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A B S T R A C T   

By interpretations related to energy, elementary land surface segmentation can be treated as a physical problem. 
Many pieces of such a view found in the literature can be combined into a synthetic comprehensive physical 
approach. The segmentation has to be preceded by defining the character and size of searched units to result from 
the segmentation. A high-resolution digital elevation model (DEM) is the key input for this task; it should be 
generalized to the resolution best expressing information about the searched units. Elementary land surface units 
can be characterized by various parts of potential gravitational energy associated with a set of basic geo
morphometric variables. Elevation above sea level (z) represents Global Geomorphic Energy (GGE). Regional and 
Local Geomorphic Energy (RGE and LGE) are parts of GGE, represented respectively by relative elevation above 
the local base level (zrel) and local relief (elevation differential in a moving window Δz). Derivation (change) of 
elevation defines the slope inclination (S), determining the local Potential Energy of Surface (PES) applicable to 
mass flow. Normal slope line (profile) curvature (kn)s and normal contour (tangential) curvature (kn)c express 
change in the PES value (ΔPES(kn)s

, ΔPES(kn)c
), responsible for acceleration/deceleration and convergence/ 

divergence of flow. Mean curvature (kmean) determines the Potential Energy of Surface applicable to Diffusion 
(PESD). Energetic interpretation of basic geomorphometric variables enables their direct comparison and sys
tematic evaluation. Consequently, the homogeneity of basic geomorphometric variables defines a hierarchy of 
states of local geomorphic equilibria: static equilibrium, steady state, and non-steady state dynamic equilibrium. 
They are local attractors of landform development reflected in the geomorphometric tendency to symmetry 
(horizontality, various types of linearity, and curvature isotropy, together expressed by gravity concordance). 
Nonequilibrium and transitional states can be characterized by the PES excess (PESe) determined by difference 
curvature (kd), by gravity discordant change of the PES characterized by twisting curvature (τg)c, and by Integral 
Potential Energy of Surface Curvature (IPESC) expressed by Casorati curvature (kC) (general curvedness). 
Excluding zrel and Δz, all these energy-related geomorphometric variables are local point-based. Local area-based 
and regional variables such as Glock’s Available Relief, Melton Ruggedness Number, Stream Power Index, 
Openness, Topographic Position Index, Topographic Wetness Index, and Index of Connectivity also have ener
getic interpretations although their definition is more complex. Therefore we suggest exclusive use of the local 
point-based variables in designs of elementary land surface segmentation. The segmentation should take notice 
of natural interconnections, the hierarchy of geomorphometric variables, elements of Local Geomorphic Energy, 
and (dis)equilibria states, so that elementary segments are clearly interpretable geomorphologically. This is 
exemplified by Geographic Object-Based Image Analysis (GEOBIA) segmentation of Sandberg, a territory on the 
boundary of the Carpathians and Vienna Basin with a complex geomorphic history and marked morphody
namics. Compared with expert-driven field geomorphological mapping, the automatic physically-based seg
mentation resulted in a more specific delineation and composition of landforms. Physical-geomorphometric 
characteristics of the elementary forms enabled the formulation of their system and subsequent improvement of 
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the expert-based qualitative genetic analysis, with interpretation leading to a deeper understanding of the 
development and recent dynamics of the landscape.   

Abbreviations, symbols, and physical dimensions 

Acceleration due to gravity g [m.s− 2] 
Cartesian coordinate system (in plan) x, y [m] 
Casorati curvature (general curvedness) kC [m− 1] 
Change of normal contour (tangential) curvature in direction of slope 

line (kn)cs [m− 2] 
Change of normal contour (tangential) curvature in direction of contour 

line (kn)cc [m− 2] 
Change of normal slope line (profile) curvature in direction of slope 

line (kn)ss [m− 2] 
Contour direction distance cd [m] (used as unit distance, cd = 1 m) 
Contour geodesic torsion (twisting curvature) (τg)c [rad.m− 1] 
Density of material ρ [kg.m− 3] 
Denudation Δh [m] 
Difference curvature kd [m− 1] 
Diffusion coefficient κ [m2.s− 1] 
Direction of (tangent to) contour line c 
Direction of (tangent to) slope line s 
Distance to nearest stream ds [m] 
Downslope distance d [m] (used as unit distance, d = 1 m) 
Elevation above sea level z [m] 
Elevation Laplacian ∇2z [m− 1] 
Global Geomorphic Energy GGE [kg.m2.s− 2] 
Glock’s Available Relief GAR [m] 
Gravity concordant change of PES determined by normal contour 

curvature ΔPES(kn)c
[kg.m2.s− 2] 

