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Abstract: This paper addresses the bearing-only formation tracking problem for heterogeneous
nonlinear multi-robot systems. In contrast to position and distance-based formation algorithms,
the robots can only measure the bearing information from their neighbors to achieve cooperation
while the state information is unavailable. This characteristic is able to be implemented in the
hardware to reduce the requirements of the sensors. We construct a compensation function in
the proposed controller to eliminate the effect of the unknown nonlinear terms in the system.
This compensation function is also based on bearing measurements, which guarantees that the
overall controller is bearing-only. The stability of the proposed formation tracking strategy can
be ensured by Lyapunov techniques. Moreover, we analyze the performance of the protocol for
moving leaders, where the formation tracking error can be restricted in a bounded set. Finally,
the simulation results are presented to validate the feasibility of the proposed algorithm for both
fixed and moving leaders.

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Bearing measurements, formation tracking, nonlinear control, multi-robot systems.

1. INTRODUCTION

With the development of network science and technology,
distributed control have been widely used in different
applications, for instance, cooperative collision avoidance
(Wang et al., 2020), autonomous vehicle platooning (Xie
et al.,, 2022a; Pimentel et al., 2020; Xie et al., 2022b),
manipulators (Liu et al., 2022, 2023), ecosystem hacking
using micro-robot swarms (Stefanec et al., 2022), target
surveillance and autonomous exploration (Li et al., 2020).
Formation control is a practical and effective approach
to solving the problem of coordination and cooperation
in multi-robot systems (MRS). Nevertheless, there are
still many issues to be considered when implementing
formation control techniques on real-world multi-robot
systems, e.g., dealing with nonlinear dynamics to ensure
the convergence and stability of the whole system.

One of the most common formation control protocols is
based on position measurements, which means that the
formation is controlled by measuring the relative position
information of each agent’s neighbors. For example, a
novel distributed position-based method was proposed by
Aranda et al. (2016) to make a set of agents achieve a
desired rigid formation in a two-dimensional environment.
In (Stacey and Mahony, 2015), a framework for formation
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control of dynamic robots was designed using partial
measurements of relative position. In (Kang and Ahn,
2015), a distributed position-based formation control law
was presented to solve the problem of a moving leader with
unknown velocity in a multi-agent system. Wu et al. (2021)
designed a SDP-based formation-containment protocol
with input saturation. However, the agents should be
relatively stationary when using position information for
formation control, thereby making it difficult to estimate
the position information of adjacent agents from different
angles. Besides, the geometry of the agents must be known
in order to observe the position information, which can be
regarded as a limitation.

Another similar formation control protocol is on the basis
of distance measurement, which means that the forma-
tion can be obtained by measuring the relative distance
information of each agent’s neighbors. Kang et al. (2016)
developed a distributed distance-based formation control
protocol for multi-agent systems, that globally keeps and
obtains the desired formation in a two-dimensional space.
A novel distance-based algorithm was proposed by Cao
et al. (2011) to handle the formation of mobile agents when
the agents are only able to measure the distances to their
respective neighbors instead of the relative positions of
their neighbours. In (Soares et al., 2013), a distance-based
control strategy which estimates the formation heading
and speed from the ranges of the two leader robots was

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2023.10.1496



3448

introduced. Nevertheless, it is difficult to observe distance
information in some special environments, such as under-
water robots equipped with radar and sonar, which limits
the practical application of formation control. Addition-
ally, it is necessary to design a corresponding estimation
algorithm in order to use the distance observation infor-
mation. This will increase the computational cost of the
MRS, especially when estimating the distance information
of multiple robots at the same time.

To overcome these difficulties, a formation control protocol
that is on the basis of only bearing measurement has
attracted much attention. Different from position or dis-
tance measurement, bearing measurement only uses pure
angle observation information without other estimation
information such as distance or position. The bearing
measurement information can be directly obtained from
different angles using vision sensors, which will overcome
the limitations of formation control based on distance
or position observation information. In (Li et al., 2022),
a novel control law was proposed to accomplish target
formations in finite time with bearing-only measurement.
A bearing-based Henneberg construction with leader-first
follower graphs was introduced in (Trinh et al., 2018)
for formation forming of multiple agents in an arbitrary
dimensional space. In (Wu et al., 2022), a mixed forma-
tion control design based on edge and bearing measure-
ments was elucidated for networked multi-vehicle systems.
However, the authors did not consider nonlinear systems
or heterogeneous dynamics in the aforementioned works,
which may be considered as a restriction when dealing with
real robotic platforms.

