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Improving road safety is hugely important with the number of deaths on the world's

roads remaining unacceptably high; an estimated 1.3 million people die each year as

a result of road traffic collisions. Current practice for treating collision hotspots is

almost always reactive: once a threshold level of collisions has been overtopped dur-

ing some pre-determined observation period, treatment is applied (e.g., road safety

cameras). Traffic collisions are rare, so prolonged observation periods are necessary.

However, traffic conflicts are more frequent and are a margin of the social cost;

hence, traffic conflict before/after studies can be conducted over shorter time

periods. We investigate the effect of implementing the leading pedestrian interval

treatment at signalised intersections as a safety intervention in a city in north

America. Pedestrian-vehicle traffic conflict data were collected from treatment and

control sites during the before and after periods. We implement a before/after study

on post-encroachment times (PETs) where small PET values denote ‘near-misses’.
Hence, extreme value theory is employed to model extremes of our PET processes,

with adjustments to the usual modelling framework to account for temporal depen-

dence and treatment effects.
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1 | INTRODUCTION

Around 1.3 million people are killed every year as a result of road traffic accidents (RTAs), and between 20 and 50 million people suffer from non-

fatal injuries—around half of these are vulnerable road users such as pedestrians (WHO, 2020). The National Highway Traffic Safety Administra-

tion found that, in the United States, the second most common cause for injury-classed collisions is left-turning vehicles, and 22% of crashes at

intersections involve vehicles turning left (NCSA, 2021). Furthermore, 23% of pedestrian crashes occurred at intersections.

With the safety of pedestrians in mind, safety treatments at signalised intersections have been investigated. ‘The leading pedestrian interval

(LPI) is one treatment that has been implemented at signalised intersections to permit pedestrians to begin crossing several seconds before the

release of conflicting vehicle movements’ (van Houten et al., 2000). This, theoretically, should reduce potential conflicts between pedestrians and

vehicles. A significant reduction in potential conflicts will likely lead to a significant reduction in actual collisions. With such an intervention, there

is the added benefit of treating potential road safety hotspots proactively. Standard road safety interventions are usually analysed reactively, once

a threshold collision count has been over-topped during some pre-determined observation period. Collisions are rare events, and so prolonged

observation periods are necessary, with much waiting for collisions to happen to evaluate a treatment using a standard before/after (BA) analysis
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(perhaps using Empirical Bayes methodology—see, for example, Fawcett & Thorpe, 2013; Fawcett et al., 2017; Hauer, 1980). Working with near-

misses, as the LPI intervention does, means not having to wait for collisions to happen; the LPI is implemented by adjusting the signal-phasing and

pedestrian interval to provide a walk display of several seconds before the adjacent vehicle green display, making this an efficient and low-cost

safety measure.

BA studies are prominent in road safety intervention evaluations. Traditionally, RTA BA studies are focused on the reduction in frequency

and/or severity of collisions from before the intervention, to after (see, e.g., Elvik, 2002, Hauer, 1997, Sayed & Sacchi, 2016). Traffic conflicts are

generally defined as a situation in which a pedestrian and a vehicle approach each other in time and space to such an extent that they will collide

if their movements remain unchanged. Traffic conflicts are more frequent than collisions and easy to observe and are of marginal social cost

(Tarko, 2018). As such, traffic conflict BA studies can be conducted over shorter time periods. Furthermore, new technology has been adopted,

such as automated video techniques (Saunier & Sayed, 2007) and traffic simulation (Wang et al., 2018), to allow for detecting and tracking moving

objects based on their trajectories; conflict data are thus easily extracted.

Commonly, statistical inference is based on averages obtained from datasets, with procedures utilising the central limit theorem being

employed—supporting the use of the standard Normal distribution or associated t distribution. As we shall discuss in the next section, the LPI

intervention, and associated traffic conflict data on collision near-misses, justifies the use of the extremal types theorem instead. The associated

extreme value distributions, introduced by Fisher and Tippett (1928), arise as limits for the distribution of maxima (or minima) in sequences of

independent, identically distributed random variables. Typical applications occur in the environmental sciences to model, for example, extreme

precipitation events or extreme wind speeds (see, e.g., Arun et al., 2023, Fawcett & Walshaw, 2006); for interested readers, we point to the classi-

cal reference of Gumbel (1958) and, more recently, the tutorial-style text of Coles (2001). In this paper, we focus on the lower tail of the data

where small time values indicate a dangerous situation: a near-miss or collision between a pedestrian and left-turning vehicle.

The remainder of this paper is organised as follows. A brief description of the data is given in Section 2. The methodology of extreme value

theory is explained in Section 3 including describing two methods to handle dependence and the inclusion of covariates. In Section 4, we outline

the details of the Bayesian inference scheme, before considering the real data application in Section 4.5. Conclusions are drawn in Section 5.

2 | DATA

We have data from a national collision database, investigating the implementation a 5-s LPI at eight intersections in a north American city, to give

pedestrians more time to cross before a left-turning car is released. At each intersection, one crosswalk has been treated. Data were collected

from 1 March to 30 June 2018 (before period) and 1 August to 31 October 2018 (after period), with data coming from the same 12-h period each

day (8:00–20:00) to mitigate potential confounders such as cyclic variation. Data spanning exactly the same time period are also available for a

further seven intersections that have not been treated with the LPI intervention, for comparison purposes.

