried surface area at the interface. Second, because alpha helices 

form more short-range intramolecular contacts than beta strands, they can reach their tertiary structure more 

rapidly (Plaxco, Simons, and Baker 1998) and form folded domains earlier on the ribosome, favouring 

productive cotranslational interactions. 

4.1.5 Topological 

When considering the topological hallmark of cotranslational assembly, it is important to account for 

structural symmetry. Homomers typically form symmetric complexes, with different symmetry groups having 

unique sequence and structural features that influence their functional roles (Bergendahl and Marsh 2017; 

Goodsell and Olson 2000). The three most commonly observed symmetry groups in homomers are twofold 

(Schönflies notation, C2), cyclic (Cn>2) and dihedral (Dn>1) (Marsh and Teichmann 2015). These groups are 

named according to the arrangement of subunits in relation to n axes, imaginary lines around which the 

subunits can be rotated while maintaining the same pattern. Subunits of cyclic and dihedral symmetries form 

multiple interfaces with adjacent protomers, resulting in larger interfaces than homodimers, which might 

make them more likely to assemble cotranslationally. However, the specific cellular functions associated with 

different symmetry groups may also play a role in determining which complexes undergo cotranslational 

assembly. For example, dihedral complexes have a higher rate of cotranslational assembly compared to twofold 

dimers, but the same trend does not hold true for cyclic complexes (Badonyi and Marsh 2022). This 

discrepancy could be due to the fact that cyclic complexes are enriched in channel proteins (Forrest 2015), 

which require different assembly mechanisms for stable membrane immersion (Hegde and Keenan 2022). 

Overall, the relationship between symmetry and cotranslational assembly is complex and depends on a variety 

of factors. 

A potential topological hallmark of cotranslational assembly that may apply to heteromeric subunits is 

"intertwined" associations (Schwarz and Beck 2019), where two proteins interact in such a way that a segment 

of one protein extends into the other. The reason why intertwined associations may be more likely to form 

cotranslationally follows the analogy of knotted proteins, whose folding trajectories can be enhanced by folding 

on the ribosome (Jackson, Suma, and Micheletti 2017). For example, the yeast fatty acid synthase complex, 

composed of alpha and beta subunits, forms an intertwined association shortly after the alpha subunit emerges 
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from the ribosome exit tunnel (Fischer et al. 2020; Seidel et al. 2022; Shiber et al. 2018). The N-terminal 

domain of the alpha subunit becomes deeply embedded in the beta subunit, leading to the formation of the 

malonyl/palmitoyl-transferase functional module, the most stable interface in the complex [92]. Domain 

invasion motifs may represent another form of intertwined cotranslational association (Hsia et al. 2007; Seidel 

et al. 2022). Seidel et al. examined two WD repeat-containing proteins of the nuclear pore complex, Seh1 and 

Sec13, which possess incomplete beta-propellers. They have shown that, upon cotranslational assembly, the 

missing blades are completed by the invading blades of Nup85 and Nup145C, respectively. Cotranslational 

domain-swapping events could also contribute to intertwined associations. Bertolini et al. found that BTB 

domains commonly employed cotranslational assembly, and BTBs are dimerisation domains in which 

mutually swapped segments can make up 60% of the interface (Yanshun Liu and Eisenberg 2002; Wodak, 

Malevanets, and MacKinnon 2015). Because domain-swapped systems are thought to arise through single 

deletion events (Hashimoto and Panchenko 2010; Lynch 2012), by exploring the potential link between 

intertwinedness and cotranslational assembly, we could gain a better understanding of its evolution. 

 

4.2 Evolutionary impetus for cotranslational assembly 

It is important to stress that certain conditions inherently favour the occurrence of cotranslational assembly 

in cells. All things being equal, it is more likely in homomers because of colocalisation of multiple active 

ribosomes on their mRNA (Natan et al. 2017). This is especially relevant in bacteria, where at least half of the 

proteome assemble into homomeric complexes (Kühner et al. 2009; Lynch 2012). When sequencing of 

bacterial genomes became possible, analysis of operons suggested a strong positive selection for clustering of 

genes that encode physically interacting proteins (Mushegian and Koonin 1996). This led to the hypothesis 

that operons may play a role in coordinating heteromeric complex assembly. Further research revealed that 

cotranscription of protein complex genes can reduce fluctuations in subunit level (Sneppen et al. 2010), and 

that operon gene order and the assembly order of the encoded subunits is highly coherent (Wells, Bergendahl, 

and Marsh 2016), supporting the idea. Shieh et al. have shown that inserting the genes for a protein complex 

into the same operon significantly improves assembly efficiency compared to when the genes are located at 

distant sites in the genome (Shieh et al. 2015). Through the example of a luciferase heterodimer, they 

demonstrated that only the operon-encoded complex assembled cotranslationally in a sequential manner. 

Without operons, eukaryotes may rely on transcript colocalisation mechanisms for efficient assembly. For 

example, mRNAs encoding seven subunits of the actin-related protein 2/3 complex colocalise in fibroblast 

filopodia (Mingle et al. 2005), and paralogues of this protein family were found to assemble cotranslationally 

by Duncan and Mata (Duncan and Mata 2011). Altogether, these observations emphasise that proximity of a 

nascent chain to its interaction partner can locally confine subunits and render their assembly less stochastic. 

Cotranslational assembly is also naturally more likely to occur when the residues that will form the interface 

are located in the N-terminal half of the protein. However, because interface residues are mostly hydrophobic, 

the absence of the binding partner can cause misfolding and aggregation (Kamenova et al. 2019; Shiber et al. 

2018). There is some evidence of evolutionary selection to mitigate such negative consequences by favouring 

the location of interface residues towards the C terminus in homomers, ensuring that protein folding occurs 

before assembly and creating, in turn, conditions that do not promote cotranslational interactions (Natan et 

al. 2018). Bertolini et al. have found that simultaneous assembly often occurs when N-terminal dimerisation 
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domains are exposed, suggesting that, despite some selection against these in homomers, those that do have 

them tend to assemble cotranslationally (Bertolini et al. 2021). Although there is a lack of a similar evolutionary 

constraint in heteromers (Natan et al. 2018), Kamenova et al. have established through engineering of TATA-

binding protein-associated factors that the exact sequence of a heterodimerisation domain is less important 

for cotranslational assembly than its N-terminal position (Kamenova et al. 2019). Thus, N-terminal interface 

location appears to be an important factor in determining which proteins undergo cotranslational assembly 

for both homomers and heteromers. 

 

Figure 4.2 Adaptive and nonadaptive models of cotranslational assembly evolution. 

(A) The adaptive model proposes that cotranslational assembly has evolved because it provides a functional advantage. 

Here, the cotranslationally assembling subunit is selected from the sequence space for its fitness benefit, and reversion to 

the previous assembly mode in the future is prevented by either purifying selection or a neutral ratchet. (B) The non-

adaptive model suggests that cotranslational assembly has emerged simply because it is energetically favourable and 

optimal conditions for it were fortuitously created. While it does not provide a fitness benefit, subsequent genetic drift 

“locks” the subunit in this assembly mode through a ratchet-like evolutionary mechanism. 

Considering that selection acts to minimise misassembly of protein complexes (Marsh et al. 2013), it is 

tempting to view cotranslational assembly as a process that has evolved because it provides an adaptive 

advantage (Figure 4.2A). A deluge of benefits to cotranslational assembly have been hypothesised, including 

but not limited to, avoidance of misinteractions and faster assembly (Natan et al. 2017; Schwarz and Beck 

2019; Wells, Bergendahl, and Marsh 2015), ability to integrate into quality control pathways (Bertolini et al. 

2021; Juszkiewicz and Hegde 2018; Mena et al. 2020; Schwarz and Beck 2019), isoform specificity (Bertolini 

et al. 2021; Schwarz and Beck 2019), prevention of transcription factor and cell cycle component 

toxicity (Schwarz and Beck 2019), faithful assembly of paralogous complexes (Schwarz and Beck 2019), and 

an increased tolerance to dominant-negative mutations via allele-specific assembly (Badonyi and Marsh 
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2023a; Natan et al. 2017; Nicholls et al. 2002; Perica et al. 2012). However, experimental evidence supporting 

these benefits is still very limited. In an adaptive scenario where cotranslational assembly is functionally 

beneficial, the hallmarks, such as an N-terminal interface and its size, could provide the mechanistic and 

structural basis for selection. In a recent study, we put the adaptive model of cotranslational assembly to the 

test (Badonyi and Marsh 2022). We hypothesised that if interfaces have evolved to increase the level of 

functionally beneficial cotranslational assembly, then N-terminal interfaces should have a tendency to be 

larger than C-terminal interfaces. Our analysis of heteromeric complexes with subunits that form multiple 

interfaces in bacteria, yeast and human supported the adaptive model. Importantly, the trend was significant 

in evolutionarily ancient subunits or those organised into operons in bacteria, suggesting that large N-terminal 

interfaces may have been selected for to seed the assembly pathway cotranslationally. 