In this work, a cooperative bearing-only formation pro-
tocol is designed to deal with the heterogeneous MRS
with nonlinear dynamics. The robots can only measure
the bearing information from their neighbors while the
position or distance measures are inaccessible. Moreover,
the heterogeneous nonlinear function is included in the
system. The stability of the proposed strategy can be
guaranteed via Lyapunov techniques. Furthermore, we also
discuss the robustness of the controller for moving leaders,
which is more practical in real applications. Finally, the
simulations are presented to verify the effectiveness of the
proposed algorithm. The contribution of this paper can be
summarized as:

e A cooperative bearing-only formation strategy is pro-
posed for nonlinear heterogeneous multi-robot net-
works. Compared with traditional position-based and
distance-base coordination methods, the coordinated
movement of each robot merely requires the relative
bearings from their neighbors, which significantly re-
duces the sensing requirements.

e A novel compensation term based on bearing mea-
surements is introduced in the proposed controller.
The compensation function is able to eliminate
the effect of the unknown nonlinear dynamics in
the system without position and distance measure-
ments.Different from the works presented in (Wu
et al., 2023) and (Zhao et al., 2019), the dynamics of
the agents considered in this work could be nonlinear
and heterogeneous.

e Moreover, the nonzero velocities of the leader is also
considered in this research. The formation error can
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be guaranteed in a bounded set under the proposed
protocol for moving leaders.

The rest of the paper proceeds as follows. In Section 2,
the preliminaries and the problem description are intro-
duced. In Section 3, the cooperative bearing-only forma-
tion scheme is proposed and the stability analysis of the
controller is presented by Lyapunov method. The proposed
results are extended to deal with moving leaders. Simula-
tion results are shown in Section 4 to verify the feasibility
of the proposed algorithm. Section 5 concludes the paper.

2. PRELIMINARIES AND PROBLEM
DESCRIPTIONS

2.1 Graph Theory and Notions

Consider a group of n cooperative mobile robots with
n; leaders and ny followers (n; + ny = n). Define the
position of each robot as :Ulgt) e R (i € {1,2,--- ,n;)
at time t, and x(t) = [z:(H)T, - 20, ()T, 2, ()T,
Let G = (V,€) denote the interaction topology among
the robots, where the vertex and the edge set of each
robot are represented by V = {v1,...,0n,, - ,v,} and
E C V x V respectively. We claim (i,5) € & if the
communication can be transmitted from the ith robot to
the jth robot. Then, the neighbor set of the ith robot can
be expressed as N; = {j € V : (i,j) € £}. It holds that
(4,7) € € & (4,7) € € under an undirected graph G.

Suppose edge (i, j) represent the kth unditected edge and
there exists m undirected edges (|€] = m) among the
graph G. Define the oriented graph as the assignment of
an orientation for all undirected edges in G. The incidence
matrix H = [H]; € R™*™ of the oriented graph with the
kith entry can be defined as

—1, 4 is the tail of kth edge,

H],, = { 1, i is the head of kth edge
0, otherwise.

The edge and bearing vectors of the kth edge (4,j) is
defined, respectively, as

— o — _ . _ Y
Yij =Yk =Tj = iy zij = 2 = : (1)
il
where || - || represents the Euclidean norm of a vector

or the spectral norm of a matrix. The unit vector z;;
denotes the relative bearing of x; with respect to x;. Define
H = HQI,, where K denotes the Kronecker product.
From the definition of the incidence matrix H, it is easily
to obtain that y = Hxz, where y = [y1 (1), , ym (®)T]T,
and I, € RP*P denotes the identity matrix.

Define the scale of the formation in the system as

E i - =
nizl \/’ﬁ ’

where Z = 1(1,, ®I,)"x represents the centroid of the
formation.