Gravity concordant change of PES determined by normal slope line 
curvature ΔPES(kn)s 

[kg.m2.s− 2] 
Gravity discordant change of PES ΔPES(τg)c 

[kg.m.s− 2] 

Index of Connectivity IC [dimensionless] 
Index of Slope Energy Disequilibrium ISED [dimensionless] 
Index of Gravity Discordant Energy Disequilibrium IGDED 

[dimensionless] 
Integral Potential Energy of Surface Curvature IPESC [kg.m2.s− 2] 
Local Geomorphic Energy LGE [kg.m2.s− 2] 
Local relief (elevation differential in moving window) Δz [m] 
Maximal curvature kmax [m− 1] 
Maximum elevations a.s.l. / height of envelope (top) surface zmax [m] 
Maximum Global Geomorphic Energy GGEmax [kg.m2.s− 2] 
Maximum Regional Geomorphic Energy RGEmax [kg.m2.s− 2] 
Mean curvature kmean [m− 1] 
Mean difference of Global Geomorphic Energy ¯ΔGGE [kg.m2.s− 2] 
Mean regional slope S̄ [0.01% ≈ 0.00062831853071796 rad] 
Melton Ruggedness Number MRN [0.01% ≈ 0.00062831853071796 

rad] 
Minimal curvature kmin [m− 1] 
Minimum elevations above sea level zmin [m] 
Normal contour (tangential) curvature (kn)c [m− 1] 
Normal slope line (profile) curvature (kn)s [m− 1] 
Potential Energy of Surface applicable to Diffusion PESD [kg.m2.s− 2] 
Potential Energy of Surface applicable to mass flow PES [kg.m2.s− 2] 
Potential Energy of Surface excess PESe [kg.m2.s− 2] 
Projected contour curvature (kp)c [m− 1] 
Regional Geomorphic Energy RGE [kg.m2.s− 2] 
Regional mean of PES ¯PES [kg.m2.s− 2] 
Relative elevation/height above local base of erosion zrel [m] 
Relief Brake Force RBF [kg.m.s− 2] 
Second slope line derivative zss [m− 1] 
Slope aspect A [rad] 

Slope inclination S [rad] 
Specific catchment area a [m2] 
Stream Power Index SPI [dimensionless] 
Supply of ΔPES(kn)c 

from specific catchment area ΔPESa [kg.m2.s− 2] 
Threshold of horizontality Thor [rad] 
Time t [s] 
Topographic Position Index TPI [m] 
Topographic wave amplitude wa [m] 
Topographic wave length wl [m] 
Topographic Wetness Index TWI [dimensionless] 
Total accumulation curvature Ka [m− 2] 
Total (Gaussian) curvature K [m− 2] 
Unit Local Geomorphic Energy LGEunit [kg.m2.s− 2] 
Volume of material V [m3] (used as unit volume, V = 1 m3) 

1. Introduction 

Geomorphological mapping plays an essential role in understanding 
Earth surface processes and geochronology, as well as the evaluation of 
natural resources and hazards (Bishop et al., 2012). Large scale 
geomorphological maps form the strongest scientific source of infor
mation and the best explanatory presentation of landforms and land
scape development, but also serve as a basis of various applications 
(Gustavsson et al., 2006). However, subjectivism in the determination 
(selection) of mapped spatial units is a weakness of traditional mapping 
(e.g. as discussed by van Niekerk, 2010; Guilbert and Moulin, 2017; van 
der Meij et al., 2022). Hybrid approaches that combine expertise with 
statistical methods automate the translation of land surface attributes 
into spatial extents of the geomorphological features which were map
ped by expert knowledge (Seijmonsbergen et al., 2011). This not only 
enhances the spatial precision of the end results but also accelerates the 
process of map generation in a reproducible manner. However, such 
procedures are complicated by the complex character of landforms and 
the ambiguity of many mapped units resulting in a great diversity of 
segmentation procedures and form descriptors. 

By analysing these procedures, we attempt to show their mutual 
physical background arising from a physical interpretation of geo
morphometric variables, which is the essence of the physical- 
geomorphometric approach. 