In this dataset, a conflict between a vehicle and a pedestrian is indicated using post-encroachment time (PET). PET is the time between the

moment the first road user passes the conflicting point, t1, and the moment the second user reaches that point, t2. The positions of the vehicle

and pedestrian are shown in Figure 1, where PET¼ t1 – t2. We have the minimum PET in 10-min intervals over the 12-h study period in each day,

for all intersections. PETs <15 s were recorded. As PET¼ t1� t2, if t1 ¼ t2, then we have a collision between pedestrian and vehicle. Small PET

values imply a near-miss, a value close to zero implying a dangerous situation. Our aim is to model extremely small PET values using extreme value

theory (EVT) and through this modelling template investigate differences between extremes from periods before and after the LPI treatment was

introduced.

In order to use standard methods from the EVT toolkit directly (designed for analysing ‘large’ extremes), we negate our series of PET values

at each location, thus switching the focus from very small values to very large values to identify dangerous situations in our series. Figure 2 shows

a time series plot of these negated PET values, and a plot of observations at neighbouring time points, for one of the intersections at which the

LPI was applied. Note the apparent systematic decrease in PET values after the LPI implementation at this specific intersection; note also the clear

temporal dependence between consecutive data values, persisting into the extremes of the process.

3 | METHODOLOGY

3.1 | Background

EVT has become popular in traffic conflict analyses. Zheng and Sayed (2019a) use a peaks over threshold approach including covariates in the

scale parameter for crash estimation; furthermore, they also use EVT on block maxima from a traffic conflict BA study (Zheng & Sayed, 2019b).

Wang et al. (2019) use bivariate EVT to predict annual crash frequencies at intersections. Fu et al. (2021) use hierarchical EVT modelling on traffic

conflict extremes for crash estimation. Guo et al. (2020) analysed the effectiveness of LPI treatment at two signalised intersections in Vancouver,
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Canada. They modelled the scale and shape parameters of the GPD as a function of a treatment indicator, a period indicator (before/after) and an

interaction of the two variables where dependence between consecutive extremes was removed through a declustering approach. In this paper,

we use EVT in an attempt to capture treatment effects from the LPI intervention described in Section 1. Our method aims to maximise data usage

by performing a threshold-based analysis (as opposed to a block maxima analysis; see, e.g., Coles, 2001). We also allow for a dependence between

consecutive extremes, as identified in Figure 2, through a first-order Markov chain structure, and a treatment effect through linear modelling of

one of the parameters in the extreme value model used.

F IGURE 1 Post-encroachment times (PET), PET¼ t2� t1

F IGURE 2 Left: time series plot of negated PET values (seconds) before and after intervention at Intersection 1, the vertical red line showing
the start of the after period. Right: temporal dependence of observations at neighbouring time points for intersection 1 (t on x axis against tþ1
on y axis)
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EVT provides a framework for estimating the probability of extreme events. The extremal type theorem gives limiting results for the extremes

of our process, providing a range of techniques for modelling the tail behaviour of our random variable without any assumptions about the under-

lying distribution of the data itself. There are two main approaches: the so-called ‘block maxima approach’ and the ‘threshold-based approach’. In
the former, a series of observations are blocked into fixed time intervals (e.g., years, giving rise to an ‘annual maxima analysis’), and the maximum

observation of each block is extracted to create our series of extremes. In a threshold-based analysis, all observations exceeding a suitable,

pre-defined threshold are classified as extreme. This study proposes the use of a threshold-based approach on the premise of including more data

in the analysis than the block maxima approach, which can be wasteful through discarding all but the most extreme observations in each block. It

is hoped that the inclusion of more datapoints will lend greater precision to the analysis, including reduced uncertainty in our estimated treatment

effect.

3.2 | Classifying and modelling extremes

Consider a stationary sequence of random variables, X1,…,Xnf g, each with the same distribution function (d.f.), F. Let Mn denote the maximum of

the set, such that Mn ¼ max X1,…,Xnf g. As n!∞, it is typically the case that

Pr Mn ≤ xð Þ≈ Fnθ xð Þ, ð1Þ

where θ� 0,1ð Þ and is the extremal index; for further details, see Leadbetter and Rootzén (1988). As θ!0, the process displays increasing depen-

dence in its extremes. In the case of an independent process, θ¼1, as Pr Mn ≤ xð Þ¼Pr X1,X2,…,Xn ≤ xð Þ¼Pr X1 ≤ xð Þ�Pr X2 ≤ xð Þ�…¼ Fn xð Þ.
Traditional Extreme Value Theory (EVT) initially focused on the independence case, aiming to discover limiting models for Fn without reference to

the marginal distribution F; small discrepancies in F could lead to substantial discrepancies in Fn.

