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Abstract
Machine learning systems have made headlines in recent years, defeating world cham-

pions in Go, enhancing medical diagnoses, and redefining how we work with tools like

ChatGPT. However, despite these impressive feats, machine learning systems remain

fragile when faced with test data that differs from their training data. This fragility

stems from a fundamental mismatch between textbook machine-learning methods and

their real-world application. While textbook methods assume that the conditions under

which a system is developed are similar to those in which it is deployed, in reality,

systems tend to be developed under one set of conditions (e.g., in a lab) and deployed

to another (e.g., a clinic). As a result, many machine learning systems are not prepared

for the condition differences or distribution shifts they face upon deployment, leading

to some high-profile and costly failures. For safety-critical settings like healthcare and

autonomous driving, such failures represent a major barrier to real-world deployment.

In this thesis, I argue that we must first accept that shift happens, and subsequently

focus on how we can best prepare. To do so, I present four of my works that illustrate

how machine learning systems can be prepared for (and adapted to) real-world distri-

bution shifts. Together, these contributions take us closer to reliable machine learning

systems that can be deployed in safety-critical settings.

In the first work, the setting is source-free domain adaptation, i.e., adapting a model

to unlabelled test data without the original training data. Here, we prepare for a change

in measurement device (e.g., X-rays from a different scanner) by storing lightweight

statistics of the training data. By restoring these statistics on the test data, we see

improved accuracy, calibration and data efficiency over prior methods.

In the second work, the setting is domain generalisation, i.e., performing well on

test data from new environments or domains by leveraging data from multiple related

domains at training time. Here, we prepare for more flexible and unknown changes

by exploiting invariances across the training domains that hold with high probability

in unseen test domains. In particular, by minimising a particular quantile of a model’s

performance distribution over domains, we learn models that perform well with the

corresponding probability.

In the third work, the setting is again domain generalisation, but this time we focus

on ways to harness so-called “spurious” features without test-domain labels. In partic-

ular, we show that predictions based on invariant/stable features can be used to adapt

our usage of spurious/unstable features to new test domains, so long as the stable and
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unstable features are complementary (i.e., conditionally independent given the label).

By safely harnessing complementary spurious features, we boost performance without

sacrificing robustness.

Finally, in the fourth work, the setting is disentangled representation learning which,

in the context of this thesis, can be viewed as preparing for a change in the task itself

by recovering and separating the underlying factors of variation. To this end, we ex-

tend an existing evaluation framework by first introducing a measure of representation

explicitness or ease of use, and then connecting the framework to identifiability.
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Lay summary
Machine learning systems have made headlines in recent years, defeating world cham-

pions in Go, enhancing medical diagnoses, and redefining how we work with tools like

ChatGPT. However, despite these impressive feats, machine learning systems remain

fragile when faced with test data that differs from their training data. This fragility

stems from a fundamental mismatch between textbook machine-learning methods and

their real-world application. While textbook methods assume that the conditions under

which a system is developed are similar to those in which it is deployed, in reality,

systems tend to be developed under one set of conditions (e.g., in a lab) and deployed

to another (e.g., a clinic). As a result, many machine learning systems are not prepared

for the condition differences or distribution shifts they face upon deployment, leading

to some high-profile and costly failures. For safety-critical settings like healthcare and

autonomous driving, such failures represent a major barrier to real-world deployment.

In this thesis, I argue that we must first accept that shift happens, and subsequently

focus on how we can best prepare. To do so, I present four of my works that illustrate

how machine learning systems can be prepared for (and adapted to) real-world distri-

bution shifts. Together, these contributions take us closer to reliable machine learning

systems that can be deployed in safety-critical settings.

In the first work, we prepare for a change in measurement device (e.g., X-rays from

a different scanner) by storing lightweight statistics of the training data. This allows us

to adapt a model trained on data from one setting (e.g., hospital A) to perform well on

unlabelled data from another setting (e.g., hospital B, which has a different scanner).

In the second work, we handle more flexible and unknown changes by leveraging data

from multiple related settings (e.g., multiple hospitals). This allows us to train a model

that performs well in new settings (e.g., hospitals) with high probability, eliminating

the need for adaptation. In the third work, we address changes in unstable or “spurious”

correlations in the data. We first separate stable and unstable correlations and then use

the stable ones to guide our use of the unstable ones. This allows us to train a model

that correctly uses both types of correlations in new settings, boosting performance

without sacrificing robustness. Finally, in the fourth work, we prepare for changes in

the task itself. To do so, we evaluate the quality of learned data representations, aiming

to find representations that are easy to use.
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A., and Schölkopf, B. (2023a). DCI-ES: An extended disentanglement framework

with connections to identifiability. In The Eleventh International Conference on

Learning Representations

In addition, the following publications were part of my PhD research, but do not

feature prominently within this dissertation:

5. Eastwood, C., von Kügelgen, J., Ericsson, L., Bouchacourt, D., Vincent, P., Schölkopf,

B., and Ibrahim, M. (2023c). Self-supervised disentanglement by leveraging

structure in data augmentations. Preprint arXiv:2311.08815

6. Li, N., Eastwood, C., and Fisher, R. (2020b). Learning object-centric repres-

entations of multi-object scenes from multiple views. In Advances in Neural

Information Processing Systems, volume 33, pages 5656–5666

7. Eastwood, C., Mason, I., and Williams, C. K. I. (2021). Unit-level surprise in

neural networks. In NeurIPS 2021 Workshop "I (Still) Can’t Believe It’s Not

Better!", volume 163 of Proceedings of Machine Learning Research, pages 33–40

8. Eastwood, C., Nanbo, L., and Williams, C. K. I. (2022b). Align-Deform-Subtract:

an interventional framework for explaining object differences. In ICLR 2022

Workshop on the Elements of Reasoning: Objects, Structure and Causality

vii



Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Cian Eastwood, Edinburgh, 2023)

viii



Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Few-shot domain adaptation . . . . . . . . . . . . . . . . . . 6

2.1.2 Unsupervised domain adaptation . . . . . . . . . . . . . . . . 6

2.1.3 Source-free domain adaptation . . . . . . . . . . . . . . . . . 6

2.2 Domain Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Disentangled Representation Learning . . . . . . . . . . . . . . . . . 9

2.4 Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Source-Free Domain Adaptation 13
3.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Comments on the paper . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Domain Generalisation: A Probabilistic Framework 31
4.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Comments on the paper . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Domain Generalisation: Harnessing Spurious Features 53
5.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Comments on the paper . . . . . . . . . . . . . . . . . . . . . . . . . 70

ix



6 Disentangled Representation Learning 73
6.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Comments on the paper . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusions 89
7.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 93

A Paper Appendices 105
A.1 Source-Free Domain Adaptation (§ 3.2) . . . . . . . . . . . . . . . . 105

A.2 Domain Generalisation: A Probabilistic Framework (§ 4.2) . . . . . . 129

A.3 Domain Generalisation: Harnessing Spurious Features (§ 5.2) . . . . . 158

A.4 Disentangled Representations (§ 6.2) . . . . . . . . . . . . . . . . . . 178

x



1

Introduction

Machine learning systems have made headlines in recent years, defeating world cham-

pions in Go (Silver et al., 2016), enhancing medical diagnoses (Singhal et al., 2023),

and redefining how we work with tools like ChatGPT (Brown et al., 2020). However,

despite these impressive feats, machine learning systems remain fragile when faced

with test data that is subtly different from the training data—be it due to changes in loca-

tion (e.g., X-rays from new hospitals, Zech et al. 2018), time (e.g., more recent satellite

images, Hansen et al. 2013), sub-populations (e.g., text from different demographic

groups, Borkan et al. 2019) or other naturally-occurring variations (e.g., common data

corruptions, Hendrycks and Dietterich 2019). These failures are of particular concern in

safety-critical applications such as healthcare (Beede et al., 2020; Jovicich et al., 2009)

and autonomous driving (Dai and Van Gool, 2018; Michaelis et al., 2019), where they

represent one of the most significant barriers to the real-world deployment of machine

learning systems (Koh et al., 2021).

At the heart of this issue is a fundamental mismatch between textbook machine-

learning methods and their real-world application. On the one hand, textbook machine-

learning methods assume that the conditions under which a model is developed are

similar to those in which it is deployed (Storkey, 2009), or, more precisely, that the

training and test data come from the same distribution (Vapnik, 1998)1. On the other

hand, real-world machine learning systems tend to be developed under one set of condi-

tions (e.g., in a lab) and then deployed to another (e.g., a clinic), leading to a shift in the

data distribution between training and test domains (Quiñonero-Candela et al., 2008).

As a result of this mismatch, many machine learning systems are unprepared for the

distribution shift that they (inevitably) encounter upon deployment in the test domain

1Through the assumption of i.i.d. (independent and identically distributed) data.

1



2 1. Introduction

of interest, leading to the aforementioned failures.

To address this issue, and ultimately close the gap between textbook machine learn-

ing methods and their real-world application, I argue that we must first accept that shift

happens and subsequently focus our attention on how we can best prepare. To do so, I

present four of my works that illustrate how machine learning systems can be prepared

for (and adapted to) real-world distribution shifts. Together, these contributions take

us closer to reliable machine-learning systems that can be deployed in safety-critical

settings.

In the first work, the setting is domain adaptation, in particular, source-free do-

main adaptation (SFDA, Li et al. 2020c). Here, a model is adapted to unlabelled and

previously-unseen test data without access to the original training data. This problem

can arise when deploying healthcare models to new hospitals (due to privacy regu-

lations) or deploying image/language models to mobile devices (due to storage con-

straints). We address this problem for one particular type of distribution shift, termed

measurement shift, that stems from a change in measurement device (e.g., X-rays from

a different scanner) and can therefore be resolved by restoring the same features on the

test data (rather than learning new ones). To do so, we store a lightweight approxima-

tion of the feature distribution on the training data and then adapt the model to the test

data by restoring or realigning the feature distribution. On both synthetic and real-world

measurement shifts, we show improved accuracy, calibration, and data efficiency.

In the second work, the setting is domain generalisation (DG, Blanchard et al.

2011; Muandet et al. 2013). Here, a model is trained on data from multiple related en-

vironments or domains (e.g., hospitals) with the goal of performing well on data from

related but unseen domains. In general, preparation involves exploiting invariances

across the training domains in the hope that these invariances also hold in test domains.

In particular, prior works have sought to do so by learning models that perform well

on-average (Blanchard et al., 2021; Zhang et al., 2021) or in-the-worst-case (Arjovsky

et al., 2019; Sagawa* et al., 2020). While the former approach tends to lack robust-

ness (Nagarajan et al., 2021), the latter tends to be overly conservative (Tsipras et al.,

2019). We address these issues by proposing a new probabilistic framework wherein

the goal is to learn models that perform well with high probability. In particular, by

explicitly relating the training and test domains as draws from the same underlying

meta-distribution, we ensure that distribution shifts seen during training inform us of

probable shifts at test time. Then, by minimising a particular quantile of a model’s

performance distribution over training domains, we learn models that perform well on
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unseen test domains with the corresponding probability.

In the third work, the setting is again domain generalisation, but this time we focus

on ways to safely harness “spurious” (Geirhos et al., 2020) features. Prior works sought

robustness by discarding the spurious or unstable features whose relationship with

the label changes across domains, restricting the model to features with an invariant

or stable relationship with the label across domains (Arjovsky et al., 2019; Krueger

et al., 2021; Peters et al., 2016). However, unstable features often carry complementary

information about the label that could boost performance if used correctly in the test

domain. We show that it is possible to do so without test-domain labels, using only

predictions based on the stable features, so long as the stable and unstable features

are conditionally independent given the label. We then use this theoretical insight to

propose an algorithm for safely harnessing complementary spurious features without

test-domain labels. On real and synthetic datasets, we show that this boosts performance

without sacrificing robustness.

In the fourth and final work, the setting is representation learning, in particular, dis-

entangled representation learning. One of the primary goals of representation learning

is to learn representations of complex data that make it easier for downstream tasks

to extract useful information (Bengio et al., 2013). In the context of this thesis, this

can be viewed as an extreme setting for distribution shift in which the task changes or

shifts at test time. With this view in mind, disentangled representation learning can be

seen as preparing for an unknown test-time task by recovering and separating the data’s

underlying factors of variation, discarding as little information as possible (Desjardins

et al., 2012; Kulkarni et al., 2015). To better facilitate the learning and comparison of

methods for disentangled representation learning, prior works have proposed protocols

or frameworks for evaluating disentangled representations. We build on one such frame-

work, that of Eastwood and Williams (2018), by first connecting it to identifiability and

then extending it to contain new complementary measures of representation quality

which better correlate with downstream performance.

1.1 Outline

The remainder of this thesis is structured as follows:

• Chapter 2 provides background material for the following chapters.

• Chapter 3 focuses on domain adaptation, in particular, source-free domain ad-



4 1. Introduction

aptation, and is based on the following paper:

Eastwood, C., Mason, I., Williams, C. K. I., and Schölkopf, B. (2022a). Source-

free adaptation to measurement shift via bottom-up feature restoration. In

The Tenth International Conference on Learning Representations

• Chapter 4 focuses on domain generalisation and the introduction of a new prob-

abilistic framework. It is based on the following paper:

Eastwood, C., Robey, A., Singh, S., Kügelgen, J. V., Hassani, H., Pappas, G. J.,

and Schölkopf, B. (2022c). Probable domain generalization via quantile

risk minimization. In Advances in Neural Information Processing Systems,

volume 35, pages 17340–17358

• Chapter 5 focuses domain generalisation and how “spurious” features can be

safely harnessed. It is based on the following paper:

Eastwood, C., Singh, S., Nicolicioiu, L. A., Von Kügelgen, J., and Schölkopf,

B. (2023b). Spuriosity didn’t kill the classifier: Using invariant predictions

to harness spurious features. In Advances in Neural Information Processing

Systems

• Chapter 6 focuses on representation learning, in particular, disentangled repres-

entation learning, and is based on the following paper:

Eastwood, C., Nicolicioiu, A. L., Kügelgen, J. V., Kekić, A., Träuble, F., Dit-

tadi, A., and Schölkopf, B. (2023a). DCI-ES: An extended disentanglement

framework with connections to identifiability. In The Eleventh International

Conference on Learning Representations

• Chapter 7 presents conclusions and avenues for future research.



2

Background

This chapter provides a general background for the remainder of the thesis, with more de-

tailed background information, including notation setup and formal definitions, deferred

to the papers themselves. In particular, this chapter provides a general background for

each of the distribution-shift settings considered in this work: domain adaptation (§ 2.1),

domain generalisation (§ 2.2) and disentangled representation learning (§ 2.3). This

chapter also briefly discusses the related setting of meta-learning (§ 2.4), and ends by

comparing each of the settings considered in this work to make clear their similarities

and differences (§ 2.5).

2.1 Domain Adaptation

When there is a shift in the data distribution between training and test domains, one

strategy might be to re-collect and annotate enough examples in the test domain to re-

train the model. However, this process can be extremely expensive. A cheaper strategy

is that of few-shot domain adaptation, where models are trained such that they can be

adapted in the test domain given only a few labelled examples. An even cheaper strategy

is that of unsupervised domain adaptation (UDA), where unlabelled test-domain data

is incorporated into the training process in order to minimise the domain ‘gap’, e.g.,

by aligning statistics of the training and test distributions (Ganin and Lempitsky, 2015;

Long et al., 2015). However, UDA methods require simultaneous access to the train-

ing and test datasets—an often impractical requirement due to privacy regulations or

transmission constraints, e.g., deploying healthcare models (trained on private data) to

different hospitals or deploying image-processing models (trained on huge datasets) to

new mobile devices. This leads to the setting of source-free domain adaptation (SFDA),

5



6 2. Background

where models are adapted to previously unseen test data without labels and without ac-

cess to the original training or ‘source’ dataset. We now discuss few-shot, unsupervised

and source-free domain adaptation in more detail.

2.1.1 Few-shot domain adaptation

Few-shot learning aims to learn a model that can be adapted given only a few labelled

examples. The most common formulation involves a task shift at test time, where

new classes are encountered that were not seen at training time. These task shifts

are usually described using the N-shot K-way terminology, where N is the number of

labelled examples available and K is the number of new classes encountered. While

this formulation is the most common, few-shot learning can be applied more generally

to any type of distribution shift, including domain adaptation (Motiian et al., 2017) and

domain generalisation (Li et al., 2018a).

The simplest approach to few-shot learning is to only adapt a small subset of the

model’s parameters depending on the expected shift type, e.g., the last layer for label

shift or encountering new classes (Yosinski et al., 2014) and the first layer for low-level

corruptions (Eastwood et al., 2021). Another approach is to explicitly optimise for

few-shot performance using meta-learning, as discussed in § 2.4.

2.1.2 Unsupervised domain adaptation

In unsupervised domain adaptation (UDA), unlabelled test-domain data is incorporated

into the training process in order to minimise the domain ‘gap’. Inspired by the theory

of Ben-David et al. (2010, 2007), the most common approach is to align the training

and test domains by matching their distributions in feature space (Ganin and Lempitsky,

2015; Ganin et al., 2016; Long et al., 2015, 2018; Shu et al., 2018; Tzeng et al., 2017).

2.1.3 Source-free domain adaptation

In source-free domain adaptation (SFDA), models are adapted to previously unseen

test data without labels and without access to the original training or ‘source’ dataset

(see Table 2.1). Thus, it can be seen as a further restriction of UDA where the training

and test domains are never available simultaneously due to privacy, transmission or

storage constraints. The most common approach to SFDA is entropy minimisation, i.e.,

adapting the model in the test domain by making its predictions more confident (Kundu
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Table 2.1: Distribution-shift settings at test/adaptation time. The settings considered

in this work can be distinguished based on the data that is available during adaptation.

In particular, whether or not the training or source data is available, and the type of test

or target data that is available (labelled or unlabelled). Based on Table 7 of Chapter 3

(given in App. A.1).

Setting Source data Target data Adapt. loss

Fine-tuning & few-shot DA - xt ,yt L(xt ,yt)

UDA xs,ys xt L(xs,ys)+L(xs,xt)

Source-free DA - xt L(xt)

Domain generalisation - - -

et al., 2020; Li et al., 2020c; Liang et al., 2020; Morerio et al., 2020). In particular,

Liang et al. (2020) recently achieved compelling results by re-purposing the semi-

supervised information-maximisation loss (Krause et al., 2010) and combining it with

a pseudo-labelling loss (Lee et al., 2013). Another approach is that of adaptive batch

normalisation (AdaBN, Li et al. 2017), where the training-data batch-normalisation

statistics are replaced with those of the test data. Surprisingly, this simple and parameter-

free approach is often competitive with more complex techniques, encouraging more

recent works to combine AdaBN with entropy minimisation (Wang et al., 2021). Finally,

another approach is to train generative models of the training-domain data-distribution

so that samples can be drawn and leveraged in the test domain (Kundu et al., 2020;

Kurmi et al., 2021; Li et al., 2020c; Morerio et al., 2020; Stan and Rostami, 2021; Yeh

et al., 2021).

2.2 Domain Generalisation

In domain generalisation (DG), a model is trained on data from multiple related domains

with the goal of performing well on data from other related but unseen test domains. For

example, in the iWildCam dataset (Beery et al., 2021), the task is to classify different

animal species in images, and the domains correspond to the different camera-traps

which captured the images (see Fig. 2.1). In general, preparation involves exploiting

invariances across the training domains in the hope that these invariances also hold

in related but distinct test domains. To do so, the most common approaches involve
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Test domains
Location 1

Location M

Location M + 1

Location M + K

Training domains

Figure 2.1: Overview of the domain generalisation problem. Training and test data

are drawn from multiple related distributions or domains. For example, in the iWildCam

dataset (Beery et al., 2021), which contains camera-trap images of animal species, the

domains correspond to the different camera-traps which captured the images. Based on

Fig. 1a of Chapter 4.

learning models that perform well on-average (Blanchard et al., 2021; Zhang et al.,

2021) or in-the-worst-case (Arjovsky et al., 2019; Sagawa* et al., 2020).

In particular, one line of work (see, e.g., Ahuja et al. 2021; Arjovsky et al. 2019;

Krueger et al. 2021) formulates the DG problem through the lens of robust optimisa-

tion (Ben-Tal et al., 2009), with various approaches solving constrained (Robey et al.,

2021) and distributionally robust (Sagawa* et al., 2020) objectives to maximise worst-

case performance.

Another line of work focuses on the links between invariant prediction and caus-

ality. Here, one goal is to identify components which are stable, robust, or invariant,

and find means to transfer them across problems (Bareinboim and Pearl, 2014; Gong

et al., 2016; Huang et al., 2017; Zhang et al., 2015, 2013), and another is to leverage

different forms of invariance across domains in order to discover causal relationships

which, under the invariant mechanism assumption (Peters et al., 2017), generalise to

new domains (Arjovsky et al., 2019; Gamella and Heinze-Deml, 2020; Heinze-Deml

et al., 2018; Krueger et al., 2021; Peters et al., 2016; Pfister et al., 2019; Rojas-Carulla

et al., 2018).

Outside of these two lines of work, many methods have been proposed for DG

which draw on insights from a diverse array of fields, including approaches based on

tools from meta-learning (Balaji et al., 2018; Dou et al., 2019; Li et al., 2018a; Shu
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et al., 2021; Zhang et al., 2021), kernel methods (Deshmukh et al., 2019; Dubey et al.,

2021), and information theory (Ahuja et al., 2021). Also prominent are works that

design regularisers to generalise OOD (Kim et al., 2021; Li et al., 2020a; Zhao et al.,

2020) and works that seek domain-invariant representations (Ganin et al., 2016; Huang

et al., 2020; Li et al., 2018b).

2.3 Disentangled Representation Learning

A primary goal of representation learning is to learn representations r(x) of complex

data x that “make it easier to extract useful information when building classifiers or

other predictors” (Bengio et al., 2013). Disentangled representations, which aim to

recover and separate (or, more formally, identify) the underlying factors of variation z
that generate the data as x = g(z), are a promising step in this direction. In particular,

it has been argued that such representations are not only interpretable (Chen et al.,

2016; Kulkarni et al., 2015) but also make it easier for downstream tasks to extract

useful information (Bengio et al., 2013; Desjardins et al., 2012; Lake et al., 2017;

Schmidhuber, 1992).

While there is no single, widely-accepted definition, many evaluation protocols

have been proposed to capture different notions of disentanglement based on the re-

lationship between the learnt representation or code c = r(x) and the ground-truth

data-generative factors z (see Fig. 2.2) (Chen et al., 2018; Eastwood and Williams,

2018; Higgins et al., 2017; Kim and Mnih, 2018; Ridgeway and Mozer, 2018; Shu

et al., 2020; Suter et al., 2019). In particular, the metrics of Eastwood and Williams

(2018)—disentanglement (D), completeness (C) and informativeness (I)—estimate this

relationship by learning a probe f to predict z from c and can be used to relate many

other notions of disentanglement (see Locatello et al. 2020a, § 6).

Approaches for learning disentangled representations can be grouped based on their

level of supervision. Unsupervised approaches are mostly based on the variational au-

toencoder (VAE, Kingma and Welling 2013) and tend to encourage disentanglement

through an unrealistic assumption of statistically independent factors z (Chen et al.,

2018; Higgins et al., 2017; Kim and Mnih, 2018). Perhaps more worryingly, it has

been shown that the unsupervised learning of disentangled representations is theoret-

ically impossible from i.i.d. observations without assumptions on both the data and

model (Hyvärinen and Pajunen, 1999; Locatello et al., 2019)—assumptions which are

often difficult to justify and impossible to test. Fortunately, many real-world obser-



10 2. Background

g (generate)

r (representation)

x

Figure 2.2: Evaluating disentangled representations. First, the data is generated as

x = g(z). Next, a model for disentangled representation learning is training on x, ulti-

mately producing a representation or code c = r(x). Finally, the relationship between

the learned representation c and ground-truth data-generating factors z (cyan links) is

used to evaluate the quality of the learned representation.

vations are not i.i.d. as they arise from changes in only a few underlying factors of

variation—providing a weak supervision signal for disentangled representation learn-

ing (Bengio et al., 2013, 2020; Dayan, 1993; Schölkopf et al., 2021).

Many weakly-supervised approaches assume access to paired or grouped obser-

vations across which only a single, known factor changes (Bouchacourt et al., 2018;

Hosoya, 2019; Kulkarni et al., 2015; Li et al., 2020b; Reed et al., 2015; Shu et al., 2020).

However, this kind of exact knowledge about which underlying factor has changed typ-

ically requires explicit human annotation or strong control over the data acquisition pro-

cess. Locatello et al. (2020b) weaken this requirement by learning disentangled repres-

entations from pairs of observations without knowledge of which or how many factors

have changed, so long as they do not all change. For example, given two temporally-

close video frames of a scene, we may expect some object properties and positions

to change, but not all. Another line of work assumes access to proxy counterfactual

interventions which can be used to approximately align factor values (Eastwood et al.,

2022b), e.g., using learned semantic-alignment networks to change the position and

orientation of objects in images (Rocco et al., 2018).

In the context of this thesis, disentangled representation learning can be viewed

as an extreme setting for distribution shift in which the task changes or shifts at test

time. The goal is thus to prepare for an unknown test-time task by recovering and

separating the data’s underlying factors of variation, discarding as little information as
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possible (Bengio et al., 2013; Desjardins et al., 2012).

2.4 Meta-Learning

In meta-learning, or learning to learn (Schmidhuber, 1987; Thrun and Pratt, 1998), mul-

tiple inner learning episodes are used to learn an outer/meta-learning algorithm itself.

In particular, an inner learning algorithm updates model parameters θ (e.g., neural net-

work weights) to solve a task like image classification, while an outer/meta-algorithm

updates the inner learning algorithm’s (hyper)parameters φ (e.g., learning rate) to im-

prove an outer objective like generalisation performance or speed of learning. While

meta-learning has been applied to a whole host of settings (see, e.g., Hospedales et al.

2021 for an overview), we focus on those most relevant to this thesis, namely domain

adaptation and domain generalisation. We now give a brief overview of these meta-

learning settings, deferring detailed method comparisons to the papers themselves.

For domain adaptation, meta-learning can be used to define a meta-objective that

directly optimises the performance of an inner algorithm on a held-out domain (Li

and Hospedales, 2020). This inner algorithm may leverage unlabelled examples (un-

supervised domain adaptation, as in § 2.1.2) or a small number of labelled examples

(few-shot domain adaptation, as in § 2.1.1).

For domain generalisation, meta-learning can be used to learn regularisers (Balaji

et al., 2018), losses (Li et al., 2019) and data augmentations/transformations (Tseng

et al., 2020) that maximise the robustness of an inner algorithm to held-out domain

shifts (Li et al., 2018a).

2.5 Summary

To summarise the distribution-shift settings considered in this work, we now make clear

their connections using Fig. 2.3 which, through a number of questions, provides a visual

overview of distribution shift as it relates to this thesis. Note that the lines separating

these settings are often blurred. In particular, despite adapting in the test domain, our

approach in Chapter 5 is best deemed a domain generalisation approach as it more

closely aligns with that literature.



12 2. Background

Test-domain
labels?

Fine-tuning /
few-shot DA /

other
Training-domain

labels?
Disentangled
repr. learning 

N Y

CH. 4,5

Source-free
DA

Domain
generalisation

Test-domain data
at training time?

Y

N

Unsupervised
DA

YMultiple training
domains?

NN

Adapt in test
domain?

Y

Multi-source
source-free DA

N

CH. 3

CH.6

Y

Figure 2.3: Overview of distribution shift as it relates to this thesis. The settings

considered in this thesis can generally be distinguished from each other, and related

topics in the literature, based on the above questions.
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Source-Free Domain Adaptation

This chapter focuses on domain adaptation, in particular, source-free domain adapta-

tion (SFDA, Li et al. 2020c). Here, a model is adapted to unlabelled and previously-

unseen test data without access to the original training data, e.g., due to privacy regu-

lations or storage constraints. For example, this situation arises when deploying health-

care models trained on private datasets to new hospitals, or deploying image/language

models trained on enormous datasets to mobile devices. Prior works prepared for SFDA

by generating artificial negative datasets (Kundu et al., 2020) or introducing special

training techniques that make the model easier to adapt (Liang et al., 2020), and then

adapted via entropy-minimisation, i.e., making predictions more confident on the test

data (Liang et al., 2020). While this approach can be effective, it relies on good initial

predictions, destroys model calibration, and only applies to classification. We address

these issues for one particular type of distribution shift, termed measurement shift,

which can be resolved by restoring the same features on the test data rather than learn-

ing new ones. In particular, we prepare for source-free adaptation to measurement shift

by storing a lightweight approximation of the feature distribution on the training data,

and then adapt the model by restoring or realigning its feature distribution on the test

data. On both synthetic and real-world measurement shifts, we show improved accuracy,

calibration, and data efficiency.

3.1 Contribution

I led this project from conceptualisation to final form. In particular, I was heavily

involved in coming up with the main idea, formalising the concept of measurement shift,

designing the experimental analyses, running the experimental analyses, and writing

13
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the manuscript. Some of these tasks, including running the experiments and writing,

were shared with Ian Mason, with whom I share first authorship.

3.2 Paper
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SOURCE-FREE ADAPTATION TO MEASUREMENT SHIFT
VIA BOTTOM-UP FEATURE RESTORATION
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ABSTRACT

Source-free domain adaptation (SFDA) aims to adapt a model trained on labelled
data in a source domain to unlabelled data in a target domain without access to
the source-domain data during adaptation. Existing methods for SFDA leverage
entropy-minimization techniques which: (i) apply only to classification; (ii) destroy
model calibration; and (iii) rely on the source model achieving a good level of
feature-space class-separation in the target domain. We address these issues for
a particularly pervasive type of domain shift called measurement shift which can
be resolved by restoring the source features rather than extracting new ones. In
particular, we propose Feature Restoration (FR) wherein we: (i) store a lightweight
and flexible approximation of the feature distribution under the source data; and (ii)
adapt the feature-extractor such that the approximate feature distribution under the
target data realigns with that saved on the source. We additionally propose a bottom-
up training scheme which boosts performance, which we call Bottom-Up Feature
Restoration (BUFR). On real and synthetic data, we demonstrate that BUFR outper-
forms existing SFDA methods in terms of accuracy, calibration, and data efficiency,
while being less reliant on the performance of the source model in the target domain.

1 INTRODUCTION

In the real world, the conditions under which a system is developed often differ from those in
which it is deployed—a concept known as dataset shift (Quiñonero-Candela et al., 2009). In
contrast, conventional machine learning methods work by ignoring such differences, assuming
that the development and deployment domains match or that it makes no difference if they do not
match (Storkey, 2009). As a result, machine learning systems often fail in spectacular ways upon
deployment in the test or target domain (Torralba & Efros, 2011; Hendrycks & Dietterich, 2019)

One strategy might be to re-collect and annotate enough examples in the target domain to re-train or
fine-tune the model (Yosinski et al., 2014). However, manual annotation can be extremely expensive.
Another strategy is that of unsupervised domain adaptation (UDA), where unlabelled data in the target
domain is incorporated into the development process. A common approach is to minimize the domain
‘gap’ by aligning statistics of the source and target distributions in feature space (Long et al., 2015;
2018; Ganin & Lempitsky, 2015). However, these methods require simultaneous access to the source
and target datasets—an often impractical requirement due to privacy regulations or transmission con-
straints, e.g. in deploying healthcare models (trained on private data) to hospitals with different scan-
ners, or deploying image-processing models (trained on huge datasets) to mobile devices with different
cameras. Thus, UDA without access to the source data at deployment time has high practical value.

Recently, there has been increasing interest in methods to address this setting of source-free domain
adaptation (SFDA, Kundu et al. 2020; Liang et al. 2020; Li et al. 2020; Morerio et al. 2020) where
the source dataset is unavailable during adaptation in the deployment phase. However, to adapt to
the target domain, most of these methods employ entropy-minimization techniques which: (i) apply
only to classification (discrete labels); (ii) destroy model calibration—minimizing prediction-entropy
causes every sample to be classified (correctly or incorrectly) with extreme confidence; and (iii)
assume that, in the target domain, the feature space of the unadapted source model contains reasonably
well-separated data clusters, where samples within a cluster tend to share the same class label. As

∗Equal contribution. Correspondence to or ianxmason@gmail.com.
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demonstrated in Section 5, even the most innocuous of shifts can destroy this initial feature-space
class-separation in the target domain, and with it, the performance of these techniques.

We address these issues for a specific type of domain shift which we call measurement shift (MS).
Measurement shift is characterized by a change in measurement system and is particularly pervasive
in real-world deployed machine learning systems. For example, medical imaging systems often fail
when deployed to hospitals with different scanners (Zech et al., 2018; AlBadawy et al., 2018; Beede
et al., 2020) or different staining techniques (Tellez et al., 2019), while self-driving cars often struggle
under “shifted” deployment conditions like natural variations in lighting (Dai & Van Gool, 2018) or
weather conditions (Volk et al., 2019). Importantly, in contrast to many other types of domain shift,
measurement shifts can be resolved by simply restoring the source features in the target domain—we
do not need to learn new features in the target domain to discriminate well between the classes.
Building on this observation, we propose Feature Restoration (FR)—a method which seeks to extract
features with the same semantics from the target domain as were previously extracted from the source
domain, under the assumption that this is sufficient to restore model performance. At development
time, we train a source model and then use softly-binned histograms to save a lightweight and flexible
approximation of the feature distribution under the source data. At deployment time, we adapt
the source model’s feature-extractor such that the approximate feature distribution under the target
data aligns with that saved on the source. We additionally propose Bottom-Up Feature Restoration
(BUFR)—a bottom-up training scheme for FR which significantly improves the degree to which fea-
tures are restored by preserving learnt structure in the later layers of a network. While the assumption
of measurement shift does reduce the generality of our methods—they do not apply to all domain
shifts, but rather a subset thereof—our experiments demonstrate that, in exchange, we get improved
performance on this important real-world problem. To summarize our main contributions, we:

• Identify a subset of domain shifts, which we call measurement shifts, for which restoring the source
features in the target domain is sufficient to restore performance (Sec. 2);

• Introduce a lightweight and flexible distribution-alignment method for the source-free setting in
which softly-binned histograms approximate the marginal feature distributions (Sec. 3);

• Create & release EMNIST-DA, a simple but challenging dataset for studying MS (Sec. 5.1);

• Demonstrate that BUFR generally outperforms existing SFDA methods in terms of accuracy,
calibration, and data efficiency, while making less assumptions about the performance of the source
model in the target domain (i.e. the initial feature-space class-separation) (Sec. 5.2–5.5);

• Highlight & analyse issues with entropy-minimization in existing SFDA methods (Sec. 5.5).

2 SETTING: SOURCE-FREE ADAPTATION TO MEASUREMENT SHIFT

We now describe the two phases of source-free domain adaptation (SFDA), development and de-
ployment, before exploring measurement shift. For concreteness, we work with discrete outputs (i.e.
classification) but FR can easily be applied to continuous outputs (i.e. regression).

Source-free adaptation. At development time, a source model is trained with the expectation that
an unknown domain shift will occur upon deployment in the target domain. Thus, the primary
objective is to equip the model for source-free adaptation at deployment time. For previous work, this
meant storing per-class means in feature space (Chidlovskii et al., 2016), generating artificial negative
datasets (Kundu et al., 2020), or introducing special training techniques (Liang et al., 2020). For us,
this means storing lightweight approximate parameterizations of the marginal feature distributions,
as detailed in the next section. More formally, a source model fs : Xs → Ys is trained on ns labelled
examples from the source domain Ds = {(x(i)

s , y
(i)
s )}ns

i=1, with x
(i)
s ∈ Xs and y(i)s ∈ Ys, before

saving any lightweight statistics of the source data Ss. At deployment time, we are given a pre-
trained source model fs, lightweight statistics of the source data Ss, and nt unlabelled examples from
the target domain Dt = {x(i)

t }nt
i=1, with x

(i)
t ∈ Xt. The goal is to learn a target model ft : Xt → Yt

which accurately predicts the unseen target labels {y(i)t }nt
i=1, with y(i)t ∈ Yt. Importantly, the source

dataset Ds is not accessible during adaptation in the deployment phase.

Domain shift. As depicted in Figure 1a, domain shift (Storkey, 2009, Section 9) can be understood
by supposing some underlying, domain-invariant latent representation L of a sample (X,Y ). This
combines with the domain (or environment) variable E to produce the observed covariates X =
mE(L), where mE is some domain-dependent mapping. For example, L could describe the shape,

2
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(a) Domain shift (b) Feature restoration (c) Measurement shifts (d) Non measurement shifts

Figure 1: Domain shift, feature restoration and measurement shift. (c,d): Top=source, bottom=target.
(c): CIFAR--C ‘frog’ & CAMELYON ‘tumor’. (d): Office-31 ‘desk chair’ & VisDA-C ‘person’.

appearance and pose parameters of scene objects, with X obtained by “rendering” the scene L, taking
into account parameters in E that prescribe e.g. lighting, camera properties, background etc.

Feature restoration. In the source domain we learn a feature space Z = gs(Xs) = gs(ms(L)),
where our source model fs decomposes into a feature-extractor gs and a classifier h, with fs = h ◦ gs
(left path of Figure 1b). For our source model fs to achieve good predictive accuracy, the features Z
must capture the information in L about Y and ignore the variables in E = s that act as “nuisance
variables” for obtaining this information from Xs (e.g. lighting or camera properties). In the target
domain (E = t), we often cannot extract the same features Z due to a change in nuisance variables.
This hurts predictive accuracy as it reduces the information about L in Z = gs(Xt) (and thus about
Y ). We can restore the source features in the target domain by learning a target feature-extractor gt
such that the target feature distribution aligns with that of the source (right path of Figure 1b), i.e.
p(gt(Xt)) ≈ p(gs(Xs)). Ultimately, we desire that for any L we will have gs(ms(L)) = gt(mt(L)),
i.e. that for source Xs = ms(L) and target Xt = mt(L) images generated from the same L, their
corresponding Z’s will match. We can use synthetic data, where we have source and target images
generated from the same L, to quantify the degree to which the source features are restored in the
target domain with |gs(ms(L))− gt(mt(L))|. In Section 5.5, we use this to compare quantitatively
the degree of restoration achieved by different methods.

Measurement shifts. For many real-world domain shifts, restoring the source features in the target
domain is sufficient to restore performance—we do not need to learn new features in order to
discriminate well between the classes in the target domain. We call these measurement shifts as they
generally arise from a change in measurement system (see Figure 1c). For such shifts, it is preferable
to restore the same features rather than learn new ones via e.g. entropy minimization as the latter
usually comes at the cost of model calibration—as we demonstrate in Section 5.

Common UDA benchmarks are not measurement shifts. For many other real-world domain shifts,
restoring the source features in the target domain is not sufficient to restore performance—we need
new features to discriminate well between the classes in the target domain. This can be caused
by concept shift (Moreno-Torres et al., 2012, Sec. 4.3), where the features that define a concept
change across source and target domains, or by the source model exploiting spurious correlations
or “shortcuts” (Arjovsky et al., 2019; Geirhos et al., 2020) in the source domain which are not
discriminative—or do not even exist—in the target domain. Common UDA benchmark datasets like
Office-31 (Saenko et al., 2010) and VisDA-C (Peng et al., 2018) fall into this category of domain
shifts. In particular, Office-31 is an example concept shift—‘desk chair’ has very different meanings
(and thus features) in the source and target domains (left column of Fig. 1d)—while VisDA-C is an
example of source models tending to exploit shortcuts. More specifically, in the synthetic-to-real task
of VisDA-C (right column of Fig. 1d), source models tend not to learn general geometric aspects
of the synthetic classes. Instead, they exploit peculiarities of the e.g. person-class which contains
only 2 synthetic “people” rendered from different viewpoints with different lighting. Similarly, if
we consider the real-to-synthetic task, models tend to exploit textural cues in the real domain that
do not exist in the synthetic domain (Geirhos et al., 2019). As a result, the standard approach is to
first pretrain on ImageNet to gain more “general” visual features and then carefully1 fine-tune these
features on (i) the source domain and then (ii) the target domain, effectively making the adaptation
task ImageNet→ synthetic→ real. In Appendix D we illustrate that existing methods actually fail
without this ImageNet pretraining as successful discrimination in the target domain requires learning
new combinations of the general base ImageNet features. In summary, common UDA benchmarks
like Office and VisDA-C do not contain measurement shift and thus are not suitable for evaluating
our methods. We nonetheless report and analyse results on VisDA-C in Appendix D.

1Many works lower the learning rate of early layers in source and target domains, e.g. Liang et al. (2020).
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Feat. Extractor Classifier

Source data Target data
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Feat. Extractor Classifier

Figure 2: The Feature Restoration framework. Left: At development time, a source model is trained before
saving approximations of the D marginal feature distributions under the source data {pzd}Di=1. Right: At de-
ployment time, the feature-extractor is adapted such that the approximations of the marginal feature distributions
on the target data {qzd}Di=1 align with those saved on the source.

3 FEATURE RESTORATION

Below we detail the Feature Restoration (FR) framework. During development we train a model and
then save a lightweight approximation of the feature distribution under the source data. At deployment
time, we adapt the model’s feature-extractor such that the approximate feature distribution under the
target data aligns with that saved on the source. Figure 2 gives an overview of the FR framework.

3.1 DEVELOPMENT

Setup. The source model fs is first trained using some loss, e.g. cross-entropy. Unlike most existing
SFDA methods (Chidlovskii et al., 2016; Liang et al., 2020; Kundu et al., 2020), we make no
modification to the standard training process, allowing pretrained source models to be utilized. We
decompose the source model fs into a feature-extractor gs : Xs → RD and a classifier h : RD → Ys,
where D is the dimensionality of the feature space. So z

(i)
s = gs(x

(i)
s ) denotes the features extracted

for source sample i, and ŷ(i)s = fs(x
(i)
s ) = h(gs(x

(i)
s )) denotes the model’s output for source

sample i. Under the assumption of measurement shift, the feature extractor should be adapted to
unlabelled target data to give z

(i)
t = gt(x

(i)
t ), but the classifier h should remain unchanged, so that

ŷ
(i)
t = ft(x

(i)
t ) = h(gt(x

(i)
t )).

Choosing an approximation of the feature distribution. For high-dimensional feature spaces,
storing the full joint distribution can be prohibitively expensive2. Thus, we choose to store only
the marginal feature distributions. To accurately capture these marginal distributions, we opt to use
soft binning (Dougherty et al., 1995) for its (i) flexibility—bins/histograms make few assumptions
about distributional form, allowing us to accurately capture marginal feature distributions which we
observe empirically to be heavily-skewed and bi-modal (see Appendix I); (ii) scalability—storage
size does not scale with dataset size (Appendix A, Table 5), permitting very large source datasets (for
a fixed number of bins B and features D, soft binning requires constant O(BD) storage and simple
matrix-multiplication to compute soft counts); and (iii) differentiability—the use of soft (rather than
“hard”) binning, detailed in the next section, makes our approximation differentiable.

Estimating the parameters of our approximation on the source data. We now use the soft
binning function of Yang et al. (2018, Sec. 3.1) to approximately parameterize the D marginal
feature distributions on the source data {pzd}Di=1, where pzd denotes the marginal distribution of
the d-th feature zd. Specifically, we approximately parameterize pzd using B normalized bin counts
πs
zd

= [πs
zd,1

, . . . , πs
zd,B

], where πs
zd,b

represents the probability that a sample z(i)d falls into bin b
under the source data and

∑B
b=1 π

s
zd,b

= 1. πs
zd

is calculated using

πs
zd

=

ns∑

i=1

u(z
(i)
d )

ns
=

ns∑

i=1

u(g(x(i))d ; zmin
d , zmax

d )

ns
, (1)

where z(i)d = g(x(i))d denotes the d-th dimension of the i-th sample in feature space, u is the vector-

2If we assume features are jointly Normal, computational complexity is O(ND2) per update, where N is the
batch size. If we bin the feature space into histograms (B bins per dimension), memory complexity is O(BD).
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valued soft binning function (see Appendix A), zmin
d = minns

i=1 z
(i)
d , and zmax

d is defined analogously
to zmin

d . Repeating this for all D features, we get πs
z = [πs

z1 , π
s
z2 , . . . , π

s
zD ]. In the left-hand “cloud”

of Figure 2, the blue curve depicts one such approximate marginal feature distribution πs
zd

. We find
it useful to additionally store approximate parameterizations of the marginal logit distributions on
the source data πs

a, where the logit (i.e. pre-softmax) activations a(i) are a linear combination of the
feature activations z(i), and πs

a is defined analogously to πs
z. Note that we can parameterize a similar

distribution for regression. Intuitively, aligning the marginal logit distributions further constrains
the ways in which the marginal feature distributions can be aligned. We validate this intuition in the
ablation study of Appendix J.2. Finally, we equip the model for source-free adaptation at deployment
time by saving the parameters/statistics of the source data Ss = {πs

z, π
s
a, z

min, zmax,amin,amax},
where zmin = [zmin

1 , zmin
2 , . . . , zmin

D ] and zmax, amin, and amax are defined analogously.

3.2 DEPLOYMENT

At deployment time, we adapt the feature-extractor such that the approximate marginal distributions
on the target data (πt

z, πt
a) align with those saved on the source (πs

z, πs
a). More specifically, we learn

the target feature-extractor gt by minimizing the following loss on the target data,

Ltgt(π
s
z, π

t
z, π

s
a, π

t
a) =

D∑

d=1

DSKL(π
s
zd
||πt

zd
) +

K∑

k=1

DSKL(π
s
ak
||πt

ak
), (2)

where DSKL(p||q) = 1
2DKL(p||q) + 1

2DKL(q||p) is the symmetric KL divergence, and
DKL(π

s
zd
||πt

zd
) is the KL divergence between the distributions parameterized by normalized bin

counts πs
zd

and πt
zd

, which is calculated using

DKL(π
s
zd
||πt

zd
) =

B∑

b=1

πs
zd,b

log
πs
zd,b

πt
zd,b

, (3)

with πs
zd,b

representing the probability of a sample from feature d falling into bin b under the source
data, and πt

zd,b
under the target data. Practically, to update on a batch of target samples, we first

approximate πt
z and πt

a on that batch using Eq. 1, and then compute the loss. Appendix B details the
FR algorithm at development and deployment time, while Appendix L summarizes the notations.

3.3 BOTTOM-UP FEATURE RESTORATION

A simple gradient-based adaptation of gt would adapt the weights of all layers at the same time.
Intuitively, however, we expect that many measurement shifts like brightness or blurring can be
resolved by only updating the weights of early layers. If the early layers can learn to extract the same
features from the target data as they did from the source (e.g. the same edges from brighter or blurrier
images of digits), then the subsequent layers shouldn’t need to update. Building on this intuition, we
argue that adapting all layers simultaneously unnecessarily destroys learnt structure in the later layers
of a network, and propose a bottom-up training strategy to alleviate the issue. Specifically, we adapt
gt in a bottom-up manner, training for several epochs on one “block” before “unfreezing” the next.
Here, a block can represent a single layer or group of layers (e.g. a residual block, He et al. 2016),
and “unfreezing” simply means that we allow the block’s weights to be updated. We call this method
Bottom-Up Feature Restoration (BUFR). In Section 5 we illustrate that BU training significantly
improves accuracy, calibration, and data efficiency by preserving learnt structure in later layers of gt.

4 RELATED WORK

Fine-tuning. A well-established paradigm in deep learning is to first pretrain a model on large-scale
“source” data (e.g. ImageNet) and then fine-tune the final layer(s) on “target” data of interest (Girshick
et al., 2014; Zeiler & Fergus, 2014). This implicitly assumes that new high-level concepts should
be learned by recombining old (i.e. fixed) low-level features. In contrast, under the assumption of
measurement shift, we fix the final layer and fine-tune the rest. This assumes that the same high-level
concepts should be restored by learning new low-level features. Royer & Lampert (2020) fine-tune
each layer of a network individually and select the one that yields the best performance. For many
domain shifts, they find it best to fine-tune an early or intermediate layer rather than the final one.
This supports the idea that which layer(s) should update depends on what should be transferred.

Unsupervised DA. Inspired by the theory of Ben-David et al. (2007; 2010), many UDA methods
seek to align source and target domains by matching their distributions in feature space (Long et al.,
2015; 2018; Ganin & Lempitsky, 2015; Ganin et al., 2016; Tzeng et al., 2017; Shu et al., 2018).
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However, as most of these methods are nonparametric (i.e. make no assumptions about distributional
form), they require the source data during adaptation to align the distributions. In addition, parametric
methods like Deep CORAL (Sun & Saenko, 2016) are not designed for the source-free setup—they
prevent degenerate solutions during alignment with a classification loss on the source data and have
storage requirements that are at least quadratic in the number of features. In contrast, our method
works without the source data and its storage is linear in the number of features.

Source-free DA. Recently, Liang et al. (2020) achieved compelling results by re-purposing the
semi-supervised information-maximization loss (Krause et al., 2010) and combining it with a pseudo-
labelling loss (Lee et al., 2013). However, their entropy-minimizing losses are classification-specific,
destroy model calibration, and rely on good initial source-model performance in the target domain (as
demonstrated in the next section). Other works have trained expensive generative models so that the
source data-distribution can be leveraged in the target domain (Li et al., 2020; Morerio et al., 2020;
Kundu et al., 2020; Kurmi et al., 2021; Yeh et al., 2021; Stan & Rostami, 2021). However, these meth-
ods are still classification-specific and rely on good initial feature-space class-separation for entropy
minimization (Li et al., 2020; Kundu et al., 2020), pseudo-labelling (Morerio et al., 2020; Stan & Ros-
tami, 2021), and aligning the predictions of the source and target models (Kurmi et al., 2021; Yeh et al.,
2021). Another approach is to focus on the role of batch-normalization (BN). Li et al. (2017) propose
Adaptive BN (AdaBN) where the source data BN-statistics are replaced with those of the target data.
This simple parameter-free method is often competitive with more complex techniques. Wang et al.
(2021) also use the target data BN-statistics but additionally train the BN-parameters on the target data
via entropy minimization, while Ishii & Sugiyama (2021) retrain the feature-extractor to align BN-
statistics. Our method also attempts to match statistics of the marginal feature distributions, but is not
limited to matching only the first two moments—hence can better handle non-Gaussian distributions.

5 EXPERIMENTS

In this section we evaluate our methods on multiple datasets (shown in Appendix F), compare to
various baselines, and provide insights into why our method works through a detailed analysis.

5.1 SETUP

Datasets and implementation. Early experiments on MNIST-M (Ganin et al., 2016) and MNIST-
C (Mu & Gilmer, 2019) could be well-resolved by a number of methods due to the small number of
classes and relatively mild corruptions. Thus, to better facilitate model comparison, we additionally
create and release EMNIST-DA—a domain adaptation (DA) dataset based on the 47-class Extended
MNIST (EMNIST) character-recognition dataset (Cohen et al., 2017). We also evaluate on object
recognition with CIFAR--C and CIFAR--C (Hendrycks & Dietterich, 2019), and on real-world
measurement shifts with CAMELYON (Bandi et al., 2018). We use a simple 5-layer convolutional
neural network (CNN) for digit and character datasets and a ResNet-18 (He et al., 2016) for the rest.
Full dataset details are provided in Appendix F and implementation details in Appendix G. Code is
available at https://github.com/cianeastwood/bufr.

Baselines and their relation. We show the performance of the source model on the source data as No
corruption, and the performance of the source model on the target data (before adapting) as Source-
only. We also implement the following baselines for comparison: AdaBN (Li et al., 2017) replaces the
source BN-statistics with the target BN-statistics; PL is a basic pseudo-labelling approach (Lee et al.,
2013); SHOT-IM is the information-maximization loss from Liang et al. (2020) which consists of a
prediction-entropy term and a prediction-diversity term; and target-supervised is an upper-bound that
uses labelled target data (we use a 80-10-10 training-validation-test split, reporting accuracy on the
test set). For digit and character datasets we additionally implement SHOT (Liang et al., 2020), which
uses the SHOT-IM loss along with special pre-training techniques (e.g. label smoothing) and a self-
supervised PL loss; and BNM-IM (Ishii & Sugiyama, 2021), which combines the SHOT-IM loss from
Liang et al. with a BN-matching (BNM) loss that aligns feature mean and variances on the target data
with BN-statistics of the source. We additionally explore simple alternative parameterizations to match
the source and target feature distributions: Marg. Gauss. is the BNM loss from Ishii & Sugiyama
which is equivalent to aligning 1D Gaussian marginals; and Full Gauss. matches the mean and full
covariance matrix. For object datasets we additionally implement TENT (Wang et al., 2021), which
updates only the BN-parameters to minimize prediction-entropy, and also compare to some UDA
methods. For all methods we report the classification accuracy and Expected Calibration Error (ECE,
Naeini et al. 2015) which measures the difference in expectation between confidence and accuracy.
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Table 1: Digit and character results. Shown are the mean and 1 standard deviation.

Model EMNIST-DA EMNIST-DA-SEVERE EMNIST-DA-MILD

ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓
No corruption 89.4± 0.1 2.3± 0.1 89.4± 0.1 2.3± 0.1 89.4± 0.1 2.3± 0.1

Source-only 29.5± 0.5 30.8± 1.6 3.8± 0.4 42.6± 3.5 78.5± 0.7 4.8± 0.5
AdaBN (Li et al., 2017) 46.2± 1.1 30.3± 1.1 3.7± 0.7 52.4± 4.9 84.9± 0.2 4.9± 0.3
Marg. Gauss. (Ishii & Sugiyama, 2021)51.8± 1.1 26.7± 1.1 4.8± 0.5 51.6± 6.4 85.8± 0.3 4.5± 0.3
Full Gauss. 67.9± 0.7 17.4± 0.7 29.8± 9.8 45.8± 8.4 85.7± 0.2 4.9± 0.2
PL (Lee et al., 2013) 50.0± 0.6 49.9± 0.6 2.7± 0.4 97.2± 0.4 83.5± 0.1 16.4± 0.1
BNM-IM (Ishii & Sugiyama, 2021) 63.7± 2.2 35.6± 2.2 8.3± 1.3 90.2± 1.1 86.5± 0.1 13.0± 0.1
SHOT-IM (Liang et al., 2020) 70.3± 3.7 29.6± 3.7 24.0± 7.5 76.0± 7.5 86.3± 0.1 13.7± 0.1
SHOT (Liang et al., 2020) 80.0± 4.4 19.7± 4.4 55.1± 23.5 42.7± 23.0 86.1± 0.1 14.8± 0.1
FR (ours) 74.4± 0.8 12.9± 0.9 15.3± 6.8 58.0± 6.8 86.4± 0.1 4.6± 0.3
BUFR (ours) 86.1± 0.1 4.7± 0.2 84.6± 0.2 5.6± 0.3 87.0± 0.2 4.2± 0.2

Target-supervised 86.8± 0.6 7.3± 0.7 85.7± 0.6 7.0± 0.5 87.3± 0.7 8.4± 1.1

5.2 CHARACTER-RECOGNITION RESULTS

Table 1 reports classification accuracies and ECEs for EMNIST-DA, with Appendix K reporting results
for MNIST datasets (K.1) and full, per-shift results (K.4 and K.5). The severe and mild columns
represent the most and least “severe” shifts respectively, where a shift is more severe if it has lower
AdaBN performance (see Appendix K.5). On EMNIST-DA, BUFR convincingly outperforms all other
methods—particularly on severe shifts where the initial feature-space class-separation is likely poor.
Note the large deviation in performance across random runs for SHOT-IM and SHOT, suggesting that
initial feature-space clustering has a big impact on how well these entropy-minimization methods can
separate the target data. This is particularly true for the severe shift, where only BUFR achieves high
accuracy across random runs. For the mild shift, where all methods perform well, we still see that: (i)
BUFR performs the best; and (ii) PL, BNM-IM, SHOT-IM and SHOT are poorly calibrated due to their
entropy-minimizing (i.e. confidence-maximizing) objectives. In fact, these methods are only reason-
ably calibrated if accuracy is very high. In contrast, our methods, and other methods that lack entropy
terms (AdaBN, Marg. Gauss., Full Gauss.), maintain reasonable calibration as they do not work by
making predictions more confident. This point is elucidated in the reliability diagrams of Appendix H.