In line with Giles (1998), Minár and Evans (2008) distinguished two 
basic approaches to elementary land surface segmentation: graph-based 
and classification approaches. The first is traditionally represented by 
‘morphological mapping’ searching for slope discontinuities and other 
singular lines (breaks of slope, changes of slope and inflections) that can 
divide the territory into morphological units – plane facets and smoothly 
curved segments (Savigear, 1965). The slope units (half-basins) of 
Alvioli et al. (2016) are a recent example of a graph-based approach. 
Slope units are bounded by drainage and divide lines and can be 
considered elementary morphodynamic areas. Lastochkin et al. (2018) 
include both slope discontinuities and drainage and divide lines into 
their structural lines bounding elementary surfaces (convex, concave, or 
linear in profile and plan). In each of these approaches, mapping the 
boundaries is the priority and controls the character of delineated areas. 

The classification approach is based on defining the internal prop
erties of forms, from which the character of boundaries is derived. The 
simplest classification methods utilize concrete values of selected geo
morphometric variables to define land surface segments (e.g. Hansen 
et al., 2021). Na et al. (2021) term such land surface segmentation a 
threshold approach. Curvature-based classifications are the most widely 
used example of this simplest classification approach, referred to by 
Krcho (1973) as geometric forms. If only convex and concave profile and 

J. Minár et al.                                                                                                                                                                                                                                   



Earth-Science Reviews 248 (2024) 104631

3

plan forms are distinguished (Troeh, 1964; Krcho, 1973), the boundaries 
are inflections (zero isolines of plan and profile curvatures, that are 
singular lines), connecting classification with graph-based approaches. 
However, adding linear geometric forms defined by a threshold small 
curvature (Krcho, 1979; Dikau, 1989) leads to the definition of form 
boundaries by arbitrary non-zero values of curvatures – not structural, 
but only arbitrary lines. Profile and plan curvature are in some classi
fications complemented by additional curvatures. In Wood (1996) 
widely used classification, complement of maximum and minimum 
curvatures define six forms (peak, ridge, pass, plane, channel, pit). 
Schmidt and Hewitt (2004) combine Krcho’s and Wood’s classifications 
defining 16 geometric forms. Shary (1995) used the ‘complete system of 
curvatures’ (plan, profile, Gaussian, difference, mean) to define 12 main 
types of land form, including Troeh (1964) as well as Gauss (1828) 
gravity invariant classification. Use of curvatures can be combined also 
with interval values of other geomorphometric variables. For example, 
Wood (1996) used a ‘slope tolerance’, and Krcho (1983) defined his 
‘morphotops’ as a combination of geometric forms and interval values of 
relative elevation, slope, and aspect. Definition of the interval values can 
be (regionally) objectivized by a statistical measure such as hypsometric 
or clinographic maximums and inflections (Neto and de Souza Martins, 
2019). Exclusively non-curvature variables have been applied only for 
regional (middle- and small-scale) segmentations (e.g. Neto and de 
Souza Martins, 2019; Cheng et al., 2011). Romstad and Etzelmüller 
(2012) applied the graph-based (‘edge-based’) approach on the only 
curvature: kmean. The resultant ‘mean curvature watersheds’ are an 
alternative to the simplest geometric forms (Troeh, 1964; Krcho, 1973), 
where inflections as boundaries were substituted by extremum lines of 
the curvature. Another simple curvature (kmax) and its variability was 
effectively used for the terraces, landslide crowns and bank erosion 
detection, and found superior to a simple edge detector (Tarolli et al., 
2012; Sofia et al., 2016). The methodological and interpretational 
simplicity of the curvature-based approaches is the reason for their 
persisting popularity. However, their use in geomorphological mapping 
is limited. The curvature-based approaches using only zero isolines as 
boundaries (Shary, 1995) ignore plains and linear slopes – fundamental 
elements of geomorphological maps. Using arbitrary slope and curva
ture thresholds for the definition of planar and linear forms leads to the 
rise of artificial (geomorphologically non-interpretable) boundaries of 
elementary forms. Moreover, distinguishing adjacent genetically 
distinct forms varying only in the magnitude of inclination or curvature 
is problematic in both cases (Minár and Evans, 2008). 

More sophisticated statistical classification methods eliminate some 
of these limitations; however, they frequently sacrifice theoretical 
exactness. They are generally based on the geometric (or wider 
geomorphological) signature concept, originally assuming that the 
central tendency and dispersion statistics of different geomorphometric 
(geomorphological) attributes can distinguish geomorphologically 
disparate landscapes and landforms (Pike, 1988; Giles, 1998). Homo
geneity of geomorphometric variables is most often considered, but their 
variability (e.g. McKean and Roering, 2004) or threshold values (e.g. 
Bolongaro-Crevenna et al., 2005; Xiong et al., 2017) are also used. The 
selection of concrete procedures for applying the approach should start 
from the specific purposes which the classification is to serve (Blaschke 
and Strobl, 2003). The geomorphological signature is now understood 
statistically in greater complexity, and recent trends in land surface 
segmentation methodology are driven by progress in the fields of sta
tistics, data mining, image processing and artificial intelligence (AI). 

