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Abstract— Medical image segmentation is a critical task
for clinical diagnosis and research. However, dealing with
highly imbalanced data remains a significant challenge in
this domain, where the region of interest (ROI) may exhibit
substantial variations across different slices. This presents
a significant hurdle to medical image segmentation, as
conventional segmentation methods may either overlook
the minority class or overly emphasize the majority class,
ultimately leading to a decrease in the overall general-
ization ability of the segmentation results. To overcome
this, we propose a novel approach based on multi-step
reinforcement learning, which integrates prior knowledge
of medical images and pixel-wise segmentation difficulty
into the reward function. Our method treats each pixel as
an individual agent, utilizing diverse actions to evaluate its
relevance for segmentation. To validate the effectiveness of
our approach, we conduct experiments on four imbalanced
medical datasets, and the results show that our approach
surpasses other state-of-the-art methods in highly imbal-
anced scenarios. These findings hold substantial implica-
tions for clinical diagnosis and research.

Index Terms— imbalanced medical image segmentation,
deep learning, radiomics, reinforcement learning

I. INTRODUCTION

MEDICAL image segmentation plays a critical role in
numerous medical image processing applications, such

as structural and functional analysis, diagnosis, and ther-
apy [1], [2]. Every year, kidney tumors affect over 400,000
people worldwide, posing a severe threat to human health [3].
With the advent of computer vision, deep learning-based
automatic or interactive segmentation methods have emerged,
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Fig. 1. Kidney tumor segmentation results. (a) Raw CT images, where
the tumor size varies dramatically across patients/slices and the ratio of
non-interest tissue to the tumor is imbalanced with orders of magnitude.
(b) Corresponding segmentation labels. (c)-(d) Segmentation results
obtained by a U-Net-based method and a Transformer-based method,
respectively. (e) Obtained by our MRL-Seg model.

achieving remarkable success in 2D medical image segmenta-
tion [4]. However, in medical images, the regions of inter-
est (ROI) and non-interest regions often exhibit significant
imbalances, which are commonly referred to as pixel-level
class imbalances. For instance, CT slices of the same patient
may display lesions of varying sizes, with some consisting
of thousands of pixels while others comprise only a few
dozen [5]. Unfortunately, while existing medical image seg-
mentation methods have made significant progress, they have
yet to provide a fundamental solution to highly imbalanced
segmentations.

Recent studies in medical image segmentation have pro-
posed various methods to achieve fine results for imbalanced
segmentation, with re-weighting and re-sampling being the
most commonly used techniques. Along the line of the two as-
pects, several ideas were proposed involving the network struc-
ture [6] [7] [8], the loss function design [9], interactive seg-
mentation [10], and multi-scale segmentation [11] [12] [13].
Cao et al. [14] and Zhang et al. [15] combined global self-
attention mechanisms and Convolutional Neural Networks
(CNNs), which relieve the limitations in localization abilities
and explicitly modeling long-range dependency. Nevertheless,
this strategy merely marginally improves split stability for
imbalanced datasets, which focuses more on feature extrac-
tion. Xie et al. [16] proposed to use a recurrent saliency
transformation network to place more emphasis on tiny target
regions during adaptation, via complex adversarial training.
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This method has achieved good segmentation for small targets,
yet failed for scenarios where small targets and large targets
need to be segmented at the same time. Zhang et al. [17]
proposed a new weighting strategy for weighting the attention
matrix in the Transformer for improving the accuracy and ro-
bustness of newborn brain MRI image segmentation. Di et al.
[18] proposed a hybrid end-to-end TD-Net for automatic liver
tumor segmentation from CT images which utilizes a novel
multi-scale contextual attention mechanism. Man et al. [19]
proposed to use geometry awareness to locate the lesion area
by deep Q-learning, which obtains more accurate localization
of the lesion area. This two-stage model of first localization
and then segmentation is strenuous to learn directly to adapt
to the size of the segmentation window.

Despite the success achieved by existing approaches, these
methods may not provide sufficient robustness to challenging
regions in 2D medical image segmentation. Deep learning-
based medical image segmentation methods typically rely on
minimizing cross-entropy (CE) during training. The CE loss
function calculates the similarity between the probability dis-
tributions of the predicted segmentation and the corresponding
ground truth. Employing the CE loss function assumes equal
contributions from all samples and classes to the training
loss, thereby necessitating a comprehensive dataset and well-
balanced classes to achieve robust generalization. However, the
efficacy of CE can be limited in a highly imbalanced setting.
Specifically, imbalanced medical image datasets exhibit two
main characteristics: (1) Inter-class-imbalance during training,
i.e., much fewer foreground pixels relative to a large number
of background pixels in binary segmentation; (2) Significant
discrepancy between foreground objectives, i.e., differences in
the number of foreground pixels between segmentation targets.
The classes with more observations (i.e., pixels) overshadow
the minority classes.

Although cropping or localization can be used to constrain
the foreground/background ratio, there are still two issues: (1)
When a uniform scale is applied for cropping, we are faced
with the task of managing foregrounds (lesions) of diverse
scales; (2) When various scales are utilized for cropping,
we must handle segmentation windows of differing sizes. In
practice, it proves challenging to first categorize lesion sizes
and then apply corresponding segmentation. As shown in Fig.
1(a), the two raw images are kidney CT from different slices
of the same patient, and the size of the region of interest
in the images varies significantly. Performing segmentation
at different scales via the same size segmentation window
is of great challenge. As illustrated in Fig. 1(c) and (d), U-
Net-based models always incur positioning offset, causing the
lesion outline to deviate from the ground truth; Transformer-
based models exhibit low stability of edge segmentation. In
addition, it should be noted that both methods have a tendency
to mistakenly identify non-lesional tissue in neighboring or-
gans as lesions, which is a type of error that is less commonly
made by human annotators.

To tackle the difficulties in highly imbalanced medical
image segmentation, we propose a multi-step reinforcement
learning for medical image segmentation, called MRL-Seg.
The advantage of our method is to achieve excellent perfor-

mance on imbalanced data without modifying complex loss
functions or training adaptively sized segmentation windows.
As shown in Fig. 1(e), our model outperforms previous work
with targeted adjustments for this type of sample. We model
a patch-based representation learning for medical images as
a Markov decision process (MDP) and solve it by employing
multi-step reinforcement learning (MRL). To shrink the ex-
ploration space to an acceptable size, each patch needs to be
treated as an agent with a shared pixel-level behavior policy.
We set the segmentation result as the environmental reward
and set the action as retain or mask for each patch. As the
update of the network, more pixels that are not conducive
to segmentation are masked, and the imbalanced categories
gradually tend to be balanced, which reduces the distractors for
imbalanced image segmentation. In order to make the results
obtained by the segmentation model closer to the judgment
of human experts, we use two kinds of prior knowledge
as the theoretical basis of MRL reward function design,
consisting of measures of the ROI scale and the approximate
difficulty of segmentation. Our results on KiTS19 and JLUKT
datasets demonstrate that the proposed method significantly
outperforms the existing methods, achieving more satisfactory
segmentation performances.