In the study of extreme value theory, the Extremal Types Theorem provides a framework for the limiting behaviour of the maximum value Mn

as n!∞ (see Fisher & Tippett, 1928; Gnedenko, 1943). Analogous to the Central Limit Theorem, where the sample mean converges to the

population mean, the limiting distribution of Mn is degenerate, meaning the distribution converges to the upper endpoint of the distribution F with

probability 1. The theorem asserts that if constants an >0 and bn exist, then

Pr Mn�bnð Þ=an ≤ xf g!G xð Þ,

where G exists; it will conform to one of three distributions: Gumbel (I), Fréchet (II) or Weibull (III), with associated distribution functions,

I :G xð Þ ¼ exp �exp �xð Þf g, �∞< x<∞;

II :G xð Þ ¼
0 x≤0,

exp �x�αð Þ x>0,α>0;

(

III :G xð Þ ¼
exp � �xð Þαf g x<0,α> 0,

1 x≥0:

(

Collectively, these are termed the extreme value distributions. For Gumbel and Fréchet types, the upper–endpoint of the limiting distribution

G tends to ∞, while the Weibull type exhibits a finite upper limit. Importantly, the theorem neither guarantees the existence of a non-degenerate

limit for Mn nor specifies which of the three types will apply if such a limit exists. Nevertheless, when a limit distribution does exist, it will align

with one of the types defined by the Extremal Types Theorem, irrespective of the original distribution F.

3.2.1 | Block maxima: The generalised extreme value distribution

Independently, von Mises (1954) and Jenkinson (1955) introduced the Generalized Extreme Value (GEV) distribution, which unifies all three

extreme value distributions (Gumbel, Fréchet and Weibull). As the limiting model for Fn, the d.f. of the GEV is given by

G y;μ,σ,ξð Þ¼ exp � 1þξ y�μð Þ=σð Þ�1=ξ
þ

h i
, ξ≠0

exp �exp � y�μð Þ=σð Þ½ �, ξ¼0

(
,
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defined on y :1þξ y�μð Þ=σ >0f g, where �∞< μ<∞; σ >0 and �∞< ξ<∞ are parameters of location, scale and shape, respectively; and

aþ ¼ max 0,að Þ. It is noteworthy that Fnθ also follows the GEV distribution with d.f. G y;μ�,σ�,ξð Þ, where μ� ¼ μ� σ
ξ 1�θξ
� �

, σ� ¼ σθξ when ξ≠0,

and μ� ¼ μþσ lnθ, σ� ¼ σ when ξ¼0. This is contingent on satisfying Leadbetter's D unð Þ condition, as indicated in Leadbetter et al. (1983). Hence,

for block maxima, in practical terms, short-range dependence can be ignored. In practice, the GEV is employed to model maximum values over a

convenient calendar unit, often yearly. However, selecting an appropriate block size can present challenges. In our specific study, which spans

only months, employing years as blocks would be unsuitable. Blocks must be sufficiently large for the limiting theory to apply, yet if too large, the

available maxima for inference become sparse. Furthermore, this approach can be hugely wasteful of data, as it retains only the block maxima

while discarding the rest of the data. We wish to retain as much information as possible on the extremes of the process; however, this approach

may inadvertently eliminate other significant extremes that are not the absolute maximum within their respective blocks.

3.2.2 | Threshold excesses: The generalised Pareto distribution

Pickands (1975) showed that for an independent process (θ¼1) and large enough threshold, u, (X�u jX > u) follows a Generalised Pareto

Distribution (GPD) with d.f.

ℋ yð Þ¼ 1� 1þξy=eσð Þ1=ξ, ξ≠0

1� exp �y=eσð Þ, ξ¼0

(
, ð2Þ

defined on y >0, with scale and shape parameters eσ and ξ, respectively. Here, eσ is related to the parameters in the corresponding GEV for block

maxima through eσ¼ σþ ξ u�μð Þ. Threshold-based methods identify observations as extreme when they exceed a high threshold, commonly den-

oted as u. The GPD described in Equation (2) is then fitted to these threshold excesses. Section 3 will illustrate graphical diagnostics available for

optimal threshold selection. Unlike GEV-based modelling of block maxima, powering Fn (denotedℋ for the GPD) by θ, as specified by Equation (1),

does not result in another extreme value distribution incorporating the extremal index into its parameters. This necessitates careful scrutiny of

extremal dependence, which is often more prevalent in consecutive threshold excesses compared to consecutive block maxima.

3.3 | Handling dependence

As discussed, our aim here is to maximise precision by including as much data in the analysis as possible; hence, we will proceed with a threshold-

based approach to analysis. In this section, we describe two methods for handling temporal dependence present between consecutive threshold

excesses: a declustering approach, leading to the commonly-used ‘peaks over threshold’ analysis of a filtered subset of extremes, and an approach

that explicitly models the transition from one extreme to the other through a bivariate extreme value model. As the second plot in Figure 2

reveals, even above a high threshold, there appears to be dependence between consecutive PET values. At busier times of the day—perhaps early

morning or late-afternoon—we might expect more pedestrians to be using the crosswalks at each of our intersections, and a greater number of

vehicles turning into the intersections, perhaps resulting in a greater number of near-misses (with an associated clustering of small PET values) at

these times. Clustering of extremes is common in many other applications of the threshold approach to extreme value modelling—for example,

dependence between consecutive temperature or wind speed extremes and serial correlation in extremes obtained from financial time series.

Ignoring such dependence will likely lead to under-estimated uncertainty measures (e.g., confidence intervals that are unrealistically narrow); see

Barao and Tawn (1999) and Shi et al. (1992).

