
TYPE Original Research

PUBLISHED 05 January 2024

DOI 10.3389/fnsys.2023.1305022

OPEN ACCESS

EDITED BY

Golnaz Baghdadi,

Amirkabir University of Technology, Iran

REVIEWED BY

Vangelis P. Oikonomou,

Centre for Research and Technology Hellas

(CERTH), Greece

Seppo P. Ahlfors,

Massachusetts General Hospital and Harvard

Medical School, United States

*CORRESPONDENCE

Christodoulos Karittevlis

c.karittevlis@aaiscs.com

RECEIVED 30 September 2023

ACCEPTED 06 December 2023

PUBLISHED 05 January 2024

CITATION

Karittevlis C, Papadopoulos M, Lima V,

Orphanides GA, Tiwari S, Antonakakis M,

Papadopoulou Lesta V and Ioannides AA (2024)

First activity and interactions in thalamus and

cortex using raw single-trial EEG and MEG

elicited by somatosensory stimulation.

Front. Syst. Neurosci. 17:1305022.

doi: 10.3389/fnsys.2023.1305022

COPYRIGHT

© 2024 Karittevlis, Papadopoulos, Lima,

Orphanides, Tiwari, Antonakakis, Papadopoulou

Lesta and Ioannides. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

First activity and interactions in
thalamus and cortex using raw
single-trial EEG and MEG elicited
by somatosensory stimulation

Christodoulos Karittevlis1,2*, Michail Papadopoulos2,

Vinicius Lima3, Gregoris A. Orphanides1,4, Shubham Tiwari5,

Marios Antonakakis6,7, Vicky Papadopoulou Lesta2 and

Andreas A. Ioannides1

1AAI Scientific Cultural Services Ltd., Nicosia, Cyprus, 2Department of Computer Science, European

University Cyprus, Nicosia, Cyprus, 3Aix Marseille Université, INSERM, Institut de Neurosciences des

Systèmes, Marseille, France, 4Barts and The London School of Medicine and Dentistry, Queen Mary

University of London, London, United Kingdom, 5Department of Geography, Durham University,

Durham, United Kingdom, 6School of Electrical and Computer Engineering, Technical University of

Crete, Chania, Greece, 7Institute for Biomagnetism and Biosignal Analysis, Medicine Faculty, University of

Münster, Münster, Germany

Introduction: One of the primary motivations for studying the human brain is to

comprehend how external sensory input is processed and ultimately perceived by

the brain. A good understanding of these processes can promote the identification

of biomarkers for the diagnosis of various neurological disorders; it can also

provide ways of evaluating therapeutic techniques. In this work, we seek the

minimal requirements for identifying key stages of activity in the brain elicited by

median nerve stimulation.

Methods: We have used a priori knowledge and applied a simple, linear, spatial

filter on the electroencephalography and magnetoencephalography signals to

identify the early responses in the thalamus and cortex evoked by short electrical

stimulation of the median nerve at the wrist. The spatial filter is defined first from

the average EEG and MEG signals and then refined using consistency selection

rules across ST. The refined spatial filter is then applied to extract the timecourses

of each ST in each targeted generator. These ST timecourses are studied through

clustering to quantify the ST variability. The nature of ST connectivity between

thalamic and cortical generators is then studiedwithin each identified cluster using

linear and non-linear algorithms with time delays to extract linked and directional

activities. A novel combination of linear and non-linear methods provides in

addition discrimination of influences as excitatory or inhibitory.

Results: Our method identifies two key aspects of the evoked response. Firstly,

the early onset of activity in the thalamus and the somatosensory cortex, known

as the P14 and P20 in EEG and the secondM20 for MEG. Secondly, good estimates

are obtained for the early timecourse of activity from these two areas. The results

confirm the existence of variability in ST brain activations and reveal distinct and

novel patterns of connectivity in di�erent clusters.

Discussion: It has been demonstrated that we can extract new insights

into stimulus processing without the use of computationally costly source

reconstruction techniques which require assumptions and detailed modeling of

the brain. Our methodology, thanks to its simplicity and minimal computational

requirements, has the potential for real-time applications such as in

neurofeedback systems and brain-computer interfaces.

KEYWORDS

electroencephalography, magnetoencephalography, somatosensory, thalamocortical

connectivity, spatial filtering, clustering, single-trial analysis
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1 Introduction

The human brain consists of around 80 billion neurons of

different shapes and sizes. These neurons are highly interconnected

and form complex networks in the brain with information

exchanged between neurons through chemical and electrical

synapses (Ioannides, 2006). The electrical activity of a single

neuron is too small to be detected from outside the brain.

The well-known non-invasive signals of electroencephalography

(EEG) and magnetoencephalography (MEG), are the result of

synergistic accumulation of contributions from a huge number of

activated neurons (Hämäläinen et al., 1993; Lopes da Silva, 2013;

Singh, 2014). EEG and MEG are members of the wider family

of neuroimaging techniques capable of mapping mass regional

activity from the brain (Horwitz et al., 2000; Bandettini, 2009; He

et al., 2011). These techniques can identify activity confined to a

small enough region that belong to specific cytoarchitectonic areas

in the cortex (Moradi et al., 2003) or specific nuclei (Papadelis et al.,

2011, 2012). It is universally acknowledged that what distinguishes

EEG and MEG from other neuroimaging techniques is their high

temporal resolution which is in the order of a millisecond or less

(Hämäläinen et al., 1993; He et al., 2011; Lopes da Silva, 2013;

Baillet, 2017; Michel and He, 2019).

EEG measures the electric potential difference between the

ground and other scalp surface electrodes. In the case of MEG,

the instantaneous changes in the magnetic field are measured

using either single coil sensors (magnetometers) or differential

combination of coils (gradiometers) (Hämäläinen et al., 1993;

Singh, 2014). Modern instruments provide a collection of sensors

for each modality arranged uniformly to cover as much as possible

the surface of the head around the brain (Baillet, 2017).

The standard way to estimate the activity inside the brain is

through source reconstruction algorithms (Asadzadeh et al., 2020),

which transform the timecourses of sensor recordings (signal space

description) to timecourses of few or many generators in the

brain (source space description) (Ioannides et al., 1990; Mosher

et al., 1999; Michel and Brunet, 2019). Source reconstruction

using EEG and/or MEG, demands making a model which is

based on assumptions some explicit while other implicit; a model

allows computations to be made for the contribution from

any assumed source configuration (forward problem) and hence

through applications of different methods (which also contain

Abbreviations: ST, single-trial; GCMI, Gaussian copula mutual

information; EEG, electroencephalography; icEEG, intra cortical

electroencephalography; MEG, magnetoencephalography; icMEG, intra

cortical magnetoencephalography; fMRI, functional magnetic resonance

imaging; SEP, somatosensory evoked potential; SEF, somatosensory evoked

field; LP, low pass; HP, high pass; MRtEW, measured response to EW;

ECD, equivalent current dipole; CMS, composite model signal; VPL, ventral

porterolateral; MGB, medial geniculate body; BAx, broadman area X; EW,

electrical-wrist; SP, signal power; SN, noise power; SNR, signal noise ratio;

VS, virtual sensor; CC, correlation coe�cient; MI, Mutual Information; GCMI,

Gaussian copula mutual information; tdGCMI, time-delayed Gaussian copula

mutual information; tdCC, time-delayed correlation coe�cient; S1, primary

somatosensory cortex; S2, secondary Somatosensory Cortex; MFT, magnetic

field tomography; ACV, activation curve; DBS, deep brain stimulation.

assumptions) a best fit solution can be determined (Scherg, 1992;

Mosher et al., 1999; Michel and Brunet, 2019; Asadzadeh et al.,

2020). For EEG, a complex model is necessary to take into account

the high resistivity of the skull (Michel and Brunet, 2019) and the

changes in conductivity between different tissues that distort the

electric current (Baillet, 2017). In contrast, for MEG, a simpler

model is sufficient as the propagation of the magnetic field is not

greatly affected by the conductivity details (Hämäläinen et al., 1993;

Lopes da Silva, 2013; Singh, 2014). Nevertheless, in both cases, the

accuracy and spatial resolution depend heavily on the accurate co-

registration of the sensor’s position to the head (Akalin Acar and

Makeig, 2013; Michel and Brunet, 2019).

There are numerous EEG/MEG studies involving animals and

human subjects that aim to understand the underlying mechanisms

of different sensory systems, by using different kinds of external

stimulation. To understand the processing mechanisms of any

sensory system, apart from identifying the location of the brain

areas involved in the processing, what is also necessary is the study

of the communication between those areas (He et al., 2011). During

an experiment, a large number of identical stimuli are presented

to the subject, with each presentation referred to as a single-

trial (ST). Even though identical stimuli are used, each stimulus

evokes a response that could vary considerably between trials (ST

variability), in terms of the timing and topography of the EEG

and MEG signal (Liu et al., 1998; Ioannides et al., 2002; Stephani

et al., 2020). The interest in ST variability of EEG andMEG sensory

evoked responses was raised when variability of ST responses was

also demonstrated with functional magnetic resonance imaging

fMRI (Duann et al., 2002). However, we will not discuss the

fMRI ST variability further because the timescales involved (few

seconds) are more than two orders of magnitude larger than the

timescales relevant to the variability of the EEG/MEG responses (a

few milliseconds).

In this paper, we utilize simultaneous EEG-MEG recordings

elicited by somatosensory electrical stimulation to address the

following objectives. The first objective of this study is to extract

the activity of specific brain generators at particular time-points

relative to the stimulus onset, while avoiding the assumptions

typically associated with source reconstruction techniques. This

is accomplished using Virtual Sensors (VS), which are created

through linear combination of different channels. We demonstrate

that such a VS can effectively capture the activity generated by

generators for each ST. Combining this capability with knowledge

about the location and timing of well-known generators, yields a

data-driven estimate of the ST timecourse of these specific, well-

known cortical and subcortical brain regions. The second objective

is to verify whether or not accurate estimates of cortical and

subcortical generators can indeed be extracted for each ST. The

third objective of our study is to explore the usefulness of having

simultaneous measurements of EEG and MEG, which are known

to be derived from complementary mathematical properties of

the common current density vector generated by neural electrical

activity. The fourth objective is to explore the variability of the ST

activations derived from the VS by utilizing clustering techniques.