The core of these statistical methods is a kind of cluster analysis that 
already appeared in the land surface segmentation discourse half a 
century ago (Speight, 1974), and became a dominant methodological 
stream during the nineties (e.g. Irvin et al., 1997). Clustering algorithms 
minimise intraclass and maximise interclass differences, in accordance 
with the general requirement for land surface segmentation. However, 
their simple forms are based only on thematic similarity, ignoring spatial 
position (Minár and Evans, 2008), which frequently results in strongly 

pixelized (‘pepper pot’) results (e.g. Adediran et al., 2004). This is 
overcome (inter alia) by GEographical Object-Based Image Analysis 
(GEOBIA), which includes contextual and shape characteristics in the 
segmentation procedure. GEOBIA has been widely used in remote 
sensing since the beginning of the 21st century, and in the land surface 
segmentation of the last decade (e.g. Guida et al., 2016; Dekavalla and 
Argialas, 2017; Feizizadeh et al., 2021; Wei et al., 2021; Garajeh et al., 
2022). It combines image processing and GIS functionalities in order to 
utilize spectral and contextual information in an integrative way 
(Blaschke, 2010). Substituting or combining the spectral image infor
mation with geomorphometric variables (Blaschke and Strobl, 2003; 
Drăguţ and Blaschke, 2006) became an efficient tool for land surface 
segmentation and classification. 

Geostatistical methods simulating data patterns similar to a training 
area (e.g. the direct sampling presented by Giaccone et al., 2022) or 
various machine learning methods (e.g. Ding et al., 2021; Siqueira et al., 
2022) also deal well with varied input data. They are a part of the most 
modern AI methodological stream. The encouraging AI approach in the 
realm of geomorphological mapping has been documented recently by 
leveraging deep machine learning, specifically Convolutional Neural 
Networks (CNNs) (Shumack et al., 2020; Li et al., 2020; Li et al., 2021; 
Meijles et al., 2022). CNNs are algorithms designed for pattern recog
nition on spatial or temporal data. These models learn from examples 
(annotated training sets) to associate pixel-level features with specific 
land surface classes. Because CNNs integrate spatial data generalization 
and segmentation, they can be perceived as a fusion of object-based and 
pixel-based mapping methodologies. In the comparative study of expert- 
driven and AI-driven methods by Meijles et al. (2022), CNNs performed 
well in identifying landforms, yet struggled with accurate delineation: 
hence the interference of a human geomorphologist was necessary for 
correction. Uncertainty in manual training and evaluation data sets 
impacted the CNN model performance, emphasizing collaborative 
mapping for quality assurance. The conclusion was that CNNs need 
further development and data processing to function independently as 
mapping techniques. 

Older machine learning methods are also popular in experiments 
with land surface segmentation and classification. Other types of neural 
networks (e.g. Ehsani and Quiel, 2008; Foroutan et al., 2013) and 
random forest (e.g. Rabanaque et al., 2022; Na et al., 2021) are 
frequently tested. Supervised methods usually use training areas deter
mined by experts for fine-tuning the model (e.g. Giles, 1998; d’Oleire- 
Oltmanns et al., 2013; Barbarella et al., 2021). Unsupervised approaches 
(purely data-driven segmentations) use a combination of predictor 
variables, seeking a segmentation approaching the targeted character. 
Most often they use simply the homogeneity of resultant units (e.g. van 
Niekerk, 2010; Piloyan and Konečný, 2017), alternatively the similarity 
to manually mapped units (e.g. Giaccone et al., 2022; Iwahashi et al., 
2021), to a classification scheme (e.g. Rennó et al., 2008; Bock and Leyk, 
2011) or to a dynamic interpretation (e.g. Guida et al., 2016). If different 
variables are used for the segmentation and for the subsequent classi
fication, a combination of unsupervised (for the segmentation) and su
pervised (for the classification) approaches is possible (e.g. Anders et al., 
2011). 

Advanced statistical methods may seem to avoid the problem of se
lection of relevant input data. Robust statistics can deal with hundreds of 
randomly selected inputs: they are sorted out by the algorithm and only 
statistically significant inputs are finally used. Recent authors prefer 
using intuitively selected heterogeneous inputs (e.g. Garajeh et al., 
2022; Giaccone et al., 2022) or inputs selected by robust statistical and 
data mining tools (e.g. Foroutan et al., 2013) prior to the theoretical 
reasoning. Targeted selection of inputs, however, is crucial for the 
theoretical exactness and interpretation of results. 