3.3.1 | Declustering

The goal of the declustering approach is to isolate a sequence of independent threshold excesses, thereby validating the approximation θ≈1 in

Equation (1). To achieve this, an auxiliary ‘declustering parameter’, denoted as κ, is selected. A cluster of threshold excesses is considered to have

ended when at least κ consecutive observations fall below the threshold. This process is iteratively applied across the entire data series to identify

clusters. Subsequently, the highest observation, or ‘peak’, is extracted from each identified cluster. The GPD is then fitted to the, hopefully inde-

pendent, peak excesses. This technique aims to handle extremal dependence effectively by focusing only on the most extreme values within each

cluster. This ‘peaks over threshold’ approach (POT; Davison & Smith, 1990) is a prevalent strategy for addressing clustered extremes. While

straightforward to implement, the technique does face challenges, particularly concerning the optimal choice of the declustering parameter, κ. A

low κ value risks insufficient separation between cluster peaks, undermining the assumption of independence. Conversely, a high κ value results

in fewer clusters for inference, making the approach data-inefficient. Additionally, the sensitivity of parameter estimates to κ has been highlighted

HEWETT ET AL. 5 of 14
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in previous studies (Fawcett & Walshaw, 2012). Given how commonplace POT analyses for threshold excesses have become, we will include

results based on this approach as a baseline for comparing our results using a first-order extreme value Markov chain for modelling dependence.

3.3.2 | Modelling dependence: First-order extreme value Markov chain

To avoid declustering, we can account for dependence between consecutive extremes by assuming a first-order Markov structure. For example,

we can assume the following joint density for our series of (negated) PET values at each intersection:

Qn�1

i¼1
g yi,yiþ1;Θð Þ
Qn�1

i¼2
g yi;Θð Þ

, ð3Þ

where Θ is a generic parameter vector. In a threshold excess context, univariate contributions to the denominator in Equation (3) are given

through the GPD (on differentiation of Equation (2)). Appealing to bivariate EVT, transformation from GPD to unit Fréchet margins (see,

e.g., Coles, 2001) provides a range of models to use for contributions to the numerator in Equation (3), the most commonly used being the logistic

family with d.f.:

H yi,yiþ1ð Þ¼ exp � y�1=α
i þy�1=α

iþ1

� �αn o
, ð4Þ

where H is a non-degenerate bivariate extreme value distribution. Here, α� ð0,1� controls the extent of extremal dependence in the process, with

independence giving α¼1 and α!0 corresponding to increasing levels of extremal dependence. Differentiation of Equation (4), with careful

censoring when one or both of yi ,yiþ1ð Þ lie sub-threshold, gives pairwise contributions to the numerator in Equation (3). Interested readers are

referred to Coles (2001) for further information and a more detailed discussion of bivariate EVT more generally. Where direct evaluation

of Equation (1) is necessary—for example, when obtaining quantiles from the fitted distribution (often used as estimates of return levels in

applications of EVT)—Fawcett and Walshaw (2012) provide an approximation to the extremal index θ based on the estimated logistic dependence

parameter α.

3.4 | Including covariates

When the data admit non-stationarity—for example, trend or a dependence on covariates—we can attempt to incorporate this non-stationarity

through linear modelling of the GEV or GPD parameters. Generally, we can write the extreme value parameters in the form h XTβ
� �

, where h is a

specified function, β is a vector of parameters and X is the model vector. Recall that the GPD (eσ,ξ) arises from the GEV (μ,σ,ξ), where the GPD

scale parameter is a function of the GEV location and shape parameters. Thus, attempting to model any trend in our threshold excesses is usually

done through linear modelling of the scale parameter, eσ. The PET data we are investigating have before/after time implications at each of the

15 intersections; hence, we attempt to capture the treatment effect through the following parameterisation of eσ:
eσt ¼ exp β0þβ1tð Þ, ð5Þ

to respect the positivity of eσ and where t¼0 in the before period and t¼1 in the after period. Hence, at each intersection, we might use the slope

parameter β1 as a proxy for our LPI treatment effect; an estimate of β1 that might be deemed significantly different from zero might be indicative

of a treatment effect at an intersection.

4 | APPLICATION

4.1 | Threshold selection

The threshold stability property of the GPD means that if it is a valid model for excesses over some threshold u0, then it is valid for excesses over

all thresholds u> u0. Furthermore, for all u> u0, E X�ujX > u½ � is a linear function of u. In practice, this expectation can be estimated empirically as
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the sample mean of the excesses over u. This leads to the mean residual life plot (MRL plot; see, e.g., Coles, 2001): a graphical procedure for iden-

tifying a suitably high threshold for modelling extremes via the GPD in which mean excesses over u are plotted against a range of values for u,

and the optimal threshold is chosen at the lowest point above which we observe linearity in the plot. MRL plots are a standard diagnostic tool for

threshold selection and have been constructed using PET data at each of our intersections to provide site-wise thresholds to identify extremes.

4.2 | Bayesian inference

Section 3 covers methodology for modelling extreme values, with a particular focus on threshold methods and handling temporal dependence. We

choose the Bayesian paradigm within which to make inferences on these models. A typical statistical analysis might formulate the likelihood function

for the assumed statistical model, maximising this with respect to the parameters in that model to obtain their maximum likelihood estimates: values

that maximise the likelihood that the process described by the model produced the data that were actually observed. In a classical sense, these are

sample-based estimates of fixed but unknown quantities. In the Bayesian paradigm, the likelihood is merely an ingredient in the inferential process;

via Bayes Theorem, it is combined with the density of the prior distribution to provide a posterior distribution for the parameters of interest—in effect

an update in our beliefs about the parameters after having observed some data, relative to our beliefs before observing these data. With a careful

choice of prior distribution, in some cases, it is possible to obtain the precise form of posterior distribution analytically; for example, in the conjugate

case, both the prior and posterior are from the same family of distributions, and the application of Bayes Theorem is trivial.