To summarize, our contributions are shown as follows:

• We propose a novel approach, MRL-Seg, which integrates
three structural-oriented modules into a unified network
to achieve robust adaptation for highly imbalanced med-
ical image segmentation.

• We introduce a pioneering approach for patch represen-
tation based on multi-step reinforcement learning, which
can intelligently and effectively mitigate the severe ef-
fects of differences spanning several orders of magnitude
between regions of interest and non-interest regions on
lesion segmentation.

• We incorporate two types of prior knowledge into the
reward function design of our reinforcement learning
approach, which remarkably enhances the localization
accuracy of lesion outlines and ensures the stability of
boundaries.

• We conduct comprehensive experiments on four imbal-
anced medical datasets. Experimental results demonstrate
the significant superiority of our MRL-Seg to multiple
state-of-the-art approaches.

II. RELATED WORK

A. Automatic 2D Medical Image Segmentation with
Deep Learning

For automatic segmentation, existing deep learning ap-
proaches can be grouped into two categories, i.e., U-Net-based
and Transformer-based: 1) A U-Net-based method exploits a
symmetrical U-shaped structure. By encoding and decoding
image features, the network fuses both high-level and low-
level features in the network to obtain better segmentation
effects. 2) A Transformer based method utilizes self-attention
to replace classic Convolutional Neural Networks (CNNs) or
Recurrent Neural Networks (RNNs), adopting the strategy of
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stacking self-attention and fully connected layers that possess
a powerful global information induction ability.

U-Net-based Segmentation. One common limitation of
CNN-based models is their difficulty in capturing long-range
dependencies or relations between input features, particularly
for target structures that display significant inter-patient vari-
ability in terms of texture, shape, and size. To tackle this,
the U-shaped design has emerged as the go-to approach for
numerous image segmentation tasks, owing to its remarkable
success [1]. The conventional U-Net introduces an encoder-
decoder structure, where the encoder is used to extract features
from the input image, and the decoder is used to transform
these features into a segmentation result. The architecture also
includes skip connections that connect corresponding features
from the encoder to the decoder, preserving low-level feature
information. Consequently, a plethora of derived algorithms,
such as Dense U-Net [20], ResU-Net [21], and nnU-Net [4],
have been proposed. U-Net and its variants have become a
benchmark model for various image segmentation tasks which
can be trained end-to-end through fine-tuning without the need
for manually designing feature extractors, making it easier to
use and implement.

Transformer-based Segmentation. Transformer [22] is
commonly adopted in natural language processing. Different
from the previous encoder-decoder frameworks, Transformer
utilizes self-attention to replace classic CNNs or RNNs, adopt-
ing the strategy of stacking self-attention and fully connected
layers. Driven by the success of Transformer, Dosovitskiy et
al. [23] first introduced a pioneering Vision Transformer (ViT)
with excellent performance in image recognition tasks. There-
after, to apply Transformer to the application of medical image
segmentation, several modifications have been proposed. For
instance, [24] is the first model designed for the medical image
segmentation, establishing a self-attention mechanism from a
sequence-to-sequence prediction perspective. A hybrid CNN-
Transformer architecture is adopted by TransUNet to exploit
detailed high-level spatial information from CNN features and
the global context encoded by Transformer. Nonetheless, the
samples of the same disease vary greatly among different
patients (e.g., regions of interest of various sizes), which
limits the application of the Transformer in medical image
segmentation.

To tackle the paucity of long-range dependencies of U-Net-
based methods and the lack of inductive bias of Transformer-
based methods, several works were proposed, inspired by the
U-shaped design and Vision Transformer, For example, Xie et
al. [25] proposed a novel medical image segmentation called
DMCGNet, which combines dense self-mimic and channel
grouping mechanisms to solve the class imbalance of medical
image segmentation. Li et al. [26] proposed a hierarchical U-
Net for the segmentation of ovaries and follicles in ultrasound
images. Cao et al. [14] used a hierarchical Swin Transformer
with an offset window as the encoder to extract contextual
features, and designed a symmetric Swin Transformer-based
decoder with patch expansion layers by upsampling operations
to recover the spatial resolution of feature maps. Yuan et al.
[12] used the spatial attention mechanism and the channel
attention mechanism to enhance the capture of blood vessel

features in medical images. Zhang et al. [15] used Transformer
and CNNs in parallel to produce great segmentation results for
polyp, skin lesion, hip, and prostate on both 2D and 3D medi-
cal images. Valanarasu et al. [27] realized the improvement in
performance without any need for pre-training by the design
of a gated axial attention layer to explore the feasibility of
applying the Transformer in the light of only self-attention.

B. Vision in Reinforcement Learning

Reinforcement learning (RL) studies the problem of how to
maximize rewards in a complex and uncertain environment.
RL involves the model taking actions in an environment and
receiving rewards or penalties based on the success of those
actions. By learning from these rewards and penalties, the
model can adjust its behavior and decision-making processes.
Existing RL approaches mainly focus on policy-based agents,
value-based agents, and actor-critic agents. We have collec-
tively witnessed some breakthroughs in the fields of game
playing, robotics, autonomous driving, computer vision, and
natural language processing in recent years. The most influ-
ential breakthroughs include DQN [28] and DeepStack [29],
pioneering a new era of deep reinforcement learning. Indeed,
RL is an efficient tool to address sequential decision-making
problems.