The geometric signature concept uses only geomorphometric vari
ables (Pike, 1988) while the concept of the geomorphological signature 
includes other data, typically from satellite imagery (Giles, 1998). The 
first can be theoretically analysed more easily (and improved in terms of 
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physical geomorphometry), in contrast to the second, which imitates 
traditional expert-based holistic identification of forms. Geometric ap
proaches combining elevation, slope, aspect, and various kinds of cur
vatures are the most frequently used. Mainly in regional (small-scale) 
segmentations, however, elevation a.s.l. is sometimes substituted by 
relative elevation (relief), or Glock’s Available Relief; the curvatures are 
regularly substituted by openness, Topographic Wetness Index (TWI), 
Topographic Position Index (TPI), or Stream Power Index (SPI). Unfor
tunately, the various concepts of land surface segmentation and classi
fication are disconnected, and poorly integrated in terms of knowledge 
and analytical reasoning (Bishop et al., 2012). Very often, the applica
tion of descriptors used is not well reasoned in terms of theory. Auto
mated classification of landforms usually attempts to replicate a 
previous prototype manual classification or mapping that has tended to 
use subjectively formulated differentiating criteria (MacMillan and 
Shary, 2009). Moreover, the selection of these criteria is frequently 
hampered by data and method accessibility (Minár et al., 2020). 

Recently there has been a strong demand for systematic, theoreti
cally based guidance of geomorphometric variable selection for each 
specific use (Franklin, 2020; Xiong et al., 2021; Maxwell and Shobe, 
2022). Thus, the idea of experiments driven by the accessibility of data 
(and/or method) changes to experiments based on hypotheses arising 
from a theoretical assumption (Minár et al., 2020). The whole of land 
surface analysis for landform extraction should be based on the theory 
and principles of geosciences, mathematics, and computer sciences 
(Sofia, 2020). 

Traditional determination of the extent and genesis of landforms is 
based on landform geometry and a set of other discriminant character
istics (rocks, soils, land cover, position, …). This corresponds to the 
geomorphological signature concept. Excessive diversity of identifica
tion attributes, and relationships between them, inhibits the theoretical 
unification of such approaches to segmentation. However, a large ma
jority of all segmentation procedures contain a geomorphometric core: 
the set of input geomorphometric variables (geometric signature). Some 
of these have an unambiguous physical meaning, leading to various 
morphogenetic interpretations that should be part of a general theo
retical framework of land surface segmentation. The concept of Minár 
and Evans (2008) seeking a theoretical synthesis of various geometric 
approaches to producing elementary land surface forms provides a 
starting point for building such a theoretical framework. Elementary 
forms are defined therein as segments with a tendency to a constant 
value (i.e. homogeneity) of ‘gravity field-specific local geomorphometric 
variables’ (Shary et al., 2005; Evans and Minár, 2011): altitude or its 
derivatives (slope, aspect, curvatures, and changes of curvatures) that 
are regularly bounded by discontinuity lines of these variables. Such 
elementary forms can be detected in the framework of a graph-based 
approach, looking for discontinuity lines (Pacina, 2009), or by a clas
sification method searching areal homogeneity in altitude and its de
rivatives (Drăguţ et al., 2013), or by manually combining both 
approaches (Barka et al., 2011; Mentlík and Novotná, 2010). However, 
the heuristic assumption of full coverage of the land surface by homo
geneous elementary forms (‘contrast georelief’ of Minár, 1992) is a 
weakness of this concept in which the main types of elementary forms 
are defined as equilibrium surfaces. This ignores the nonequilibrium or 
transitional patches of the land surface, which objectively exist and 
cannot be neglected (Li et al., 2020). 

Definition variables for elementary forms are limited to the set of 
‘local, point-based variables, specific to gravity field’, while many seg
mentation procedures include also other types of variables: ‘local field- 
invariant’, ‘local area-based’ and ‘regional variables’ (c.f. Evans and 
Minár, 2011). Linkages between point-based and important area-based 
and regional variables exist, but they have not been systematically 
investigated until now. Practical application of the concept of elemen
tary forms, therefore, requires making a combination, with all these 
challenges: to deepen the theory of elementary forms and contextualize 
it in the framework of general geomorphological theory, enabling 

integration of the theoretical backgrounds of various segmentation 
procedures. This task mainly includes systematic physical interpretation 
of relevant geomorphometric variables (physical geomorphometry) and 
reflects a shift from the equilibrium to the non-equilibrium paradigm in 
research on geomorphic systems (Huggett, 2007). The geomorphic en
ergy concept, rationalizing landform evolution (Devlin, 2003; Phillips, 
2009; Lisenby et al., 2018), can play a key role also in land surface 
segmentation. 