The fifth objective is to compute the connectivity across the

ensemble of all STs using a linear and nonlinear connectivity

metrics and compare the results with current literature. The sixth

and final objective is to explore the variability in connectivity across
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FIGURE 1

Work flow diagram. Orange boxes show the main analysis steps while the yellow boxes give a brief description of the processing and analysis

methods at each step. LP, low pass; HP, high pass; SEP, somatosensory evoked potential; SEF, somatosensory evoked fields; SP, signal power; NP,

noise power; SNR, signal to noise ratio; ST, single trial; VS, virtual sensor; MI, mutual information; CC, correlation coe�cient.

STs in general and to investigate the distinct types of connectivity

that prevail in the different sets of STs that clustering methods have

identified.

2 Materials and methods

The workflow diagram illustrating the methodology is

presented in Figure 1. In the Figure, the main analysis steps are

depicted in orange, while the submethods for each step are shown

in yellow. A key preliminary task was to decide which sensory

system to study and how this system will be stimulated. Having

in mind the objectives of the study, we eventually chose to work

with brain responses to somatosensory stimulation for reasons

explained in Section 2.1. After this preliminary task was completed

and the data obtained (Section 2.2), the first step of the pipeline

involved identifying and excluding data segments contaminated

with artifacts, e.g., caused by the subject’s head movement during

the recording (see Section 2.3). Preprocessing of the data was

then conducted, which includes various filtering techniques and

removal of stimulus artifacts (see Section 2.3). Subsequently, the

Somatosensory Evoked Potentials (SEPs) and Fields (SEFs) were

analyzed to identify the timings of the first evoked responses in the

thalamus and the somatosensory cortex (see Section 2.4). Moving

forward, VS were utilized to extract spatiotemporal estimations

of activity in the thalamus and the primary somatosensory

cortex S1 (see Section 2.5). Cluster analysis was then employed

to identify and group spatiotemporal estimations with similar

information (see Section 2.6). Next, the clustered data were

utilized to estimate thalamocortical connectivity (see Section 2.7).

Finally, the estimated connectivity values were further analyzed to

differentiate the different types of influences between the thalamus

and the cortex implied by the linear and non-linear connectivity

measures (see Section 2.8).

2.1 Selection of sensory system

The EEG and MEG neuroimaging modalities are usually used

for the study of the somatomotor, visual and auditory systems in

the brain. Any one of these three modalities could be used in

our study; the selection was influenced by how well the primary

requirements, which were to have good a priori information about

the timing and location of the first evoked responses in the

thalamus and the cortex. For each one of these three sensory

modalities (somatosensory, visual and auditory), there is good

evidence in the literature about the timings and precise location

of the first arrival of the responses evoked by stimuli, first in

the corresponding nucleus of the thalamus [ventral posterolateral

(VPL) nucleus, Lateral Geniculate nucleus (LGN) and medial

geniculate body (MGB)], and a fewmilliseconds later to the specific

primary sensory cortex [S1; Broadman Area 3b (BA3b), V1; BA17

and A1; BA41;42].

There are also common drawbacks and problems specific for

each sensory modality. The common feature (drawback) is that for

each modality the response to each individual stimulus is different.

As demonstrated in our earlier MEG studies, for stimuli well above

the sensory threshold, but relatively weak to startle the subject,

the early cortical response in the primary sensory cortex is so

variable that little or no evidence of it can be traced for most STs in

either somatosensory (Ioannides et al., 2002; Hu et al., 2011, 2014;

Stephani et al., 2020; Waterstraat et al., 2021), visual (Duann et al.,

2002; Laskaris et al., 2003, 2004; Bagshaw and Warbrick, 2007) or
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auditory (Liu et al., 1998; Kisley and Gerstein, 1999; Laskaris and

Ioannides, 2001, 2002; Goldman et al., 2009) cortex. Analysis of the

ST data at signal and source levels focusing on the cortical responses

has demonstrated an individual statistical signature of the evoked

response that was reproducible across days (Liu et al., 1998). Also,

there is a clear influence of the prestimulus activity in the primary

sensory cortex on the early evoked response in the same area

for somatosensory, visual and auditory stimulation (Laskaris and

Ioannides, 2002; Laskaris et al., 2003). Ideally, these problems of

studying ST variability can be addressed by using strong stimuli

and asking the subject to report on the perceived qualities of each

ST stimulation. However, such an approach is impractical because

it would require long recording times and it will be very tedious

and uncomfortable for the subject. It is also important to note that

what we call drawback and problem above are really properties of a

healthy brain, so if we want to understand normal brain function

we must accept and account for the observed variability in ST

responses to identical stimuli.

There are also further problems specific to each sensory

modality. For visual stimulation, the placement of a stimulus to a

specific quadrant of the visual field allows for a precise definition

of which part of V1 the activity should be seen on the left or right

hemisphere and on the upper or lower side of the calcarine fissure,

provided that the subject can fixate on a fixation stimulus. No

fixation is needed for auditory stimuli, but the pathway from the

ear to A1 is not strictly unilateral but bilateral: auditory stimulation

of one ear exiting the thalamus and the A1 on the ipsilateral

and contralateral hemisphere with the pathways crossing the

hemispheres at multiple subcortical levels. In contrast, the cortical

sources to somatosensory stimulation are well separated and away

from the mid-line of each hemisphere (for stimuli delivered in

the left and right upper limbs). In addition, the reporting by the

subject of the qualities of perception of each stimulus is the only

way of ensuring that the targeted pathway was activated in each ST.

These limitations of the visual and auditory systems (for achieving

the objectives of our study) prompted us to select a fairly strong

hand stimulation, i.e., electrical stimulation of the median nerve

of the wrist. This type of stimulation has its own problems which

we describe next in the context of other choices for exciting the

somatosensory system.

Pure somatosensory stimulation can be achieved with the use

of tactile stimuli, which however are difficult to control precisely

(e.g., keeping the level of pressure applied constant) and/or do not

afford precise timing, e.g., using a balloon. An electrical stimulation

with a short pulse (sub-millisecond duration), provides an easier

way of achieving precise timing. Unfortunately, the nature of

electrical stimulation introduces a strong artifact, which is smaller

for weak stimuli and reduces further for foot (tibial nerve) than

hand electrical stimulation. Foot stimulation however is close to

the top of the central sulcus with left and right primary sensory

areas close to each other. Considering all factors we settled on the

use of somatosensory dataset (Antonakakis et al., 2019); hereafter

we will refer to electrical median nerve stimulation of the wrist as

Electric Wrist (EW) stimulation, for consistency with the earlier

analysis of the same data by Antonakakis and colleagues. This set

includes simultaneous EEG and MEG recordings for three subjects

in response to over 1,000 STs of EW stimulation at the right

wrist. The EW stimulation is strong enough to produce a small

twitch of the thumb. This ensures that there is a visible response

for each stimulus applied, without the need to ask for a report

from the subject. On the cost side, there is an early artifact in the

signal caused by the strong electrical stimulus and the inevitable

involvement of the motor system. A compromise of the advantage

and disadvantage of the choice of a strong EW stimulation is made

in the way the artifact is reduced but not completely removed as

can be seen in the Supplementary Figures S2, S3. The delivery of a

large number of trials takes a rather long period of time (9 min)

with a stimulus that is rather slightly annoying, so some small

movement could be made. While for EEG the removal of STs close

to each movement is sufficient (because the electrodes are fixed on

the scalp) for MEG this implies that the initial coregistration of the

MEG sensors with the head is lost after the first movement.

2.2 Data description

We used simultaneous EEG and MEG data, collected in

response to somatosensory stimulation, from three right-handed

healthy human subjects. The experiments for data collection were

conducted at the Institute of Biomagnetism and Biosignal Analysis,

Muenster, Germany. The EEG/MEG recordings were provided to

us in an anonymized form by the corresponding author of the study

(Antonakakis et al., 2019) and co-author of this paper. The EEG

recording involved 74 EEG channels and six auxiliary channels for

eye movement detection. For MEG recording, a whole-head MEG

system with 275 axial gradiometers was utilized. Further details

regarding the EEG/MEG systems can be found in Antonakakis

et al. (2019). In that study, three different types of stimulation

were employed: Pneumato-Tactile stimulation using a balloon

diaphragm, Braille-Tactile stimulation, and Electrical-Wrist (EW)

stimulation of the right median nerve. For the current study, we

exclusively utilized data acquired in response to EW stimulation.

The electrical pulses delivered to the wrist had a duration of 0.5 ms,

and the stimulus intensity was adjusted to elicit observable thumb

movement in the subject. The data was sampled at a frequency

of 1,200 Hz, and an online low-pass filter of 300 Hz was applied.

The experiment consisted of 1,198 trials (repetitions) with an

inter-stimulus interval (ISI) ranging between 350–450 ms.

2.3 Data preprocessing

Prior to initiating any data preprocessing, we excluded recorded

periods during which large artifacts were present which are likely to

involve head or body movements or large scale muscle activity like

teeth clenching. Head movement during recordings significantly

distorts the signals, particularly the MEG signals. Given that the

MEG sensors are stationary above the head, even a small head

movement causes large signal distortions across the entire sensor

array that can be easily identified by visual inspection of the

raw signals. Therefore, to ensure that the signals used in our

analysis pipeline were free from movement artifacts, we employed

a simple method to identify and exclude the trials associated with
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head movement. The raw signals from all MEG channels were

plotted in a single plot, with each channel displayed consecutively

(refer to Supplementary Figure S1). Visual inspection of the raw

signals throughout the entire recording duration identified periods

exhibiting significant signal distortions across all channels. These

periods, along with a 1 s buffer before and after the identified

noisy segments, were marked for exclusion. The STs in each period

between the cut-out segments were identified as distinct set of

trials, for which there was no pronounced distortion observed

across all channels and hence no large head (or body) movement.

This is a conservative approach because, it eliminates not only

movement artifacts but also any other influence that is felt across

the MEG sensor array; this conservative segmentation of the data

was performed for all three subjects.