Crucially, the interpretation of the model parameters is different in the Bayesian setting: rather than being fixed (but unknown) constants, as

in the classical setting, the parameters are now regarded as random variables, with a distribution (prior and posterior). This means that in the

Bayesian setting, confidence intervals, for example, have a much more natural interpretation, with there being a probability of .95 that the param-

eter falls within the bounds of the 95% Bayesian confidence (or credible) interval. But the advantages of working within the Bayesian setting

stretch beyond the interpretation of resulting confidence intervals. For example, by their very nature extremes are scarce, and being able to sup-

plement an analysis with more information through the prior distribution has the potential to increase estimation precision. For example, Fawcett

and Walshaw (2006) record up to an 82% reduction in uncertainty in estimated wind speed extremes when comparing Bayesian and frequentist

approaches to inference. In the analysis of rainfall extremes, Walshaw and Smith (2003) noted an 84% reduction in the posterior standard devia-

tion in their estimates when using informative priors formed through discussions with a hydrologist, compared to the corresponding standard

errors from a maximum likelihood analysis. Also, when working with extreme value models, we do not need to worry about the regularity condi-

tions surrounding maximum likelihood estimation of the shape parameter ξ, resulting in maximum likelihood estimates being unobtainable when

ξ< �0:5—for full details, see Coles (2001).

Bayesian inference is commonplace in road safety BA studies. A popular method is empirical Bayes, which is used to account for regression to

the mean effects (see, e.g., Fawcett & Thorpe, 2013; Hauer, 1980). More recently, full Bayes methods have been used to filter effects of regression

to the mean from genuine treatment effects in road safety schemes (see, e.g., El-Basyouny & Sayed, 2012; Heydari et al., 2014). As Fawcett and

Thorpe (2013) discuss, a full Bayes analysis can provide a more flexible inferential framework with a range of prior distributions beyond the conju-

gate case being available; it can also provide a more realistic assessment of uncertainty in estimated treatment effects.

4.3 | Prior specification

In the absence of any expert prior information regarding our model parameters, and for ease of computation, we adopt fairly uninformative, inde-

pendent prior distributions. Recall that, for each intersection, we adopt a bivariate threshold excess model for negated PET values exceeding a

threshold (identified and validated through use of an MRL plot). The margins are assumed GPD with a linear model enabling the scale parameter

to vary between before and after periods via Equation (5); for the dependence between successive threshold excesses we adopt a logistic model

with a parameter quantifying the degree of serial correlation present. Thus, our parameter vector at each intersection can be written as

Θ¼ β0,β1,ξ,αð ÞT ,

for which we set the following prior:

π Θð Þ¼ π β0ð Þπ β1ð Þπ ξð Þπ αð Þ,

and where

β0 �N 0,10ð Þ, β1 �N 0,10ð Þ, ξ�N 0,100ð Þ and α�U 0,1ð Þ:
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4.4 | MCMC sampling

It is often the case that the posterior distribution cannot be found analytically. For example, in the case of the GPD, there exists no conjugate

prior specification for the model parameters, and so we cannot easily find the posterior distribution π Θjxð Þ; we cannot plot this distribution nor

find its moments, etc. Fortunately, techniques to sample from the posterior have been developed and are now routinely used, thanks to their

inclusion in many popular statistical software packages. The most common approach is to use a Markov chain Monte Carlo (MCMC) scheme (see,

e.g., Casella & George, 1992). A simple MCMC algorithm is a Normal random walk Metropolis-Hastings (MH) scheme (Hastings, 1970). Although

full details are omitted here, it is noted that—according to some careful ‘tuning’ of the algorithm through the choice of variance in the Normal ran-

dom walk updating for the parameter vector Θ—it is possible to optimise the algorithm, with the sample returned forming a Markov chain whose

stationary distribution is the posterior distribution π Θjxð Þ. Depending on the starting values chosen, an initial period B might be discarded as

‘burn-in’, to ensure the sample used is indeed from the stationary distribution; to minimise the effects of autocorrelation, it is also common to

‘thin’ the sample and use posterior draws from just every kth iteration.

In our MCMC scheme, we set initial values for all parameters to their prior means, using a simple MH random walk update to give successive

draws

β jð Þ
0 ,β jð Þ

1 ,ξ jð Þ,α jð Þ
� �

, j¼1,…,105,

after thinning by every k¼10 iterations to obtain sufficiently low autocorrelation between realisations and removing the first B¼2,000 iterations

as burn-in. A pilot run was implemented to help tune the scheme, with methods from Roberts and Rosenthal (2001) being used to quickly

optimise the algorithm.

4.5 | Results

Figure 3 shows the posterior means and 95% credible intervals for β1 over all sites, from analyses that (i) ignore dependence, (ii) filter out depen-

dence through declustering and (iii) explicitly model the dependence via our first-order extreme value Markov chain model. The treated sites are

denoted with a ‘T’ on the x axis. In our model, β1 captures the treatment effect as the slope term in our linear predictor for the GPD scale

parameter.