Based on the review of existing physical-geomorphometric ap
proaches, this paper contributes to the theory of physically-based geo
morphometry in order to improve land-surface segmentation and digital 
geomorphological mapping. Specifically, we systematize a new concept 
of geomorphic energy that interconnects elevation, slope and curva
tures, and their changes. This concept enhances the definition of 
elementary forms, which will guide land-surface segmentation towards 
outputs that carry a better morphogenetic interpretation. The applica
bility of the new concept in an operational setting is demonstrated by an 
algorithm developed within the framework of Geographic Object-Based 
Image Analysis (GEOBIA). The elementary forms obtained through land- 
surface segmentation are compared below with expert-driven field 
geomorphological mapping. 

2. Physical geomorphometry for land surface segmentation 

Physical geomorphometry can be considered as the study of land 
surface geometry in terms of principles, practices, and concepts of 
physics such as dimension, energy, work, force, thermodynamics and 
equilibria. It emphasizes the physical interpretation (e.g. Krcho, 1973; 
Mitas and Mitasova, 1998; Shary et al., 2002; Florinsky, 2018), contrary 
to descriptive geomorphometry focused on descriptive statistics (Evans, 
1972). Physical geomorphometry can provide theoretical evaluation 
and comparison of existing segmentation procedures; it can build a 
synthesizing physically-based elementary land surface segmentation. 
This can be achieved by interconnecting the landform time-space hier
archy with principles of landform development, the role of the form- 
generating geomorphic processes (their energy, forces and work) and 
the expression of these processes in geomorphometric variables. This 
physical interconnection of form geometry, recent processes, and land
form genesis creates an essential bridge between the time scales at which 
we can observe geomorphic processes and the generally larger scales at 
which we seek explanations and forecasts (Kirkby, 1996). 

The following paragraphs review and synthesize theoretical knowl
edge for solving the following principal questions (and resultant tasks) 
of land surface segmentation:  

1) What kind of segments are we looking for and by what kind of input 
data do we define them? (Analysis of hierarchy of landform units and 
choice and adaptation of input land surface representation – DEM). 

2) What evidence was used to establish the segments? (Analyse geo
morphometric variables with respect to their physical- 
geomorphological interpretation and interconnections).  

3) What are the optimal input variables for defining elementary forms? 
(Joining the structural hierarchy of landforms with the computa
tional and interpretational hierarchy of geomorphometric variables 
and geosystem theory). 

4) How can the selection, pre-processing, and processing of input var
iables lead to the most interpretable elementary forms? (Revision of 
the Minár and Evans (2008) concept of elementary forms and 
resultant workflow in the framework of GEOBIA). 

2.1. DEM generalization and landform hierarchy 

Many landforms are scale-specific (Evans, 2003). Various landforms 
of various sizes can be detected in the same place. Smaller landforms are 
embedded in bigger ones, creating a nested size hierarchy of landforms. A 
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nested hierarchy can result from the interaction of geomorphic processes 
of various genetic types, volumes and durations. For example, mass 
movement can form large deep-seated gravity deformations that are 
covered by a set of smaller runoff features subsequently forming on the 
same slope, such as gullies and their colluvial fans. However, a single 
process can simultaneously create a genetically linked structural hierarchy 
of landforms: elementary forms, compounded landforms, and land sys
tems (e.g. Minár and Evans, 2008). For example, surface runoff gener
ates a nested hierarchy of badlands, gullies, and gully slopes; the mass 
movement hierarchy is landslide fields, landslide blocks, and particular 
landslide scarps (e.g. Bufalini et al., 2021). 

Landforms of various sizes and structural hierarchies are character
ized by different geometric signatures in which various geo
morphometric variables are comprised. It is inconceivable to detect the 
whole set of hierarchically different units by one segmentation pro
cedure; determination of the targeted spatial and structural hierarchic 
level of the sought units is needed. Hence, optimal geomorphometric 
description (and identification) of forms of a specific hierarchic level 
requires either a specific DEM resolution (an explicit generalization of 
high-resolution DEM) or a specific window size for the computation of 
geomorphometric variables (an implicit generalization of the DEM) 
(Minár et al., 2020). However, sufficient DEM resolution, accuracy, and 
homogeneous spatial quality is a necessary condition, as documented by 
Mashimbye et al., 2014. 