While selection for efficiency can be strong, particularly in prokaryotes (Lynch 2006, 2012), there is no basis 

to assume that adaptive forces explain all cases of cotranslational assembly. In some instances, seemingly 

needless biological complexity may be explained by constructive neutral evolution, which suggests that certain 

functions we observe as essential may not have been so when they first appeared (Gray et al. 2010; Lukeš et al. 

2011; Pillai, Hochberg, and Thornton 2022; Stoltzfus 1999). In recent years, evidence supporting the theory 

has been growing particularly in the context of protein complexes (Emlaw et al. 2021; Fernández and Lynch 

2011; Hochberg et al. 2020; Schulz et al. 2022). Building on these ideas, we proposed that that cotranslational 

assembly could represent the workings of a ratchet-like neutral process (Badonyi and Marsh 2022). In this 

model, ideal conditions for assembly on the ribosome spontaneously arise through random genetic drift, 

deletion or fusion events (Figure 4.2B). The ideal conditions refer to the physical and chemical properties of 

the ribosome and the nascent polypeptides that fortuitously allow for interactions between subunits. These 

interactions are energetically favourable in the sense that they lower the free energy of the system, but they do 

not necessarily provide a fitness benefit for the cell. In other words, the interactions are thermodynamically 

rather than biologically driven. The functional benefit of cotranslational assembly for the protein is not 

important, as reversion to the previous assembly mode will be blocked by the accumulation of mutations that 

are tolerated in the extant protein but not in the ancestor (Gray et al. 2010). Consequently, cotranslational 

assembly can become essential for the subunit, creating interdependence and irreversibility in the system, and 

its mode will be conserved through purifying selection. 

Ultimately, experiments should be explicitly designed to answer if selective forces have driven two subunits to 

assemble cotranslationally. As previously noted (Schulz, Sendker, and Hochberg 2022), destroying the 

function of a biological process does not distinguish between neutral and adaptive reasons for its existence. 

Disruptive mutagenesis of a cotranslationally assembling protein pair shows only that the assembly mode of 

the complex is essential today, and not that there was a functional benefit behind its emergence. To gain 

insight, researchers could follow the approach of Schulz et al. who investigated the evolutionary path of 

Rubisco's small subunit and found that the historical interface gain with the large subunit coincided with 

improved catalytic efficiency and enabled mutations that would not have been possible otherwise (Schulz et al. 

2022). By applying a similar strategy to a suitable model system, we can better understand the rationale behind 

the emergence of cotranslational assembly in complex assembly pathways. 
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4.3 Concluding remark 

In this chapter, I have synthesised the hallmarks of cotranslational assembly into a simple framework that can 

help researchers interested in the phenomenon navigate the field. Although tremendous community effort has 

enabled this categorisation, many hallmarks remain incomplete and insufficiently supported. Open questions 

about the regulation and evolution of cotranslational assembly represent outstanding challenges. How does 

translation dynamics control the cotranslational assembly process? How common is sequential assembly in 

heteromers, and what methodology will lead to their proteome-wide discovery? Is chaperone activity 

synchronised on a global scale with the course of cotranslational assembly? What is the true extent to which 

adaptive forces have driven the evolution of cotranslationally assembling complexes? What is the full array of 

functional benefits that cotranslational assembly can provably offer? Could the allele-specific nature of 

cotranslational assembly have affected the evolution of diploid genomes by serving as a buffer against 

dominant mutations? Answering these questions will require case studies and systems-level investigations into 

proteomes, but will undoubtedly advance our understanding of the role of protein complexes in cells. 
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5 Proteome-scale prediction of molecular mechanisms 

underlying dominant genetic diseases 

 

5.1 Introduction 

Genetic diseases are often caused by protein-altering mutations that act via different protein-level 

mechanisms. One such mechanism is dominant loss of protein function (LOF), whereby the mutation ablates 

a function that cannot be compensated by the nonmutant allele, leading to haploinsufficiency (Veitia 2002). 

Another mechanism is gain of function (GOF), which is characterized by an altered or newly appeared function 

in the mutant protein. Mutations may also have a dominant-negative (DN) effect, provided that the mutant 

allele can directly or indirectly affect the function of the wild type. DN effects are commonly “assembly-

mediated” (Backwell and Marsh 2022), i.e. inflicted upon a protein through complex assembly, so that the 

mutant subunit physically interacts with the wild type. Moreover, some GOF mutations may also be assembly-

mediated if the altered function of the mutant is conferred to wild-type subunits (Backwell and Marsh 2022). 

Understanding how missense mutations exert their effects is essential for better diagnoses and treatments of 

genetic disorders. Recent years have seen major improvements in experimental methods capable of probing a 

large number of variants at once. In particular, deep mutational scanning and its modifications hold huge 

promise for deciphering the effect of variants and, by extension, their mechanisms (Fowler et al. 2023). For 

now, relative to LOF, our understanding of the properties of variants that act via DN or GOF (collectively, non-

LOF) mechanisms remains limited. 

In many cases, the different dominant molecular mechanisms are not mutually exclusive in a gene. For 

example, a type of cardiomyopathy can be influenced by both titin haploinsufficiency (LOF) and truncated titin 

peptides that seem to “poison” wild-type complexes (DN) (Fomin et al. 2021). Although molecular mechanisms 

are indisputably variant-level phenomena, it has become evident that mutations in many genes are more likely 

to exhibit a specific mechanism (Gerasimavicius, Livesey, and Marsh 2022). This concept has shed light on 

certain structural and functional properties associated with non-LOF proteins at the systems level (Badonyi 

and Marsh 2023a; Gerasimavicius, Livesey, and Marsh 2022). Moreover, these analyses have called attention 

to a limitation of state-of-the-art variant effect predictors (VEPs), as they struggle to accurately predict the 

pathogenicity of non-LOF variants. This is an important skill to improve, otherwise there is a strong possibility 

that we could miss variants on the account of difficulties in computationally predicting their effects. Until a 

new generation of VEPs more sensitive to non-LOF variants is available, a gene-level predictor could 

potentially be very useful. 

Here, I first demonstrate that non-LOF molecular mechanisms can be predicted at protein-level with the help 

of protein complex structural data (Badonyi and Marsh 2023a). A necessary limitation of this model is its 

reliance on experimentally resolved structures of protein complexes. I present a solution to this problem by 

introducing surrogate features, compensating for the incomplete structural and functional attributes across 

the proteome. To expand the model’s predictive capacity, I build three binary classifiers, adding up to a 

“tripartite model”, each tasked with identifying one of the molecular mechanism classes over another unique 

class (DN vs LOF and GOF vs LOF) or pooled classes (LOF vs non-LOF). This design maximizes the number 

of cases available for training with the resulting probabilities enabling a more robust classification regime. 
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Although the models individually have average performance, which is expected given the ultimately variant-

level nature of the problem, together they can be combined into predictions that have biological and clinical 

utility. I demonstrate its capabilities by constructing an unbiased analysis set devoid of training and recessive 

genes and examining properties previously linked to protein-level molecular mechanism classes. 

It is important to stress that the models do not predict disease involvement. A non-disease associated protein 

with a predicted mechanism does not imply that it contributes to disease, but rather that the protein’s 

properties are most consistent with the given mechanism. These predictions offer valuable insight when 

assessing novel variants in genes with no prior disease linkage or pinpoint the likely mechanism of variants in 

a dominant gene with no previous association to a molecular mechanism. For example, it could help prioritise 

genes in clinical and population genetics data for laboratory studies and allow researchers to explore the 

functional, structural, and evolutionary properties inherent to the mechanisms. Predictions for the human 

UniProt reference proteome are available at https://osf.io/z4dcp/. 

5.2 Methods 

Software and databases 

In this study, we rely on a number of properties derived from the AlphaFold-predicted monomeric structures 

of human proteins (Tunyasuvunakool et al. 2021). Solvent accessible surface area is calculated at residue level 

with AREAIMOL from the CCP4 programme suite (Agirre et al. 2023). FoldX version 5.0 (Delgado et al. 2019) 

is run to determine the predicted Gibbs free energy of folding (ΔΔG) of missense substitutions by first calling 

the RepairPDB command followed by BuildModel, with ΔΔG computed as the average of 10 replicates. 

Residue-level SCRIBER scores (J. Zhang and Kurgan 2019) for the human proteome are extracted from the 

9606_database.json file provided by the DescribePROT database (B. Zhao et al. 2021). Protein-level UniProt 

ProtNLM embeddings (Gane, A. et al. 2022) are obtained via the UniProt FTP for the UP000005640_9606 

reference proteome (2023_02 release). All 1024 embedding dimensions are extracted from the per-protein.h5 

file using the h5dump command from the HDF5 command line tool. Clustal Omega version 1.2.4 (Sievers et al. 

2011) is used to create a distance matrix of protein sequences for homology filtering. Scores from VEPs ESM-1v 

(Meier et al. 2021), EVE (Frazer et al. 2021), MetaRNN (C. Li et al. 2022), and VARITY_R (Wu et al. 2021) are 

gathered using an in-house pipeline described in (Livesey and Marsh 2023). Machine learning methods are 

implemented in R version 4.3.0 (R Core Team 2023) using tidymodels (https://www.tidymodels.org/) with 

extension packages themis, probably, and DALEX. Statistical tests are performed with the rstatix package. 