However, in the domain of computer vision, the application
of RL is confronted with some practical challenges, such
as image cropping [30] and global color enhancement [31].
RL cannot effectively deal with tasks requiring pixel-level
operations, such as image representation learning. In order to
achieve even more optimization, Furuta et al. [32] originally
suggested using reinforcement learning for pixel-level image
processing tasks such as local color improvement, picture
restoration, and image denoising. The agents learn the best
course of action for increasing the mean expected total return
across all pixels because the number of agents and pixels is
equal. Each pixel’s value is taken to represent the current
situation and is then changed by agents’ iterative activities.
Therefore, the actions performed by the agent are under-
standable to humans, which is tremendously different from
traditional CNNs. Based on this, liao et al. [33] proposed a
multi-agent reinforcement learning (MARL)-based 3D medical
image voxel interactive segmentation framework (IteR-MRL).
The model adapts the concept of reinforcement learning to user
interaction, utilizing a pre-detection of lesions as an input to
the algorithm. Apart from this, Man et al. [19] and Tao et
al. [34] attempted to utilize reinforcement learning to initially
identify the approximate location of the ROIs and subsequently
perform precise segmentation. This two-stage model heavily
relies on the accuracy of the initial positioning, and achieving
adequate generalization can be challenging when dealing with
complex ROI shapes.

III. METHOD

A. Overview

The overall process is illustrated in Fig. 2, comprising
three modules: Reinforcement-Net, Representation-Net, and
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Fig. 2. Illustration of the overall process. At each state, the Reinforcement-Net samples an action, while the Representation-Net provides the state
to the Reinforcement-Net and produces the final image representation to the Segmentation-Net once all actions are sampled. The Segmentation-
Net then generates results and supplies reward values to the Reinforcement-Net.

Segmentation-Net. Reinforcement-Net is an RL-Based Asyn-
chronous Advantage Actor-Critic (A3C) [35] module that
transforms pixel-level segmentation into a sequential decision
task and enriches the prior knowledge for highly imbal-
anced segmentation by interleaving updating of policy and
values. Representation-Net is responsible for updating the
images based on reinforcement learning and serves as input
to Segmentation-Net. Segmentation-Net, a U-shaped module
that combines CNNs and Transformer, produces outputs that
are fed into Reinforcement-Net, where the reward is ulti-
mately calculated. By continuously updating Representation-
Net, Segmentation-Net achieves better predictions slice by
slice, while Reinforcement-Net is constantly refined with
improved policies. These three modules operate in a closed
loop to facilitate seamless integration.

Specifically, we denote Policy π(S) as the update strategy
and V (S) as the value of the reward function. We adopt the
A3C as the framework for the Reinforcement-Net, taking each
pixel as the state of the agent, and the effect of segmentation
as the reward of the environment to guide each agent to
actions that are beneficial to the segmentation task. For the
state design, we define Ii as the i-th pixel of the input
image I , with a total of N pixels (i = 1, · · · , N). Each
pixel is regarded as a single agent and the updated policy is
represented as πi

(
a
(t)
i | s(t)i

)
. For the action design, a(t)i ∈ A

represents the action of the i-th agent at step t, A is the
action space {mask, retain}. The actions can be denoted
as a(t) =

(
a
(t)
1 , · · · , a(t)N

)
. For the whole image, the state

from the Representation-Net can be represented as s(t+1) =(
s
(t+1)
1 , · · · , s(t+1)

N

)
. The reward from the Segmentation-Net

can be denoted as r(t) =
(
r
(t)
1 , · · · , r(t)N

)
. We use the policy

of iterative learning π = (π1, · · · , πN ) to maximize the
mathematical expectation of the reward value of all pixels.
Since the size of the final fully connected layer of a single
agent is |A|N , it is hard to calculate since N is a huge number.
Therefore, we follow the method of PixelRL [32], where N

agents can share parameters by using FCNs, and our method
can handle images with different sizes.

To adapt the RL training, the Reinforcement-Net first uses
three convolution blocks and one Transformer block to extract
high-level features as shown in Fig. 3. The network includes
two kinds of heads: a policy head and a value head, both
of which are composed of three convolution compositions.
The convolution blocks and Transformer block in the feature
extraction part have the same structure as the Segmentation-
Net. Furthermore, the Segmentation-Net is pre-trained to en-
sure the stability and convergence of the Reinforcement-Net
during its training. Specifically, the feature extraction blocks
of the Reinforcement-Net are initialized using the weights of
the corresponding blocks from the pre-trained Segmentation-
Net. The numbers of output channels of the last convolutional
layer in the Actor-Net are the same as the number of actions.

Indeed, medical images tend to have stronger prior knowl-
edge than natural images, e.g., we know the approximate
location of the lesion or organ as well as the size of the
lesion before the model training. From these two aspects, we
design a novel reinforcement learning reward function based
on prior knowledge, which is detailed in Sections III-B and III-
C, respectively. In Section III-D, we present our Segmentation-
Net.

B. Optimize imbalanced Segmentation via Learning the
Foreground-Background Ratio

As mentioned in Section I, the ratio of the region of
interest to other parts is crucial for the segmentation result.
For instance, in an image of a kidney tumor from a single
patient, there may exist a substantial difference between the
largest and smallest lesion areas, resulting in a significant
imbalance (which varies across slices) between the foreground
and background of the segmentation. In our case, given the
original image, we set the actions set as {mask, retain}, i.e.,
masking the parts that have adverse effects on the segmentation
and retaining the parts that are beneficial to the segmentation.
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Fig. 3. The network architecture for Reinforcement-Net. The policy and value heads share the low-level features and extract their own high-level
features.

Meanwhile, we set the reward as the calculated score from the
Segmentation-Net.

As shown in Fig. 3, we apply Actor-Critic, which com-
prises a policy-based Actor-Net and a value-based Critic-
Net. The Actor-Net is responsible for predicting the actions
made based on the patch, and the Critic-Net evaluates how
much the segmentation score has been improved given the
current action sequence. Both networks employ the state s(t)

as the input of the model, where s(t) is the state at step
t, and the Critic network outputs the V

(
s(t)
)
, which is the

expected total reward of s(t). The Actor-Net produces policy
as π

(
a(t) | s(t)

)
. Our approach aims to discover the optimal

policies π = (π1, · · · , πN ) that maximize the mean of the
total expected rewards at all pixels:

π∗ = argmax
π

Eπ

( ∞∑
t=0

γtr(t)

)
, (1)

r̄(t) =
1

N

N∑
i=1

r
(t)
i , (2)

where r
(t)
i denotes the reward at each pixel, and r̄(t) denotes

the mean of rewards. We set each pixel (represented by a patch
centered on it) as an agent and construct a fully convolutional
A3C network in the form of FCNs.