5.3 OBJECT-RECOGNITION RESULTS

Table 2 reports classification accuracies and ECEs for CIFAR--C and CIFAR--C. Here we
observe that FR is competitive with existing SFDA methods, while BUFR outperforms them on
almost all fronts (except for ECE on CIFAR--C). We also observe the same three trends as on
EMNIST-DA: (i) while the entropy-minimizing methods (PL, SHOT-IM, TENT) do well in terms of
accuracy, their confidence-maximizing objectives lead to higher ECE—particularly on CIFAR--C
where their ECE is even higher than that of the unadapted source-only model; (ii) the addition of
bottom-up training significantly boosts performance; (iii) BUFR gets the largest boost on the most
severe shifts—for example, as shown in the full per-shift results of Appendix K.6, BUFR achieves
89% accuracy on the impulse-noise shift of CIFAR--C, with the next best SFDA method achieving
just 75%. Surprisingly, BUFR even outperforms target-supervised fine-tuning on both CIFAR--C
and CIFAR--C in terms of accuracy. We attribute this to the regularization effect of bottom-up
training, which we explore further in the next section.

We also report results for the “online” setting of Wang et al. (2021), where we may only use a single
pass through the target data, applying mini-batch updates along the way. As shown in Table 13 of Ap-
pendix K.2, FR outperforms existing SFDA methods on CIFAR--C and is competitive on CIFAR--
C. This includes TENT (Wang et al., 2021)—a method designed specifically for this online setting.

5.4 REAL-WORLD RESULTS

Table 4 reports results on CAMELYON—a dataset containing real-world (i.e. naturally occurring)
measurement shift. Here we report the average classification accuracy over 4 target hospitals. Note
that the accuracy on the source hospital (i.e. no corruption) was 99.3%. Also note that this particular
dataset is an ideal candidate for entropy-minimization techniques due to: (i) high AdaBN accuracy on
the target data (most pseudo-labels are correct since updating only the BN-statistics gives∼84%); (ii) a
low number of classes (random pseudo-labels have a 50% chance of being correct); and (iii) a large tar-
get dataset. Despite this, our methods achieve competitive accuracy and show greater data efficiency—
with 50 examples-per-class or less, only our methods meaningfully improve upon the simple AdaBN
baseline which uses the target-data BN-statistics. These results illustrate that: (i) our method performs
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Table 2: Object-recognition results. ?: result adopted from Wang et al. (2021).

Model CIFAR--C CIFAR--C

ACC ↑ ECE ↓ ACC ↑ ECE ↓
No corruption 95.3± 0.2 2.4± 0.1 76.4± 0.2 4.8± 0.1

DANN? (Ganin et al., 2016) 81.7 - 61.1 -
UDA-SS.? (Sun et al., 2019) 83.3 - 53 -

Source-only 57.8± 0.7 28.2± 0.4 36.4± 0.5 19.4± 0.9
AdaBN (Li et al., 2018) 80.4± 0.1 11.2± 0.1 56.6± 0.3 12.5± 0.1
PL (Lee et al., 2013) 82.5± 0.3 17.5± 0.3 62.1± 0.2 37.7± 0.2
SHOT-IM (Liang et al., 2020) 85.4± 0.2 14.6± 0.2 67.0± 0.2 32.9± 0.2
TENT (Wang et al., 2021) 86.6± 0.3 12.8± 0.3 66.0± 0.4 25.7± 0.4
FR (ours) 87.2± 0.7 11.3± 0.3 65.5± 0.2 15.7± 0.1
BUFR (ours) 89.4± 0.2 10.0± 0.2 68.5± 0.2 14.5± 0.3

Target-supervised 88.4± 0.9 6.4± 0.6 68.1± 1.2 9.6± 0.7

Table 3: EMNIST-DA
degree of restoration.

Model D

Source-only. 3.2± 0.0
AdaBN 3.1± 0.1
Marg. Gauss. 2.9± 0.0
Full Gauss. 2.0± 0.0
PL 2.6± 0.0
BNM-IM 2.5± 0.1
SHOT-IM 2.9± 0.1
FR (ours) 1.8± 0.0
BUFR (ours) 1.2± 0.0

Table 4: CAMELYON accuracies for a varying number of examples-per-class in the target domain.

Model 5 10 50 500 All(> 15k)

Source-only 55.8± 1.6 55.8± 1.6 55.8± 1.6 55.8± 1.6 55.8± 1.6
AdaBN (Li et al., 2018) 82.6± 2.2 83.3± 2.3 83.7± 1.0 83.9± 0.8 84.0± 0.5
PL (Lee et al., 2013) 82.5± 2.0 83.7± 1.7 83.6± 1.2 85.0± 0.8 90.6± 0.9
SHOT-IM (Liang et al., 2020) 82.6± 2.2 83.4± 2.5 83.7± 1.2 86.4± 0.7 89.9± 0.2
FR (ours) 84.6± 0.6 86.0± 0.7 86.0± 1.1 89.0± 0.6 89.5± 0.4
BUFR (ours) 84.5± 0.8 86.1± 0.2 87.0± 1.2 89.1± 0.8 89.7± 0.5

well in practice; (ii) measurement shift is an important real-world problem; and (iii) source-free
methods are important to address such measurement shifts as, e.g., medical data is often kept private.

5.5 ANALYSIS

Feature-space class-separation. Measurement shifts can cause the target data to be poorly-separated
in feature space. This point is illustrated in Figure 3 where we provide t-SNE visualizations of the
feature-space class-separation on the EMNIST-DA crystals shift. Here, Figure 3a shows the initial
class-separation before adapting the source model. We see that the source data is well separated in
feature space (dark colours) but the target data is not (light colours). Figure 3b shows the performance
of an entropy-minimization method when applied to such a “degraded” feature space where initial
class-separation is poor on the target data. While accuracy and class-separation improve, the target-
data clusters are not yet (i) fully homogeneous and (ii) returned to their original location (that of
the source-data clusters). As shown in Figure 3(c,d), our methods of FR and BUFR better restore
class-separation on the target data with more homogeneous clusters returned to their previous location.

Quantifying the degree of restoration. We quantify the degree to which the EMNIST source features
are restored in each of the EMNIST-DA target domains by calculating the average pairwise distance:
D = 1

T

∑T
t=1

1
N

∑N
i=1 |gs(ms(X

(i)))−gt(mt(X
(i)))|, where T is the number of EMNIST-DA target

domains, N is the number of EMNIST images, X(i) is a clean or uncorrupted EMNIST image, ms is
the identity transform, and mt is the shift of target domain t (e.g. Gaussian blur). Table 3 shows that
the purely alignment-based methods (Marg. Gauss., Joint Gauss., FR, BUFR) tend to better restore
the features than the entropy-based methods (PL, BNM-IM, SHOT-IM), with our alignment-based
methods doing it best. The only exception is Marg. Gauss.—the weakest form of alignment. Finally,
it is worth noting the strong rank correlation (0.6) between the degree of restoration in Table 3 and
the ECE in Table 1. This confirms that, for measurement shifts, it is preferable to restore the same
features rather than learn new ones as the latter usually comes at the cost of model calibration.

Restoring the semantic meaning of features. The left column of Figure 4a shows the activation
distribution (bottom) and maximally-activating image patches (top) for a specific filter in the first
layer of a CNN trained on the standard EMNIST dataset (white digit, black background). The centre
column shows that, when presented with shifted target data (pink digit, green background), the filter
detects similar patterns of light and dark colours but no longer carries the same semantic meaning of
detecting a horizontal edge. Finally, the right column shows that, when our BUFR method aligns the
marginal feature distributions on the target data (orange curve, bottom) with those saved on the source
data (blue curve, bottom), this restores a sense of semantic meaning to the filters (image patches, top).
Note that we explicitly align the first-layer feature/filter distributions in this illustrative experiment.
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(a) Source-only (19%) (b) SHOT-IM (67%) (c) FR (77%) (d) BUFR (83%)

Figure 3: t-SNE (Van der Maaten & Hinton, 2008) visualization of features for 5 classes of the EMNIST-DA
crystals shift. Dark colours show the source data, light the target. Model accuracies are shown in parentheses.

(a) Restoring feature semantics
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(b) BUFR training curves
Figure 4: (a) Activation distributions (bottom) and maximally-activating image patches (top) for a specific filter
in the first layer of a CNN. Left: Source model, source data (white digit, black backgr.). Centre: Source model,
target data (pink digit, green backgr.). Right: Target model (adapted with BUFR), target data. (b) BUFR training
curves on selected EMNIST-DA corruptions. Dashed-grey lines indicate when the next block is unfrozen.

Efficacy of BU training. Figure 4b shows that, when training in a bottom-up manner, updating only
the first two blocks is sufficient to resolve many measurement shifts. This confirms the previous
intuition that updating only the early layers should be sufficient for many measurement shifts. BUFR
exploits this by primarily updating early layers, thus preserving learnt structure in later layers (see
Appendix J.3–J.4). To examine the regularization benefits of this structure preservation, we compare
the accuracy of BUFR to other SFDA methods as the number of available target examples reduces.
As shown in Table 9 of Appendix J.1, the performance of all competing methods drops sharply as we
reduce the number of target examples. In contrast, BUFR maintains strong performance. With only 5
examples-per-class, it surpasses the performance of many methods using all 400 examples-per-class.

Ablation study. We also conduct an ablation study on the components of our loss from Equation 2.
Table 10 of Appendix J.2 shows that, for easier tasks like CIFAR--C, aligning the logit distributions
and using the symmetric KL divergence (over a more commonly-used asymmetric one) make little
difference to performance. However, for harder tasks like CIFAR--C, both improve performance.

6 DISCUSSIONS

Aligning the marginals may be insufficient. Our method seeks to restore the joint feature distri-
bution by aligning (approximations of) the marginals. While we found that this is often sufficient,
it cannot be guaranteed unless the features are independent. One potential remedy is to encourage
feature independence in the source domain using “disentanglement” (Bengio et al., 2013; Eastwood
& Williams, 2018) methods, allowing the marginals to better capture the joint.

Model selection. Like most UDA & SFDA works, we use a target-domain validation set (Gulrajani
& Lopez-Paz, 2021) for model selection. However, such labelled target data is rarely available in
real-world setups. Potential solutions include developing benchmarks (Gulrajani & Lopez-Paz, 2021)
and validation procedures (You et al., 2019) that allow more realistic model selection and comparison.

Conclusion. We have proposed BUFR, a method for source-free adaptation to measurement shifts.
BUFR works by aligning histogram-based approximations of the marginal feature distributions on the
target data with those saved on the source. We showed that, by focusing on measurement shifts, BUFR
can outperform existing methods in terms of accuracy, calibration and data efficiency, while making
less assumptions about the behaviour of the source model on the target data. We also highlighted
issues with the entropy-minimization techniques on which existing SFDA-methods rely, namely their
classification-specificity, tendency to be poorly calibrated, and vulnerability to simple but severe shifts.
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3.3 Comments on the paper

Dealing with different shift types, adaptively. Under the assumption of measure-

ment shift, we fix the last layer and fine-tune the rest, restoring the same high-level

features or concepts by learning new low-level features. In contrast, the standard fine-

tuning approach is to fine-tune the last layer and fix the rest, learning new high-level

features or concepts by recombining the same low-level features. Together, these ap-

proaches suggest that different layers should be updated depending on what should

be transferred, or, more specifically, the type of shift encountered. This in turn raises

some interesting questions: given a shift, which layers should we update? Can we de-

termine which layers to update automatically? By fine-tuning each layer of a network

individually on a small set of labelled test-domain samples, and selecting the one that

yields the best performance, Royer and Lampert (2020) found that, for many domain

shifts, it can be best to fine-tune an early or intermediate layer rather than the final one.

Taking this idea further, Eastwood et al. (2021) found that unit-level surprise in neural

networks can be used to reveal the layer (or level of abstraction) at which a given shift

is “noticed”, and that this, in turn, can be used to devise automatic, shift-dependent

fine-tuning strategies.

Storing information about the source dataset. We address the setting of SFDA

where the source dataset is not available at deployment time. To do so, we store some

lightweight statistics of the source dataset. In principle, one could store any statistics

of (or amount of information about) the source data distribution and thus employ prior

distribution-alignment methods from the unsupervised domain adaptation (UDA) liter-

ature. This then leads to a number of questions which would be interesting to explore:

1. How much information about the source dataset can we (or do we want to) store?

The answers to these questions may be determined by privacy and/or storage

constraints, or perhaps by their trade-offs with performance. At one extreme is

keeping everything, i.e., the entire dataset. At the other end is keeping nothing,

i.e., no storage of any kind. In between, one could imagine a spectrum:

• Keep a sub-sample of the training set

• Keep a statistic computed from the training set

• Keep the parameters of a simple parametric model (fit to the training set)

• Keep the parameters of a complex parametric model (fit to the training set)
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2. What are the storage-performance trade-offs? Can we control these trade-offs

in an interpretable manner, ideally along a Pareto frontier? Are there noticeable

differences between the trade-offs of different methods? For fair comparison

across different forms, storage should likely be measured using compressed size.

3. What are the storage-privacy trade-offs? How much is privacy preserved at each

storage level, e.g., with just a few histogram bin counts? Or, more specifically, to

what extent can the original source dataset be reconstructed at each storage level?

While differential privacy is often the standard notion of dataset privacy (Dwork

et al., 2006, 2014), its use of multiple queries does not cleanly map onto the

SFDA setting where the dataset statistics would just be released once (no queries

or updates).



4

Domain Generalisation: A
Probabilistic Framework

This chapter focuses on domain generalisation (DG, Blanchard et al. 2011; Muandet

et al. 2013). Here, a model is trained on data from multiple related domains (e.g., hospit-

als) with the goal of performing well on data from other related but unseen test domains.

In general, preparation involves exploiting invariances across the training domains in

the hope that these invariances also hold in unseen test domains. Prior works have

sought to do so by learning models that perform well on-average (Blanchard et al.,

2021; Zhang et al., 2021) or in-the-worst-case (Arjovsky et al., 2019; Sagawa* et al.,

2020). However, models that perform well on average can lack robustness (Nagarajan

et al., 2021), while models that perform well in the worst case can be overly conser-

vative (Tsipras et al., 2019). To address these issues, we propose a new probabilistic

framework wherein the goal is to learn models that perform well with high probability.

In particular, by explicitly relating the training and test domains as draws from the same

underlying meta-distribution, we ensure that distribution shifts seen during training in-

form us of probable shifts at test time. Then, by minimising a particular quantile of a

model’s performance distribution over training domains, we learn models that perform

well on unseen test domains with the corresponding probability.

To reinforce this new probabilistic perspective and objective for DG, we highlight

the importance of comparing DG algorithms based on their tail or quantile performance

over multiple test domains. In particular, we question the common practice (Gulrajani

and Lopez-Paz, 2020; Koh et al., 2021) of comparing DG algorithms in terms of average-

or single-test-domain performance, since improved robustness or tail-performance is

often invisible through these lenses.
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Finally, we draw new fundamental connections between invariance and causality

by proving that: (i) our algorithm learns a predictor with invariant performance over

domains as the desired probability of generalisation approaches one; and (ii) this is suffi-

cient to recover the causal predictor under weaker assumptions than prior work (Krueger

et al., 2021; Peters et al., 2016).

4.1 Contribution

I led this project from conceptualisation to final form. In particular, I was heavily

involved in coming up with the initial idea, formalising the learning objective and al-

gorithm, drawing the connection to causality, designing the experimental analyses, run-

ning the experimental analyses, and writing the manuscript. Some of these tasks were

shared with Alexander Robey, with whom I share first authorship. I was not involved

in the learning theory of Section 4.2: this was the work of Shashank Singh. While I

was involved with the causal-recovery theory of Section 4.3, the main theoretical result

(Theorem 4.4) was the work of Shashank Singh.
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Abstract

Domain generalization (DG) seeks predictors which perform well on unseen test
distributions by leveraging data drawn from multiple related training distributions
or domains. To achieve this, DG is commonly formulated as an average- or worst-
case problem over the set of possible domains. However, predictors that perform
well on average lack robustness while predictors that perform well in the worst case
tend to be overly-conservative. To address this, we propose a new probabilistic
framework for DG where the goal is to learn predictors that perform well with
high probability. Our key idea is that distribution shifts seen during training should
inform us of probable shifts at test time, which we realize by explicitly relating
training and test domains as draws from the same underlying meta-distribution. To
achieve probable DG, we propose a new optimization problem called Quantile Risk
Minimization (QRM). By minimizing the α-quantile of predictor’s risk distribution
over domains, QRM seeks predictors that perform well with probability α. To solve
QRM in practice, we propose the Empirical QRM (EQRM) algorithm and provide:
(i) a generalization bound for EQRM; and (ii) conditions under which EQRM
recovers the causal predictor as α→1. In our experiments, we introduce a more
holistic quantile-focused evaluation protocol for DG and demonstrate that EQRM
outperforms state-of-the-art baselines on datasets from WILDS and DomainBed.

1 Introduction

Despite remarkable successes in recent years [1–3], machine learning systems often fail calamitously
when presented with out-of-distribution (OOD) data [4–7]. Evidence of state-of-the-art systems
failing in the face of distribution shift is mounting rapidly—be it due to spurious correlations [8–10],
changing sub-populations [11–13], changes in location or time [14–16], or other naturally-occurring
variations [17–23]. These OOD failures are particularly concerning in safety-critical applications
such as medical imaging [24–28] and autonomous driving [29–31], where they represent one of the
most significant barriers to the real-world deployment of machine learning systems [32–35].

Domain generalization (DG) seeks to improve a system’s OOD performance by leveraging datasets
from multiple environments or domains at training time, each collected under different experimental
conditions [36–38] (see Fig. 1a). The goal is to build a predictor which exploits invariances across the
training domains in the hope that these invariances also hold in related but distinct test domains [38–
41]. To realize this goal, DG is commonly formulated as an average- [36, 42, 43] or worst-case [9,
44, 45] optimization problem over the set of possible domains. However, optimizing for average
performance can lack robustness to OOD data [46], while optimizing for worst-domain performance
tends to lead to overly-conservative solutions, with worst-case outcomes unlikely in practice [47, 48].
∗Equal contribution. Correspondence to or .
Code available at: https://github.com/cianeastwood/qrm

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Figure 1: Overview of Probable Domain Generalization and Quantile Risk Minimization. (a) In domain
generalization, training and test data are drawn from multiple related distributions or domains. For example,
in the iWildCam dataset [50], which contains camera-trap images of animal species, the domains correspond to
the different camera-traps which captured the images. (b) We relate training and test domains as draws from the
same underlying (and often unknown) meta-distribution over domains Q. (c) We consider a predictor’s estimated
risk distribution over training domains, naturally-induced by Q. By minimizing the α-quantile of this distribution,
we learn predictors that perform well with high probability (≈ α) rather than on average or in the worst case.

In this work, we argue that DG is neither an average-case nor a worst-case problem, but rather a prob-
abilistic one. To this end, we propose a probabilistic framework for DG, which we call Probable Do-
main Generalization (§ 3), wherein the key idea is that distribution shifts seen during training should
inform us of probable shifts at test time. To realize this, we explicitly relate training and test domains
as draws from the same underlying meta-distribution (Fig. 1b), and then propose a new optimization
problem called Quantile Risk Minimization (QRM). By minimizing the α-quantile of predictor’s risk
distribution over domains (Fig. 1c), QRM seeks predictors that perform well with high probability
rather than on average or in the worst case. In particular, QRM leverages the key insight that this
α-quantile is an upper bound on the test-domain risk which holds with probability α, meaning that α is
an interpretable conservativeness-hyperparameter with α=1 corresponding to the worst-case setting.

To solve QRM in practice, we introduce the Empirical QRM (EQRM) algorithm (§ 4). Given a
predictor’s empirical risks on the training domains, EQRM forms an estimated risk distribution using
kernel density estimation (KDE, [49]). Importantly, KDE-smoothing ensures a right tail that extends
beyond the largest training risk (see Fig. 1c), with this risk “extrapolation” [41] unlocking invariant
prediction for EQRM (§ 4.1). We then provide theory for EQRM (§ 4.2, § 4.3) and demonstrate
empirically that EQRM outperforms state-of-the-art baselines on real and synthetic data (§ 6).

Contributions. To summarize our main contributions:

• A new probabilistic perspective and objective for DG: We argue that predictors should be trained
and tested based on their ability to perform well with high probability. We then propose Quantile
Risk Minimization for achieving this probable form of domain generalization (§ 3).

• A new algorithm: We propose the EQRM algorithm to solve QRM in practice and ultimately learn
predictors that generalize with probability α (§ 4). We then provide several analyses of EQRM:
– Learning theory: We prove a uniform convergence bound, meaning the empirical α-quantile risk

tends to the population α-quantile risk given sufficiently many domains and samples (Thm. 4.1).
– Causality. We prove that EQRM learns predictors with invariant risk as α→1 (Prop. 4.3), then

provide conditions under which this is sufficient to recover the causal predictor (Thm. 4.4).
– Experiments: We demonstrate that EQRM outperforms state-of-the-art baselines on several stan-

dard DG benchmarks, including CMNIST [9] and datasets from WILDS [12] and DomainBed [38],
and highlight the importance of assessing the tail or quantile performance of DG algorithms (§ 6).

2 Background: Domain generalization

Setup. In domain generalization (DG), predictors are trained on data drawn from multiple related
training distributions or domains and then evaluated on related but unseen test domains. For example,
in the iWildCam dataset [50], the task is to classify animal species in images, and the domains
correspond to the different camera-traps which captured the images (see Fig. 1a). More formally, we
consider datasets De = {(xe

i , ye
i )}

ne
i=1 collected from m different training domains or environments

Etr := {e1, . . . , em}, with each dataset De containing data pairs (xe
i , ye

i ) sampled i.i.d. from

2
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P(Xe, Ye). Then, given a suitable function class F and loss function ℓ, the goal of DG is to learn
a predictor f ∈ F that generalizes to data drawn from a larger set of all possible domains Eall ⊃ Etr.

Average case. LettingRe( f ) denote the statistical risk of f in domain e, and Q a distribution over
the domains in Eall, DG was first formulated [36, 37] as the following average-case problem:

min
f∈F

Ee∼QRe( f ) where Re( f ) := EP(Xe ,Ye)[ℓ( f (Xe), Ye)]. (2.1)

Worst case. Since predictors that perform well on average can lack robustness [46], i.e. they can
perform quite poorly on large subsets of Eall, subsequent works [9, 22, 41, 44, 45, 51] have sought
robustness by formulating DG as the following worst-case problem:

min
f∈F

max
e∈Eall

Re( f ). (2.2)

As we only have access to data from a finite subset of Eall during training, solving (2.2) is not just
challenging but in fact impossible [41, 52, 53] without restrictions on how the domains may differ.

Causality and invariance in DG. Causal works on DG [9, 41, 53–55] describe domain differences
using the language of causality and the notion of interventions [56, 57]. In particular, they assume
all domains share the same underlying structural causal model (SCM) [56], with different domains
corresponding to different interventions (see Appendix A.1 for formal definitions and a simple ex-
ample). Assuming the mechanism of Y remains fixed or invariant but all Xs may be intervened upon,
recent works have shown that only the causal predictor has invariant: (i) predictive distributions [54],
coefficients [9] or risks [41] across domains; and (ii) generalizes to arbitrary interventions on the
Xs [9, 54, 55]. These works then leverage some form of invariance across domains to discover causal
relationships which, through the invariant mechanism assumption, generalize to new domains.

3 Quantile Risk Minimization

In this section we introduce Quantile Risk Minimization (QRM) for achieving Probable Domain
Generalization. The core idea is to replace the worst-case perspective of (2.2) with a probabilistic one.
This approach is founded on a great deal of work in classical fields such as control theory [58, 59] and
smoothed analysis [60], wherein approaches that yield high-probability guarantees are used in place
of worst-case approaches in an effort to mitigate conservatism and computational limitations. This
mitigation is of particular interest in domain generalization since generalizing to arbitrary domains is
impossible [41, 52, 53]. Thus, motivated by this classical literature, our goal is to obtain predictors
that are robust with high probability over domains drawn from Eall, rather than in the worst case.

A distribution over environments. We start by assuming the existence of a probability distribution
Q(e) over the set of all environments Eall. For instance, in the context of medical imaging, Q could
represent a distribution over potential changes to a hospital’s setup or simply a distribution over
candidate hospitals. Given that such a distribution Q exists2, we can think of the risk Re( f ) as a
random variable for each f ∈ F , where the randomness is engendered by the draw of e ∼ Q. This
perspective gives rise to the following analogue of the optimization problem in (2.2):

min
f∈F

ess sup
e∼Q

Re( f ) where ess sup
e∼Q

Re( f ) = inf
{

t ≥ 0 : Pr
e∼Q
{Re( f ) ≤ t} = 1

}
(3.1)

Here, ess sup denotes the essential-supremum operator from measure theory, meaning that for each
f ∈ F , ess supQRe( f ) is the least upper bound on Re( f ) that holds for almost every e ∼ Q. In
this way, the ess sup in (3.1) is the measure-theoretic analogue of the max operator in (2.2), with the
subtle but critical difference being that the ess sup in (3.1) can neglect domains of measure zero under
Q. For example, for discrete Q, (3.1) ignores domains which are impossible (i.e. have probability
zero) while (2.2) does not, laying the foundation for ignoring domains which are improbable.

High-probability generalization. Although the minimax problem in (3.1) explicitly incorporates the
distribution Q over environments, this formulation is no less conservative than (2.2). Indeed, in many
cases, (3.1) is equivalent to (2.2); see Appendix B for details. Therefore, rather than considering the
worst-case problem in (3.1), we propose the following generalization of (3.1) which requires that
predictors generalize with probability α rather than in the worst-case:

min
f∈F , t∈R

t subject to Pr
e∼Q
{Re( f ) ≤ t} ≥ α (3.2)

2As Q is often unknown, our analysis does not rely on using an explicit expression for Q.
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The optimization problem in (3.2) formally defines what we mean by Probable Domain General-
ization. In particular, we say that a predictor f generalizes with risk t at level α if f has risk at
most t with probability at least α over domains sampled from Q. In this way, the conservativeness
parameter α controls the strictness of generalizing to unseen domains.

A distribution over risks. The optimization problem presented in (3.2) offers a principled formulation
for generalizing to unseen distributional shifts governed by Q. However, Q is often unknown in
practice and its support Eall may be high-dimensional or challenging to define [22]. While many
previous works have made progress by limiting the scope of possible shift types over domains [19, 22,
45], in practice, such structural assumptions are often difficult to justify and impossible to test. For
this reason, we start our exposition of QRM by offering an alternative view of (3.2) which elucidates
how a predictor’s risk distribution plays a central role in achieving probable domain generalization.

To begin, note that for each f ∈ F , the distribution over domains Q naturally induces3 a
distribution T f over the risks in each domain Re( f ). In this way, rather than considering the
randomness of Q in the often-unknown and (potentially) high-dimensional space of possible
shifts (Fig. 1b), one can consider it in the real-valued space of risks (Fig. 1c). This is analogous
to statistical learning theory, where the analysis of convergence of empirical risk minimizers (i.e.,
of functions) is substituted by that of a weaker form of convergence, namely that of scalar risk
functionals—a crucial step for VC theory [61]. From this perspective, the statistics of T f can be
thought of as capturing the sensitivity of f to different environmental shifts, summarizing the effect
of different intervention types, strengths, and frequencies. To this end, (3.2) can be equivalently
rewritten in terms of the risk distribution T f as follows:

min
f∈F

F−1
T f

(α) where F−1
T f

(α) := inf
{

t ∈ R : Pr
R∼T f

{R ≤ t} ≥ α
}

. (QRM)

Here, F−1
T f

(α) denotes the inverse CDF (or quantile4) function of the risk distribution T f . By means
of this reformulation, we elucidate how solving (QRM) amounts to finding a predictor with minimal
α-quantile risk. That is, (QRM) requires that a predictor f satisfy the probabilistic constraint for at
least an α-fraction of the risks R ∼ T f , or, equivalently, for an α-fraction of the environments e ∼ Q.
In this way, α can be used to interpolate between typical (α=0.5, median) and worst-case (α=1)
problems in an interpretable manner. Moreover, if the mean and median of T f coincide, α=0.5 gives
an average-case problem, with (QRM) recovering several notable objectives for DG as special cases.

Proposition 3.1. For α=1, (QRM) is equivalent to the worst-case problem of (3.1). For α = 0.5,
it is equivalent to the average-case problem of (2.1) if the mean and median of T f coincide ∀ f ∈F :

min f∈F ER∼T f R = min f∈F Ee∼QRe( f ) (3.3)

Connection to DRO. While fundamentally different in terms of objective and generalization
capabilities (see § 4), we draw connections between QRM and distributionally robust optimization
(DRO) in Appendix F by considering an alternative problem which optimizes the superquantile.

4 Algorithms for Quantile Risk Minimization

We now introduce the Empirical QRM (EQRM) algorithm for solving (QRM) in practice, akin to
Empirical Risk Minimization (ERM) solving the Risk Minimization (RM) problem [63].

4.1 From QRM to Empirical QRM

In practice, given a predictor f and its empirical risks R̂e1( f ), . . . , R̂em( f ) on the m training domains,
we must form an estimated risk distribution T̂ f . In general, given no prior knowledge about the
form of T f (e.g. Gaussian), we use kernel density estimation (KDE, [49, 64]) with Gaussian kernels
and either the Gaussian-optimal rule [65] or Silverman’s rule-of-thumb [65] for bandwidth selection.
Fig. 1c depicts the PDF and CDF for 10 training risks when using Silverman’s rule-of-thumb. Armed

3T f can be formally defined as the push-forward measure of Q through the risk functionalRe( f ); see App. B.
4In financial optimization, when concerned with a distribution over potential losses, the α-quantile value is

known as the value at risk (VaR) at level α [62].
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with a predictor’s estimated risk distribution T̂ f , we can approximately solve (QRM) using the
following empirical analogue:

min
f∈F

F−1
T̂ f

(α) (4.1)

Note that (4.1) depends only on known quantities so we can compute and minimize it in practice, as
detailed in Alg. 1 of Appendix E.1.
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Figure 2: Risk CDFs.

Smoothing permits risk extrapolation. Fig. 2 compares the KDE-
smoothed CDF (black) to the unsmoothed empirical CDF (gray). As
shown, the latter places zero probability mass on risks greater than
our largest training risk, thus implicitly assuming that test risks cannot
be larger than training risks. In contrast, the KDE-smoothed CDF
permits “risk extrapolation” [41] since its right tail extends beyond
our largest training risk, with the estimated α-quantile risk going to
infinity as α→1 (when kernels have full support). Note that different
bandwidth-selection methods encode different assumptions about
right-tail heaviness and thus about projected OOD risk. In § 4.3,
we discuss how, as α→ 1, this KDE-smoothing allows EQRM to
learn predictors with invariant risk over domains. In Appendix C, we
discuss different bandwidth-selection methods for EQRM.

4.2 Theory: Generalization bound

We now give a simplified version of our main generalization bound—Thm. D.1—which states that,
given sufficiently many domains and samples, the empirical α-quantile risk is a good estimate of the
population α-quantile risk. In contrast to previous results for DG, we bound the proportion of test do-
mains for which a predictor performs well, rather than the average error [36, 42], and make no assump-
tions about the shift type, e.g. covariate shift [37]. The full version, stated and proved in Appendix D,
provides specific finite-sample bounds on ϵ1 and ϵ2 below, depending on the hypothesis class F , the
empirical estimator F−1

T̂ f
(α), and the assumptions on the possible risk profiles of hypotheses f ∈ F .

Theorem 4.1 (Simplified form of Thm. D.1, uniform convergence). Given m domains and n samples
in each, there exist sequences ϵ1(n) and ϵ2(m), with ϵ1(n) → 0 as n → ∞ and ϵ2(m) → 0 as
m→ ∞, such that, with high probability over the training data:

sup
f∈F

∣∣∣∣F−1
T f

(α− ϵ2)− F−1
T̂ f

(α)

∣∣∣∣ ≤ ϵ1. (4.2)

While many domains are required for this to bound be tight, i.e. for α to precisely estimate the true
quantile, our empirical results in § 6 demonstrate that EQRM performs well in practice given only a
few domains. In such settings, α still controls conservativeness, but with a less precise interpretation.

4.3 Theory: Causal recovery

We now prove that EQRM can recover the causal predictor in two parts. First, we show that, as
α→ 1, EQRM learns a predictor with minimal, invariant risk over domains. For Gaussian estimators
of the risk distribution T f , some intuition can be gained from Eq. (A.3) of Appendix A.2.1, noting
that α → 1 puts increasing weight on the sample standard deviation of risks over domains σ̂f ,
eventually forcing it to zero. For kernel density estimators, a similar intuition applies so long as the
bandwidth has a certain dependence on σ̂f , as detailed in Appendix A.2.2. Second, we show that
learning such a minimal invariant-risk predictor is sufficient to recover the causal predictor under
weaker assumptions than prior work, namely Peters et al. [54] and Krueger et al. [41]. Together, these
two parts provide the conditions under which EQRM successfully performs “causal recovery”, i.e.,
correctly recovers the true causal coefficients in a linear causal model of the data.

Definition 4.2. A predictor f is said to be an invariant-risk predictor if its risk is equal almost
surely across domains (i.e., Vare∼Q[Re( f )] = 0). A predictor is said to be a minimal invariant-risk
predictor if it achieves the minimal possible risk across all possible invariant-risk predictors.

Proposition 4.3 (EQRM learns a minimal invariant-risk predictor as α→ 1, informal version of
Props. A.4 and A.5). Assume: (i) F contains an invariant-risk predictor with finite training risks;
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and (ii) no arbitrarily-negative training risks. Then, as α→1, Gaussian and kernel EQRM predictors
(the latter with certain bandwidth-selection methods) converge to minimal invariant-risk predictors.

Props. A.4 and A.5 are stated and proved in Appendices A.2.1 and A.2.2 respectively. In addition,
for the special case of Gaussian estimators of T f , Appendix A.2.1 relates our α parameter to the β
parameter of VREx [41, Eq. 8]. We next specify conditions under which learning such a minimal
invariant-risk predictor is sufficient to recover the causal predictor.

Theorem 4.4 (The causal predictor is the only minimal invariant-risk predictor). Assume that: (i) Y
is generated from a linear SEM, Y = β⊺X + N, with X observed and coefficients β ∈ Rd; (ii) F
is the class of linear predictors, indexed by β̂ ∈ Rd; (iii) the loss ℓ is squared-error; (iv) the risk
E[(Y− βTX)2] of the causal predictor β is invariant across domains; and (v) the system of equations

0 ≥x⊺CovX∼e1(X, X)x + 2x⊺CovN,X∼e1(X, N)

= · · ·
=x⊺CovX∼em(X, X)x + 2x⊺CovN,X∼em(X, N) (4.3)

has the unique solution x = 0. If β̂ is a minimal invariant-risk predictor, then β̂ = β.

Assumptions (i–iii). The assumptions that Y is drawn from a linear structural equation model (SEM)
and that the loss is squared-error, while restrictive, are needed for all comparable causal recovery
results [41, 54]. In fact, these assumptions are weaker than both Peters et al. [54, Thm. 2] (assume a
linear Gaussian SEM for X and Y) and Krueger et al. [41, Thm. 1] (assume a linear SEM for X and Y).

Assumption (iv). The assumption that the risk of the causal predictor is invariant across domains,
often called domain homoskedasticity [41], is necessary for any method inferring causality from the
invariance of risks across domains. For methods based on the invariance of functions, namely the
conditional mean E[Y|Pa(Y)] [9, 66], this assumption is not required. Appendix G.1.2 compares
methods based on invariant risks and to those based on invariant functions.

Assumption (v). In contrast to both Peters et al. and Krueger et al., we do not require specific types of
interventions on the covariates. Instead, we require that a more general condition be satisfied, namely
that the system of d-variate quadratic equations in (4.3) has a unique solution. Intuitively, Cov(X, X)
captures how correlated the covariates are and ensures they are sufficiently uncorrelated to distinguish
each of their influences on Y, while Cov(X, N) captures how correlated descendant covariates are
with Y (via N). Together, these terms capture the idea that predicting Y from the causal covariates
must result in the minimal invariant-risk: the first inequality ensures the risk is minimal and the
subsequent m− 1 equalities that it is invariant. While this generality comes at the cost of abstraction,
Appendix A.2.3 provides several concrete examples with different types of interventions to aid
understanding and illustrate how this condition generalizes existing causal-recovery results based
on invariant risks [41, 54]. Appendix A.2.3 also provides a proof of Thm. 4.4 and further discussion.

5 Related work

Robust optimization in DG. Throughout this paper, we follow an established line of work (see
e.g., [9, 41, 51]) which formulates the DG problem through the lens of robust optimization [44]. To
this end, various algorithms have been proposed for solving constrained [22] and distributionally
robust [45] variants of the worst-case problem in (2.2). Indeed, this robust formulation has a firm
foundation in the broader machine learning literature, with notable works in adversarial robustness [67–
71] and fair learning [72, 73] employing similar formulations. Unlike these past works, we consider
a robust but non-adversarial formulation for DG, where predictors are trained to generalize with high
probability rather than in the worst case. Moreover, the majority of this literature—both within and
outside of DG—relies on specific structural assumptions (e.g. covariate shift) on the types of possible
interventions or perturbations. In contrast, we make the weaker and more flexible assumption of
i.i.d.-sampled domains, which ultimately makes use of the observed domain-data to determine the
types of shifts that are probable. We further discuss this important difference in § 7.

Other approaches to DG. Outside of robust optimization, many algorithms have been proposed
for the DG setting which draw on insights from a diverse array of fields, including approaches based
on tools from meta-learning [40, 43, 74–76], kernel methods [77, 78], and information theory [51].
Also prominent are works that design regularizers to generalize OOD [79–81] and works that seek
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domain-invariant representations [82–84]. Many of these works employ hyperparameters which are
difficult to interpret, which has no doubt contributed to the well-established model-selection problem
in DG [38]. In contrast, in our framework, α can be easily interpreted in terms of quantiles of the risk
distribution. In addition, many of these works do not explicitly relate the training and test domains,
meaning they lack theoretical results in the non-linear setting (e.g. [9, 41, 43, 85]). For those which
do, they bound either average error over test domains [36, 42, 86] or worst-case error under specific
shift types (e.g. covariate [22]). As argued above, the former lacks robustness while the latter can
be both overly-conservative and difficult to justify in practice, where shift types are often unknown.

High-probability generalization. As noted in § 3, relaxing worst-case problems in favor of prob-
abilistic ones has a long history in control theory [58, 59, 87–89], operations research [90], and
smoothed analysis [60]. Recently, this paradigm has been applied to several areas of machine
learning, including perturbation-based robustness [91, 92], fairness [93], active learning [94], and
reinforcement learning [95, 96]. However, it has not yet been applied to domain generalization.

Quantile minimization. In financial optimization, the quantile and superquantile functions [62, 97,
98] are central to the literature surrounding portfolio risk management, with numerous applications
spanning banking regulations and insurance policies [99, 100]. In statistical learning theory, several
recent papers have derived uniform convergence guarantees in terms of alternative risk functionals
besides expected risk [94, 101–103]. These results focus on functionals that can be written in terms of
expectations over the loss distribution (e.g., the superquantile). In contrast, our uniform convergence
guarantee (Theorem D.1) shows uniform convergence of the quantile function, which cannot be
written as such an expectation; this necessitates stronger conditions to obtain uniform convergence,
which ultimately suggest regularizing the estimated risk distribution (e.g. by kernel smoothing).

Invariant prediction and causality. Early work studied the problem of learning from multiple cause-
effect datasets that share a functional mechanism but differ in noise distributions [39]. More generally,
given (data from) multiple distributions, one can try to identify components which are stable, robust,
or invariant, and find means to transfer them across problems [104–108]. As discussed in § 2, recent
works have leveraged different forms of invariance across domains to discover causal relationships
which, under the invariant mechanism assumption [57], generalize to new domains [9, 41, 54, 55, 109–
111]. In particular, VREx [41] leveraged invariant risks (like EQRM) while IRM [9] leveraged
invariant functions or coefficients—see Appendix G.1.2 for a detailed comparison of these approaches.

6 Experiments

We now evaluate our EQRM algorithm on synthetic datasets (§ 6.1), real-world datasets from
WILDS (§ 6.2), and few-domain datasets from DomainBed (§ 6.3). Appendix G reports further
results, while Appendix E reports further experimental details.

6.1 Synthetic datasets

Linear regression. We first consider a linear regression dataset based on the following linear SCM:

X1 ← N1, Y ← X1 + NY, X2 ← Y + N2,

with Nj ∼ N (0, σ2
j ). Here we have two features: one cause X1=Xcause and one effect X2=Xeffect

of Y. By fixing σ2
1 =1 and σ2

Y =2 across domains but sampling σ2∼LogNormal(0, 0.5), we create
a dataset in which X2 is more predictive of Y than X1 but less stable. Importantly, as we know
the true distribution over domains Q(e)=LogNormal(σe

2; 0, 0.5), we know the true risk quantiles.
Fig. 3 depicts results for different α’s with m = 1000 domains and n = 200000 samples in each,
using the mean-squared-error (MSE) loss. Here we see that: A: for each true quantile (x-axis),
the corresponding α has the lowest risk (y-axis), confirming that the empirical α-quantile risk is
a good estimate of the population α-quantile risk; B: As α→ 1, the estimated risk distribution of
fα approaches an invariant (or Dirac delta) distribution centered on the risk of the causal predictor;
C: the regression coefficients approach those of the causal predictor as α→ 1, trading predictive
performance for robustness; and D: reducing the number of domains m reduces the accuracy of the
estimated α-quantile risks. In Appendix G.1, we additionally: (i) depict the risk CDFs corresponding
to plot B above, and discuss how they depict the predictors’ risk-robustness curves (G.1.1); and
(ii) discuss the solutions of EQRM on datasets in which σ2

1 , σ2
2 and/or σ2

Y change over domains,
compared to existing invariance-seeking algorithms like IRM [9] and VREx [41] (G.1.2).
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Figure 3: EQRM on a toy linear regression dataset (A–D) and on ColoredMNIST (E–F). A: Test risk at
different quantiles or degrees of “OODness”. For each quantile (x-axis), the corresponding α has the lowest risk
(y-axis). B: Estimated risk distributions (corresponding CDFs in Appendix G.1.1). C: Regression coefficients
approach those of the causal predictor (βcause =1, βeffect =0) as α→1. D: Q-Q plot comparing the “true” risk
quantiles (estimated with m=1000) against estimated ones (m<1000), for α=0.9. E: Performance of different
α’s over increasingly OOD test domains, with dots showing training-domain accuracies. F: KDE-estimated
accuracy-CDFs depicting accuracy-robustness curves. Larger α’s make lower accuracies less likely.

ColoredMNIST. We next consider the ColoredMNIST or CMNIST dataset [9]. Here, the MNIST
dataset is used to construct a binary classification task (0–4 or 5–9) in which digit color (red or green)
is a highly-informative but spurious feature. In particular, the two training domains are constructed
such that red digits have an 80% and 90% chance of belonging to class 0, while the single test domain
is constructed such that they only have a 10% chance. The goal is to learn an invariant predictor
which uses only digit shape—a stable feature having a 75% chance of correctly determining the class
in all 3 domains. We compare with IRM [9], GroupDRO [45], SD [112], IGA [113] and VREx [41]
using: (i) random initialization (Xavier method [114]); and (ii) random initialization followed by
several iterations of ERM. The ERM initialization or pretraining directly corresponds to the delicate
penalty “annealing” or warm-up periods used by most penalty-based methods [9, 41, 112, 113]. For
all methods, we use a 2-hidden-layer MLP with 390 hidden units, the Adam optimizer, a learning rate
of 0.0001, and dropout with p=0.2. We sweep over five penalty weights for the baselines and five
α’s for EQRM. See Appendix E.2 for more experimental details. Table 1 shows that: (i) all methods
struggle without ERM pretraining, explaining the need for penalty-annealing strategies in previous
works and corroborating the results of [115, Table 1]; (ii) with ERM pretraining, EQRM matches
or outperforms baseline methods, even approaching oracle performance (that of ERM trained on
grayscale digits). These results suggest ERM pretraining as an effective strategy for DG methods.

In addition, Fig. 3 depicts the behavior of EQRM with different αs. Here we see that: E: increasing
α leads to more consistent performance across domains, eventually forcing the model to ignore
color and focus on shape for invariant-risk prediction; and F: a predictor’s (estimated) accuracy-CDF
depicts its accuracy-robustness curve, just as its risk-CDF depicts its risk-robustness curve. Note
that α=0.5 gives the best worst-case (i.e. worst-domain) risk over the two training domains—the
preferred solution of DRO [45]—while α→1 sacrifices risk for increased invariance or robustness.

6.2 Real-world datasets
We now evaluate our methods on the real-world or in-the-wild distribution shifts of WILDS [12]. We
focus our evaluation on iWildCam [50] and OGB-MolPCBA [116, 117]—two large-scale classification
datasets which have numerous test domains and thus facilitate a comparison of the test-domain risk
distributions and their quantiles. Additional comparisons (e.g. using average accuracy) can be found
in Appendix G.3. Our results demonstrate that, across two distinct data types (images and molecular
graphs), EQRM offers superior tail or quantile performance.
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Table 1: CMNIST test accuracy.

Algorithm Initialization
Rand. ERM

ERM 27.9± 1.5 27.9± 1.5
IRM 52.5± 2.4 69.7± 0.9
GrpDRO 27.3± 0.9 29.0± 1.1
SD 49.4± 1.5 70.3± 0.6
IGA 50.7± 1.4 57.7± 3.3
V-REx 55.2± 4.0 71.6± 0.5
EQRM 53.4± 1.7 71.4± 0.4

Oracle 72.1± 0.7 Figure 4: Test-domain risk distributions.

Table 2: EQRM test risks on iWildCam.
Alg. Mean

risk
Quantile risk

0.0 0.25 0.50 0.75 0.90 0.99 1.0

ERM 1.31 0.015 0.42 0.76 2.25 2.73 4.99 5.25
IRM 1.53 0.098 0.52 1.24 1.86 2.36 6.95 7.46

GroupDRO 1.73 0.091 0.68 1.65 2.18 3.36 5.29 5.54
CORAL 1.27 0.024 0.45 0.73 2.12 2.66 4.50 4.98

EQRM0.25 2.03 0.024 0.46 2.70 3.01 3.48 5.03 5.26
EQRM0.50 1.11 0.004 0.24 0.68 1.71 2.15 4.04 4.11
EQRM0.75 1.05 0.009 0.21 0.68 1.50 2.35 4.88 5.45
EQRM0.90 0.98 0.047 0.28 0.63 1.26 1.81 4.11 4.48
EQRM0.99 0.99 0.12 0.35 0.64 1.30 2.00 3.44 3.55

Table 3: EQRM test risks on OGB-MolPCBA.
Alg. Mean

risk
Quantile risk

0.0 0.25 0.50 0.75 0.90 0.99 1.0

ERM 0.051 0.0 0.004 0.017 0.060 0.13 0.49 16.04
IRM 0.073 0.098 0.52 1.24 1.86 2.36 6.95 7.46

GroupDRO 0.21 0.091 0.68 1.65 2.18 3.36 5.29 5.54
CORAL 0.055 0.0 0.12 0.32 1.23 2.01 5.76 7.44

EQRM0.25 0.054 0.0 0.003 0.016 0.059 0.13 0.48 15.46
EQRM0.50 0.052 0.0 0.003 0.015 0.059 0.13 0.48 11.33
EQRM0.75 0.052 0.0 0.003 0.015 0.059 0.13 0.47 12.15
EQRM0.90 0.052 0.0 0.003 0.015 0.059 0.12 0.47 10.81
EQRM0.99 0.053 0.0 0.003 0.014 0.055 0.11 0.46 7.16

iWildCam. We first consider the iWildCam image-classification dataset, which has 243 training
domains and 48 test domains. Here, the label Y is one of 182 different animal species and the domain e
is the camera trap which captured the image. In Table 2, we observe that EQRMα does indeed tend
to optimize the α-risk quantile, with larger αs during training resulting in lower test-domain risks
at the corresponding quantiles. In the left pane of Fig. 4, we plot the (KDE-smoothed) test-domain
risk distribution for ERM and EQRM. Here we see a clear trend: as α increases, the tails of the risk
distribution tend to drop below ERM, which corroborates the superior quantile performance reported
in Table 2. Note that, in Table 2, EQRM tends to record lower average risks than ERM. This has
several plausible explanations. First, the number of testing domains (48) is relatively small, which
could result in a biased sample with respect to the training domains. Second, the test domains may
not represent i.i.d. draws from Q, as WILDS [12] test domains tend to be more challenging.

OGB-MolPCBA. We next consider the OGB-MolPCBA (or OGB) dataset, which is a molecular
graph-classification benchmark containing 44,930 training domains and 43,793 test domains with
an average of 3.6 samples per domain. Table 3 shows that ERM achieves the lowest average test
risk on OGB, in contrast to the iWildCam results, while EQRMα still achieves stronger quantile
performance. Of particular note is the fact that our methods significantly outperform ERM with
respect to worst-case performance (columns/quantiles labeled 1.0); when QRMα is run with large
values of α, we reduce the worst-case risk by more than a factor of two. In Fig. 4, we again see that
the risk distributions of EQRMα have lighter tails than that of ERM.

A new evaluation protocol for DG. The analysis provided in Tables 2-3 and Fig. 4 diverges from the
standard evaluation protocol in DG [12, 38]. Rather than evaluating an algorithm’s performance on
average across test domains, we seek to understand the distribution of its performance—particularly
in the tails by means of the quantile function. This new evaluation protocol lays bare the importance
of multiple test domains in DG benchmarks, allowing predictors’ risk distributions to be analyzed
and compared. Indeed, as shown in Tables 2-3, solely reporting a predictor’s average or worst risk
over test domains can be misleading when assessing its ability to generalize OOD, indicating that the
performance of DG algorithms was likely never “lost”, as reported in [38], but rather invisible through
the lens of average performance. This underscores the necessity of incorporating tail- or quantile-risk
measures into a more holistic evaluation protocol for DG, ultimately providing a more nuanced
and complete picture. In practice, which measure is preferred will depend on the application. For
example, medical applications could have a human-specified robustness-level or quantile-of-interest.

6.3 DomainBed datasets

Finally, we consider the benchmark datasets of DomainBed [38], in particular VLCS [118], PACS [119],
OfficeHome [120], TerraIncognita [5] and DomainNet [121]. As each of these datasets con-
tain just 4 or 6 domains, it is not possible to meaningfully compare tail or quantile performance.
Nonetheless, in line with much recent work, and to compare EQRM to a range of standard baselines
on few-domain datasets, Table 4 reports DomainBed results in terms of the average performance
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Table 4: DomainBed results. Model selection: training-domain validation set.
Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.9
Mixup 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.6
ARM 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
VREx 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9

EQRM 77.8 ± 0.6 86.5 ± 0.2 67.5 ± 0.1 47.8 ± 0.6 41.0 ± 0.3 64.1

across each choice of test domain. While EQRM outperforms most baselines, including ERM, we
reiterate that comparing algorithms solely in terms of average performance can be misleading (see
final paragraph of § 6.2). Full implementation details are given in Appendix E.3, with further results
in Appendix G.2 (additional baselines, per-dataset results, and test-domain model selection).

7 Discussion

Interpretable model selection. α approximates the probability with which our predictor will
generalize with risk below the associated α-quantile value. Thus, α represents an interpretable
parameterization of the risk-robustness trade-off. Such interpretability is critical for model selection
in DG, and for practitioners with application-specific requirements on performance and/or robustness.

The assumption of i.i.d. domains. For α to approximate the probability of generalizing, training
and test domains must be i.i.d.-sampled. While this is rarely true in practice—e.g. hospitals have
shared funders, service providers, etc.—we can better satisfy this assumption by subscribing to a
new data collection process in which we collect training-domain data which is representative of
how the underlying system tends to change. For example: (i) randomly select 100 US hospitals; (ii)
gather and label data from these hospitals; (iii) train our system with the desired α; (iv) deploy our
system to all US hospitals, where it will be successful with probability ≈ α. While this process may
seem expensive, time-consuming and vulnerable (e.g. to new hospitals), it offers a promising path to
machine learning systems which generalize with high probability. Moreover, it is worth noting the
alternative: prior works achieve generalization by assuming that only particular types of shifts can
occur, e.g. covariate shifts [22, 122, 123], label shifts [123, 124], concept shifts [125], measurement
shifts [19], mean shifts [126], shifts which leave the mechanism of Y invariant [9, 39, 41, 54], etc. In
real-world settings, where the underlying shift mechanisms are often unknown, such assumptions
are both difficult to justify and impossible to test. Future work could look to relax the i.i.d.-domains
assumption by leveraging knowledge of domain dependencies (e.g. time).