Moving to the preprocessing of the selected data, the first

step was the reduction of the artifact created by the electrical

stimulation, from both the EEG and MEG raw signals. For the

reduction of the stimulus artifact, a segment from the background

data in the pre-stimulus period (−18.3 to −5 ms) together with

a segment of data containing the stimulus artifact (−5 to 8.3 ms)

were multiplied by a Generalized Logistic function and combined

to replace the stimulus artifact period. Detailed description of the

stimulus artifact reduction method can be found in the schematic

diagram shown in Supplementary Figure S2. As a second step, the

EEG and MEG data were high-pass filtered at 1 Hz, and any

noisy channels were removed. In the case of EEG, the mean of

all channels was used to re-reference the signals of individual EEG

electrodes. Furthermore, notch filtering at 50 Hz and its harmonics

(100, 150, 200, 250 Hz) was applied to remove power line noise in

the EEG and MEG signals. Next, the data were band pass filtered

in the frequency range (20, 250 Hz). Once the data were cleaned

and filtered, they were parsed into epochs (trials) of 0.3 s in total

duration. Each trial consisted of signals starting 100ms before (pre-

stimulus period) and 200 ms after (post-stimulus period) stimulus

onset. Subsequently, the identified trials with large movement were

excluded and the remaining trials were separated into groups of

trials free of movement artifacts. Finally, for each subject, the three

groups with the highest number of trials were selected for further

analysis. The number of trials in each group and the selected

group of trials are shown for each of the three subjects in the

Supplementary Table S1. This overcautious approach ensures that

in each one of the groups separated out the head was in the same

position for all the trials in each group.

2.4 Somatosensory evoked
potentials/fields

While the EW stimulation excites many areas across the brain,

both invasive and non-invasive experiments with humans have

identified the time of the first arrival of the signal in the area of the

thalamus at around 14–16 ms post-stimulus onset (Buchner et al.,

1995; Hanajima, 2004; Porcaro et al., 2008; Götz et al., 2014; Politof

et al., 2021). Then, the signal travels in a dorso-lateral direction

reaching the primary somatosensory cortex (S1) at around 20 ms

post-stimulus onset (Allison et al., 1991; Peterson et al., 1995;

Gobbelé et al., 1999; Porcaro et al., 2008; Politof et al., 2019, 2021).

For our purposes, what is important is that these are the first arrivals

of the evoked response at the level of the thalamus and the cortex

and they are therefore the signal components least influenced by

activity in the many other cortical areas that come later. These

somatosensory responses can be easily identified in the signal space

as prominent peaks by calculating and visualizing the so-called

Somatosensory Evoked Potentials (SEPs) and Fields (SEFs), from

the EEG and MEG data, respectively.

For the visualization of the SEPs and SEFs, we first calculate

the average across the ST timecourses of all the EEG chanels

and MEG channels, respectively. Then the average of the EEG

(SEPs) and MEG channels (SEFs) is plotted separately for the

time window 50 ms prior and 100 ms post-stimulus onset. In

the same Figure, we also show the topographies of the averaged

EEG and MEG data at the identified prominent peaks in the

SEPs and SEFs. This is done for each subject and for each of the

three groups of trials. Knowledge of the location of the thalamic

and cortical generators and the physics of their electrical activity

predict which components will be seen best with EEG and/or MEG.

Previous studies align well with these expectations. Specifically, it

is expected to find the (EEG) components P14, (P/N20), (N/P30)

and (P/N40) in the SEPs (Politof et al., 2019). The labels P and N

refer to the polarity of the peak (positive, negative) but note that

for tangential superficial sources the P/N for EEG will appear in

different electrodes. The number in the labeling of components

corresponds to the peak latency. These cortical activations are

expected to appear in the (MEG) components M20, M30, and M40

of the SEFs, i.e., the EEG and MEG are expected to “capture” the

activity of the cortical generators that become active at 20, 30, and

40 ms (Kakigi, 1994; Papadelis et al., 2011; Politof et al., 2019). In

contrast, no prominent M14 component (the SEF analog of the

SEP P14) is expected because the location of the thalamus is close

to the center of the head, which is bounded by the high resistivity

and nearly spherical cranium; in such a geometry configuration the

magnetic field outside the head, generated by electrical activity in

the thalamus is almost zero, because the dominant direction of the

electrical current dipole is in the silent radial direction (Kimura

et al., 2008; Papadelis et al., 2012; Politof et al., 2021). In this study,

we focus on the first early components at around 14 ms (P14) and

20 ms (P20, M20) since these are considered to be the first entries

in the thalamus and the cortex, respectively.

2.5 Virtual sensors

2.5.1 Linear spatial filters applied to a composite
model signal

We have adopted a data-driven definition of separate linear

combinations of EEG and MEG channels to extract from the raw

EEG and MEG signals the early timecourses of the brain activity

at the level of the thalamus and Somatosensory cortex. The linear

combinations of channels are defined at two times. First around

14–15 ms when the evoked activity reaches the VPL nucleus of

the thalamus. The VPL is the end-point of the spinothalamic tract:

it is the main gate for activity elicited by somatosensory stimuli

to enter the thalamo-cortical circuit. Within a few ms, around

18–20 ms the evoked activity reaches the primary somatosensory
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cortex, Broadman Area 3b (BA3b). We will simply refer to the

output of these two linear filters as the activity of the thalamus

and cortex hereafter, providing further clarification wherever this

is needed. We will first illustrate the logic behind the approach

we have taken and justify the label as virtual sensor (VS) of our

seemingly simplistic linear spatial filter we have designed. The

approach is illustrated using a simple, yet realistic scenario, which

approximates reasonably well the findings of many earlier studies

of the variability of responses to somatosensory stimuli (Ioannides

et al., 2002; Stephani et al., 2020).We know that the EW stimulation

elicits the first evoked responses at the level of the thalamus at the

VPL around 14–15 ms and few ms later the evoked response can be

identified at the cortical level in the Broadman Area (3b). Each of

these responses is a focal well-circumscribed activation that can be

approximated well by a single equivalent current dipole (ECD).

We generate a model signal, for the system we wish to study,

which we will refer to hereafter as the composite model signal

(CMS) to contrast it with the actual measurements which we will

refer to as the measured response to EW (MRtEW). The CMS

is a mixture of a computer-generated signal (sum of two ECDs,

one for the thalamus and the other from the cortex) to which

we add realistic background brain activity from a segment of the

pre-stimulus period of the MRtEW. The CMS for each ST is the

sum of two computer generated signals and a segment of pre-

stimulus period of that trial (from −70 to −20 ms with respect

to the onset of EW stimulus at 0 ms), from the actual background

of the preprocessed EEG and MEG data. Each ECD of the CMS

is modulated by a Gaussian function with fixed shape, full width

of 5 ms at 5% of the maximum and strength adjusted so that

the signal generated at the peak is comparable to the signal at

the peaks of the MEG and EEG signal of single trials. A jitter is

allowed in the latency of each ECD onset, by varying the latency

of the center of the Gaussian form factor within a range of 4 ms,

i.e., 2 ms on either side of the mean latency of 15 ms for the

thalamic ECD and 20 ms for the cortical ECD. The random latency

within the 4 ms range is varied independently for the thalamic

and cortical ECDs. The location and direction of the ECD are

fixed to what others have reported before for these two centers

from EEG (Porcaro et al., 2008; Götz et al., 2014), MEG (Tesche,

1996) and MEG with fMRI (Papadelis et al., 2012) studies. The

forward problem computation employed a head model constructed

using a realistic three-layer (brain, skull, scalp) Boundary Element

Method (BEM) volume conduction model of the head, based on

a template MRI fitted to the electrode montage used for subject 1.

The EEG and MEG signals were computed at the same locations

as were given for the MRtEW experiment: 71 electrodes on the

scalp for the EEG and 271 locations of the radial gradiometers

inside the dewar, for the MEG sensors. The EEG- and MEG- CMS

signals for one random ST are presented in the plots A and C

of the Supplementary Figure S4, respectively. Plots C and D of

the Supplementary Figure S4, show EEG and MEG topographies,

respectively, for different time points at and around the peak

latencies of the input ECD signals, illustrating the emerging distinct

patterns (as expected from physics) at the ECD’s peak latencies for

that ST (e.g., 15 and 20 ms)

The next display, Figure 2, shows results for the average signal.

The resulting butterfly plots for the average signals are displayed in

row A of Figure 2, on the left half for the EEG and on the right half

for the MEG. The dipole locations are shown in the next row (B) of

the Figure 2 and in the third row (C) the topographies at the peaks

of the thalamic and cortical ECD activations, which correspond

exactly with the extrema of the butterfly plots shown in row A of

Figure 2.

In left half of Figure 2B, the two displays show the thalamic

ECD in a coronal MRI slice (at the level of VPL) and the cortical

ECD in a fairly superficial axial MRI at the level of BA3b; The

anatomy in Figure 2B is placed under the EEG butterfly plot

(Figure 2A). Each EEG topography (Figure 2C) is placed directly

below the ECD responsible for the corresponding peak latency. In

the right half of Figure 2B, the display of the two ECDs is repeated

again for the correspondingMEG butterfly (right half of Figure 2A)

and topographies (right half of Figure 2C).

The MEG activity generated by the nearly radial thalamic ECD

is much weaker, with a ratio of 10:1, compared to that generated

by the nearly tangential cortical ECD. As a result, only a slight

swelling but no clear peak is seen at the latencies of peak thalamic

activity. A clear and nearly symmetric dipolar pattern is seen in

the topography of the MEG signal at the latency of the peak of the

cortical dipole, which is rotated by 90 degrees relative to the pattern

of the EEG at the same latency. These patterns are as expected from

physics, and they can be used to prescribe a completely data-driven

and robust sensor-based analysis suitable for both average but also

for ST signals. The procedure for designing such a robust spatial

filter, will be described after we use the knowledge of the laws of

physics to justify labeling these spatial filters “virtual sensors” for

the underlying active sources.

2.5.2 Virtual sensor interpretation of our spatial
filters

In EEG and MEG we are usually concerned with frequencies

below 1 kHz, a range where active changes in the current density

distribution in the brain are slow enough for the time derivatives

to have negligible effect, i.e., for the quasistatic approximation

of Maxwell’s equations to be valid (Hämäläinen et al., 1993). In

the quasistatic regime we can consider topographies of sets of

MEG, EEG or even intra cortical EEG (icEEG) or intra cortical

MEG (icMEG) as (nearly) equivalent representations of the current

density changes that took place at that instant). Without any loss

of generality we can assume that for each single trial we have

the timecourses y1j (t) and y2j (t) for each of the two generators,

respectively, that are scaling some normalized topographies, Ŷ1 and

Ŷ2, representing respectively the imprint of the sub-cortical activity

starting in the brainstem and culminating in the thalamic peak at 15

ms (Ŷ1) and the cortical activity (Ŷ2) starting around 18ms in BA3b

and peaking at 20 ms. Under this scenario, both the real (MRtEW)

and composite (CMS) signals, can be written as Sjl (j = 1 toN trials

and l = 1 to L sensors),

Sjl(t) = y1j (t)Ŷ
1
l + y2j (t)Ŷ

2
l + 2jl(t), (1)

Equation 1 is an “exact” representation of the CMS andMRtEW

signals, in a trivial sense: we define it to be so, by setting the
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FIGURE 2

Average composite model signals (CMS) and source reconstruction of the modeled thalamic and cortical equivalent current dipoles (ECD) using the

Virtual Sensor (VS) method. The average CMS signals across the 239 trials are shown in Panel (A), for EEG and MEG, in left and right columns,

respectively. Panel (B) depicts the location and orientation of the ECDs plotted on the template coronal MR image for the thalamic dipole and axial

MR image for the cortical dipole. Constructed Virtual Sensors are shown in Panel (C), with red colors indicating the selected sensors with positive and

white color the sensors with negative amplitude. The VS extracted activations of the ECD in the thalamus [Panel (D)] and in the cortex [Panel (E)],

using the EEG (left column) and MEG (right column) generated data are shown for five random Single Trials. In all four plots shown in Panel (D, E), the

same five colors are used to di�erentiate between the VS signals of each ST, black solid lines show the average of all the 239 trials and the dashed

vertical lines indicate the mean time of the peak activity of the input ECD signals across all the trials. The box in the top right quadrant of each plot of

Panels (D, E) features zoom versions in the period 10–20 ms and 15–25 ms for the thalamic and cortical VS, respectively.
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remainder2jl(t), to represent the effect of all other sources and any

instrumental or environmental noise that are present at time t.