Elementary forms at detailed scales (e.g. MacMillan et al., 2000; 
Minár and Evans, 2008; Ehsani and Quiel, 2008; Gerçek et al., 2011) and 
land systems at regional or global scales (e.g. Drăguţ and Blaschke, 
2006; Dekavalla and Argialas, 2017; Na et al., 2021) are mostly used in 
wall-to-wall (comprehensive) segmentations. Selective detection or 
mapping of predicted occurrence of only a single genetic type of form (e. 
g. planation surfaces, landslides, cirques, gullies, cryoplanation terraces, 
dunes) is also frequent in the recent discourse (e.g. Xiong et al., 2017; 
Sîrbu et al., 2019; Conoscenti and Rotigliano, 2020; Queen et al., 2021; 
Li and Zhao, 2022). DEMs of various resolutions and accuracies are used, 
but the determination of rules for the optimal DEM choice and adapta
tion is rarely considered (exceptions include Hengl, 2006; Lindsay et al., 
2015, Woodrow et al., 2016; Xie et al., 2021; Popov et al., 2021; New
man et al., 2022). Implicitly, the DEM resolution should be harmonized 
with the size of particular genetic forms sought and/or the magnitude of 
form-forming processes. However, the relation between the event 
magnitude and its geomorphic effect is frequently non-linear (Lisenby 
et al., 2018; Gonzalez-Hidalgo et al., 2012): that complicates the ‘a 
priori’ setting of DEM resolution on the basis of process theory. Fortu
nately, highly detailed DEMs derived by airborne laser scanning or (in 
open/non forested areas) photogrammetry provide means for finding 
the optimal level of DEM generalization adopting the Nyquist-Shannon 
theorem. Terrain morphology in such DEMs is typically oversampled 
with respect to the level of scale intended for geomorphological map
ping. Therefore, the optimal level of generalization (applicable spatial 
scale, i.e. spatial resolution) can be found as the balance between the 
minimum sampling interval for capturing the desired terrain features 
accurately and avoiding unnecessary DEM data redundancy while pre
serving the essential characteristics of the terrain. 

Land surface segmentation has many alternatives: geomorphologists 
making manual segmentation select the most interpretable forms (e.g. 
Dramis et al., 2011; van der Meij et al., 2022). They prefer genetically 
clear, well-developed forms characterized by a kind of form stability 
and/or dynamic equilibrium, responding to the effective geomorphic 
extent of a form-forming process. They also limit the size of mapped 
forms, implicitly or explicitly selecting the scale of the resultant map and 
the minimum area of mapped units. Smaller forms are information 
noise. In simulating the geomorphologists’ work, automatic segmenta
tions are also supposed to detect only forms above a specific hierarchical 
level. DEM generalization can eliminate both DEM uncertainty and the 
noise resulting from the presence of undesired small (noise) forms. A 
specific task is to find the most suitable generalization level for the 

geomorphological interpretation of resultant segments (Popov et al., 
2021). Depending on the character of resultant objects, various geo
morphometric indices are used for explicit or implicit generalization of a 
DEM. The topographic grain (Pike et al., 1989) expresses the charac
teristic local ridgeline-to-channel spacing. A generalized DEM should 
preserve these important features thus the DEM resolution can be set up 
in line with the characteristic topographic grain. According to the 
Nyquist-Shannon sampling theorem (Hengl, 2006), to avoid aliasing the 
grid resolution should be finer (i.e. the cell size should be smaller) than 
half the average spacing between the inflection points on a transect. This 
corresponds to half of the topographic grain, but given the variability in 
grain, a considerably smaller spacing is likely to be suitable. The geo
morphon concept based on the DEM openness attribute (Jasiewicz and 
Stepinski, 2013) contains an indirect generalization of a DEM by a look- 
up distance determining the maximum scale of a landform element; 
topographic grain has already been successfully used for this (Józsa and 
Fábián, 2016; Sărășan et al., 2019). Use of the theory of signal analysis 
can be a more robust alternative. A Fourier transform filter transforms a 
gridded DEM from the signal domain into a frequency domain, revealing 
basic land surface trends that represent a suitable generalization level 
(González-Díez et al., 2021). 