The wider value of risk distributions. As demonstrated in § 6, a predictor’s risk distribution has
value beyond quantile-minimization—it estimates the probability associated with each level of risk.
Thus, regardless of the algorithm used, risk distributions can be used to analyze trained predictors.

8 Conclusion

We have presented Quantile Risk Minimization for achieving Probable Domain Generalization, i.e.,
learning predictors that perform well with high probability rather than on-average or in the worst case.
After explicitly relating training and test domains as draws from the same underlying meta-distribution,
we proposed to learn predictors with minimal α-quantile risk. We then introduced the EQRM
algorithm, for which we proved a generalization bound and recovery of the causal predictor as α→1.
Finally, in our experiments, we introduced a more holistic quantile-focused evaluation protocol for
DG, and demonstrated that EQRM outperforms state-of-the-art baselines on several DG benchmarks.
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4.3 Comments on the paper

The need for new DG benchmarks with multiple test domains. The analyses

provided in Tables 2-3 and Fig. 4 diverge from the standard evaluation protocol in

DG (Gulrajani and Lopez-Paz, 2020; Koh et al., 2021). Rather than evaluating an

algorithm’s performance on average across test domains, we seek to understand the

distribution of its performance—particularly in the tails by means of the quantile func-

tion. This new evaluation protocol lays bare the importance of multiple test domains

in DG benchmarks, allowing predictors’ performance distributions to be analysed and

compared. Indeed, as shown in Tables 2-3, solely reporting a predictor’s average or

worst risk over test domains can be misleading when assessing its ability to generalize

OOD, indicating that the performance of DG algorithms was likely never “lost”, as

reported by Gulrajani and Lopez-Paz (2020), but rather invisible through the lens of

average performance. To facilitate this new, more holistic evaluation protocol for DG,

new benchmark datasets are needed containing multiple test domains, ultimately allow-

ing performance distributions to be computed and compared. While some datasets with

multiple test domains exist, e.g., the iWildCam camera-trap dataset and OGB-MolPCBA

molecular dataset, the community would benefit from a concerted effort to collect these

datasets into an easy-to-use benchmark suite with more insightful performance meas-

ures.

Probabilistic robustness across and within domains. We sought predictors that

are probably robust across domains, e.g., across hospitals. To do so, we optimized

the quantile performance across domains, where the performance of each domain was

an average over samples in that domain (i.e., the expected risk). However, one may

also seek robustness within a domain, e.g., across patients within each hospital. To do

so, one could characterise the domain performance itself using a particular quantile

performance across samples within that domain, leading to a nested QRM problem.

Can we do better than a fixed performance-robustness trade-off? We choose

a fixed trade-off between performance and robustness at training time via the inter-

pretable probability-of-generalization parameter α. In effect, this trade-off determines

how much we use features that are informative but unreliable, eventually discarding

all such features as α→ 1. However, one may ask whether it’s possible to change how

we use these features at test time, rather than discarding them at training time. Recent
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works have provided some empirical evidence in support of this hypothesis, showing

that simply retraining the last layer of an ERM-trained model can outperform more

robust feature-learning methods on spurious correlation benchmarks (Kirichenko et al.,

2022; Rosenfeld et al., 2022). However, these works require labelled test-domain data

which is generally not available. In the next chapter, we thus explore how this can be

done without labels, using only the predictions of a robust model.



5

Domain Generalisation: Harnessing
Spurious Features

This chapter also focuses on domain generalisation (DG, Blanchard et al. 2011; Muan-

det et al. 2013) where models are trained on data from multiple related environments

or domains (e.g., hospitals) with the goal of performing well on data from unseen test

domains. In general, preparation involves exploiting invariances across the training do-

mains in the hope that they hold in test domains. In particular, many prior works sought

robustness by discarding “spurious” or unstable features whose relationship with the

label changes across domains, restricting the model to features with an invariant or

stable relationship with the label across domains (Arjovsky et al., 2019; Krueger et al.,

2021; Peters et al., 2016). However, these unstable features often carry complementary

information about the label that could boost performance if used correctly in the test

domain. Thus, perhaps we don’t need to discard these features at all but rather use them

in the right way.

Our main contribution is to show that it is possible to learn how to use these unstable

features in the test domain without labels. In particular, we prove that predictions based

on stable features provide sufficient guidance for doing so, provided that stable and

unstable features are conditionally independent given the label.

Based on this theoretical insight, we propose the Stable Feature Boosting (SFB) al-

gorithm for: (i) learning a predictor that separates stable and conditionally-independent

unstable features on the training domains; and (ii) using the stable-feature predictions

to adapt the unstable-feature predictions in the test domain. Theoretically, we prove that

SFB can learn an asymptotically-optimal predictor in the test domain without labels.

Empirically, we demonstrate the effectiveness of SFB on real and synthetic datasets.
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5.1 Contribution

I led this project from conceptualisation to final form. In particular, I was heavily

involved in coming up with the initial idea, formalising the learning objective and

algorithm, designing the experimental analyses, running the experimental analyses, and

writing the manuscript. Shashank Singh, with whom I share first authorship, led the

theory of Section 4 and helped with some of the above tasks.
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Abstract

To avoid failures on out-of-distribution data, recent works have sought to extract
features that have an invariant or stable relationship with the label across domains,
discarding “spurious” or unstable features whose relationship with the label changes
across domains. However, unstable features often carry complementary information
that could boost performance if used correctly in the test domain. In this work, we
show how this can be done without test-domain labels. In particular, we prove that
pseudo-labels based on stable features provide sufficient guidance for doing so,
provided that stable and unstable features are conditionally independent given the
label. Based on this theoretical insight, we propose Stable Feature Boosting (SFB),
an algorithm for: (i) learning a predictor that separates stable and conditionally-
independent unstable features; and (ii) using the stable-feature predictions to adapt
the unstable-feature predictions in the test domain. Theoretically, we prove that
SFB can learn an asymptotically-optimal predictor without test-domain labels.
Empirically, we demonstrate the effectiveness of SFB on real and synthetic data.

1 Introduction

Machine learning systems can be sensitive to distribution shift [26]. Often, this sensitivity is due to a
reliance on “spurious” features whose relationship with the label changes across domains, ultimately
leading to degraded performance in the test domain of interest [21]. To avoid this pitfall, recent works
on domain or out-of-distribution (OOD) generalization have sought predictors which only make use of
features that have a stable or invariant relationship with the label across domains, discarding the spuri-
ous or unstable features [45, 1, 35, 15]. However, despite their instability, spurious features can often
provide additional or complementary information about the target label. Thus, if a predictor could be
adjusted to use spurious features optimally in the test domain, it would boost performance substantially.
That is, perhaps we don’t need to discard spurious features at all but rather use them in the right way.

As a simple but illustrative example, consider the ColorMNIST or CMNIST dataset [1]. This
transforms the original MNIST dataset into a binary classification task (digit in 0–4 or 5–9) and then:
(i) flips the label with probability 0.25, meaning that, across all 3 domains, digit shape correctly de-
termines the label with probability 0.75; and (ii) colorizes the digit such that digit color (red or green)
is a more informative but spurious feature (see Fig. 1a). Prior work focused on learning an invariant
predictor that uses only shape and avoids using color—a spurious feature whose relationship with the
label changes across domains. However, as shown in Fig. 1b, the invariant predictor is suboptimal in
test domains where color can be used in a domain-specific manner to improve performance. We thus
ask: when and how can such informative but spurious features be safely harnessed without labels?

∗Equal contribution. Correspondence to or shashankssingh44@gmail.com.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Figure 1: Invariant (stable) and spurious (unstable) features. (a) Illustrative images from CMNIST [1]. (b)
CMNIST accuracies (y-axis) over test domains of decreasing color-label correlation (x-axis). The ‘Oracle’ uses
both invariant (shape) and spurious (color) features optimally in the test domain, boosting performance over
an invariant model (orange region). We show how this can be done without test-domain labels. (c) Generally,
invariant models use only the stable component XS of X, discarding the spurious or unstable component XU . We
prove that predictions based on XS can be used to safely harness a sub-component of XU (dark-orange region).

Our main contribution lies in answering this question, showing when and how it is possible to
safely harness spurious or unstable features without test-domain labels. In particular, we prove that
predictions based on stable features provide sufficient guidance for doing so, provided that stable
and unstable features are conditionally independent given the label (see Fig. 1c).

Structure and contributions. The rest of this paper is organized as follows. We first discuss
related work in § 2, providing context and high-level motivation for our approach. In § 3, we then
explain how stable and unstable features can be extracted, how unstable features can be harnessed
with test-domain labels, and the questions/challenges that arise when trying to harness unstable
features without test-domain labels. In § 4, we present our main theoretical contributions which
provide precise answers to these questions, before using these insights to propose the Stable Feature
Boosting (SFB) algorithm in § 5. In § 6, we present our experimental results, before ending with a
discussion and concluding remarks in § 7. Our contributions can be summarized as follows:

• Algorithmic: We propose Stable Feature Boosting (SFB), the first algorithm for using invariant
predictions to safely harness spurious features without test-domain labels.

• Theoretical: SFB is grounded in a novel theoretical result (Thm 4.4) giving sufficient conditions
for provable test-domain adaptation without labels. Under these conditions, Thm 4.6 shows that,
given enough unlabeled data, SFB learns the Bayes-optimal adapted classifier in the test domain.

• Experimental: Our experiments on synthetic and real-world data demonstrate the effectiveness
of SFB—even in scenarios where it is unclear if its assumptions are fully satisfied.

2 Related Work

Domain generalization, robustness and invariant prediction. A fundamental starting point for
work in domain generalization is the observation that certain “stable” features, often direct causes of
the label, may have an invariant relationship with the label across domains [45, 1, 67, 55, 40, 78, 14].
However, such stable or invariant predictors often discard highly informative but unstable information.
Rothenhäusler et al. [51] show that we may need to trade off stability and predictiveness, while
Eastwood et al. [15] seek such a trade-off via an interpretable probability-of-generalization parameter.
The current work is motivated by the idea that one might avoid such a trade-off by changing how
unstable features are used at test time, rather than discarding them at training time.

Test-domain adaptation without labels (unsupervised domain adaptation). In the source-free
and test-time domain adaptation literature, it is common to adapt to new domains using a model’s
own pseudo-labels [20, 36, 39, 71, 30]—see Rusak et al. [52] for a recent review. In contrast,
we: (i) use one (stable) model to provide reliable/robust pseudo-labels and another (unstable)
model to adapt domain-specific information; and (ii) propose a bias correction step that provably
ensures an accurate, well-calibrated unstable model (Pr[Y|XU ]) as well as an optimal joint/combined
model (Pr[Y|XS, XU ]). Beyond this literature, Bui et al. [12] propose a meta-learning approach for
exploiting unstable/domain-specific features. However, they use unstable features in the same way
in the test domain, which, by definition, is not robust and can degrade performance. Sun et al. [63]
share the goal of exploiting unstable features to go “beyond invariance”. However, in contrast to our
approach, they require labels for the unstable features (rarely available) and only address label shifts.

2
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Table 1: Comparison with related work. ∗QRM [15] uses an interpretable hyperparameter α ∈ [0, 1] to
balance the probability of robust generalization and using more information from X.

Method Components of X Used
Stable Complementary All Robust No test-domain labels

ERM [65] ✓ ✓ ✓ ✗ ✓
IRM [1] ✓ ✗ ✗ ✓ ✓
QRM [15] ✓ ✓∗ ✓∗ ✓∗ ✓
DARE [50] ✓ ✓ ✓ ✓ ✗
ACTIR [31] ✓ ✓ ✗ ✓ ✗

SFB (Ours) ✓ ✓ ✗ ✓ ✓

Test-domain adaptation with labels (few-shot fine-tuning). Fine-tuning part of a model using a
small number of labeled test-domain examples is a common way to deal with distribution shift [16, 17,
13]. More recently, it has been shown that simply retraining the last layer of an ERM-trained model
outperforms more robust feature-learning methods on spurious correlation benchmarks [50, 32, 74].
Similar to our approach, Jiang and Veitch [31] separate stable and conditionally-independent unstable
features and then adapt their use of the latter in the test domain. However, in contrast to our approach,
theirs requires test-domain labels. In addition, they assume data is drawn from an anti-causal
generative model, which is strictly stronger than our “complementarity” assumption (see § 4).

Table 1 summarizes related work while App. H discusses further related work.

3 Problem Setup: Extracting and Harnessing Unstable Features

Setup. We consider the problem of domain generalization (DG) [8, 42, 24] where predictors are
trained on data from multiple training domains and with the goal of performing well on data from
unseen test domains. More formally, we consider datasets De = {(Xe

i , Ye
i )}

ne
i=1 collected from m

different training domains or environments Etr := {E1, . . . , Em}, with each dataset De containing
data pairs (Xe

i , Ye
i ) sampled i.i.d. from P(Xe, Ye).2 The goal is then to learn a predictor f (X) that

performs well on a larger set Eall ⊃ Etr of possible domains.

Average performance: use all features. The first approaches to DG sought predictors that perform
well on average over domains [8, 42] using empirical risk minimization (ERM, [66]). However,
predictors that perform well on average can lack robustness [43, 49], potentially performing quite
poorly on large subsets of Eall. In particular, minimizing the average error leads predictors to
make use of any features that are informative about the label (on average), including “spurious” or
“shortcut” [21] features whose relationship with the label is subject to change across domains. In test
domains where these feature-label relationships change in new or more severe ways than observed
during training, this usually leads to significant performance drops or even complete failure [73, 4].

Worst-case or robust performance: use only stable features. To improve robustness, subsequent
works sought predictors that only use stable or invariant features, i.e., those that have a stable or
invariant relationship with the label across domains [45, 1, 47, 70, 58]. For example, Arjovsky
et al. [1] do so by enforcing that the classifier on top of these features is optimal for all domains
simultaneously. We henceforth use stable features and XS to refer to these features, and stable
predictors to refer to predictors which use only these features. Analogously, we use unstable features
and XU to refer to features with an unstable or “spurious” relationship with the label across domains.
Note that XS and XU partition the components of X which are informative about Y, as depicted in
Fig. 1c, and that formal definitions of XS and XU are provided in § 4.

3.1 Harnessing unstable features with labels

A stable predictor fS is unlikely to be the best predictor in any given domain. As illustrated in Fig. 1b,
this is because it excludes unstable features XU which are informative about Y and can boost per-
formance if used in an appropriate, domain-specific manner. Assuming we can indeed learn a stable
predictor with prior methods, we start by showing how XU can be harnessed with test-domain labels.

2We drop the domain superscript e when referring to random variables from any environment.

3
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Boosting the stable predictor. We describe boosted joint predictions f e(X) in domain e as some
combination C of stable predictions fS(X) and domain-specific unstable predictions f e

U(X), i.e.,
f e(X) = C( fS(X), f e

U(X)). To allow us to adapt only the XU-Y relation, we decompose the stable
fS(X) = hS(ΦS(X)) and unstable f e

U(X) = he
U(ΦU(X)) predictions into feature extractors Φ and

classifiers h. ΦS extracts stable components XS = ΦS(X) of X, ΦU extracts unstable components
XU = ΦU(X) of X, hS is a classifier learned on top of ΦS (shared across domains), and he

U is a
domain-specific unstable classifier learned on top of ΦU (one per domain). Putting these together,

f e(X) = C( fS(X), f e
U(X)) = C(hS(ΦS(X)), he

U(ΦU(X))) = C(hS(XS), he
U(XU)), (3.1)

where C : [0, 1]× [0, 1] → [0, 1] is a combination function that combines the stable and unstable
predictions. For example, Jiang and Veitch [31, Eq. 2.1] add stable pS and unstable pU predictions in
logit space, i.e., C(pS, pU)=σ(logit(pS) + logit(pU)). Since it is unclear, a priori, how to choose
C, we will leave it unspecified until Thm. 4.4 in § 4, where we derive a principled choice.

Adapting with labels. Given a new domain e and labels Ye, we can boost performance by adapting
he

U . Specifically, letting ℓ : Y × Y → R be a loss function (e.g., cross-entropy) and Re( f ) =
E(X,Y) [ℓ(Y, f (X))|E = e] the risk of predictor f : X → Y in domain e, we can adapt he

U to solve:

min
hU

Re(C(hS ◦ΦS, hU ◦ΦU)) (3.2)

3.2 Harnessing unstable features without labels

We now consider the main question of this work—can we reliably harness XU without test-domain
labels? We could, of course, simply select a fixed unstable classifier he

U by relying solely on the
training domains (e.g., by minimizing average error), and hope that this works for the test-domain
XU-Y relation. However, by definition of XU being unstable, this is clearly not a robust or reliable
approach—the focus of our efforts in this work, as illustrated in Table 1. As in § 3.1, we assume that
we are able to learn a stable predictor fS using prior methods, e.g., IRM [1] or QRM [15].

From stable predictions to robust pseudo-labels. While we don’t have labels in the test domain,
we do have stable predictions. By definition, these are imperfect (i.e., noisy) but robust, and can be
used to form pseudo-labels Ŷi = arg maxj( fS(Xi))j, with ( fS(Xi))j ≈ Pr[Yi = j|XS] denoting the

jth entry of the stable prediction for Xi. Can we somehow use these noisy but robust pseudo-labels
to guide our updating of he

U , and, ultimately, our use of XU in the test domain?

From joint to unstable-only risk. If we simply use our robust pseudo-labels as if they were true
labels—updating he

U to minimize the joint risk as in Eq. (3.2)—we arrive at trivial solutions since fS
already predicts its own pseudo-labels with 100% accuracy. For example, if we follow [31, Eq. 2.1]
and use the combination function C(pS, pU) = σ(logit(pS) + logit(pU)), then the trivial solution
logit(he

U(·))=0 achieves 100% accuracy (and minimizes cross-entropy; see Prop. D.1 of App. D).
Thus, we cannot minimize a joint loss involving fS’s predictions when using fS’s pseudo-labels. A
sensible alternative is to update he

U to minimize the unstable-only risk Re(he
U ◦ΦU).

More questions than answers. While this new procedure could work, it raises questions about when
it will work, or, more precisely, the conditions under which it can be used to safely harness XU . We
now summarise these questions before addressing them in § 4:

1. Does it make sense to minimize the unstable-only risk? In particular, when can we minimize
the unstable-predictor risk alone or separately, and then arrive at the optimal joint predictor? This
cannot always work; e.g., for independent XS, XU ∼ Bernoulli(1/2) and Y = XS XOR XU , Y
is independent of each of XS and XU and hence cannot be predicted from either alone.

2. How should we combine predictions? Is there a principled choice for the combination function
C in Eq. (3.1)? In particular, is there a C that correctly weights stable and unstable predictions
in the test domain? As XU could be very strongly or very weakly predictive of Y in the test
domain, this seems a difficult task. Intuitively, correctly weighting stable and unstable predictions
requires them to be properly calibrated: do we have any reason to believe that, after training on
fS’s pseudo-labels, he

U will be properly calibrated in the test domain?

3. Can the student outperform the teacher? Stable predictions likely make mistakes—indeed, this
is the motivation for trying to improve them. Is it possible to correct these mistakes with XU? Is it

4
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possible to learn an unstable “student” predictor that outperforms its own supervision signal or
“teacher”? Perhaps surprisingly, we show that, for certain types of features, the answer is yes. In
fact, even a very weak stable predictor, with performance just above chance, can be used to learn
an optimal unstable classifier in the test domain given enough unlabeled data.

4 Theory: When Can We Safely Harness Unstable Features Without Labels?

Suppose we have already identified a stable feature XS and a potentially unstable feature XU (we
will return to the question of how to learn/extract XS and XU themselves in § 5). In this section, we
analyze the problem of using XS to leverage XU in the test domain without labels. We first reduce
this to a special case of the so-called “marginal problem” in probability theory, i.e., the problem of
identifying a joint distribution based on information about its marginals. In the special case where
two variables are conditionally independent given a third, we show this problem can be solved exactly.
This solution, which may be of interest beyond the context of domain generalization/adaptation,
motivates our test-domain adaptation algorithm (Alg. 1), and forms the basis of Thm. 4.6 which
shows that Alg. 1 converges to the best possible classifier given enough unlabeled data.

We first pose a population-level model of our domain generalization setup. Let E be a random variable
denoting the environment. Given an environment E, we have that the stable feature XS, unstable
feature XU and label Y are distributed according to PXS ,XU ,Y|E. We can now formalize the three key
assumptions underlying our approach, starting with the notion of a stable feature, motivated in § 3:

Definition 4.1 (Stable and Unstable Features). XS is a stable feature with respect to Y if PY|XS
does

not depend on E; equivalently, if Y and E are conditionally independent given XS (Y ⊥⊥ E|XS).
Conversely, XU is an unstable feature with respect to Y if PY|XU

depends on E; equivalently, if Y
and E are conditionally dependent given XU (Y ⊥̸⊥ E|XU).

Next, we state our complementarity assumption, which we will show justifies the approach of
separately learning the relationships XS-Y and XU-Y and then combining them:

Definition 4.2 (Complementary Features). XS and XU are complementary features with respect to Y
if XS ⊥⊥ XU |(Y, E); i.e., if XS and XU share no redundant information beyond Y and E.

Finally, to provide a useful signal for test-domain adaptation, the stable feature needs to help predict
the label in the test domain. Formally, we assume:

Definition 4.3 (Informative Feature). XS is said to be informative of Y in environment E if XS ⊥̸⊥ Y|E;
i.e., XS is predictive of Y within the environment E.

We will discuss the roles of these assumptions after stating our main result (Thm. 4.4) that uses them.
To keep our results as general as possible, we avoid assuming a particular causal generative model,
but the above conditional (in)dependence assumptions can be interpreted as constraints on such a
causal model. App. D.2 formally characterizes the set of causal models that are consistent with our
assumptions and shows that our setting generalizes those of prior works [49, 68, 31, 69].

Reduction to the marginal problem with complementary features. By Defn. 4.1, we have the
same stable relationship PY|XS ,E =PY|XS

in training and test domains. Now, suppose we have used
the training data to learn this stable relationship and thus know PY|XS

. Also suppose that we have
enough unlabeled data from test domain E to learn PXS ,XU |E, and recall that our ultimate goal is
to predict Y from (XS, XU) in test domain E. Since the rest of our discussion is conditioned on E
being the test domain, we omit E from the notation. Now note that, if we could express PY|XS ,XU
in terms of PY|XS

and PXS ,XU , we could then use PY|XS ,XU
to optimally predict Y from (XS, XU).

Thus, our task thus becomes to reconstruct PY|XS ,XU
from PY|XS

and PXS ,XU . This is an instance
of the classical “marginal problem” from probability theory [28, 29, 19], which asks under which
conditions we can recover the joint distribution of a set of random variables given information about
its marginals. In general, although one can place bounds on the conditional distributions PY|XU

and
PY|XS ,XU

, they cannot be completely inferred from PY|XS
and PXS ,XU [19]. However, the following

section demonstrates that, under the additional assumptions that XS and XU are complementary and
XS is informative, we can exactly recover PY|XU

and PY|XS ,XU
from PY|XS

and PXS ,XU .

5
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4.1 Solving the marginal problem with complementary features
We now present our main result which shows how to reconstruct PY|XS ,XU

from PY|XS
and PXS ,XU

when XS and XU are complementary and XS is informative. To simplify notation, we assume the
label Y is binary and defer the multi-class extension to App. C.

Theorem 4.4 (Solution to the marginal problem with binary labels and complementary features).
Consider three random variables XS, XU , and Y, where (i) Y is binary ({0, 1}-valued), (ii) XS and
XU are complementary features for Y (i.e., XS ⊥⊥ XU |Y), and (iii) XS is informative of Y (XS ⊥̸⊥ Y).
Then, the joint distribution of (XS, XU , Y) can be written in terms of the joint distributions of (XS, Y)
and (XS, XU). Specifically, if Ŷ|XS ∼ Bernoulli(Pr[Y = 1|XS]) is a pseudo-label3 and

ϵ0 := Pr[Ŷ = 0|Y = 0] and ϵ1 := Pr[Ŷ = 1|Y = 1] (4.1)
are the accuracies of the pseudo-labels on classes 0 and 1, respectively. Then, we have:

ϵ0 + ϵ1 > 1, (4.2)

Pr[Y = 1|XU ] =
Pr[Ŷ = 1|XU ] + ϵ0 − 1

ϵ0 + ϵ1 − 1
, and (4.3)

Pr[Y = 1|XS, XU ]=σ (logit(Pr[Y=1|XS]) + logit(Pr[Y=1|XU ])− logit(Pr[Y=1])) . (4.4)

Intuitively, suppose we generate pseudo-labels Ŷ based on feature XS and train a model to predict
Ŷ using feature XU . For complementary XS and XU , Eq. (4.3) shows how to transform this into
a prediction of the true label Y, correcting for differences between Ŷ and Y. Crucially, given the
conditional distribution PY|XS

and observations of XS, we can estimate class-wise pseudo-label
accuracies ϵ0 and ϵ1 in Eq. (4.3) even without new labels Y (see App. A.1, Eq. (A.2)). Finally,
Eq. (4.4) shows how to weight predictions based on XS and XU , justifying the combination function

Cp(pS, pU) = σ(logit(pS) + logit(pU)− logit(p)) (4.5)
in Eq. (3.1), where p = Pr[Y = 1] is a constant independent of XS and XU . We now sketch the proof
of Thm. 4.4, elucidating the roles of informativeness and complementarity (full proof in App. A.1).

Proof Sketch of Thm. 4.4. We prove Eq. (4.2), Eq. (4.3), and Eq. (4.4) in order.

Proof of Eq. (4.2): The informativeness condition (iii) is equivalent to the pseudo-labels having
predictive accuracy above random chance; formally, App. A.1 shows:

Lemma 4.5. ϵ0 + ϵ1 > 1 if and only if XS is informative of Y (i.e., XS ⊥̸⊥ Y).

Together with Eq. (4.3), it follows that any dependence between XS and Y allows us to fully learn
the relationship between XU and Y, affirmatively answering our question from § 3: Can the student
outperform the teacher? While a stronger relationship between XS and Y is still helpful, it only
improves the (unlabeled) sample complexity of learning PY|XU

and not consistency (Thm. 4.6 below),
mirroring related results in the literature on learning from noisy labels [44, 7, 75]. In particular,
a weak relationship corresponds to ϵ0 + ϵ1 ≈ 1, increasing the variance of the bias-correction
in Eq. (4.3). With a bit more work, one can formalize this intuition to show that our approach has a
relative statistical efficiency of ϵ0 + ϵ1 − 1 ∈ [0, 1], compared to using true labels Y.

Proof of Eq. (4.3): The key observation behind the bias-correction (Eq. (4.3)) is that, due to
complementarity (XS ⊥⊥ XU |Y) and the fact that the pseudo-label Ŷ depends only on XS, Ŷ is
conditionally independent of XU given the true label Y (Ŷ ⊥⊥ XU |Y); formally:

Pr[Ŷ = 1|XU ] = Pr[Ŷ = 1|Y = 0, XU ]Pr[Y = 0|XU ]

+ Pr[Ŷ = 1|Y = 1, XU ]Pr[Y = 1|XU ] (Law of Total Probability)

= Pr[Ŷ = 1|Y = 0]Pr[Y = 0|XU ]

+ Pr[Ŷ = 1|Y = 1]Pr[Y = 1|XU ] (Complementarity)

= (ϵ0 + ϵ1 − 1)Pr[Y = 1|XU ] + 1− ϵ0. (Definitions of ϵ0 and ϵ1)

3Our stochastic pseudo-labels differ from hard (Ŷ = 1{Pr[Y = 1|XS] > 1/2}) pseudo-labels often used
in practice [20, 36, 52]. By capturing irreducible error in Y, stochastic pseudo-labels ensure Pr[Y|XU ] is
well-calibrated, allowing us to combine Pr[Y|XS] and Pr[Y|XU ] in Eq. (4.4).
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Algorithm 1: Bias-corrected adaptation procedure. Multi-class version given by Algorithm 2.
Input: Calibrated stable classifier fS(xS)=Pr[Y=1|XS = xS], unlabelled data {(XS,i, XU,i)}n

i=1
Output: Joint classifier f̂ (xS, xU) estimating Pr[Y = 1|XS = xS, XU = xU ]

1 Compute soft pseudo-labels (PLs) {Ŷi}n
i=1 with Ŷi = fS(XS,i)

2 Compute soft class-1 count n1 = ∑n
i=1 Ŷi

3 Estimate PL accuracies (ϵ̂0, ϵ̂1)=
(

1
n−n1

∑n
i=1(1−Ŷi)(1− fS(XS,i)), 1

n1
∑n

i=1 Ŷi fS(XS,i)
)

// Eq.(4.1)

4 Fit unstable classifier f̃U(xU) to pseudo-labelled data {(XU,i, Ŷi)}n
i=1 // ≈ Pr[Ŷ=1|XU = xU ]

5 Bias-correct f̂U(xU) 7→ max
{

0, min
{

1, f̃U(xU)+ϵ̂0−1
ϵ̂0+ϵ̂1−1

}}
// Eq.(4.3), ≈ Pr[Y=1|XU = xU ]

6 return f̂ (xS, xU) 7→C n1
n
( fS(xS), f̂U(xU)) // Eq.(4.4)/(4.5), ≈ Pr[Y=1|XS = xS, XU = xU ]

Here, complementarity allowed us to approximate the unknown Pr[Ŷ = 1|Y = 0, XU ] by its average
Pr[Ŷ = 1|Y = 0] = EXU [Pr[Ŷ = 1|Y = 0, XU ]], which depends only on the known distribution
PXS ,Y. By informativeness, Lemma 4.5 allows us to divide by ϵ0 + ϵ1 − 1, giving Eq. (4.3).

Proof of Eq. (4.4): While the exact proof of Eq. (4.4) is a bit more algebraically involved, the
key idea is simply that complementarity allows us to decompose Pr[Y|XS, XU ] into separately-
estimatable terms Pr[Y|XS] and Pr[Y|XU ]: for any y ∈ Y ,

Pr[Y = y|XS, XU ] ∝XS ,XU Pr[XS, XU |Y = y]Pr[Y = y] (Bayes’ Rule)

= Pr[XS|Y = y]Pr[XU |Y = 1]Pr[Y = y] (Complementarity)

∝XS ,XU

Pr[Y = y|XS]Pr[Y = 1|XU ]

Pr[Y = 1]
, (Bayes’ Rule)

where, ∝XS ,XU denotes proportionality with a constant depending only on XS and XU , not on y.
Directly estimating these constants involves estimating the density of (XS, XU), which may be
intractable without further assumptions. However, in the binary case, since 1− Pr[Y = 1|XS, XU ] =
Pr[Y = 0|XS, XU ], these proportionality constants conveniently cancel out when the above relation-
ship is written in logit-space, as in Eq. (4.4). In the multi-class case, App. C shows how to use the
constraint ∑y∈Y Pr[Y = y|XS, XU ] = 1 to avoid computing the proportionality constants.

4.2 A provably consistent algorithm for unsupervised test-domain adaptation

Having learned PY|XS
from the training domain(s), Thm. 4.4 implies we can learn PY|XS ,XU

in the
test domain by learning PXS ,XU —the latter only requiring unlabeled test-domain data. This motivates
our Alg. 1 for test-domain adaptation, which is a finite-sample version of the bias-correction and
combination equations (Eqs. (4.3) and (4.4)) in Thm. 4.4. Alg. 1 comes with the following guarantee:

Theorem 4.6 (Consistency Guarantee, Informal). Assume (i) XS is stable, (ii) XS and XU are
complementary, and (iii) XS is informative of Y in the test domain. As n → ∞, if f̃U → Pr[Ŷ =

1|XU ] then f̂ → Pr[Y = 1|XS, XU ].

In words, as the amount of unlabeled data from the test domain increases, if the unstable classifier on
Line 4 of Alg. 1 learns to predict the pseudo-label Ŷ, then the joint classifier output by Alg. 1 learns
to predict the true label Y. Convergence in Thm. 4.6 occurs PXS ,XU -a.e., both weakly (in prob.) and
strongly (a.s.), depending on the convergence of f̃U . Formal statements and proofs are in Appendix B.

5 Algorithm: Stable Feature Boosting (SFB)

Using theoretical insights from § 4, we now propose Stable Feature Boosting (SFB): an algorithm
for safely harnessing unstable features without test-domain labels. We first describe learning a
stable predictor and extracting complementary unstable features from the training domains. We then
describe how to use these with Alg. 1, adapting our use of the unstable features to the test domain.
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Training domains: Learning stable and complementary features. Using the notation of Eq. (3.1),
our goal on the training domains is to learn stable and unstable features ΦS and ΦU , a stable predictor
fS, and domain-specific unstable predictors f e

U such that:

1. fS is stable, informative, and calibrated (i.e., fS(xS)=Pr[Y=1|XS = xS]).

2. In domain e, f e
U boosts fs’s performance with complementary ΦU(Xe)⊥⊥ΦS(Xe)|Ye.

To achieve these learning goals, we propose the following objective:

min
ΦS ,ΦU ,hS ,he

U
∑

e∈Etr

Re(hS ◦ΦS) + Re(C(hS ◦ΦS, he
U ◦ΦU))

+ λS · PStability(ΦS, hS, Re) + λC · PCondIndep(ΦS(Xe), ΦU(Xe), Ye)
(5.1)

The first term encourages good stable predictions fS(X) = hS(ΦS(X)) while the second encourages
improved domain-specific joint predictions f e(Xe) = C(hS(ΦS(Xe)), he

U(ΦU(Xe))) via a domain-
specific use he

U of the unstable features ΦU(Xe). For binary Y, the combination function C takes
the simplified form of Eq. (4.5). Otherwise, C takes the more general form of Eq. (C.1). PStability
is a penalty encouraging stability while PCondIndep is a penalty encouraging complementarity or
conditional independence, i.e., ΦU(Xe) ⊥⊥ ΦS(Xe)|Ye. Several approaches exist for enforcing
stability [1, 35, 58, 47, 15, 67, 40, 78] (e.g., IRM [1]) and conditional independence (e.g., conditional
HSIC [22]). λS ∈ [0, ∞) and λC ∈ [0, ∞) are regularization hyperparameters. While another
hyperparameter γ ∈ [0, 1] could control the relative weighting of stable and joint risks, i.e., γRe(hS ◦
ΦS) and (1− γ)Re(C(hS ◦ΦS, he

U ◦ΦU)), we found this unnecessary in practice. Finally, note that,
in principle, he

U could take any form and we could learn completely separate ΦS, ΦU . In practice, we
simply take he

U to be a linear classifier and split the output of a shared Φ(X) = (ΦS(X), ΦU(X)).

Post-hoc calibration. As noted in § 4.2, the stable predictor fS must be properly calibrated to (i) form
unbiased unstable predictions (Line 5 of Alg. 1) and (ii) correctly combine the stable and unstable
predictions (Line 6 of Alg. 1). Thus, after optimizing the objective (5.1), we apply a post-processing
step (e.g., temperature scaling [25]) to calibrate fS.

Test-domain adaptation without labels. Given a stable predictor fS = hS ◦ΦS and complementary
features ΦU(X), we now adapt the unstable classifier he

U in the test domain to safely harness (or
make optimal use of) ΦU(X). To do so, we use the bias-corrected adaptation algorithm of Alg. 1
(or Alg. 2 for the multi-class case) which takes as input the stable classifier hS

4 and unlabelled
test-domain data {ΦS(xi), ΦU(xi)}ne

i=1, outputting a joint classifier adapted to the test domain.

6 Experiments

We now evaluate the performance of our algorithm on synthetic and real-world datasets requiring out-
of-distribution generalization. App. E contains full details on these datasets and a depiction of their
samples (see Fig. 4). In the experiments below, SFB uses IRM [1] for PStability and the conditional-
independence proxy of Jiang and Veitch [31, §3.1] for PCondIndep, with App. F.1.2 giving results with
other stability penalties. App. F contains further results, including ablation studies (F.1.1) and results
on additional datasets (F.2). In particular, App. F.2 contains results on the Camelyon17 medical
dataset [3] from the WILDS package [33], where we find that all methods perform similarly when
properly tuned (see discussion in App. F.2). Code is available at: https://github.com/cianeastwood/sfb.

Synthetic data. We consider two synthetic datasets: anti-causal (AC) data and cause-effect data with
direct XS-XU dependence (CE-DD). AC data satisfies the structural equations

Y ← Rad(0.5);
XS ← Y · Rad(0.75);
XU ← Y · Rad(βe),

βe

XS

Y

XU

where the input X = (XS, XU) and Rad(β) denotes a Rademacher random variable that

4Note: while Sections 3 and 5 use h for the classifier and f = h ◦ Φ for the classifier-representation
composition, Section 4 and Alg. 1 use f for the classifier, since no representation Φ is being learned.
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Table 2: Synthetic & PACS test-domain accuracies over 100 & 5 seeds each.
Synthetic PACS

Algorithm AC CE-DD P A C S

ERM 9.9± 0.1 11.6± 0.7 93.0± 0.7 79.3± 0.5 74.3± 0.7 65.4± 1.5
ERM + PL 9.9± 0.1 11.6± 0.7 93.7± 0.4 79.6± 1.5 74.1± 1.2 63.1± 3.1
IRM [1] 74.9± 0.1 69.6± 1.3 93.3± 0.3 78.7± 0.7 75.4± 1.5 65.6± 2.5
IRM + PL 74.9± 0.1 69.6± 1.3 94.1± 0.7 78.9± 2.9 75.1± 4.6 62.9± 4.9
ACTIR [31] 74.8± 0.4 43.5± 2.6 94.8± 0.1 82.5± 0.4 76.6± 0.6 62.1± 1.3
SFB no adpt. 74.7± 1.2 74.9± 3.6 93.7± 0.6 78.1± 1.1 73.7± 0.6 69.7± 2.3
SFB 89.2± 2.9 88.6± 1.4 95.8± 0.6 80.4± 1.3 76.6± 0.6 71.8± 2.0

Table 3: CMNIST test ac-
curacies over 10 seeds.
Algorithm Test Acc.
ERM 27.9± 1.5
IRM [1] 69.7± 0.9
SFB no adpt. 70.6± 1.8
SFB 88.1± 1.8

Oracle no adpt. 72.1± 0.7
Oracle 89.9± 0.1

0.9 0.0 -0.9
Color-Label Correlation

0.65
0.70
0.75
0.80
0.85
0.90

Ac
cu

ra
cy

IRM
IRM + PL
IRM + T3A

SFB
ERM

0.9 0.0 -0.9
Color-Label Correlation

SFB w/o Rn,CA,BC
SFB w/o Rn,CA
SFB w/o Rn

Oracle
SFB no adpt
SFB

Figure 2: CMNIST accuracies (y-axis) over test domains of decreasing color-label correlation (x-axis). Empirical
versions of Fig. 1b. Left: SFB vs. baseline methods. Right: Ablations showing SFB without (w/o) bias correc-
tion (BC), calibration (CA) and multiple pseudo-labeling rounds (Rn). Numerical results in Table 7 of App. F.1.3.

is −1 with probability 1 − β and +1 with probability β. Following [31, §6.1], we create
two training domains with βe ∈ {0.95, 0.7}, one validation domain with βe = 0.6 and one
test domain with βe = 0.1. CE-DD data is generated according to the structural equations

XS ← Bern(0.5);
Y ← XOR(XS, Bern(0.75));

XU ← XOR(XOR(Y, Bern(βe)), XS),

βe

XS

Y

XU

where Bern(β) denotes a Bernoulli random variable that is 1 with probability β and 0 with probability
1− β. Note that XS ⊥̸⊥ XU |Y, since XS directly influences XU . Following [31, App. B], we create
two training domains with βe ∈ {0.95, 0.8}, one validation domain with βe = 0.2, and one test
domain with βe = 0.1. For both datasets, the idea is that, during training, prediction based on the
stable XS results in lower accuracy (75%) than prediction based on the unstable XU . Thus, models
optimizing for prediction accuracy only—and not stability—will use XU and ultimately end up
with only 10% in the test domain. Importantly, while the stable predictor achieves 75% accuracy
in the test domain, this can be improved to 90% if XU is used correctly. Following [31], we use a
simple 3-layer network for both datasets and choose hyperparameters using the validation-domain
performance: see App. G.2 for further implementation details.

On the AC dataset, Table 2 shows that ERM performs poorly as it misuses XU , while IRM, ACTIR,
and SFB-no-adpt. do well by using only XS. Critically, only SFB (with adaptation) is able to harness
XU in the test domain without labels, leading to a near-optimal performance boost.

On the CE-DD dataset, Table 2 again shows that ERM performs poorly while IRM and SFB-no-adpt.
do well by using only the stable XS. However, we now see that ACTIR performs poorly since
its assumption of anti-causal structure no longer holds. This highlights another key advantage of
SFB over ACTIR: any stability penalty can be used, including those with weaker assumptions than
ACTIR’s anti-causal structure (e.g., IRM). Perhaps more surprisingly, SFB (with adaptation) performs
well despite the complementarity assumption XS ⊥⊥ XU |Y being violated. One explanation for this
is that complementarity is only weakly violated in the test domain. Another is that complementarity
is not necessary for SFB, with some weaker, yet-to-be-determined condition(s) sufficing. In App. I,
we provide a more detailed explanation and discussion of this observation.

ColorMNIST. We now consider the ColorMNIST dataset [1], described in § 1 and Fig. 1a. We follow
the experimental setup of Eastwood et al. [15, §6.1]; see App. G.3 for details. Table 3 shows that:
(i) SFB learns a stable predictor (“no adpt.”) with performance comparable to other stable/invariant
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methods like IRM [1]; and (ii) only SFB (with adaptation) is capable of harnessing the spurious
color feature in the test domain without labels, leading to a near-optimal boost in performance.
Note that “Oracle no adpt.” refers to an ERM model trained on grayscale images, while “Oracle”
refers to an ERM model trained on labeled test-domain data. Table 6 of App. F.1.3 compares to
additional baseline methods, including V-REx [35], EQRM [15], Fishr [48] and more. Fig. 2 gives
more insight by showing performance across test domains of varying color-label correlation. On the
left, we see that SFB outperforms ERM and IRM, as well as additional adaptive baseline methods
in IRM + pseudo-labeling (PL, [36]) and IRM + T3A [30] (see App. G.1 for details). On the right,
ablations show that: (i) bias-correction (BC), post-hoc calibration (CA), and multiple rounds of
pseudo-labeling (Rn) improve adaptation performance; and (ii) without labels, SFB harnesses the
spurious color feature near-optimally in test domains of varying color-label correlation—the original
goal we set out to achieve in Fig. 1b. Further results and ablations are provided in App. F.1.

PACS. Table 2 shows that SFB’s stable (“no adpt.”) performance is comparable to that of the other
stable/invariant methods (IRM, ACTIR). One exception is the sketch domain (S)—the most severe
shift based on performance drop—where SFB’s stable predictor performs best. Another is on domains
A and C, where ACTIR performs better than SFB’s stable predictor. Most notable, however, is: (i) the
consistent performance boost that SFB gets from unsupervised adaptation; and (ii) SFB performing
best or joint-best on 3 of the 4 domains. These results suggest SFB can be useful on real-world
datasets where it is unclear if complementarity holds. In App. I, we discuss why this may be the case.

7 Conclusion & Future Work

This work demonstrated, both theoretically and practically, how to adapt our usage of spurious
features to new test domains using only a stable, complementary training signal. By using invariant
predictions to safely harness complementary spurious features, our proposed Stable Feature Boosting
algorithm can provide significant performance gains compared to only using invariant/stable features
or using unadapted spurious features—without requiring any true labels in the test domain.

Stable and calibrated predictors. Perhaps the greatest challenge in applying SFB in practice is the
need for a stable and calibrated predictor. While stable features may be directly observable in some
cases (e.g., using prior knowledge of causal relationships between the domain, features, and label,
as in Prop. D.2), they often need to be extracted from high-dimensional observations (e.g., images).
Several methods for stable-feature extraction have recently been proposed [1, 35, 58, 70, 15], with
future improvements likely to benefit SFB. Calibrating complex predictors like deep neural networks
is also an active area of research [18, 25, 72, 59], with future improvements likely to benefit SFB.

Weakening the complementarity condition. SFB also assumes that stable and unstable features are
complementarity, i.e., conditionally independent given the label. This assumption is implicit in the
causal generative models assumed by prior work [49, 68, 31], and future work may look to weaken it.
However, our experimental results suggest that SFB may be robust to violations of complementarity
in practice: on our synthetic data where complementarity does not hold (CE-DD) and real data where
we have no reason to believe it holds (PACS), SFB still outperformed baseline methods. We discuss
potential reasons for this in App. I and hope that future work can identify weaker sufficient conditions.

Exploiting newly-available test-domain features without labels. While we focused on domain
generalization (DG) and the goal of (re)learning how to use the same spurious features (e.g., color) in
a new way, our solution to the “marginal problem” in § 4.1 can be used to exploit a completely new
set of (complementary) features in the test domain that weren’t available in the training domains. For
example, given a stable predictor of diabetes based on causal features (e.g., age, genetics), SFB could
exploit new unlabeled data containing previously-unseen effect features (e.g., glucose levels). We
hope future work can explore such uses of SFB.
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5.3 Comments on the paper

Doing better than a fixed performance-robustness trade-off. In Chapter 4, we

chose a fixed trade-off between performance and robustness at training time via the

probability-of-generalisation parameter α. This trade-off determined how much we

used spurious but informative features, eventually discarding all such features as α→ 1.

In this paper, we showed that, rather than discarding such features at training time, we

can change how we use them at test time without labels and still be provably robust.

Exploiting new test-domain features without labels. Extending the idea of using

complementary features “in a new way”, we could in fact exploit a completely new

set of features in the test domain that weren’t available in the training domains—so

long as they satisfy complementarity. For example, if we leveraged data from multiple

hospitals to learn a stable predictor of diabetes that only used causes (e.g., BMI, number

of pregnancies, etc.), then, upon deployment to a new test hospital, we could exploit

newly-available effect features without any labels (e.g., glucose levels).

Weakening the complementarity condition. Perhaps the most significant limitation

of this work is the assumption of complementarity, i.e., that the stable and unstable fea-

tures are conditionally independent given the label. While complementarity is implicit

in the causal generative models assumed by prior works (Rojas-Carulla et al., 2018;

von Kügelgen et al., 2019), it would be interesting to investigate whether or not weaker

conditions suffice for SFB to succeed. One point of encouragement is that, in the related

context of co-training, a similar condition was initially assumed and then weakened in

subsequent work (Abney, 2002; Balcan et al., 2004; Blum and Mitchell, 1998; Wang

and Zhou, 2010).

Regularised feature-learning: a challenging optimisation problem. To learn stable

or invariant predictors, many works—including ours—add regularisation terms to the

ERM objective (Arjovsky et al., 2019; Krueger et al., 2021). Unfortunately, in practice,

the resulting optimisation problem can be significantly more challenging than ERM

when using deep neural networks (Gulrajani and Lopez-Paz, 2020; Rosenfeld et al.,

2022; Zhang et al., 2022). This is particularly true for SFB since it adds two different

regularisation terms to the ERM objective (for stability and conditional independence).

As a result, we found SFB to be particularly difficult to optimise compared to both
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ERM and IRM. To address these difficulties, and make SFB easier to use in practice, it

would be interesting to investigate:

1. Pre-trained networks. Recent works found that ERM pretraining can signific-

antly boost the performance of more robust or regularised DG algorithms (see,

e.g., Table 1 of Chapter 4 and Table 1 of Zhang et al. 2022). In addition, Zhang

et al. (2022) proposed Rich Feature Construction (RFC) pretraining to extract

a rich set of potentially-useful features, showing that this further stabilises the

training of DG algorithms (see Figure 3 of their paper) and, as a result, leads to

improved performance (see Table 3 of their paper).

2. Pre-trained and frozen networks. To further stabilise the training of DG al-

gorithms when using deep networks, recent works have frozen all but the final

linear layer after ERM or RFC pretraining (Rosenfeld et al., 2022; Zhang et al.,

2022). While last-layer fine-tuning has long been used for transfer learning with

deep networks (Girshick et al., 2014; Zeiler and Fergus, 2014), it has only re-

cently been investigated for stabilising the training of DG algorithms. In par-

ticular, Rosenfeld et al. (2022) show that this stabilised training translates into

reliable performance gains over ERM (see Table 1 of their paper), positing that:

(i) previous observations on DomainBed (Gulrajani and Lopez-Paz, 2020), where

no DG algorithm reliably beat ERM, were primarily due to more difficult optim-

isation problems1; and (ii) the current bottleneck for DG is not feature learning,

since this can be done well with ERM or RFC, but rather robust regression.

3. Separate networks for stable and unstable predictors. Motivated by feature

reuse and a fair comparison to baselines (in terms of the number of paramet-

ers), we used a single, shared feature extractor Φ for our stable and unstable

predictors. However, in light of the training instabilities that we encountered,

it would be interesting to investigate completely-separate feature extractors ΦS

and ΦU , choosing the network architectures carefully such that the total number

of parameters matches that of single-network baselines. The hypothesis here is

that separate feature extractors are easier to train as there is no competition or

interference between the gradients.

1While we agree that this played a significant role, we believe that only comparing the average
performance of these algorithms played just as significant a role, as discussed in § 4.3.





6

Disentangled Representation Learning

This chapter focuses on representation learning, in particular, disentangled represent-

ation learning. One of the primary goals of representation learning is to learn repres-

entations of complex data that make it easier for downstream tasks to extract useful

information (Bengio et al., 2013). In the context of this thesis, this can be viewed as

an extreme setting for distribution shift in which the task changes or shifts at test time.

With this view in mind, disentangled representation learning can be seen as prepar-

ing for an unknown test-time task by recovering and separating the data’s underlying

factors of variation, discarding as little information as possible (Desjardins et al., 2012;

Kulkarni et al., 2015). To better facilitate the learning and comparison of methods for

disentangled representation learning, prior works have proposed evaluation frameworks

for disentangled representations. We build on one such framework, that of Eastwood

and Williams (2018), by first connecting it to identifiability and then extending it to

contain new complementary measures of representation quality which better correlate

with downstream performance.

Our main idea is that the functional capacity required to use a representation is

an important but thus-far neglected aspect of representation quality, which we quantify

using an explicitness or ease-of-use (E) score. In contrast to prior “mixing-based” meas-

ures of disentanglement, such as the D and C scores of the DCI framework (Eastwood

and Williams, 2018), our E score directly measures a representation’s ease-of-use—

often the most desirable property for representations.
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6.1 Contribution

I led this project from conceptualisation to final form. In particular, I was heavily in-

volved in coming up with the initial idea, formalising the extended framework, design-

ing the experimental analyses, and writing the manuscript. In addition to helping with

these tasks, Andrei Liviu Nicolicioiu ran the experiments while Julius von Kügelgen

led the formal connection to identifiability. Both share first authorship.
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DCI-ES: AN EXTENDED DISENTANGLEMENT FRAME-
WORK WITH CONNECTIONS TO IDENTIFIABILITY
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4Technical University of Denmark

ABSTRACT

In representation learning, a common approach is to seek representations
which disentangle the underlying factors of variation. Eastwood & Williams
(2018) proposed three metrics for quantifying the quality of such disentangled
representations: disentanglement (D), completeness (C) and informativeness (I).
In this work, we first connect this DCI framework to two common notions of
linear and nonlinear identifiability, thereby establishing a formal link between
disentanglement and the closely-related field of independent component analysis.
We then propose an extended DCI-ES framework with two new measures of repre-
sentation quality—explicitness (E) and size (S)—and point out how D and C can be
computed for black-box predictors. Our main idea is that the functional capacity
required to use a representation is an important but thus-far neglected aspect of
representation quality, which we quantify using explicitness or ease-of-use (E).
We illustrate the relevance of our extensions on the MPI3D and Cars3D datasets.

1 INTRODUCTION

A primary goal of representation learning is to learn representations r(x) of complex data x that
“make it easier to extract useful information when building classifiers or other predictors” (Bengio
et al., 2013). Disentangled representations, which aim to recover and separate (or, more formally,
identify) the underlying factors of variation z that generate the data as x = g(z), are a promising
step in this direction. In particular, it has been argued that such representations are not only inter-
pretable (Kulkarni et al., 2015; Chen et al., 2016) but also make it easier to extract useful information
for downstream tasks by recombining previously-learnt factors in novel ways (Lake et al., 2017).

While there is no single, widely-accepted definition, many evaluation protocols have been proposed to
capture different notions of disentanglement based on the relationship between the learnt representa-
tion or code c = r(x) and the ground-truth data-generative factors z (Higgins et al., 2017; Eastwood
& Williams, 2018; Ridgeway & Mozer, 2018; Kim & Mnih, 2018; Chen et al., 2018; Suter et al., 2019;
Shu et al., 2020). In particular, the metrics of Eastwood & Williams (2018)—disentanglement (D),
completeness (C) and informativeness (I)—estimate this relationship by learning a probe f to predict z
from c and can be used to relate many other notions of disentanglement (see Locatello et al. 2020, § 6).

In this work, we extend this DCI framework in several ways. Our main idea is that the functional
capacity required to recover z from c is an important but thus-far neglected aspect of representation
quality. For example, consider the case of recovering z from: (i) a noisy version thereof; (ii) raw, high-
dimensional data (e.g. images); and (iii) a linearly-mixed version thereof, with each ci containing the
same amount of information about each zj (precise definition in § 6.1). The noisy version (i) will do
quite well with just linear capacity, but is fundamentally limited by the noise corruption; the raw data
(ii) will likely do quite poorly with linear capacity, but eventually outperform (i) given sufficient capac-
ity; and the linearly-mixed version (iii) will perfectly recover z with just linear capacity, yet achieve
the worst-possible disentanglement score of D= 0. Motivated by this observation, we introduce a
measure of explicitness or ease-of-use based a representation’s loss-capacity curve (see Fig. 1).
∗Equal contribution.
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Figure 1: Loss-capacity curves. Empirical loss-capacity curves (see § 4.1) for various representations (see
legend), datasets (top: MPI3D-Real, bottom: Cars3D), and probe types (left: multi-layer perceptrons / MLPs,
middle: Random Fourier Features / RFFs, right: Random Forests / RFs). The loss was first averaged over factors
zj, and then means and 95% confidence intervals were computed over 3 random seeds. Details in § 6.

Structure and contributions. First, we connect the DCI metrics to two common notions of linear and
nonlinear identifiability (§ 3). Next, we propose an extended DCI-ES framework (§ 4) in which we:
(i) introduce two new complementary measures of representation quality—explicitness (E), derived
from a representation’s loss-capacity curve, and size (S); and then (ii) elucidate a means to compute
the D and C scores for arbitrary black-box probes (e.g., MLPs). Finally, in our experiments (§ 6),
we use our extended framework to compare different representations on the MPI3D-Real (Gondal
et al., 2019) and Cars3D (Reed et al., 2015) datasets, illustrating the practical usefulness of our E
score through its strong correlation with downstream performance.