Bootstrap confidence intervals are calculated with the percentile method from 1,000 resamples (Jung et al. 

2019). 

ClinVar and gnomAD mapping to UniProt reference proteome 

Genomic coordinates of pathogenic and likely pathogenic (hereinafter “pathogenic”) missense variants are 

extracted from the ClinVar (Landrum et al. 2018) variant calling file (VCF) (accessed on 2023-06-15) with 

BCFtools (Danecek et al. 2021). Putatively benign variants (hereinafter “benign”) with a “PASS” filter are 

extracted from gnomAD v2.1.1 (Karczewski et al. 2020) using the exomes all chromosomes VCF file. Mapping 

is performed with Ensembl VEP 107 (McLaren et al. 2016) using the --uniprot and --canonical flags. For 

each variant, we select either the canonical transcript or the first UniProt isoform on condition that the mapped 

amino acid corresponds to that in the sequence.  

https://osf.io/z4dcp/
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Lasso regression – feature selection 

To prioritise genes that mainly give rise to non-LOF mutations over those that harbour LOF mutations, the 

following variables were included in the model: 

1. gnomAD mutational constraint metrics (Karczewski et al. 2020): 

• pLI – Probability that transcript falls into the distribution of haploinsufficient genes. 

• pRec – Probability that transcript falls into distribution of recessive genes. 

• oe_lof – Observed over expected ratio for predicted loss-of-function variants in transcript. 

2. Sequence-derived or evolutionary variables: 

• Protein-length – As per UniProt canonical isoform. 

• Number of paralogues (Huang et al. 2010) – Paralogues of human genes were called from 

Ensembl (Cunningham et al. 2022) via the biomaRt R package. 

• Maximum identity to paralogue (Huang et al. 2010) – We calculated the protein sequence 

identity of each gene to every one of its paralogues using Clustal Omega version 1.2.4 (Sievers 

et al. 2011) and the maximum identity was kept. 

• Human-macaque (Macaca mulatta) dN/dS (Huang et al. 2010) – The ratios of 

nonsynonymous to non-synonymous substitutions between human-macaque orthologues 

were called from Ensembl (Cunningham et al. 2022) via the biomaRt R package. 

• ncGERP++ – The phylogenetic conservation values of the genes’ regulatory sequences as 

derived from GERP++ scores were acquired from (Petrovski et al. 2015). 

• Number of domains (Huang et al. 2010) – The number of domains were taken from the human 

proteome-specific Pfam release 2021-11-15 (Mistry et al. 2021). 

• Membrane propensity – We calculated from protein sequences the mean value of the scale 

NAKH900110 “Normalized composition of membrane proteins” (Nakashima, Nishikawa, and 

Ooi 1990) from the AA index database (Kawashima et al. 2008). 

3. Interaction network-based property: 

• Betweenness centrality (Huang et al. 2010) – This measure was calculated from the human 

protein interaction network of the STRING database version 11.5 (Szklarczyk et al. 2021) at 

the default score threshold of 400 using the STRINGdb and igraph R packages. 

4. Structural properties: 

• Structural symmetry (monomer, heteromer, and homomeric symmetry groups: C2, Cn>2, Dn>1, 

and other homomeric symmetry), interface size and number of subunits. 

• Structure isoelectric point – as previously described in (Badonyi and Marsh 2022). 

• Absolute contact order (Plaxco, Simons, and Baker 1998) – We calculated the contact order 

from the AlphaFold predicted human structures using the perl script written by Eric Alm 

available at https://depts.washington.edu/bakerpg/contact_order/contactOrder.pl.  

A copy of the script can be found in the OSF repository linked to this manuscript. 

• Mean structure pLDDT and alpha helix content. 

5. Functional properties: 

• Protein functional classification from this study. Proteins with functions other than those 

introduced earlier were classified as “known other function” and those lacking a functional 

annotation were classed as “unknown function”.  
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6. Experimental data: 

• Protein abundance. 

• Cotranslational assembly annotations. 

• RNA expression variance – We accessed the rna_tissue_consensus.tsv.zip file from the 

Human Protein Atlas (Uhlen et al. 2010) on 2022-09-01 and calculated the variance in 

expression per gene across the 54 tissues. 

Lasso regression – data preprocessing 

We assembled a dataset of 9,051 genes with the above features. Genes of monomers in the PDB were assigned 

an interface size of 0, a relative interface location of 0, a number of subunits of 1, and were assumed not to 

undergo cotranslational assembly even if they were detected by (Bertolini et al. 2021). Missing data in ten 

variables were imputed using five nearest neighbours (Gower 1971). The missing value rate were the following 

(per cent missing in brackets): ncGERP++ (9.7); human-macaque dN/dS (9.3); pLI, pRec, and oe_lof (7.3); 

betweenness centrality (5.6); protein abundance (4.2); number of domains (2.7); structure isoelectric point 

(2.1); RNA expression variance (1.3). Lastly, all nominal variables were one-hot encoded and numeric data was 

normalised to have a standard deviation of one and a mean of zero. 

Lasso regression – model building and performance evaluation 

In an initial model screen, we evaluated the performance of more complex statistical learning methods, 

including a random forest, a support vector machine, and a single layer neural network. However, no 

performance gain was observed relative to a simpler and more interpretable regression model (data not 

shown). Logistic regression with lasso (least absolute shrinkage and selection operator) is a solution to fitting 

a model in which only certain variables play a role. The algorithm applies increasingly larger penalties to 

multivariable regression coefficients, shrinking those of less important variables to zero, causing their 

sequential drop-out (L1 regularisation) and thus retaining only informative features. First, to avoid inflating 

the model’s performance by presence of homologues, we performed redundancy filtering at 50% sequence 

identity on canonical protein sequences. This procedure removed 88 from the 879 genes with experimentally 

available structure data and dominant molecular mechanism classifications. The remaining 791 genes, of 

which 543 (69%) are non-LOF and 248 (31%) are LOF, were split into 75% training and 25% test sets with 10-

fold cross-validation performed on the training set and repeated 3 times. The model was tuned using 18 values 

of the λ parameter, generated to be log-linearly distributed between 0 and 1. The final value of λ = 0.00501 was 

chosen on the basis that it yielded the highest prediction accuracy in the assessment-folds of the cross-

validation. The model was finalised on the entire training set and evaluated on the test set. The similarity of 

ROC AUCs measured on the cross-validation folds (0.735) versus on the test set (0.743) suggested that the 

model had not been overfitted. Variable importance was computed as the absolute values of the β coefficients 

scaled to the [0,1] interval. Model building and evaluation was performed using the tidymodels R 

metapackage. Thresholds T1 and T2 were derived using the threshold_perf() function from the R package 

probably. 

Support vector machines – feature selection and engineering 

We use gene and protein-level features previously described in (Badonyi and Marsh 2023a), notably excluding 

subunit interface size, which is derived from experimentally determined structures of protein complexes, and 

the PANTHER functional classification of proteins (Mi et al. 2021), which is incomplete for the human 
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proteome. We sought to rationally select and design surrogate features that make up for the loss of protein 

structural and functional information. To replace interface size, we calculate the median SCRIBER score of 

residues that have >5% relative surface accessible surface area (RSA) in the corresponding AlphaFold predicted 

structure. RSA is defined as the ratio of the maximum solvent accessible surface area determined from Gly-X-

Gly tripeptides (where X denotes the amino acid) (Miller, Janin, et al. 1987) and that of the residue in the 

context of the monomeric protein. To substitute protein functional classification, we use UniProt ProtNLM 

embeddings that capture information about Pfam domains and functional sequence features and transfer those 

to unannotated and manually unreviewed entries. In each model, to avoid overfitting on a large number of 

uncorrelated features, we select the top 20 ProtNLM embeddings by Wilcoxon effect size between the relevant 

binary outcomes. In addition, we introduce a pair of features related to the likelihood of randomly drawing a 

missense substitution with the characteristics of a particular type of molecular mechanism. This heuristic 

metric is derived as the median of the ratio of ESM-1v score and the FoldX-computed ΔΔG of all missense 

mutations based on possible amino acid substitutions in the canonical sequence. We use both raw ΔΔG and its 

absolute value (|ΔΔG|), which has been shown to improve the performance of pathogenic variant prediction 

(Gerasimavicius, Liu, and Marsh 2020). Finally, we complement existing population genetics constraint 

metrics with shet (Zeng et al. 2023), which relates the frequency of LOF mutations in a gene to the strength of 

selection against them with higher values indicating stronger selection and lower tolerance to LOF mutations. 

Support vector machines – data acquisition 

Evidence for DN, GOF, or LOF molecular disease mechanism observed in a gene was collected using a 

combination of text-mining and semi-manual curation, as previously described (Badonyi and Marsh 2023a). 