When we ignore dependence, we use all threshold excesses, and hence, our credible intervals are relatively narrow owing to the maximal use

of extreme data. However, we are violating the assumption that consecutive threshold excesses are independent; as such, these credible intervals

are likely to be unrealistically narrow. Declustering (here with κ¼10) removes this dependence, but at a cost: reduced datasets, with Site 1, for

example, now having just 107 threshold excesses post-declustering (from an original 17,467 raw excesses). We have done nothing to ‘optimise’
the declustering interval κ here, and it could be that our choice of κ is unnecessarily large resulting in a procedure that is wasteful of data

F IGURE 3 Posterior means and 95% CIs for β1 over all sites from ignoring dependence (pink), declustering (grey) and the logistic model (blue).
Treated sites denoted with ‘T’ above the x axis

8 of 14 HEWETT ET AL.
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(giving relatively wide credible intervals). However, even if we were to investigate an optimal choice of declustering interval κ, our extreme value

Markov chain model for explicitly modelling dependence is probably a superior approach here, as it maximises data usage while also making some

effort to capture the dependence in the series of threshold excesses.

As β1 corresponds to the treatment effect, a value of β1 < 0 shows a successful treatment as this indicates smaller (negated) PET values in the

after period (in other words, larger values on the raw PET scale, meaning a move away from a near-miss/actual collision). Of course, there is

uncertainty in our inference, so we look for 95% credible intervals that are wholly negative to identify a successful treatment effect. In the

majority of the treated sites β1 ¼0 lies outside the range of the 95% credible intervals, hence, we conclude these sites have seen an improvement

post-treatment, with increased PETs. Notice that, for some sites, treatment effects have not been identified under the POT approach using

declustered extremes; the loss in precision, owing to the use of much smaller datasets, often results in wider credible intervals that include zero.

Examples include Sites 1, 5–7 and 14—all sites that have been treated with the LPI intervention, and whose credible intervals for β1 are wide

enough to include zero under the POT approach (but under our extreme value Markov chain model these intervals are wholly negative).

The numerical summaries of the marginal posterior distributions for each parameter, including their mean and 95% credible intervals, are pres-

ented in Table 1 for Sites 1–3, along with the chosen threshold. The full results for all sites can be found in the appendix, specifically in Table A1.

For all sites and analyses, the posterior mean of ξ is negative, meaning the GPD has a ‘light tail’ and is upper bounded. This implies that the distri-

bution has a low probability of producing extreme events. Similarly, as seen in Figure 3 for the posterior summaries of β1, the posterior credible

intervals for parameters β0 and ξ when using declustering are much wider than those from the logistic model. Furthermore, the declustering

analysis results in the posterior mean estimates for ξ being more negative meaning we would expect an even lower probability of extreme events.

Hence, including all of the data has hugely improved the parameter estimates in terms of uncertainty and has altered our interpretation on the

occurrence of extreme events.

5 | DISCUSSION

An extreme value Markov chain was proposed to conduct a traffic conflict-based BA safety evaluation, modelling threshold excesses with the

GPD marginally, and using a bivariate extreme value model for the temporal evolution of our extremes, at each intersection. Our approach

combines traffic conflicts at different sites (treatment sites and control sites) and for different periods (the before period and the after period) to

estimate potential treatment effects of the LPI intervention. Pedestrian traffic conflict data were collected from the treatment and control sites

TABLE 1 Numerical posterior summaries for model parameters at Intersections 1–3

Model Site Threshold, u β0 β1 ξ

Ignore dependence 1 �5.6930 Mean 0.4108 �0.3324 �0.1809

95% CI (0.3253, 0.4963) (�0.3861, �0.2786) (�0.2360, �0.1259)

Declustering Mean 0.9363 �0.2123 �0.3516

95% CI (0.5911, 1.2816) (�0.4853, 0.0607) (�0.5916, �0.1115)

Logistic Mean 0.3981 �0.3436 �0.1649

95% CI (0.3015, 0.4948) (�0.4559, �0.2314) (�0.2221, �0.1077)

Ignore dependence 2 �4.8800 Mean 0.1058 �0.0019 �0.1373

95% CI (0.0147, 0.1968) (�0.0549, 0.0512) (�0.1949, �0.0797)

Declustering Mean 0.6136 �0.0642 �0.2552

95% CI (0.2878, 0.9394) (�0.3605, 0.2321) (�0.4900, �0.0204)

Logistic Mean 0.1297 �0.0129 �0.1454

95% CI (0.0251, 0.2344) (�0.1234, 0.0975) (�0.2082, �0.0826)

Ignore dependence 3 �5.9600 Mean 0.4687 �0.2308 �0.2119

95% CI (0.3967, 0.5408) (�0.2841, �0.1775) (�0.2538, �0.1700)

Declustering Mean 0.9325 �0.1498 �0.3003

95% CI (0.6369, 1.2280) (�0.4786, 0.1790) (�0.5286, �0.0719)

Logistic Mean 0.4695 �0.2033 �0.1910

95% CI (0.3858, 0.5533) (�0.3139, �0.0926) (�0.2368, �0.1452)

Note: For each parameter, we show the posterior mean and 95% credible interval from the three different models (ignoring dependence, declustering and

logistic) and the chosen threshold.
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during the before and after periods using automated computer vision analysis techniques. The treatment effects were measured through linear

modelling in the scale parameter of the GPD; we avoided unnecessary data wastage, common in the POT approach to analysis, by accounting for

temporal dependence and thus including all threshold excesses in the analysis.