2 BACKGROUND

Given a synthetic dataset of observations x = g(z) along with the corresponding K-dimensional
data-generating factors z ∈ RK, the DCI framework quantitatively evaluates an L-dimensional data
representation or code c= r(x) ∈ RL using two steps: (i) train a probe f to predict z from c, i.e.,
ẑ = f (c) = f (r(x)) = f (r(g(z))); and then (ii) quantify f ’s prediction error and its deviation
from the ideal one-to-one mapping, namely a permutation matrix (with extra “dead” units in c
whenever L > K).1 For step (i), Eastwood & Williams (2018) use Lasso (Tibshirani, 1996) or
Random Forests (RFs, Breiman 2001) as linear or nonlinear predictors, respectively, for which it is
straightforward to read-off suitable “relative feature importances”.

Definition 2.1. R ∈ RL×K is a matrix of relative importances for predicting z from c via ẑ = f (c) if
Rij captures some notion of the contribution of ci to predicting zj s.t. ∀i, j: Rij ≥ 0 and ∑L

i=1 Rij = 1.

For step (ii), Eastwood & Williams use R and the prediction error to define and quantify three desider-
ata of disentangled representations: disentanglement (D), completeness (C), and informativeness (I).

Disentanglement. Disentanglement (D) measures the average number of data-generating factors
zj that are captured by any single code ci. The score Di is given by Di = 1− HK(Pi.), where
HK(Pi.) = −∑K

k=1 Pik logK Pik denotes the entropy of the distribution Pi. over row i of R, with
Pij = Rij/ ∑K

k=1 Rik. If ci is only important for predicting a single zj, we get a perfect score of Di =
1. If ci is equally important for predicting all zj (for j=1, . . . , K), we get the worst score of Di = 0.
The overall score D is then given by the weighted average D = ∑L

i=1 ρiDi, with ρi =
1
K ∑K

k=1 Rik.

Completeness. Completeness (C) measures the average number of code variables ci required to
capture any single zj; it has also been called compactness (Ridgeway & Mozer, 2018). The score Cj

in capturing zj is given by Cj = (1− HL(P̃.j)), where HL(P̃.j)=−∑L
ℓ=1 P̃ℓj logL P̃ℓj denotes the

1W.l.o.g., it can be assumed that zi and cj are normalised to have mean zero and variance one for all i, j, for
otherwise such normalisation can be “absorbed” into g(·) and r(·).
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entropy of the distribution P̃.j over column j of R, with P̃ij = Rij. If a single ci contributes to zj’s pre-
diction, we get a perfect score of Cj =1. If all ci equally contribute to zj’s prediction (for i=1, . . . , L),
we get the worst score of Cj =0. The overall completeness score is given by C= 1

K ∑K
j=1 Cj.

Remark 2.2. Together, D and C quantify the degree of “mixing” between c and z, i.e., the deviation
from a one-to-one mapping. They are reported separately as they capture distinct criteria.

Informativeness. The informativeness (I) of representation c about data-generative factor zj is
quantified by the prediction error, i.e., Ij = 1 − E[ℓ(zj, f j(c))], where ℓ is an appropriate loss
function.2 Note that Ij depends on the capacity of f j, as depicted in Fig. 1. Thus, for Ij to accurately
capture the informativeness of c about zj, f j must have sufficient capacity to extract all of the
information in c about zj. This capacity-informativeness dependency motivates a separate measure
of representation explictness in § 4.1. The overall informativeness score is given by I = 1

K ∑K
j=1 Ij.

3 CONNECTION TO IDENTIFIABILITY

The goal of learning a data representation which recovers the underlying data-generating factors is
closely related to blind source separation and independent component analysis (ICA, Comon 1994;
Hyvärinen & Pajunen 1999; Hyvarinen et al. 2019). Whether a given learning algorithm provably
achieves this goal up to acceptable ambiguities, subject to certain assumptions on the data-generating
process, is typically formalised using the notion of identifiability. Two common types of identifiability
for linear and nonlinear settings, respectively, are the following.

Definition 3.1. We say that c = r(x) = r(g(z)) identifies z up to sign and permutation if c = Pz
for some signed permutation matrix P (i.e., |P| is a permutation).

Definition 3.2. We say c identifies z up to permutation and element-wise reparametrisation if there
exists a permutation π of {1, ..., K} and invertible scalar-functions {hk}K

k=1 s.t. ∀j: cj = hj(zπ(j)).

We now establish theoretical connections between the DCI framework and these identifiability types.

Proposition 3.3. If D = C = 1 and K = L (i.e., dim(c) = dim(z)), then R is a permutation matrix.

All proofs are provided in Appendix A. Using Prop. 3.3, we can establish links to identifiability,
provided the inferred representation c perfectly predicts the true data-generating factors z, i.e., I = 1.

Corollary 3.4. Under the same conditions as Prop. 3.3, if z = W⊤c (so that I = 1) for some W
with Rij =

|wij |
∑L

i=1 |wij |
, then c identifies z up to permutation and sign (Defn. 3.1).

For nonlinear f , we give a more general statement for suitably-chosen feature-importance matrices R.

Corollary 3.5. Under the same conditions as Prop. 3.3, let z = f (c) (so that I = 1) with f an
invertible and differentiable nonlinear function, and let R be a matrix of relative feature importances
for f (Defn. 2.1) with the property that Rij = 0 if and only if f j does not depend on ci, i.e.,∣∣∣∣∂i f j

∣∣∣∣
2 = 0. Then c identifies z up to permutation and element-wise reparametrisation (Defn. 3.2).

Remark 3.6. While the if part of Corollary 3.5 holds for most feature importance measures, the
only if part, in general, does not: not using a feature ci is typically a sufficient condition for Rij = 0,
but it need not be a necessary condition (as required for Corollary 3.5). E.g., measures based on
average performance may not satisfy this since a feature may not contribute on average, but still be
used—sometimes helping and sometimes hurting performance (see § 7 for further discussion). In
contrast, Gini importances, as used in random forests, do satisfy the necessary condition. While the
non-invertibility of random forests prevents an explicit link to identifiability (typically studied for con-
tinuous features), they can still be a principled choice in practice (where features are often categorical).

Summary. We have established that the learnt representation c identifies the ground-truth z up to:

• sign and permutation if D=C= I=1 and f is linear;
• permutation and element-wise reparametrisation if D=C= I=1 and Rij = 0⇔

∣∣∣∣∂i f j
∣∣∣∣

2 = 0.

2Here we deviate from Eastwood & Williams (who had Ij = E[ℓ(zj, f j(c))]) such that 1 is now the best score.
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4 EXTENDED DCI-ES FRAMEWORK

Motivated by our theoretical insights from § 3—considering different probe function classes provides
links to different types of identifiability—and the empirically-observed performance differences
between representations trained with different-capacity probes shown in Fig. 1, we now propose
several extensions of the DCI framework.

4.1 EXPLICITNESS (E)

We first introduce a new complementary notion of disentanglement based on the functional capacity
required to recover or predict z from c. The key idea is to measure the explicitness or ease-of-use (E)
of a representation using its loss-capacity curve.

Notation. Let F be a probe function class (e.g., MLPs or RFs), let f ∗j ∈ arg min f∈F E[ℓ(zj, f (c))]
be a minimum-loss probe for factor zj on a held-out data split3, and let Cap(·) be a suitable capacity
measure on F—e.g., for RFs, Cap( f ) could correspond to the maximum tree-depth of f .

Loss-capacity curves. A loss-capacity curve for representation c, factor zj, and probe class F
displays test-set loss against probe capacity for increasing-capacity probes f ∈ F (see Fig. 1). To
plot such a curve, we must train T predictors with capacities κ1, . . . , κT to predict zj, with

f t
j ∈ arg min f∈F E

[
ℓ(zj, f (c))

]
s.t. Cap( f ) = κt. (4.1)

Here κ1, . . . , κT is a list of T increasing probe capacities, ideally4 shared by all representations, with
suitable choices for κ1 and κT depending on both F and the dataset. For example, we may choose κT
to be large enough for all representations to achieve their lowest loss and, for random forest f s, we
may choose an initial tree depth of κ1 = 1 and then T − 2 tree depths between 1 and κT .

κ1 κ2 κ3 κ∗,c κ5

Capacity

`b

`1,c

`2,c

`∗,c
`∗

L
os

s

AULCC
Normalizer

Figure 2: Explicitness via the area
under the loss-capacity curve (AULCC).
Here, κ1, ..., κT (x-axis) are a sequence
of increasing function-capacities and
ℓ1,c, ..., ℓT,c (y-axis) are the losses achieved
by the corresponding optimal predictors
for c. The lowest loss ℓ∗,c is achieved at
capacity κ∗,c, while ℓb and ℓ∗ are baseline
and best-possible losses for the probe class.

AULCC. We next define the Area Under the Loss-
Capacity Curve (AULCC) for representation c, factor zj,
and probe class F as the (approximate) area between the
corresponding loss-capacity curve and the loss-line of our
best predictor ℓ∗,cj = E[ℓ(zj, f ∗j (c))]. To compute this
area, depicted in Fig. 2, we use the trapezoidal rule

AULCC(zj, c;F )=
t∗,c

∑
t=2

(
1
2

(
ℓt−1,c

j +ℓt,c
j

)
−ℓ∗,cj

)
·∆κt,

where t∗,c denotes the index of c’s lowest-loss capac-
ity κ∗,c; ℓt,c

j = E[ℓ(zj, f t
j (c))] the test-set loss with

predictor f t
j , see Eq. (4.1); and ∆κt =κt−κt−1 the size of

the capacity interval at step t. If the lowest loss is achieved
at the lowest capacity, i.e. t∗,c =1, we set AULCC=0.

Explicitness. We define the explicitness (E) of represen-
tation c for predicting factor zj with predictor class F as

E(zj, c;F ) = 1− AULCC(zj, c;F )
1
2 (κT − κ1)(ℓ

b
j − ℓ∗j )

,

where ℓb
j is a baseline loss (e.g., that of E[zj]) and ℓ∗j a lowest possible loss (e.g., 0) for F . Here,

the denominator represents the area of the light-blue triangle in Fig. 2, normalizing the AULCC such
that Ej ∈ [−1, 1] so long as ℓ∗j < ℓb

j . The best score Ej = 1 means that the best loss was achieved

with the lowest-capacity probe f 1
j , i.e., ℓ∗,cj = ℓ1,c

j and κ∗,c = κ1, and thus our representation c was
explicit or easy-to-use for predicting zj with f ∈ F since there was no surplus capacity required

3In practice, all expectations are taken w.r.t. the corresponding empirical (train/validation/test) distributions.
4True for RFs but not input-size dependent MLPs (see § 6).
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(beyond κ1) to achieve our lowest loss. In contrast, Ej = 0 means that AULCC = Normalizer in
Fig. 2, i.e., that the loss decreased at a linear rate from ℓb

j to ℓ∗j with increased probe capacity. More
generally, if ℓ∗,c = ℓ∗, i.e., the lowest loss for F can be reached with representation c, then Ej < 0
implies that the loss decreased at a sub-linear rate with increased capacity, while Ej > 0 implies
it decreased at a super-linear rate. The overall explicitness score is given by E = 1

K ∑K
j=1 Ej.

E vs. I. While the informativeness score Ij captures the (total) amount of information in c about
zj, the explicitness score Ej captures the ease-of-use of this information. In particular, while Ij is
quantified by the lowest prediction error with any capacity ℓ∗,c, corresponding to a single point on
c’s loss-capacity curve, Ej is quantified by the area under this curve.

A fine-grained picture of identifiability. Compared to the commonly-used mean correlation
coefficient (MCC) or Amari distance (Amari et al., 1996; Yang & Amari, 1997), the D, C, I, E scores
represent empirical measures which: (i) easily extend to mismatches in dimensionalities, i.e., L > K;
and (ii) provide a more fine-grained picture of identifiability (violations), for if the initial probe
capacity κ1 is linear and R satisfies Corollary 3.5, we have that:

• D=C= I=E=1 =⇒ identified up to sign and permutation (Defn. 3.1);
• D=C= I=1 =⇒ identified up to permutation and element-wise reparametrisation (Defn. 3.2);
• I=E=1 =⇒ identified up to invertible linear transformation (cf. Khemakhem et al., 2020).

Thus, if D=C= I=E=1 does not hold exactly, which score deviates the most from 1 may provide
valuable insight into the type of identifiability violation.

Probe classes. As emphasized above, whether or not a representation c is explicit or easy-to-use
for predicting factor zj depends on the class of probe F used, e.g., MLPs or RFs. More generally, the
explicitness of a representation depends on the way in which it is used in downstream applications,
with different downstream uses or probe classes resulting in different definitions of explicit or
easy-to-use information. We thus conduct experiments with different probe classes in § 6.

4.2 SIZE (S)

We next introduce a measure of representation size (S), motivated by the observation that larger
representations tend to be both more informative and more explicit (see Tab. 1, more details below).
Reporting S thus allows size-informativeness and size-explicitness trade-offs to be analysed.

A measure of size. We measure representation size (S) relative to the ground-truth as:

S =
K
L
=

dim(z)
dim(c)

.

When L≥K, as often the case, we have S∈ (0, 1] with the perfect score being S=1. However, if we
also consider the L < K case, which would likely sacrifice some informativeness, we have S∈ (1, K].

Larger representations are often more informative. When L < K, it is intuitive that larger
representations are more informative—they can simply preserve more information about z. When
L>K, however, it is also common for larger representations to be more informative, perhaps due to an
easier optimization landscape (Frankle & Carbin, 2019; Golubeva et al., 2021). Tab. 1 illustrates this
point, where AE-5 denotes an autoencoder with L=5. Note that K=7 for MPI3D-Real (see § 6).

Larger representations are often more explicit. The explicitness of a representation also depends
on its size: larger representations tend to be more explicit, as is apparent from the second column
of Tab. 1. To explain this, we plot the corresponding loss-capacity curves in Fig. 3. Here we see that
the increased explicitness (i.e., smaller AULLC) of larger representations stems from a substantially
lower initial loss when using a linear-capacity MLP probe. The fact that larger representations
perform better with linear-capacity MLPs is unsurprising since they have more parameters.

4.3 PROBE-AGNOSTIC FEATURE IMPORTANCES

Finally, to meaningfully discuss more flexible probe-function choices within the DCI-ES frame-
work, we point out that the D and C scores can be computed for arbitrary black-box probes f by
using probe-agnostic feature-importance measures. In particular, in our experiments (§ 6), we use
SAGE (Covert et al., 2020) which summarises each feature’s importance based on its contribution to
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Representation I E S
AE-5 0.75 0.74 1.4
AE-7 0.92 0.71 1.0

AE-10 0.99 0.72 0.7
AE-100 1.0 0.90 0.07
AE-500 1.0 0.93 0.01

Table 1: I, E and S scores for auto-encoders of vari-
ous sizes on MPI3D-Real with MLP probes.
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Figure 3: Loss-capacity curves for auto-encoders
of various sizes on MPI3D-Real with MLP probes.

predictive performance, making use of Shapley values (Shapley, 1953) to account for complex feature
interactions. Such probe-agnostic measures allow the D and C scores to be computed for probes with
no inherent or built-in notion of feature importance (e.g., MLPs), thereby generalising the Lasso and
RF examples of Eastwood & Williams (2018, § 4.3). While SAGE has several practical advantages
over other probe-agnostic methods (see, e.g., Covert et al., 2020, Table 1), it may not satisfy the
conditions required to link the D and C scores to different identifiability equivalence classes (see
Remark 3.6). Future work may explore alternative methods which do, e.g., by looking at a feature’s
mean absolute attribution value (Lundberg & Lee, 2017) since, intuitively, absolute contributions do
not allow for a cancellation of positive and negative attribution on average (cf. Remark 3.6).

5 RELATED WORK

Explicit representations. Eastwood & Williams (2018, § 2) noted that the informativeness score with
a linear probe quantifies the amount of information in c about z that is “explicitly represented”, while
Ridgeway & Mozer (2018, § 3) proposed a measure of “explicitness” which simply reports the infor-
mativeness score with a linear probe. In contrast, our DCI-ES framework differentiates between the
amount of information in c about z (informativeness) and the ease-of-use of this information (explicit-
ness). This allows a more fine-grained analysis of the relationship between c and z, both theoretically
(distinguishing between more identifiability equivalence classes; § 3) and empirically (§ 6).

Loss-capacity curves. Plotting loss against model complexity or capacity has long been used in
statistical learning theory, e.g., for studying the bias-variance trade-off (Hastie et al., 2009, Fig. 7.1).
More recently, such loss-capacity curves have been used to study the double-descent phenomenon
of neural networks (Belkin et al., 2019; Nakkiran et al., 2021) as well as the scaling laws of large
language models (Kaplan et al., 2020). However, they have yet to be used for assessing the quality or
explicitness of representations.

Loss-data curves. Whitney et al. (2020) use loss-data curves, which plot loss against dataset size,
to assess representations. They measure the quality of a representation by the sample complexity of
learning probes that achieve low loss on a task of interest. Loss-data curves are also studied under the
term learning curves in standard/purely supervised-learning settings (see, e.g., Viering & Loog, 2021,
for a recent review). In contrast, we focus on functional complexity and the task of predicting the
data-generative factors z, and then discuss the functional complexity for other tasks y in § 7.

6 EXPERIMENTS

6.1 SETUP

Data. We perform our analysis of loss-capacity curves on the MPI3D-Real (Gondal et al., 2019)
and Cars3D (Reed et al., 2015) datasets. MPI3D-Real contains ≈ 1M real-world images of a
robotic arm holding different objects with seven annotated ground-truth factors: object colour (6),
object shape (6), object size (2), camera height (3), background colour (3) and two degrees of rotations
of the arm (40× 40); numbers in brackets indicate the number of possible values for each factor.
Cars3D contains≈ 17.5k rendered images of cars with three annotated ground-truth factors: camera
elevation (4), azimuth (24) and car type (183).

Representations. We use the following synthetic baselines and standard models as representations:

6

80 6. Disentangled Representation Learning



Published as a conference paper at ICLR 2023

• Noisy labels: c = z + ϵ, with ϵ ∼ N (0, 0.01 · IK).

• Linearly-mixed labels: c = Wz, with Wij =
1

LK + ϵij and ϵij∼N (0, 0.001) to achieve “uniform
mixing” (each zj evenly-distributed across the cis) while also ensuring the invertibility of W a.s.

• Raw data (pixels): c = x = g(z).
• Others: We also use VAEs (Kingma & Welling, 2014) with 10 latents (L=10), β-VAEs (Higgins

et al. 2017, L=10); and an ImageNet-pretrained ResNet18 (He et al. 2016, L=512).

Probes. We use MLPs, RFs and Random Fourier Features (RFFs, Rahimi & Recht 2007) to predict z
from c, with RFFs having a linear classifier on top. For MLPs, we start with linear probes (no hidden
layers) then increase capacity by adding two hidden layers and varying their widths from 2× K to
512× K. We then measure capacity based on the number of “extra” parameters beyond that of the
linear probe, and compute feature importances using SAGE with permutation-sampling estimators
and marginal sampling of masked values (see https://github.com/iancovert/sage). For RFs, we use en-
sembles of 100 trees, control capacity by varying the maximum depth between 1 and 32, and compute
feature importances using Gini importance. For RFFs, we control capacity by exponentially increasing
the number of random features from 24 to 217 , and compute feature importances using SAGE.

Implementation details. We split the data into training, validation and test sets of size 295k, 16k,
and 726k respectively for MPI3D-Real and 12.6k, 1.4k, 3.4k for Cars3d. We use the validation
split for hyperparameter selection and report results on the test split. We train MLP probes using the
Adam (Kingma & Ba, 2015) optimizer for 100 epochs. We use mean-square error and cross-entropy
losses for continuous and discrete factors zj, respectively. To compute Ej, we use the baseline losses
of E[zj] and a random classifier for continuous and discrete zj, respectively. Further details can be
found in our open-source code: https://github.com/andreinicolicioiu/DCI-ES.

6.2 EVALUATION RESULTS: CURVES AND SCORES

Loss-capacity curves. Fig. 1 depicts loss-capacity curves for the three probes and two datasets,
averaged over factors zj. In all six plots, the noisy-labels baseline performs well with low-capacity and
then is surpassed by other representations given sufficient capacity, as expected. Note that the linearly-
mixed-labels baseline immediately achieves≈ 0 loss with MLP probes but not with RFF or RF probes,
supporting the idea that the explicitness or ease-of-use of a representation depends on the way in which
it is used. Also note that, with MLP probes and log(excess #params) as the capacity measure, larger
input representations are afforded more parameters with a linear probe and thus are more expressive.
This further explains why larger representations are often more explicit, and highlights the difficulty
of measuring the capacity of MLPs—an active area of research in its own right, which we discuss in
§ 7. Finally, in Appendix B.2, we investigate the effect of dataset size by plotting loss-capacity curves
for different dataset sizes, observing that larger datasets have smaller performance gaps between: (i)
synthetic and learned representations; and (ii) small and large representations (see Fig. 10).

DCI-ES scores. Tab. 2 reports the corresponding DCI-ES scores, along with some oracle scores for
MLPs. Note that: (i) the GT labels z get perfect scores of 1 for all metrics; (ii) by attaining very
low D and C scores but near-perfect E scores, the linearly-mixed labels expose the key difference
between mixing-based (D,C) and functional-capacity-based (E) measures of the simplicity of the c-z
relationship; (iii) larger representations (ImgNet-pretr, raw data) tend to be more explicit than smaller
ones (VAE, β-VAE), with S and E together capturing this size-explicitness trade-off; and (iv) β-VAE
achieves better mixing-based scores (D,C) but similar E scores compared to the VAE, illustrating that
these two “disentanglement” notions are indeed orthogonal and complementary.

6.3 DOWNSTREAM RESULTS: SCORE CORRELATIONS

Setup. To illustrate the practical usefulness of our explictness score, we calculate its correlation with
downstream performance when using low-capacity probes. Using MPI-3D, we create 14 synthetic
downstream tasks: 7 regression tasks with yi = Miz and Mi

jk ∼ U(0, 1), and 7 classification tasks

with yi = 1{zi>mi} and mi the median value of factor zi. For representations, we use AEs, VAEs and
β-VAEs, 2 latent dimensionalities (i.e. dim(c)) of 10 and 50, and 5 random seeds—resulting in a total
of 30 different representations c. To compute the correlations, we first compute the DCIE scores as
before, training MLP and RF probes f to predict z from c, i.e. ẑj = f j(c), and then compute the down-
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Table 2: DCI-ES scores for different probes, datasets and representations. Empirical scores using MLP,
RFF and RF probes trained on the MPI3D-Real and Cars3D datasets, as well as theoretical/oracle scores for
some simple representations with MLPs (MLP*). We show averages over 3 random seeds; standard deviations
were all < 0.05. Note that which representation is deemed “best” depends on the application of interest—some
are more disentangled, some more informative, some more explicit, etc.

Representation Probe MPI3D CARS3D
D C I E S D C I E S

GT Labels z MLP* 1 1 1 1 1 1 1 1 1 1

Noisy labels

MLP* 1 1 0.9 1 1.0 1 1 0.9 1 1.0
MLP 0.97 0.97 0.89 0.99 1.0 0.99 0.99 0.92 0.99 1.0
RFF 0.97 0.97 0.88 0.99 1.0 1.0 1.0 0.91 1.0 1.0
RF 0.93 0.93 0.89 0.98 1.0 0.95 0.95 0.92 0.99 1.0

Linearly-
mixed labels

MLP* 0 0 1 1 1.0 0 0 1 1 1.0
MLP 0.13 0.22 1.0 1.0 1.0 0.21 0.22 1.0 1.0 1.0
RFF 0.11 0.21 1.0 0.94 1.0 0.19 0.19 1.0 1.0 1.0
RF 0.17 0.21 1.0 0.72 1.0 0.08 0.12 0.99 0.78 1.0

VAE
MLP 0.15 0.14 0.99 0.71 0.7 0.18 0.11 0.95 0.80 0.3
RFF 0.13 0.14 0.97 0.69 0.7 0.16 0.11 0.91 0.87 0.3
RF 0.10 0.10 0.93 0.65 0.7 0.14 0.09 0.80 0.81 0.3

β-VAE
MLP 0.46 0.41 0.96 0.74 0.7 0.27 0.23 0.94 0.78 0.3
RFF 0.41 0.38 0.92 0.71 0.7 0.31 0.23 0.86 0.86 0.3
RF 0.39 0.35 0.94 0.76 0.7 0.20 0.17 0.84 0.83 0.3

ImgNet-pretr
MLP 0.16 0.10 0.99 0.82 0.01 0.22 0.07 0.88 0.86 0.006
RFF 0.15 0.13 0.96 0.58 0.01 0.24 0.10 0.83 0.65 0.006
RF 0.35 0.20 0.89 0.78 0.01 0.20 0.09 0.62 0.83 0.006

Raw data
MLP 0.22 0.16 0.99 0.82 0.001 0.39 0.27 0.95 0.84 0.0002
RFF 0.37 0.14 0.97 0.44 0.001 0.32 0.24 0.87 0.64 0.0002
RF 0.84 0.41 0.96 0.80 0.001 0.53 0.31 0.86 0.82 0.0002
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Figure 4: (a) Correlation coefficients ρ between DCIE scores and downstream performance with low-capacity
probes. (b) E vs. downstream performance with linear MLPs. (c) DCIE scores are computed by predicting z from
c with probes f , then downstream tasks y = h(z) are solved by predicting y from c with low-capacity probes f̃ .

stream performance by training new low-capacity MLP and RF probes f̃ to predict y from c, i.e. ŷi =
f̃i(c) (see Fig. 4c). For MLP probes, low capacity means linear. For RF probes, low capacity means
the maximum tree depth is 10. Next, we average the downstream performances across all 14 tasks
before computing the correlation coefficient between this average and each of the D, C, I, and E scores.

Analysis. Figs. 4a and 4b show that E is strongly correlated with downstream performance when
using both MLP (ρ=0.96, p=8e-18) and RF probes (ρ=0.88, p=2e-10). In contrast, mixing-based
disentanglement scores (D, C) exhibit much weaker correlations with MLP probes, corroborating the
results of Träuble et al. (2022, Fig. 8) who also found a weak correlation between D and downstream
performance on reinforcement learning tasks with MLPs. See App. B.1 for further details and results.
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Figure 5: Explicitness scores on MPI3D-Real (top) and Cars3D (bottom) for different representations (see
legend). Each pair of points represents the score with logarithmic (left) and linear (right) capacity-scaling.

7 DISCUSSION

Why connect disentanglement and identifiability? Connecting prediction-based evaluation in
the disentanglement literature to the more theoretical notion of identifiability has several benefits.
Firstly, it provides a concrete link between two often-separate communities. Secondly, it endows the
often empirically-driven or practice-focused disentanglement metrics with a solid and well-studied
theoretical foundation. Thirdly, compared to the commonly-used MCC or Amari distance, it provides
the ICA or identifiability community with more fine-grained empirical measures, as discussed in § 4.1.

Measuring probe capacity. Our measure of explicitness E depends strongly on the choice of capacity
measure for a probe or function class. For some probes like RFs or RFFs, there exist natural measures
of capacity. However, for other probes like MLPs, coming up with a good capacity measure is
itself an important and active area of research (Jiang et al., 2020; Dziugaite et al., 2020). Another
difficulty arises from choosing a capacity scale, with different scales (e.g., log, linear, etc.) leading
to loss-capacity curves with different shapes, areas and thus explicitness scores. To investigate the
extent of this issue, i.e., the sensitivity of our explicitness measure to the choice of capacity scale,
Fig. 5 compares the explicitness scores when using logarithmic and linear scaling. Here we see that
the ranking essentially remains the same except for the raw-data representation with MLP probes.

Measuring feature importance. Similarly, the choice of feature-importance measure has a strong
influence on the D and C scores, with some probes having natural or in-built measures (e.g., random
forests) and others not (e.g., MLPs). For the latter, we proposed the use of probe-agnostic feature-
importance measures like SAGE, and specified the conditions (Corollary 3.5) that importance
measures must satisfy if the resulting D and C scores are to be connected to identifiability. As with
probe capacity, coming up with good measures of feature importance is its own orthogonal field of
study (e.g., model explainability), with future advances likely to improve the DCI-ES framework.

What about explicitness for other tasks y? While we focused on the explicitness or ease-of-use of a
representation for predicting the data-generative factors z, one may also be interested in its ease-of-use
for other tasks/labels y. While it is often implicitly assumed that the ease-of-use for predicting z corre-
lates with the ease-of-use for common tasks of interest (e.g., object classification, segmentation, etc.),
future work could directly evaluate the explicitness of a representation for particular tasks y. For ex-
ample, one could consider the entire loss-capacity curve when benchmarking self-supervised represen-
tations on ImageNet, rather than just linear-probe performance (a single slice). Future work could also
explore the trade-off between explicit but task-specific and implicit but task-agnostic representations.

8 CONCLUSION

We have presented DCI-ES—an extended disentanglement framework with two new complementary
measures of representation quality—and proven its connections to identifiability. In particular, we
have advocated for additionally measuring the explicitness (E) of a representation by the functional
capacity required to use it, and proposed to quantify this explicitness using a representation’s loss-
capacity curve. Together with the size (S) of a representation, we believe that our extended DCI-ES
framework allows for a more fine-grained and nuanced benchmarking of representation quality.
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6.3 Comments on the paper

Measuring probe capacity. Our measure of explicitness E depends strongly on the

choice of capacity measure for a probe or function class. For some probes like RFs or

RFFs, there exist natural measures of capacity. However, for other probes like MLPs,

coming up with a good capacity measure is itself an important and active area of

research (Dziugaite et al., 2020; Jiang et al., 2020). While we used the number of

parameters as a simple measure of the available or upper-bound probe capacity, future

work may explore the use of more sophisticated measures of probe capacity, such as

those based on the used or effective capacity of a trained MLP (Hanin and Rolnick,

2019; Maddox et al., 2020).

Explicitness for other tasks y. We focused on the explicitness or ease-of-use of a rep-

resentation for predicting the data-generative factors z (in line with the disentanglement

and identifiability literature). However, one may also be interested in its ease-of-use

for other tasks or labels y. While it is often implicitly assumed that the ease-of-use for

predicting z correlates with the ease-of-use for common tasks of interest, such as object

classification or segmentation, future work could directly evaluate the explicitness of

a representation for particular tasks y. For example, one could consider the entire loss-

capacity curve when benchmarking self-supervised representations on ImageNet, rather

than just linear-probe performance (corresponding to a single slice of the loss-capacity

curve). It would also be interesting to explore the inherent trade-off between explicit

but task-specific and implicit but task-agnostic representations.

An evaluation framework for causal representation learning. Suter et al. (2019)

proposed a disentanglement measure based on representation’s robustness to inter-

ventions on the data-generative factors z j (see their Defns. 2&3), which can also be

used to construct a matrix of feature importances R (see their Figs. 8–12). Similar

ideas may help extend the DCI-ES framework to the evaluation of causal representa-

tions (Schölkopf et al., 2021). This would provide more fine-grained empirical measures

than the commonly-used alternatives, such as the mean correlation coefficient (MCC)

and the Amari distance (Amari et al., 1996; Yang and Amari, 1997).





7

Conclusions

In this thesis, we explored a number of ways in which machine learning systems can

be prepared for distribution shift. In particular, we explored four of my works which

sought to prepare for an inevitable distribution shift.

First, in Chapter 3, we explored source-free domain adaptation. Here we showed

how to prepare for and resolve measurement shift—one particular type of distribution

shift. By storing and re-aligning lightweight statistics of the feature distribution, we

saw improved accuracy, calibration, and data efficiency compared to the dominant prior

approach of entropy minimisation.

Next, in Chapter 4, we explored a probabilistic framework for domain generalisation,

showing how to build machine learning systems that are robust to distribution shift with

a desired probability—so long as the collected training-domain data is representative

of the shifts we are likely to see at test time. In particular, by minimising a particular

quantile of a model’s performance distribution over training domains, we can learn

models that perform well on unseen test domains with the corresponding probability.

We also highlighted the importance of comparing domain-generalisation algorithms

based on their tail or quantile performance since improved robustness is often invisible

through the lens of average performance.

After that, in Chapter 5, we explored how invariant predictions could be used to

harness spurious features in the test domain without labels, reliably boosting the per-

formance of domain generalisation algorithms. In particular, we showed that invariant

predictions provide sufficient guidance for doing so, provided that the invariant/stable

and spurious/unstable features are conditionally independent given the label. Based on

this theoretical insight, we then proposed the Stable Feature Boosting (SFB) algorithm

and demonstrated its effectiveness on real and synthetic datasets.
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Finally, in Chapter 6, we explored disentangled representations and showed how

to prepare for unknown downstream tasks (i.e., task shifts) by learning representations

that are easy to use in terms of functional capacity. In particular, we measured this

ease-of-use or explicitness using a representation’s loss-capacity curve, and showed

that explicitness measure better correlates with downstream performance than existing

disentanglement measures.

7.1 Future directions

Source-Free Domain Adaptation (Chapter 3). In § 3.3 we discussed how, in ret-

rospect, one could store any amount of information about the source dataset and use

this to adapt—from lightweight histogram bin-counts to the entire source dataset. It

would be interesting to explore storage-performance trade-offs by comparing methods

in terms of their storage requirements and resulting performance.

In addition, with the SFDA setting often motivated by privacy constraints, it would

be interesting to explore just how private different amounts and types of storage are,

starting with histogram bin counts.

Finally, we discussed the idea of automatic, shift-dependent fine-tuning strategies

in which different layers are adapted depending on the type of shift encountered. Here,

when determining which layers should be adapted and how to adapt them, it would be

interesting to explore both supervised and unsupervised approaches.

Domain Generalisation: A Probabilistic Framework (Chapter 4). In § 4.3 we

discussed the need for DG benchmarks with multiple test domains, allowing the com-

munity to compare methods based on the distribution of their performance—not just

the average.

In addition, we discussed how one may seek probabilistic robustness both across

and within domains, e.g., across hospitals and across patients within those hospitals,

and how this could be achieved with nested quantile-minimisation problems.

Domain Generalisation: Harnessing Spurious Features (Chapter 5). In § 5.3 we

discussed how the assumption of complementarity is perhaps the biggest limitation of

our work, and how future work could investigate ways to weaken it.

In addition, we discussed the difficulty of optimising SFB over deep neural networks

and how future work may look to address this by: (1) using ERM-pretrained networks;
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(2) freezing all but the final layer after ERM-pretraining; and (3) using completely

separate networks for the stable and unstable predictors.

Disentangled Representations (Chapter 6). In § 6.3 we discussed how one could

explore a representation’s explicitness with respect to any task or set of labels y, not

just the data-generative factors z, and how this could lead to an interesting investigation

of explicit-but-task-specific vs. implicit-but-task-agnostic representations.

In addition, we discussed how future work may explore the use of more sophist-

icated measures of probe capacity for neural networks, such as the effective or used

capacity, in order to improve the resulting explicitness score.

Finally, we discussed how one could use interventional robustness—rather than

predictive accuracy—to quantify the relationship between the representation and data-

generative factors, ultimately extending the DCI-ES framework to the evaluation of

causal representations.
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and Schölkopf, B. (2023a). DCI-ES: An extended disentanglement framework with
connections to identifiability. In The Eleventh International Conference on Learning
Representations.



96 Bibliography

Eastwood, C., Robey, A., Singh, S., Kügelgen, J. V., Hassani, H., Pappas, G. J., and
Schölkopf, B. (2022c). Probable domain generalization via quantile risk minimiz-
ation. In Advances in Neural Information Processing Systems, volume 35, pages
17340–17358.

Eastwood, C., Singh, S., Nicolicioiu, L. A., Von Kügelgen, J., and Schölkopf, B. (2023b).
Spuriosity didn’t kill the classifier: Using invariant predictions to harness spurious
features. In Advances in Neural Information Processing Systems.

Eastwood, C., von Kügelgen, J., Ericsson, L., Bouchacourt, D., Vincent, P., Schölkopf,
B., and Ibrahim, M. (2023c). Self-supervised disentanglement by leveraging structure
in data augmentations. Preprint arXiv:2311.08815.

Eastwood, C. and Williams, C. K. I. (2018). A framework for the quantitative evaluation
of disentangled representations. In The Sixth International Conference on Learning
Representations.

Gamella, J. L. and Heinze-Deml, C. (2020). Active invariant causal prediction: Ex-
periment selection through stability. Advances in Neural Information Processing
Systems, 33:15464–15475.

Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain adaptation by backpropaga-
tion. In International Conference on Machine Learning, pages 1180–1189. PMLR.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., and Lempitsky, V. (2016). Domain-adversarial training of neural
networks. Journal of Machine Learning Research, 17(1):2096–2030.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and
Wichmann, F. A. (2020). Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2:665–673.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 580–587.

Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., and Schölkopf, B. (2016). Domain
adaptation with conditional transferable components. In International Conference
on Machine Learning, pages 2839–2848. PMLR.

Gulrajani, I. and Lopez-Paz, D. (2020). In search of lost domain generalization. In
International Conference on Learning Representations.

Hanin, B. and Rolnick, D. (2019). Deep relu networks have surprisingly few activation
patterns. In Advances in Neural Information Processing Systems, volume 32, pages
361–370.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina,
A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., et al. (2013). High-
resolution global maps of 21st-century forest cover change. Science, 342(6160):850–
853.



Bibliography 97

Heinze-Deml, C., Peters, J., and Meinshausen, N. (2018). Invariant causal prediction
for nonlinear models. Journal of Causal Inference, 6(2).

Hendrycks, D. and Dietterich, T. (2019). Benchmarking neural network robustness to
common corruptions and perturbations. In International Conference on Learning
Representations.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S.,
and Lerchner, A. (2017). β-VAE: Learning basic visual concepts with a constrained
variational framework. In International Conference on Learning Representations.

Hosoya, H. (2019). Group-based learning of disentangled representations with general-
izability for novel contents. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 2506–2513.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2021). Meta-learning in
neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(9):5149–5169.

Huang, B., Zhang, K., Zhang, J., Sanchez-Romero, R., Glymour, C., and Schölkopf,
B. (2017). Behind distribution shift: Mining driving forces of changes and causal
arrows. In IEEE 17th International Conference on Data Mining (ICDM 2017), pages
913–918.

Huang, Z., Wang, H., Xing, E. P., and Huang, D. (2020). Self-challenging improves
cross-domain generalization. In European Conference on Computer Vision, pages
124–140. Springer.

Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component analysis:
Existence and uniqueness results. Neural Networks, 12(3):429–439.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2020). Fantastic
generalization measures and where to find them. In International Conference on
Learning Representations.

Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B., Pacheco, J.,
Albert, M., Killiany, R., Blacker, D., et al. (2009). MRI-derived measurements of
human subcortical, ventricular and intracranial brain volumes: reliability effects of
scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors
and field strengths. Neuroimage, 46(1):177–192.

Kim, D., Yoo, Y., Park, S., Kim, J., and Lee, J. (2021). Selfreg: Self-supervised con-
trastive regularization for domain generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9619–9628.

Kim, H. and Mnih, A. (2018). Disentangling by factorising. In International Conference
on Machine Learning, pages 2649–2658.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.



98 Bibliography

Kirichenko, P., Izmailov, P., and Wilson, A. G. (2022). Last layer re-training is suf-
ficient for robustness to spurious correlations. In Advances in Neural Information
Processing Systems.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu,
W., Yasunaga, M., Phillips, R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W.,
Earnshaw, B. A., Haque, I. S., Beery, S., Leskovec, J., Kundaje, A., Pierson, E., Levine,
S., Finn, C., and Liang, P. (2021). WILDS: A benchmark of in-the-wild distribution
shifts. In International Conference on Machine Learning.

Krause, A., Perona, P., and Gomes, R. (2010). Discriminative clustering by regularized
information maximization. In Advances in Neural Information Processing Systems,
pages 775–783.

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Binas, J., Zhang, D., Priol, R. L.,
and Courville, A. (2021). Out-of-distribution generalization via risk extrapolation
(REx). In International Conference on Machine Learning, volume 139, pages 5815–
5826.

Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum, J. (2015). Deep convolutional
inverse graphics network. In Advances in Neural Information Processing Systems,
volume 28, pages 2539–2547.

Kundu, J. N., Venkat, N., Babu, R. V., et al. (2020). Universal source-free domain
adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4544–4553.

Kurmi, V. K., Subramanian, V. K., and Namboodiri, V. P. (2021). Domain impression:
A source data free domain adaptation method. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 615–625.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building
machines that learn and think like people. Behavioral and Brain Sciences, 40.

Lee, D.-H. et al. (2013). Pseudo-label: The simple and efficient semi-supervised learn-
ing method for deep neural networks. In Workshop on Challenges in Representation
Learning, ICML, volume 3.

Li, D. and Hospedales, T. (2020). Online meta-learning for multi-source and semi-
supervised domain adaptation. In European Conference on Computer Vision, pages
382–403. Springer.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. (2018a). Learning to generalize:
Meta-learning for domain generalization. In Proceedings of the AAAI conference on
artificial intelligence, volume 32.

Li, H., Wang, Y., Wan, R., Wang, S., Li, T.-Q., and Kot, A. (2020a). Domain gener-
alization for medical imaging classification with linear-dependency regularization.
Advances in Neural Information Processing Systems, 33:3118–3129.



Bibliography 99

Li, N., Eastwood, C., and Fisher, R. (2020b). Learning object-centric representations
of multi-object scenes from multiple views. In Advances in Neural Information
Processing Systems, volume 33, pages 5656–5666.

Li, R., Jiao, Q., Cao, W., Wong, H.-S., and Wu, S. (2020c). Model adaptation: Unsu-
pervised domain adaptation without source data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9641–9650.

Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., and Tao, D. (2018b). Deep domain
generalization via conditional invariant adversarial networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 624–639.

Li, Y., Wang, N., Shi, J., Liu, J., and Hou, X. (2017). Revisiting batch normalization
for practical domain adaptation. In International Conference on Learning Represent-
ations Workshop.

Li, Y., Yang, Y., Zhou, W., and Hospedales, T. (2019). Feature-critic networks for
heterogeneous domain generalization. In International Conference on Machine
Learning, pages 3915–3924. PMLR.

Liang, J., Hu, D., and Feng, J. (2020). Do we really need to access the source data?
Source hypothesis transfer for unsupervised domain adaptation. In International
Conference on Machine Learning (ICML), pages 6028–6039.

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and Bachem,
O. (2019). Challenging common assumptions in the unsupervised learning of disen-
tangled representations. In International Conference on Machine Learning, pages
4114–4124.

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and Bachem, O.
(2020a). A sober look at the unsupervised learning of disentangled representations
and their evaluation. Journal of Machine Learning Research, 21(209):1–62.

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., and Tschannen, M.
(2020b). Weakly-supervised disentanglement without compromises. In International
Conference on Machine Learning, pages 6348–6359.

Long, M., Cao, Y., Wang, J., and Jordan, M. (2015). Learning transferable features with
deep adaptation networks. In International Conference on Machine Learning, pages
97–105.

Long, M., Cao, Z., Wang, J., and Jordan, M. I. (2018). Conditional adversarial domain
adaptation. In Advances in Neural Information Processing Systems.

Maddox, W. J., Benton, G., and Wilson, A. G. (2020). Rethinking parameter counting in
deep models: Effective dimensionality revisited. arXiv preprint arXiv:2003.02139.

Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A. S., Bethge,
M., and Brendel, W. (2019). Benchmarking robustness in object detection: Autonom-
ous driving when winter is coming. In Machine Learning for Autonomous Driving
Workshop, NeurIPS 2019.



100 Bibliography

Morerio, P., Volpi, R., Ragonesi, R., and Murino, V. (2020). Generative pseudo-label
refinement for unsupervised domain adaptation. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 3130–3139.

Motiian, S., Jones, Q., Iranmanesh, S., and Doretto, G. (2017). Few-shot adversarial
domain adaptation. Advances in Neural Information Processing Systems, 30.

Muandet, K., Balduzzi, D., and Schölkopf, B. (2013). Domain generalization via invari-
ant feature representation. In International Conference on Machine Learning, pages
10–18.

Nagarajan, V., Andreassen, A., and Neyshabur, B. (2021). Understanding the failure
modes of out-of-distribution generalization. In International Conference on Learning
Representations.

Peters, J., Bühlmann, P., and Meinshausen, N. (2016). Causal inference by using invari-
ant prediction: identification and confidence intervals. Journal of the Royal Statistical
Society. Series B (Statistical Methodology), pages 947–1012.

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of causal inference: Found-
ations and learning algorithms. The MIT Press.

Pfister, N., Bühlmann, P., and Peters, J. (2019). Invariant causal prediction for sequential
data. Journal of the American Statistical Association, 114(527):1264–1276.

Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. (2008).
Dataset shift in machine learning. MIT Press.

Reed, S. E., Zhang, Y., Zhang, Y., and Lee, H. (2015). Deep visual analogy-making.
Advances in Neural Information Processing Systems, 28.

Ridgeway, K. and Mozer, M. C. (2018). Learning deep disentangled embeddings
with the f-statistic loss. In Advances in Neural Information Processing Systems,
volume 31, pages 185–194.

Robey, A., Pappas, G. J., and Hassani, H. (2021). Model-based domain generalization.
In Advances in Neural Information Processing Systems.
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Appendix A

Paper Appendices

This appendix contains supplementary material for each of the papers presented in this
thesis, namely:

A.1 Source-Free Domain Adaptation (§ 3.2)

A.2 Domain Generalisation: A Probabilistic Framework (§ 4.2)

A.3 Domain Generalisation: Harnessing Spurious Features (§ 5.2)

A.4 Disentangled Representations (§ 6.2)

A.1 Source-Free Domain Adaptation (§ 3.2)
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A SOFT BINNING

Function. Let z ∼ pz be a continuous 1D variable for which we have n samples {z(i)}ni=1.
The goal is approximately parameterize pz using B normalized bin counts πz = [πz,1, . . . , πz,B ],
where πz,b represents the probability that z falls into bin b and

∑B
b=1 πz,b = 1. We achieve this

using the soft binning function of Yang et al. (2018, Section 3.1). The first step is to find the
range of z, i.e. the minimum and maximum denoted zmin = mini z

(i) and zmax = maxi z
(i)

respectively. This will allow us to normalize the range of our samples z(i) to be [0, 1] and thus
ensure that binning “softness”, i.e. the degree to which mass is distributed into nearby bins, is
comparable across variables with different ranges. The second step is to define B − 1 uniformly-
spaced and monotonically-increasing cut points (i.e. bin edges) over this normalized range [0, 1],
denoted c = [c1, c2, . . . , cB−1] = 1

B−2 [0, 1, 2, . . . , B−3, B−2]. The third step is to compute theB-
dimensional vector of soft counts for a sample z(i), denoted u(z(i)), using soft binning vector-valued
function u,

u(z(i); zmin, zmax) = σ((w

(
z(i) − zmin

zmax − zmin

)
+w0)/τ), (4)

where w = [1, 2, . . . , B], w0 = [0,−c1,−c1 − c2, . . . ,−
∑B−1

j=1 cj ], τ > 0 is a temperature factor,

σ is the softmax function, u(z(i))b is the mass assigned to bin b, and
∑B

b=1 u(z
(i))b = 1. Note that:

(i) both w and w0 are constant vectors for a pre-specified number of bins B; (ii) as τ → 0, u(z(i))
tends to a one-hot vector; and (iii) the B − 1 cut points c result in B bins, where values z(i) < 0
or z(i) > 1 are handled sensibly by the soft binning function in order to catch new samples that lie
outside the range of our original n samples (as τ → 0, they will appear in the leftmost or rightmost
bin respectively). Finally, we get the total counts per bin by summing over the per-sample soft counts
u(z(i)), before normalizing by the total number of samples n to get the normalized bin counts πz ,

i.e., πz =
∑n

i=1
u(z(i);zmin,zmax)

n .

Memory cost. When using 32-bit floating point numbers for each (soft) bin count, the memory
cost of soft binning is 32×B ×D bits—depending only on the number bins B and the number of
features D, and not on the dataset size. For concreteness, Table 5 compares the cost of storing bin
counts to that of: (i) storing the whole source dataset; and (ii) storing the (weights of the) source
model. As in our experiments, we assume 8 bins per feature and the following network architectures:
a variation of LeNet (LeCun et al., 1998) for MNIST; ResNet-18 (He et al., 2016) for CIFAR-; and
ResNet-101 (He et al., 2016) for both VisDA-C (Peng et al., 2018) and ImageNet (Russakovsky et al.,
2015).

Table 5: Storage size for different datasets and their corresponding source models.

Storage size (MB) MNIST CFR-100 VisDA-C ImageNet
Source dataset 33 150 7885 138000
Source model 0.9 49 173 173
Source bin-counts 0.004 0.02 0.5 0.5
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B FR ALGORITHM

Algorithm 1 gives the algorithm for FR at development time, where a source model is trained before
saving approximations of the feature and logit distributions under the source data. Algorithm 2
gives the algorithm for FR at deployment time, where the feature-extractor is adapted such that the
approximate feature and logit distributions under the target data realign with those saved on the
source.

Algorithm 1: FR at development time.
Input: Source model fs, labelled source data

Ds = (Xs, Ys), number of bins B,
number of training iterations I .

/* Train src model fs = h ◦ gs */
for i in range(I) do

Li ← Lsrc(fs, Ds) ;
fs ← SGD(fs, Li) ;

/* Calc. feat.&logit ranges */

zmin, zmax ← CALC_RANGE(fs, Xs) ;
amin,amax ← CALC_RANGE(fs, Xs) ;

/* Calc. feat.&logit bin cnts */

πs
z ← CALC_BC(fs, Xs; z

min, zmax, B) ;
πs
a ← CALC_BC(fs, Xs;a

min,amax, B) ;

/* Gather source stats Ss */

Ss ← {πs
z, π

s
a, z

min, zmax,amin,amax} ;

Output: fs,Ss

Algorithm 2: FR at deployment time.
Input: Source model fs, unlabelled target

data Xt, source data statistics Ss,
number of adaptation iterations I .

/* Init trgt model ft = h ◦ gt */
ft ← fs ;

/* Adapt trgt feat.-extractr gt */
for i in range(I) do

πt
z ← CALC_BC(ft, Xt; z

min, zmax, B) ;
πt
a ← CALC_BC(ft, Xt;a

min,amax, B) ;

Li ← Ltgt(π
s
z, π

t
z, π

s
a, π

t
a) ;

gt ← SGD(gt, Li) ;

Output: gt

C WHEN MIGHT FR WORK?

Toy example where FR will work. Let L take two values {−1, 1}, and let

Y = L (5)
X = U [L− 0.5, L+ 0.5] + E, (6)

where U denotes a uniform distribution and E a domain-specific offset (this setup is depicted in
Figure 1a). Then the optimal classifier f : X → Y can be written as f(X) = sign(X−E). Imagine
the source domain has E = 0, and the target domain has E = 2. Then all points will be initially
classified as positive in the target domain, but FR will restore optimal performance by essentially
“re-normalizing” X to achieve an intermediate feature representation Z with the same distribution as
before (in the source domain).

Toy example where FR will not work. Let L be a rotationally-symmetric multivariate distribution
(e.g. a standard multivariate Gaussian), and let X be a rotated version of L where the rotation depends
on E. Now let Y = L1, the first component of L. Then any projection of X will have the correct
marginal distribution, hence FR will not work here as matching the marginal distributions of the
intermediate feature representation Z will not be enough to yield the desired invariant representation.

How to know if FR is suitable. We believe it reasonable to assume that one has knowledge of the
type of shifts that are likely to occur upon deployment. For example, if deploying a medical imaging
system to a new hospital, one may know that the imaging and staining techniques may differ but the
catchment populations are similar in e.g. cancer rate. In such cases, we can deduce that measurement
shift is likely and thus FR is suitable.

17
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D COMMON UDA BENCHMARKS ARE NOT MEASUREMENT SHIFTS

Overview. The standard approach for common UDA benchmarks like VisDA-C (Peng et al., 2018) is
to first pretrain on ImageNet to gain more “general” visual features and then carefully fine-tune these
features on (i) the source domain, and then (ii) the target domain, effectively making the adaptation
task ImageNet→ synthetic→ real. Here, we use VisDA-C to: (i) investigate the reliance of existing
methods on ImageNet pretraining; (ii) evaluate our FR and BUFR methods on domain shifts that
require learning new features (i.e. non measurement shifts); and (iii) investigate the effect of label
shift on our methods (which violates the assumption of measurement shift and indeed even domain
shift).

Reducing label shift. For (iii), we first note that VisDA-C contains significant label shift. For
example, 8% of examples are labelled ‘car’ in the source domain, while 19% of examples are labelled
‘car’ in the target domain. To correct for this while retaining as many examples as possible, we
randomly drop examples from some classes and oversample examples from others so that all classes
have 11000 examples in the source domain and 3500 examples in the target domain—this is labelled
as “No label shift” in Table 6.

Results. In Table 6 we see that: (i) without ImageNet pre-training, all (tested) methods fail—despite
similar accuracy being achieved in the source domain with or without ImageNet pre-training (compare
77 vs. 37); (ii) with the standard VisDA-C setup (i.e. 37), AdaBN < FR << SHOT, as SHOT
learns new discriminative features in the target domain; and (iii) correcting for label shift boosts the
performance of FR and closes the gap with SHOT (compare 37 vs. 33), but some gap remains
as VisDA-C is not a measurement shift but rather a more general domain shift. Finally, we note
that ImageNet pretraining makes the features in early layers quite robust, reducing the advantage of
bottom-up training.

Implementation details. These results were achieved using a standard VisDA-C implentation/setup:
we train a ResNet-101 (He et al., 2016) (optionally pre-trained on ImageNet) for 15 epochs using
SGD, a learning rate of 0.001, and a batch size of 64. We additionally adopt the learning rate
scheduling of (Ganin & Lempitsky, 2015; Long et al., 2018; Liang et al., 2020) in the source domain,
and reduce the learning rate to 0.0001 in the target domain.

Table 6: VisDA-C results (ResNet-101). No label shift: examples were dropped or oversampled to
correct for label shift.