In practice, kidney tumor image segmentation can be re-
garded as a binary classification of pixels. Due to the inhomo-
geneity of the categories, the pixel classification is unstable.
Hence, we embed segmentation prior knowledge into the
global reward, by rewriting Eq. (2) as follows:

r̄∗
(t)

=
1

N

(
N∑
i=1

r
(t)
i + α

(
NFront

NBack
+ β · NBack

NFront

))
, (3)

where α ∈ (−1, 0) and β ∈ (0.2, 0.3) are hyperparameters
balancing the weights of different terms. In binary classifica-
tion tasks (Regions of Interest and Non-Regions of Interest),
the optimal balance between positive and negative samples
can depend on the specific context and the model being

used. However, a common guideline is to aim for a roughly
equal distribution of positive and negative samples [36]. Let
x = NFront

NBack
, we use the function f(x) = x + β/x, which is

a unimodal function. Our goal is for x to reside within the
range of 0.45 to 0.55 when f(x) reaches its extremal values.
To achieve this, we adjust the value of β to lie between 0.2 and
0.3. Thus, the ratio of foreground to background is constrained
to be between 44.7% and 54.8%. With the constraints of this
prior knowledge, patches which unconducive to segmentation
are masked, and the distribution of foreground and background
gradually changes from imbalanced to balanced.

C. Reward Design Based on Segmentation Approximate
Difficulty of the Pixels (ADP)

Our local reward design logic for a single agent is based on
cross-entropy (CE). In particular, the reward Pi is designed as
the difference between the segmentation prediction and ground
truth. To guide the model training in a constrained direction,
we refer to the score of the previous step as a comparison and
transcendence. For the benchmark, the oscillation in CE value
determines whether the agent gets a positive or a negative
reward. The reward ri of each agent is defined as follows:

P(t)
i = −yi log

(
p
(t)
i

)
− (1− yi) log

(
1− p

(t)
i

)
, (4)

r
(t)
i = P(t−1)

i − P(t)
i , (5)

R
(t)
i = r

(t)
i + γV

(
s
(t+1)
i

)
, (6)

A
(
a
(t)
i , s

(t)
i

)
= R

(t)
i − V

(
s
(t)
i

)
, (7)

where yi denotes the label of the i-th pixel, γ denotes a dis-
count factor, R(t)

i denotes the local reward, and A
(
a
(t)
i , s

(t)
i

)
denotes the advantage function in A3C for one-step learning.
The gradient for each network parameter is the average of the
gradients of all pixels as follows:
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Fig. 4. Segmentation-Net employs a hybrid CNN-Transformer architecture as the encoder as well as a cascaded upsampler to enable precise
localization.

dθA = −∇θA

1

N

N∑
i=1

log π
(
a
(t)
i | s(t)i

)(
R

(t)
i − V

(
s
(t)
i

))
,

(8)

dθC = ∇θC

1

N

∑
i=1

(
R

(t)
i − V

(
s
(t)
i

))2
, (9)

where θA and θC denote the policy head and the value head,
respectively, from Reinforcement-Net. The gradient of the
parameters of the Actor-Net and Critic-Net is the average of
the gradients of all patches.

As the receptive field increases, the Actor-Net and the
Critic-Net can not only observe the s

(t)
i of a single pixel

but also observe the adjacent pixels. Moreover, when the
receptive field of FCNs is 1 ∗ 1, N agents are completely
independent. The set of neighbors of a pixel can characterize
the surrounding structure of this pixel [37]. We set the ap-
proximate difficulty measure of the segmentation to explore
neighbor pixel values V . Given the collection of partial pixels
D = {(x1, y1) , (x2, y2) , . . . , (xN , yN )}, where xi denotes an
input pixel, yi ∈ {−1,+1} denotes the corresponding label,
each xi (i = 1, 2, . . . , N) corresponds to a partial receptive
window Fi = {(xp, yp) | p = 1, 2, . . . , P}. The segmentation
approximate difficulty of the pixels (ADP) is represented as:

Ji =

∑
Xp∈Fi

I (yp ̸= yi)

|Fi|
, (10)

where |Fi| denotes the number of pixels in the partial receptive
field. Here, Ji ∈ [0, 1]. Obviously, Ji = 0 if the labels of all
pixels in Fi are the same as xi, and Ji = 1 if the class labels
of all pixels in Fi are different from xi. Therefore, we can
rewrite R

(t)
i in Eq. (6) as follows:

R
(t)
i = r

(t)
i + γ

∑
j∈N(i)

w
(
Ji + V

(
s
(t+1)
j

))
, (11)

where N(i) is the partial receptive window centered on the
i-th pixel, and w represents a convolution filter weight, which

cooperates with Ji to control the impact of neighboring pixel
values in the time t+1, the second term in Eq. (11) is derived
from a 2D convolution. Thus, in the n-step case, R(t) can be
defined as:

R(t) = r∗(t) + γw ∗ r∗(t+1) + γ2w2 ∗ r∗(t+2) + · · ·

+ γn−1wn−1 ∗ r∗(t+n−1) + γnwn ∗ V
(
s(t+n)

)
,

(12)

where ∗ represents convolution operation, wn ∗ r∗ represents
the n times convolution on r∗ with the convolution filter w.
The gradient of w is calculated as follows:

dw = −∇w
1
N

∑N
i=1 log π

(
a
(t)
i | s(t)i

)(
R

(t)
i − V

(
s
(t)
i

))
+∇w

1
N

∑N
i=1

(
R

(t)
i − V

(
s
(t)
i

))2
.

(13)
The w in Eq. (11) can be learned simultaneously with the

network parameters θA and θC in Eq. (8) and (9), due to the
mutual containment of Ji and w. Note, Ri will not deviate
from the predicted value of V

(
s
(t)
i

)
, making the model easier

to converge.

D. Segmentation-Net Module
As discussed in Section II-A, U-Net and Transformer struc-

tures can complement each other. Single convolution operation
can be regarded as special multi-head self-attention (MSA),
whose receptive field is partial, and the attention weights are
fixed. Conversely, MSA can also be regarded as a special
convolution, whose window size is the whole image, and the
summation operation is dynamically weighted according to
attention weights. Transformer can alleviate the remote depen-
dence limitation of U-Net. Meanwhile, U-Net can alleviate the
lack of low-level details of the Transformer. Our segmentation
module can combine the advantages of both.

Given an image χ ∈ RH×W×C , where H , W , and C denote
the image height, width, and channel number, respectively,
our goal is to predict the pixel-level binary segmentation
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label with the corresponding size of H ×W . We encode the
spatial information of a patch to get the feature representation
based on reinforcement learning, and the downsampling part
of the segmentation model is designed by the encoder of
Transformer, and the upsampling part consists of multi-step
decoding of hidden features to output the final segmentation
mask. As shown in Fig. 4, we also use the skip-connection to
form a U-shaped structure, so as to combine the MSA structure
based on Transformer with the CNN structure, making them
complement each other.