Let z* = [xTT7"' »x:LT]Tv y* = [yTTa"' 7y:nT ) and
2 = [T, 22T)T be the configuration, edge and
bearing vectors of the desired formation, respectively. The

bearing Laplacian matriv B € RWV*IN is demonstrated

]T
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to characterize the properties of a formation. The (i, ) th
block of B is expressed as (Zhao and Zelazo, 2016)

0p><pa 7’7&]7 (27])¢57
22l — I, i#J, (i,J) €€,
[B]ij = « _x Ty .
Z (Ip — 22y ), i=J, i€V,
kEN;
It is obvious that Bp* = B(1,QI,) = 0, and B > 0,
where 1,, = [1,1,---,1]7. The partition of the bearing

Laplacian matrix according to the leaders and followers

can be written as
By Blf]
B= ,
[Bsz By

where By € RP*7*Ps The following lemma reveals that
By plays a key role to ensure the uniqueness of the target
formation.

Lemma 1. (Zhao and Zelazo, 2016) The target formation
can be uniquely determined by the positions of the leaders
{} }iev, and the bearing vectors {z};}(; jyce < By is non-
singular.

2.2 Problem Descriptions

In this paper, we mainly focus on nonlinear heterogeneous
MRS. Suppose the leaders are fixed (&;(t) = 0, Vi € V),
the dynamics of the ith follower robot can be written as

T; = Qﬁz(l'l(t)) + Ui(t), Vi € Vf (2)

where 1;(-) € RP denotes the unknown nonlinear con-
tinuous function for each robot. We can imply that the
nonlinear MRS is heterogeneous since 1; is different for
each robot. u;(t) € RP represents the control input for the
ith robot generated by bearing measurements. The main
problem of the work can be expressed as

Problem: Design the cooperative formation strategies for
each follower robot merely based on bearing vectors
{zij}jen, such that all the robots will converge to the
target formation x*.

To deal with the problem, we propose the following as-
sumptions

Assumption 1 : The unknown nonlinear function ;(-) is
upper-bounded by a continuous function (¢) which is
known. That is to say, ||v:()|| < ¥(¢) .

Assumption 2 : The formation scale S(¢) is upper-bounded
from the initial scale. In another words, S(t) < S(0) = Sy,
v t>0.

Assumption 8 : The desired formation is unique. i.e.,
Amin(Brs) > 0, where Amin(Byy) denotes the minimum
eigenvalue of Byy.

Assumption 4 : There is no collision between each robot
during the formation task. i.e., |yx|| > o, Vk €
{1,2,---,m}, where o is a positive constant.

Assumption 4 ensures that the bearing vectors generated
by each pair of the neighbour are always well defined
during the formation framework (Zhao and Zelazo, 2015;
Zhao et al., 2019).
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3. MAIN RESULTS
8.1 Bearing-Only Formation Protocol for Followers

In this section, we present a novel formation algorithm to
solve the problem proposed in Section 2.2. The controller
of the ith follower robot is designed as

ui(t) = Y (a€ij +b¥i(&y)), (3)
JEN:
where §;; = & = z;; — 2]; denotes the bearing error of

the kth undirected edge (4, 7), a and b are controller gains
which should be defined later, and

§ij 72
02(t), when & #0
;(&ig) = q i1 ’
O, when gij =0.
Denote e; = x; — 2] as the formation error of the ¢th
robot, and e = [e],--- el 7. Let £ = [¢T,--- €77 some

lemmas should be introduced before we show the main
result

Lemma 2. (Zhao et al., 2019): Suppose Assumption 4
holds, we have

tTHTE>0 (4)
(@)"H"¢ <0 (5)
eTHTe >0 (6)

Lemma 8. (Zhao et al., 2019): Suppose Assumption 4
holds, we have

el Be xT Bz

maxy [[yxl|  maxy ||yl

<22THT¢. (7)

Now, we present the stability analysis of the proposed
controller as the following theorem,

Theorem 1. Under Assumption 1-4, the formation track-
ing error of the nonlinear heterogeneous MRS (2) con-
verges to zero exponentially for the fixed leaders by im-
plementing the controller (3) if the control gains a and b
are selected to satisfy

2n2SO

b> ——————.
ab = Mo Amin (Byf)

(8)

Proof. It is obvious that e; = 0, Vi € V; since the leaders
are stationary. Hence, we can rewritten the formation

eITor as e = [O,e?]T, where ey = [ef 1, -+ ,eb]". Let
I'= 00 , it can be obtained that
0 Ipn,
eI = el (9)
and
e’ Be = e?Bffef
2 /\min(Bff)eijcef (10)

= )\min(Bff)eTe.