Model ImageNet pretrain No label shift Avg. Acc.
No corruption 7 7 99.8

Source-only 7 7 10.4
AdaBN (Li et al., 2017) 7 7 15.9
SHOT (Liang et al., 2020) 7 7 17.1
FR 7 7 16.8
BUFR 7 7 16.2

No corruption 3 7 99.6

Source-only 3 7 47.0
AdaBN (Li et al., 2017) 3 7 65.2
SHOT (Liang et al., 2020) 3 7 82.9
FR 3 7 73.7
BUFR 3 7 72.9

No corruption 3 3 99.7

Source-only 3 3 44.6
AdaBN (Li et al., 2017) 3 3 68.7
SHOT (Liang et al., 2020) 3 3 85.0
FR 3 3 82.8
BUFR 3 3 83.1
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E FURTHER RELATED WORK

Domain generalization. Domain generalization seeks to do well in the target domain without
updating the source model. The goal is to achieve this through suitable data augmentation, self-
supervision, and inductive biases with respect to a perturbation of interest (Simard et al., 1991;
Engstrom et al., 2019; Michaelis et al., 2019; Roy et al., 2019; Djolonga et al., 2021). One may
view this as specifying the shifts that a model should be robust to a priori. Practically, however,
we generally do not know what shift will occur upon deployment—there will always be unseen
shifts. Furthermore, the condition that our augmented development process be sufficiently diverse is
untestable—with the worst-case error still being arbitrarily high (David et al., 2010; Arjovsky et al.,
2019). Permitting adaptation in the target domain is one reasonable solution to these problems.

Common corruptions. Previous works (Hendrycks & Dietterich, 2019) have used common cor-
ruptions to study the robustness of neural networks to simple transformations of the input, e.g.
Gaussian noise (common in low-lighting conditions), defocus blur (camera is not properly focused
or calibrated), brightness (variations in daylight intensity), and impulse noise (colour analogue of
salt-and-pepper noise, caused by bit errors). We see common corruptions as one particular type of
measurement shift, with all the aforementioned corruptions arising from a change in measurement
system. However, not all measurement shifts are common corruptions. For example, the right
column of Figure 1c depicts tissue slides from different hospitals. Here, the shift has arisen from
changes in slide-staining procedures, patient populations and image acquisition (e.g. different sensing
equipment). This measurement shift cannot be described in terms of simple input transformations
like Gaussian noise or blurring, and thus we do not consider it a common corruption. In addition,
EMNIST-DA shifts like bricks and grass use knowledge of the object type (i.e. a digit) to change
the background and foreground separately (see Figure 7). We do not consider these to be common
corruptions as common corruptions rarely have knowledge of the image content—e.g. blurring all
pixels or adding noise randomly. In summary, we consider measurement shifts to be a superset of
common corruptions, thus warranting their own definition.

SFDA and related settings. Table 7 compares the setting of SFDA to the related settings of fine-
tuning, unsupervised domain adaptation (UDA), and domain generalization (DG).

Table 7: Source-free domain adaptation and related settings. Adapted from Wang et al. (2021).

Setting Source data Target data Adapt. Loss

Fine-tuning - xt, yt L(xt, yt)
UDA xs, ys xt L(xs, ys) + L(xs, xt)
Domain gen. xs, ys - L(xs, ys)
Source-free DA - xt L(xt)

F DATASETS

Figures 5, 6, 7, 8 and 9 below visualize the different datasets we use for evaluation and analysis.

MNIST-M (Ganin et al., 2016) is constructed by combining digits from MNIST with random back-
ground colour patches from BSDS (Arbelaez et al., 2011). The source domain is standard MNIST
and the target domain is the same digits coloured (see Figure 5). MNIST-C (Mu & Gilmer, 2019)
contains 15 different corruptions of the MNIST digits. Again, the source domain is standard MNIST
and the corruptions of the same digits make up the 15 possible target domains (see Figure 6).

As shown in Appendix K.1 many methods achieve good performance on these MNIST datasets. For
this reason we create and release the more challenging EMNIST-DA dataset. EMNIST-DA contains 13
different shifts chosen to give a diverse range of initial accuracies when using a source model trained
on standard EMNIST. In particular, a number of shifts result in very low initial performance but are
conceptually simple to resolve (see Figure 7). Here, models are trained on the training set of EMNIST
(source) before being adapted to a shifted test set of EMNIST-DA (target, unseen examples).

We also use the CIFAR--C and CIFAR--C corruption datasets (Hendrycks & Dietterich, 2019)
to compare methods on object-recognition tasks. These datasets contain 19 different corruptions of
the CIFAR- and CIFAR- test sets (see Figure 8). Here, a model is trained on the training set of
CIFAR-/CIFAR- (source, Krizhevsky 2009) before being adapted to a corrupted test set (target).

19

110 Appendix A. Paper Appendices



Published as a conference paper at ICLR 2022

Finally, we show real-world measurement shift with CAMELYON (Bandi et al., 2018), a medical
dataset with histopathological images from 5 different hospitals which use different staining and
imaging techniques (Figure 9). The goal is to determine whether or not an image contains tumour
tissue. We train on examples from a single source hospital (hospital 3) before adapting to one of the
4 remaining target hospitals. We use the WILDS (Koh et al., 2021) implementation of CAMELYON.

Figure 5: Top: samples from MNIST. Bottom: samples from MNIST-M.

Figure 6: MNIST-C corruptions.

Figure 7: EMNIST-DA shifts.

Figure 8: CIFAR corruptions. The same corruptions are used for CIFAR--C and CIFAR--C.
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Figure 9: CAMELYON. Columns show different hospitals. Top row: no tumour tissue. Bottom row:
tumour tissue present.
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G FURTHER IMPLEMENTATION DETAILS

Architectures. The architecture of the simple 5-layer CNN (a variant of LeNet, LeCun et al. 1998),
which we use for digit and character datasets, is provided in Table 8. For the object-recognition and
medical datasets, we use a standard ResNet-18 (He et al., 2016).

Training details. For all datasets and methods we train using SGD with momentum set to 0.9,
use a batch size of 256, and report results over 5 random seeds. In line with previous UDA &
SFDA works (although often not made explicit), we use a test-domain validation set for model
selection (Gulrajani & Lopez-Paz, 2021). In particular, we select the best-performing learning rate
from {0.0001, 0.001, 0.01, 0.1, 1}, and for BUFR, we train for 30 epochs per block and decay the
learning rate as a function of the number of unfrozen blocks in order to further maintain structure.
For all other methods, including FR, we train for 150 epochs with a constant learning rate. The
temperature parameter τ (see Appendix A, Eq. 4) is set to 0.01 in all experiments.

Tracking feature and logit distributions. To track the marginal feature and logit distributions, we
implement a simple StatsLayer class in PyTorch that can be easily inserted into a network just
like any other layer. This seamlessly integrates distribution-tracking into standard training processes.
In the source domain, we simply: (i) add StatsLayers to our (pre)trained source model; (ii) pass
the source data through the model; and (iii) save the model as normal in PyTorch (the tracked statistics,
i.e. bin counts, are automatically saved as persistent buffers akin to BN-statistics). In the target
domain, the source model can be loaded as normal and the inserted StatsLayers will contain the
source-data statistics. Code is available at https://github.com/cianeastwood/bufr.

The Full Gauss. baseline. This baseline models the distribution of hidden features as a joint
multivariate Gaussian, with dimensionality equal to the number of hidden units. After training a
model on the source data, the source data is passed through once more and the empirical mean
vector and covariance matrix are calculated and saved. To adapt to the target data the empirical mean
and covariances are calculated for each minibatch and the distributions are aligned using the KL
divergence DKL(Q||P ), where Q is the Gaussian distribution estimated on the target data minibatch
and P from the source data. This divergence has an analytic form (Duchi, 2007, Sec. 9) which we
use as the loss function. We use this direction for the KL divergence as we only need to invert the
covariance matrix once (for saved P ) rather than the covariance matrix for Q on every batch.

Online setup. In the online setting, where only a single epoch is permitted, we find that all
methods are very sensitive to the learning rate (unsurprising, given that most methods will not
have converged after a single epoch). For fair comparison, we thus search over learning rates in
{0.1, 0.01, 0.001, 0.0001} for all methods, choosing the best-performing one. Additionally, when
learning speed is of critical importance, we find it beneficial to slightly increase τ . We thus set
τ = 0.05 for all online experiments, compared to 0.01 for all “offline” experiments.

Table 8: Architecture of the CNN used on digit and character datasets. For conv. layers, the weights-
shape is: num. input channels × num. output channels × filter height × filter width.

Block Weights-Shape Stride Padding Activation Dropout Prob.
Conv + BN 3× 64× 5× 5 2 2 ReLU 0.1

Conv + BN 64× 128× 3× 3 2 2 ReLU 0.3

Conv + BN 128× 256× 3× 3 2 2 ReLU 0.5

Linear + BN 6400× 128 N/A N/A ReLU 0.5

Linear 128× Number of Classes N/A N/A Softmax 0
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H RELIABILITY DIAGRAMS AND CONFIDENCE HISTOGRAMS

This section shows reliability diagrams (DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana,
2005) and confidence histograms (Zadrozny & Elkan, 2001): (i) over all EMNIST-DA shifts (see
Figure 10); (ii) a severe EMNIST-DA shift (see Figure 11); and (iii) a mild shift EMNIST-DA shift
(see Figure 12). Reliability diagrams are given along with the corresponding Expected Calibration
Error (ECE, Naeini et al. 2015) and Maximum Calibration Error (MCE, Naeini et al. 2015). ECE is
calculated by binning predictions into 10 evenly-spaced bins based on confidence, and then taking a
weighted average of the absolute difference between average accuracy and average confidence of
the samples in each bin. MCE is the maximum absolute difference between average accuracy and
average confidence over the bins. In Figures 10–12 below, we pair each reliability diagram with
the corresponding confidence histogram, since reliability diagrams do not provide the underlying
frequencies of each bin (as in Guo et al. 2017, Figure 1).

In general we see that most models are overconfident, but our models much less so. As seen by the
difference in the size of the red ‘Gap’ bar in the rightmost bins of Figures 10b, 10c, and 10d, when
our FR methods predict with high confidence they are much more likely to be correct than IM—a
method which works by maximizing prediction confidence. Figure 11 shows that BUFR remains
well-calibrated even when the initial shift is severe. Figure 12 shows that, even for a mild shift when
all models achieve high accuracy, our methods are better-calibrated. Note that the label ‘Original’ in
Figures 10a and 10e denotes the source model on the source data, while ‘Source-only’ in Figures
11a, 11e, 12a, and 12e denotes the source model on the target data.

(a) Original (b) SHOT-IM (c) FR (d) BUFR

(e) Original (f) SHOT-IM (g) FR (h) BUFR

Figure 10: Reliability diagrams and confidence histograms over all EMNIST-DA corruptions. (a–d):
Reliability diagrams showing the difference between average accuracy and average confidence for
different methods. (e–h): Confidence histograms showing the frequency with which predictions are
made with a given confidence. Each confidence histogram corresponds with the reliability diagram
above it. (a & e): The source model is well-calibrated on the source data. (b & f): Entropy-
minimization leads to extreme overconfidence. (c & g, d & h): Our methods, FR and BUFR, are
much better-calibrated as they do not work by making predictions more confident.
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(a) Source-only (b) SHOT-IM (c) FR (d) BUFR

(e) Source-only (f) SHOT-IM (g) FR (h) BUFR

Figure 11: Reliability diagrams and confidence histograms for a severe EMNIST-DA shift (sky) where
all methods except BUFR achieve poor accuracy. Each confidence histogram corresponds with the
reliability diagram above it. (a & e): Source model on the target data achieves poor accuracy and
often predicts with low confidence. (b & f): SHOT-IM also achieves poor accuracy but is highly
confident. (d & h): Our BUFR method achieves better ECE and MCE than all other methods.

(a) Source-only (b) SHOT-IM (c) FR (d) BUFR

(e) Source-only (f) SHOT-IM (g) FR (h) BUFR

Figure 12: Reliability diagrams and confidence histograms for a mild EMNIST-DA shift (shot noise)
where all methods achieve good accuracy. Each confidence histogram corresponds with the reliability
diagram above it. When highly confident, our methods (d & h) are more often correct than IM (b & f).
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I ACTIVATION DISTRIBUTIONS

EMNIST-DA (skewed). Figure 13 depicts histograms of the marginal feature and logit activation-
distributions on the EMNIST-DA stripe shift. As shown, the marginal distributions on the source data
(blue curve, those we wish to match) may be heavily-skewed. In contrast, the marginal distributions
on the target data (before adapting, orange curve) tend to be more symmetric but have a similar mean.

CIFAR- (bi-modal). Figure 14 depicts histograms of the marginal feature and logit activation-
distributions on the CIFAR--C impulse-noise shift. As shown, the marginal distributions on the
source data (blue curve, those we wish to match) tend to be bi-modal. In contrast, the marginal
distributions on the target data (before adapting, orange curve) tend to be uni-modal but have a similar
mean. The two modes can be interpreted intuitively as “detected” and “not detected” or “present”
and “not present” for a given feature-detector.

Alignment after adapting. Figure 15 shows histograms of the marginal feature activation-
distributions on the EMNIST-DA stripe shift. This figure shows curves on the source data (blue
curve, same as Figure 13a) and on the target data (after adapting, orange curve) for different methods.
Evidently, our FR loss causes the marginal distributions to closely align (Figure 15c). In contrast,
competing methods (Figures 15a, 15b) do not match the feature activation-distributions, even if they
achieve high accuracy. Figure 16 shows the same trend for CIFAR--C.

(a) Feature distributions (b) Logit distributions

Figure 13: Histograms showing the first 6 marginal activation-distributions on the EMNIST-DA stripe
shift. The blue curves are the saved marginal distributions under the source data (i.e. EMNIST). The
orange curves are the marginal distributions under the target data before adaptation (i.e. the stripe
shift). (a) Marginal feature activation-distributions. (b) Marginal logit activation-distributions. DSKL

denotes the symmetric KL divergence.
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(a) Feature distributions (b) Logit distributions

Figure 14: Histograms showing the first 6 marginal activation-distributions on the CIFAR--C
impulse-noise shift. The blue curves are the saved marginal distributions under the source data (i.e.
CIFAR-). The orange curves are the marginal distributions under the target data before adaptation
(i.e. the impulse-noise shift). (a) Marginal feature activation-distributions and (b) Marginal logit
activation-distributions. DSKL denotes the symmetric KL divergence.

(a) AdaBN (b) SHOT-IM (c) BUFR

Figure 15: Histograms showing distribution-alignment on the EMNIST-DA stripe shift. The blue
curves are the saved marginal distributions under the source data (i.e. EMNIST). The orange curves
are the marginal distributions under the target data after adaptation (to the stripe shift). (a,b): AdaBN
and SHOT-IM do not align the marginal distributions (despite achieving reasonable accuracy—see
Table 17). (c) BUFR matches the activation-distributions very closely, making DSKL very small.
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(a) AdaBN (b) SHOT-IM (c) BUFR

Figure 16: Histograms showing distribution-alignment on the CIFAR--C impulse-noise shift. The
blue curves are the saved marginal distributions under the source data (i.e. CIFAR-). The orange
curves are the marginal distributions under the target data after adaptation (to the impulse-noise shift).
(a) AdaBN does not align the marginal distributions. (b) SHOT-IM only partially-aligns the marginal
distributions. (c) BUFR matches the activation-distributions very closely, making DSKL very small.

J FURTHER ANALYSIS

J.1 EFFICACY OF BOTTOM-UP TRAINING

Table 9 reports EMNIST-DA accuracy vs. the number of (unlabelled) examples-per-class available in
the target domain. BUFR retains strong performance even with only 5 examples-per-class.

Table 9: EMNIST-DA accuracy vs. examples-per-class.

Model 5 10 20 50 400

Marg. Gauss. (Ishii & Sugiyama, 2021) 49.3 49.9 50.4 50.7 50.6
Full Gauss. 55.4 59.7 61.0 63.3 68.3
PL (Lee et al., 2013) 45.8 46.3 46.0 46.7 49.7
BNM-IM (Ishii & Sugiyama, 2021) 50.5 51.5 53.0 54.7 61.4
SHOT-IM (Liang et al., 2020) 48.3 51.7 51.2 54.7 73.4
FR (ours) 50.8 50.5 60.1 63.1 75.6
BUFR (ours) 78.0 82.3 83.8 84.9 86.2

J.2 LOSS ABLATION STUDY

Table 10 reports the performance of our FR loss on CIFAR--C and CIFAR--C without: (i) aligning
the logit distributions; and (ii) using the symmetric KL divergence (we instead use the asymmetric
reverse KL). While these components make little difference on the easier task of CIFAR--C, they
significantly improve performance on the harder task of CIFAR--C.

Table 10: Ablation study of Ltgt in Eq. 2.

Model CFR--C CFR--C

Ltgt w/o logits 86.7± 0.2 62.3± 1.3
Ltgt w/o DKL(P ||Q) 86.5± 0.3 61.5± 0.2
Ltgt 87.2± 0.7 65.5± 0.2
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J.3 WHO IS AFFECTED

We now analyse which layers are most affected by a measurement shift. Figure 17 shows the
(symmetric) KL divergence between the unit-level activation distributions under the source (EMNIST)
and target (EMNIST-DA crystals) data before adapting (17a) and after adapting the first layer (17b).
Figure 17a shows that, before adapting, the unit-activation distributions in all layers of the network
have changed significantly, as indicated by the large KL divergences. Figure 17b shows that, after
updating just the first layer, “normality” is restored in all subsequent layers, with the unit-level
activation distributions on the target data realigning with those saved on the source (shown via very
low KL divergences). This indicates that measurement shifts primarily affect the first layer/block—
since they can be mostly resolved by updating the first layer/block—and also further motivates
bottom-up training for measurement shifts.

Conv1 Conv2 Conv3 FC1 FC2

0.0
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0.4

0.5

(a) Before adapting

Conv1 Conv2 Conv3 FC1 FC2

0.0

0.1

0.2

0.3

0.4

0.5

(b) After adapting Conv1

Figure 17: Symmetric KL divergence between the unit-level activation distributions under the source
(EMNIST) and target (EMNIST-DA crystals) data: (a) before adapting; and (b) after adapting only the
first layer (Conv1). For visual clarity, we show only 10 sample units per layer.

J.4 WHO MOVES

We now analyse which layers are most updated by BUFR. Figure 18a shows that, on average, FR
moves the weights of all layers of gt a similar distance when adapting to the target data. Figure 18b
shows that BUFR primarily updates the early layers, thus preserving learnt structure in later layers.
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(b) BUFR

Figure 18: Average distance moved by a unit in each block of gt on the EMNIST-DA stripe shift when
training (a) all layers at once and (b) in a bottom-up manner. Both methods are trained with the same
constant learning rate.
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K FULL RESULTS

In this section we give the full results for all datasets and constituent domains.

K.1 DIGIT AND CHARACTER SUMMARY RESULTS

The simplest datasets we use are variations of the MNIST dataset (LeCun et al., 1998). Here, a model
is trained on MNIST (source domain) before being adapted to MNIST-M (Ganin et al., 2016) or one of
the fifteen MNIST-C (Mu & Gilmer, 2019) corruptions (target domain). As mentioned in Section 5,
the MNIST-based shifts can be well-resolved by a number of methods.

Tables 11 and 12 summarize the accuracy and ECEs across different models for the digit and character
datasets. On MNIST-C, where source-only accuracy is very high, all methods achieve good results
(accuracy ≥ 95%)—providing limited insight into their relative performances. On MNIST-M, our
BUFR method outperforms all baselines, although SHOT is very similar in performance. As discussed
in Section 5, our BUFR method outperforms all baseline methods on EMNIST-DA in terms of accuracy
and ECE as it does not work by making predictions more confident.

Table 11: Digit and character accuracy (%) results. Shown are the mean and 1 standard deviation.
EMNIST-DA: mean performance over all 13 EMNIST-DA shifts. EMNIST-DA-SVR & EMNIST-DA-MLD:
sample “severe” and “mild” shifts from EMNIST-DA selected based on AdaBN performance.

Model MNIST-C MNIST-M EMNIST-DA EMNIST-DA-SVR EMNIST-DA-MLD

No corruption 99.5± 0.1 99.5± 0.1 89.4± 0.1 89.4± 0.1 89.4± 0.1

Source-only 86.2± 1.8 42.7± 4.6 29.5± 0.5 3.8± 0.4 78.5± 0.7
AdaBN (Li et al., 2018) 94.2± 0.2 59.1± 1.9 46.2± 1.1 3.7± 0.7 84.9± 0.2
PL (Lee et al., 2013) 96.4± 0.4 43.1± 2.1 50.0± 0.6 2.7± 0.4 83.5± 0.1
SHOT-IM (Liang et al., 2020) 97.3± 0.2 66.9± 9.3 70.3± 3.7 24.0± 7.5 86.3± 0.1
SHOT (Liang et al., 2020) 97.7± 0.2 94.4± 3.1 80.0± 4.4 55.1± 23.5 86.1± 0.1
FR (ours) 96.7± 0.1 86.5± 0.6 74.4± 0.8 15.3± 6.8 86.4± 0.1
BUFR (ours) 96.4± 0.6 96.2± 1.7 86.1± 0.1 84.6± 0.2 87.0± 0.2

Target-supervised 99.3± 0.0 98.5± 0.0 86.8± 0.6 85.7± 0.6 87.3± 0.7

Table 12: Digit and character ECE (%) results. Shown are the mean and 1 standard deviation. EMNIST-
DA: mean performance over all 13 EMNIST-DA shifts. EMNIST-DA-SVR & EMNIST-DA-MLD: sample
“severe” and “mild” shifts from EMNIST-DA selected based on AdaBN performance.

Model MNIST-C MNIST-M EMNIST-DA EMNIST-DA-SVR EMNIST-DA-MLD

No corruption 0.3± 0.0 0.3± 0.0 2.3± 0.1 2.3± 0.1 2.3± 0.1

Source-only 7.2± 1.4 27.0± 7.1 30.8± 1.6 42.6± 3.5 4.8± 0.5
AdaBN (Li et al., 2018) 4.1± 0.1 24.4± 2.8 30.3± 1.1 52.4± 4.9 4.9± 0.3
PL (Lee et al., 2013) 3.1± 0.4 56.1± 2.2 49.9± 0.6 97.2± 0.4 16.4± 0.1
SHOT-IM (Liang et al., 2020) 2.3± 0.2 30.9± 9.0 29.6± 3.7 76.0± 7.5 13.7± 0.1
SHOT (Liang et al., 2020) 2.0± 0.2 2.8± 2.9 19.7± 4.4 42.7± 23.0 14.8± 0.1
FR (ours) 2.5± 0.2 9.8± 0.8 12.9± 0.9 58.0± 6.8 4.6± 0.3
BUFR (ours) 3.0± 0.6 2.9± 1.5 4.7± 0.2 5.6± 0.3 4.2± 0.2

Target-supervised 0.5± 0.0 1.1± 0.1 7.3± 0.7 7.0± 0.5 8.4± 1.1
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K.2 ONLINE RESULTS

Table 13 reports the online results for CIFAR--C and CIFAR--C. FR outperforms existing
SFDA methods on CIFAR--C in terms of both accuracy and ECE. On CIFAR--C, our method is
competitive with TENT (Wang et al., 2021)—a method designed specifically for this online setting.
As in Wang et al. (2021), these results represent the average over batches during training (i.e. a single
pass through the target data), rather than the average at the end of training, in order to evaluate online
performance. We omit BUFR from this table as it is not easily applicable to the online setting—it is
difficult to set the number of steps per block without information on the total number of steps/batches
(generally not available in an online setting). Full per-shift results for this online setting are given in
Tables 23 and 24 for CIFAR--C, and Tables 25 and 26 for CIFAR--C.

Table 13: Online results. Shown are the mean and 1 standard deviation.

Model CIFAR--C CIFAR--C

ACC ↑ ECE ↓ ACC ↑ ECE ↓
AdaBN (Li et al., 2018) 80.3± 0.0 12.1± 0.0 56.6± 0.3 10.0± 0.1
SHOT-IM (Liang et al., 2020) 83.2± 0.2 10.9± 0.1 62.3± 0.3 13.8± 0.1
TENT (Wang et al., 2021) 81.8± 0.2 11.5± 0.1 63.1± 0.3 14.3± 0.1
FR (ours) 85.9± 0.3 9.5± 0.2 62.7± 0.3 13.6± 0.1

K.3 CAMELYON RESULTS

Table 14 reports the accuracy and ECE results for CAMELYON. With up to 50 target examples-
per-class: (i) our methods reduce the error rate by approximately 20% compared to the next best
method; (ii) only our methods meaningfully improve upon the simple AdaBN baseline which uses
the target-data BN-statistics (i.e. neither PL or SHOT-IM actually work). With up to 500 target
examples-per-class, our methods reduce the error rate by approximately 20% compared to the next
best method. With over 15,000 examples-per-class, our methods are competitive with existing ones.

Table 14: CAMELYON results for different numbers of (unlabelled) examples-per-class in the target domain.

Model 5 50 500 >15k

ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓
Source-only 55.8± 1.6 40.8± 2.1 55.8± 1.6 40.8± 2.1 55.8± 1.6 40.8± 2.1 55.8± 1.6 40.8± 2.1
AdaBN 82.6± 2.2 14.7± 2.1 83.7± 1.0 13.7± 0.8 83.9± 0.8 13.5± 0.7 84.0± 0.5 13.5± 0.5
PL 82.5± 2.0 14.2± 1.1 83.6± 1.2 13.8± 1.0 85.0± 0.8 13.0± 0.8 90.6± 0.9 8.8± 0.9
SHOT-IM 82.6± 2.2 13.8± 1.8 83.7± 1.2 13.8± 1.1 86.4± 0.7 11.9± 0.7 89.9± 0.2 9.7± 0.2
FR (ours) 84.6± 0.6 12.9± 0.5 86.0± 1.1 12.1± 1.1 89.0± 0.6 9.7± 0.6 89.5± 0.4 9.8± 0.5
BUFR (ours) 84.5± 0.8 12.8± 0.8 87.0± 1.2 11.1± 1.1 89.1± 0.8 9.7± 0.8 89.7± 0.5 9.6± 0.6
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K.4 MNIST-C FULL RESULTS

Tables 15 and 16 show the accuracy and ECE results for each individual corruption of the MNIST-
C dataset. We provide the average performance with and without the translate corruption as the
assumptions behind the methods that rely on a fixed classifier h no longer hold. Without the translate
corruption (Avg. \translate) we see that all methods achieve high accuracy (≥ 95%).

Table 15: MNIST-C accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM SHOT FR BUFR

Brightness 84.8± 11.4 99.4± 0.0 99.5± 0.0 99.4± 0.1 99.5± 0.1 98.7± 0.1 99.2± 0.1
Canny Edges 72.2± 0.8 91.0± 0.7 96.2± 1.0 98.1± 0.1 98.6± 0.1 97.8± 0.1 98.5± 0.0
Dotted Line 98.6± 0.2 98.8± 0.2 99.3± 0.1 99.4± 0.1 99.4± 0.1 98.6± 0.1 99.1± 0.0
Fog 30.1± 12.5 93.9± 1.9 99.3± 0.0 99.4± 0.1 99.5± 0.0 98.6± 0.1 99.2± 0.0
Glass Blur 88.9± 2.3 95.3± 0.3 97.8± 0.1 98.2± 0.1 98.3± 0.0 97.2± 0.1 97.9± 0.0
Impulse Noise 95.2± 0.6 97.9± 0.1 98.4± 0.1 98.7± 0.1 98.9± 0.1 97.8± 0.0 98.6± 0.0
Motion Blur 85.6± 3.9 97.3± 0.4 98.8± 0.1 99.1± 0.1 99.2± 0.1 98.1± 0.1 98.8± 0.1
Rotate 96.7± 0.1 96.7± 0.0 97.7± 0.1 98.4± 0.1 98.8± 0.0 97.5± 0.1 97.9± 0.1
Scale 97.2± 0.1 97.2± 0.1 98.7± 0.1 99.1± 0.0 99.2± 0.0 98.0± 0.0 98.7± 0.2
Shear 98.9± 0.1 98.9± 0.0 99.0± 0.0 99.1± 0.0 99.2± 0.0 98.3± 0.1 98.8± 0.1
Shot Noise 98.6± 0.0 99.0± 0.0 99.2± 0.0 99.2± 0.1 99.2± 0.0 98.3± 0.2 99.0± 0.1
Spatter 98.7± 0.1 98.8± 0.1 99.0± 0.1 99.0± 0.0 99.1± 0.1 98.4± 0.1 98.8± 0.0
Stripe 91.1± 1.2 90.9± 1.5 97.9± 1.0 99.2± 0.0 99.4± 0.1 98.3± 0.1 99.1± 0.1
Translate 64.6± 0.5 64.4± 0.6 69.5± 0.8 75.1± 4.1 78.7± 3.1 76.7± 2.1 64.5± 8.9
Zigzag 91.8± 0.6 93.0± 0.2 98.2± 0.2 98.9± 0.1 99.2± 0.1 98.2± 0.1 98.8± 0.1

Avg. 86.2± 1.8 94.2± 0.2 96.6± 0.1 97.3± 0.2 97.7± 0.2 96.7± 0.1 96.4± 0.6
Avg.\translate 87.7± 1.9 96.3± 0.2 98.5± 0.1 98.9± 0.0 99.1± 0.0 98.1± 0.1 98.7± 0.0

Table 16: MNIST-C ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM SHOT FR BUFR

Brightness 2.4± 0.4 0.3± 0.1 0.3± 0.1 0.4± 0.1 0.9± 0.1 0.9± 0.1 0.5± 0.1
Canny Edges 22.2± 0.7 6.1± 0.7 4.0± 2.5 1.5± 0.1 0.6± 0.1 1.6± 0.1 1.0± 0.1
Dotted Line 0.7± 0.1 0.7± 0.1 0.5± 0.1 0.4± 0.1 0.9± 0.0 1.0± 0.1 0.6± 0.1
Fog 26.4± 18.0 3.5± 1.4 0.5± 0.0 0.4± 0.0 0.9± 0.1 1.0± 0.1 0.5± 0.1
Glass Blur 5.9± 1.6 3.1± 0.3 1.8± 0.1 1.4± 0.1 0.4± 0.2 2.1± 0.1 1.5± 0.1
Impulse Noise 1.2± 0.2 1.2± 0.1 1.2± 0.1 0.9± 0.1 0.7± 0.1 1.5± 0.1 1.0± 0.1
Motion Blur 9.1± 3.4 1.4± 0.2 1.0± 0.2 0.7± 0.1 0.8± 0.0 1.4± 0.1 0.8± 0.1
Rotate 2.0± 0.1 2.2± 0.1 1.9± 0.1 1.2± 0.1 0.6± 0.1 1.9± 0.1 1.5± 0.1
Scale 1.0± 0.1 1.7± 0.1 1.0± 0.1 0.7± 0.1 0.8± 0.1 1.5± 0.0 0.8± 0.1
Shear 0.7± 0.1 0.7± 0.0 0.8± 0.1 0.7± 0.1 0.8± 0.1 1.2± 0.1 0.9± 0.1
Shot Noise 0.7± 0.1 0.6± 0.1 0.5± 0.1 0.5± 0.1 0.8± 0.1 1.2± 0.1 0.7± 0.1
Spatter 0.6± 0.1 0.7± 0.1 0.7± 0.1 0.7± 0.1 0.9± 0.1 1.2± 0.1 0.8± 0.0
Stripe 4.3± 1.0 6.5± 1.4 2.8± 3.1 0.5± 0.1 0.9± 0.1 1.2± 0.2 0.6± 0.0
Translate 25.2± 0.3 28.6± 0.6 29.0± 0.7 24.2± 4.1 19.2± 3.0 18.8± 2.7 33.7± 8.9
Zigzag 5.4± 0.5 4.9± 0.3 1.3± 0.2 0.8± 0.0 0.8± 0.0 1.4± 0.1 0.8± 0.1

Avg. 7.2± 1.4 4.1± 0.1 3.1± 0.4 2.3± 0.2 2.0± 0.2 2.5± 0.2 3.0± 0.6
Avg.\translate 5.9± 1.5 2.4± 0.2 1.3± 0.4 0.8± 0.0 0.8± 0.0 1.4± 0.0 0.8± 0.0
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K.5 EMNIST-DA FULL RESULTS

Tables 17 and 18 show the accuracy and ECE results for each individual shift of EMNIST-DA.
We provide the average performance with and without the ‘background shifts’ (bgs), where the
background and digit change colour, as these are often the more severe shifts.

By inspecting Table 17, we see that the sky shift resulted in the lowest AdaBN accuracy, while the
shot-noise shift resulted in the highest AdaBN accuracy. Thus, we deem these to be the most and
least severe EMNIST-DA shifts, i.e. the “severe” and “mild” shifts. We find AdaBN to be a better
indicator of shift severity than source-only as some shifts with poor source-only performance can be
well-resolved by simply updating the BN-statistics (no parameter updates), e.g. the fog shift.

Table 17: EMNIST-DA accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN Marg. Gauss. Full Gauss. PL BNM-IM SHOT-IM SHOT FR BUFR
Bricks 4.2± 0.5 5.9± 1.0 9.1± 1.2 22.6± 2.1 6.8± 1.2 14.2± 1.4 20.5± 4.8 76.0± 0.2 32.4± 4.8 83.8± 0.3
Crystals 19.7± 3.1 42.1± 1.9 50.0± 0.7 60.0± 1.0 47.4± 1.6 61.2± 2.5 71.5± 3.8 80.1± 0.2 76.8± 0.4 82.6± 0.3
Dotted Line 76.2± 0.7 80.8± 0.4 82.3± 0.4 82.6± 0.5 80.7± 0.5 86.5± 0.4 87.1± 0.1 87.5± 0.1 87.6± 0.1 88.3± 0.0
Fog 4.5± 0.9 69.0± 2.6 77.1± 0.6 85.1± 0.6 77.4± 3.3 86.3± 0.3 86.2± 0.1 87.0± 0.1 87.0± 0.1 88.3± 0.1
Gaussian Blur 45.1± 3.2 65.2± 1.6 77.1± 0.8 82.3± 0.2 78.8± 0.8 83.7± 0.3 83.7± 0.2 83.9± 0.2 83.0± 0.4 86.0± 0.1
Grass 2.3± 0.1 6.1± 0.4 5.9± 1.1 52.7± 3.5 6.7± 1.8 14.6± 6.1 42.4± 40.9 61.8± 36.5 79.2± 0.3 84.5± 0.2
Impulse Noise 36.8± 1.6 76.7± 0.8 81.4± 0.3 82.6± 0.1 79.9± 0.6 84.2± 0.3 84.4± 0.2 84.4± 0.2 84.8± 0.2 86.0± 0.1
Inverse 5.6± 0.5 8.1± 2.1 14.1± 6.2 64.4± 4.3 11.3± 2.0 60.4± 23.4 83.2± 0.4 85.1± 0.2 83.1± 0.7 88.3± 0.1
Oranges 26.5± 2.7 40.7± 2.3 49.3± 1.0 77.1± 0.6 43.0± 3.1 79.9± 0.6 80.5± 0.3 82.4± 0.2 82.3± 0.3 84.8± 0.3
Shot Noise 78.5± 0.7 84.9± 0.2 85.8± 0.3 85.7± 0.2 85.0± 0.3 86.5± 0.1 86.3± 0.1 86.1± 0.1 86.4± 0.1 87.0± 0.2
Sky 3.8± 0.4 3.7± 0.7 4.8± 0.4 29.8± 9.8 3.3± 0.6 8.3± 1.3 24.0± 7.5 55.1± 23.5 15.3± 6.8 84.6± 0.2
Stripe 15.4± 1.1 46.9± 4.9 63.0± 5.6 82.3± 0.8 63.8± 3.7 82.8± 0.5 83.9± 0.3 85.1± 0.2 84.5± 0.4 87.1± 0.1
Zigzag 65.0± 0.2 71.3± 0.2 73.8± 0.1 76.1± 0.3 72.3± 0.2 79.7± 0.5 81.0± 0.5 85.8± 0.2 85.7± 0.2 87.5± 0.2

Avg. 29.5± 0.5 46.2± 1.1 51.8± 1.1 67.9± 0.7 50.5± 0.6 63.7± 2.2 70.3± 3.7 80.0± 4.4 74.4± 0.8 86.1± 0.1
Avg.\bgs 40.9± 0.4 62.8± 1.1 69.3± 1.4 80.1± 0.5 68.6± 0.5 81.2± 3.1 84.5± 0.1 85.6± 0.1 85.2± 0.1 87.3± 0.0

Table 18: EMNIST-DA ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN Marg. Gauss. Full Gauss. PL BNM-IM SHOT-IM SHOT FR BUFR
Bricks 54.6± 5.0 64.4± 1.1 62.0± 0.9 52.4± 2.0 93.2± 1.2 84.9± 1.4 79.4± 4.8 22.5± 0.3 44.1± 4.2 6.2± 0.4
Crystals 27.0± 3.0 29.0± 1.2 24.0± 0.3 22.0± 0.6 52.7± 1.7 38.1± 2.5 28.5± 3.8 19.3± 0.1 10.5± 0.3 6.9± 0.3
Dotted Line 11.4± 0.6 9.2± 0.5 7.9± 0.4 7.5± 0.4 19.6± 0.7 13.0± 0.4 12.9± 0.1 12.9± 0.1 3.8± 0.2 3.4± 0.2
Fog 19.2± 6.5 13.8± 1.5 8.8± 0.8 4.8± 0.4 24.1± 4.0 13.3± 0.4 13.8± 0.1 13.5± 0.1 3.9± 0.2 3.3± 0.1
Gaussian Blur 15.0± 3.9 15.3± 0.9 8.7± 0.5 6.8± 0.3 21.2± 0.8 15.8± 0.4 16.4± 0.2 16.0± 0.3 6.4± 0.7 4.9± 0.1
Grass 21.6± 5.4 61.3± 0.8 61.0± 1.0 27.2± 2.7 93.6± 1.5 84.6± 6.2 57.5± 40.9 37.5± 36.1 8.7± 0.6 5.7± 0.2
Impulse Noise 32.0± 1.8 9.9± 0.6 7.1± 0.3 6.6± 0.1 20.1± 0.6 15.3± 0.3 15.6± 0.2 15.8± 0.2 5.3± 0.1 4.7± 0.1
Inverse 65.1± 5.8 60.8± 2.2 54.9± 5.7 18.1± 3.0 89.3± 2.1 39.0± 23.3 16.9± 0.5 14.7± 0.1 5.6± 0.5 3.3± 0.1
Oranges 23.8± 2.7 25.3± 2.0 22.5± 2.3 10.1± 0.6 57.6± 2.7 19.6± 0.6 19.6± 0.4 17.4± 0.2 6.9± 0.5 5.5± 0.3
Shot Noise 4.8± 0.5 4.9± 0.3 4.5± 0.3 4.9± 0.2 16.4± 0.1 13.0± 0.1 13.7± 0.1 14.8± 0.1 4.6± 0.3 4.2± 0.2
Sky 42.6± 3.5 52.4± 4.9 51.6± 6.4 45.8± 8.4 97.2± 0.4 90.2± 1.1 76.0± 7.5 42.7± 23.0 58.0± 6.8 5.6± 0.3
Stripe 63.8± 3.0 31.6± 4.4 20.2± 4.8 6.8± 0.4 36.2± 3.8 16.8± 0.5 16.1± 0.3 15.0± 0.3 5.4± 0.2 4.1± 0.1
Zigzag 19.9± 0.3 16.7± 0.2 14.6± 0.1 12.7± 0.3 27.6± 0.2 19.7± 0.5 19.0± 0.5 14.4± 0.1 4.9± 0.1 3.8± 0.2

Avg. 30.8± 1.6 30.3± 1.1 26.7± 1.1 17.4± 0.7 49.9± 0.6 35.6± 2.2 29.6± 3.7 19.7± 4.4 12.9± 0.9 4.7± 0.2
Avg.\bgs 28.9± 1.3 20.3± 0.8 15.8± 1.1 8.5± 0.4 31.8± 0.5 18.2± 3.1 15.6± 0.1 14.6± 0.1 5.0± 0.2 4.0± 0.1
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K.6 CIFAR--C FULL RESULTS

Tables 19 and 20 show the accuracy and ECE results for each individual corruption of CIFAR--C.
It is worth noting that BUFR achieves the biggest wins on the more severe shifts, i.e. those on which
AdaBN (Li et al., 2017) performs poorly.

Table 19: CIFAR--C accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM TENT FR BUFR

Brightness 91.4± 0.4 91.5± 0.3 91.9± 0.2 92.7± 0.3 93.2± 0.3 93± 0.4 93.3± 0.3
Contrast 32.3± 1.3 87.1± 0.3 86.6± 3.2 90.8± 0.9 91.3± 1.7 90.9± 0.9 92.9± 0.7
Defocus blr 53.1± 6.4 88.8± 0.4 89.3± 0.5 90.5± 0.4 90.9± 0.5 90.9± 0.3 91.5± 0.5
Elastic 77.6± 0.6 78.2± 0.4 79.2± 0.8 81.4± 0.5 82.7± 0.5 82.7± 0.4 84.2± 0.3
Fog 72.9± 2.6 85.9± 0.9 86.5± 0.8 88.7± 0.4 89.5± 0.4 89.5± 0.5 91.5± 0.5
Frost 64.4± 2.4 80.7± 0.7 82.4± 1.2 85.4± 0.6 86.8± 0.7 87± 0.6 89.1± 0.9
Gauss. blr 35.9± 8 88.2± 0.6 89± 0.7 90.5± 0.5 91± 0.6 91.2± 0.6 92.3± 0.4
Gauss. nse 27.7± 5.1 69.2± 1 74.6± 0.6 79.2± 0.9 81.3± 0.5 81.9± 0.1 85.9± 0.4
Glass blr 51.3± 1.8 66.7± 0.4 69± 0.3 73.7± 1 74.7± 0.8 76.8± 0.8 80.3± 0.5
Impulse nse 25.9± 3.8 62.1± 1 67.2± 0.5 73.2± 0.8 75.3± 0.8 76.6± 0.4 89.3± 1.4
Jpeg compr. 74.9± 1 74.1± 1 77.3± 0.6 81± 0.3 82.9± 0.5 83.4± 0.5 85.8± 0.6
Motion blr 66.1± 1.7 87.2± 0.2 87.8± 0.2 89.1± 0.2 90± 0.3 89.8± 0.2 90.8± 0.2
Pixelate 48.2± 2.2 80.4± 0.5 82± 0.4 85.5± 0.7 87.6± 0.9 87.5± 0.8 89.9± 0.6
Saturate 89.9± 0.4 92± 0.1 92.5± 0.3 93.1± 0.1 93.3± 0.1 93.4± 0.4 93.5± 0.3
Shot nse 34.4± 4.9 71.2± 1.2 77.1± 0.9 81.6± 0.7 83.5± 0.6 85.6± 1.9 87± 0.2
Snow 76.6± 1.1 82.4± 0.6 83.8± 1.1 86.4± 0.6 87.8± 0.7 88.4± 1.7 89.7± 0.5
Spatter 75± 0.8 83.3± 0.5 85.5± 0.3 88± 0.2 88.5± 0.3 91± 2.4 92.6± 0.5
Speckle nse 40.7± 3.7 70.4± 0.8 76.1± 1.2 81.3± 1 83.2± 0.9 85.8± 1.7 87.4± 0.4
Zoom blr 60.5± 5.1 88.1± 0.3 89± 0.4 90.6± 0.2 91.3± 0.3 91.2± 0.7 91.6± 0.2

Avg. 57.8± 0.7 80.4± 0.1 82.5± 0.3 85.4± 0.2 86.6± 0.3 87.2± 0.7 89.4± 0.2

Table 20: CIFAR--C ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM TENT FR BUFR

Brightness 4.7± 0.2 4± 0.1 8.1± 0.2 7.2± 0.4 6.4± 0.3 5.9± 0.3 6.2± 0.2
Contrast 43.5± 2.8 5.7± 0.4 13.2± 3.1 9.8± 0.9 8.4± 1.6 6.6± 0.4 6.6± 0.7
Defocus blr 28.2± 4 6.1± 0.4 10.7± 0.5 9.4± 0.4 8.6± 0.5 7.8± 0.3 7.9± 0.4
Elastic 12.4± 0.7 12.6± 0.4 20.8± 0.8 18.6± 0.5 16.5± 0.5 15.1± 0.5 15.2± 0.3
Fog 17.4± 2.1 7.5± 0.7 13.5± 0.8 11.3± 0.3 10.1± 0.4 8.9± 0.3 8± 0.5
Frost 22.7± 1.7 10.4± 0.6 17.5± 1.2 14.6± 0.6 12.7± 0.6 10.7± 0.8 10.3± 0.9
Gauss. blr 40.7± 6.2 6.1± 0.4 11± 0.7 9.5± 0.4 8.5± 0.5 7.5± 0.4 7.3± 0.4
Gauss. nse 57.6± 6.7 18.5± 0.7 25.3± 0.6 20.9± 0.9 18± 0.4 15.9± 0.3 13.3± 0.4
Glass blr 31.2± 1.3 20.8± 0.4 30.9± 0.3 26.3± 1 24.2± 0.8 20.9± 0.7 18.9± 0.5
Impulse nse 51.2± 4 23.3± 0.8 32.7± 0.5 26.8± 0.9 23.7± 0.8 20.6± 0.5 10.2± 1.3
Jpeg compr. 14.6± 0.8 15.5± 0.7 22.6± 0.6 18.9± 0.4 16.4± 0.5 14.5± 0.4 13.6± 0.7
Motion blr 21.1± 1.3 6.8± 0.3 12.1± 0.2 10.9± 0.2 9.5± 0.3 8.7± 0.3 8.6± 0.2
Pixelate 36.9± 2.5 11.1± 0.4 17.9± 0.4 14.5± 0.7 11.9± 0.9 10.7± 0.7 9.5± 0.6
Saturate 5.5± 0.3 4.2± 0.1 7.4± 0.3 6.9± 0.1 6.4± 0.1 5.9± 0.2 6± 0.3
Shot nse 50.2± 5.9 17± 0.9 22.8± 0.9 18.4± 0.7 15.9± 0.6 14± 0.3 12.3± 0.2
Snow 14.3± 0.5 9.8± 0.4 16.1± 1.1 13.6± 0.6 11.6± 0.7 10.5± 0.7 9.7± 0.4
Spatter 16.9± 0.8 9.3± 0.3 14.5± 0.3 12± 0.2 11± 0.2 9.3± 0.2 7± 0.6
Speckle nse 43.2± 4.5 17.9± 0.5 23.8± 1.1 18.7± 1 16.1± 0.9 13.9± 0.7 11.9± 0.4
Zoom blr 24.4± 3.5 6.2± 0.1 11± 0.4 9.4± 0.2 8.3± 0.3 7.6± 0.5 7.9± 0.2

Avg. 28.2± 0.4 11.2± 0.1 17.5± 0.3 14.6± 0.2 12.8± 0.3 11.3± 0.3 10± 0.2
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K.7 CIFAR--C FULL RESULTS

Tables 21 and 22 show the accuracy and ECE results for each individual corruption of CIFAR--C.
It is worth noting that BUFR achieves the biggest wins on the more severe shifts, i.e. those on which
AdaBN (Li et al., 2017) performs poorly.

Table 21: CIFAR--C accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM TENT FR BUFR

Brightness 63.2± 1.1 66.1± 0.5 69.6± 0.7 72.6± 0.6 72.2± 0.5 71.8± 0.5 73.6± 0.2
Contrast 13.9± 0.6 61.4± 0.4 59.2± 3.5 70.1± 0.4 64± 3.1 68± 0.5 72.2± 0.5
Defocus blr 35.9± 0.7 65.6± 0.1 69.3± 0.1 71.8± 0.3 71± 0.5 71.2± 0.1 72.2± 0.2
Elastic 58.5± 0.7 60.4± 0.2 63.9± 0.4 66.9± 0.2 65.5± 0.2 65.9± 0.4 67.1± 0.5
Fog 36.9± 0.5 55.4± 0.6 60.4± 0.6 66.5± 0.6 67.1± 0.6 64.9± 0.4 70.1± 0.5
Frost 41.1± 0.9 55.3± 0.6 60.1± 0.8 65.2± 0.4 65.3± 0.9 63± 0.5 67.5± 0.7
Gauss. blr 28.2± 1 64.3± 0.3 68.9± 0.1 71.7± 0.2 71± 0.3 70.9± 0.3 72.9± 0.6
Gauss. nse 11.9± 1.2 43.8± 0.6 53.1± 0.7 60.3± 0.4 59.5± 0.6 57.7± 0.4 63± 0.3
Glass blr 45.1± 0.9 53.3± 0.6 57.3± 0.7 62.4± 0.3 61.4± 0.5 60.5± 0.3 63.2± 0.4
Impulse nse 7.2± 0.8 40.8± 0.4 50.6± 0.5 58.4± 0.6 56.3± 0.7 55.2± 0.9 66.9± 0.6
Jpeg compr. 48.6± 0.9 49.8± 0.7 55.8± 0.3 61.2± 0.5 60.8± 0.1 59.3± 0.5 62.6± 0.4
Motion blr 45.1± 0.5 63.4± 0.2 66.3± 0.6 69.7± 0.2 69± 0.5 68.6± 0.4 70.8± 0.2
Pixelate 22.3± 0.4 59.4± 0.6 64.9± 0.6 69.7± 0.4 69.8± 0.4 68.1± 0.3 71.4± 0.5
Saturate 55.8± 0.4 65.7± 0.4 70.2± 0.8 72.6± 0.2 71.4± 0.7 72.2± 0.5 72.4± 0.6
Shot nse 14.1± 1.2 44.6± 0.9 56.1± 0.8 61.9± 0.6 60.3± 0.4 59.8± 0.3 62.1± 2.8
Snow 49.4± 0.8 53.5± 0.4 59.8± 0.9 65± 0.6 65.6± 0.4 63.8± 0.6 65.9± 2.2
Spatter 54.8± 1.1 64.9± 0.6 72.1± 0.3 73.8± 0.4 72.9± 0.5 73.8± 0.5 74.3± 0.2
Speckle nse 15.6± 1.3 42.3± 1 54.2± 1.5 62.1± 0.6 59.8± 0.3 59.6± 0.8 62.1± 2.7
Zoom blr 45.1± 0.7 65.9± 0.3 69.1± 0.5 71.9± 0.3 71.1± 0.8 71± 0.6 71.2± 0.4

Avg. 36.4± 0.5 56.6± 0.3 62.1± 0.2 67± 0.2 66± 0.4 65.5± 0.2 68.5± 0.2

Table 22: CIFAR--C ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM TENT FR BUFR

Brightness 6.3± 0.3 9.4± 0.3 30.2± 0.7 27.4± 0.4 20.7± 0.4 12.4± 0.3 12± 0.6
Contrast 37.8± 2.2 11.4± 0.3 40.5± 3.4 29.6± 0.8 29.5± 3.5 14± 0.2 12.8± 0.5
Defocus blr 16± 0.8 9.7± 0.3 30.6± 0.2 28.2± 0.4 21.6± 0.3 13.4± 0.3 12.7± 0.2
Elastic 8± 0.1 10.8± 0.2 35.9± 0.4 33± 0.3 25.8± 0.1 15.2± 0.2 15.3± 0.3
Fog 21± 0.6 12.2± 0.3 39.5± 0.6 33.3± 0.7 24.8± 0.5 15.9± 0.3 14± 0.6
Frost 14.1± 1.1 13.3± 0.4 39.7± 0.8 34.8± 0.4 26.1± 0.7 16.3± 0.3 15.3± 0.2
Gauss. blr 20.5± 1.4 10± 0.4 31± 0.1 28.4± 0.2 21.7± 0.2 13.5± 0.2 12.5± 0.3
Gauss. nse 39.3± 5.5 16.7± 0.2 46.8± 0.6 39.8± 0.5 30.8± 0.7 19.4± 0.5 17.5± 0.5
Glass blr 15.7± 1.1 13.4± 0.1 42.5± 0.7 37.6± 0.3 29.1± 0.4 17.9± 0.4 17.6± 0.6
Impulse nse 35.1± 2.6 17.4± 0.2 49.3± 0.6 41.5± 0.7 33.7± 0.8 20.5± 0.3 15.2± 0.2
Jpeg compr. 8.6± 0.2 15± 0.4 44.1± 0.4 38.8± 0.5 29.6± 0.2 19.1± 0.2 18.2± 0.5
Motion blr 12.2± 0.2 10.4± 0.3 33.6± 0.6 30.3± 0.2 23.2± 0.4 14.3± 0.3 13.6± 0.3
Pixelate 27.5± 1 11.6± 0.4 35± 0.6 30.3± 0.4 22.5± 0.3 14.2± 0.4 13.6± 0.4
Saturate 8.8± 0.2 9.5± 0.3 29.6± 0.8 27.4± 0.3 21.2± 0.6 12.7± 0.2 12.3± 0.7
Shot nse 37.2± 5.9 16± 0.2 43.7± 0.8 38.1± 0.5 30.2± 0.8 18.6± 0.4 17± 0.6
Snow 8.5± 0.3 14.4± 0.2 40.1± 0.9 34.9± 0.7 25.7± 0.5 17± 0.5 14.9± 0.1
Spatter 6.7± 0.3 9.3± 0.1 27.8± 0.3 26.2± 0.4 20± 0.6 12± 0.3 11± 0.4
Speckle nse 34.5± 5.4 17.2± 0.3 45.7± 1.6 37.9± 0.6 30.6± 0.2 18.7± 0.6 16.8± 0.8
Zoom blr 10.5± 0.3 9.1± 0.2 30.8± 0.5 28.2± 0.4 21.5± 0.7 13.1± 0.5 13.2± 0.7

Avg. 19.4± 0.9 12.5± 0.1 37.7± 0.2 32.9± 0.2 25.7± 0.4 15.7± 0.1 14.5± 0.3
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K.8 CIFAR--C FULL ONLINE RESULTS

Tables 23 and 24 show the accuracy and ECE results for each individual corruption of CIFAR--C
when adapting in an online fashion (see Appendix K.2). It is worth noting that FR achieves the
biggest wins on the more severe shifts, i.e. those on which AdaBN (Li et al., 2017) performs poorly.