We map patch χp to a latent D-dimensional embedding
space, encode the patch spatial information, and add position
information to patch embedding z0 =

[
χ1
pυ, χ

2
pυ, · · · , χN

p υ
]
+

υpos, where υ denotes the patch embedding projection, and
υpos denotes the position embedding. After the image is
trained by the Reinforcement-Net, the output of the represen-
tation network is used as the input of the Segmentation-Net.
The encoder of the Transformer consists of L-layer MSA and
Multilayer Perceptron (MLP).

IV. EXPERIMENTS

To verify the effectiveness and robustness of the proposed
method, we conduct extensive experiments, which include
comparison experiments with state-of-the-art algorithms and
sufficient ablation experiments. Besides, the datasets, image
quality metrics, and experimental settings used for the exper-
iments are also described in detail.

A. Datasets

KiTS19: This dataset was obtained from the KiTS19 chal-
lenge [38], containing 210 cases of kidney tumors with accom-
panying clinical context, CT semantic segmentation, and sur-
gical outcomes. It was compiled from patients who underwent
partial or radical nephrectomy for one or more kidney tumors
at the University of Minnesota Medical Center between 2010
and 2018. Out of 300 patients with comprehensive clinical
results, 210 cases were randomly selected for inclusion in the
dataset.

JLUKT: This medical image dataset was contributed by
the Second Affiliated Hospital of Jilin University. The data
comprises plain and contrast-enhanced CT scans of both left
and right kidneys in various phases, including plain phase,
corticomedullary phase, nephrographic phase, and excretion
phase, which contains 61 cases of kidney tumor CT images.
This dataset will be made publicly available once the paper is
accepted for publication.

NIH: The NIH Pancreas image dataset comprises 82
contrast-enhanced abdominal CT scan volumes [39]. Each CT
scan boasts a resolution of 512×512×L, where L ∈ [181, 466]
is the number of sampling slices taken lengthwise along the
body. The thickness of these slices varies, with measurements
ranging from 0.5 mm to 1.0 mm.

BUSI: The dataset comprises 780 images, sourced from
two different types of ultrasound equipment - the LOGIQ
E9 Ultrasound and the LOGIQ E9 Agile Ultrasound System,
both utilized at Baheya Hospital [40]. These images exhibit

an average size of 500× 500. We apply 487 benign and 210
malignant images.

We compute the foreground-background ratios of KiTS19,
JLUKT, and BUSI and divided them into six intervals to
investigate the effectiveness of our method more precisely.
Given that the size of the region of interest in the NIH dataset
is notably consistent, and that the imbalance predominantly
manifests in the disparity between the foreground and the
background dimensions, we utilized a single ratio interval
between the foreground and background in subsequent ex-
periments. The primary characteristics of imbalanced med-
ical image datasets are twofold: (1) the presence of inter-
class imbalance during the training phase, manifested as a
significantly smaller quantity of foreground pixels compared to
the abundant background pixels in binary segmentation (e.g.,
NIH: the smallest foreground measures merely 2px, while its
corresponding background stands at a substantial 50174px.);
(2) A noticeable disparity between foreground objectives (e.g.,
KiTS19: ranging from the smallest lesions (6px) to the largest
(30025px) ones.), demonstrated by the varying quantities of
foreground pixels among different segmentation targets.

B. Implementation Details
To demonstrate the practical value of the model, the afore-

mentioned four datasets are all utilized with their original
dimensions as inputs to the model, and testing is conducted
without lesion masks or pre-detection. Notably, no organ labels
were utilized during any stage of the process, encompassing
both the training and the testing phases. The four datasets
were initially resized to a standardized dimension of 512×512
pixels, followed by clipping the CT Hounsfield unit values to
the range of [−79, 304]. The pixel values were then rescaled to
[0, 255]. To initialize the Reinforcement-Net, we utilized the
pre-trained Segmentation-Net parameters. The segmentation
network was trained for 100 epochs with a batch size of
24 using the Adam optimizer. The learning rate was set to
0.01 and followed a step-size decay scheme during training.
In contrast to the Segmentation-Net, the Actor-Net of the
Reinforcement-Net was equipped with a convolutional layer
with an action space, and the last layer of the Critic-Net was
replaced with a convolutional layer with one output channel.
During the training process, a batch size of 10 was utilized, and
the number of epochs was set to 50. In each epoch, 4 actions
were performed on each slice before ending it. The discount
factor was set to γ = 0.95. We divide the datasets into four
fixed folds, each containing approximately the same number
of instances. Following the cross-validation methodology, we
train the model on three out of the four subsets and validate
it against the remaining one.

C. Evaluation Metrics
1) Dice coefficient: The Dice coefficient is a set similarity

measurement function, which mainly calculates the overlap
ratio between the segmentation result and the ground truth.
The range of values is [0, 1]. Specifically, it can be expressed
as Dice(A,B) = |A∩B|

(|A|+|B|)/2 , where A represents the segmen-
tation result, and B represents the ground truth. |A| and |B|
are the number of elements in A and B, respectively.
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TABLE I
THE SEGMENTATION RESULTS (MEAN ± STD) FROM STATE-OF-THE-ART METHODS ON THE KITS19 DATASET ARE SHOWN. THE BEST RESULTS

ARE IN BOLD. ASTERISKS MARK SIGNIFICANT DIFFERENCES FROM OUR METHOD, AS PER A PAIRED STUDENT’S T-TEST. (*: P<0.05).