Substituting the formation protocol (3) to the nonlinear
heterogeneous MRS (2), then we present the compact form
of (2) as

i =—TH" (aé + b¥(£)) + ().
where '(/}(.’E) = [07 ¢7:Z+1(xnz,+1)7 e 7¢;{(xn)]T7 and

- ¢r er "
Y=V [ Tl

(11)




3450

Choosing the Lyapunov candidate as

1
V= 2eTe.

2
The derivation of V' can be expressed as

V=eli
—eTTHT (a€ + bW (€)) + Ty (x)
—aeTHTe —beTHTW(€) + Ty ()
—azTHTE+Q

ae” Be

~ 2maxy, [y

A

IA

+Q

mm(Bff) V+Q,
maxy, ||y ||

where 5

= —beTHTW(E) + eTop(x).
On the one hand, according to the definition of St), we
can imply that

n
n?S(t)? = nz llzr — Z|12
k=1

n
_ , (14)
(lzi =2+ D> llaw —2l)?
kEV,k#i
> |l — z||.
Combining with Assumption 2, it can be observed that
lyell = llz: — 25l
= [[(zi = %) = (z; — )|
< lwi — 2l + |l — ]
< 2nS(t) < 2nSp .
On the other hand, from Assumption 1 and 4, together
with the average inequality, we have

Q= by —y")"U(E) + ey (2)

m m

Y

(15)

yLl 2, —yl 2k yi T2 z
_4§j@k R -m}jk kg%kwu
+6T¢< )

llys (1 Zk Zk Iy lI( Zk 2, — 1)
t)+b
Z e — 22 Z R S P
+e 77/1( )
< - Z |yk||w2 _’_eTw( )
- vl 2 n T, me 2
< — - -
< 03 TN + gt BN
n o Nlykll — o = n
< Te—b < —
- 2bmae € ; 2 v < bmaV
(16)
Substituting (15) and (16) into (13), from (8), we have
V< -—aV <o, (17)
where )
bmoAmin(Bfs) — 2n*S
a=2" (Bys) n % >o.

2bmnoSy
That is to say the formation error will converge to zero
exponentially under the control strategy (3) with the
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exponential convergence rate equals to a. This completes
the proof.

3.2 Convergence Analysis for Moving Leaders

In this section, the performance of the proposed controller
(3) is considered if the leaders are not fixed. Suppose the
trajectories of the leaders are described as p; = v(t), Vi €
V,, where v(t) is the velocities of each leader which is
bounded, i.e., ||[v|| < ¥, where ¢ is a known positive
constant. Then, it is easily to find that ] = v, Vi € V
(Zhao and Zelazo, 2016). The stability analysis of the
proposed controller under moving leaders is shown in the
following theorem

Theorem 2. Under Assumption 1-4, the formation error
of the nonlinear heterogeneous MRS (2) converges to the

bounded set
4’ m2 o252 }

s={estel <
n

for the moving leaders with the velocity v by implementing
the controller (3) if the control gains a and b are selected
to satisfy

477,280

b> ———.
ab = ma)\min(Bff)

(18)

Proof. Selecting the Lyapunov function as (12), similar
to the analysis in Theorem 1, we can get

V=elli-1,2v)

>\min B
_a ( ff)V+Q—6TU
maxp ||y | (19)
< —aV —elv
< __ VvV _
< meV el v,

where the last inequity of (19) can be obtained from (18).

From average inequality, we have

T n o 2
—e (1, < 1,

e (1,®v) < 4bm || ® vl
= 2b V—i—bmaHvH2

lelf?

(20)

IN

V + bmod?.

(t) Qbma

Combining (19) and (20) we can get
V<-—
- b mo
Define the bounded set S as
4b2 2 .2~2
Sz{aep§7n0v}

n

V + bmod?.

Denote S as supplementary set of S. if e € S, it can be
observed that

vV <o0. (22)
That is to say, when t — oo, it holds that
4b>°m?a%?
el < = (23)

Hence, the formation tracking error will converge to the
bounded set S. This completes the proof.

4. SIMULATION RESULTS

In this section, the simulation case studies are presented
to verify the theoretical results for both fixed and moving
leaders.