We updated the gene set using newly added autosomal dominant genes from the Online Inheritance of Man 

(OMIM) database (Amberger et al. 2015) (accessed via the API on 2023-05-25) and developmental disorder 

genes with monoallelic inheritance from the Deciphering Developmental Disorders Genotype-to-Phenotype 

(DDG2P) database (https://www.deciphergenomics.org/ddd/ddgenes, accessed on 2023-05-25). The 

updated list contains 1,270 genes with one or more molecular mechanism class based upon available evidence. 

Of the genes, 874 are assigned to a unique class, 318 are assigned to two classes, and 78 genes intersect with 

all three classes. 

Support vector machines – data preprocessing 

In each model, we prioritise the first event level of the binary outcome. For example, in the DN vs LOF model, 

we treat any gene with a DN class annotation as DN even if it has other class assignments; this strategy is 

likewise applied to the GOF vs LOF and the LOF vs non-LOF models (where non-LOF represents pooled DN 

and GOF gene sets). The rationale is to maximise the available cases for the primary outcome and ameliorate 

the class imbalance. We next remove features that have a Spearman correlation >0.9 with another, which 

eliminates the gnomAD oe_lof metric (observed over expected ratio for predicted LOF variants in transcript) 

in all three models due to its high correspondence with shet. The features are normalised and missing values 

are imputed based upon all other features with five nearest neighbours (Gower 1971). We use a distance matrix 

of the protein sequences to create a non-redundant dataset with proteins sharing <50% sequence identity 

within each outcome, e.g., within DN or LOF genes, but not across, as it may be important to learn differences 

between homologues assigned to different classes. To improve the signal-to-noise ratio, when possible, instead 

of randomly removing one protein from a pair of proteins above the sequence identity cutoff, we remove the 

one that overlaps with another class. This procedure results in the following class proportions across the 
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models (protein count, class percentage): DN (498, 52%) vs LOF (451, 48%), GOF (479, 51%) vs LOF (463, 

49%) and LOF (610, 52%) vs non-LOF (559, 48%). 

Support vector machines – initial model screen 

To assess which statistical learning approach suits the data and the classification problem the best, we carried 

out a model screen. We chose five diverse modelling methods (tuned hyperparameters): lasso logistic 

regression (penalty), a multilayer perceptron (penalty, hidden units, epochs), a polynomial support vector 

machine (SVM) (cost, degree, scale factor, margin), and two tree-based methods, a random forest (trees, mtry 

[minimum number of randomly sampled features at each split], min_n [minimum number of data points a 

node must contain]) and the LightGBM algorithm (trees, tree depth, mtry, min_n, loss reduction) (Ke et al. 

2017). Maintaining class ratios, we split the data into 75% training and 25% test sets and ran 10-fold cross-

validation, similarly divided into 75% analysis and 25% assessment sets. The ROSE (random over-sampling 

examples) upsampling algorithm (Menardi and Torelli 2014) was applied to perfectly balance the classes. An 

efficient grid search was performed via the ANOVA race tuning method (Kuhn 2014) on a random grid of size 

k = 10×(number of hyperparameters), which eliminated configurations unlikely to have been the best after 3 

resamples using repeated measures ANOVA.  

 

Figure 5.1 Results of the initial model screen. 

Plots on the left show the AUROC of the best hyperparameter set of each model on the cross-validation folds. Plots on the 

right show the AUROC of k randomly generated parameter combinations as measured on the test sets, where 

k = 10×(hyperparameters). Boxes denote data within 25th and 75th percentiles and the middle line represents the median. 

Whiskers extend from the box to 1.5× the interquartile range. 
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We compared the models by both the area under the receiver operating characteristics (AUROC) curve of the 

ANOVA race-winning configuration measured on the cross-validation folds as well as the AUROC of the k 

random grid configurations of each model on the test set (Figure 5.1). By the former, the top ranking models 

were LightGBM for DN vs LOF and LOF vs non-LOF models, and polynomial SVM for the GOF vs LOF model. 

However, because the k random grid configurations of the polynomial SVM consistently gave the best 

performance on the test sets, suggesting it performs best on unseen data without hyperparameter tuning, it 

was chosen to reduce the risk of overfitting and to maintain a similar prediction profile across the three models. 

Support vector machines – model building 

The final DN vs LOF, GOF vs LOF, and LOF vs non-LOF models are built using an SVM with a polynomial 

kernel. The data are divided into 75% training and 25% test sets with 3-times repeated 10-fold cross-validation, 

which itself is split into 75% analysis and 25% assessment sets. We perform Bayesian hyperparameter 

optimisation on the tunable parameters of the model: cost, degree, scale factor, and margin. Initially, a random 

grid of size 10 is created for the Gaussian process model and a maximum of 20 search iterations are performed. 

The models are finalised based upon the parameters that achieve the highest AUROC. 

Support vector machines – model evaluation 

We compute threshold-agnostic performance measures for the models based upon the test sets, including 

AUROC and area under the precision recall curves (AUPRC) (Figure 5.2).  

 

Figure 5.2 ROC and PR curves of the models measured on the test sets. 

Numbers in bold denote point estimates and those in brackets represent 90% bootstrap confidence intervals. 

To assess the models in further analyses, we determine the probability thresholds at which the models reach 

50% sensitivity on their respective test sets. At these thresholds, which we refer to as t50, the models are able 

to correctly identify half of the positive cases and approximately 80% of the negative cases. Threshold-
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dependent performance measures at t50, including accuracy, Matthews correlation coefficient (MCC) and the 

F1 score, are summarised in Table 5.1. 

Model t50 Sensitivity Specificity Accuracy MCC F1 

DN vs LOF 0.61 0.519 
[0.448,0.584] 

0.778 
[0.717,0.841] 

0.642 
[0.592,0.693] 

0.306 
[0.208,0.408] 

0.603 
[0.539,0.664] 

GOF vs LOF 0.63 0.519 
[0.45,0.592] 

0.818 
[0.759,0.879] 

0.666 
[0.619,0.712] 

0.353 
[0.258,0.449] 

0.612 
[0.547,0.676] 

LOF vs non-LOF 0.64 0.519 
[0.451,0.588] 

0.815 
[0.764,0.871] 

0.66 
[0.618,0.703] 

0.348 
[0.263,0.435] 

0.614 
[0.556,0.672] 

Table 5.1 Threshold-dependent performance metrics. 

Metrics were derived for the probability thresholds at which the models have approximately 50% specificity on the test 

sets (t50). Numbers in bold denote point estimates and those in brackets represent 90% bootstrap confidence intervals. 

Biologically interpretable evaluation is performed by examining the models’ capacity to identify emergent 

properties known to be associated with dominant molecular disease mechanisms (Badonyi and Marsh 2023a; 

Gerasimavicius, Livesey, and Marsh 2022). Specifically, we evaluate 3 properties: 

1) The energetic impact of pathogenic missense mutations in the structure, approximated by the FoldX-

predicted Gibbs free energy of folding (ΔΔG). Missense mutations that map to residues with a predicted 

local distance difference test (pLDDT) value (Jumper et al. 2021) less than 70 are excluded. This is 

because residues with low pLDDT are less likely to be ordered and thus ΔΔG is less interpretable for 

them. 

2) The degree to which pathogenic missense mutations spatially cluster in the structure, approximated by 

the extent of disease clustering (EDC) metric. EDC is calculated as previously described (Gerasimavicius, 

Livesey, and Marsh 2022), however, alpha carbon atoms with a pLDDT<70 are excluded from the 

calculation and only proteins with at least 5 pathogenic variants after this procedure are used for the 

analysis. This is because pathogenic missense mutations are enriched in structured regions of proteins 

(Porta-Pardo et al. 2022), hence AlphaFold structures with high disorder could exhibit pseudo-

clustering. 

3) The performance of pathogenic missense variant prediction in a binary classification task, using two 

unsupervised (ESM1-v and EVE) and two supervised (MetaRNN and VARITY_R) VEPs, measured by 

AUROC. Only proteins with at least 5 pathogenic and 5 benign variants, and all variants mutually shared 

across the VEPs (that is, have predicted values), are considered for the analysis to increase per-protein 

AUROC confidence. 

Statistical overrepresentation tests for molecular function 

Functional enrichment of proteins that are subsets of predicted DN or GOF proteins is performed by 

comparing the protein lists against each other via PANTHER (Mi et al. 2019) using Fisher’s exact test and the 

Gene Ontology release 2023-05-10. We consider functions with a false discovery rate <1%, a sample size 

(number of proteins) >50, and a fold-enrichment of >1.5. To avoid redundancy, we select a single term with 

the largest sample size for groups of similar terms. 
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5.3 Results and discussion 

5.3.1 Prediction of proteins associated with non-LOF disease mechanisms using protein complex 

structural properties 

We first reviewed the literature to identify properties of LOF genes and then trained a logistic regression model 

with lasso penalty using a range of diverse features, including cotranslational assembly (Bertolini et al. 2021), 

the functional and structural determinants investigated in this study, as well as population-level mutational 

constraints (Karczewski et al. 2020), evolutionary-, sequence- and interaction network-based properties 

(Huang et al. 2010; Shihab et al. 2017; Steinberg et al. 2015), and experimental data (Uhlen et al. 2010; M. 