Method Dice (%) at various foreground-background ratios

0%∼2% 2%∼4% 4%∼6% 6%∼8% 8%∼10% Avg
ResU-Net [21] 52.32±5.71 71.09±6.52 72.41±5.77 72.14±3.63 71.09±4.12 59.15±6.20
nnU-Net [4] 59.71±4.25* 81.06±4.46* 82.71±4.57 83.59±4.03 81.56±3.56* 67.56±4.77*
Swin-Unet [14] 57.61±5.27 80.01±4.76 79.88±5.23 80.19±4.51 81.02±4.10 65.58±5.42
TransUNet [24] 55.29±5.13 77.61±4.79 76.52±4.16 78.41±4.66 78.22±4.03 63.17±5.12
TransFuse-S [15] 54.10±5.71 77.19±3.96 77.42±3.71 76.53±4.29 78.99±4.19 62.32±5.67
RSTN [16] 56.65±4.25 76.37±4.16 78.96±3.57 79.55±4.13 80.17±3.87 64.06±5.51
UFL [41] 55.19±4.75 76.79±4.11 77.69±5.22 78.21±4.71 78.92±3.58 63.03±5.13
Ours 61.54±4.63 82.71±4.23 81.06±3.88 83.20±3.72 82.76±3.33 68.94±4.19

Method HD at various foreground-background ratios

0%∼2% 2%∼4% 4%∼6% 6%∼8% 8%∼10% Avg
ResU-Net [21] 20.31±6.78 17.69±5.22 18.79±6.31 17.27±6.54 16.61±5.93 19.44±7.30
nnU-Net [4] 16.32±6.13* 15.14±5.22 15.10±5.11 14.93±4.79* 15.10±4.71* 15.88±6.32*
Swin-Unet [14] 17.90±6.54 16.31±5.76 16.32±5.33 15.71±6.01 16.30±5.12 17.30±6.51
TransUNet [24] 18.72±6.17 17.64±5.21 16.53±4.97 17.22±5.13 16.53±5.42 18.20±6.90
TransFuse-S [15] 18.10±5.97 17.96±6.10 16.72±5.13 17.36±6.10 16.32±5.49 17.89±6.96
RSTN [16] 17.95±6.10 16.77±5.96 17.31±6.07 17.23±5.71 16.43±4.71 17.59±6.62
UFL [41] 17.13±5.77 16.93±6.17 17.41±5.93 16.59±4.79 16.19±5.78 17.07 ±6.71
Ours 15.34±5.23 15.26±5.61 15.17±4.96 13.26±4.26 13.57±3.67 15.20±5.96
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UFL
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TransFuse-S

2021

Fig. 5. Visual comparison of lesion segmentation results obtained from various methods on CT images from KiTS19. Red, green, and yellow
indicate the prediction, ground truth, and overlapped pixels, respectively.

2) Hausdorff distance: Hausdorff distance evaluates the
symmetric distance between the sample X and the sample
Y , where x and y are the points of the sets X and Y ,
respectively, d(x, y) is regarded as the metric between these
points, and thus we can take of d(x, y) as the Euclidean
distance. It is defined as Hausdorff = max {dXY , dY X} =
max {maxx∈X miny∈Y d(x, y),maxy∈Y minx∈X d(x, y)}.
The Hausdorff distance is more sensitive to the segmented
boundary.

D. Comparison with State-of-the-Art

We evaluate the effectiveness of MRL-Seg on two different
datasets, namely KiTS19 and JLUKT. Specifically, the pro-
posed method is comprehensively compared with those state-
of-the-art methods including: ResU-Net [21] uses ResNet
block for downsampling and ordinary bi-convolution block for
upsampling. nnU-Net [4] is a cascade of U-Net, focusing on
image preprocessing and the selection of training optimizers.
Swin-Unet [14] employ a layered Swin Transformer with
an offset window as an encoder to extract context features,
and it is a pure Transformer similar to U-Net for medical
image segmentation. TransUNet [24] uses Transformer as the
encoder of medical image segmentation task by recovering
local spatial information. TransFuse [15] propose a novel
architecture that ingeniously fuses CNNs and Transformer
models to enhance the performance and accuracy of medical

image segmentation. RSTN [16] proposes a neural network
model based on recurrent attention transformation for the
segmentation of tiny objects in abdominal CT scans, which
is capable of effectively identifying and segmenting small
lesions or anomalies. UFL [41] generalizes the Dice and the
cross-entropy losses, which proposes a unified focal loss to
address the problem of class imbalance in medical image
segmentation.

To ensure a fair comparison, we only utilized the original
images and lesion labels available in the dataset during the
experimental evaluation. We used the source code provided
by the authors to reimplement [21], [4], [14], [24], [16]
under the same experimental configuration as our method,
and the corresponding quantitative and qualitative results were
given. For the method of [41] and [15] which do not provide
source codes, we conducted the experiments according to the
methods described in the original paper. Furthermore, we used
the same backbone for our method and the reimplemented
method of [24]. For all experiments, we adhered to splitting
of the training and test data for all comparison methods.
Furthermore, we conducted a paired Student’s t-test with the
second rank results. A p-value less than 0.05 indicates a
significant difference between our method and the comparison
methods.

The quantitative results on the KiTS19 dataset are presented
in Table I. Two observations can be drawn from the results.
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TABLE II
THE SEGMENTATION RESULTS (MEAN ± STD) FROM STATE-OF-THE-ART METHODS ON THE JLUKT DATASET ARE SHOWN. THE BEST RESULTS

ARE IN BOLD. ASTERISKS MARK SIGNIFICANT DIFFERENCES FROM OUR METHOD, AS PER A PAIRED STUDENT’S T-TEST. (*: P<0.05).

Method Dice (%) at various foreground-background ratios

0%∼2% 2%∼4% 4%∼6% 6%∼8% 8%∼10% Avg
ResU-Net [21] 54.76±6.03 73.69±5.27 74.99±5.36 75.21±5.03 75.26±4.73 62.61±6.54
nnU-Net [4] 62.79±4.73* 83.51±4.79* 84.99±4.19 85.29±4.95 85.23±4.57* 71.40±5.63*
Swin-Unet [14] 60.33±5.09 82.71±5.09 83.92±4.59 84.19±5.01 84.22±4.79 69.44±6.31
TransUNet [24] 57.93±6.18 79.55±5.76 81.21±6.39 80.77±5.96 79.58±6.10 66.82±6.22
TransFuse-S [15] 55.79±6.23 78.69±6.14 79.65±5.61 80.09±5.44 80.05±5.73 65.18±6.71
RSTN [16] 57.68±5.26 79.96±4.79 81.33±4.46 83.52±4.59 84.09±4.07 67.10±5.16
UFL [41] 58.12±5.40 78.79±5.63 80.19±6.17 80.88±5.20 81.76±5.03 66.76±5.41
Ours 64.53±3.65 84.79±4.12 84.73±4.51 85.21±4.03 85.79±4.22 72.68±4.27