Note also that the formulation can be expanded to many more

sources, up to the total number of sensors. A vast range of standard

linear algebra techniques can then be used to extract from the data a

wide range of equivalent representations of the measurements. The

mathematical analysis can be considered as a decomposition of the

signal, for example as a spectral decomposition with components

ranked according to their strength (amplitude of the eigenvalues) of

the corresponding linear system. From the point of view of physics,

the raw signal is the result of applying mathematical operator based

on the laws of electromagnetism to the underlying generators,

which involve the details of the conductivity profile of all head

compartments between the active generators and the sensors. For

an excellent concise summary of how the basic ingredients of

our measurements, the electric and magnetic field relate through

integral representation of the generators see the classic paper of

Sarvas (1987).

Measurements for each one of the four modalities (EEG,

icEEG, MEG, and icMEG) relate to integrals of functionals over

the space where primary currents can exists. These functionals

depend inversely on the distance from the source and either the

divergence of the primary current (or equivalently the Laplacian

of the electrical potential) in the case of electrical measurements

(EEG and icEEG) or the Curl ∇x of primary current in the case

of magnetic measurements. More specifically for the non-invasive

EEG/MEG signals, the Surface Laplacian (SL) and V3, respectively.

The SL is the radial contribution of the divergence of the primary

current density vector on the scalp ( ∂
∂r (̂r.

−→
J p(r, t))) (Hjorth, 1975;

Kayser and Tenke, 2015).V3 is the radial component of the Curl (at

the measurement point) of the Curl of the functional of the primary

current density at the limit as we approach the source, which for

a focal superficial generator aligns with the projection of
−→
J p(r, t)

on the tangent plane (Hosaka and Cohen, 1976; Ioannides, 1987;

Haberkorn et al., 2006).

2.5.3 Virtual sensor construction
The timing of the VS was fixed from the average signal and the

topography was plotted time slice by time slice. Two periods of

stable topographies were identified for the EEG and MEG signal,

one around 15 ms and the other around 20 ms. The period of

stability varied for each case; it was longest and the pattern most

distinctive for the EEG signal at 15 ms and for the MEG signal at

20 ms. The candidate members of each set can be seen clearly in

the topographies extracted from the average signals (see Figure 2C).

For the EEG, the topography around 15 ms is particularly well-

defined, hence revealing the candidate channels for the EEG

thalamic VS. For the MEG, the topography is particularly well-

defined around 20 ms, hence revealing the candidate channels for

the MEG cortical VS. The EEG topography at 20 ms is reasonably

well defined too, but not as clear as that of MEG. After this initial

inspection, the members of each of the two sets were selected

automatically on the basis of the consistency of the activity of each

sensor in the critical latency periods for each VS. The selection was

based on their signal power (SP), noise power (NP), and their ratio,

signal to noise ratio (SNR), computed across the trials and at all

time points of the trial (−0.1 to 0.2 ms) using a moving window of

three samples (2.5 ms). The methods for the computation of the SP,

NP and SNR has been described before (Liu et al., 2003). In panel

C of the Figure 2 the selected sensors are shown for each of the four

topographies by the red (positive) and white (negative) filled circles,

superimposed onto the topographies at the time of the average peak

signals. Each VS, for each topography or Type T, was constructed

as the difference of the mean values of two linear combinations of

signals of opposite polarity, a set of NA positive values and a set of

NB negative values.

Txvs(t) =
1

NA

NA∑

i=1

T
AXi(t)−

1

NB

NB∑

j=1

T
BXj(t), (2)

The terms T
AXi(t) and T

BXj(t) are used to represent the time

domain signals of each channel and in each group, respectively,

with t used to denote the time point in the time period of the trial

(−0.1 and 0.2 s before and after the stimulus onset). The superscript

T refers to the virtual sensor type (EEG or MEG and latency), the

subscripts A and B are used to show the two groups of channels

(positive and negative amplitude channels, respectively) as selected

by the definition of the VS, while the index i denotes the number of

the channel in the group. The terms NA and NB is the total number

of channels in the groups of channels A and B, respectively. Finally,

the term xvs (t) at the left-hand side of the equation is the computed

VS output. Once the virtual sensor is defined it can be applied to

the signal across all latencies of either the average signal, selected

averages (e.g., defined by different tasks or stimuli) or for STs.

The timecourses of the thalamic and cortical generators for

the five random single trials and the average of the 239 STs

are estimated by applying each of the four types of VS to the

corresponding signals. The results are displayed in the last two rows

Figure 2. Figure 2D shows the estimates for the thalamic response

extracted from the VS defined for the signal at 15 ms, for EEG

on the left and MEG on the right. Figure 2E shows the estimates

for the cortical response extracted from the VS defined for the

signal at 20 ms, for EEG on the left and MEG on the right. For

ease of comparisons between modalities (EEG/MEG) and studying

the interference of contributions from each generator to the VS of

the other generator, the same five random STs are used in each

display, each ST keeping the same color in all displays, with the

corresponding VS extracted from the average signal shown in black.

Also, for each ST the Gaussian is normalized to the maximum value

of the ST in the display window and printed in the same color as the

ST VS signal providing a visualization of the distortion of the shape

of the VS output relative to the shape of the form-factor of the ECD.

Finally, the period where the ECD is active is enlarged in the insert

of each plot, for the thalamic VS (Figure 2D) from 10 to 20 ms and

for the cortical VS (Figure 2E) from 15 and 25 ms, for a clearer view

of the input Gaussian-Shape ECD signal and the corresponding VS

output.

The inspection of the results for STs in Figures 2D, E show an

excellent performance as a detector of the ECD evoked responses,

when the response is comparable or higher than the background

interference, this typically occurs when the ECD is at about half its

strength or higher. This is the case for the thalamic activity using

the EEG VS at 15 ms and for the cortical activity using the MEG
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VS at 20 ms. We note that the jitter in latency lowers the peak

activity of the average and makes the shape wider. There is also

some evidence that there is some leakage in the thalamic VS from

activity of the cortical dipole, while for theMEGVS the interference

from the thalamic ECD activity is smaller. There is also a response

in the VS output from the background activity, which could be

partially generated by noise in the background signal, but also by

activity in BA3b and nearby areas that are known to be active in the

pre-stimulus interval (from where the background is taken).

This simple example demonstrated how the VS was applied to

the CMS data. The same procedure for defining the VS, was applied

to the real data for the set of three subjects and the selected groups

of trials (three groups for each subject, see Supplementary Table S1)

without movement artifacts as described in Section 2.3. Starting

with the identification of the VS from the average across the trials

in each group and then applying the VS to each ST in that group

of trials to estimate the ST generator’s activity. There are some

differences in the real system, for example the presence of other

activations in the brainstem preceding the thalamic one and activity

in other nearby cortical areas to BA3b which influence the latency

over which the VS is stable, as will be explained in the results

Section 3.2.

2.6 Clustering of STs

In order to deal with the spatiotemporal variability of ST

responses, we perform clustering on the ST timecourses extracted

by the VS. The grouping of the ST timecourses of the same regional

response is a straightforward and relatively easy way to explore the

ST variability (Laskaris et al., 2004; Zainea et al., 2005). Hence, we

wish to group VS-trials with similar responses together. In order

to accomplish that, we utilize Graph Theory (Bondy and Murty,

1976; West, 2001; Mieghem, 2010) to construct a network that

captures the pairwise similarity of the data and use well-established

graph clustering algorithms to do the grouping. In this network, the

VS-trials constitute the nodes, while links quantify the similarity

between them.

We aim for the network that we construct to capture similarity

on specific temporal windows, centered around specific responses,

hence we refrain from using the whole trial as input. We use the

a priori knowledge of when the peak of the response of interest

is expected. In order to focus on the specific response (e.g., P14,

P20) we multiply the signal with a Gaussian function centered

at the expected latency of the response’s peak and with standard

deviation σ = 10 ms. Thus, we retain 95% of the signal in a 2σ =

40 ms window around the response (20 ms prior and 20 ms post

the peak, see Supplementary Figure S6). In this way sharp edges

are avoided (e.g., using a 40 ms rectangular window) and also

emphasizing similarities close to the center of the window while de-

emphasizing in a smooth way the tails as we approach the edges of

the window. Avoiding abrupt discontinuity ensures that transient

large anomalies do not significantly affect the results.

In terms of which similarity function to (pairwise) compare

our data with, we tested popular choices (e.g., Euclidean distance,

Gaussian kernel, etc.) and settle for Pearson correlation coefficient,

a linear and model free measure commonly used for quantifying

statistical dependencies between brain signals in the time domain

(Chiarion et al., 2023):

rxy =

∑n
1(xi − 〈x〉)(yi − 〈y〉)√∑n

1(xi − 〈x〉)2
∑n

1(yi − 〈y〉)2
, (3)

where n is the length of the trials, and 〈.〉 indicates average over

time. Since we are interested in identifying trials with similar

responses, negative values of correlation are simply neglected.

After constructing the correlation matrix, which contains the

similarities among VS-trials, we use one of the most common

methods to sparsify the network. The k-Nearest Neighbor network

retains the k-strongest connections for each node. That way,

low-weight (low similarity) edges are neglected and the analysis

becomes much clearer. With some exploration on our data, we

chose k = 10, which guarantees that all the resulting networks are

connected, while retaining as few edges as possible (Luxburg, 2004).