Use of the bivariate logistic model to account for extremal dependence in our PET processes resulted in narrower credible intervals for our

defined treatment effect than a declustering approach and was also more successful in correctly identifying sites that had been treated. The pos-

terior distributions for our treatment effect parameter coincide for the model ignoring dependence and our extreme value Markov chain model,

with similar posterior means. This is also true for the other parameters in our model. However, although ignoring dependence and fitting a GPD

to all threshold excesses results in the narrowest credible intervals, when we ignore dependence our model is no longer valid as our processes

clearly exhibit dependence, even in the extremes. Using a declustering approach, to remove dependence, results in wider credible intervals, which

makes drawing conclusions about the treatment effect ambiguous. This approach also results in more negative posterior estimates of the shape

parameter, which results in shorter tails in the fitted GPD, thus implying that extreme events are less likely.

Our findings suggest interesting possibilities for extending the modelling approach, particularly considering observed spatial dependence in

the data. Incorporating methods from the spatial extremes toolbox could provide a valuable opportunity to account for this spatial dependence

and potentially lead to a further increase in precision. As highlighted by Arun et al. (2023), while our current approach utilises stationary thresh-

olds at the treated sites, it is important to acknowledge that the LPI treatment might influence these thresholds. Therefore, exploring dynamic

thresholds that capture the potential changes induced by the treatment in both the before and after periods could result in improved model fit.

Overall, our proposed approach showcases the potential for utilising extreme value Markov chain models in traffic conflict-based BA safety

evaluations, and our findings provide valuable insights into the effectiveness of the LPI intervention, paving the way for further investigations in

this area.
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University was the analysis of road traffic collision data to inform the evaluation of road safety countermeasures and to predict the location

of road traffic collision hotspots.
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APPENDIX A.

TABLE A1 Numerical posterior summaries for model parameters at all intersections

Model Site Threshold, u β0 β1 ξ

Ignore dependence 1 �5:6930 Mean 0.4108 �0:3324 �0:1809

95% CI (0.3253, 0.4963) (�0:3861, �0:2786) (�0:2360, �0:1259)

Declustering Mean 0.9363 �0:2123 �0:3516

95% CI (0.5911, 1.2816) (�0:4853,0:0607) (�0:5916, �0:1115)

Logistic Mean 0.3981 �0:3436 �0:1649

95% CI (0.3015, 0.4948) (�0:4559, �0:2314) (�0:2221, �0:1077)

Ignore dependence 2 �4:8800 Mean 0.1058 �0:0019 �0:1373

95% CI (0.0147, 0.1968) (�0:0549,0:0512) (�0.1949, �0.0797)

Declustering Mean 0.6136 �0.0642 �0.2552

95% CI (0.2878, 0.9394) (�0.3605, 0.2321) (�0.4900, �0.0204)

Logistic Mean 0.1297 �0.0129 �0.1454

95% CI (0.0251, 0.2344) (�0.1234, 0.0975) (�0.2082, �0.0826)

Ignore dependence 3 �5.9500 Mean 0.4687 �0.2308 �0.2119

95% CI (0.3967, 0.5408) (�0.2841, �0.1775) (�0.2538, �0.1700)

Declustering Mean 0.9325 �0.1498 �0.3003

95% CI (0.6369, 1.2280) (�0.4786, 0.1790) (�0.5286, �0.0719)

Logistic Mean 0.4695 �0.2033 �0.1910

95% CI (0.3858, 0.5533) (�0.3139, �0.0926) (�0.2368, �0.1452)

Ignore dependence 4 �5.7400 Mean 0.4632 �0.3357 �0.2066

95% CI (0.3821, 0.5442) (�0.3881, �0.2834) (�0.2502, �0.1630)

Declustering Mean 0.9938 �0.3250 �0.3682

95% CI (0.6649, 1.3226) (�0.5854, �0.0647) (�0.6117, �0.1247)

Logistic Mean 0.4792 �0.3447 �0.2071

95% CI (0.3865, 0.5719) (�0.4529, �0.2364) (�0.2630, �0.1513)

Ignore dependence 5 �5.9600 Mean 0.4687 �0.2308 �0.2119

95% CI (0.3967, 0.5408) (�0.2841, �0.1775) (�0.2538, �0.1700)

Declustering Mean 0.9325 �0.1498 �0.3003

95% CI (0.6369, 1.2280) (�0.4786, 0.1790) (�0.5286, �0.0719)

Logistic Mean 0.4695 �0.2033 �0.1910

95% CI (0.3858, 0.5533) (�0.3139, �0.0926) (�0.2369, �0.1452)

Ignore dependence 6 �6.7500 Mean 0.409 �0.2011 �0.1837

95% CI (0.3245, 0.4935) (�0.2544, �0.1478) (�0.2309, �0.1364)

Declustering Mean 0.8900 �0.2082 �0.2974

95% CI (0.5393, 1.2407) (�0.5297, 0.1133) (�0.4987, �0.0962)
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TABLE A1 (Continued)