Method HD at various foreground-background ratios

0%∼2% 2%∼4% 4%∼6% 6%∼8% 8%∼10% Avg
ResU-Net [21] 19.85±6.69 18.23±6.27 18.21±6.53 17.41±5.20 17.06±5.17 19.10±6.95
nnU-Net [4] 14.95±5.36* 15.22±6.23* 14.27±5.35 13.59±4.36 13.97±4.55* 14.80±4.96*
Swin-Unet [14] 15.76±5.23 16.17±6.71 15.04±5.13 14.21±5.63 14.39±4.78 15.62±6.13
TransUNet [24] 16.33±6.17 17.29±6.63 18.29±6.77 16.57±5.98 15.96±5.42 16.72±6.66
TransFuse-S [15] 16.76±6.23 16.97±5.96 17.75±6.29 17.77±5.19 16.53±4.92 16.96±6.74
RSTN [16] 17.10±5.29 16.26±6.71 14.01±5.33 14.93±6.12 14.71±5.41 16.47±5.63
UFL [41] 16.93±6.10 16.79±5.23 15.44±6.12 15.81±5.09 14.73±4.96 16.60±5.77
Ours 14.31±5.22 14.79±6.19 14.17±5.03 13.96±4.52 13.27±4.73 14.26±5.11
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Fig. 6. Visual comparison of lesion segmentation results obtained from various methods on CT images from JLUKT. Red, green, and yellow
indicate the prediction, ground truth, and overlapped pixels, respectively.

First, our MRL-Seg outperforms other methods in segment-
ing foreground and background for almost all foreground-
background ratios, except the 4%-8% interval. These findings
highlight the effectiveness of our method in handling imbal-
anced segmentation tasks, particularly in scenarios where the
foreground-background ratio is highly imbalanced. Second,
regarding stability, our approach exhibits superior performance
in Dice and HD, showing the effectiveness of our method
in integrating prior knowledge. Fig. 5 shows the qualitative
results of our method. In comparison to other methods, our
MRL-Seg achieves the most satisfactory predictions at ex-
treme foreground-background ratios, with high agreement with
the quantitative results. This demonstrates that our proposed
method exhibits greater robustness compared to other methods,
making it more suitable for imbalanced lesion segmentation.
In addition, the p-value also derived from the Student’s T-test
further underscores the superiority of our approach.

Table II shows the quantitative results of our method on the
JLUKT dataset, and Fig. 6 shows the corresponding visual
comparison. Similar to the segmentation of kidney cancer in
the KiTS19 dataset, we observed an improved model perfor-
mance for almost all foreground-background ratios, except the
4%-8% ratio interval. As the foreground-background ratio was
gradually balanced, the advantage became less pronounced.
Our proposed method demonstrated superior performance
compared to all state-of-the-art methods, as shown in Fig.
6, exhibiting contours that closely resemble real anatomical

structures.
The quantitative results on the BUSI dataset are presented

in Table III. The average Dice of our MRL-Seg model has
reached 78.79%, surpassing the state-of-the-art Transformer-
based model [14] [24] [15]. Furthermore, with the RL training
strategy, performance improves even in the most challenging
scenarios. It should be highlighted that the observed large
variance can be traced back to the combination of complex
and straightforward cases. The illustration of the segmentation
result is depicted in Fig. 7. This visually demonstrates the
effectiveness of our MRL-Seg, particularly in scenarios with
extreme foreground-background ratios.

Table IV presents a comparative analysis of our proposed
method with the state-of-the-art techniques on the NIH Pan-
creas Dataset. Compared to the other three datasets, the NIH
dataset exhibits a smaller disparity in the size of the foreground
elements (0%-2.3%). Consequently, there is no necessity to
partition the foreground-background ratio into multiple inter-
vals in our analysis. Our approach consistently outperforms
the comparative methods in the Dice score and the Hausdorff
distance index. This demonstrates that our approach possesses
significant generalization capability in segmenting small ob-
jects, particularly in scenarios where there is an imbalance
between the foreground and background. The illustration of
the segmentation result is depicted in Fig. 8.
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TABLE III
THE SEGMENTATION RESULTS (MEAN ± STD) FROM STATE-OF-THE-ART METHODS ON THE BUSI DATASET ARE SHOWN. THE BEST RESULTS ARE

IN BOLD. ASTERISKS MARK SIGNIFICANT DIFFERENCES FROM OUR METHOD, AS PER A PAIRED STUDENT’S T-TEST. (*: P<0.05).

Method Dice (%) at various foreground-background ratios

0%∼10% 10%∼20% 20%∼30% 30%∼40% 40%∼50% 50%∼60% Avg
ResU-Net [21] 67.21±3.94 73.55±2.11 83.27±2.29 83.92±2.69 69.85±1.26 87.11±1.98 72.53±2.51
nnU-Net [4] 73.47±2.09* 78.79±1.13 85.71±1.10 85.27±1.09 71.22±1.19 88.77±0.54 77.45±1.13*
Swin-Unet [14] 70.23±2.11 76.55±1.47 86.21±1.03 81.19±1.79 66.29±2.21 86.53±0.71 74.81±2.17
TransUNet [24] 71.35±3.46 78.70±2.21 84.42±1.15 83.57±2.18 65.74±1.92 88.86±1.38* 75.94±1.84
TransFuse-S [15] 70.12±2.65 77.44±1.06 84.25±2.29 81.17±1.96 66.94±2.87 85.31±1.16 74.69±1.77
RSTN [16] 69.21±2.12 79.11±1.55* 86.29±2.56 84.19±1.99 73.84±2.47* 88.52±1.95 75.42±1.41
UFL [41] 69.19±3.54 76.51±1.49 84.23±2.95 84.36±1.96 70.09±1.56 86.15±1.33 74.29±1.12
Ours 75.21±2.11 80.02±2.14 85.93±1.20 84.74±1.21 74.13±1.22 89.51±0.87 78.79±1.19

Method HD at various foreground-background ratios

0%∼10% 10%∼20% 20%∼30% 30%∼40% 40%∼50% 50%∼60% Avg
ResU-Net [21] 30.98±3.79 33.52±2.54 25.47±3.21 24.59±1.67 34.96±3.78 23.95±3.29 30.37±2.66
nnU-Net [4] 25.21±2.64* 23.96±2.17* 20.11±2.29 22.51±2.62 30.21±1.77* 20.51±2.66 24.12±2.07*
Swin-Unet [14] 28.96±3.64 28.57±2.03 24.00±2.32 21.24±2.20 34.25±1.11 22.51±2.56 27.78±2.39
TransUNet [24] 27.15±3.30 29.55±1.13 22.34±1.23 23.44±1.68 33.24±2.58 21.31±1.29 27.97±2.69
TransFuse-S [15] 29.21±3.55 29.78±2.63 21.23±2.10 22.14±2.96 34.09±3.61 20.09±2.33* 27.74±3.26
RSTN [16] 26.93±2.36 24.22±1.57 21.26±1.22 23.91±2.77 30.29±2.49 21.03±2.56 25.29±2.41
UFL [41] 25.23±3.36 29.21±2.00 23.23±2.41 25.20±2.78 32.26±2.84 20.36±2.27 25.82±2.73
Ours 22.03±2.11 23.31±2.03 20.49±1.30 21.32±1.91 29.44±1.26 19.85±1.10 21.20±2.03
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Fig. 7. Visual comparison of lesion segmentation results obtained from various methods on CT images from BUSI. Red, green, and yellow indicate
the prediction, ground truth, and overlapped pixels, respectively.
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Fig. 8. Visual comparison of lesion segmentation results obtained from various methods on CT images from NIH. Red, green, and yellow indicate
the prediction, ground truth, and overlapped pixels, respectively.