Table 23: CIFAR--C online accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN SHOT-IM TENT FR

Brightness 91.4± 0.4 91.6± 0.2 92.2± 0.4 91.8± 0.3 92.8± 0.3
Contrast 32.3± 1.3 87.1± 0.4 87.8± 0.5 87.8± 0.6 89.8± 0.6
Defocus blr 53.1± 6.4 88.7± 0.5 89.7± 0.5 89.1± 0.5 90.6± 0.5
Elastic 77.6± 0.6 78± 0.3 80.3± 0.6 79.2± 0.5 82± 0.4
Fog 72.9± 2.6 85.9± 1.1 87.2± 0.5 86.5± 0.8 89± 0.8
Frost 64.4± 2.4 80.7± 0.8 83± 0.8 81.8± 0.8 85.9± 0.7
Gauss. blr 35.9± 8 88.3± 0.7 89.5± 0.6 88.8± 0.5 90.8± 0.6
Gauss. nse 27.7± 5.1 68.8± 0.9 75.4± 0.8 72.3± 0.7 80.6± 0.6
Glass blr 51.3± 1.8 66.7± 0.5 70.6± 1 68.3± 0.6 74.7± 0.9
Impulse nse 25.9± 3.8 62± 1.2 68.8± 0.8 65.5± 0.7 74.5± 0.4
Jpeg compr. 74.9± 1 73.9± 1.2 78.4± 0.9 76.2± 0.9 82.2± 0.5
Motion blr 66.1± 1.7 87± 0.1 88.2± 0.3 87.6± 0.3 89.5± 0.2
Pixelate 48.2± 2.2 80.5± 0.4 83.2± 0.7 81.7± 0.5 86.7± 0.7
Saturate 89.9± 0.4 91.9± 0.1 92.4± 0.1 92.3± 0.2 92.8± 0.2
Shot nse 34.4± 4.9 70.9± 1.2 77.7± 1.6 74.6± 1.3 82.2± 0.6
Snow 76.6± 1.1 82.6± 0.7 84.5± 0.9 83.4± 0.9 86.8± 0.6
Spatter 75± 0.8 83.2± 0.5 86± 0.2 84.6± 0.2 88.6± 0.2
Speckle nse 40.7± 3.7 70.2± 0.7 77.2± 0.6 74.2± 0.6 82.4± 0.2
Zoom blr 60.5± 5.1 88± 0.4 89.4± 0.2 88.6± 0.3 90.7± 0.2

Avg. 57.8± 0.7 80.3± 0 83.2± 0.2 81.8± 0.2 85.9± 0.3

Table 24: CIFAR--C online ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN SHOT-IM TENT FR

Brightness 4.7± 0.2 5.4± 0.2 5.1± 0.3 5.1± 0.2 4.9± 0.3
Contrast 43.5± 2.8 6.8± 0.4 8.7± 0.5 7.6± 0.5 6.1± 0.4
Defocus blr 28.2± 4 7.1± 0.4 6.7± 0.3 7± 0.3 6.4± 0.3
Elastic 12.4± 0.7 13.5± 0.3 12.7± 0.4 12.9± 0.5 12.3± 0.4
Fog 17.4± 2.1 8.4± 0.6 8.3± 0.3 8.3± 0.4 7.3± 0.5
Frost 22.7± 1.7 11.2± 0.7 10.9± 0.5 11± 0.5 9± 0.6
Gauss. blr 40.7± 6.2 7.3± 0.4 6.8± 0.4 7± 0.3 6.3± 0.4
Gauss. nse 57.6± 6.7 19.2± 0.7 16± 0.6 17.6± 0.4 13.2± 0.6
Glass blr 31.2± 1.3 21.4± 0.6 19.6± 0.7 20.7± 0.5 17.9± 0.7
Impulse nse 51.2± 4 23.8± 0.9 20.6± 0.8 22.2± 0.4 17.9± 0.4
Jpeg compr. 14.6± 0.8 16.3± 0.9 14± 0.5 15.1± 0.6 12.2± 0.4
Motion blr 21.1± 1.3 7.8± 0.1 7.6± 0.3 7.7± 0.2 7± 0.2
Pixelate 36.9± 2.5 12± 0.4 10.8± 0.6 11.5± 0.5 8.9± 0.5
Saturate 5.5± 0.3 5.1± 0.1 5± 0.1 5.1± 0.1 4.9± 0.2
Shot nse 50.2± 5.9 17.9± 0.9 14.3± 1.1 16± 0.8 12± 0.5
Snow 14.3± 0.5 10.7± 0.3 9.9± 0.6 10.4± 0.6 8.9± 0.5
Spatter 16.9± 0.8 10.2± 0.4 9.1± 0.2 9.6± 0.2 7.6± 0.2
Speckle nse 43.2± 4.5 18.8± 0.5 14.8± 0.5 16.3± 0.5 11.9± 0.2
Zoom blr 24.4± 3.5 7.3± 0.3 6.8± 0.2 7.1± 0.2 6.3± 0.1

Avg. 28.2± 0.4 12.1± 0 10.9± 0.1 11.5± 0.1 9.5± 0.2
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K.9 CIFAR--C FULL ONLINE RESULTS

Tables 25 and 26 show the accuracy and ECE results for each individual corruption of CIFAR--C
when adapting in an online fashion (see Appendix K.2). It is worth noting that FR achieves the
biggest wins on the more severe shifts, i.e. those on which AdaBN (Li et al., 2017) performs poorly.

Table 25: CIFAR--C online accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN SHOT-IM TENT FR

Brightness 63.2± 1.1 66.1± 0.4 69.3± 0.9 69.9± 0.7 69.4± 0.4
Contrast 13.9± 0.6 61.4± 0.5 64.8± 0.5 66.6± 1.1 64.5± 0.3
Defocus blr 35.9± 0.7 65.6± 0.1 69± 0.1 69.4± 0.3 68.6± 0.2
Elastic 58.5± 0.7 60.4± 0.2 63.3± 0.5 63.7± 0.1 63.4± 0.3
Fog 36.9± 0.5 55.4± 0.6 61± 0.5 62.5± 0.7 61.7± 0.5
Frost 41.1± 0.9 55.3± 0.6 60.5± 1 61.8± 0.6 60.8± 0.8
Gauss. blr 28.2± 1 64.3± 0.3 68.6± 0.2 69± 0.6 68.4± 0.5
Gauss. nse 11.9± 1.2 43.8± 0.6 53.5± 0.2 55.1± 0.5 54.7± 0.3
Glass blr 45.1± 0.9 53.3± 0.6 57.8± 0.4 58.2± 0.5 57.9± 0.5
Impulse nse 7.2± 0.8 40.8± 0.5 50.2± 0.4 50.9± 0.7 51.7± 0.8
Jpeg compr. 48.6± 0.9 49.8± 0.7 56± 0.2 57.2± 0.2 56.6± 0.6
Motion blr 45.1± 0.5 63.4± 0.2 66.4± 0.4 66.7± 0.6 66± 0.3
Pixelate 22.3± 0.4 59.4± 0.6 65.1± 0.7 67.1± 0.4 65.6± 0.6
Saturate 55.8± 0.4 65.7± 0.4 69.5± 0.6 69.5± 0.6 69.3± 0.4
Shot nse 14.1± 1.2 44.6± 0.9 54.9± 0.1 55.5± 0.4 56.4± 0.3
Snow 49.4± 0.8 53.5± 0.4 59.7± 1.1 61.6± 0.8 60.5± 0.5
Spatter 54.8± 1.1 64.9± 0.6 71.3± 0.5 70.6± 0.6 71.6± 0.7
Speckle nse 15.6± 1.3 42.3± 1 54.2± 0.3 54.9± 0.3 55.8± 0.6
Zoom blr 45.1± 0.7 65.9± 0.3 68.9± 0.6 69± 0.4 68.8± 0.3

Avg. 36.4± 0.5 56.6± 0.3 62.3± 0.3 63.1± 0.3 62.7± 0.3

Table 26: CIFAR--C online ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN SHOT-IM TENT FR

Brightness 6.3± 0.3 11.4± 0.1 11.6± 0.4 11.9± 0.2 10.9± 0.2
Contrast 37.8± 2.2 12.5± 0.2 14.6± 0.3 14.1± 0.6 12.5± 0.2
Defocus blr 16± 0.8 11.4± 0.2 11.3± 0.2 11.8± 0.2 11.4± 0.3
Elastic 8± 0.1 12.7± 0.2 12.9± 0.2 13.4± 0.3 13± 0.2
Fog 21± 0.6 13.8± 0.2 13.9± 0.2 14.4± 0.2 13.6± 0.3
Frost 14.1± 1.1 14.5± 0.2 14.5± 0.6 14.8± 0.3 13.9± 0.4
Gauss. blr 20.5± 1.4 11.9± 0.3 11.6± 0.4 11.9± 0.2 11.9± 0.4
Gauss. nse 39.3± 5.5 17.7± 0.3 16.7± 0.3 17.2± 0.7 16.5± 0.3
Glass blr 15.7± 1.1 15± 0.1 15.2± 0.5 16.1± 0.3 15.1± 0.1
Impulse nse 35.1± 2.6 18.4± 0.2 18.1± 0.2 19.4± 0.5 17.9± 0.3
Jpeg compr. 8.6± 0.2 16.2± 0.3 15.9± 0.1 16.4± 0.4 16.2± 0.2
Motion blr 12.2± 0.2 12.2± 0.2 12.2± 0.3 12.9± 0.2 12.5± 0.2
Pixelate 27.5± 1 13± 0.3 12.5± 0.3 12.4± 0.1 12.3± 0.2
Saturate 8.8± 0.2 11.4± 0.1 11.3± 0.3 11.7± 0.4 11.3± 0.4
Shot nse 37.2± 5.9 17.2± 0.3 16.4± 0.2 17.5± 0.7 16.2± 0.3
Snow 8.5± 0.3 15.6± 0.2 15± 0.4 14.7± 0.3 14.8± 0.1
Spatter 6.7± 0.3 11.4± 0.2 10.7± 0.2 11.3± 0.3 10.7± 0.3
Speckle nse 34.5± 5.4 18.2± 0.4 16.5± 0.4 17.5± 0.3 16.1± 0.4
Zoom blr 10.5± 0.3 11.2± 0.2 11.2± 0.3 11.6± 0.3 11.4± 0.1

Avg. 19.4± 0.9 14± 0.1 13.8± 0.1 14.3± 0.1 13.6± 0.1
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L NOTATIONS

Table 27 summarizes the notations used in the paper.

Table 27: Notations.

Symbol Description
D

is
tr

ib
ut

io
ns

pz Source feature distribution
qz Target feature distribution
pzd Source d-th marginal feature distribution
qzd Target d-th marginal feature distribution
πs
z Source approx. marginal feature distributions
πt
z Target approx. marginal feature distributions

πs
zd Source d-th approx. marginal feature distribution
πt
zd Target d-th approx. marginal feature distribution
πs
a Source approx. marginal logit distributions
πt
a Target approx. marginal logit distributions

πs
ak

Source k-th approx. marginal logit distribution
πt
ak

Target k-th approx. marginal logit distribution

Se
ts

Ds Labelled source dataset
Dt Unlabelled target dataset
Xs Input-set of the source domain
Xt Input-set of the target domain
Ys Label-set of the target domain
Yt Label-set of the target domain

N
et

w
or

k fs Source model, fs = h(gs(·))
ft Target model, ft = h(gt(·))
gs Source feature-extractor
gt Target feature-extractor
h Classifier (or regressor)

O
th

er

u Soft-binning function
zmin
d Minimum value of feature d (on the source data)
zmax
d Maximum value of feature d (on the source data)
τ Temperature parameter for soft binning
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A Causality

A.1 Definitions and example

As in previous causal works on DG [9, 41, 53–55], our causality results assume all domains share
the same underlying structural causal model (SCM) [56], with different domains corresponding to
different interventions. For example, the different camera-trap deployments depicted in Fig. 1a may
induce changes in (or interventions on) equipment, lighting, and animal-species prevalence rates.

Definition A.1. An SCM5 M = (S , PN) consists of a collection of d structural assignments

S = {Xj ← gj(Pa(Xj), Nj)}d
j=1, (A.1)

where Pa(Xj) ⊆ {X1, . . . , Xd} \ {Xj} are the parents or direct causes of Xj, and PN = ∏d
j=1 PNj ,

a joint distribution over the (jointly) independent noise variables N1, . . . , Nd. An SCMM induces
a (“causal”) graph G which is obtained by creating a node for each Xj and then drawing a directed
edge from each parent in Pa(Xj) to Xj. We assume this graph to be acyclic.

We can draw samples from the observational distribution PM(X) by first sampling a noise vector
n ∼ PN , and then using the structural assignments to generate a data point x ∼ PM(X), recursively
computing the value of every node Xj whose parents’ values are known. We can also manipulate or
intervene upon the structural assignments ofM to obtain a related SCMMe.

Definition A.2. An intervention e is a modification to one or more of the structural assignments ofM,
resulting in a new SCMMe = (S e, Pe

N) and (potentially) new graph Ge, with structural assignments

S e = {Xe
j ← ge

j (Pae(Xe
j ), Ne

j )}d
j=1. (A.2)

We can draw samples from the intervention distribution PMe(Xe) in a similar manner to before, now
using the modified structural assignments. We can connect these ideas to DG by noting that each
intervention e creates a new domain or environment e with interventional distribution P(Xe, Ye).
Example A.3. Consider the following linear SCM, with Nj ∼ N (0, σ2

j ):

X1 ← N1, Y ← X1 + NY, X2 ← Y + N2.

Here, interventions could replace the structural assignment of X1 with Xe
1 ← 10 and change the noise

variance of X2, resulting in a set of training environments Etr = {fix X1 to 10, replace σ2 with 10}.

A.2 EQRM recovers the causal predictor

Overview. We now prove that EQRM recovers the causal predictor in two stages. First, we prove the
formal versions of Prop. 4.3, i.e. that EQRM learns a minimal invariant-risk predictor as α→ 1 when
using the following estimators of T f : (i) a Gaussian estimator (Prop. A.4 of Appendix A.2.1); and (ii)
kernel-density estimators with certain bandwidth-selection methods (Prop. A.5 of Appendix A.2.2).
Second, we prove Thm. 4.4, i.e. that learning a minimal invariant-risk predictor is sufficient to recover
the causal predictor under weaker assumptions than those of Peters et al. [54, Thm 2] and Krueger
et al. [41, Thm 1] (Appendix A.2.3). Throughout this section, we consider the “population” setting
within each domain (i.e., n → ∞); in general, with only finitely-many observations from each
domain, only approximate versions of these results are possible.

Notation. Given m training risks {Re1( f ), . . . ,Rem( f )} corresponding to the risks of a fixed
predictor f on m training domains, let

µ̂ f =
1
m

m

∑
i=1
Rei ( f )

denote the sample mean and

σ̂2
f =

1
m− 1

m

∑
i=1

(Rei ( f )− µ̂ f )
2

the sample variance of the risks of f .
5A Non-parametric Structural Equation Model with Independent Errors (NP-SEM-IE) to be precise.
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A.2.1 Gaussian estimator

When using a Gaussian estimator for T̂ f , we can rewrite the EQRM objective of (4.1) in terms of the
standard-Normal inverse CDF Φ−1 as

f̂α := arg min
f∈F

µ̂ f + Φ−1(α) · σ̂f . (A.3)

Informally, we see that α→1 =⇒ Φ−1(α)→∞ =⇒ σ̂f→0. More formally, we now show that,
as α→ 1, minimizing (A.3) leads to a predictor with minimal invariant-risk:

Proposition A.4 (Gaussian QRM learns a minimal invariant-risk predictor as α→ 1). Assume

1. F contains an invariant-risk predictor f0 ∈ F with finite mean risk (i.e., σ̂f0 = 0 and µ̂ f0 < ∞),
and

2. there are no arbitrarily negative mean risks (i.e., µ∗ := inf f∈F µ f > −∞).

Then, for the Gaussian QRM predictor f̂α given in Eq. (A.3),

lim
α→1

σ̂ f̂α
= 0 and lim sup

α→1
µ̂ f̂α
≤ µ̂ f0 .

Prop. A.4 essentially states that, if an invariant-risk predictor exists, then Gaussian EQRM equalizes
risks across the m domains, to a value at most the risk of the invariant-risk predictor. As we
discuss in Appendix A.2.3, an invariant-risk predictor f0 (Assumption 1. of Prop. A.4 above)
exists under the assumption that the mechanism generating the labels Y does not change between
domains and is contained in the hypothesis class F , together with a homoscedasticity assumption (see
Appendix G.1.2). Meanwhile, Assumption 2. of Prop. A.4 above is quite mild and holds automatically
for most loss functions used in supervised learning (e.g., squared loss, cross-entropy, hinge loss, etc.).
We now prove Prop. A.4.

Proof. By definitions of f̂α and f0,

µ̂ f̂α
+ Φ−1(α) · σ̂ f̂α

≤ µ̂ f0 + Φ−1(α) · σ̂f0 = µ̂ f0 . (A.4)

Since for α ≥ 0.5 we have that Φ−1(α)σ̂ f̂α
≥ 0, it follows that µ̂ f̂α

≤ µ̂ f0 . Moreover, rearranging
and using the definition of µ∗, we obtain

σ̂ f̂α
≤

µ̂ f0 − µ̂ f̂α

Φ−1(α)
≤

µ̂ f0 − µ∗
Φ−1(α)

→ 0 as α→ 1.

Connection to VREx. For the special case of using a Gaussian estimator for T̂ f , we can equate the
EQRM objective of (A.3) with theRVREx objective of [41, Eq. 8]. To do so, we rewriteRVREx in
terms of the sample mean and variance:

arg min
f∈F

RVREx( f ) = arg min
f∈F

m · µ̂ f + β · σ̂2
f . (A.5)

Note that as β→ ∞,RVREx learns a minimal invariant-risk predictor under the same assumptions,
and by the same argument, as Prop. A.4. Dividing this objective by the positive constant m > 0, we
can rewrite it in a form that allows a direct comparison of our α parameter and this β parameter:

arg min
f∈F

µ̂ f +

(
β · σ̂f

m

)
· σ̂f . (A.6)

Comparing (A.6) and (A.3), we note the relation β = m ·Φ−1(α)/σ̂f for a fixed f . For different f s,
a particular setting of our parameter α corresponds to different settings of Krueger et al.’s β parameter,
depending on the sample standard deviation over training risks σ̂f .
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A.2.2 Kernel density estimator

We now consider the case of using a kernel density estimate, in particular,

F̂KDE, f (x) =
1
m

m

∑
i=1

Φ

(
x− Rei ( f )

h f

)
(A.7)

to estimate the cumulative risk distribution.

Proposition A.5 (Kernel EQRM learns a minimal risk-invariant predictor as α→ 1). Let

f̂α := arg min
f∈F

F̂−1
KDE, f (α),

be the kernel EQRM predictor, where F̂−1
KDE, f denotes the quantile function computed from the kernel

density estimate over (empirical) risks of f with a standard Gaussian kernel. Suppose we use a
data-dependent bandwidth h f such that h f → 0 implies σ̂f → 0 (e.g., the “Gaussian-optimal” rule
h f = (4/3m)0.2 · σ̂f [65]). As in Proposition A.4, suppose also that

1. F contains an invariant-risk predictor f0 ∈ F with finite training risks (i.e., σ̂f0 = 0 and each
Rei ( f0) < ∞), and

2. there are no arbitrarily negative training risks (i.e., R∗ := inf f∈F ,i∈[m] Rei ( f ) > −∞).

For any f ∈ F , let R∗f := mini∈[m] Rei ( f ) denote the smallest of the (empirical) risks of f across
domains. Then,

lim
α→1

σ̂ f̂α
= 0 and lim sup

α→1
R∗f̂α
≤ R∗f0

.

As in Prop. A.4, Assumption 1 depends on invariance of the label-generating mechanism across
domains (as discussed further in Appendix A.2.3 below), while Assumption 2 automatically holds for
most loss functions used in supervised learning. We now prove Prop. A.5.

Proof. By our assumption on the choice of bandwidth, it suffices to show that, as α→ 1, h f̂α
→ 0.

Let Φ denote the standard Gaussian CDF. Since Φ is non-decreasing, for all x ∈ R,

F̂KDE, f̂α
(x) =

1
m

m

∑
i=1

Φ

(
x− Rei ( f̂α)

h f̂α

)
≤ Φ

( x− R∗
f̂α

h f̂α

)
.

In particular, for x = F̂−1
KDE, f̂α

(α), we have

α = F̂KDE, f̂α
(F̂−1

KDE, f̂α
(α)) ≤ Φ




F̂−1
KDE, f̂α

(α)− R∗f
h f̂α


 .

Inverting Φ and rearranging gives

R∗f + h f̂α
·Φ−1(α) ≤ F̂−1

KDE, f̂α
(α).

Hence, by definitions of f̂α and f0,

R∗f + h f̂α
·Φ−1(α) ≤ F̂−1

KDE, f̂α
(α) ≤ F̂−1

KDE, f0
(α) = R∗f0

. (A.8)

Since, for α ≥ 0.5 we have that h f̂α
·Φ−1(α) ≥ 0, it follows that R∗

f̂α
≤ R∗f0

. Moreover, rearranging
Inequality (A.8) and using the definition of R∗, we obtain

h f̂α
≤

R∗f0
− R∗

f̂α

Φ−1(α)
≤

R∗f0
− R∗

Φ−1(α)
→ 0

as α→ 1.
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A.2.3 Causal recovery

We now discuss and prove our main result, Thm. 4.4, regarding the conditions under which the causal
predictor is the only minimal invariant-risk predictor. Together with Props. A.4 and A.5, this provides
the conditions under which EQRM successfully performs “causal recovery”, i.e., correctly recovers
the true causal coefficients in a linear causal model of the data. As discussed in Appendix G.1.2,
EQRM recovers the causal predictor by seeking invariant risks across domains, which differs from
seeking invariant functions or coefficients (as in IRM [9]). As we discuss below, Thm. 4.4 generalizes
related results in the literature regarding causal recovery based on invariant risks [41, 54].

Assumption (v). In contrast to both Peters et al. [54] and Krueger et al. [41], we do not require specific
types of interventions on the covariates. In particular, our main assumption on the distributions of
the covariates across domains, namely that the system of d-variate quadratic equations in (4.3) has a
unique solution, is more general than these comparable results. For example, whereas both Peters
et al. [54] and Krueger et al. [41] require one or more separate interventions for every covariate Xj,
Example 4 below shows that we only require interventions on the subset of covariates that are effects
of Y, while weaker conditions suffice for other covariates. Although this generality comes at the
cost of abstraction, we now provide some concrete examples with different types of interventions
to aid understanding. Note that, to simplify calculations and provide a more intuitive form, (4.3) of
Thm. 4.4 assumes, without loss of generality, that all covariates are standardized to have mean 0 and
variance 1, except where interventions change these. We can, however, rewrite (4.3) of Thm. 4.4 in a
slightly more general form which does not require this assumption of standardized covariates:

0 ≥x⊺EX∼e1 [XX⊺]x + 2x⊺EN,X∼e1 [NX]

= · · ·
=x⊺EX∼em [XX⊺]x + 2x⊺EN,X∼em [NX] . (A.9)

We now present a number of concrete examples or special cases in which Assumption (v) of Thm. 4.4
would be satisfied, using this slightly more general form. In each example, we assume that variables
are generated according to an SCM with an acyclic causal graph, as described in Appendix A.1.

1. No effects of Y. In the case that there are no effects of Y (i.e., no Xj is a causal descendant of Y,
and hence each Xj is uncorrelated with N), it suffices for there to exists at least one environment ei
in which the covariance CovX∼e[X] has full rank. These are standard conditions for identifiability
in linear regression. More generally, it suffices for ∑m

i=1 CovX∼ei [X] to have full rank; this is the
same condition one would require if simply performing linear regression on the pooled data from
all m environments. Intuitively, this full-rank condition guarantees that the observed covariate
values are sufficiently uncorrelated to distinguish the effect of each covariate on the response Y.
However, it does not necessitate interventions on the covariates, which are necessary to identify
the direction of causation in a linear model; hence, this full-rank condition fails to imply causal
recovery in the presence of effects of Y. See Appendix G.1.2 for a concrete example of this failure.

2. Hard interventions. For each covariate Xj, compared to some baseline environment e0, there is
some environment eXj arising from a hard single-node intervention do(Xj = z), with z ̸= 0. If
Xj is any leaf node in the causal DAG, then in eXj , Xj is uncorrelated with N and with each Xk
(k ̸= j), so the inequality in (A.9) gives

0 ≥ x⊺EX∼eXj
[XX⊺]x = x2

j z2 + x⊺−jEX∼e0 [XX⊺]x−j.

Since the matrix EX∼e[XX⊺] is positive semidefinite (and z ̸= 0 implies z2 > 0), it follows that
xj = 0. The terms in (A.9) containing xj thus vanish, and iterating this argument for parents
of leaf nodes in the causal DAG, and so on, gives x = 0. This condition is equivalent to that
in Theorem 2(a) of Peters et al. [54] and is a strict improvement over Corollary 2 of Yin et al.
[66] and Theorem 1 of Krueger et al. [41], which respectively require two and three distinct hard
interventions on each variable.

3. Shift interventions. For each covariate Xj, compared to some baseline environment e0, there is
some environment eXj consisting of the shift intervention Xj ← gj(Pa(Xj), Nj) + z, for some
z ̸= 0. Recalling that we assumed each covariate was centered (i.e., EX∼e0 [Xk] = 0) in e0, if
Xj is any leaf node in the causal DAG, then every other covariate remains centered in eXj (i.e.,
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EX∼eXj
[Xk] = 0 for each k ̸= j). Hence, the excess risk is

x⊺EX∼eXj
[XX⊺]x + 2x⊺EN,X∼eXj

[NX] = x2
j z2 + x⊺EX∼e0 [XX⊺]x + 2x⊺EN,X∼e0 [NX] .

Since, by (A.9),

x⊺EX∼e0 [XX⊺]x + 2x⊺EN,X∼e0 [NX] = x⊺EX∼eXj
[XX⊺]x + 2x⊺EN,X∼eXj

[NX] ,

it follows that x2
j z2 = 0, and so, since z ̸= 0, xj = 0. As above, the terms in (A.9) containing xj

thus vanish, and iterating this argument for parents of leaf nodes in the causal DAG, and so on, gives
x = 0. This condition is equivalent to the additive setting of Theorem 2(b) of Peters et al. [54].

4. Noise interventions. Suppose that each covariate is related to its causal parents through an additive
noise model; i.e.,

Xj = gj(Pa(Xj)) + Nj,

where E[Nj] = 0 and 0 < E[N2] < ∞. Theorem 2(b) of Peters et al. [54] considers “noise”
interventions, of the form

Xj ← gj(Pa(Xj)) + σNj,

where σ2 ̸= 1. Suppose that, for each covariate Xj, compared to some baseline environment e0,
there exists an environment eXj consisting of the above noise intervention. If Xj is any leaf node
in the causal DAG, then, since we assumed EX∼e0 [X

2
j ] = 1,

x⊺EX∼eXj
[XX⊺]x + 2x⊺EN,X∼eXj

[NX]

= (σ2 − 1)x2
j E[N2

j ] + x⊺EX∼e0 [XX⊺]x + 2x⊺EN,X∼e0 [NX] .

Hence, the system (A.9) implies 0 = (σ2− 1)x2
j E[N2

j ]. Since σ2 ̸= 1 and E[N2
j ] > 0, it follows

that xj = 0.

5. Scale interventions. For each covariate Xj, compared to some baseline environment e0, there exist
two environments eXj ,i (i ∈ {1, 2}) consisting of scale interventions Xj ← σigj(Pa(Xj), Nj), for
some σi ̸= ±1, with σ1 ̸= σ2. If Xj is any leaf node in the causal DAG, then, since we assumed
EX∼e0 [X

2
j ] = 1,

x⊺EX∼eXj
[XX⊺]x + 2x⊺EN,X∼eXj

[NX]

= (σ2
i − 1)x2

j + 2(σi − 1)xjEX∼e0 [XjX
⊺
−j]x

⊺
−j + x⊺EX∼e0 [XX⊺]x

+ 2(σi − 1)xjEN,X∼e0

[
XjN

]
+ 2x⊺EN,X∼e0 [NX] .

Hence, the system (A.9) implies

0 = (σ2
i − 1)x2

j + 2(σi − 1)xj

(
EX∼e0 [XjX

⊺
−j]x

⊺
−j + EN,X∼e0

[
XjN

])
.

Since σ2
i ̸= 1, if xj ̸= 0, then solving for xj gives

xj = −2
EX∼e0 [XjX

⊺
−j]x

⊺
−j + EN,X∼e0

[
XjN

]

σi + 1
.

Since σ1 ̸= σ2, this is possible only if xj = 0. This provides an example where a single
intervention per covariate would be insufficient to guarantee causal recovery, but two distinct
interventions per covariate suffice.

6. Sufficiently uncorrelated causes and intervened-upon effects. Suppose that, within the true causal
DAG, De(Y) ⊆ [d] indexes the descendants, or effects of Y (e.g., in Figure 5, De(Y) = {5, 6, 7}).
Suppose that for every j ∈ De(Y), compared to a single baseline environment e0, there is
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X1 X8

X2

X3

N

Y

X5

X6 X7

Figure 5: Example causal DAG with various types of covariates. X1 and X3 are the parents of Y,
and so the true causal coefficient β has only two non-zero coordinates β1 and β3. X1, X2, and X3
are ancestors of Y. X5, X6, and X7 are effects, or descendants, of Y and are the only covariates for
which E[XjN] can be nonzero; hence, X5, X6, and X7 are the only covariates on which interventions
are generally necessary.

a environment eXj consisting of either a do(Xj = z) intervention or a shift intervention
Xj ← gj(Pa(Xj), Nj) + z, with z ̸= 0 and that the matrix

m

∑
i=1

CovX∼ei

[
X[d]\De(Y)

]
(A.10)

has full rank. Then, as argued in the previous two cases, for each j ∈ De(Y), xj = 0. Moreover,
for any j ∈ [d]\De(Y), E[XjN] = 0, and so the system of equations (A.9) reduces to

0 ≥ x⊺
[d]\De(Y) EX∼e1

[
X[d]\De(Y)X

⊺
[d]\De(Y)

]
x⊺
[d]\De(Y)

= · · ·
= x⊺

[d]\De(Y) EX∼em

[
X[d]\De(Y)X

⊺
[d]\De(Y)

]
x⊺
[d]\De(Y).

Since each EX∼em

[
X[d]\De(Y)X

⊺
[d]\De(Y)

]
is positive semidefinite, the solution x = 0 to this

reduced system of equations is unique if (and only if) the matrix (A.10) has full rank. This
example demonstrates that interventions are only needed for effect covariates, while a weaker
full-rank condition suffices for the remaining ones. In many practical settings, it may be possible
to determine a priori that a particular covariate Xj is not a descendant of Y; in this case, the
practitioner need not intervene on Xj, as long as sufficiently diverse observational data on Xj
is available. To the best of our knowledge, this does not follow from any existing results in the
literature, such as Theorem 2 of Peters et al. [54] or Corollary 2 of [66].

We conclude this section with the proof of Thm. 4.4:

Proof. Under the linear SEM setting with squared-error loss, for any estimator β̂,

Re(β̂) = EN,X∼e

[(
(β− β̂)⊺X + N

)2
]

= EX∼e

[(
(β− β̂)⊺X

)2
]
+ 2EN,X∼e

[
(β− β̂)⊺NX

]
+ EN

[
N2
]

.

Since the second moment of the noise term EN [N2] is equal to the risk E(X,Y)∼e[(Y−βTX)2] of
the causal predictor β, by the definition of Y = βTX + N, we have that EN [N2] is invariant across
environments. Thus, minimizing the squared error riskRe(β̂) is equivalent to minimizing the excess
risk

EX∼e

[(
(β− β̂)⊺X

)2
]
+ 2EN,X∼e

[
(β− β̂)⊺NX

]

= (β− β̂)⊺EX∼e[XX⊺](β− β̂) + 2(β− β̂)⊺EN,X∼e [NX]
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over estimators β̂. Since the true coefficient β is an invariant-risk predictor with 0 excess risk, if β̂ is
a minimal invariant-risk predictor, it has at most 0 invariant excess risk; i.e.,

0 ≥(β− β̂)⊺EX∼e1 [XX⊺](β− β̂) + 2(β− β̂)⊺EN,X∼e1 [NX]

= · · ·
=(β− β̂)⊺EX∼em [XX⊺](β− β̂) + 2(β− β̂)⊺EN,X∼em [NX] . (A.11)

By Assumption (v), the unique solution to this is β− β̂ = 0; i.e., β̂ = β.

B On the equivalence of different DG formulations

In Section 3, we claimed that under mild conditions, the minimax domain generalization problem
in (2.2) is equivalent to the essential supremum problem in (3.1). In this subsection, we formally
describe the conditions under which these two problems are equivalent. We also highlight several
examples in which the assumptions needed to prove this equivalence hold.

Specifically, this appendix is organized as follows. First, in § B.1 we offer a more formal analysis of
the equivalence between the probable domain general problems in (3.2) and (QRM). Next, in § B.2,
we connect the domain generalization problem in (2.2) to the essential supremum problem in (3.1).

B.1 Connecting formulations for QRM via a push-forward measure

To begin, we consider the abstract measure space (Eall,A, Q), where A is a σ-algebra defined on
the subsets of Eall. Recall that in our setting, the domains e ∈ Eall are assumed to be drawn from the
distribution Q. Given this setting, in § 3 we introduced the probable domain generalization problem
in (3.2), which we rewrite below for convenience:

min
f∈F , t∈R

t subject to Pr
e∼Q
{Re( f ) ≤ t} ≥ α. (B.1)

Our objective is to formally show that this problem is equivalent to (QRM). To do so, for each f ∈ F ,
let consider a second measurable space (R+,B), where R+ denotes the set of non-negative real
numbers and B denotes the Borel σ-algebra over this space. For each f ∈ F , we can now define the
(R+,B)-valued random variable6 G f : Eall → R+ via

G f : e 7→ Re( f ) = EP(Xe ,Ye)[ℓ( f (Xe), Ye)]. (B.2)

Concretely, G f maps an domain e to the corresponding risk Re( f ) of f in that domain. In this
way, G f effectively summarizes e by its effect on our predictor’s risk, thus projecting from the
often-unknown and potentially high-dimensional space of possible distribution shifts or interventions
to the one-dimensional space of observed, real-valued risks. However, note that G f is not necessarily
injective, meaning that two domains e1 and e2 may be mapped to the same risk value under G f .

The utility of defining G f is that it allows us to formally connect (3.2) with (QRM) via a push-forward
measure through G f . That is, given any f ∈ F , we can define the measure7

T f =
d G f # Q (B.3)

where # denotes the push-forward operation and =d denotes equality in distribution. Observe
that the relationship in (B.3) allows us to explicitly connect Q—the often unknown distribution
over (potentially high-dimensional and/or non-Euclidean) domain shifts in Fig. 1b—to T f —the
distribution over real-valued risks in Fig. 1c, from which we can directly observe samples. In this
way, we find that for each f ∈ F ,

Pr
e∼Q
{Re( f ) ≤ t} = Pr

R∼T f
{R ≤ t}. (B.4)

This relationship lays bare the connection between (3.2) and (QRM), in that the domain or environ-
ment distribution Q can be replaced by a distribution over risks T f .

6For brevity, we will assume that G f is always measurable with respect to the underlying σ-algebra A.
7Here T f is defined over the induced measurable space (R+,B).
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B.2 Connecting (2.2) to the essential supremum problem (3.1)

We now study the relationship between (2.2) and (3.1). In particular, in § B.2.1 and § B.2.2, we
consider the distinct settings wherein Eall comprises continuous and discrete spaces respectively.

B.2.1 Continuous domain sets Eall

When Eall is a continuous space, it can be shown that (2.2) and (3.1) are equivalent whenever: (a) the
map G f defined in Section B.1 is continuous; and (b) the measure Q satisfies very mild regularity
conditions.

The case when Q is the Lebesgue measure. Our first result concerns the setting in which Eall is a
subset of Euclidean space and where Q is chosen to be the Lebesgue measure on Eall. We summarize
this result in the following proposition.

Proposition B.1. Let us assume that the map G f is continuous for each f ∈ F . Further, let Q denote
the Lebesgue measure over Eall; that is, we assume that domains are drawn uniformly at random
from Eall. Then (2.2) and (3.1) are equivalent.

Proof. To prove this claim, it suffices to show that under the assumptions in the statement of the
proposition, it holds for any f ∈ F that

sup
e∈Eall

Re( f ) = ess sup
e∼Q

Re( f ). (B.5)

To do so, let us fix an arbitrary f ∈ F and write

A := sup
e∈Eall

Re( f ) and B := ess sup
e∼Q

Re( f ). (B.6)

At a high-level, our approach is to show that B ≤ A, and then that A ≤ B, which together will imply
the result in (B.5). To prove the first inequality, observe that by the definition of the supremum, it
holds that Re( f ) ≤ A ∀e ∈ Eall. Therefore, Q{e ∈ Eall : Re( f ) > A} = 0, which directly implies
that B ≤ A. Now for the second inequality, let ϵ > 0 be arbitrarily chosen. Consider that due to the
continuity of G f , there exists an e0 ∈ Eall such that

Re0( f ) + ϵ > A. (B.7)

Now again due to the continuity of G f , we can choose a ball Bϵ ⊂ Eall centered at e0 such that
|Re( f )− Re0( f )| ≤ ϵ ∀e ∈ Bϵ. Given such a ball, observe that ∀e ∈ Bϵ, it holds that

Re( f ) ≥ Re0( f )− ϵ > A− 2ϵ (B.8)

where the first inequality follows from the reverse triangle inequality and the second inequality follows
from (B.7). Because Q{e ∈ Bϵ : Re( f ) > A− 2ϵ} > 0, it directly follows that A− 2ϵ ≤ B. As
ϵ > 0 was chosen arbitrarily, this inequality holds for any ϵ > 0, and thus we can conclude that
A ≤ B, completing the proof.

Generalizing Prop. B.1 to other measure Q. We note that this proof can be generalized to
measures Q other than the Lebesgue measure. Indeed, the result holds for any measure Q taking
support on Eall for which it holds that Q places non-zero probability mass on any closed subset of Eall.
This would be the case, for instance, if Q was a truncated Gaussian distribution with support on Eall.
Furthermore, if we let L denote the Lebesgue measure on Eall, then another more general instance of
this property occurs whenever L is absolutely continuous with respect to Q, i.e., whenever L≪ Q.

Corollary B.2. Let us assume that Q places nonzero mass on every open ball with radius strictly
larger than zero. Then under the continuity assumptions of Prop. B.1, it holds that (2.2) and (3.1) are
equivalent.

Proof. The proof of this fact follows along the same lines as that of Prop. B.1. In particular, the same
argument shows that B ≤ A. Similarly, to show that A ≤ B, we can use the same argument, noting
that Q{e ∈ Bϵ : Re( f ) > A− 2ϵ} continues to hold, due to our assumption that Q places nonzero
mass on Bϵ.
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Examples. We close this subsection by considering several real-world examples in which the
conditions of Prop. B.1 hold. In particular, we focus on examples in the spirit of “Model-Based
Domain Generalization” [22]. In this setting, it is assumed that the variation from domain to domain
is parameterized by a domain transformation model xe 7→ D(xe, e′) =: xe′ , which maps the
covariates xe from a given domain e ∈ Eall to another domain e′ ∈ Eall. As discussed in [22], domain
transformation models cover settings in which inter-domain variation is due to domain shift [122,
§1.8]. Indeed, under this model (formally captured by Assumptions 4.1 and 4.2 in [22]), the domain
generalization problem in (2.2) can be equivalently rewritten as

min
f∈F

max
e∈Eall

E(X,Y)[ℓ( f (D(X, e)), Y)]. (B.9)

For details, see Prop. 4.3 in [22]. In this problem, (X, Y) denote an underlying pair of random
variables such that

P(Xe) =d D # (P(X), δ(e)) and P(Ye) =d P(Y) (B.10)

for each e ∈ Eall where δ(e) is a Dirac measure placed at e ∈ Eall. Now, turning our attention back to
Prop. B.1, we can show the following result for (B.9).
Remark B.3. Let us assume that the map e 7→ D(·, e) is continuous with respect to a metric
dEall(e, e′) on Eall and that x 7→ ℓ(x, ·) is continuous with respect to the absolute value. Further,
assume that each predictor f ∈ F is continuous in the standard Euclidean metric on Rd. Then (2.2)
and (3.1) are equivalent.

Proof. By Prop. B.1, it suffices to show that the map

G f : e 7→ E(X,Y)[ℓ( f (D(X, e)), Y)] (B.11)

is a continuous function. To do so, recall that the composition of continuous functions is con-
tinuous, and therefore we have, by the assumptions listed in the above remark, that the map
e 7→ ℓ( f (D(x, e)), y) is continuous for each (x, y) ∼ (X, Y). To this end, let us define the
function h f (x, y, e) := ℓ( f (D(x, e)), y) and let ϵ > 0. By the continuity of h f in e, there exists a
δ = δ(ϵ) > 0 such that |h f (x, y, e)− h f (x, y, e′)| < ϵ whenever dEall(e, e′) < δ. Now observe that

∣∣∣E(X,Y)[h f (X, Y, e)]−E(X,Y)[h f (X, Y, e′)]
∣∣∣ (B.12)

=

∣∣∣∣
∫

Eall

h f (X, Y, e)dP(X, Y)−
∫

Eall

h f (X, Y, e′)dP(X, Y)
∣∣∣∣ (B.13)

=

∣∣∣∣
∫

Eall

(h f (X, Y, e)− h f (X, Y, e′))dP(X, Y)
∣∣∣∣ (B.14)

≤
∫

Eall

∣∣∣h f (X, Y, e)− h f (X, Y, e′)
∣∣∣ dP(X, Y). (B.15)

Therefore, whenever dEall(e, e′) < δ it holds that
∣∣∣E(X,Y)[h f (X, Y, e)]−E(X,Y)[h f (X, Y, e′)]

∣∣∣ ≤
∫

Eall

ϵdP(X, Y) = ϵ (B.16)

by the monotonicity of expectation. This completes the proof that G f is continuous.

In this way, provided that the risks in each domain vary in a continuous way through e, (2.2)
and (3.1) are equivalent. As a concrete example, consider an image classification setting in which
the variation from domain to domain corresponds to different rotations of the images. This is the
case, for instance, in the RotatedMNIST dataset [38, 127], wherein the training domains correspond
to different rotations of the MNIST digits. Here, a domain transformation model D can be defined by

D(x, e) = R(e)x where e ∈ Eall ⊆ [0, 2π), (B.17)

and where R(e) is a rotation matrix. In this case, it is clear that D is a continuous function of e (in
fact, the map is linear), and therefore the result in (B.3) holds.

28

A.2. Domain Generalisation: A Probabilistic Framework (§ 4.2) 139



B.2.2 Discrete domain sets Eall

When Eall is a discrete set, the conditions we require for (2.2) and (3.1) to be equivalent are even
milder. In particular, the only restriction we place on the problems is that Q must place non-zero
mass on each element of Eall; that is, Q(e) > 0 ∀e ∈ Eall. We state this more formally below.

Proposition B.4. Let us assume that Eall is discrete, and that Q is such that ∀e ∈ Eall, it holds that
Q(e) > 0. Then it holds that (2.2) and (3.1) are equivalent.

C Notes on KDE bandwidth selection

In our setting, we are interested in bandwidth-selection methods which: (i) work well for 1D
distributions and small sample sizes m; and (ii) guarantee recovery of the causal predictor as α→ 1
by satisfying h f → 0 =⇒ σ̂f → 0, where h f is the data-dependent bandwidth and σ̂f is the sample
standard deviation (see Appendices A.2.2 and A.2.3). We thus investigated three popular bandwidth-
selection methods: (1) the Gaussian-optimal rule [65], h f = (4/3m)0.2 · σ̂f ; (2) Silverman’s
rule-of-thumb [65], h f = m−0.2 ·min(σ̂f , IQR

1.34 ), with IQR the interquartile range; and (3) the
median-heuristic [128–130], which sets the bandwidth to be the median pairwise-distance between
data points. Note that many sensible methods exist, as do more complete studies on bandwidth
selection—see e.g. [65].

For (i), we found Silverman’s rule-of-thumb [65] to perform very well, the Gaussian-optimal rule [65]
to perform well, and the median-heuristic [128–130] to perform poorly. For (ii), only the Gaussian-
optimal rule satisfies h f → 0 =⇒ σ̂f → 0. Thus, in practice, we use either the Gaussian-optimal
rule (particularly when causal predictor’s are sought as α→ 1), or Silverman’s rule-of-thumb.

D Generalization bounds

This appendix states and proves our main generalization bound, Theorem D.1. Theorem D.1 applies
for many possible estimates T̂ f , and we further show how to apply Theorem D.1 to the specific case
of using a kernel density estimate.

D.1 Main generalization bound and proof

Suppose that, from each of N IID environments e1, ..., eN ∼ P(e), we observe n IID labeled samples
(Xi,1, Yi,1), ..., (Xn,1, Yn,1) ∼ P(Xe, Ye). Fix a hypothesis class F and confidence level α ∈ [0, 1].
For any hypothesis f : X → Y , define the empirical risk on environment ei by

R̂ei ( f ) :=
1
n

n

∑
j=1

ℓ
(
Yi,j, f (Xi,j)

)
, for each i ∈ [N].

Throughout this section, we will abbreviate the distribution FT f (t) = Pre[Re( f ) ≤ t] of f ’s risk by

Ff (t) and its estimate F
T̂ f

, computed from the observed empirical risks R̂e1( f ), ..., R̂eN ( f ), by F̂f .

We propose to select a hypothesis by minimizing this over our hypothesis class:

f̂ := arg min
f∈F

F−1
T̂ f

(α). (D.1)

In this section, we prove a uniform generalization bound, which in particular, provides conditions
under which the estimator (D.1) generalizes uniformly overF . Because the novel aspect of the present
paper is the notion of generalizing across environments, we will take for granted that the hypothesis
class F generalizes uniformly within each environments (i.e., that each sup f∈F Rei ( f )− R̂ei ( f )
can be bounded with high probability); myriad generalization bounds from learning theory can be
used to show this.

Theorem D.1. Let G := {F̂(Re1( f ),Re2( f ), ...,ReN ( f )) : f ∈ F , e1, ..., en ∈ Eall} denote the
class of possible estimated risk distributions over N environments, and, for any ϵ > 0, let Nϵ(G)
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denote the ϵ-covering number of G under L∞(R). Suppose the class F generalizes uniformly within
environments; i.e., for any δ > 0, there exists tn,δ,F such that

ess sup
e

Pr
{(Xj ,Yj)}n

j=1∼P(Xe ,Ye)

[
sup
f∈F

Re( f )− R̂e( f ) > tn,δ,F

]
≤ δ.

Let

Bias(F , F̂) := sup
f∈F ,t∈R

Ff (t)−Ee1,...,eN [F̂f (t)]

denote the worst-case bias of the estimator F̂ over the class f . Noting that F̂f is a function of the
empirical risk CDF

Q̂ f (t) :=
1
N

N

∑
i=1

1{Rei ( f ) ≤ t},

suppose that the function Q̂ f 7→ F̂f is L-Lipschitz under L∞(R). Then, for any ϵ, δ > 0,

Pr
e1,...,eN

{(Xj ,Yj)}n
j=1∼P(Xei ,Yei )

[
sup
f∈F

F−1
f

(
α− B(F , F̂)− ϵ

)
− F̂−1

f (α) > tn, δ
N ,F

]
≤ δ+ 8Nϵ/16(G)e−

Nϵ2
64L .

(D.2)

The key technical observation of Theorem D.1 is that we can pull the supremum over F outside
the probability by incurring a Nϵ/16(G) factor increase in the probability of failure. To ensure
Nϵ/16(G) < ∞, we need to limit the space of possible empirical risk profiles G (e.g., by kernel
smoothing), incurring an additional bias term B(F , F̂). As we demonstrate later, for common
distribution estimators, such as kernel density estimators, one can bound the covering number
Nϵ/16(G) in Inequality (D.2) by standard methods, and the Lipschitz constant L is typically 1. Under
mild (e.g., smoothness) assumptions on the family of possible true risk profiles, one can additionally
bound the Bias Term, again by standard arguments.

Before proving Theorem D.1, we state two standard lemmas used in the proof:

Lemma D.2 (Symmetrization; Lemma 2 of [131]). Let X and X′ be independent realizations of a
random variable with respect to which F is a family of integrable functions. Then, for any ϵ > 0,

Pr

[
sup
f∈F

f (X)−E f (X) > ϵ

]
≤ 2 Pr

[
sup
f∈F

f (X)− f (X′) >
ϵ

2

]
.

Lemma D.3 (Dvoretzky–Kiefer–Wolfowitz (DKW) Inequality; Corollary 1 of [132]). Let X1, ..., Xn
be IID R-valued random variables with CDF P. Then, for any ϵ > 0,

Pr

[
sup
t∈R

∣∣∣∣∣Ff (t)−
1
n

n

∑
i=1

1{Xi ≤ t}
∣∣∣∣∣ > ϵ

]
≤ 2e−2nϵ2

.

We now prove our main result, Theorem D.1.

Proof of Theorem D.1. For convenience, let Ff (t) := Pe∼P(e)[Re( f ) ≤ t]. In preparation for
Symmetrization, for any f ∈ F , let F̂′f denote F̂f computed on an independent “ghost” sample
e′1, ..., e′N ∼ P(e). Let Pϵ/16 ⊆ G denote an (ϵ/16)-cover of G with |Pϵ/16| = Nϵ/16. For any
F ∈ G, let DF ∈ arg minG∈Pϵ/16

∥G− F∥∞ denote any projection of F onto Pϵ/16. Let Q̂ f denote
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the empirical CDF, as defined in Theorem D.1. Then,

Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ee1,...,eN

[
F̂f (t)

]
− F̂f (t) > ϵ

]
(D.3)

≤ 2 Pr
e1,...,eN
e′1,...,e′N

[
sup

f∈F ,t∈R

F̂′f (t)− F̂f (t) > ϵ/2

]
(D.4)

≤ 2 Pr
e1,...,eN
e′1,...,e′N

[
sup
f∈F

∥∥∥F̂′f − F̂f

∥∥∥
∞
> ϵ/2

]
(D.5)

≤ 2 Pr
e1,...,eN
e′1,...,e′N

[
sup
f∈F

ϵ/8 +
∥∥∥DF̂′f − DF̂f

∥∥∥
∞
> ϵ/2

]
(D.6)

≤ 2Nϵ/16 sup
f∈F

Pr
e1,...,eN
e′1,...,e′N

[
ϵ/8 +

∥∥∥DF̂′f − DF̂f

∥∥∥
∞
> ϵ/2

]
(D.7)

≤ 2Nϵ/16 sup
f∈F

Pr
e1,...,eN
e′1,...,e′N

[
ϵ/4 +

∥∥∥F̂′f − F̂f

∥∥∥
∞
> ϵ/2

]
(D.8)

= 2Nϵ/16 sup
f∈F

Pr
e1,...,eN
e′1,...,e′N

[∥∥∥F̂′f − F̂f

∥∥∥
∞
> ϵ/4

]
(D.9)

≤ 2Nϵ/16 sup
f∈F

Pr
e1,...,eN
e′1,...,e′N

[∥∥∥Q̂′f − Q̂ f

∥∥∥
∞
>

ϵ

4L

]
(D.10)

≤ 4Nϵ/16 sup
f∈F

Pr
e1,...,eN
e′1,...,e′N

[∥∥∥E
[

Q̂ f

]
− Q̂ f

∥∥∥
∞
>

ϵ

8L

]
(D.11)

= 4Nϵ/16 sup
f∈F

Pr
e1,...,eN

[
sup
t∈R

∣∣∣∣∣Ff (t)−
1
N

N

∑
i=1

1{Re( f ) ≤ t}
∣∣∣∣∣ >

ϵ

8L

]
(D.12)

≤ 8Nϵ/16 exp
(
−Nϵ2

64L

)
. (D.13)

Here, line (D.4) follows from the Symmetrization Lemma (Lemma D.2), lines (D.6) and (D.8) follow
from the definition of D, line (D.7) is a union bound over P̂ϵ/16, line (D.10) follows from the
Lipschitz assumption, line (D.11) follows from the triangle inequality, line (D.12) follows from the
fact that the empirical CDF is an unbiased estimate of the true CDF, and line (D.13) follows from the
DKW Inequality (Lemma D.3).

Since supx f (x)− supx g(x) ≤ supx f (x)− g(x),

Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ff (t)− F̂f (t) > ϵ + Bias(F , F̂)

]

= Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ff (t)− F̂f (t) > ϵ + sup
f∈F ,t∈R

Ff (t)−Ee1,...,eN

[
F̂f (t)

]]

≤ Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ee1,...,eN

[
F̂f (t)

]
− F̂f (t) > ϵ

]

≤ 8Nϵ/16 exp
(
−Nϵ2

64L

)
, (D.14)

by (D.13). Meanwhile, applying the presumed uniform bound on within-environment generalization
error together with a union bound over the N environments, gives us a high-probability bound on the
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maximum generalization error of f within any of the N environments:

Pr
{ei}N

i=1∼P(e)
{(Xi,j ,Yi,j)}n

j=1∼P(Xei ,Yei )

[
max
i∈[N]

sup
f∈F
Rei ( f )− R̂ei ( f ) ≤ tn, δ

2N ,F

]
≤ δ/2,

It follows that, with probability at least 1− δ/2, for all f ∈ F and t ∈ R,

F̂f

(
t + tn, δ

2N ,F
)
≤ F̂R̂e1 ( f ),...,R̂e1 ( f )(t),

where F̂R̂e1 ( f ),...,R̂e1 ( f )(t) is the actually empirical estimate F̂f (t) of computed using the N empirical

risks R̂e1( f ), ..., R̂eN ( f ). Plugging this into the left-hand side of Inequality (D.14),

Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ff

(
t + tn, δ

2N ,F
)
− F̂R̂e1 ( f ),...,R̂e1 ( f )(t) > ϵ + Bias(F , F̂)

]
≤ 8Nϵ/16 exp

(
− Nϵ

64L

)
.

Setting t = F̂−1
R̂e1 ( f ),...,R̂e1 ( f )

(α) and applying the non-decreasing function F−1
f gives the desired

result:

Pr
e1,...,eN

[
sup

f∈F ,t∈R

F−1
f

(
α− ϵ− Bias(F , F̂)

)
− F̂−1
R̂e1 ( f ),...,R̂e1 ( f )

(α) ≥ tn, δ
2N ,F

]
≤ 8Nϵ/16 exp

(
− Nϵ

64L

)
.

D.2 Kernel density estimator

In this section, we apply our generalization bound Theorem (D.1) to the kernel density estimator
(KDE)

F̂h(t) =
∫ t

−∞

1
nh

n

∑
i=1

K
(

τ − Xi
h

)
dτ

of the cumulative risk distribution under the assumptions that:

1. the loss ℓ takes values in a bounded interval [a, b] ⊆ R, and
2. for all f ∈ F , the true risk profile Ff is β-Hölder continuous with constant L, for any β > 0.