Model Site Threshold, u β0 β1 ξ

Logistic Mean 0.4177 �0.2151 �0.1719

95% CI (0.3211, 0.5144) (�0.3240, �0.1062) (�0.2229, �0.1208)

Ignore dependence 7 �5.5300 Mean 0.3845 �0.1920 �0.1823

95% CI (0.3051, 0.4639) (�0.2411, �0.1428) (�0.2256, �0.1390)

Declustering Mean 0.9984 �0.1637 �0.4098

95% CI (0.6883, 1.3084) (�0.4064, 0.0791) (�0.6374, �0.1822)

Logistic Mean 0.3999 �0.1763 �0.2046

95% CI (0.3082, 0.4915) (�0.2786, �0.0740) (�0.2541, �0.1551)

Ignore dependence 8 �7.4020 Mean 0.3183 �0.0925 �0.0834

95% CI (0.2354, 0.4012) (�0.1523, �0.0327) (�0.1317, �0.0351)

Declustering Mean 1.0146 �0.1652 �0.2931

95% CI (0.6750, 1.3542) (�0.4812, 0.1508) (�0.5060, �0.0801)

Logistic Mean 0.3153 �0.0895 �0.1186

95% CI (0.2190, 0.4116) (�0.2136, 0.0345) (�0.1728, �0.0643)

Ignore dependence 9 �6.1300 Mean 0.1779 0.0295 �0.1706

95% CI (0.0718, 0.2841) (�0.0366, 0.0955) (�0.2325, �0.1088)

Declustering Mean 0.8241 0.2195 �0.4150

95% CI (0.4972, 1.1510) (�0.0773, 0.5163) (�0.6876, �0.1424)

Logistic Mean 0.2068 0.0404 �0.1358

95% CI (0.0859, 0.3276) (�0.0971, 0.1779) (�0.2066, �0.0650)

Ignore dependence 10 �5.1600 Mean 0.1200 �0.0289 �0.1340

95% CI (0.0279, 0.2122) (�0.0874, 0.0296) (�0.1901, �0.0778)

Declustering Mean 0.6670 �0.0939 �0.2505

95% CI (0.3498, 0.9843) (�0.4052, 0.2175) (�0.4641, �0.0369)

Logistic Mean 0.1327 �0.0303 �0.1072

95% CI (0.0286, 0.2368) (�0.1500, 0.0894) (�0.1741, �0.0402)

Ignore dependence 11 �6.5155 Mean 0.2028 �0.0541 �0.1249

95% CI (0.1095, 0.2960) (�0.1124, 0.0042) (�0.1661, �0.0837)

Declustering Mean 0.7097 �0.2032 �0.1831

95% CI (0.3112, 1.1082) (�0.5839, 0.1776) (�0.4316, 0.0654)

Logistic Mean 0.2102 �0.0701 �0.1239

95% CI (0.1033, 0.3171) (�0.1910, 0.0508) (�0.1809, �0.0668)

Ignore dependence 12 �6.2600 Mean 0.3638 �0.0929 �0.1961

95% CI (0.2757, 0.4518) (�0.1476, �0.0382) (�0.2467, �0.1455)

Declustering Mean 1.0513 �0.2451 �0.3788

95% CI (0.6634, 1.4393) (�0.5202, 0.0300) (�0.6586, �0.0989)

Logistic Mean 0.3778 �0.0941 �0.1688

95% CI (0.2774, 0.4783) (�0.2086, 0.0205) (�0.2255, �0.1121)

Ignore dependence 13 �5.0500 Mean 0.2562 �0.1708 �0.1470

95% CI (0.1641, 0.3482) (�0.2259, �0.1157) (�0.1919, �0.1021)

Declustering Mean 0.9524 �0.3738 �0.3970

95% CI (0.6237, 1.2811) (�0.6159, �0.1318) (�0.6729, �0.1212)

Logistic Mean 0.2456 �0.1858 �0.1634

95% CI (0.1394, 0.3518) (�0.2982, �0.0734) (�0.2260, �0.1008)

Ignore dependence 14 �10.4100 Mean 0.3635 �0.1695 �0.0788

95% CI (0.2895, 0.4374) (�0.2394, �0.0996) (�0.1207, �0.0368)

(Continues)
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TABLE A1 (Continued)

Model Site Threshold, u β0 β1 ξ

Declustering Mean 0.7947 �0.1247 �0.0480

95% CI (0.4865, 1.1029) (�0.5910, 0.3417) (�0.2650, 0.1689)

Logistic Mean 0.3666 �0.1649 �0.0572

95% CI (0.2836, 0.4496) (�0.3082, �0.0216) (�0.1056 �0.0087)

Ignore dependence 15 �5.1635 Mean 0.2499 �0.0947 �0.1548

95% CI (0.1612, 0.3386) (�0.1514, �0.0380) (�0.2156, �0.0940)

Declustering Mean 0.6906 �0.1064 �0.2655

95% CI (0.3828, 0.9985) (�0.4114, 0.1986) (�0.4958, �0.0352)

Logistic Mean 0.2289 �0.0901 �0.1454

95% CI (0.1274, 0.3304) (�0.2066, 0.0264) (�0.2074, �0.0833)

Note: For each parameter, we show the posterior mean and 95% credible interval from the three analyses (ignoring dependence, declustering and logistic)

and the chosen threshold.
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