Wang et al. 2015) (detailed in Methods). Measured on the test set, the classifier achieves a receiver operating 

characteristics area under the curve of 0.74 (Figure 5.3A), an F1 score of 0.8, and a Matthews correlation 

coefficient of 0.24 (Chicco, Tötsch, and Jurman 2021) (detailed performance profile in Appendix 5.1). 

Cotranslational assembly was found to be a discriminating feature in the model, ranking 12th out of 30 features 

and being roughly one-fourth as important as the top predictor, which is the ratio of nonsynonymous-to-

synonymous substitutions (dN/dS) in the coding sequence of human relative to macaque genes (Huang et al. 

2010) (Figure 5.3B). Notably, the second and third most important predictors in the model are 

transporter/channel function and the number of paralogues of the gene. It has been observed before that 

haplosufficient genes have higher average sequence identity to the closest paralogue than LOF genes (Huang 

et al. 2010), suggesting functional compensation by closely related proteins. It is possible that due to this 

functional redundancy, autosomal dominant genes with a high number of paralogues are simply more likely 

to be associated with non-LOF mechanisms. For example, ion channel genes are known to have undergone 

multiple gene duplication events (Liebeskind, Hillis, and Zakon 2015), which is consistent with their 

enrichment among DN and GOF subunits (Appendix 3.2E). In cyclic complexes with more than one unique 

subunit, paralogous copies typically sequester in the same complex (Mallik, Tawfik, and Levy 2022), suggesting 

that information on paralogues is a valuable proxy for non-LOF mechanisms in homomers as well as in 

heteromers. 
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Figure 5.3 A computational model for identifying genes most likely to be associated 

with non-LOF molecular mechanisms. 

(A) Receiver operating characteristic (ROC) curve of the lasso regression model measured on the test set. AUC 

± bootstrap (n = 1,000) SE is shown. (B) Variable importance calculated as the absolute values of the β coefficients scaled 

to the [0,1] interval. The y-axis labels are colored according to the type of the variable: sequence-derived or evolutionary 

variables (blue), functional annotations (green), mutational constraint metrics (red), structural properties (black), 

interaction network–based property (pink), and experimental data (orange). Bars are colored based on the sign of β. (C) 

Differences in Gibbs free energy change (ΔΔG, left) and EDC (right) of pathogenic mutations between genes predicted to 

be non-LOF versus all other genes at threshold T2. Genes that were used for training the model as well as known AR 

genes were excluded. Boxes denote data within 25th and 75th percentiles, the middle line represents the median, the notch 

contains the 95% confidence interval of the median, and the whiskers extend from the upper and lower quartiles to a 

distance of 1.5 times the interquartile range. Labels indicate the number of variants (for ΔΔG) or the number of genes (for 

EDC) in the groups. The p-values were calculated with the Wilcoxon rank sum test. 

We derived two probability thresholds (Appendix 5.1). The threshold of p = 0.82 (T1) was selected on the 

basis of the maximum value of Youden’s J statistic (Youden 1950) (test set confusion matrix: 68/68 [50%] 

non-LOF vs 5/57 [8%] LOF). A second threshold of p = 0.92 (T2) was chosen as the value at which the 

specificity of the model reaches 100%, i.e. no ground truth LOF genes are classified as non-LOF at the cost of 

classifying more ground truth non-LOF genes as LOF (29/107 [21%] non-LOF vs 0/62 [0%] LOF). We provide 

predictions for 9,051 proteins covering ~44% of the proteome (available via Science Advances) that have at 

least partial structures in the PDB. Of these, 880 (9.7%) are above T2 and 3,315 (36.6%) are above T1. Of the 

latter, 2,840 have no dominant disease association recorded in OMIM. 

https://www.science.org/doi/suppl/10.1126/sciadv.adf9845/suppl_file/sciadv.adf9845_tables_s1_and_s2.zip
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As an unbiased approach to assess the model, we analysed the ΔΔG of pathogenic mutations and their extent 

of disease clustering (EDC) after removing genes used for training, and AR genes, whose biallelic LOF 

mutations would bias the trend. In Figure 5.3C we show the result of this analysis at threshold T2, 

demonstrating that missense mutations in predicted non-LOF genes exhibit a milder impact on protein 

structure (Gerasimavicius, Livesey, and Marsh 2022; McEntagart et al. 2016). Moreover, pathogenic variants 

in predicted non-LOF genes show strong 3D clustering in their respective protein structures, consistent with 

previous observations (Gerasimavicius, Livesey, and Marsh 2022; Lelieveld et al. 2017). In Appendix 5.1F/G, 

we provide further support that, between thresholds T1 and T2, both metrics exhibit the trend with an 

increasing effect size. 

5.3.2 Global and local feature importance evaluation of the tripartite model 

The tripartite model represents the three support vector machines built without protein complex structural 

and manually annotated functional features. In total, 21 interpretable features were used in the models, 

including properties derived from protein sequences, structures, networks, and gene mutational constraints 

(Badonyi and Marsh 2023). Additionally, 20 language model-based embeddings were also included, which are 

thought to represent protein function in their latent space (Ziegler et al. 2023). As a measure of feature 

importance, we calculated the loss in AUROC relative to the full model (Figure 5.4). While we cannot draw 

conclusions on why a particular ProtNLM embedding is useful for a given model, their relatively high ranks in 

the GOF vs LOF model may reflect that genes whose dominant disease mutations act via GOF are functionally 

more dissimilar or diverse than DN or LOF genes. 

 

Figure 5.4 Feature importance of the models. 

Feature importance is estimated by loss in AUROC upon removal of the feature in 10 permutations. Boxes denote data 

within 25th and 75th percentiles and the middle line represents the median. Whiskers extend from the box to 1.5× the 

interquartile range. Dashed line is at AUROC loss = 0. 

In terms of the interpretable features, shet ranks 1st and 3rd in the DN vs LOF and LOF vs non-LOF models, 

which emphasizes the importance of eliminating length-bias from selective constraint metrics to improve their 

power (Zeng et al. 2023). Moreover, the number of paralogues a protein has in the genome seems similarly 

important for the latter two models, ranking 3rd and 4th, respectively, consistent with our previous model 
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(Badonyi and Marsh 2023a). Other notable features are gnomAD metrics pLI and pRec, which is unsurprising 

given that genes with high pLI should be enriched in genuinely haploinsufficient genes and those with non-LOF 

disease mechanisms will tend to have higher pRec values, i.e. are more “recessive-like”. Interestingly, the 

median ESM-1v/|ΔΔG| metric ranks 4th in the DN vs LOF model, suggesting that DN genes may possess a 

missense variant repertoire that is biased for functionally important but structurally less damaging effects. 

We next looked at the worst and best predicted genes from the training sets of each model and calculated 

Shapley values for the features (Lundberg and Lee 2017). These values indicate the average contributions of 

different feature orderings, with positive values suggesting a tendency to predict a protein towards the primary 

outcome and vice versa. In the training set of the DN vs LOF model, the DNA-binding protein SATB2 has the 

lowest probability of beloning to the DN class (pDN), while the type I cytoskeletal keratin 14 (KRT14) has the 

highest (Figure 5.5). Shapely values for SATB2 suggest that primarily shet, but also, for example, pLI and 

cotranslational assembly have contributed to its low pDN. Indeed, SATB2 has a particularly high shet (0.652, 

which is 5.2 standard deviations above the proteome mean), a pLI of 1, and has been found to cotranslationally 

assemble in a recent study (Bertolini et al. 2021), consistent with a decreased likelihood of observing its role in 

disease through a DN mechanism (Badonyi and Marsh 2023a). In our source data, evidence for SATB2 

dominant-negativity came from a report that describes a frameshift mutation in the gene likely to escape 

nonsense-mediated decay, whose clinical phenotype is more severe than glass syndrome, attributed to SATB2 

haploinsufficiency (Boone et al. 2016). However, SATB2 is recognised by the ClinGen review panel to have 

sufficient evidence for haploinsufficiency (Rehm et al. 2015). Thus, it is possible that SATB2 either represents 

a false positive case or, due to regression to the mean, the model fails to identify it as its features are too 

consistent with the secondary outcome. In contrast, Shapely values for KRT14 indicate congruence with known 

characteristics of DN proteins, e.g., the high number of paralogues (68 in the proteome, only 2 in the training 

set). Furthermore, keratin disorders are considered a classical group of DN diseases (McLean and Moore 2011), 

reinforcing the prediction of the model. 