We also make standard integrability and symmetry assumptions on the kernel K : R → R (see
Section 1.2.2 [133] for discussion of these assumptions):

∫

R
|K(u)| du < ∞,

∫

R
K(u) du = 1,

∫

R
|u|β|K(u) du < ∞,

and, for each positive integer j < β,
∫

R
ujK(u) du = 0. (D.15)

We will use Theorem D.1 to show that, for an appropriately chosen bandwidth h,

sup
f∈F ,t∈R

Ff (t)− F̂f (t) ∈ OP



(

log N
N

) β
2β+1


 .

We start by bounding the bias term B(F , F̂). Since

EX1,...,Xn

[∫ t

−∞

∣∣∣∣∣
1

nh

n

∑
i=1

K
(

τ − Xi
h

)∣∣∣∣∣

]
dτ ≤ 1

h
EX

[∫ ∞

−∞

∣∣∣∣K
(

τ − Xi
h

)∣∣∣∣
]

dτ

≤ ∥K∥1 < ∞,
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applying Fubini’s theorem, linearity of expectation, the change of variables x 7→ τ + xh, Fubini’s
theorem again, and the fact that

∫
R

K(u) dx = 1,

Ff (t)−EX1,...,Xn

[
F̂h(t)

]
= Ff (t)−Ee1,...,eN

[∫ t

−∞

1
nh

n

∑
i=1

K
(

τ − Xi
h

)]

= Ff (t)−
∫ t

−∞
EX1,...,Xn

[
1

nh

n

∑
i=1

K
(

τ − Xi
h

)]

= Ff (t)−
∫ t

−∞

∫

R

1
h

K
(

τ − x
h

)
p(x) dx dτ

= Ff (t)−
∫ t

−∞

∫

R
K(x)p(τ + xh) dx dτ

= Ff (t)−
∫

R
K(x)

∫ t

−∞
p(τ + xh) dτ dx

=
∫

R
K(x)

(
Ff (t)− F(t + xh)

)
dx.

By Taylor’s theorem for some π ∈ [0, 1],

F(t + xh) =
⌊β⌋−1

∑
j=0

(xh)j

j!
dj

dtj Ff (t) +
(xh)⌊β⌋

⌊β⌋!
d⌊β⌋

dt⌊β⌋
F(t + πxh).

Hence, by the assumption (D.15),

Ff (t)−EX1,...,Xn

[
F̂h(t)

]
=
∫

R
K(x)

(
Ff (t)−

⌊β⌋−1

∑
j=0

(xh)j

j!
dj

dtj Ff (t) +
(xh)⌊β⌋

⌊β⌋!
d⌊β⌋

dt⌊β⌋
F(t + πxh)

)
dx

=
∫

R
K(x)

(
(xh)⌊β⌋

⌊β⌋!
d⌊β⌋

dt⌊β⌋
F(t + πxh)

)
dx

=
∫

R
K(x)

(xh)⌊β⌋

⌊β⌋!

(
d⌊β⌋

dt⌊β⌋
F(t + πxh)− d⌊β⌋

dt⌊β⌋
Ff (t)

)
dx.

Thus, by the Hölder continuity assumption,
∣∣∣Ff (t)−EX1,...,Xn

[
F̂h(t)

]∣∣∣ ≤
∫

R
K(x)

(xh)⌊β⌋

⌊β⌋!

∣∣∣∣∣
d⌊β⌋

dt⌊β⌋
F(t + πxh)− d⌊β⌋

dt⌊β⌋
Ff (t)

∣∣∣∣∣ dx

≤
∫

R
K(x)

(xh)⌊β⌋

⌊β⌋! L(πxh)β−⌊β⌋ dx ≤ Chβ, (D.16)

where C := L
⌊β⌋!

∫
R
|x|β|K(x)| dx is a constant.

Next, since, by the Fundamental Theorem of Calculus,

d⌊β+1⌋

dt⌊β+1⌋ F̂f (t) =
d⌊β+1⌋

dt⌊β+1⌋

∫ t

−∞

1
nh

N

∑
i=1

K
(

τ − Xi
h

)
dτ =

1
nh

N

∑
i=1

d⌊β⌋

dt⌊β⌋
K
(

t− Xi
h

)
,

∥Ff ∥Cβ+1 ≤ ∥Kh∥Cβ = h−(β+1)∥K∥Cβ . Hence, by standard bounds on the covering number of
Hölder continuous functions [134], there exists a constant c > 0 depending only on β such that

Nϵ/16(N ) ≤ exp


c(b− a)

(∥K∥Cβ

hβ+1ϵ

) 1
β+1


 = exp


c

(b− a)
h

(∥K∥Cβ

ϵ

) 1
β+1


 . (D.17)

Finally, since F̂h = Q̂ ∗ Kh (where ∗ denotes convolution), by linearity of the convolution and
Young’s convolution inequality [135, p.34],∥∥∥F̂h − F̂′h

∥∥∥
∞
≤
∥∥∥Q̂− Q̂′

∥∥∥
∞
∥Kh∥1.
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Since, by a change of variables, ∥Kh∥1 = ∥K∥1 = 1, the KDE is a 1-Lipschitz function of the
empirical CDF, under L∞(R).

Thus, plugging Inequality (D.16), Inequality (D.17), and L = 1 into Theorem D.1 and taking n→ ∞
gives, for any ϵ > 0,

Pr
e1,...,eN

[
sup
f∈F

F−1
f

(
α− Chβ − ϵ

)
− F̂−1

f (α) > 0

]
≤ 8 exp


c

b− a
h

(∥K∥Cβ

ϵ

) 1
β+1


 e−

Nϵ2
64 .

Plugging in ϵ =

√
log 1

δ +c b−a
h

N gives

Pr
e1,...,eN


sup

f∈F
F−1

f


α− Chβ −

√
log 1

δ + c b−a
h

N


− F̂−1

f (α) > 0


 ≤ δ.

This bound is optimized by h ≍
(
(b− a) log N

N

) 1
2β+1 , giving an overall bound of

Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ff (t)− F̂f (t) > ch
β

2β+1

]
≤ δ

Pr
e1,...,eN


sup

f∈F
F−1

f


α− ch

β
2β+1 +

√
log 1

δ

N


− F̂−1

f (α) > 0


 ≤ δ.

for some c > 0. In particular, as N, n→ ∞, the EQRM estimate f̂ satisfies

F−1
f̂

(α)→ inf
f∈F

F−1
f (α).

34

A.2. Domain Generalisation: A Probabilistic Framework (§ 4.2) 145



E Further implementation details

E.1 Algorithm

Below we detail the EQRM algorithm. Note that: (i) any distribution estimator may be used in place
of DIST so long as the functions DIST.ESTIMATE_PARAMS and DIST.ICDF are differentiable; (ii)
other bandwidth-selection methods may be used on line 14, with the Gaussian-optimal rule serving
as the default; and (iii) the bisection method BISECT on line 20 requires an additional parameter, the
maximum number of steps, which we always set to 32.

Algorithm 1: Empirical Quantile Risk Minimization (EQRM).
Input: Predictor fθ , loss function ℓ, desired probability of generalization α, learning rate η,

distribution estimator DIST, M datasets with Dm = {(xm
i , ym

i )}
nm
i=1.

1 Initialize fθ;
2 while not converged do

/* Get per-domain risks (i.e. average losses) */
3 Lm ← 1

nm
∑nm

i=1 ℓ( fθ(xm
i ), ym

i ), for m = 1, . . . , M ;

/* Estimate the parameters of T̂ f */
4 DIST.ESTIMATE_PARAMS(L) ;

/* Compute the α-quantile of T̂ f */
5 q← DIST.ICDF(α) ;

/* Update fθ */
6 θ ← θ − η · ∇θq ;

Output: fθ

7 Procedure GAUSS.ESTIMATE_PARAMS(L)
/* Compute the sample mean and variance */

8 µ̂← 1
M ∑M

m=1 Lm ;
9 σ̂2 ← 1

M−1 ∑M
m=1(Lm − µ̂)2 ;

10 Procedure GAUSS.ICDF(α)
11 return µ̂ + σ̂ ·Φ−1(α);

12 Procedure KDE.ESTIMATE_PARAMS(L)
/* Set bandwidth h (Gaussian-optimal rule used as default) */

13 σ̂2 ← 1
M−1 ∑M

m=1(Lm − 1
M ∑M

j=1 Lj)2;

14 h← ( 4
3M )0.2 · σ̂

15 Procedure KDE.ICDF(α)
/* Define the CDF when using M Gaussian kernels */

16 Fm(x′)← Lm + h ·Φ(x′) ;
17 F(x′)← 1

M ∑M
m=1 Fm(x′) ;

/* Invert the CDF via bisection */
18 mn← minm F−1

m (α) ;
19 mx← maxm F−1

m (α) ;
20 return BISECT(F, α, mn, mx) ;

E.2 ColoredMNIST

For the CMNIST results of § 6.1, we used full batches (size 25000), 400 steps for ERM pretraining,
600 total steps for IRM, VREx, EQRM, and 1000 total steps for GroupDRO, SD, and IGA. We
used the original MNIST training set to create training and validation sets for each domain, and the
original MNIST test set for the test sets of each domain. We also decayed the learning rate using
cosine annealing/scheduling. We swept over penalty weights in {50, 100, 500, 1000, 5000} for IRM,
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VREx and IGA, penalty weights in {0.001, 0.01, 0.1, 1} for SD, η’s in {0.001, 0.01, 0.1, 0.5, 1.0} for
GroupDRO, and α’s in 1− {e−100, e−250, e−500, e−750, e−1000} for EQRM. To allow these values of
α, which are very close to 1, we used an asymptotic expression for the Normal inverse CDF, namely
Φ−1(α) ≈

√
−2 ln(1− α) as α → 1 [136]. This allowed us to parameterize α = 1− e−1000

as ln(1 − α) = ln(e−1000) = −1000, avoiding issues with floating-point precision. As is the
standard for CMNIST, we used a test-domain validation set to select the best settings (after the
total number of steps), then reported the mean and standard deviation over 10 random seeds on
a test-domain test set. As in previous works, the hyperparameter ranges of all methods were
selected by peeking at test-domain performance. While not ideal, this is quite difficult to avoid with
CMNIST and highlights the problem of model selection more generally in DG—as discussed by many
previous works [9, 38, 41, 115]. Finally, we note several observations from our CMNIST, WILDS
and DomainBed experiments which, despite not being thoroughly investigated with their own set
of experiments (yet), may prove useful for future work: (i) ERM pretraining seems an effective
strategy for DG methods, and can likely replace the more delicate penalty-annealing strategies (as
also observed in [115]); (ii) lowering the learning rate after ERM pretraining seems to stabilize DG
methods; and (iii) EQRM often requires a lower learning rate than other DG methods after ERM
pretraining, with its loss and gradients tending to be significantly larger.

E.3 DomainBed

For EQRM, we used the default algorithm setup: a kernel-density estimator of the risk distribution
with the “Gaussian-optimal” rule [65] for bandwidth selection. We used the standard hyperparameter-
sampling procedure of Domainbed, running over 3 trials for 20 randomly-sampled hyperparameters
per trial. For EQRM, this involved:

Hparam Default Sampling
α 0.75 U(0.5, 0.99)
Burn-in/anneal iters 2500 10k, with k ∼ U(2.5, 3.5)
EQRM learning rate (post burn-in) 10−6 10k, with k ∼ U(−7,−5)

All other all hyperparameters remained as their DomainBed-defaults, while the baseline results were
taken directly from the most up-to-date DomainBed tables8. See our code for further details.

E.4 WILDS

We considered two WILDS datasets: iWildCam and OGB-MolPCBA (henceforth OGB). For both of
these datasets, we used the architectures use in the original WILDS paper [12]; that is, for iWildCam
we used a ResNet-50 architecture [137] pretrained on ImageNet [138], and for OGB, we used a Graph
Isomorphism Network [139] combined with virtual nodes [140]. To perform model-selection, we
followed the guidelines provided in the original WILDS paper [12]. In particular, for each of the
baselines we consider, we performed grid searches over the hyperparameter ranges listed in [12]
with respect to the given validation sets; see [12, Appendices E.1.2 and E.4.2] for a full list of these
hyperparameter ranges.

EQRM. For both datasets, we ran EQRM with KDE using the Gaussian-optimal bandwidth-
selection method. All EQRM models were initialized with the same ERM checkpoint, which is
obtained by training ERM using the code provided by [12]. Following [12], for iWildCam, we trained
ERM for 12 epochs, and for OGB, we trained ERM for 100 epochs. We again followed [12] by using
a batch size of 32 for iWildCam and 8 groups per batch. For OGB, we performed grid searches over the
batch size in the range B ∈ {32, 64, 128, 256, 512, 1024, 2048}, and we used 0.25B groups per batch.
We selected the learning rate for EQRM from η ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8}.

Computational resources. All experiments on the WILDS datasets were run across two four-GPU
workstations, comprising a total of eight Quadro RTX 5000 GPUs.

8https://github.com/facebookresearch/DomainBed/tree/main/domainbed/results/2020_
10_06_7df6f06
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F Connections between QRM and DRO

In this appendix we draw connections between quantile risk minimization (QRM) and distribution-
ally robust optimization (DRO) by considering an alternative optimization problem which we call
superquantile risk minimization 9:

min
f∈F

SQα(R; T f ) where SQα(R; T f ) := ER∼T f

[
R
∣∣ R ≥ F−1

T f
(α)
]

. (F.1)

Here, SQα represents the superquantile—also known as the conditional value-at-risk (CVaR) or
expected tail loss—at level α, which can be seen as the conditional expectation of a random variable
R subject to R being larger than the α-quantile F−1(α). In our case, where R represents the
statistical risk on a randomly-sampled environment, SQα can be seen as the expected risk in the worst
100 · (1− α)% of cases/domains. Below, we exploit the well-known duality properties of CVaR to
formally connect (QRM) and GroupDRO [45]; see Prop. F.1 for details.

F.1 Notation for this appendix

Throughout this appendix, for each f ∈ F , we will let the risk random variable R be a defined on
the probability space (R+,B, T f ), where R+ denotes the nonnegative real numbers and B denotes
the Borel σ-algebra on R+. We will also consider the Lebesgue spaces Lp := Lp(R+,B, T f ) of
functions h for which Er∼T f [|h(r)|p] is finite. For conciseness, we will use the notation

⟨g(r), h(r)⟩ :=
∫

r≥0
g(r)h(r)dr (F.2)

to denote the standard inner product on R+. Furthermore, we will use the notation U≪ V to signify
that U is absolutely continuous with respect to V, meaning that if U(A) = 0 for every set A for
which V(A) = 0. We also use the abbreviation “a.e.“ to mean “almost everywhere.” Finally, the
notation Π[a,b](c) denotes the projection of a number c into the real interval [a, b].

F.2 (Strong) Duality of the superquantile

We begin by proving that strong duality holds for the superquantile function SQα. We note that this
duality result is well-known in the literature (see, e.g., [90]), and has been exploited in the context of
adaptive sampling [94] and offline reinforcement learning [141]. We state this result and proof for
the sake of exposition.

Proposition F.1 (Dual representation of SQα). If R ∈ LP for some p ∈ (1, ∞), then

SQα(R; T f ) = max
U∈U f (α)

EU[R] (F.3)

where the uncertainty set U f (α) is defined as

U f (α) :=
{

U ∈ Lq : U≪ T f , U ∈ [0, 1/1−α] a.e. , ||U||L1 = 1
}

. (F.4)

Proof. Note that the primal objective can be equivalently written as

SQα(R; T f ) = min
t∈R

{
t +

1
1− α

⟨(R− t)+, T f ⟩
}

(F.5)

where (z)+ = max{0, z} [97], which in turn has the following epigraph form:

min
t∈R, s∈Lp

+

t +
1

1− α
⟨s, T f ⟩ (F.6)

subject to R(r)− t ≤ s(r) a.e. r ∈ R+. (F.7)

9This definition assumes that T f is continuous; for a more general treatment, see [97].
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When written in Lagrangian form, we can express this problem as

min
t∈R, s∈Lp

+

max
λ∈Lq

+

{
t(1− ⟨1, λ⟩) +

〈
s,

1
1− α

T f − λ

〉
+ ⟨R, λ⟩

}
. (F.8)

Note that this objective is linear in t, s, and λ, and therefore due to the strong duality of linear
programs, we can optimize over s, t, and λ in any order [142]. Minimizing over t reveals that the
problem is unbounded unless

∫
r≥0 λ(r)dr = 1, meaning that λ is a probability distribution since

λ(r) ≥ 0 almost everywhere. Thus, the problem can be written as

min
s∈Lp

+

max
λ∈P(R+)

{〈
s,

1
1− α

T f − λ

〉
+ ⟨R, λ⟩

}
(F.9)

where P q(R+) denotes the subspace of Lq of probability distributions on R+.

Now consider the maximization over s. Note that if there is a set A ⊂ Eall of nonzero Lebesgue
measure on which λ(A) ≥ (1/1−α)T f (A), then the problem is unbounded below because s(A) can
be made arbitrarily large. Therefore, it must be the case that λ ≤ (1/1−α)T f almost everywhere. On
the other hand, if λ(A) ≤ (1/1−α)T f (A), then s(A) = 0 minimizes the first term in the objective.
Therefore, s can be eliminated provided that λ ≤ (1/1−α)T f almost everywhere. Thus, we can write
the problem as

max
λ∈Pq(R+)

⟨R, λ⟩ = Eλ[R] (F.10)

subject to λ(r) ≤ 1
1− α

T f (r) a.e. r ≥ 0. (F.11)

Now observe that the constraint in the above problem is equivalent to λ ≪ Q. Thus, by defining
U = dλ/dT f to be the Radon-Nikodym derivative of λ with respect to Q, we can write the problem
in the form of (F.3), completing the proof.

Succinctly, this proposition shows that provided that R is sufficiently smooth (i.e., an element of Lp),
it holds that minimizing the superquantile function is equivalent to solving

min
f∈F

max
U∈U f (α)

EU[R] (F.12)

which is a distributionally robust optimization (DRO) problem with uncertainty set U f (α) as defined
in (F.4). In plain terms, for any α ∈ (0, 1), this uncertainty set contains probability distributions on
R+ which can place no larger than 1/1−α on any risk value.

At an intuitive level, this shows that by varying α in Eq. (F.1), one can interpolate between a range
DRO problems. In particular, at level α = 1, we recover the problem in (3.1), which can be viewed
as a DRO problem which selects a Dirac distribution which places solely on the essential supremum
of R ∼ T f . On the other hand, at level α = 0, we recover a problem which selects a distribution that
equally weights each of the risks in different domains equally. A special case of this is the GroupDRO
formulation in [45], wherein under the assumption that the data is partitioned into m groups, the
inner maximum in (F.12) is taken over the (m− 1)-dimensional simplex ∆m (see, e.g., equation (7)
in [45]).

G Additional analyses and experiments

G.1 Linear regression

In this section we extend § 6.1 to provide further analyses and discussion of EQRM using linear
regression datasets based on Ex. A.3. In particular, we: (i) extend Fig. 3 to include plots of the
predictors’ risk CDFs (G.1.1); and (ii) discuss the ability of EQRM to recover the causal predictor
when σ2

1 , σ2
2 and/or σ2

Y change over environments, compared to IRM [9] and VREx [41] (G.1.2).
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Table 5: Recovering the causal predictor for linear regression tasks based on Ex. A.3. A tick means that it is
possible to recover the causal predictor, under further assumptions.

Changing Domain
Scedasticity

Invariant IRM VREx EQRM
Risk Function (βcause)

σ1 Homoscedastic ✓ ✓ ✓ ✓ ✓
σ2 Homoscedastic ✓ ✓ ✓ ✓ ✓
σY Heteroscedastic ✗ ✓ ✓ ✗ ✗

G.1.1 Risk CDFs as risk-robustness curves

As an extension of Fig. 3, in particular the PDFs in Fig. 3 B, Fig. 6 depicts the risk CDFs for different
predictors. Here we see that a predictor’s risk CDF depicts its risk-robustness curve, and also that
each α results in a predictor fα with minimial α-quantile risk. That is, for each desired level of
robustness (i.e. probability of the upper-bound on risk holding, y-axis), the corresponding α has
minimal risk (x-axis).
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Figure 6: Extension of Fig. 3 showing the risk CDFs (i.e. risk-robustness curves) for different predictors.
For each risk upper-bound (x), we see the corresponding probability of it holding under the training domains (y).
Note that, for each level of robustness (y, i.e. probability that the risk upper-bound holds), the corresponding α
has the lowest upper-bound on risk (x). Also note that these CDFs correspond to the PDFs of Fig. 3 (B).

G.1.2 Invariant risks vs. invariant functions

We now compare seeking invariant risks to seeking invariant functions by analyzing linear regression
datasets, based on Ex. A.3, in which σ2

1 , σ2
2 and/or σ2

Y change over domains. This is turn allows us to
compare EQRM (invariant risks), VREx [41] (invariant risks), and IRM [9] (invariant functions).

Domain-skedasticity. For recovering the causal predictor, the key difference between using in-
variant risks and invariant functions lies in the assumption about domain-skedasticity, i.e. the “pred-
icatability” of Y across domains. In particular, the causal predictor only has invariant risks in
domain-homoskedastic cases and not in domain-heteroskedastic cases, the latter describing scenarios
in which the predictability of Y (i.e. the amount of irreducible error or intrinsic noise) varies across
domains, meaning that the risk of the causal predictor will be smaller on some domains than others.
Thus, methods seeking the causal predictor through invariant risks must assume domain homoskedas-
ticity [41, 54]. In contrast, methods seeking the causal predictor through invariant functions need not
make such a domain-homoskedasticity assumption, but instead the slightly weaker assumption of the
conditional mean E[Y|Pa(Y)] being invariant across domains. As explained in the next paragraph
and summarized in Table 5, this translates into the coefficient βcause being invariant across domains
for the linear SEM of Ex. A.3.
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Mathematical analysis. We now analyze the risk-invariant solutions of Ex. A.3. We start by
expanding the structural equations of Ex. A.3 as:

X1 = N1,
Y = N1 + NY,

X2 = N1 + NY + N2.

We then note that the goal is to learn a model Ŷ = β1 · X1 + β2 · X2, which has residual error

Ŷ−Y = β1 · N1 + β2 · (N1 + NY + N2)− N1 − NY

= (β1 + β2 − 1) · N1 + (β2 − 1) · NY + β2 · N2.

Then, since all variables have zero mean and the noise terms are independent, the risk (i.e. the MSE
loss) is simply the variance of the residuals, which can be written as

E[(Ŷ−Y)2] = (β1 + β2 − 1)2 · σ2
1 + (β2 − 1)2 · σ2

Y + β2
2 · σ2

2 .

Here, we have that, when:

• Only σ1 changes: the only way to keep the risk invariant across domains is to set β1 + β2 = 1.
The minimal invariant-risk solution then depends on σy and σ2:

– if σy < σ2, the minimal invariant-risk solution sets β1 = 1 and β2 = 0 (causal predictor);
– if σy > σ2, the minimal invariant-risk solution sets β1 = 0 and β2 = 1 (anti-causal predictor);

– if σy = σ2, then any solution (β1, β2) = (c, 1−c) with c ∈ [0, 1] is a minimal invariant-risk
solution, including the causal predictor c = 1, anti-causal predictor c = 0, and everything
in-between.

• Only σ2 changes: the invariant-risk solutions set β2 = 0, with the minimal invariant-risk solution
also setting β1 = 1 (causal predictor).

• σ1 and σ2 change: the invariant-risk solution sets β1 = 1, β2 = 0 (causal predictor).
• Only σY changes: the invariant-risk solutions set β2 = 1, with the minimal invariant-risk solution

also setting β1 = 0 (anti-causal predictor).
• σ1 and σY change: the invariant-risk solution sets β1=0, β2=1 (anti-causal predictor).
• σ2 and σY change: there is no invariant-risk solution.
• σ1, σ2 and σY change: there is no invariant-risk solution.

Empirical analysis. To see this empirically, we refer the reader to Table 5 of Krueger et al. [41,
App. G.2], which compares the invariant-risk solution of VREx to the invariant-function solution
of IRM on the synthetic linear-SEM tasks of Arjovsky et al. [9, Sec. 5.1], which calculate the MSE
between the estimated coefficients (β̂1, β̂2) and those of the causal predictor (1, 0).

Different goals, solutions, and advantages. We end by emphasizing the fact that the invariant-risk
and invariant-function solutions have different pros and cons depending both on the goal and the
assumptions made. If the goal is the recover the causal predictor or causes of Y, then the invariant-
function solution has the advantage due to weaker assumptions on domain skedasticity. However, if
the goal is learn predictors with stable or invariant performance, such that they perform well on new
domains with high probability, then the invariant-risk solution has the advantage. For example, in the
domain-heteroskedastic cases above where σY changes or σY and σ1 change, the invariant-function
solution recovers the causal predictor β1 = 1, β2 = 0 and thus has arbitrarily-large risk as σY → ∞
(i.e. in the worst-case). In contrast, the invariant-risk solution recovers the anti-causal predictor
β1 = 0, β2 = 1 and thus has fixed risk σ2

2 in all domains.

G.2 DomainBed

In this section, we include the full per-dataset DomainBed results. We consider the two most common
model-selection methods of the DomainBed package—training-domain validation set and test-domain
validation set (oracle)—and compare EQRM to a range of baselines. Implementation details for these
experiments are provided in § E.3 and our open-source code.
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G.2.1 Model selection: training-domain validation set

VLCS

Algorithm C L S V Avg
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1

EQRM 98.3 ± 0.0 63.7 ± 0.8 72.6 ± 1.0 76.7 ± 1.1 77.8

PACS

Algorithm A C P S Avg
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2

EQRM 86.5 ± 0.4 82.1 ± 0.7 96.6 ± 0.2 80.8 ± 0.2 86.5

OfficeHome

Algorithm A C P R Avg
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5

EQRM 60.5 ± 0.1 56.0 ± 0.2 76.1 ± 0.4 77.4 ± 0.3 67.5
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TerraIncognita

Algorithm L100 L38 L43 L46 Avg
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6

EQRM 47.9 ± 1.9 45.2 ± 0.3 59.1 ± 0.3 38.8 ± 0.6 47.8

DomainNet

Algorithm clip info paint quick real sketch Avg
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9

EQRM 56.1 ± 1.3 19.6 ± 0.1 46.3 ± 1.5 12.9 ± 0.3 61.1 ± 0.0 50.3 ± 0.1 41.0

Averages

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.9
Mixup 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.6
MMD 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3
DANN 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6
CDANN 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0
MTL 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 62.9
SagNet 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
ARM 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
VREx 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9

EQRM 77.8 ± 0.6 86.5 ± 0.2 67.5 ± 0.1 47.8 ± 0.6 41.0 ± 0.3 64.1
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G.2.2 Model selection: test-domain validation set (oracle)

VLCS

Algorithm C L S V Avg
ERM 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IRM 97.3 ± 0.2 66.7 ± 0.1 71.0 ± 2.3 72.8 ± 0.4 76.9
GroupDRO 97.7 ± 0.2 65.9 ± 0.2 72.8 ± 0.8 73.4 ± 1.3 77.4
Mixup 97.8 ± 0.4 67.2 ± 0.4 71.5 ± 0.2 75.7 ± 0.6 78.1
MLDG 97.1 ± 0.5 66.6 ± 0.5 71.5 ± 0.1 75.0 ± 0.9 77.5
CORAL 97.3 ± 0.2 67.5 ± 0.6 71.6 ± 0.6 74.5 ± 0.0 77.7
MMD 98.8 ± 0.0 66.4 ± 0.4 70.8 ± 0.5 75.6 ± 0.4 77.9
DANN 99.0 ± 0.2 66.3 ± 1.2 73.4 ± 1.4 80.1 ± 0.5 79.7
CDANN 98.2 ± 0.1 68.8 ± 0.5 74.3 ± 0.6 78.1 ± 0.5 79.9
MTL 97.9 ± 0.7 66.1 ± 0.7 72.0 ± 0.4 74.9 ± 1.1 77.7
SagNet 97.4 ± 0.3 66.4 ± 0.4 71.6 ± 0.1 75.0 ± 0.8 77.6
ARM 97.6 ± 0.6 66.5 ± 0.3 72.7 ± 0.6 74.4 ± 0.7 77.8
VREx 98.4 ± 0.2 66.4 ± 0.7 72.8 ± 0.1 75.0 ± 1.4 78.1
RSC 98.0 ± 0.4 67.2 ± 0.3 70.3 ± 1.3 75.6 ± 0.4 77.8

EQRM 98.2 ± 0.2 66.8 ± 0.8 71.7 ± 1.0 74.6 ± 0.3 77.8

PACS

Algorithm A C P S Avg
ERM 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IRM 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5
GroupDRO 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1
Mixup 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8
MLDG 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8
CORAL 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1
MMD 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2
DANN 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2
CDANN 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8
MTL 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7
SagNet 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4
ARM 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8
VREx 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2
RSC 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2

EQRM 88.3 ± 0.6 82.1 ± 0.5 97.2 ± 0.4 81.6 ± 0.5 87.3

OfficeHome

Algorithm A C P R Avg
ERM 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4
IRM 56.4 ± 3.2 51.2 ± 2.3 71.7 ± 2.7 72.7 ± 2.7 63.0
GroupDRO 60.5 ± 1.6 53.1 ± 0.3 75.5 ± 0.3 75.9 ± 0.7 66.2
Mixup 63.5 ± 0.2 54.6 ± 0.4 76.0 ± 0.3 78.0 ± 0.7 68.0
MLDG 60.5 ± 0.7 54.2 ± 0.5 75.0 ± 0.2 76.7 ± 0.5 66.6
CORAL 64.8 ± 0.8 54.1 ± 0.9 76.5 ± 0.4 78.2 ± 0.4 68.4
MMD 60.4 ± 1.0 53.4 ± 0.5 74.9 ± 0.1 76.1 ± 0.7 66.2
DANN 60.6 ± 1.4 51.8 ± 0.7 73.4 ± 0.5 75.5 ± 0.9 65.3
CDANN 57.9 ± 0.2 52.1 ± 1.2 74.9 ± 0.7 76.2 ± 0.2 65.3
MTL 60.7 ± 0.8 53.5 ± 1.3 75.2 ± 0.6 76.6 ± 0.6 66.5
SagNet 62.7 ± 0.5 53.6 ± 0.5 76.0 ± 0.3 77.8 ± 0.1 67.5
ARM 58.8 ± 0.5 51.8 ± 0.7 74.0 ± 0.1 74.4 ± 0.2 64.8
VREx 59.6 ± 1.0 53.3 ± 0.3 73.2 ± 0.5 76.6 ± 0.4 65.7
RSC 61.7 ± 0.8 53.0 ± 0.9 74.8 ± 0.8 76.3 ± 0.5 66.5

EQRM 60.0 ± 0.8 54.4 ± 0.7 76.5 ± 0.4 77.2 ± 0.5 67.0
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TerraIncognita

Algorithm L100 L38 L43 L46 Avg
ERM 59.4 ± 0.9 49.3 ± 0.6 60.1 ± 1.1 43.2 ± 0.5 53.0
IRM 56.5 ± 2.5 49.8 ± 1.5 57.1 ± 2.2 38.6 ± 1.0 50.5
GroupDRO 60.4 ± 1.5 48.3 ± 0.4 58.6 ± 0.8 42.2 ± 0.8 52.4
Mixup 67.6 ± 1.8 51.0 ± 1.3 59.0 ± 0.0 40.0 ± 1.1 54.4
MLDG 59.2 ± 0.1 49.0 ± 0.9 58.4 ± 0.9 41.4 ± 1.0 52.0
CORAL 60.4 ± 0.9 47.2 ± 0.5 59.3 ± 0.4 44.4 ± 0.4 52.8
MMD 60.6 ± 1.1 45.9 ± 0.3 57.8 ± 0.5 43.8 ± 1.2 52.0
DANN 55.2 ± 1.9 47.0 ± 0.7 57.2 ± 0.9 42.9 ± 0.9 50.6
CDANN 56.3 ± 2.0 47.1 ± 0.9 57.2 ± 1.1 42.4 ± 0.8 50.8
MTL 58.4 ± 2.1 48.4 ± 0.8 58.9 ± 0.6 43.0 ± 1.3 52.2
SagNet 56.4 ± 1.9 50.5 ± 2.3 59.1 ± 0.5 44.1 ± 0.6 52.5
ARM 60.1 ± 1.5 48.3 ± 1.6 55.3 ± 0.6 40.9 ± 1.1 51.2
VREx 56.8 ± 1.7 46.5 ± 0.5 58.4 ± 0.3 43.8 ± 0.3 51.4
RSC 59.9 ± 1.4 46.7 ± 0.4 57.8 ± 0.5 44.3 ± 0.6 52.1

EQRM 57.0 ± 1.5 49.5 ± 1.2 59.0 ± 0.3 43.4 ± 0.6 52.2

DomainNet

Algorithm clip info paint quick real sketch Avg
ERM 58.6 ± 0.3 19.2 ± 0.2 47.0 ± 0.3 13.2 ± 0.2 59.9 ± 0.3 49.8 ± 0.4 41.3
IRM 40.4 ± 6.6 12.1 ± 2.7 31.4 ± 5.7 9.8 ± 1.2 37.7 ± 9.0 36.7 ± 5.3 28.0
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 34.2 ± 0.3 9.2 ± 0.4 51.9 ± 0.5 40.1 ± 0.6 33.4
Mixup 55.6 ± 0.1 18.7 ± 0.4 45.1 ± 0.5 12.8 ± 0.3 57.6 ± 0.5 48.2 ± 0.4 39.6
MLDG 59.3 ± 0.1 19.6 ± 0.2 46.8 ± 0.2 13.4 ± 0.2 60.1 ± 0.4 50.4 ± 0.3 41.6
CORAL 59.2 ± 0.1 19.9 ± 0.2 47.4 ± 0.2 14.0 ± 0.4 59.8 ± 0.2 50.4 ± 0.4 41.8
MMD 32.2 ± 13.3 11.2 ± 4.5 26.8 ± 11.3 8.8 ± 2.2 32.7 ± 13.8 29.0 ± 11.8 23.5
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.9 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 44.2 ± 0.7 12.8 ± 0.2 56.2 ± 0.4 45.9 ± 0.5 38.5
MTL 58.0 ± 0.4 19.2 ± 0.2 46.2 ± 0.1 12.7 ± 0.2 59.9 ± 0.1 49.0 ± 0.0 40.8
SagNet 57.7 ± 0.3 19.1 ± 0.1 46.3 ± 0.5 13.5 ± 0.4 58.9 ± 0.4 49.5 ± 0.2 40.8
ARM 49.6 ± 0.4 16.5 ± 0.3 41.5 ± 0.8 10.8 ± 0.1 53.5 ± 0.3 43.9 ± 0.4 36.0
VREx 43.3 ± 4.5 14.1 ± 1.8 32.5 ± 5.0 9.8 ± 1.1 43.5 ± 5.6 37.7 ± 4.5 30.1
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.5 ± 0.1 55.7 ± 0.7 47.8 ± 0.9 38.9

EQRM 55.5 ± 1.8 19.6 ± 0.1 45.9 ± 1.9 12.9 ± 0.3 61.1 ± 0.0 50.3 ± 0.1 40.9

Averages

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 65.0
IRM 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1 60.6
GroupDRO 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3 63.3
Mixup 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1 65.4
MLDG 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 52.0 ± 0.1 41.6 ± 0.1 64.9
CORAL 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1 65.6
MMD 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4 61.4
DANN 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1 63.8
CDANN 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 64.1
MTL 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 64.8
SagNet 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 65.0
ARM 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 63.1
VREx 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 62.5
RSC 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 64.3

EQRM 77.8 ± 0.2 87.3 ± 0.2 67.0 ± 0.4 52.2 ± 0.7 40.9 ± 0.3 65.1
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G.3 WILDS

In Figure 7, we visualize the test-time risk distributions of IRM and GroupDRO relative to ERM, as
well as EQRMα for select values10 of α. In each of these figures, we see that IRM and GroupDRO
tend to have heavier tails than any of the other algorithms.

Figure 7: Baseline test risk distributions on iWildCam and OGB-MolPCBA. We supplement Figure 4 by
providing comparisons to two baseline algorithms: IRM and GroupDRO. In each case, EQRMα tends to display
superior tail performance relative to ERM, IRM, and GroupDRO.

Other performance metrics. In the main text, we studied the tails of the risk distributions of
predictors trained on iWildCam and OGB. However, in the broader DG literature, there are a number of
other metrics that are used to assess performance or OOD-generalization. In particular, for iWildCam,
past work has used the macro F1 score as well as the average accuracy across domains to assess OOD
generalization; for OGB, the standard metric is a predictor’s average precision over test domains [12].
In Tables 6 and 7, we report these metrics and compare the performance of our algorithms to ERM,
IRM, and GroupDRO. Below, we discuss the results in each of these tables.

To begin, consider Table 6. Observe that ERM achieves the best in-distribution (ID) scores relative
to any of the other algorithms. However, when we consider the out-of-distribution columns, we
see that EQRM offers better performance with respect to both the macro F1 score and the mean
accuracy. Thus, although our algorithms are not explicitly trained to optimize these metrics, their
strong performance on the tails of the risk distribution appears to be correlated with strong OOD
performance with these alternative metrics. We also observe that relative to ERM, EQRM suffers
smaller accuracy drops between ID and OOD mean accuracy. Specifically, ERM dropped 5.50 points,
whereas EQRM dropped by an average of 2.38 points.

Next, consider Table 7. Observe again that ERM is the strongest-performing baseline (first band of
the table). Also observe that EQRM performs similarly to ERM, with validation and test precision
tending to cluster around 28 and 27 respectively. However, we stress that these metrics are averaged
over their respective domains, whereas in Tables 2 and 3, we showed that EQRM performed well on
the more difficult domains, i.e. when using tail metrics.

Table 6: WILDS metrics on iWildCam.

Algorithm Macro F1 (↑) Mean accuracy (↑)
ID OOD ID OOD

ERM 49.8 30.6 77.0 71.5
IRM 23.4 15.2 59.6 64.1

GroupDRO 34.3 22.1 66.7 67.7

QRM0.25 18.3 11.4 54.3 58.3
QRM0.50 48.1 33.8 76.2 73.5
QRM0.75 49.5 31.8 76.1 72.0
QRM0.90 48.6 32.9 77.1 73.3
QRM0.99 45.9 30.8 76.6 71.3

Table 7: WILDS metrics on OGB-MolPCBA.

Algorithm Mean precision (↑)
Validation Test

ERM 28.1 27.3
IRM 15.4 15.5

GroupDRO 23.5 22.3

QRM0.25 28.1 27.3
QRM0.50 28.3 27.4
QRM0.75 28.1 27.1
QRM0.90 27.9 27.2
QRM0.99 28.1 27.4

10We display results for fewer values of α in Figure 7 to keep the plots uncluttered.
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H Limitations of our work

As discussed in the first paragraph of § 7, the main limitation of our work is that, for α to precisely
approximate the probability of generalizing with risk below the associated α-quantile value, we
must have a large number of i.i.d.-sampled domains. Currently, this is rarely satisfied in practice,
although § 7 describes how new data-collection procedures could help to better-satisfy this assumption.
We believe that our work, and its promise of machine learning systems that generalize with high
probability, provides sufficient motivation for collecting real-world datasets with a large number
of i.i.d.-sampled domains. In addition, we hope that future work can explore ways to relax this
assumption, e.g., by leveraging knowledge of domain dependencies like time.
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A Proof and Further Discussion of Theorem 4.4

A.1 Proof of Theorem 4.4

In this section, we prove our main results regarding the marginal generalization problem presented in
Section 4, namely Thm. 4.4. For the reader’s convenience, we restate Thm. 4.4 here:
Theorem 4.4 (Marginal generalization with for binary labels and complementary features). Consider
three random variables XS, XU , and Y, where

1. Y is binary ({0, 1}-valued),
2. XS and XU are complementary features for Y (i.e., XS ⊥⊥ XU |Y), and
3. XS is informative of Y (XS ⊥̸⊥ Y).

Then, the joint distribution of (XS, XU , Y) can be written in terms of the joint distributions of (XS, Y)
and (XS, XU). Specifically, if Ŷ|XS ∼ Bernoulli(Pr[Y = 1|XS]) is pseudo-label and

ϵ0 := Pr[Ŷ = 0|Y = 0] and ϵ1 := Pr[Ŷ = 1|Y = 1] (A.1)

are the conditional probabilities that Ŷ and Y agree, given Y = 0 and Y = 1, respectively, then,

1. ϵ0 + ϵ1 > 1,

2. Pr[Y = 1|XU ] =
Pr[Ŷ = 1|XU ] + ϵ0 − 1

ϵ0 + ϵ1 − 1
, and

3. Pr[Y = 1|XS, XU ] = σ (logit(Pr[Y = 1|XS]) + logit(Pr[Y = 1|XU ])− logit(Pr[Y = 1])).

Before proving Thm. 4.4, we provide some examples demonstrating that the complementarity and
informativeness assumptions in Thm. 4.4 cannot be dropped.
Example A.1. Suppose XS and XU have independent Bernoulli(1/2) distributions. Then, XS is
informative of both of the binary variables Y1 = XSXU and Y2 = XS(1− XU) and both have
identical conditional distributions given XS, but Y1 and Y2 have different conditional distributions
given XU:

Pr[Y1 = 1|XU = 0] = 0 ̸= 1/2 = Pr[Y2 = 1|XU = 0].
Thus, the complementarity condition cannot be omitted.

On the other hand, XS and XU are complementary for both Y3 = XU and an independent Y4 ∼
Bernoulli(1/2) and both Y3 and Y4 both have identical conditional distributions given XS, but Y1
and Y2 have different conditional distributions given XU:

Pr[Y3 = 1|XU = 1] = 1/2 ̸= 1 = Pr[Y4 = 1|XU = 1].

Thus, the informativeness condition cannot be omitted.

Before proving Thm. 4.4, we prove Lemma 4.5, which allows us to safely divide by the quantity
ϵ0 + ϵ1 − 1 in the formula for Pr[Y = 1|XU ], under the condition that XS is informative of Y.
Lemma 4.5. In the setting of Thm. 4.4, let ϵ0 and ϵ1 be the class-wise pseudo-label accuracies
defined in as in Eq. (A.1). Then, ϵ0 + ϵ1 = 1 if and only if XS and Y are independent.

Note that the entire result also holds, with almost identical proof, in the multi-environment setting of
Sections 3 and 5, conditioned on a particular environment E.

Proof. We first prove the forward implication. Suppose ϵ0 + ϵ1 = 1. If Pr[Y = 1] ∈ {0, 1}, then
XS and Y are trivially independent, so we may assume Pr[Y = 1] ∈ (0, 1). Then,

E[Ŷ] = ϵ1 Pr[Y = 1] + (1− ϵ0)(1− Pr[Y = 1]) (Law of Total Expectation)

= (ϵ0 + ϵ1 − 1)Pr[Y = 1] + 1− ϵ0

= 1− ϵ0 (ϵ0 + ϵ1 = 1)

= E[Ŷ|Y = 0]. (Definition of ϵ0)

17

160 Appendix A. Paper Appendices



Since Y is binary and Pr[Y = 1] ∈ (0, 1), it follows that E[Ŷ] = E[Ŷ|Y = 0] = E[Ŷ|Y = 1]; i.e.,
E[Ŷ|Y] ⊥⊥ Y. Since Ŷ is binary, its distribution is specified entirely by its mean, and so Ŷ ⊥⊥ Y. It
follows that the covariance between Ŷ and Y is 0:

0 = E[(Y−E[Y])(Ŷ−E[Ŷ])]

= E[E[(Y−E[Y])(Ŷ−E[Ŷ])|XS]] (Law of Total Expectation)

= E[E[Y−E[Y]|XS]E[Ŷ−E[Ŷ]|XS]] (Y ⊥⊥ Ŷ|XS)

= E[(E[Y−E[Y]|XS])
2],

where the final equality holds because Ŷ and Y have identical conditional distributions given XS.
Since the L2 norm of a random variable is 0 if and only if the variable is 0 almost surely, it follows
that, PXS -almost surely,

0 = E[Y−E[Y]|XS] = E[Y|XS]−E[Y],
so that E[Y|XS] ⊥⊥ XS. Since Y is binary, its distribution is specified entirely by its mean, and so
Y ⊥⊥ XS, proving the forward implication.

To prove the reverse implication, suppose XS and Y are independent. Then Ŷ and Y are also
independent. Hence,

ϵ1 = E[Ŷ|Y = 1] = E[Ŷ|Y = 0] = 1− ϵ0,
so that ϵ0 + ϵ1 = 1.

We now use Lemma 4.5 to prove Thm. 4.4:

Proof. To begin, note that Ŷ has the same conditional distribution given XS as Y (i.e., PŶ|XS
= PY|XS

and that Ŷ is conditionally independent of Y given XS (Ŷ ⊥⊥ Y|XS). Then, since

Pr[Ŷ = 1] = E[Pr[Y = 1|XS]] = Pr[Y = 1], (A.2)
we have

ϵ1 = Pr[Ŷ = 1|Y = 1] =
Pr
[
Y = 1, Ŷ = 1

]

Pr[Y = 1]
(Definition of ϵ1)

=
Pr
[
Y = 1, Ŷ = 1

]

Pr[Ŷ = 1]
(Eq. (A.2))

=
EXS [Pr

[
Y = 1, Ŷ = 1|XS

]
]

EXS [Pr[Ŷ = 1|XS]]
(Law of Total Expectation)

=
EXS [Pr[Y = 1|XS]Pr[Ŷ = 1|XS]]

EXS [Pr[Ŷ = 1|XS]]
(Ŷ ⊥⊥ Y|XS)

=
EXS

[
(Pr[Y = 1|XS])

2
]

EXS [Pr[Y = 1|XS]]
(PŶ|XS

= PY|XS
)

entirely in terms of the conditional distribution PY|XS
and the marginal distribution PXS . Similarly,

ϵ0 can be written as ϵ0 =
EXS

[
(Pr[Y=0|XS ])

2
]

EXS [Pr[Y=0|XS ]]
. Meanwhile, by the law of total expectation, and the

assumption that XS (and hence Ŷ) is conditionally independent of XU given Y, the conditional
distribution PŶ|XU

of Ŷ given XU can be written as

Pr[Ŷ = 1|XU ]

= Pr[Ŷ = 1|Y = 0, XU ]Pr[Y = 0|XU ] + Pr[Ŷ = 1|Y = 1, XU ]Pr[Y = 1|XU ]

= Pr[Ŷ = 1|Y = 0]Pr[Y = 0|XU ] + Pr[Ŷ = 1|Y = 1]Pr[Y = 1|XU ]

= (1− ϵ0)(1− Pr[Y = 1|XU ]) + ϵ1 Pr[Y = 1|XU ]

= (ϵ0 + ϵ1 − 1)Pr[Y = 1|XU ] + 1− ϵ0.
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By Lemma 4.5, the assumption XS ⊥̸⊥ Y implies ϵ0 + ϵ1 ̸= 1. Hence, re-arranging the above
equality gives us the conditional distribution PY|XU

of Y given XU purely in terms of the conditional
PY|XS

and PXS ,XU :

Pr[Y = 1|XU = XU ] =
Pr[Ŷ = 1|XU = XU ] + ϵ0 − 1

ϵ0 + ϵ1 − 1
.

It remains now to write the conditional distribution PY|XS ,XU
in terms of the conditional distributions

PY|XS
and PY|XU

and the marginal PY. Note that

Pr[Y = 1|XS, XU ]

Pr[Y = 0|XS, XU ]
=

Pr[XS, XU |Y = 1]Pr[Y = 1]
Pr[XS, XU |Y = 0]Pr[Y = 0]

(Bayes’ Rule)

=
Pr[XS|Y = 1]Pr[XU |Y = 1]Pr[Y = 1]
Pr[XS|Y = 0]Pr[XU |Y = 0]Pr[Y = 0]

(Complementarity)

=
Pr[Y = 1|XS]Pr[Y = 1|XU ]Pr[Y = 0]
Pr[Y = 0|XS]Pr[Y = 0|XU ]Pr[Y = 1]

. (Bayes’ Rule)

It follows that the logit of Pr[Y = 1|XS, XU ] can be written as the sum of a term depending only on
XS, a term depending only on XU , and a constant term:

logit (Pr[Y = 1|XS, XU ]) = log
Pr[Y = 1|XS, XU ]

1− Pr[Y = 1|XS, XU ]

= log
Pr[Y = 1|XS, XU ]

Pr[Y = 0|XS, XU ]

= log
Pr[Y = 1|XS]

Pr[Y = 0|XS]
+ log

Pr[Y = 1|XU ]

Pr[Y = 0|XU ]
− log

Pr[Y = 1]
Pr[Y = 0]

= logit (Pr[Y = 1|XS]) + logit (Pr[Y = 1|XU ])− logit (Pr[Y = 1]) .

Since the sigmoid σ is the inverse of logit,

Pr[Y = 1|XS, XU ] = σ (logit (Pr[Y = 1|XS]) + logit (Pr[Y = 1|XU ])− logit (Pr[Y = 1])) ,

which, by Eq. (4.3), can be written in terms of the conditional distribution PY|XS
and the joint

distribution PXS ,XU .

A.2 Further discussion of Theorem 4.4

Connections to learning from noisy labels. Thm. 4.4 leverages two theoretical insights about the
special structure of pseudo-labels that complement results in the literature on learning from noisy
labels. First, Blanchard et al. [7] showed that learning from noisy labels is possible if and only if the
total noise level is below the critical threshold ϵ0 + ϵ1 > 1; in the case of learning from pseudo-labels,
we show (see Lemma 4.5 in Appendix A.1) that this is satisfied if and only if XS is informative of
Y (i.e., Y ⊥̸⊥ XS). Second, methods for learning under label noise commonly assume knowledge
of ϵ0 and ϵ1 [44, 75], which may be unrealistic in applications where we have absolutely no true
(i.e., test-domain) labels; however, for pseudo-labels sampled from a known conditional probability
distribution PY|XS

, one can express these noise levels in terms of PY|XS
and PXS and thereby estimate

them without any true labels, as on line 3 of Alg. 1.

Possible applications of Thm. 4.4 beyond domain adaptation The reason we wrote Thm. 4.4 in the
more general setting of the marginal problem rather than in the specific context of domain adaptation
is that we envision possible applications to a number of problems besides domain adaptation. For
example, suppose that, after learning a calibrated machine learning model M1 using a feature XS, we
observe an additional feature XU . In the case that XS and XU are complementary, Thm. 4.4 justifies
using the student-teacher paradigm [11, 2, 27] to train a model for predicting Y from XU (or from
(XS, XU) jointly) based on predictions from M1. This could be useful if we don’t have access to
labeled pairs (XU , Y), or if retraining a model using XS would require substantial computational
resources or access to sensitive or private data. Exploring such approaches could be a fruitful direction
for future work
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B Proof of Theorem 4.6

This appendix provides a proof of Thm. 4.6, which provides conditions under which our proposed
domain adaptation procedure (Alg. 1) is consistent.

We state a formal version of Thm. 4.6:
Theorem 4.6 (Consistency of the bias-corrected classifier). Assume

1. XS is stable,

2. XS and XU are complementary, and

3. XS is informative of Y (i.e., XS ⊥̸⊥ Y).

Let η̂n : XS × XU → [0, 1] given by

η̂n(xS, xU) = σ

(
fS(xS) + logit

(
η̂U,n(xU) + ϵ̂0,n − 1

ϵ̂0,n + ϵ̂1,n − 1

)
− β1

)
, for all (xS, xU) ∈ XS×XU ,

denote the bias-corrected regression function estimate proposed in Alg. 1, and let ĥn : XS ×XU →
{0, 1} given by

ĥn(xS, xU) = 1{η̂(xS, xU) > 1/2}, for all (xS, xU) ∈ XS ×XU ,
denote the corresponding hard classifier. Let ηU : XU → [0, 1], given by ηU(xU) = Pr[Y =
1|XU = xU , E = 1] for all xU ∈ XU , denote the true regression function over XU , and let η̂U,n
denote its estimate as assumed in Line 4 of Alg. 1. Then, as n→ ∞,

(a) if, for PXU -almost all xU ∈ XU , η̂U,n(xU)) → ηU(xU) in probability, then η̂n and ĥn are
weakly consistent (i.e., η̂n(xS, xU)→ η(xS, xU) PXS ,XU -almost surely and R(ĥn)→ R(h∗) in
probability).

(b) if, for PXU -almost all xU ∈ XU , η̂U,n(xU)) → ηU(xU) almost surely, then η̂n and ĥn are
strongly consistent (i.e., η̂n(xS, xU)→ η(xS, xU) PXS ,XU -almost surely and R(ĥn)→ R(h∗)
a.s.).

Before proving Thm. 4.6, we provide a few technical lemmas. The first shows that almost-everywhere
convergence of regression functions implies convergence of the corresponding classifiers in classifi-
cation risk:

Lemma B.1. Consider a sequence of regression functions η, η1, η2, ... : X → [0, 1]. Let h, h1, h2, ... :
X → {0, 1} denote the corresponding classifiers

h(x) = 1{η(x) > 1/2} and hi(x) = 1{ηi(x) > 1/2}, for all i ∈N, x ∈ X .

(a) If ηn(x)→ η(x) for PX-almost all x ∈ X in probability, then R(hn)→ R(h∗) in probability.

(b) If ηn(x) → η(x) for PX-almost all x ∈ X almost surely as n → ∞, then R(hn) → R(h)
almost surely.

Proof. Note that, since hn(x) ̸= h(x) implies |ηn(x)− η(x)| ≥ |η(x)− 1/2|,
1{hn(x) ̸= h(x)} ≤ 1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|}. (B.1)

We utilize this observation to prove both (a) and (b).