We use the Louvain algorithm (Blondel et al., 2008) to group

similar trials together. This is the most popular algorithm that

greedily maximizes modularity (Newman, 2006). Modularity (Q)

is a measure of “modular” structure that utilizes “within cluster”-

“between clusters” edges and ranges between [−1/2, 1]. The more

modular a network is, the higher its modularity. The Louvain

method initially treats each node as a community and iteratively

groups communities together, as long as an increase in modularity

can be obtained. In order to overcome the arbitrariness that

Louvain has, which arises from the random choice of the algorithm

initialization, we appeal to statistics. We execute a large number

of Louvain runs (300 runs) and construct an allegiance matrix,

showcasing the number of times that trials i, j were in the same

community. Finally, we employ the Louvain one last time on the

allegiance matrix. The clustering results are visualized in the form

of a Consensus matrix (Rasero et al., 2017). Clustering analysis is

performed independently on the ST signals extracted by the three

VS as described in Section 2.5 as constructed for each of the three

group of trials in each subject.

2.7 Connectivity estimation

In order to estimate the functional connectivity between the

thalamus and the somatosensory cortex, we used the best VS for

each case. For the thalamus, the only available choice is the VS

derived from the P14 peak of the EEG data. For the cortical (S1)

estimate we have two available choices the P20 and the M20 peaks

respectively. We selected the M20 peak because of the highest

sensitivity of MEG for superficial sources which allows it to better

separate contributions from simultaneous sources.

For the computation of the connectivity we employed two

different connectivity measures. The first measure, Pearson’s

correlation coefficient (CC), is a linear measure of similarity

between two vectors (see Equation 3). The second method,

mutual information (MI), is a non-linear connectivity metric from

Information Theory (see Equation 4).

MI is a generalization of the Pearson’s correlation between two

random-variables x, and y. The MI is a model-free connectivity

metric since it does not assume any law for the marginal and

joint distributions of x and y (Bastos and Schoffelen, 2016). A
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consequence of being model-free is that both linear and non-linear

relations are accounted by MI. The drawback of this metric is

that estimating the underlying probability distributions and joint

probabilities require a large amount of data, otherwise, the MI

estimations will suffer from high bias. Many estimators of MI were

proposed and usually, they demand a high computational power

(Moon et al., 1995; Kraskov et al., 2004).

To overcome the computational cost of estimating MI, a recent

estimator (Ince et al., 2017) uses the fact that the MI can be

estimated analytically for data that follows a normal distribution.

In the latter case, the mutual information will only depend on

the covariance matrix (6) between x and y and it is given by

Equation 4.

MI(x, y) =
1

2
[(2πe)2|6|], (4)

This estimator makes use of functions that projects the

probability distributions of the data into a space where

they follow a normal law. Those functions are called Gauss-

Copula functions (hence the Gaussian-Copula estimator). In

the present work, we made use of this estimator in order to

compute the mutual information between power/coherence

and stimulus. From now on, we refer to it as Gaussian Copula

Mutual information (GCMI). This approach has been already

adopted in recent works in neuroscience (Zbili and Rama,

2021; Ashrafi and Soltanian-Zadeh, 2022; Combrisson et al.,

2022).

Both measures, CC and GCMI are employed to quantify the

time-delayed similarity between the ST signals extracted using

the VS for the P14 and M20 components, which represent the

activity of the thalamus and S1 cortex, respectively. Connectivity

is estimated for each ST with a moving window of 12 ms and

a step of 0.8 ms, while introducing time delays ranging from

−20 to 20 ms in increments of 0.8 ms. In the estimation of

the time-delayed CC (tdCC) and time-delayed GCMI (tdGCMI),

the estimated signal of the thalamus (VS-EEG-P14) serves as

the reference signal, while the estimated signal of S1 cortex

(VS-MEG-M20) as the recipient signal. Positive time delays in

the estimated connectivity values, indicate a temporal sequence

where the thalamus is activated before the cortex, establishing an

influence directed from the thalamus to the cortex. Conversely,

negative time delays indicate that the cortex exerts an influence on

the thalamus.

For each of the three groups of trials and for each of the three

subjects, the time-delayed tdGCMI and tdCC were estimated for

all the STs. Then the cluster of trials in a group, representing

better the activity of the thalamus was selected. The clustering

membership of the VS-P14 ST signals is used for the analysis. The

criterion used for the selection of the cluster was that the positive

peak was around the expected timing of the first early response

in the thalamus around 14 ms (see Supplementary Figure S5). The

connectivity estimates were averaged across the trials belonging

to the selected cluster. Finally, statistical analysis was performed

between the averaged connectivity values to identify the regions

(time-latency and time-delays) with significant (p < 0.0005)

tdGCMI and tdCC values.

2.8 A novel connectivity analysis

To assess the nature of connectivity between the subcortical

and cortical regions, we applied the following additional analysis

steps. First, we calculated the tdGCMI and tdCC 2D-connectivity

maps. Displaying the scatter plot of these values, i.e., showing each

single trial as a point in a 2-dimensional plot with the horizontal

coordinate representing the tdCC value and the vertical component

the tdGCMI values provides a measure of symmetry/asymmetry

in the positive and negative tdCC values. As a first approximation

positive and negative tdCC values can be interpreted as evidence

for excitatory and inhibitory influence between the two areas,

respectively. No such interpretation is available for the non-linear

tdGCMI values. The value of the GCMI does not depend on any

time ordering within the time series, but only to the distribution

of their values. As a consequence the result has a probabilistic

interpretation and hence only positive values. By combining the

two measures we can get linear and non-linear effects and at

least a hint of the balance between excitation/inhibition in the

connectivity of the two time series. We combine the two measures

by multiplying the GCMI values with the sign of the CC values for

each ST. Assuming that the excitatory/inhibitory influence of the

tdCC can be generalized in the non-linear tdGCMI, the product

of the two provides an estimate of the excitatory/inhibitory of the

more generalized non-linear tdGCMI. A color coded display of the

resulting MI map shows the latency delay relationship and hence

the direction while the color denotes both the strength and the

nature (excitatory or inhibitory) of the influence of one area to the

other. We will demonstrate in the Results section examples of this

novel use of linear and non-linear aspects of connectivity analysis.

3 Results

3.1 Somatosensory evoked
potentials/fields

Somatosensory stimulation gives rise to the so called

somatosensory evoked potentials (SEP) and somatosensory evoked

fields (SEF) recorded by the EEG and MEG sensors, respectively.

Even with the strong EW stimuli used on our data it is difficult to

identify the SEF and the SEP responses in individual STs, although

possible to do so, at least for the SEF if one knows in advance

where to look. If one averages a number of STs the SEFs and SEPs

are enhanced and they appear as strong peaks in the first 60–80

ms, well above the background activity before and after this period

(Zainea et al., 2005). Human Cortical SEPs are separated into short

latency potentials (occurring in the range of 0–40 ms post stimulus

onset) and long latency potentials (occurring after 40 ms) (Allison

et al., 1991). Figure 3 shows timecourses and topographies for the

average of one of the three groups of trials of subject 1 with 239

STs (see Supplementary Table S1). The SEPs and SEFs are clearly

seen in the butterfly plot on the left part of Figure 3, marked by the

shadowed areas and their peaks, measured relative to the stimulus

onset, with dashed red vertical lines. As expected, the first evoked

response is only seen in the EEG with peak at 15 ms (marked with

A in Figure 3), while all other peaks (B, C, and D at 20, 30, and 40

ms) are seen in both EEG and MEG. The right side of the Figure,
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FIGURE 3

Somatosensory Evoked Potentials (SEPs) and Somatosensory Evoked Fields (SEFs) averaged from the group of trials 1 of subject 1 (left). The two rows

of the left column shows the timecourses of the average across all trials for all channels superimposed (Butterfly plots), with EEG on the top and MEG

on the second row. Dashed red lines show the times of the P14, P20, P30, and N40 components. The topography at the latency of each one of these

four peaks is shown in the Right column of the Figure, with the EEG in the penultimate and MEG in the last column.

shows the EEG and MEG topography of the signals at the times of

the indicated peaks at the points A, B, C, and D.

The first short latency component in the SEPs is expected to

occur at around 14 ms, namely the P14 component (Hanajima,

2004; Porcaro et al., 2008; Götz et al., 2014; Politof et al., 2021).

In the SEPs shown in Figure 3 the peak of the P14 component

is at 15 ms. The P14 component has been correlated to neural

activity localized in the thalamus both from EEG and MEG studies

(Hanajima, 2004; Kimura et al., 2008; Papadelis et al., 2012; Porcaro

et al., 2013; Politof et al., 2019, 2021). No strong magnetic analog

of the P14 component at 15 ms peak is visible in the SEFs (MEG

data), except for an intriguing well circumscribed feature with

nearly an order of magnitude weaker activity than the next peak a

few ms later, at 20 ms. The next expected short latency potential,

namely the P20 component and M20 component, shown in the

SEPs and SEFs respectively, occurs at 20.8 ms. This peak activity

has been localized in area S1 (Gaetz and Cheyne, 2003; Papadelis

et al., 2011; Porcaro et al., 2013; Hari and Puce, 2017; Antonakakis

et al., 2019; Politof et al., 2019). More specifically, the P20 and M20

have been localized independently in the Broadman area 3b, the

primary somatosensory cortex (S1) (Allison et al., 1989; Forss et al.,

1994; Kakigi, 1994; Ioannides et al., 2002; Gaetz and Cheyne, 2003;

Antonakakis et al., 2019).