Kefan Wu et al. / IFAC PapersOnLine 56-2 (2023) 34473452

ul

* ¥

(a) (b)

Fig. 1. Interaction topology of the MRS for (a) Case 1:
Fixed leaders, and (b) Case 2: Moving leaders.

4.1 Case Study on Fized Leaders

We first design the simulation to validate the proposed
bearing-only formation protocol (3) on fixed leaders. Eight
mobile robots, with two leaders and six followers, are
applied to this case study. The interaction topology among
the robots is appeared in Fig. 1 (a). The leaders are
represented by two red stars labeled with 1 and 2, and the
followers are denoted by six orange circles labeled from 3
to 8. The communications between each robot are denoted
by green solid lines. These robots aim to attain a target
formation as two pentagons together in 2D space. In robot
dynamics, the nonlinear function for the ith follower robot
is defined as
0.5sin(ix1(t))

(s - t+1 ;
Vil@i®) = | o ssin(izn@) | PEVE (Y
t+1
where z;(t) = [2;1(¢),2:2(¢)]T. Tt is easy to find that

llvi(x: ()] < 1/(t + 1), which satisfies Assumption 1.
The MRS is heterogeneous since ;(z;(t)) is different for
each follower. According to the condition in Theorem 1,
we select the control gains as a = 10, and b = 2.

By implementing the bearing-only controller (3), the tra-
jectories of the follower robots are elucidated in Fig. 2.
We set the positions of the leaders (represented by two
red stars) as (3,0) and (6,0). The initial states of the fol-
lowers (represented by six circles with different colors) are
chosen as (15.9,2), (10,2), (—5,1), (—5.9,3), (4,—9), and
(14, —8). It can be observed that all the robots are able to
form as the target formation under the proposed protocol.
Fig. 3 reveals the time variation of the formation errors
lle;(t)]]. We can conclude that all the formation errors of
the followers will converge to zero during the formation
task. Based on these result, the bearing-only formation
task can be accomplished by the proposed strategy (3).

4.2 Case Study on Moving Leaders

In this section, we further verify the performance of the
proposed protocol for moving leaders. Six robots, with two
leaders and four followers are used in this task. Fig. 1 (b)
displays the interaction topology between each robot. The
velocities of the leaders are set as

0.1
) +0.01cos™(

z;(t) = o T
¢ 0.1 —t —t) |’
il 5o 50"
where V; = {1,2}. The nonlinear function ;(x;(t)) is
chosen as (24). The control gains are set as a = 15, and

b = 1, which satisfy the condition in Theorem 2.

1€V, (25)
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Fig. 2. Trajectories of the followers for fixed leaders (la-
beled by red stars).
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Fig. 3. Formation errors (||le;(t)]|) of the followers for fixed
leaders.

Y(m)

X (m)

Fig. 4. Trajectories of the followers for moving leaders
(labeled by red stars).

We select the initial positions of the leaders as (—1,0) and
(1,0). Fig. 4 demonstrates the movement of each robot
under the controller (3). Two red stars denote the moving
leaders. The trajectories of the followers are represented
by four dash lines with various colors. From Fig. 5, we
can obtain that all the formation errors of the followers
will converge to a bounded set (the boundary is denoted
by a black dash line). To sum up, the formation error
can be guaranteed in a bounded set by implementing the
proposed bearing-only formation protocol, which validates
the feasibility of the theoretical result.
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—— Follower 3

Follower 4| |
—— Follower 5
—— Follower 6

(2]

(&)

Formation errors ||e;(t)||
SRS
—

-
T

o

0 20 40 60 80 100 120
t(s)

Fig. 5. Formation errors (|le;(¢)||) of the followers for
moving leaders.

5. CONCLUSION

In this paper, the bearing-only formation tracking problem
is addressed for heterogeneous nonlinear MRS. We propose
a novel formation protocol for the follower robots based
on bearing measurements to form the desired formation
configuration. A compensation term is included in the
controller to deal with the unknown nonlinear items in
the system. By using the Lyapunov method, the formation
tracking error will converge to zero exponentially under
the proposed bearing-only algorithm. Furthermore, we
extend the stability analysis of the proposed strategy on
moving leaders, and the formation tracking error is able to
be guaranteed in a bounded set. Simulation case studies
are provided to verify the effectiveness of the theoretical
results.
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