Similar conclusions can be drawn for the other two models. AF4/FMR2 family member 4 (AFF4), implicated 

in CHOPS syndrome, is a GOF case in the source data with the lowest pGOF value among genes of the training 

set (Figure 5.5). Three heterozygous missense mutations in its gene were recently found to cause GOF due to 

decreased clearance of the protein by the ubuiquitin proteasomal system, leading to transcriptional 

overactivation (Izumi et al. 2015). Since transcription factors are frequently haploinsufficient (Seidman and 

Seidman 2002), their gene-level features in our data may generally align more with a LOF mechanism, which 

could hinder the identification of edge-cases like AFF4. Interestingly, the worst predicted positive case by the 

LOF vs non-LOF model is apolipoprotein E (APOE) (Figure 5.5), which does lack sufficient evidence for 

dosage sensitivity in ClinGen. On further review, evidence in our source data revealed that a heterozygous null 

mutation of APOE had been linked to protection against a type of amyloidosis observed in Alzheimer’s disease, 

rather than being implicated in disease causation (J. Kim et al. 2011). Hence, the model is able to correctly 

down-weight false positive cases. 
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Figure 5.5 Local interpretations of model class probabilities. 

Plots show the worst (left) and best (right) predicted genes of the training sets and Shapley values of the top 10 most 

influential features in 20 permutations. Bars show the mean, boxes denote data within 25th and 75th percentiles and the 

middle line represents the median. Whiskers extend from the box to 1.5x the interquartile range. 

5.3.3 Proteome-scale molecular mechanism prediction 

From the test sets we derived probability threshold t50 for each model, which represents a classification 

performance where approximately half of the cases belonging to the primary outcome and 80% of the 

secondary outcome are correctly predicted (Table 5.1). This threshold constitutes a relatively good balance 

between sensitivity and specificity while being more stringent than what is commonly considered the optimal 

threshold, i.e. minimum distance from the [0,1] corner of the ROC curve (red vertical line in Figure 5.6A) 

and being more lenient than the maximum positive predictive value. In Figure 5.6B, we show t50 in the 

context of model probability distributions for unique and overlapping cases in the test sets. Intriguingly, both 

the DN vs LOF (pDN) and the GOF vs LOF (pGOF) models assign higher probabilities to mixed LOF/GOF and 

LOF/DN classes, respectively, relative to the unique secondary outcomes, despite the fact that the models are 
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blind to the overlapping classification of these cases. This suggests that these genes may have intermediary 

characteristics or exhibit a higher false positive rate for the secondary class in the ground truth data. 

 

Figure 5.6 Threshold plots and test set class probabilities. 

(A) Commonly used threshold metrics derived from the test sets for pDN, pGOF, and pLOF. NPV and PPV denote 

negative and positive predictive values, respectively. (B) Model probabilities mapped to the test sets, classified by their 

ground truth classes, both unique and overlapping. Sample sizes indicate the number of proteins. Boxes denote data 

within 25th and 75th percentiles and the middle line represents the median. Whiskers extend from the box to 1.5x the 

interquartile range. Dashed lines run at the t50 probability thresholds. 

We chose a distribution-independent approach to classify the human proteome into a single molecular 

mechanism class. By ranking the class probabilities rather than comparing their raw values, the approach is 

less sensitive to differences in the models’ class probability distributions. First, class probabilities are 

computed and ranked for all proteins and then each protein is assigned to the mechanism with the highest 

rank relative to the proteome, on condition that its class probability is above the t50 value. Based upon this 

strategy, in the 2023_02 UniProt reference proteome, 6,058 proteins are predicted to be DN, 5,287 GOF, and 

2,580 LOF, with 6,440 proteins lacking classification. It is critical to emphasize again that the models do not 

predict disease involvement, i.e. the proportions should not be misconstrued as implying a twofold prevalence 

of DN over LOF proteins contributing to disease. The high number of predicted DN and GOF proteins may be 

ascribed to a higher number of paralogous proteins in these mechanism classes relative to LOF (Badonyi and 

Marsh 2023a), which results in larger fraction of the proteome aligning with their characteristics. When we 

consider only known dominant disease genes, the proportion of proteins predicted to be DN, GOF, and LOF 

are 27%, 28%, and 44%, respectively. We provide the class probabilities, the rank-based classification results, 

and labels for training set genes, for the 2023_02 UniProt reference proteome (n = 20,365). 
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5.3.4 Biologically and clinically relevant validation of the models 

We wished to test whether the models are able to recapitulate properties of dominant molecular mechanisms 

we and others have previously characterised (Badonyi and Marsh 2023a; Gerasimavicius, Livesey, and Marsh 

2022; Stehr et al. 2011). These properties include the energetic impact of missense mutations in the protein 

structure, their degree of spatial clustering, and their current predictability with state-of-the-art VEPs (see 

Methods). None of these properties were explicitly used for training, thus making them a simple and powerful 

mean to assess the usefulness of the predictions. We created an unbiased analysis set where we removed genes 

used for training and those associated with autosomal recessive inheritance. We first looked at the predicted 

ΔΔG of pathogenic missense mutations across the different predicted classes in this dataset (Figure 5.7A). 

 

Figure 5.7 Validation of the models through model-independent metrics on an unbiased analysis set. 

(A) FoldX-predicted ΔΔG of pathogenic missense mutations. Numbers below classes denote the number of mutations. 

Holm-Bonferroni corrected p-values above DN and GOF boxes are relative to the LOF group and were determined by 

one-sided Wilcoxon rank-sum test. Sample sizes indicate the number of variants. (B) Class probabilities of the analysis 

set vs EDC. Holm-Bonferroni corrected p-values above DN and GOF boxes are relative to the LOF group and were 

determined by one-sided Wilcoxon rank-sum test. Sample sizes indicate the number of proteins in each class. (C) 

Aggregated AUROC analysis of pathogenic vs benign variants in predicted molecular mechanism classes. Labels indicate 

the number of proteins in each class. Boxes denote data within 25th and 75th percentiles and the middle line represents 

the median. Violins show area-normalized distributions.  
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The results suggests mutations in DN and GOF proteins are significantly less damaging than in LOF proteins. 

This can be explained by the idea that destabilisation is one of the signature mechanisms of LOF mutations 

(Gerasimavicius, Livesey, and Marsh 2022). By contrast, GOF mutations should not be too damaging in order 

to alter a function, and most DN and many GOF genes are in fact assembly-mediated (Backwell and Marsh 

2022). Thus, the effect of their mutations should not preclude protein complex assembly, which makes them 

necessarily less damaging. 

Next, we looked at how much pathogenic missense mutations cluster in the structures of proteins predicted to 

be DN or GOF. Our prior expectation is that both classes should exhibit higher degree of clustering than LOF, 

as measured by the EDC metric. We found this assumption to hold up, with both DN and GOF proteins having 

significantly higher clustering values than LOF proteins (Figure 5.7B). This observation agrees with the 

concept that LOF mutations are generally more sparsely distributed in the protein structure, but non-LOF 

mutations tend to be concentrated at protein interfaces and functional sites (Gerasimavicius, Livesey, and 

Marsh 2022). Lastly, we took advantage of an important bottleneck of contemporary VEPs, which is that they 

less well predict pathogenic missense mutations associated with DN and GOF genes (Gerasimavicius, Livesey, 

and Marsh 2022). In Figure 5.7C, we show a per-protein aggregated AUROC analysis of pathogenic vs benign 

missense variants, evaluated by two unsupervised (ESM1-v and EVE) and two supervised (MetaRNN and 

VARITY_R) VEPs, which we recently showed to be the top performing VEPs of their category (Livesey and 

Marsh 2023). Expectedly, missense mutations in proteins classified as LOF are much better predicted than 

those in DN or GOF proteins. 

Importantly, the above trends are observed with the raw rank-based classification results without the t50 

probability cutoff (Appendix 5.2), demonstrating that they are not an artefact of a careful threshold selection. 

We conclude that the models effectively reproduce biologically and clinically relevant properties of dominant 

molecular mechanisms. 

5.3.5 The functional landscape of predicted DN and GOF proteins 

Given that pDN and pGOF class probabilities are positively correlated by design (Figure 5.8), our focus was 

on discerning the differences between proteins predicted exclusively as DN or GOF. We therefore conducted 

statistical overrepresentation tests to explore the molecular functions associated with these proteins. It is well-

established that DN effects are common in homomers, which are proteins that form complexes with copies of 

themselves (Badonyi and Marsh 2023a; Veitia 2007). Correspondingly, we identified functions closely related 

to homomeric symmetry groups in exclusively DN proteins, including “organic cyclic compound binding”, 

“oxidoreductase activity”, and “hydrolase activity” (Bergendahl and Marsh 2017). Interestingly, a strongly 

enriched, large group of proteins possess “nucleic acid binding” function, potentially indicating a higher 

prevalence of DN effects among transcription factors and other DNA/RNA-binding proteins. This underscores 

the importance, and difficulty, of distinguishing between mutations that act through DN effects versus 

haploinsufficiency. In contrast, exclusively GOF proteins exhibit functions less directly associated with protein 

complexes but more susceptible to the impact of overactivation events. These functions include “molecular 

transducer activity”, “signaling receptor activity”, “kinase activity”, “enzyme regulator activity”, and 

“phosphotransferase activity”. 
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Figure 5.8 The functional landscape of proteins predicted to be exclusively DN or GOF. 