The topography of the P20 and M20 components exhibit a

dipolar pattern. By comparison of the EEG and MEG topography

at 20.8 ms, it can be seen that the two dipolar patterns created in

the two modalities are orthogonal to each other, as expected. The

focus of this study is on the P14 and P20/M20 components, which

exhibit the expected pattern for a thalamic (nearly radial) generator

for P14 and a mostly tangential S1 generator for P20/M20. At 15

ms the mainly radial component of thalamic activity is generating

a widespread pole in the top of the head in the EEG distribution

butterfly plot of the EEG. There is no discernible peak in the

MEG, although a distorted dipolar pattern is seen in the MEG

topography. The P20/M20 peaks are consistent with a tangential

superficial source and its timing agrees with all the a priori

knowledge about S1 activation. The later peaks, athough not at

the focus of this work, have also features worth noting. Both

peaks have mainly dipolar patterns that are easily discernible in

the P30/M30 and N40/M40 butterfly plots of SEPs and SEFs in

the left column and the EEG and MEG topoplots on the right

of the Figure 3 at times 30.8 and 41.7 ms, respectively. The last

component (N40/M40) resembles in all its features the P20/M20

but with opposite polarity; the similarity of corresponding contours

of the EEG and MEG topoplots at 20 and 40 ms (given the

opposite polarity) is striking, suggesting a reactivation of S1 (with

opposite polarity). The intermediate peak (P30/M30) is of the same

polarity and similar in both EEG and MEG with the corresponding

features of P20/M20, but with noticeable differences in the contour

shapes, suggesting amixture of nearby superficial, mostly tangential

components and possibly some contributions from deep sources for

the EEG.
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FIGURE 4

Single-trial estimations of the thalamic and cortical (S1) activity using Virtual Sensors (VS). The top row displays the three distinct VS constructions for

capturing thalamic (EEG VS P14), cortical S1 activity from EEG data (EEG VS P20) and from MEG data (MEG VS M20), for subject 1 and group of trials 1

(239 trials). The times at which each VS is defined are indicated in the title of each topography. In these topographies, red and white dots are used to

show the channels with positive and negative amplitude, respectively, that were selected for the construction of the generator-specific VS. Bottom

row shows all 239 single-trial timecourses extracted by each VS, while the middle row presents ten random single trials. Red dashed lines show the

timings at the peaks of P14, P20 and M20 components, and red solid lines mark the precise time-slice chosen for VS construction. In the case of P20

and M20 this red solid line is at 18.3 ms, while for the P14 no red line is used as the timing used for this VS coincides with that of the peak. A solid

black line is used to show the average of the 10 (middle row) or 239 (bottom row) STs. These averages are scaled by a Scale-Factor (SF), indicated in

the bottom right corner of each plot, to align the amplitude of the peak of interest with the peak amplitudes of the single trials, thereby highlighting

the di�erences between single-trial and average peak amplitudes.

3.2 Extraction of virtual sensor ST signals

Analysis of evoked responses using VS has been employed for

the identification of early sensory responses for the somatosensory,

auditory and visual cortex (Laskaris and Ioannides, 2002; Laskaris

et al., 2004; Ioannides, 2006). In this study, three different VS were

defined for the estimation of the generators of the components

P14, P20 and M20 from the EEG and MEG data, respectively.

Following the procedure for defining the VS as described in Section

2.5 the time slice at the center of the period with stable topography

was identified for each of the three VS. In the case of the VS

for P20 and VS for M20, this time slice was found to be on the

rise and exactly three time-slices before the maximum amplitude

of the targeted peaks, specifically at 18.3 ms compared with the

peak at 20.8 ms (see Figure 3, middle and right columns). This

is as expected because this is the first entry into the cortical

surface. At that time, there is no other cortical source to interfere

with. At the timing of peak activity other cortical areas (BA2,

BA1, Papadelis et al., 2011) are already activated either via direct

input from the thalamus or indirectly from the area BA3b. The

detailed description of connectivity between the thalamus and the

areas BA3a, BA3b, BA2 and BA1 is still not completely resolved

and it is likely to be task dependent; it clearly needs further

investigation.

In contrast, in the case of defining the VS for the estimation of

the generator of the P14 component, the time slice at the center

of the period with stable topography is the same as the time-

slice of the peak (15 ms, see Figure 3 left column). This is in line

with what is known regarding the activation of the brainstem few

milliseconds before the thalamic activation. Earlier activation from

the brainstem is more ventral than the thalamus and therefore will

produce a similar topography as that produced by the thalamus.

This explains why the timing of the stable topography coincides

with the timing of the peak: it is because the thalamic activity is

strongest, while that from the brainstem is diminishing.

The average of the ST timecourses (black solid lines) extracted

by each VS exhibit a clear peak at the expected time (marked as

a red dashed line in Figure 4). Notably, the average has smaller

peak amplitudes compared to the ST signals. This is evident by

comparing the multiplication scale factor (SF) shown in the middle

and bottom rows of Figure 4. For instance, in the case of the VS-

EEG-P14 representing thalamic activation, SF was equal to 5 when
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FIGURE 5

Clustering of the single-trial (ST) timecourses extracted using three di�erent Virtual Sensors (VS) for Group 1 of Subject 1. The columns, from left to

right, display the clustering results for the ST signals estimated by VS-EEG-P14, VS-EEG-P20, and VS-MEG-M20, respectively. The top row shows the

Consensus matrix used to represent the clustering. The modularity (Q), mean and maximum similarity values for each clustering are shown in the title

of the consensus matrix. In the middle row, the average ST signals for each cluster are depicted. The bottom row provides a zoomed-in version of

the plots in the middle row between five (5) and thirty-five (35) milliseconds, emphasizing the di�erences in the averages among the di�erent clusters.

averaging 10 trials, while it increased to 10 when averaging 239

trials. This is because there is some jitter in the timing of the peak

at 15 ms. For the other two VS estimating the cortical activity at

S1, the difference between SFs (middle vs bottom row) is not large,

this is because the peak of the cortical activity at 18.3 ms is more

consistent in terms of timing.

3.3 Results of clustering analysis

Following the methodology described in Section 2.6, we

conducted clustering analysis on the ST signals extracted using the

VS. The clustering results, along with the corresponding averages

of the ST signals within each cluster, are depicted in Figure 5.

Consensus matrices were employed to visualize the clustering

outcomes (Jeub et al., 2018). These matrices are square matrices

in which each cell represents the pairwise similarity value between

two ST signals, calculated using Pearson’s correlation coefficient

as described in Section 2.6. To facilitate pattern identification and

emphasize groupings of high values, the rows and columns of the

consensus matrix were rearranged by placing the trials (rows of the

matrix) belonging to the same cluster adjacent to each other. By

examining the consensus matrices, patterns of agreement among

the clustering assignments can be discerned. High values along the

diagonal indicate consistent clustering, while off-diagonal values

represent disagreements or uncertainties in the clustering. With

the reordering of trials, distinct square blocks emerge along the

diagonal, clearly indicating the separation of clusters. It is worth

noting that the STs of VS-EEG-P20 and VS-MEG-M20 exhibit

higher maximum similarity (correlation) values compared to the

similarity between the STs of VS-EEG-P14 (max: 0.94, 0.99, and

0.89, respectively, see top row of Figure 5). This difference in the

maximum similarity values is an indication that the estimated ST

timecourses representing the activity of the S1 cortex are more

similar compared to the ST estimations for the thalamus. This is

also shown by comparing the average signal of the clusters of each

VS. It can be observed that the clusters for the VS-EEG-P14 exhibit

noticeable differences in timing, polarity and amplitude of the peak

compared to the average signal of the clusters in the other two
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VS (see Figure 5 bottom row). For example, the green line for the

cluster with 17% of the STs, i.e., the 41 STs out of the total of 239

STs is identified by the thalamic VS to have opposite polarity to that

of the overall average or most of the other clusters.

3.4 Connectivity results

In the estimation of the functional connectivity, we use as

reference signal the ST timecourse activity of the thalamic region

as estimated by the VS-EEG-P14 while the recipient signal is the

ST activity of the S1 cortex as estimated by the VS-MEG-M20. As

explained in Section 2.8, for each subject and group of trials, the

GCMI and CC connectivity is estimated for all the trials in the

group. Then, for each subject and group the cluster representing

the activity of the thalamus is selected (selected clusters are shown

in Supplementary Figure S5). Then, statistical analysis is applied to

the average of the 2D connectivity maps across the STs belonging

to the selected cluster. Figure 6, at each point in time (x-axis) and

time-delay (y-axis) shows the number of groups across all three

subjects which have been found to have statistically significant

connectivity values (p < 0.0005). Black outlines indicate the

regions with statistically significant connectivity values in at least

one group for every subject. Almost all three groups and all

three subjects (7/9 for GCMI, 8/9 for CC) have shown significant

connectivity values (p < 0.0005) at a latency (x-axis) of 15 ms

(range 15–18 ms) and time delay (y-axis) of 5 ms (range 3–8

ms). This tells us that the activity observed at the thalamus at

around 15 ms post-stimulus onset, is both statistically dependent

and positively correlated with the S1 cortical activity present at 20

ms.We can infer that activity originating in the thalamus around 15

ms post-stimulus onset reaches the S1 cortex 5 ms later at ∼20 ms

post-stimulus onset. Next important result, only for the case of the

GCMI estimator, around five out of nine groups across the three

subjects show significant connectivity values at latency (x-axis) of

15 ms (range 16–21 ms) and time delay (y-axis) of 17 ms (range

15–20 ms).

3.5 Analysis of connectivity results

The results of the previous Section 3.4, demonstrated

statistically significant connectivity values (p < 0.0005) across all

the three subjects (seven out of the total nine groups of trials) at

latency t = 15 ms and time delay τ = 5 ms (see Figure 6). Both

metrics, tdGCMI and Pearson’s tdCC resulted in high values and

were statistically significant compared to other latencies and time

delays. Hence, in this section we analyze the estimated tdGCMI and

tdCC values around these times to further investigate the nature of

the connectivity between the thalamus and S1 cortex by following

the methodology as described in Section 2.8.

Firstly, the tdGCMI values were multiplied with the tdCC

values for each ST separately. Then we average these combined

connectivity maps across STs of each cluster. In Plot A of Figure 7

we show these average results for the cluster 3, which was the

selected cluster as described in Section 2.7 and used for the across

subjects connectivity results presented in Section 3.4. The black

solid and dashed outlines in Plot A show the statistically significant

(p < 0.0005) tdGCMI values and tdCC values, respectively. The

center of these outlined regions is at latency t = 15 ms and time

delay τ = 5 ms as expected and based on the results of the previous

Section 3.4. Having this information, we selected to further analyze

the significant tdGCMI values within a square window of −2

ms on both directions and axes, centered at t = 15 ms (x-axis)

and at time delay τ = 5 ms (y-axis). In plot B of Figure 7 the

tdGCMI and tdCC values in the selected window and for all

trials in the group (all clusters) were plotted as a scatter plot,

with CC values on the x-axis and GCMI values on the y-axis.

While tdGCMI is positive (by definition) the tdCC can also have

negative values, ranging from −1 to 1. In addition, as depicted

in plot B, the GCMI and CC values show a quadratic (U-shaped)

relationship.