Proof of (a) Let δ > 0. By Inequality (B.1) and partitioning X based on whether |2η(X)− 1| ≤
δ/2,

EX [|2η(X)− 1|1{hn(X) ̸= h(X)}]
≤ EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}]
= EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}1{|2η(X)− 1| > δ/2}]

+ EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}1{|2η(X)− 1| ≤ δ/2}]
≤ EX [1{|ηn(X)− η(X)| > δ/2}] + δ/2.
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Hence,

lim
n→∞

Pr
ηn

[EX [|2η(X)− 1|1{hn(X) ̸= h(X)}] > δ]

≤ lim
n→∞

Pr
ηn

[EX [1{|ηn(X)− η(X)| > δ/2}] > δ/2]

≤ lim
n→∞

2
δ

Eηn [EX [1{|ηn(X)− η(X)| > δ/2}]] (Markov’s Inequality)

= lim
n→∞

2
δ

EX
[
Eηn [1{|ηn(X)− η(X)| > δ/2}]

]
(Fubini’s Theorem)

=
2
δ

EX

[
lim

n→∞
Pr
ηn

[|ηn(X)− η(X)| > δ/2]
]

(Dominated Convergence Theorem)

= 0. (ηn(X)→ η(X), PX-a.s., in probability)

Proof of (b) For any x ∈ X with η(x) ̸= 1/2, if ηn(x) → η(x) then 1{|ηn(x) − η(x)| ≥
|η(x)− 1/2|} → 0. Hence, by Inequality (B.1), the dominated convergence theorem (with |2η(x)−
1|1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|} ≤ 1), and the assumption that ηn(x)→ η(x) for PX-almost
all x ∈ X almost surely,

lim
n→∞

EX [|2η(X)− 1|1{hn(X) ̸= h(X)}]
≤ lim

n→∞
EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}]

= EX

[
lim

n→∞
|2η(X)− 1|1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|}

]

= 0, almost surely.

Our next lemma concerns an edge case in which the features XS and XU provide perfect but
contradictory information about Y, leading to Equation (4.4) being ill-defined. We show that this can
happen only with probability 0 over (XS, XU) ∼ PXS ,XU can thus be safely ignored:

Lemma B.2. Consider two predictors XS and XY of a binary label Y. Then,

Pr
XS ,XU

[E[Y|XS] = 1 and E[Y|XU ] = 0] = Pr
XS ,XU

[E[Y|XS] = 0 and E[Y|XU ] = 1] = 0.

Proof. Suppose, for sake of contradiction, that the event

A := {(xS, xU) : E[Y|XS = xS] = 1 and E[Y|XU = xU ] = 0}
has positive probability. Then, the conditional expectation E[Y|A] is well-defined, giving the
contradiction

1 = EXS [E[Y|E, XS]] = E[Y|A] = EXU [E[Y|E, XU ]] = 0.
The case E[Y|XS] = 0 and E[Y|XU ] = 1 is similar.

We now utilize Lemmas B.1 and B.2 to prove Thm. 4.6.

Proof. By Lemma B.1, it suffices to prove that η̂(xS, xU) → η(xS, xU), for PXS ,XU -almost all
(xS, xU) ∈ XS ×XU , in probability (to prove (a)) and almost surely (to prove (b)).

Finite case We first consider the case when both Pr[Y|XS = xS], Pr[Y|XU = xU ] ∈ (0, 1), so

that fS(xS) and logit
(

η̃(xU)+ϵ0−1
ϵ0+ϵ1−1

)
are both finite. Since

η̂S,U(xS, xU)− ηS,U(xS, xU)

= σ

(
fS(xS) + logit

(
η̂U,1(xU) + ϵ̂0 − 1

ϵ̂0 + ϵ̂1 − 1

)
− β̂1,n

)
− σ

(
fS(xS) + logit

(
η̃(xU) + ϵ0 − 1

ϵ0 + ϵ1 − 1

)
− β1

)
,

where the sigmoid σ : R → [0, 1] is continuous, by the continuous mapping theorem and the
assumption that η̂U,1(xU)→ η̃(xU), to prove both of these, it suffices to show:
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(i) ϵ̂0 → ϵ0 and ϵ̂1 → ϵ1 almost surely as n→ ∞.

(ii) β̂1,n → β1 ∈ (−∞, ∞) almost surely as n→ ∞.

(iii) The mapping (a, b, c) 7→ logit
(

a+b−1
b+c−1

)
is continuous at (η̃(xU), ϵ0, ϵ1).

We now prove each of these in turn.

Proof of (i) Since Ŷi ⊥⊥ Yi|XS and 0 < Pr[Ŷ = 1], by the strong law of large numbers and the
continuous mapping theorem,

ϵ̂1 =
1
n1

n

∑
i=1

Ŷiσ( fS(Xi)) =
1
n ∑n

i=1 Ŷiσ( fS(Xi))
1
n ∑n

i=1 Ŷi
→ E[σ( fS(X))1{Ŷ = 1}]

Pr[Ŷ = 1]
= E[σ( fS(X))|Ŷ = 1] = ϵ1,

almost surely as n→ ∞. Similarly, since Pr[Ŷ = 0] = 1− Pr[Ŷ = 1] > 0, ϵ̂0 → ϵ0 almost surely.

Proof of (ii) Recall that

β̂1,n = logit

(
1
n

n

∑
i=1

Ŷi

)
.

By the strong law of large numbers, 1
n ∑n

i=1 Ŷi → Pr[Ŷ = 1|E = 1] = Pr[Y = 1|E = 1].
Since we assumed Pr[Y = 1|E = 1] ∈ (0, 1), it follows that the mapping a 7→ logit(a) is
continuous at a = Pr[Y = 1|E = 1]. Hence, by the continuous mapping theorem, β̂1,n →
logit (Pr[Y = 1|E = 1]) = β1 almost surely.

Proof of (iii) Since the logit function is continuous on the open interval (0, 1) and we assumed
ϵ0 + ϵ1 > 1, it suffices to show that 0 < η̃(xU) + ϵ0 − 1 < ϵ0 + ϵ1 − 1. Since, according to
Thm. 4.4,

η̃(xU) = (ϵ0 + ϵ1 − 1)η∗(xU)) + 1− ϵ0,
this holds as long as 0 < η∗(xU) < 1, as we assumed for PXU -almost all xU ∈ XU .

Infinite case We now address the case where either Pr[Y|XS = xS] ∈ {0, 1} or Pr[Y|XU =
xU ] ∈ {0, 1}. By Lemma B.2, only one of these can happen at once, PXS ,XU -almost surely. Hence,
since limn→∞ β̂1,n is also finite almost surely, if Pr[Y|XS = xS] ∈ {0, 1}, then η̂(xS, xU) =
σ(logit(Pr[Y|XS = xS])) = η(xS, xU), while, if Pr[Y|XU = xU ] ∈ {0, 1}, then η̂(xS, xU) →
σ (logit(Pr[Y|XU = xU ])) = η(xS, xU), in probability or almost surely, as appropriate.

C Multiclass Case

In the main paper, to simplify notation, we presented our unsupervised test-domain adaptation method
in the case of binary labels Y. However, in many cases, including several of our experiments in
Section 6, the label Y can take more than 2 distinct values. Hence, in this section, we show how to
generalize our method to the multiclass setting and then present the exact procedure (Alg. 2) used in
our multiclass experiments in Section 6.

Suppose we have K ≥ 2 classes. We “one-hot encode” these classes, so that Y takes values in the set

Y = {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)} ⊆ {0, 1}K.

Let ϵ ∈ [0, 1]Y×Y with
ϵy,y′ = Pr[Ŷ = y|Y = y′]

denote the class-conditional confusion matrix of the pseudo-labels. Then, we have

E[Ŷ|XU ] = ∑
y∈Y

E[Ŷ|Y = y, XU ]Pr[Y = y|XU ] (Law of Total Expectation)

= ∑
y∈Y

E[Ŷ|Y = y]Pr[Y = y|XU ] (Complementary)

= ϵ E[Y|XU ]. (Definition of ϵ)
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When ϵ is non-singular, this has the unique solution E[Y|XU ] = ϵ−1 E[Ŷ|XU ], giving a multiclass
equivalent of Eq. (4.3) in Thm. 4.4. In practice, however, it is numerically more stable to estimate
E[Y|XU ] by the least-squares solution

arg min
p∈∆Y

∥∥∥ϵp−E[Ŷ|XU ]
∥∥∥

2
,

which is what we will do in Algorithm 2. To estimate ϵ without observing the label Y in the test
domain, note that

ϵy,y′ = Pr[Ŷ = y|Y = y′] =
Pr[Ŷ = y, Y = y′]

Pr[Y = y′]

=
E
[
Pr[Ŷ = y, Y = y′|XS]

]

E [Pr[Y = y′|XS]]

=
E
[
Pr[Ŷ = y|XS]Pr[Y = y′|XS]

]

E [Pr[Y = y′|XS]]

=
E
[

f1,y(XS) f1,y′(XS)
]

E
[

f1,y′(XS)
] .

This suggests the estimate

ϵ̂y,y′ =
∑n

i=1 f̂S,y(XS,i) f̂S,y′(XS,i)

∑n
i=1 f̂S,y′(XS,i)

=
n

∑
i=1

f̂S,y(XS,i)
f̂S,y′(XS,i)

∑n
i=1 f̂S,y′(XS,i)

of each ϵy,y′ , or, in matrix notation,

ϵ̂ = f ⊺S (XS)Normalize( fS(XS)),

where Normalize(X) scales each column of X to sum to 1. This gives us a multiclass equivalent of
Line 3 in Alg. 1.

The multiclass versions of Eq. (4.4) and Line 6 of Alg. 1 are slightly less straightforward. Specifically,
whereas, in the binary case, we used the fact that Pr[XS, XU |Y ̸= 1] = Pr[XS, XU |Y = 0] =
Pr[XS|Y = 0]Pr[XU |Y = 0] = Pr[XS|Y ̸= 1]Pr[XU |Y ̸= 1] (by complementarity), in the
multiclass case, we do not have Pr[XS, XU |Y ̸= 1] = Pr[XS|Y ̸= 1]Pr[XU |Y ̸= 1]. However,
following similar reasoning as in the proof of Thm. 4.4, we have

Pr[Y = y|XS, XU , E]
Pr[Y ̸= y|XS, XU , E]

=
Pr[Y = y|XS, XU , E]

∑y′ ̸=y Pr[Y = y′|XS, XU , E]

=
Pr[XS, XU |Y = y, E]Pr[Y = y|E]

∑y′ ̸=y Pr[Y ̸= y|XS, XU , E]Pr[Y = y′|E] (Bayes’ Rule)

=
Pr[XS|Y = y, E]Pr[XU |Y = y, E]Pr[Y = y|E]

∑y′ ̸=y Pr[XS|Y = y′, E]Pr[XU |Y = y′, E]Pr[Y = y′|E] (XS ⊥⊥ XU |Y)

=
Pr[Y = y|XS, E]Pr[Y = y|XU , E]

∑y′ ̸=y Pr[Y = y′|XS, E]Pr[Y = y′|XU , E] · Pr[Y=y|E]
Pr[Y=y′ |E]

. (Bayes’ Rule)

Hence,

logit(Pr[Y = y|XS, XU , E]) = log


 Pr[Y = y|XS, E]Pr[Y = y|XU , E]

∑y′ ̸=y Pr[Y = y′|XS, E]Pr[Y = y′|XU , E] · Pr[Y=y|E]
Pr[Y=y′ |E]




= log

(
Qy

∑y′ ̸=y Qy′

)
= log




Qy
∥Q∥1

∑y′ ̸=y
Qy′
∥Q∥1


 = logit

(
Qy

∥Q∥1

)
,
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for Q ∈ RY defined by

Qy =
fS,y(XS) fU,y(XU)

Pr[Y = y]
for each y ∈ Y .

In particular, applying the sigmoid function to each side, we have

Pr[Y|XS, XU ] =
Q
∥Q∥1

.

We can estimate Qy by

Q̂y =
fS,y(XS) fU,y(XU)
1
n ∑n

i=1 fS,y(XS,i)
.

In matrix notation, this is

Q̂ =
fS(XS) ◦ fU(XU)

1
n ∑n

i=1 fS(XS,i)
,

where ◦ denotes element-wise multiplication. It follows that, for p ∈ ∆Y (we will use py = Pr[Y =

y]), we can use the multiclass combination function C : ∆Y × ∆Y → ∆Y with

Cp(pS, pU) = Normalize
(

pS pU
p

)
, (C.1)

where the multiplication and division are performed element-wise and Normalize(x) = x
∥x∥1

, to
generalize Eq. (4.5). Putting these derivations together gives us our multiclass version of Alg. 1,
presented in Alg. 2, where ∆Y = {z ∈ [0, 1]K : ∑y∈Y zy = 1} denotes the standard probability
simplex over Y .

Algorithm 2: Multiclass bias-corrected adaptation procedure.

Input: Calibrated stable classifier fS : X → ∆Y with fS,y(xS) = Pr[Y = y|XS = xS], n
unlabeled samples {(XS,i, XU,i)}n

i=1
Output: Joint classifier f̂ : XS ×XU → ∆Y estimating Pr[Y = y|XS = xS, XU = xU ]

1 Compute soft pseudo-labels {Ŷi}n
i=1 with Ŷi = fS(XS,i)

2 Compute soft class counts n̂ = ∑n
i=1 Ŷi

3 Estimate class-conditional pseudo-label confusion matrix ϵ̂← f ⊺S (XS)Normalize( f ⊺S (XS))

4 Fit unstable classifier f̃U(xU) to pseudo-labelled data {(XU,i, Ŷi)}n
i=1 // ≈ Pr[Ŷ=y|XU ]

5 Bias-correction f̂U(xU) 7→ arg minp∈∆Y ∥ϵp− f̃U(xU)∥2 // ≈ Pr[Y=y|XU ]

6 return f̂ (xS, xU) 7→Cn̂/n( fS(xS), f̂U(xU)) // Eq. (C.1), ≈ Pr[Y=y|XS, XU ]

D Supplementary Results

D.1 Trivial solution to joint-risk minimization

In Prop. D.1 below, we assume that the stable fS(X) and unstable fU(X) predictors output logits. In
contrast, throughout the rest of the paper, we assume that fS(X) and fU(X) output probabilities in
[0, 1].

Proposition D.1. Suppose Ŷ| fS(X) ∼ Bernoulli(σ( fS(X))), such that Ŷ ⊥⊥ fU(X)| fS(X). Then,

0 ∈ arg min
fU :X→R

E[ℓ(Ŷ, σ( fS(X) + fU(X)))],

where ℓ(x, y) = −x log y− (1− x) log(1− y) denotes the cross-entropy loss.
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Proof. Suppose Ŷ| fS(X) ∼ Bernoulli(σ( fS(X))), such that Ŷ ⊥⊥ fU(X)| fS(X). Then,

−E[ℓ(Ŷ, σ( fS(X) + fU(X)))]

= E[E[ℓ(Ŷ, σ( fS(X) + fU(X))]] (Law of Total Expectation)

= E[E[Ŷ log σ( fS(X) + fU(X))

+ (1−Y) log(1− σ( fS(X) + fU(X)))| fS(X)]]

= E[E[Ŷ| fS(XS)]E[log σ( fS(X) + fU(X))| fS(XS)]

+ E[(1− Ŷ)| fS(XS)]E[log(1− σ( fS(X) + fU(X)))| fS(X)]] (Ŷ ⊥⊥ fU(X)| fS(X))

= E[σ( fS(X)) log σ( fS(X) + fU(X))

+ (1− σ( fS(X))) log(1− σ( fS(X) + fU(X)))]. (Ŷ| fS(X) ∼ Bernoulli(σ( fS(X)))).

Since the cross-entropy loss is differentiable and convex, any fU(X) satisfying 0 =
d

d fU(X)
E[ℓ(Ŷ, fS(X) + fU(X))] is a minimizer. Indeed, under the mild assumption that the ex-

pectation and derivative commute, for fU(X) = 0,

d
d fU(X)

E[ℓ(Ŷ, σ( fS(X) + fU(X)))] = −E

[
σ( fS(X))

σ( fS(X) + fU(X))
+

1− σ( fS(X))

1− σ( fS(X) + fU(X))

]

= −E

[
σ( fS(X))

σ( fS(X))
+

1− σ( fS(X))

1− σ( fS(X))

]
= 0.

D.2 Causal perspectives

The stability, complementarity, and informativeness assumptions in Thm. 4.4 can be interpreted
as constraints on the causal relationships between the variables XS, XU , Y, and E. We conclude
this section with a result with a characterization of causal, directed acyclic graphs (DAGs) that are
consistent with these assumptions. In particular, this result shows that our assumptions are satisfied
in the “anti-causal” and “cause-effect” settings assumed in prior work [49, 68, 31], as well as work
assuming only covariate shift (i.e., changes in the distribution of X without changes in the conditional
PY|X).

E

XS,C XS,E

XU

Y

XS,S

Figure 3: Causal DAGs over the environment E, three types of stable features (causes XS,C, effects XS,E, and
spouses XS,S), unstable features XU , and label Y, under conditions 1)-6). At least one, and possibly both, of the
dashed edges E→ XS,C and E→ XU must be included. The dotted edge E→ XS,S may or may not be included.

Proposition D.2 (Possible Causal DAGs). Consider an environment variable E, two covariates XU
and XS, and a label Y. Assume there are no other hidden confounders (i.e., causal sufficiency). First,
assume:

1) E is a root (i.e., none of XU , XS, and Y is an ancestor of E).
2) XS is informative of Y (i.e., XS ⊥̸⊥ Y|E).
3) XS and XU are complementary predictors of Y; i.e., XS ⊥⊥ XU |(Y, E).
4) XS is stable (i.e., E ⊥⊥ Y|XS).
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These are the four structural assumptions under which Theorems 4.4 and 4.6 show that the SFB
algorithm learns the conditional distribution PY|XS ,XU

in the test domain. Additionally, suppose

5) XU is unstable (i.e., E ⊥̸⊥ Y|XU), This is the case in which empirical risk minimization [ERM;
65] may suffer bias due to distribution shift, and hence when SFB may outperform ERM.

6) XU contains some information about Y that is not included in XS (i.e., XU ⊥̸⊥ Y|XS). This is
information we expect invariant risk minimization [IRM; 1] is unable to learn, and hence when
we expect SFB to outperform IRM.

Then, XU consists of causal descendants (“effects”) of Y, while three types of stable features are
possible:

1. causal ancestors XS,C of Y,

2. causal descendants XS,E of Y that are not also descendants of E,

3. causal spouses XS,S of Y (i.e., causal ancestors of XS,E).

Notable special cases of the DAG in Figure 3 include:

1. the “cause-effect” settings, studied by Rojas-Carulla et al. [49], von Kügelgen et al. [68, 69],
where XS is a cause of Y, XU is an effect of Y, and E may affect both XS and XU but may affect
Y only indirectly through XS. Note that this generalizes the commonly used “covariate shift”
assumption, as not only the covariate distribution PXS ,XU but also the conditional distribution
PY|XU

can change between environments.

2. the “anti-causal” setting, studied by Jiang and Veitch [31], where XS and XU are both effects of
Y, but XS is unaffected by E.

3. the widely studied “covariate shift” setting [62, 23, 6, 61], which corresponds (see Sections 3 and
5 of Schölkopf [55]) to a causal factorization P(X, Y) = P(X)P(Y|X) (i.e., in which the only
stable components XS are causes XS,C) of Y or unconditionally independent (e.g., causal spouses
XS,S)) of Y.

However, this model is more general than these special cases. Also, for sake of simplicity, we assumed
causal sufficiency here; however, in the presence of unobserved confounders, other types of stable
features are also possible; for example, if we consider the possibility of unobserved confounders U
influencing Y that are independent of E (i.e., invariant across domains), then our method can also
utilize stable features that are descendants of U (i.e., “siblings” of Y).

E Datasets

In our experiments, we consider five datasets: two (synthetic) numerical datasets and three image
datasets. We now describe each dataset.

Synthetic: Anti-causal (AC). We consider an anti-causal synthetic dataset based on that of
Jiang and Veitch [31, §6.1] where data is generated according to the following structural equations:

Y ← Rad(0.5);
XS ← Y · Rad(0.75);
XU ← Y · Rad(βe),

βe

XS

Y

XU

where the input X = (XS, XU) and Rad(β) denotes a Rademacher random variable that is −1 with
probability 1− β and +1 with probability β. Following Jiang and Veitch [31, §6.1], we create two
training domains with βe ∈ {0.95, 0.7}, one validation domain with βe = 0.6 and one test domain
with βe = 0.1.

Synthetic: Cause-effect with a direct XS-XU dependence (CE-DD). We also consider a synthetic
cause-effect dataset in which there is a direct dependence between XS and XU . In particular, follow-
ing Jiang and Veitch [31, App. B], data is generated according to the following structural equations:
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XS ← Bern(0.5);
Y ← XOR(XS, Bern(0.75));

XU ← XOR(XOR(Y, Bern(βe)), XS),

βe

XS

Y

XU

where the input X = (XS, XU) and Bern(β) denotes a Bernoulli random variable that is 1 with
probability β and 0 with probability 1− β. Note that XS ⊥̸⊥ XU |Y, since XS directly influences XU .
Following Jiang and Veitch [31, App. B], we create two training domains with βe ∈ {0.95, 0.8}, one
validation domain with βe = 0.2, and one test domain with βe = 0.1.

ColorMNIST. We next consider the ColorMNIST dataset [1]. This transforms the original MNIST
dataset into a binary classification task (digit in 0–4 or 5–9) and then: (i) flips the label with probability
0.25, meaning that, across all 3 domains, digit shape correctly determines the label with probability
0.75; and (ii) colorizes the digit such that digit color (red or green) is a more informative but spurious
feature (see Fig. 4).

PACS. We next consider the PACS dataset [37]—a 7-class image-classification dataset consisting of
4 domains: photos (P), art (A), cartoons (C) and sketches (S), with examples shown in Fig. 4. Model
performances are reported for each domain after training on the other 3 domains.

Camelyon17. Finally, in the additional experiments of App. F.2, we consider the Camelyon17 [3]
dataset from the WILDS benchmark [33]: a medical dataset with histopathology images from 5
hospitals which use different staining and imaging techniques (see Fig. 4). The goal is to determine
whether or not a given image contains tumor tissue, making it a binary classification task across 5
domains (3 training, 1 validation, 1 test).

Camelyon17

PACS

ColorMNIST

Dataset Domains

Figure 4: Examples from ColorMNIST [1], PACS [37] and Camelyon17 [3]. Figure and examples
based on Gulrajani and Lopez-Paz [24, Table 3] and Koh et al. [33, Figure 4]. For ColorMNIST, we
follow the standard approach [1] and use the first two domains for training and the third for testing.
For PACS [37], we follow the standard approach [37, 24] and use each domain in turn for testing,
using the remaining three domains for training. For Camelyon17 [3], we follow WILDS [33] and
use the first three domains for training, the fourth for validation, and the fifth for testing.

F Further Experiments

This appendix provides further experiments which supplement those in the main text. In particular,
it provides: (i) an ablation on the ColorMNIST dataset showing the effects of bias correction, post-
hoc calibration and multiple rounds of pseudo-labelling on SFB’s performance (F.1.1); (ii) the
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performance of SFB on the ColorMNIST dataset when using different stability penalties (F.1.2); and
(iii) results on a real-world medical dataset, Camelyon17 [3], where we find that all methods perform
similarly when properly tuned (F.2).

F.1 ColorMNIST

We now provide ablations on the ColorMNIST dataset to illustrate the effectiveness of the different
components of SFB. In particular, we focus on bias correction and calibration, while also showing
how multiple rounds of pseudo-labeling can improve performance in practice.

F.1.1 Ablations

Bias correction. To adapt the unstable classifier in the test domain, SFB employs the bias-corrected
adaptation algorithm of Alg. 1 (or Alg. 2 for the multi-class case) which corrects for biases caused by
possible disagreements between the stable-predictor pseudo-labels Ŷ and the true label Y. In this
(sub)section, we investigate the performance of SFB with and without bias correction (BC).

Calibration. As discussed in § 4.2, correctly combining the stable and unstable predictions post-
adaptation requires them to be properly calibrated. In particular, it requires the stable predictor fS to be
calibrated with respect to the true labels Y and the unstable predictor fU to be calibrated with respect
to the pseudo-labels Ŷ. In this (sub)section, we investigate the performance of SFB with and without
post-hoc calibration (in particular, simple temperature scaling [25]). More specifically, we investigate
the effect of calibrating the stable predictor (CS) and calibrating the unstable predictor (CU).

Multiple rounds of pseudo-labeling. While SFB learns the optimal unstable classifier he
U in the

test domain given enough unlabelled data, § 4.1 discussed how more accurate pseudo-labels Ŷ
improve the sample efficiency of SFB. In particular, in a restricted-sample setting, more accurate
pseudo-labels result in an unstable classifier he

U which better harnesses XU in the test domain. With
this in mind, note that, after adapting, we expect the joint predictions of SFB to be more accurate
than its stable-only predictions. This raises the question: can we use these improved predictions to
form more accurate pseudo-labels, and, in turn, an unstable classifier he

U that leads to even better
performance? Furthermore, can we repeat this process, using multiple rounds of pseudo-labelling to
refine our pseudo-labels and ultimately he

U? While this multi-round approach loses the asymptotic
guarantees of § 4.2, we found it to work quite well in practice. In this (sub)section, we thus investigate
the performance of SFB with and without multiple rounds of pseudo-labeling (PL rounds).

Table 4: SFB ablations on CMNIST. Means and standard errors are over 3 random seeds. BC: bias
correction. CS: post-hoc calibration of the stable classifier. CU: post-hoc calibration of the unstable
classifier. PL Rounds: Number of pseudo-labeling rounds used. GT adpt: “ground-truth” adaptation
using true labels in the test domain.

Algorithm Bias Calibration PL Rounds Test Acc.
Correction Stable Unstable

SFB no adpt. 1 70.6± 1.8

SFB 1 78.0± 2.9
+BC 1 83.4± 2.8
+CS 1 80.6± 3.4
+CU 1 76.6± 2.4
+BC+CS+CU 1 84.4± 2.2
+BC+CS 1 84.9± 2.6
+BC+CS 2 87.4± 1.9
+BC+CS 3 88.1± 1.8
+BC+CS 4 88.6± 1.3
+BC+CS 5 88.7± 1.3

SFB GT adpt. 1 89.0± 0.3
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Results. Table 4 reports the ablations of SFB on ColorMNIST. Here we see that: (i) bias correction
significantly boosts performance (+BC); (ii) calibrating the stable predictor also boosts performance
without (+CS) and with (+BC+CS) bias correction, with the latter leading to the best performance;
(iii) calibrating the unstable predictor (with respect to the pseudo-labels) slightly hurts performance
without (+CU) and with (+BC+CS+CU) bias correction and stable-predictor calibration; (iv) multiple
rounds of pseudo-labeling boosts performance, while also reducing the performance variation across
random seeds; (v) using bias correction, stable-predictor calibration and 5 rounds of pseudo-labeling
results in near-optimal adaptation performance, as indicated by the similar performance of SFB when
using true labels Y to adapt he

U (denoted “SFB GT adpt.” in Table 4).

F.1.2 Different stability penalties

In our experiments of § 6, we used IRM for the stability term of our SFB method, given in Eq. (5.1).
However, as discussed in § 5, many other approaches exist for enforcing stability [35, 58, 47, 15,
67, 40, 78], and, in principle, any of these could be used. To illustrate this point, we now evaluate
the performance of SFB when using different stability penalties, namely IRM [1], VREx [35],
EQRM [15] and CLOvE [70]. For all penalties, we use SFB with bias correction, post-hoc calibration
of the stable predictor, and 5 rounds of pseudo-labeling (see the ablation study of App. F.1.1).

Table 5: CMNIST test-domain accuracies for SFB with different stability penalties. Shown are the
mean and standard error over 10 seeds.

Algorithm Without Adaptation With Adaptation
SFB w. IRM 70.6± 1.8 88.7± 1.3
SFB w. VREx 72.5± 1.0 88.7± 1.5
SFB w. EQRM 69.0± 2.8 88.2± 2.5
SFB w. CLOvE 67.0± 3.7 77.0± 6.6

F.1.3 Full results

We now provide extended/full results of those provided in the main text. In particular, Table 6
represents an extended version of Table 3 in the main text, comparing against many more baseline
methods. In addition, Table 7 provides the full numerical results for all adaptive baseline methods
(described in App. G.1), which correspond to the plots of Fig. 2 in the main text.

Table 6: CMNIST test-domain accuracies. Mean and standard error are over 10 seeds. Extended/full
version of Table 3 in the main text.

Algorithm Test Acc.
ERM 27.9± 1.5
GroupDRO [53] 29.0± 1.1
IRM [1] 69.7± 0.9
SD [46] 70.3± 0.6
IGA [57] 57.7± 3.3
Fishr [48] 70.1± 0.7
V-REx [35] 71.6± 0.5
EQRM [15] 71.4± 0.4
SFB no adpt. 70.6± 1.8
SFB 88.1± 1.8

Oracle no adpt. 72.1± 0.7
Oracle 89.9± 0.1

F.2 Camelyon17

We now provide results on the Camelyon17 [3] dataset. See App. E for a description of the dataset,
and App. G.5 for implementation details.
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Algorithm Domain (Color-Label Correlation)

1.0 0.9 0.8 0.7 0.6 0.5 -0.6 -0.7 -0.8 -0.9 -1.0

ERM 97.5± 0.3 88.5± 0.4 79.7± 0.4 70.6± 0.5 61.4± 0.7 52.5± 0.4 43.5± 0.7 34.7± 0.7 25.1± 0.5 16.4± 0.4 7.6± 0.6
ERM+T3A 98.1± 0.2 88.9± 0.4 79.8± 0.4 70.4± 0.5 61.0± 0.8 51.7± 0.4 42.3± 0.7 33.0± 0.6 23.1± 0.4 13.8± 0.5 4.5± 0.5
ERM+PL (last) 97.6± 0.2 88.6± 0.3 79.7± 0.4 70.6± 0.5 61.4± 0.8 52.5± 0.4 43.4± 0.7 34.6± 0.7 25.0± 0.5 16.2± 0.3 7.4± 0.6
ERM+PL (all) 100.0± 0.0 90.0± 0.4 80.2± 0.4 70.1± 0.4 59.9± 0.8 50.1± 0.4 40.0± 0.5 30.1± 0.6 19.6± 0.3 9.9± 0.3 0.0± 0.1

IRM 70.6± 2.1 70.3± 1.9 70.4± 1.7 70.2± 1.1 69.9± 0.7 69.9± 0.7 70.1± 0.5 69.7± 0.6 69.8± 1.2 69.6± 1.6 69.4± 1.7
IRM+T3A 72.3± 1.7 71.2± 1.6 70.7± 1.6 70.2± 1.0 69.8± 0.7 69.9± 0.7 70.3± 0.6 70.6± 0.5 71.6± 1.1 72.4± 1.7 73.4± 1.9
IRM+PL (last) 70.8± 2.2 70.5± 1.9 70.5± 1.7 70.2± 1.1 69.9± 0.7 69.9± 0.6 70.0± 0.6 69.7± 0.6 69.9± 1.2 69.8± 1.6 69.7± 1.7
IRM+PL (all) 99.6± 1.2 89.4± 1.2 79.5± 1.3 68.7± 3.8 63.3± 4.7 63.5± 5.3 63.8± 4.5 67.5± 2.8 76.4± 4.2 87.2± 5.0 98.2± 3.0

SFB 100.0± 0.1 90.5± 0.5 79.8± 0.8 71.0± 1.1 70.9± 0.3 69.2± 0.4 68.4± 1.3 71.2± 0.3 79.3± 1.2 88.7± 1.3 98.9± 1.5

Table 7: CMNIST comparison with other test-time/source-free unsupervised domain adaptation
methods. Means and standard errors are over 10 seeds. The largest mean per column/domain is in
bold. “last”: only last-layer updated. “all”: all layers updated. Fig. 2 gives the corresponding plot.

Table 2 shows that ERM, IRM and SFB perform similarly on Camelyon17. In line with [24], we
found that a properly-tuned ERM model can be difficult to beat on real-world datasets, particularly
when the model is pre-trained on ImageNet and the dataset doesn’t contain severe distribution shift.
While we conducted this proper tuning for ERM, IRM, and SFB (see App. G.5), doing so for ACTIR
was non-trivial. We thus report the result from their paper [31, Table 1], which is likely lower due to
sub-optimal hyperparameters. In particular, we found that, for ERM and IRM, using a lower learning
rate (1e-5 vs 1e-4) and early stopping (1 vs 25 epochs) improved performance by 20 percentage
points, from around 70% [31, Table 1] to around 90% (Table 8 below). It remains to be seen whether
or not ACTIR can improve over a properly-tuned ERM model on Camelyon17.

While it may seem disappointing that SFB does not outperform the simpler methods of IRM and
ERM on Camelyon17, we note that SFB can only be expected to do well when there is some gain
in out-of-distribution performance from enforcing stability, e.g., when IRM outperforms ERM. The
identical performances of IRM and ERM in Table 8 indicate that, with ImageNet pre-training and
proper hyperparameter tuning, this is not the case for Camelyon17. Finally, despite the similar
performances, we note that adapting SFB on Camelyon17 still gives a small performance boost and
reduces the variance across random seeds.

Table 8: Camelyon17 test-domain accuracies. Mean and standard errors are over 5 random seeds. †:
Result taken from [31, Tab. 1] and is likely lower due to sub-optimal hyperparameters (they report
≈70% for ERM and IRM).

Algorithm Accuracy
ERM 90.2± 1.1
IRM 90.2± 1.1
ACTIR 77.7± 1.7†

SFB no adpt. 89.8± 1.2
SFB 90.3± 0.7

G Implementation Details

Below we provide further implementation details for the experiments of this work. Code is available
at: https://github.com/cianeastwood/sfb.

G.1 Adaptive baselines

For both the synthetic and CMNIST datasets, we compare against adaptive baseline methods by using
pseudo-labeling (PL, [36]) and test-time classifier adjustment (T3A, [30]) on top of both ERM and
IRM, choosing all adaptation hyperparameters using leave-one-domain-out cross-validation:

• ERM/IRM + PL (last): After training with ERM/IRM, we update the last layer using the model’s
own pseudo-labels [36].

• ERM/IRM + PL (all): After training with ERM/IRM, we update all layers using the model’s own
pseudo-labels [36].
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• ERM/IRM + T3A: After training with ERM/IRM, we replace the classifier (final layer) with the
template-based classifier of T3A [30]. This means: (i) computing template representations for each
class using pseudo-labeled test-domain data; and (ii) classifying each example based on its distance
to these templates.

G.2 Synthetic experiments

Following Jiang and Veitch [31], we use a simple three-layer network with 8 units in each hidden
layer and the Adam optimizer, choosing hyperparameters using the validation domain.

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20} and λC in {0.01, 0.1, 1}. For SFB’s unsuper-
vised adaptation, we employ the bias correction of Alg. 1 and calibrate the stable predictor using
post-hoc temperature scaling, choosing the temperature to minimize the expected calibration er-
ror (ECE, [25]) on the validation domain. In addition, we use the Adam optimizer with an adaptation
learning rate of 0.01, choosing the number of adaptation steps in [1, 20] (via early stopping) using the
validation domain. Finally, we report the mean and standard error over 100 random seeds.

G.3 ColorMNIST experiments

Training details. We follow the setup of Eastwood et al. [15, §6.1] and build on their open-source
code5. In particular, we use the original MNIST training set to create training and validation sets for
each domain, and the original MNIST test set for the test sets of each domain. For all methods, we
use a 2-hidden-layer MLP with 390 hidden units, the Adam optimizer, a learning rate of 0.0001 with
cosine scheduling, and dropout with p=0.2. In addition, we use full batches (size 25000), 400 steps
for ERM pre-training (which directly corresponds to the delicate penalty “annealing” or warm-up
periods used by penalty-based methods on ColorMNIST [1, 35, 15, 74]), and 600 total steps. We
sweep over stability-penalty weights in {50, 100, 500, 1000, 5000} for IRM, VREx and SFB and
α’s in 1− {e−100, e−250, e−500, e−750, e−1000} for EQRM. As the stable (shape) and unstable (color)
features are conditionally independent given the label, we fix SFB’s conditional-independence penalty
weight λC = 0. As is the standard for ColorMNIST, we use a test-domain validation set to select
the best settings (after the total number of steps), and then report the mean and standard error over
10 random seeds on a test-domain test set. As in previous works, the hyperparameter ranges of all
methods are selected by peeking at test-domain performance. While far from ideal, this is quite
difficult to avoid with ColorMNIST and highlights a core problem with hyperparameter selection in
DG—as discussed by many previous works [1, 35, 24, 74, 15].

SFB adaptation details. For SFB’s unsupervised adaptation in the test domain, we use a batch
size of 2048 and employ the bias correction of Alg. 1. In addition, we calibrate the stable predictor
using post-hoc temperature scaling, choosing the temperature to minimize the expected calibration
error (ECE, [25]) across the two training domains. Again using the two training domains for
hyperparameter selection, we sweep over adaptation learning rates in {0.1, 0.01}, choose the best
adaptation step in [5, 20] (via early stopping), and sweep over the number of pseudo-labeling rounds
in [1, 5]. Finally, we report the mean and standard error over 3 random seeds for adaptation.

G.4 PACS experiments

We follow the setup of Jiang and Veitch [31, § 6.4] and build on their open-source code6. This
means using an ImageNet-pretrained ResNet-18, the Adam optimizer with a learning rate of 10−4,
and choosing hyperparameters using leave-one-domain-out cross-validation (akin to K-fold cross-
validation, except with domains). In particular, for each held-out test domain, we train 3 models—each
time leaving out 1 of the 3 training domains for validation—and then select hyperparameters based
on the best average performance across the held-out validation domains. Finally, we use the selected
hyperparameters to retrain the model using all 3 training domains.

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20}, λC in {0.01, 0.1, 1}, and learning rates in
{10−4, 50−4}. For SFB’s unsupervised adaptation, we employ the multi-class bias correction of
Alg. 2 and calibrate the stable predictor using post-hoc temperature scaling, choosing the temperature

5https://github.com/cianeastwood/qrm/tree/main/CMNIST
6https://github.com/ybjiaang/ACTIR.
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to minimize the expected calibration error (ECE, [25]) across the three training domains. In addition,
we use the Adam optimizer with an adaptation learning rate of 0.01, choosing the number of adaptation
steps in [1, 20] (via early stopping) using the training domains. Finally, we report the mean and
standard error over 5 random seeds.

G.5 Camelyon17 experiments

We follow the setup of Jiang and Veitch [31, § 6.3] and build on their open-source code7. This
means using an ImageNet-pretrained ResNet-18, the Adam optimizer, and, following [33], choosing
hyperparameters using the validation domain (hospital 4). In contrast to [31], we use a learning rate
of 10−5 for all methods, rather than 10−4, and employ early stopping using the validation domain.
We found this to significantly improve all methods. E.g., the baselines of ERM and IRM improve by
approximately 20 percentage points, jumping from ≈ 70% to ≈ 90%.

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20} and λC in {0.01, 0.1, 1}. For SFB’s unsuper-
vised adaptation, we employ the bias correction of Alg. 1 and calibrate the stable predictor using
post-hoc temperature scaling, choosing the temperature to minimize the expected calibration er-
ror (ECE, [25]) on the validation domain. In addition, we use the Adam optimizer with an adaptation
learning rate of 0.01, choosing the number of adaptation steps in [1, 20] (via early stopping) using the
validation domain. Finally, we report the mean and standard error over 5 random seeds.

H Further Related Work

Learning with noisy labels. An intermediate goal in our work, namely learning a model to predict
Y from XU using pseudo-labels based on XS, is an instance of learning with noisy labels, a widely
studied problem [56, 44, 7, 60, 38, 64, 75]. Specifically, under the complementarity assumption
(XS ⊥⊥ XU |Y), the accuracy of the pseudo-labels on each class is independent of XU , placing us
in the so-called class-conditional random noise model [56, 44, 7, 75]. As we discuss in Section 4,
our theoretical insights about the special structure of pseudo-labels complement existing results on
learning under this model. Our bias-correction (Eq. (4.3)) for PY|XU

is also closely related to the
“method of unbiased estimators” [44] and to the bias correction proposed in Eq. (1) of Zhang et al.
[75]. However, rather than correcting the loss used in ERM, our post-hoc bias correction applies
to any calibrated classifier. Moreover, our ultimate goal, learning a predictor of Y jointly using XS
and XU , is not captured by learning with noisy labels.

Co-training. Our use of stable-feature pseudo-labels to train a classifier based on a disjoint subset of
(unstable) features is reminiscent of co-training [10]. Both methods benefit from conditional indepen-
dence of the two feature subsets given the label to ensure that they provide complementary informa-
tion.8 The key difference is that while co-training requires (a small number of) labeled samples from
the same distribution as the test data, our method instead uses labeled data from a different distribu-
tion (training domains), along with the assumption of a stable feature. Additionally, while co-training
iteratively refines two pre-trained classifiers symmetrically based on each other’s predictions, our
method only trains the unstable classifier, in a single iteration, using the stable classifier’s predictions.

Boosting. Our method of building a strong (albeit unstable) classifier using a weak (but stable)
one is reminiscent of boosting, in which one ensembles weak classifiers to create a single strong
classifier [54] and which inspires the name of our approach, “stable feature boosting (SFB)”. However,
whereas traditional boosting improves weak classifiers by examining how their predictions differ
from true labels, our adaptation method utilizes only pseudo-labels and needs no true labels from the
test domain. For example, while traditional boosting only refines functions of existing features, SFB
can utilize new features that are only available in the test domain.

Learning theory for domain generalization. In addition to often assuming particular kinds of
distribution shifts (e.g., covariate shift), existing error bounds for domain generalization often depend
on some notion of distance between training and test domains (which does not vanish as more data
is collected within domains) [9, 5, 77, 76] or assume that the test domain has a particular structural

7See Footnote 6.
8See Krogel and Scheffer [34], Blum and Mitchell [10, Theorem 1] for discussion of this assumption.
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relationship with the training domains (e.g., is a convex combination of training domains [41]).
In contrast, under the structure of invariant and complementary features, we show that consistent
generalization (i.e., with generalization error vanishing as more data is collected within domains) is
possible in any test domain. Additionally, whereas these prior works derive uniform convergence
bounds (implying good generalization for ERM), our results demonstrate the benefit of an additional
bias-correction step after training. We also note that, in much of this literature, “invariance” refers to
invariance of the covariate marginal distribution PX across domains; in contrast, our notion of stable
features (Defn. 4.1) refers to invariance of the conditional PY|X .

I Performance When Complementarity is Violated

Thm. 4.4 justifies the bias correction of Eq. (4.3) under the assumption that stable XS and unstable
XU features are complementary, i.e., conditionally independent given the label Y. In this section,
we discuss what happens if this assumption is relaxed and provide some intuition for why the bias
correction appears to help even when complementarity is violated (as we observed in some of our
experiments). In particular, we provide an argument that, in most cases, the bias correction should
improve the accuracy of a naive classifier by making it agree more often with the Bayes-optimal
classifier. While not a rigorous proof, we believe that this argument provides some insight into SFB’s
strong performance even when complementarity is violated.

In the absence of complementarity, the quantity Pr[Ŷ = 1|Y = 1, Xu = xU ] no longer reduces to
the class-wise accuracy Pr[Ŷ = 1|Y = 1]; thus we write more generally ϵ1(xU) = Pr[Ŷ = 1|Y =

1, Xu = xU ], and we write ϵ1 = EXU [ϵ1(XU)] = Pr[Ŷ = 1|Y = 1] instead of simply ϵ1 for the
accuracy on class 1. Similarly, we write ϵ0(xU) = Pr[Ŷ = 0|Y = 0, Xu = xU ], and we write
ϵ0 = EXU [ϵ0(XU)] = Pr[Ŷ = 0|Y = 0] instead of simply ϵ0 for the accuracy on class 0.

Let f∗(xU) = Pr[Y = 1|XU = xU ] denote the true regression function, and let h∗(xU) =
1{ f∗(xU) > 0.5} denote the Bayes-optimal classifier. It is well known that the Bayes-optimal
classifier h∗ has the maximum possible accuracy out of all classifiers. Thus, the sub-optimality of a
classifier h can be measured by the probability S(h) = PrXU [h(XU) ̸= h∗(XU)] that it disagrees
with the Bayes-optimal classifier. Our next result expresses S(h) in terms of the true regression
function f∗, the functions ϵ0 and ϵ1, and the distribution of XU , when h is the bias-corrected classifier

hBC(xU) := 1

{
Pr[Ŷ = 1|XU = xU ] + ϵ0 − ϵ1

ϵ0 + ϵ1 − 1
> 0.5

}

from Thm. 4.4 or when h is the “naive” classifier

hNaive(xU) := 1
{

Pr[Ŷ = 1|XU = xU ] > 0.5
}

that simply treats the pseudo-labels as true labels.

Proposition I.1.

S (hBC) = Pr
XU

[
| f∗(XU)− 0.5| ≤

∣∣ϵ0(XU)− ϵ1(XU)−EXU [ϵ0(XU)− ϵ1(XU)]
∣∣

2(ϵ0(XU) + ϵ1(XU)− 1)

]
,

and

S (hNaive) = Pr
XU

[
| f∗(XU)− 0.5| ≤ |ϵ0(XU)− ϵ1(XU)|

2(ϵ0(XU) + ϵ1(XU)− 1)

]
.

These two formulae for S (hBC) and S (hNaive) differ only in the numerator of the right-hand side;
letting Z := ϵ0(XU)− ϵ1(XU), the sub-optimality of hBC scales with |Z − E[Z]|, whereas the
sub-optimality of hNaive scales with |Z|. Intuitively, for all except very pathological random variables
Z, |Z−E[Z]| is typically smaller than |Z|. Although not a rigorous proof that the bias correction is
always better than the naive classifier, this analysis provides an argument that, in most cases, the bias
correction should improve on the accuracy of the naive classifier, by making it agree more often with
the Bayes-optimal classifier.

We conclude by sketching the proof of Proposition I.1:
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Proof. By construction, a thresholding classifier h(x) = 1{ f (x) > 0.5} disagress with the Bayes-
optimal classifier if and only if

f (x) ≤ 0.5 < f∗(x) or f∗(x) ≤ 0.5 < f (x).

Expanding these inequalities in the cases f (x) = Pr[Ŷ=1|XU=x]+ϵ0−ϵ1
ϵ0+ϵ1−1 and f (x) = Pr[Ŷ = 1|XU =

x] and solving for the quantity f∗(x)− 0.5 in each case gives Proposition I.1.
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A PROOFS

A.1 PROOF OF PROPOSITION 3.3

Proposition 3.3. If D = C = 1 and K = L (i.e., dim(c) = dim(z)), then R is a permutation matrix.

Proof. First, by Defn. 2.1, we have 0 ≤ Rij and ∑L
i=1 Rij = 1 ∀i, j, so 0 ≤ Rij ≤ 1. It follows that

∀i, j : Pi·, P̃·j ∈ ∆K−1, where ∆K−1 denotes the K-dim. probability simplex, i.e., Pi· and P̃·j are valid
probability vectors. Hence, the Shannon entropies HK(Pi·), HK(P̃·j) are well-defined ∀i, j, and, due
to using logK in the definition of HK (see § 2), are bounded in [0, 1]. It follows that ∀i, j : 0 ≤ Di ≤ 1
and 0 ≤ Cj ≤ 1. Since D and C are convex combinations of the Di and Cj, we have

D = 1 ⇐⇒ ∀i : Di = 1 ⇐⇒ ∀i : HK(Pi·) = 0 ,

C = 1 ⇐⇒ ∀j : Cj = 1 ⇐⇒ ∀j : HK(P̃·j) = 0 .

Now for any p = (p1, ..., pK) ∈ ∆K−1, we have that

HK(p) = −∑K
k=1 pk logK pk = 0 ⇐⇒ ∀k : pk logK pk = 0 ⇐⇒ ∀k : pk ∈ {0, 1}

where pk log pk := 0 for pk = 0, consistent with limx→0+ x log x = 0. Together with the simplex
constraint, this implies that p must be a standard basis vector p = el for some l, i.e., pl = 1 and
pk = 0 for k ̸= l. Hence, Pi·, P̃·j must be standard basis vectors for all i, j, and so each row and
column of R contains exactly one non-zero element. Since columns of R sum to one, these non-zero
elements must all be one.

A.2 PROOF OF COROLLARY 3.4

Corollary 3.4. Under the same conditions as Prop. 3.3, if z = W⊤c (so that I = 1) for some W
with Rij =

|wij |
∑L

i=1 |wij |
, then c identifies z up to permutation and sign (Defn. 3.1).

Proof. First, we show that Rij =
|wij |

∑L
i=1 |wij |

is a well-defined feature importance matrix. Suppose for a

contradiction, that ∑L
i=1 |wil | = 0 for some l. Since |wil | ≥ 0, this implies wil = 0 for all i. Consider

zl = ∑L
i=1 wilci. Taking the covariance, we obtain Var[zl ] = ∑L

i,j=1 wilwjl Cov(ci, cj) = 0, which
is a contradiction since zl has positive (unit) variance by the normalisation assumption (see footnote
1). Hence, ∑L

i=1 |wil | > 0 for all l. Thus R is well-defined, with its elements being non-negative and
its columns summing to one by construction, so it is a valid feature importance matrix.

Next, note that we can write R = |W |D where D is the invertible diagonal matrix with positive
diagonal entries Djj =

1
∑L

i=1 |wij |
> 0.

By Prop. 3.3, R is a permutation matrix, so R = P = |W |D for some permutation matrix P. Right
multiplication by D−1 yields PD−1 = |W |, that is |W | has exactly one non-zero, positive element
in each row and each column (and zeros elsewhere). Thus W and therefore also W⊤ are generalised
permutation matrices. Hence (W⊤)−1 exists and is also a generalised permutation matrix.

Finally, consider c = (W⊤)−1z. Since all but ony element in each row of (W⊤)−1 are zero, we have
for any i: ci = w̃ijzj for some j, where w̃ij denotes the (i, j) element of (W⊤)−1. By considering the
variances of both sides and recalling that all ci’s and zj’s are normalised to unit variance, it follows
that 1 = Var(ci) = w̃2

ij Var(zj) = w̃2
ij. Hence, w̃2

ij = ±1 and so (W⊤)−1 is, in fact, a signed
permutation matrix, which concludes the proof.

A.3 PROOF OF COROLLARY 3.5

Corollary 3.5. Under the same conditions as Prop. 3.3, let z = f (c) (so that I = 1) with f an
invertible and differentiable nonlinear function, and let R be a matrix of relative feature importances
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for f (Defn. 2.1) with the property that Rij = 0 if and only if f j does not depend on ci, i.e.,∣∣∣∣∂i f j
∣∣∣∣

2 = 0. Then c identifies z up to permutation and element-wise reparametrisation (Defn. 3.2).

Proof. For any j consider zj = f j(c). By Prop. 3.3, R is a permutation matrix, so column j of R
contains exactly one non-zero entry in row π(j) for some permutation π of {1, ..., K}. Hence, by the
assumed property of R, f j(c) does not depend on ci for all i ̸= π(j), and thus zj = f j(cπ(j)) ∀j. By
invertibility of f , we obtain cj = hj(zj′) with hj = f−1

j′ and j′ = π−1(j).

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 DOWNSTREAM CORRELATIONS

Here we present the full results of the correlations between the DCIE scores and downstream
performance, the latter with low-capacity probes (as discussed in § 6.3).

In Tab. 3 and Tab. 4 we show the values of the Pearson and Spearman correlations alongside the
corresponding p-values5. Note that some of the assumptions behind these p-values, e.g. that the
DCIE scores and downstream performances are normally distributed, likely do not hold. Thus, these
p-values should not be interpreted as precise probabilities but rather as rough indications of statistical
significance. In Tab. 5 we show the correlations for regression and classification tasks separately,
with both task types exhibiting similar correlations. We note that E has the strongest correlation with
the downstream performance (when using low-capacity probes for the downstream task).

Table 3: Pearson correlation coefficient ρ between the D, C, I, and E scores and downstream performance,
along with the corresponding p-values (in parentheses). See § 6.3 for experimental details.

Probe f D C I E

MLP 0.15 (4× 10−1) 0.28 (9× 10−1) 0.47 (9× 10−3) 0.96 (8× 10−18)

RF 0.8 (1× 10−7) 0.70 (2× 10−5) 0.4 (3× 10−2) 0.88 (2× 10−10)

Table 4: Spearman rank correlation between the D, C, I, and E scores and downstream performance, along
with the corresponding p-values (in parentheses).

Probe f D C I E

MLP 0.12 (5× 10−1) -0.07 (7× 10−1) 0.55 (2× 10−3) 0.94 (1× 10−14)

RF 0.81 (6× 10−8) 0.75 (2× 10−6) 0.28 (1× 10−1) 0.78 (3× 10−7)

Table 5: Pearson correlation coefficient ρ between the D,C,I, E scores and downstream performance for each
task type (regression and classification). Correlations are similar across both task types.

Probe f Task D C I E

MLP Regression 0.16 0.04 0.46 0.96
Classification 0.14 0.00 0.48 0.96

RF Regression 0.76 0.66 0.42 0.84
Classification 0.81 0.72 0.35 0.89

Score-by-score analysis. To get a deeper insight into the correlations reported in Tabs. 3 and 4,
we plot each of the D, C, I and E scores against downstream performance for each of the 30 models
considered in § 6.3. As shown in Figs. 6 to 9, only E correlates strongly with downstream performance

5Computed using https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.pearsonr.html

14

180 Appendix A. Paper Appendices



Published as a conference paper at ICLR 2023

for both probe types, again highlighting: (i) the value that E adds to the existing DCI framework; and
(ii) the practical usefulness of reporting E when comparing/evaluating learned representations.
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Figure 6: Explicitness (E) vs. downstream performance. Scatter plots show 30 data points: 3
models (AEs, VAEs, β-VAEs) × 2 latent dimensionalities (L = 10 and L = 50) × 5 random seeds.
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Figure 7: Disentanglement (D) vs. downstream performance. Scatter plots show 30 data points: 3
models (AEs, VAEs, β-VAEs) × 2 latent dimensionalities (L = 10 and L = 50) × 5 random seeds.

B.2 DIFFERENT AMOUNTS OF DATA

In Fig. 10 we present loss-capacity curves obtained when using different amounts of data to train the
MLP probes. As shown, larger datasets have smaller performance gaps between (i) synthetic and
learned representations; and (ii) small and large representations.
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Figure 8: Completeness (C) vs. downstream performance. Scatter plots show 30 data points: 3
models (AEs, VAEs, β-VAEs) × 2 latent dimensionalities (L = 10 and L = 50) × 5 random seeds.
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Figure 9: Informativeness (I) vs. downstream performance. Scatter plots show 30 data points: 3
models (AEs, VAEs, β-VAEs) × 2 latent dimensionalities (L = 10 and L = 50) × 5 random seeds.
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Figure 10: Loss-capacity curves for MPI3D-Real subsets of size 100, 1000, 5000 and 10000
respectively.
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