Middle: pDN vs pGOF scatter plot coloured by pLOF. Correlation triangle on the right shows Spearman correlations of 

the class probabilities. Top: The lollipop chart shows the most enriched molecular functions for genes predicted to be 

GOF below the t50 threshold for pDN (exclusively GOF). Bottom: Likewise, the chart shows the most enriched functions 

for DN genes below the t50 threshold for pGOF (exclusively DN). The x-axis shows the negative log10 false discovery rate. 

Altogether, these findings reinforce that the predictions are consistent with known and expected properties of 

non-LOF molecular mechanisms. Thus, they can be used to test hypotheses about the functional attributes of 

the proteins associated with the molecular mechanisms, which could facilitate the discovery of novel features 

for the next generation of VEPs. 
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5.4 Conclusion 

We constructed three binary classifiers to predict DN, GOF, and LOF dominant molecular disease mechanisms 

by substituting structural and functional features of protein-coding genes with limited coverage. These models 

have a similar performance to our previous non-LOF vs LOF classifier, which was based upon such limited but 

interpretable features. We combined the models’ output into a single class prediction using a proteome rank-

based approach and examined the properties of proteins assigned to the different molecular mechanisms. Our 

analyses provide strong evidence that the models reproduce the properties linked to molecular mechanisms at 

systems level. Notably, our findings underscore the predictability of pathogenic mutations in DN and GOF 

proteins – a problem recognised to be more challenging than in LOF proteins. This observation was 

consistently upheld in our unbiased analysis set, further stressing the need for diversifying the predictive 

capabilities of future VEPs. We have made available the predictions for the human reference proteome, and 

we hope researchers will use the data to prioritise novel or challenging variants and test hypotheses about the 

functional roles fulfilled by these proteins. It is important to emphasize that the models do not predict the 

likelihood of disease involvement by a gene. Instead, a non-disease associated gene with a predicted 

mechanism implies that the protein’s properties are most consistent with the given mechanism, which we 

expect will be particularly useful for researchers seeking to determine the molecular mechanisms underlying 

novel disease mutations.  
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6 Summary and future directions 

 

There are several conclusions relevant to both biology and translational medicine that can be drawn from the 

studies presented in this thesis. In this final chapter, I will highlight a few of these that I consider particularly 

important or interesting and discuss how they may lead to further investigation or be used to help solve 

outstanding challenges. 

In light of what we had established about the assembly of protein complexes solely by using interface size for 

inference, it is not at all surprising that I have found cotranslationally assembling subunits to have larger 

interfaces. A large interface has an inherent drive to assemble early due to the many yet unburied contacts, 

whose interface with water is less favourable than that with the partner subunit. It is surprising to observe, 

however, that multi-interface heteromers tend to expose larger interfaces on the N terminus, reflecting that 

the interface hierarchy is shaped by the process of translation. Perhaps this trend is suggestive of the adaptive 

mechanisms occurring over the course of evolution to increase assembly efficiency and confer incremental 

fitness benefit to the cell. We do not know what proportion of these evolutionary steps arise fortuitously, 

offering no benefit at first but then becoming essential via entrenchment. Although addressing this is a non-

trivial task, as we do not have the luxury to exactly replicate historical systems in which these changes first 

occurred, case studies employing ancestral sequence reconstruction and constructive biochemistry can at least 

give us an idea about which process is the default. We do not know either if large N-terminal interfaces are a 

signature of the widespread sequential cotranslational assembly of heteromers in the cell, although I have 

presented some evidence and intuitive arguments for this prediction. I believe this hypothesis will be simple 

to test once the proteome-scale detection of sequential cotranslational assembly has become possible. 

Analysis of the inheritance of Mendelian disease genes and their likely molecular mechanisms has revealed 

that protein complex subunits with dominant-negative disease mutations cotranslationally assemble at a lower 

frequency than other disease-linked subunits. A suitable explanation of this is that cotranslational assembly 

spatiotemporally separates the assembly of wild-type and mutant subunits in the cell, essentially preventing 

the mutant from poisoning functional complexes. Under this assumption, it is easy to see how C-terminally 

exposed interfaces, which lessen the likelihood of cotranslational assembly, would be associated more often 

with the dominant-negative effect. I find it thought-provoking that proteins with recessively inherited gene 

mutations have a high level of cotranslational assembly. In the introduction of this thesis, I listed popular 

adaptive arguments for the emergence of quaternary structure, including enhancing substrate specificity, 

increasing the frequency of substrate encounters, and providing opportunities for allosteric activity regulation 

in enzymes. Could cotranslational assembly represent a safety factor against dominant-negative and positive 

mutations contributing to the persistent recessivity of enzymes? If so, is it driven by an adaptive process or is 

it a necessary consequence of their quaternary structure topology biased for dihedral symmetry? Considering 

that many core metabolic enzymes had evolved to a dihedral state in monoploid prokaryotes, it may well be 

that this benefit of cotranslational assembly is merely an epiphenomenon. It is my hope that our work will 

motivate evolutionary biologists to look further into this puzzle. 

I mentioned in the introduction that a common theme of complexes prone to assembly-mediated effects may 

be their reliance on the combined efforts of all subunits to achieve their intended function, rather than each 

subunit functioning on its own. A simple proxy for function is ligand binding, which can often be “multi-chain” 
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binding, i.e. two subunits having residues located at the same ligand interface. Multi-chain ligand binding 

residues in homomers should be more sensitive to assembly-mediated effects, because these residues are 

functionally contributed by two different alleles. In preliminary results, I have found support for this 

phenomenon, in that disease-linked homomers tend to have a higher fraction of multi-chain ligand binding 

residues. This relates to the likelihood of a random process, such as mutation, being more likely to affect these 

sites by chance in these complexes. A key confounder to control for is interface size, because homomers with 

multi-chain ligand binding sites are more likely to represent cases where complex topology has evolved to 

support function and therefore more likely to possess large, biologically significant interfaces. If this result 

held up to all relevant confounders, we could envisage a feature derived from multi-chain binding residues that 

could be important in future variant-level predictors of mutation effects. 

My research exploring the properties of proteins with dominant-negative, and generally non-LOF, disease 

mutations has culminated in a practical application. I developed a relatively simple but versatile model to 

distinguish between proteins whose mutations tend to act via one of the dominant molecular mechanisms. To 

illustrate how the proteome-scale mechanism prediction could enable variant prioritisation, consider the 

SG10K_Health data (SG10K), which is the output of the Singapore National Precision Medicine programme, 

comprised of 10,000 whole-genome sequences from healthy Chinese, Indian, and Malay individuals. If we 

hypothesise that there are dominant-negative variants in SG10K, much like p.Glu504Lys in ALDH2 with an 

allele frequency of 8% in Asian populations, how do we find them? I performed an analysis on missense 

variants predicted to be pathogenic (VARITY_R score >0.95) and at the same time predicted to have a 

relatively mild impact on protein structure (|ΔΔG| <2), i.e. prime candidates for dominant-negative effects 

(DN candidates). To identify significantly enriched variants in SG10K, I calculated for every disease-associated 

gene the fraction of the population that carries a putatively dominant-negative allele and compared it to 

gnomAD, which is biased towards European ancestry. Figure 6.1 shows the end-point of this analysis, where 

I contrast the pDN (probability of the gene being associated with a dominant-negative mechanism) of DN 

candidates to the background and find that the former indeed have higher pDN on average.  

 

Figure 6.1 Clinically relevant use-cases of the DN vs LOF model. 

Left: Disease genes with significantly enriched variants with dominant-negative properties in the SG10K population (DN 

candidate) have higher pDN than the background. Right: De novo mutations in recessive genes of undiagnosed 

developmental disorder patiens are more likely to map to genes with higher pDN. 

Encouragingly, one of the proteins pulled down by the analysis is ALDH2, lending confidence to the strategy. 

Our hope is that a similar screen can help decide which variants are worth studying further by combined 
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laboratory and computational techniques, increasing the chance of finding clinically or epidemiologically 

relevant variants. 

Finally, at multiple junctions I eluded to the idea that dominant-negative mutations in recessive genes may be 

an overlooked cause of disease, especially developmental disorders (DD). When de novo mutations occur in 

recessive genes, they are often ruled out to be disease-causing as the gene is thought to be robust to the effect 

of dominant mutations. Although this may be the case with simple LOF mechanisms, it does not exclude a 

dominant-negative effect. I would like to estimate the contribution of cryptic dominant-negative mutations to 

DD, by means yet to be determined. However, for over 10,000 patients with trio-sequencing data (Kaplanis et 

al. 2020), we obtained diagnosed/undiagnosed proband labels from a recent Deciphering Developmental 

Disorder Consortium study (C. F. Wright et al. 2023). An analysis of genes with biallelic contribution to DD 

suggests that a randomly selected de novo mutation is more likely to come from a gene with high pDN in 

undiagnosed patients relative to diagnosed patients (Figure 6.1), consistent with the hypothesis. Even if the 

overall dominant-negative burden turns out to be relatively small, providing a potential diagnosis can make an 

immeasurable impact in the patients’ lives. 