Subsequently, we computed the average values within the

window for each ST, and these ST window averages were plotted

in a similar manner, but in separate plots for the trials of each

cluster (based on clustering of the VS-EEG-P14 ST signals as

described in Section 2.6) as shown in Panel D of Figure 7. This

analysis serves two purposes: firstly, it allows for visual inspection

of the relationship between tdGCMI and tdCC values for all

the trials together, and secondly, it enables comparison between

trials of each cluster separately. By examining the tdGCMI-tdCC

relationship in each cluster, potential differences regarding the

nature of connectivity between the thalamus and the cortex can be

revealed. It is obvious that for some clusters (clusters 2 & 3) there

is a prominent lateralization of the correlation values on the right

side (positive correlation) and in others (cluster 1) on the left side

(negative correlation). For reference,the mean of the ST activation

signals of the thalamus (VS-EEG-P14) for each cluster are plotted

in plot C of Figure 7. It can be seen, that clusters with positive

correlation values have the peak in the average of the STs at around

15 ms latency is positive, whereas for cluster 1, it is negative.

4 Discussion

In this study, a spatial filtering approach using VS combined

with clustering was applied on simultaneous EEG and MEG

recordings in response to EW stimulation, exciting electrically

the median nerve. The results of the analyses led to five main

findings. Firstly, it has been demonstrated that spatial filtering

using VS can indeed be used to extract reliable estimates for the

timecourses of known generators in the brain, superficial and deep.

Secondly, constructing the activity of the thalamus and the cortex

(S1), on a ST basis, reveals the existence of variability of the

ST responses. Thirdly, clustering of the ST timecourses provides

a principled classification of the variability of ST and reveals

distinct processing sequences in each cluster. Fourthly, estimation

of connectivity between the thalamus and the cortical area S1

reveals overall patterns (across the entire ensemble of STs), which

is a composite of distinct patterns that can be disentangled within

the identified clusters. The connectivity analysis across the entire

array of STs identifies two distinct waves of thalamocortical activity

both starting roughly around 15 ms (range 15–18 ms) for the first

and (16–21 ms) for the second wave after the EW stimulus is

delivered. The influence of these two thalamic activations arrive at
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FIGURE 6

Connectivity results: Statistical analysis of connectivity values across subject. The Figure displays the estimated time-delayed Gaussian Copula Mutual

Information (left) and Pearson’s Correlation Coe�cient (right) between the ST signals extracted by VS-EEG-P14 (representing activity in the

thalamus) and the VS-M20-MEG ST signals (representing S1 cortical activity). The color coded values indicate the number of total groups of trials

with statistical significant values (p < 0.0005) across the three subjects. The black contour lines show the regions with significant values in at least

one group within each of the three subjects.

the cortex (S1) with delays of 5 ms (range 3 ms to 8 ms) and 17

ms (range 15–20 ms) ms later. Finally, a more detailed analysis of

the connectivity patterns is introduced, which combines the sign

of the linear Pearson coefficient (tdCC) with the value of the non-

linear tdGCMI results in their product. This combination allows,

for the first time as far as we know, a novel discrimination of

connectivity patterns, distinguishing excitation and inhibition from

non-invasive recordings. Specifically, the novelty of the approach

is being able to combine the linear and non-linear information

captured by GCMI, with the directional aspect (sign) of the linear

part of the relationship captured by CC which cannot be captured

byGCMI.We construct from the average data the VS-EEG-P14 and

VS-MEG-M20 so that the first entry to the thalamus (∼15 ms) and

the cortex (∼20 ms), respectively, give rise to positive peaks. Using

this convention, we find the thalamocortical interaction extracted

from connectivity analysis on the average signal to be positive. The

same analysis is repeated on a ST level, which can then characterize

the nature of connectivity in each cluster, as will be discussed in

Section 4.4.

4.1 Estimates of cortical and subcortical
generators

Localization of the generators in the brain in response to

an external stimulation and reconstruction of their timecourse

activity using EEG and MEG data is a problem plagued by non-

uniqueness, i.e., there is always more than one solution that can

fit any given data exactly, even when accurate modeling of the

head and knowledge of other parameters like conductivity of

different compartments is available (Scherg, 1992; Mosher et al.,

1999; Michel and Brunet, 2019; Asadzadeh et al., 2020). In this

work, we rely on prior knowledge about the timing and location

of the generators in the thalamus and the cortex and the expected

topography each of this activity will generate, given the laws of

electromagnetism. We focus on the latencies when the evoked

response arrives for the first time at the targeted generators, because

any feature in the signals generated by each generator is more

likely to survive in the average across all STs, while that from

other generators averaged out. Significantly this will happen even
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FIGURE 7

Analysis of connectivity results for group 2 of subject 1. This panel of plots presents the analysis of connectivity results for Group 2 of Subject 1. In

Plot (A), the MI values multiplied by the sign of respective correlation values are displayed. The region of significant MI values (p < 0.0005) is indicated

by black solid outlines, while the region with respective significant correlation values is depicted as dashed lines. Plot (B) is a scatter plot

demonstrating the relationship between the significant MI values enclosed by outlines (around 14 ms latency and 5 ms time delays) and the

corresponding correlation values. Panel (D) shows the mean of the values for each trial, plotted in di�erent graphs for each cluster. Plot (C) displays

the mean of the single-trial VS-EEG-P14 values in each cluster.

if the response is relatively weak in each trial or even if it occurs

intermittently in some of the STs. Prior knowledge allows us

to identify characteristic topographies at specific latencies of the

average of the raw signal generated by activity of the targeted brain

areas. The identified topographies in the average signal are used

to define a spatial filter, which can extract this component even

when it is buried in other much bigger signals. It is of course

acknowledged that in each ST contamination from other generators

will be present but in most STs it will be a small distortion of

the timecourse around each activation of the targeted generator.

In this sense, the process effectively removes the non-uniqueness

aspect. No matter what the mechanism is, the same feature will

be produced every time, possibly with some variation in strength

and latency. These remaining variations are under the influence of

the forward problem (computing the signal from the knowledge

of the sources), which has a unique solution. In summary, the

problem is transformed from a tomography problem to a detection

of one or more features in the topography of the signal and the

quantification of their strengths, but with some distortion from the

influence of other sources which produce some contribution to the

strength of the detected feature. In previous work we demonstrated

that such approach works well for superficial sources using MEG

data (Ioannides, 2006). In the current work, using simultaneous

EEG and MEG recordings and a more automated way for the

construction of the VS (see Section 2.5). We have taken a cautious

approach to reduce noise and ensure that the VS were constructed

for groups of STs with identical head position relative to the

MEG sensor array. This was done by first identifying all periods

of global disturbance in the MEG channels. These periods were

then removed and VS were constructed using the average of the

raw signal for STs between such disturbances. Several observations

allow us to verify that the constructed VS capture accurately enough

the ST timecourses of the generators (thalamus and S1 cortex). First

and foremost, the estimated ST timecourses have peak activations

at the expected timings. Secondly, the scalp topographies clearly

depict distribution patterns of a deep nearly radially oriented source

and a superficial source contralateral to the site of stimulation just

above the S1 cortex, corresponding to the generator in the thalamic

region and S1 cortex, respectively. In addition, the complementary

information offered by the simultaneous EEG and MEG data

further validate that the estimates indeed represent the activity of

the thalamus and the cortex. For example, the P14 component

which is seen in the SEPs at ∼15 ms is not seen so clearly

in the SEFs, suggesting that the generator of this component is

somewhere near the center of the head and therefore an almost

radially oriented source (Hämäläinen et al., 1993), leading to one

more argument that this activity is originated from the thalamus.

Also, the dipolar pattern seen both in the EEG and MEG scalp

topographies at 20 ms have the same center location and they

are oriented vertically to each other. This is a clear signature of a

superficial strong generator with a strong tangential component.

The later components (P30/M30 and N40/M40) are also are clearly

visible as peaks in the average signal. These components were

not discussed further in this manuscript except to state that their

topographies are consistent with their reported localization in or

close to the S1 area (Politof et al., 2019).
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4.2 Thalamocortical connectivity from the
entire ST ensemble

We next used the computed ST timecourses to calculate the

functional connectivity between the thalamus and the S1 cortex

in response to EW stimulation. Two connectivity metrics were

employed, the simple linear Pearson’s correlation coefficient and

the non-linear measure Mutual Information. The results of both

connectivity metrics revealed that at around 15 ms post-stimulus,

activity of the thalamus travels to and reaches the cortical area S1

around 5 ms later. This result agrees with other past studies’ results

(Kimura et al., 2008; Papadelis et al., 2012; Götz et al., 2014; Politof

et al., 2019). Götz et al. (2014), performed combined EEG/MEG

source localization with single moving dipole model as well as

fixed two dipole model (precortical and cortical dipoles). Their

results showed dipole propagation from a precortical area near the

thalamus to cortical regions with the precortical and cortical peaks

reaching their maximum at 16 ms and 21 ms, respectively. The two

fixed dipole models resulted in dipole clustering in the precortical

and cortical regions. This dipole propagation from the thalamic

region to S1 along thalamacortical fibers has been also shown

in two other MEG studies in which the authors argue that this

movement of the dipole corresponds to afferent information flow

along the white matter thalamo-cortical fibers from thalamus to

BA3b (Kimura et al., 2008; Papadelis et al., 2012). The consistency

of the connectivity results across studies, including ours, further

validates that the extracted ST activations using the proposed

methodology, are accurate enough to be used for the study of

connectivity between cortical and subcortical brain areas.

While all the previousmethods simply identify a single thalamic

excitation around 15 ms our connectivity analysis furnishes clear

evidence for two distinct waves both starting around 15 ms. The

first one starts a little earlier, around 14 ms and it is seen clearly

in both the linear tdCC and the nonlinear tdGCMI estimates of

connectivity. This first wave arrives to S1 at 20 ms and therefore is

responsible for the P20/M20 peak. The second wave starts around

16 ms and it is seen clearly only in the nonlinear tdGCMI estimates

of connectivity; there is only a faint indication for this second wave

in the linear tdCC connectivity estimate. This is a clear indication

that in the pair of early thalamic influences on S1 activity, a stronger

non-linear component is present in the second compared to the

first wave. To the best of our knowledge this is the first report from

non-invasive electrophysiology of such dual early thalamocortical

interaction. In this work we focused only on the well understood

early thalamocortical interaction, leaving for a follow up study the

detailed analysis of the second slower and non-linear interaction.