TABLE IV
THE SEGMENTATION RESULTS (MEAN ± STD) FROM STATE-OF-THE-ART

METHODS ON THE NIH DATASET ARE SHOWN. THE BEST RESULTS

ARE IN BOLD. ASTERISKS MARK SIGNIFICANT DIFFERENCES FROM

OUR METHOD, AS PER A PAIRED STUDENT’S T-TEST. (*: P<0.05).

Method Dice (%) HD
ResUNet [21] 74.25±4.77 13.96±4.69
nnUNet [4] 81.21±3.12 11.08±4.22
SwinUNet [14] 77.97±4.10 12.71±4.57
TransUNet [24] 77.03±4.20 13.44±4.72
TransFuse [15] 76.28±4.75 12.01±4.96
RSTN [16] 81.73±3.52* 10.97±4.10*
UFL [41] 76.42±4.17 11.41±4.36
Ours 82.29±2.51 10.13±3.48

E. Ablation Analysis

We further explore the impact of the various components
in our proposed model. Table V shows the comparison re-
sults of five variants, including: (1) ”OnlySeg” that utilizes

only the ”Segmentation-Net” in Fig. 4; (2) ”RL+Seg” which
corresponds to the proposed reinforcement learning-based
segmentation framework in Fig. 2; (3) ”RL+FB+Seg” that
combines the ”FB” module (Section III.B) and the proposed
RL segmentation framework; (4) ”RL+FB+ADP+Seg” that
further employs ”FB” and ”ADP” (Section III.C) during the
RL segmentation framework training; (5) ”w/o Pre-training”
that corresponds to the ”RL+Seg” which training from scratch
without utilizing the parameters of ”Segmentation-Net”. In
order to validate the effectiveness of these components, we
conducted a set of ablation experiments.

As shown in Table V, the most decline in performance
occurs when pre-training is not utilized. This reveals that
training from scratch is hard. The pre-training as a warm start
is undoubtedly crucial for reinforcement learning. Moreover,
the performance of ablated version without FB drops signifi-
cantly since the constraint of the foreground-background ratio
alleviates the class-imbalance caused by ”input imbalance”.
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TABLE V
ABLATION ANALYSIS OF KEY COMPONENTS

Model Mean Dice (%)
w/o pre-training Seg RL ADP FB KiTS19 JLUKT BUSI NIH

✓ ✓ ✓ 19.41±10.99 22.71±11.25 32.06±6.33 47.12±7.16
✓ 61.22±6.79 65.73±6.51 74.33±2.32 76.51±4.37
✓ ✓ 65.29±6.01 69.15±5.76 77.23±2.59 80.70±3.87
✓ ✓ ✓ 67.41±5.13 70.93±5.04 77.93±2.03 81.55±3.19
✓ ✓ ✓ ✓ 68.94±4.19 72.68±4.27 78.79±1.19 82.29±2.51
Model Mean HD

w/o pre-training Seg RL ADP FB KiTS19 JLUKT BUSI NIH
✓ ✓ ✓ 31.54±14.24 29.87±15.16 30.27±7.90 28.13±14.56

✓ 18.97±7.22 17.41±6.53 28.01±2.85 14.13± 4.74
✓ ✓ 16.55±6.54 15.83±6.29 24.63±2.22 12.19±4.27
✓ ✓ ✓ 15.31±5.83 14.68±5.71 23.17±2.19 11.13±3.55
✓ ✓ ✓ ✓ 15.20±5.96 14.26±5.11 21.20±2.03 10.13±3.48

Image Mask
Ground

trush
Ours

Fig. 9. Visualization of the masking results of patches learned by
reinforcement learning.

In addition, the performance of the ablated version without
ADP also demonstrates a significant decline, because ADP
supplies local rewards to the reinforcement learning framework
within our model. The integration of these modules into our
proposed MRL-Seg model results in a notable enhancement in
segmentation performance. This indicates that these two types
of constraints work synergistically to enhance the model’s
adaptability, resulting in improved precision across nearly all
substructures.

We observe the alterations in the mask of source images,
as depicted in Fig. 9. Our model refrains from masking
a patch that was initially completely black in the original
image, implying that the black patch does not influence the
segmentation process. It is evident from our observations that
the model is proficient in discerning the non-ROIs within the
organ tissue, subsequently applying dense mask annotations
with ease. Moreover, the contrast of the ROIs in the masked
image is notably enhanced compared to that in the original
image. Interestingly, even with a few patches masked from the
lesion-containing portion of the original image, an improved
prediction image can still be segmented. These examples
show that a purified representation can benefit the image
segmentation task.

V. CONCLUSION

In this paper, we proposed a novel MRL-Seg for
highly imbalanced medical image segmentation, which uti-
lizes multi-step reinforcement learning. MRL-Seg comprises

three modules: Reinforcement-Net, Representation-Net, and
Segmentation-Net, which collectively model the significance
of medical image patches. Our proposed method has several
distinct advantages. Firstly, the Reinforcement-Net based on
multi-step reinforcement learning effectively mitigates the
negative impact of imbalanced data bias, while enabling the
Representation-Net to learn the importance of different pixels
for segmentation during the training process. Additionally, the
Reinforcement-Net leverages 2D priors to assist in segmenting
foreground and background, providing explicit guidance to
complement the Segmentation-Net and leading to improved
segmentation stability. Extensive experimental results showed
that our proposed MRL-Seg could significantly improve the
segmentation performance of highly imbalanced medical im-
ages and outperformed the state-of-the-art methods, which is
of great significance for clinical diagnosis and research.
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