The value of this thesis is in highlighting the importance of protein complex assembly in human disease. We 

are fortunate to live in a time when high-throughput experiments and complex statistical methods joined with 

increasing computational power are accelerating our knowledge about structural biology faster than ever 

before. This knowledge will continue to draw attention to protein complexes as it is their assembly that is often 

the key to understanding their function. While much remains to be accomplished, the rapidly improving field 

of protein complex and structure prediction will be fundamental to exploring molecular disease mechanisms 

other than simple loss of function. 
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Appendix 

 

 

Appendix 2.1 Controlling for potential confounders of the cotranslational assembly data. 

(A) Interface size differences between cotranslationally assembling and all other subunits of C2 homodimers and 

heterodimers, measured at incremental interface area cutoffs. Error bars represent standard error of the mean (SEM) 

and labels show the number of proteins in each group. The p-values were calculated with two-sided Wilcoxon rank-sum 

tests. (B) Left: Interface size differences between cotranslationally assembling and all other subunits of plasma 

membrane localised higher-order cyclic symmetry members. Right: Interface size differences between cotranslationally 

assembling and all other subunits of dihedral complexes grouped by their probable evolutionary history. The p-values 

were calculated with two-sided Wilcoxon rank-sum tests. (C) Interface size differences between cotranslationally 

assembling and all other subunits of C2 homodimers and heterodimers, binned into three approximately equal-sized bins 

of sequence length. Error bars represent SEM and labels show the number of proteins in each group. The p-values were 

calculated with two-sided Wilcoxon rank-sum tests. (D) Interface size differences subset by confidence in cotranslational 

assembly. Only proteins with cytoplasmic and nuclear localisations are included. Pictograms show the basic structure of 

symmetry group members, with the blue dots representing isologous and red dots representing heterologous and 

heteromeric interfaces. The p-values were calculated with two-sided Wilcoxon rank-sum tests between high confidence 

and all other subunits. Differences between high confidence and low confidence subunits are not significant. Larger dots 

within boxes represent the sample mean. 
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Appendix 2.2 Additional analyses supporting the results shown in Figure 2.5. 

(A) Full distribution of the first versus last translated interface size differences for all subunits, subunits with at least one 

interface >1,000 Å2, and subunits with at least one interface >2,000 Å2, in the first, second, and third panels, 

respectively. (B) Interface size differences between the first and last translated interfaces in human multi-interface 

heteromeric subunits, with those identified to have simultaneously forming interfaces shown as a separate group. Error 

bars are standard error of the mean (SEM) and labels on bars show the number of proteins in each group. The p-values 

were calculated with Wilcoxon signed-rank tests. (C) Scatter plots showing the absolute distance in amino acids between 

translational start points of the first and last translated interfaces and the absolute area difference across species. Shaded 

lines represent the 95% confidence interval of the regression line. (D) TIE-fighter plots demonstrating that interface 

separation increases the area difference in favour of the first interface independent of protein length. For all species, the 

relative translational distance interval was split at the mean, and the plot is divided into less and more than 400 amino 

acid long sequences. Dots represent the mean and error bars are SEM. Labels are the number of proteins in each group. 

Background colour reflects the direction of the size difference: blue – first interface larger, yellow – last interface larger. 
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Appendix 3.1 Controls of potential confounders of the inheritance-level analysis. 

(A) Box-violin plot comparison of the abundance distribution of AD and AR homomers and repeated subunits. Boxes 

denote data within 25th and 75th percentiles, the middle line represents the median and the notch contains the 95% 

confidence interval of the median. Numbers are sample size and the p-value was calculated with the Wilcoxon rank-sum 

test. (B) The level of cotranslational assembly among AD vs AR genes binned into quartiles of active ribosome protected 

fragment counts measured in HEK293 cells. Each bin corresponds to 25% of proteins by count and the fragment per 

million intervals are displayed in brackets. Bar values are per cent level of cotranslational assembly, error bars are 

Jeffrey’s 68% binomial credible intervals. The p-value from the hypergeometric test and the odds ratio (in bold) and its 

95% confidence interval is shown above the bars. Labels on bars are the count of cotranslationally assembling subunits 

(top) and all other subunits (bottom). Panels E-G have the same parameters. (C) Level of cotranslational assembly in 

homomeric symmetry groups. (D) Box-violin plot comparison of the length distribution of AD and AR subunits. 

Numbers at the bottom represent sample size and the p-value was calculated with the Wilcoxon rank-sum test. (E) The 

level of cotranslational assembly binned by protein length. (F) The level of cotranslational assembly grouped by the 

confidence in their identification. (G) The level of cotranslational assembly binned by fractional helix content. 
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Appendix 3.2 Controls of potential confounders of the molecular mechanism-level analysis. 

(A) Box-violin plot comparison of the predicted ΔΔG of pathogenic mutations in homomers and repeated subunits, 

grouped by molecular mechanisms. Boxes denote data within 25th and 75th percentiles, the middle line represents the 

median, the notch contains the 95% confidence interval of the median and white dots are the mean. Numbers on top are 

sample sizes for genes (ngene) and missense variants (nvar) within the groups. The p-value was calculated with the 

Wilcoxon rank-sum test. (B) Box-beeswarm plot comparison of the extent of disease clustering (EDC) metric that 

measures the extent to which pathogenic mutations cluster in 3D space. Numbers show the number of genes in each 

group. The p-value was calculated with the Wilcoxon rank-sum test. (C) Stacked bar chart showing the interface residue 

enrichment of missense pathogenic mutations in the DN group relative to LOF. The p-value was calculated with the 

hypergeometric test. (D) Stacked bar chart of the symmetry group composition of homomeric subunits with different 

inheritance and molecular mechanisms. (E) Stacked bar chart of the molecular function composition of homomers and 

repeated subunits with different inheritance and molecular mechanisms. (F) Level of cotranslational assembly within the 

different inheritance and molecular mechanism classes subset by homomeric symmetry groups. Bar values are per cent 

level of cotranslational assembly, error bars are Jeffrey’s 68% binomial credible intervals. (G) Level of cotranslational 

assembly split into homomers and repeated subunit heteromers. Bar values are per cent level of cotranslational assembly, 

error bars are Jeffrey’s 68% binomial credible intervals. The p-values were calculated from a hypergeometric test.  
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Appendix 3.3 Supplemental analyses using interface size and relative interface location. 

(A) Interface area differences in homomers with different inheritance and molecular mechanisms. Crossbars are mean 

± SEM. The p-values were calculated with Dunn’s test using Holm-Bonferroni correction. Sample sizes are shown in 

panel B. (B) Relative interface location of homomers with different inheritance and molecular mechanisms. Crossbars 

are mean ± SEM. Sample sizes are shown on the left. (C) Relative interface location of C2 symmetric homodimers with 

different inheritance and molecular mechanisms. Violins show the density distribution of the data and the crossbars are 

mean ± SEM. Dashed line shows the symmetry mean measured in all human C2 dimers with structural data. 
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Appendix 5.1 Performance evaluation of the lasso regression model. 

(A) Performance of the lasso regression model as a function of the penalty parameter estimated from the cross-validation 

folds. Dashed line is at λ = 0.00501, the penalty value in the final model. (B) Lasso penalty (λ) vs the regression 

coefficient (β). The lines are coloured according to the type of the variable: sequence-derived or evolutionary variables 

(blue), functional annotations (green), mutational constraint metrics (red), structural properties (black), interaction 

network-based property (pink), and experimental data (orange). (C) Precision-recall curve of the lasso regression model 

measured on the test set. (D) Distribution of model probabilities for non-LOF and LOF genes in the test set. The solid 

and dashed vertical lines mark threshold T1 and T2, respectively. (E) Performance metrics measured on the test set as a 

function of the model probability threshold. (F) Differences in ΔΔG and EDC (G) of pathogenic mutations between 

proteins predicted to be non-LOF versus all other proteins measured at different thresholds. Boxes denote data within 

25th and 75th percentiles with the middle line representing the median, the notch containing the 95% confidence interval 

of the median and the white dots are the mean. Labels indicate the number of variants (ΔΔG) or the number of proteins 

(EDC) in the groups. The p-values were calculated with Wilcoxon rank-sum tests and effect sizes are shown in bold.  
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Appendix 5.2 Supplemental analysis to Figure 5.7: Validation of the models through model-independent metrics 

on an unbiased analysis set, using rank-based classification without t50 cutoff. 

(A) FoldX-predicted ΔΔG of pathogenic missense mutations. Numbers below classes denote the number of mutations. 

Holm-Bonferroni corrected p-values above DN and GOF boxes are relative to the LOF group and were determined by 

one-sided Wilcoxon rank-sum test. Sample sizes indicate the number of variants. (B) Class probabilities of the analysis 

set vs EDC. Sample sizes indicate the number of proteins in each class. Holm-Bonferroni corrected p-values above DN 

and GOF boxes are relative to the LOF group and were determined by one-sided Wilcoxon rank-sum test. (C) Aggregated 

AUROC analysis of pathogenic vs benign variants in predicted molecular mechanism classes. Labels indicate the number 

of proteins in each class. Boxes denote data within 25th and 75th percentiles, the middle line represents the median and 

the notch contains the 95% confidence interval of the median. Violins show area-normalized distributions. 
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