4.3 Variability of single-trial responses

A number of earlier studies have demonstrated the variability

of ST brain responses to identical stimuli. Significant variability

was demonstrated both in the spatial and temporal characteristics

of ST responses to the same input stimulus (Liu et al., 1998;

Laskaris and Ioannides, 2002; Goldman et al., 2009; Hu et al.,

2011; Stephani et al., 2020; Waterstraat et al., 2021). Magnetic field

tomography (MFT) (Ioannides et al., 1990, 1995) was employed

in Ioannides et al. (2002) to reconstruct the cortical activity from

ST MEG signals in response to EW stimulation. MFT relies

on a non-linear algorithm to extract whole-brain tomographic

estimates, independently for each timeslice of data. It can be applied

to both the averaged and ST MEG signals and it has optimal

properties for tomography (Taylor et al., 1999). Ioannides et al.

(2002), focused on the activity in the primary (S1) and secondary

somatosensory (S2) cortices. Firstly, comparisons of the waveforms

of tomographic estimates in S1 for successive ST showed variability

in temporal and spatial aspects. The tomographic solutions of

the peaks with slightly different timings also suggest that there

is some relationship between the timing of the peaks and the

location of the generators in the brain. Futhermore, pattern analysis

on the ST activation curves (ACV) in S1 and S2, allowed the

extraction from the full ensemble of STs two distinct clusters.

The first contained STs with clear peak at the expected latency

of the first response to the stimulus in S1 (high power cluster).

The second cluster corresponded to STs who showed little or

no evoked response in S1 (low power cluster). Time-dependent

Mutual Information (tdMI) analysis between the two cortical areas

S1 and S2 was applied for the ensemble of STs belonging in each

cluster separately. Interestingly, the connectivity results revealed

two different communication modes between the cortical areas S1

and S2. The first communication mode corresponding to the STs in

the high-power cluster is the canonical sequential activation from

S1 to S2. In contrast, the second communication mode revealed

by the connectivity estimates for the STs of the low-power cluster

showed early and long lasting co-activation of S1 and S2. This

finding of Ioannides et al. (2002) suggests that this variability

between the ST responses cannot be random but is an intrinsic

processing mechanism of the system. In the above 2002 study, there

was no independent tdMI analysis for each ST and no estimation of

thalamic ST activity, since no EEG data were available.

Although in this study we have not investigated the spatial

aspect of the ST variability in terms of exact location of the ST

generators, our results support the existence of variability among

STs in terms of timing, polarity and duration of the peaks. More

specifically, the constructed ST activations using the VS, show

variability from trial to trial. This variability is depicted in the

results shown in Figures 4, 5. Furthermore, the analysis performed

on the estimates from the two connectivity measures (tdGCMI

and tdCC) suggests that STs belonging in different clusters

correspond to distinct connectivity patters (e.g., positive or negative

correlation). This observation is discussed in more detail in Section

4.4. The exact reasons for having variability on the ST responses

to the same input stimulus are not fully understood. However,

the findings of this study as well as of other past studies showing

this variability lead to the following important conclusion. Many

studies use across-trial averaging to study the brain responses.

Even though across-trial averaging helps in increasing SNR by

eliminating background noise of the recording devices as well as

non-time-locked responses to the stimulus, it also distorts and blurs

the real ST brain responses. In general, the average smooths out

differences between ST responses in terms of duration, timing and

intensity of peak activations. The jitter in response is present from

the thalamic level. The latency jitter for a strong stimulus like the
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one used in the experiment we have analyzed is least at the first

entry into the cortical circuitry, i.e., at the peaks we see at the EEG

and MEG signal at 20 ms, corresponding to activity in BA3b. For

both the EEG and MEG peak at 20 ms, corresponding to the first

BA3b activation are captured well by the average of 10 single trial

with little change in the pattern when all (239) STs are averaged

(see Figure 4). The first thalamic response is also captured well by

the EEG virtual sensor for P14, with similar peak seen at 15 ms

in the averages of 10 and 239 STs, with some improvement in the

sharpness of the peak for the average of all 239 STs; this can be

explained by either more noise infiltrating the VS output or the

presence of rogue STs in the smaller sample of 10 STs. Our analysis

of the CMS signal and work by others (Hu et al., 2011) favors the

second explanation suggesting the real differences in ST responses

around the main peaks produce a mirage of a smooth response that

for many people implies a similarly smooth ST response.

4.4 Excitation and inhibition from linear
and nonlinear connectivity estimates

The normal processing in the brain involves a delicate balance

between excitatory and inhibitory influences. Thalamic operations

in particular, require inhibitory control across multiple spatial and

temporal scales as summarized in a recent review, which highlights

two inhibitory systems at work in the thalamus (Halassa and

Acsády, 2016). The first, the thalamic reticular nucleus (TRN)

sends inhibitory information to the thalamus via inhibitory afferent

neural fibers. TRN also controls the magnitude of the cortical

input. The second source of inhibitory signals to the thalamus is

from subcortical nuclei located outside the thalamus. According to

the authors of the study, there is a trend that thalamic inhibition

is crucial part of thalamocortical interactions. Furthermore, there

is evidence that disturbance of thalamic inhibition can be seen

in different disorders. Studying these interactions involving the

thalamus, including TRN and subcortical areas are very difficult

and until recently could only be performed in animals. DBS has

provided opportunities to explore excitation/inhibition in these

areas, whenever clinical demands open up a legitimate research

investigation. Hanajima (2004) have recorded SEPs using DBS

microelectrodes in the region of thalamus of 24 patients in response

tomedian nerve stimulation. Their results suggest that the recorded

potentials are generated by excitatory post-synaptic potentials

of neurons in the nucleus ventrocaudalis (the human thalamic

somatosensory nucleus, Chien et al., 2017). The pathway bringing

the excitatory volley on its way to the cortex sends collaterals

to the TRN which in turn sends inhibitory influences to the

thalamus. Then the thalamus responds to the inhibitory messages

and in turn deactivates the excitatory neurons, hence inhibiting

the same areas in the cortex, e.g., see Figure 1 in Ferrarelli and

Tononi (2010). The novel combination of linear and non-linear

connectivity measures we have developed (see Section 2.8) provides

a promising way of studying excitation inhibition using simple

non-invasive measurements. We discuss the application of the new

methodology below.We stress here that a real advance can be made

if the results of our analysis can be tested and if necessary improved

with experiments using DBS and MEG/EEG measurements on the

same subjects (not necessarily in the same experiment, if this is too

difficult or demanding for patients).

The analysis of the connectivity results in Section 3.5 gives

insights about the nature of the thalamocortical connectivity

occurring at 15 ms post stimulation. The grouping of ST-

connectivity maps based on the initial clustering of STs (Section

2.6), resulted in separation of the STs with positive and negative

correlation values into different clusters (see Figure 7D). This

suggests, that there are STs with excitatory influence from the

thalamus to the somatosensory cortex, while in other STs an

inhibitory influence prevails. At the level of the first connectivity

analysis on the entire ensemble of STs (see Section 3.4), the

timing and patterns we have identified are consistent with an early

excitatory volley from the somatosensory specific thalamus leading

to the P20/M20 followed by a second volley from the TRN to

the thalamus only a few ms later that could correspond to the

deactivation reaching the cortex and appearing as the P30/M30.

Alternative pathways also exist which can provide alternative

explanations for the origin of the activity and connectivity patterns

as we reported in the more detailed analysis of Figure 7, including,

as we described above, the inhibitory activity from the thalamus

to the cortex, (see panel D, Figure 7, cluster 1). It is indeed

remarkable that such thalamocortical inhibitory activity can be

probed using simple spatial filtering and clustering on the raw ST

EEG/MEG signals.

4.5 Advantages and potential applications

The demonstration that VS can be used to extract good

estimates of the activity of deep brain sources is one of the

important results of this study. The use of VS not only offers

a number of advantages against various source reconstruction

models, but also against the use of intracranial electrodes. Perhaps

the main advantage is that with a priori information about the

expected timings of peak activations of certain generators in

the brain, the VS can be used to give real time biomarkers

about the individual’s brain responses. The construction of VS

we used is data driven in a way that avoids the modeling

assumptions made by source reconstruction models, which face the

problem of non-uniqueness of the solution of the inverse problem.

Furthermore, because VS are a simple spatial filter they have low

demands in processing power and hence, can be performed in

real time. A possible real life application would be the use of

our methods for the identification of biomarkers in real time

recordings comparing healthy individuals with expected patients

of demyelination disorders (Hardmeier et al., 2017) and mood

disorders (Ferrarelli and Tononi, 2010). Previous studies have

already shown that somatosensory evoked potentials are altered in

Multiple sclerosis (MS) patients (Hardmeier et al., 2017). Hence,

the methods of this study could be applied to better diagnose MS

especially in the early stages of the disorder which can therefore

allow earlier treatment of the patient greatly increasing efficacy

(Waubant, 2012).
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4.6 Limitations of the study and future
work

The methodological concept on which this study is founded

on, is the capability of identifying the earliest responses from

specific brain areas in the raw signal. These are used to form linear

combinations of signals that can act as filters to extract ST activity

patterns from the raw signals (EEG or MEG). As the results of this

study have shown, the reconstructed ST activation timecourses are

reliable estimations (see Section 4.1) of the regional neural activity

in the region of the thalamus and the primary somatosensory cortex

and can be further used for connectivity analysis between the two

regions. However, constructing VS using this concept gives rise

to a number of limitations that we have to address for this study

to be complete. Firstly, the criteria for selecting the channels are

from a single peak in brain activity from averaged ST. Therefore,

we cannot make the assumption that the constructed VS is a

representation of a specific brain area but rather an approximation

of a plethora of areas that are activated at a specific time-slice.

Hence, the exact focal localization of the VS in terms of how much

spatial accuracy it offers and if it extracts activity from one or many

co-activated areas is limited. Yet we have provided evidence that

the method is capable of testing assumptions about presence or

absence of an activity pattern, estimate connectivity between areas

and even explore details of such connectivity. As a minimum the

methodology can provide quick review of the measurements and

direct further tomographic analysis to a much reduced data sample

to analyse. To remove some of these limitations, in future studies

the constructed VS will be tested against data from intracranial

electrodes measuring the activity from that brain area to determine

whether the two signals are correlated. In addition, VS can also

be tested against source reconstruction techniques with known

high spatial accuracy, for example magnetic field tomography

(MFT) (Ioannides et al., 1990, 1995). Another limitation of our

methodology is that in order to know the area that the VS is

localizing, previous studies that have localized those peaks have to

be used. Ergo, this technique is not standalone but it is a low-cost

method to reconstruct good estimates of brain regions of interest

that have previously been localized and then use these estimations

to perform further analysis (e.g., ST connectivity analysis).
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