Detecting appropriate landform scales from a DEM by local inter
polation of landform surfaces at different window sizes was the solution 
offered by Schmidt and Andrew (2005). They used local scaling 
behaviour of surface approximations by second order polynomials in 
various window sizes, to identify dominant scale ranges and subse
quently measure derivatives at those scales. Change of sign of plan 
curvature was used as the main indicator for the detection of various 
hierarchic levels. Hurst et al. (2012) evaluated the behaviour of the 
mean and standard deviation of “hilltop curvature” (elevation Lap
lacian) in various window sizes to determine a suitable length scale for 
curvature computation; this also represents implicit DEM generaliza
tion. As alternatives to standard deviation, measures of spatial auto
correlation (e.g. Moran’s I) are also used for the determination of inter- 
segment heterogeneity (Na et al., 2021). This approach corresponds to 
the optimization of the grid resolution by maximizing its information 
content, as suggested by Hengl (2006). Maximization of the quantile- 
based measure of kurtosis K0 of changes of curvatures (Minár et al., 
2013b) also corresponds to this principle and was already successfully 
used for explicit DEM generalization to a level suitable for detection of 
elementary forms (Feciskanin and Minár, 2021; Popov et al., 2021). 
Introducing K0 results from the specific properties of the targeted 
morphometric units (elementary forms), which is in line with the 
approach suggested by Louw and van Niekerk (2019) for scale optimi
zation in multiresolution segmentation by GEOBIA. 

Determination of the adequate level of generalization is only one 
aspect of adapting the DEM for successful segmentation. The selection of 
an appropriate generalization method is also important. A simple 
averaging or polynomial approximation, as prevails in current practice 
(e.g. Popov et al., 2021), is acceptable only for low degrees of general
izations. Hierarchical land surface segmentation requires a DEM 
generalization technique that also preserves the main topographic fea
tures at high levels of generalization. Grid-based DEM generalization 
methods have limited capabilities to meet this requirement, although 
promising solutions have been emerging lately (Lindsay et al., 2015, 
2019; Newman et al., 2018, 2022). Therefore, many methods use other 
structures to create a generalized model. A common approach in land 
surface modeling is to extract 3D points (and lines) from DEMs using 
various techniques and use them to reconstruct the terrain surface using 
TINs (Zhou and Chen, 2011). Polygonal simplification methods, on the 
other hand, work directly on a polygonal (triangular/TIN) model; 
instead of the usual selection of model vertices, they use local modifi
cations of the TIN (vertex clustering, vertex decimation, and edge 
collapse). The properties of the generalized model depend mainly on the 
conditions of local modification: some of them have suitable properties 
for land surface modeling based on the theory of the optimal triangle to 
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represent a smooth surface (Feciskanin and Minár, 2021). The gener
alization of a DEM based on this kind of polygonal simplification algo
rithm is theoretically well justified and preserves important topographic 
features very efficiently, even for high-level generalizations. 

2.2. Geomorphometric representation of geomorphic forces, energy, and 
work 

Potential gravity energy is directly reflected in topography. It is only 
one of the various kinds of energy that form the land surface (Devlin, 
2003; Phillips, 2009), but it principally influences the application of 
kinetic energy of various geomorphic agents and thus gravity flows and 
diffusion processes. By contrast to other types of geomorphic energy, its 
general geomorphic effect can be easily conceptualized using the hier
archical system of interconnected basic geomorphometric variables 
(Fig. 1). 

In the following text, the term geomorphic energy means the potential 
gravity energy of a unit volume (1 m3) of material on the land surface. 
Parts of geomorphic energy, and their changes, are represented by 
various geomorphometric variables. 

Global Geomorphic Energy (GGE) is characterized by the acceleration 
due to gravity g [m.s− 2] and can by defined on the earth’s surface as: 

GGE = ρ.g.z.V (1) 

GGE is the unit gravity energy [kg.m2.s− 2] of a unit volume of ma
terial (V = 1 m3) with density ρ in elevation z [m a.s.l.] and corresponds 
to constructive geomorphic work theoretically expended on uplift of this 
material to the given elevation from current sea level (Fig. 1). This en
ergy is available to destructive subaerial geomorphic processes flat
tening the land surface towards sea level (the main or overall erosion 
base level). Substitution of z by zmax in (1) (where the window size 
corresponds to the topographic grain after Pike et al., 1989) yields the 
expression of maximal GGE (GGEmax) that corresponds to the minimum 
past endogenous work preserved in the recent topography (Bandura 
et al., 2021). 

Regional Geomorphic Energy (RGE) can be defined as a contextual 
energy available for the planation of the land surface to the level of the 

local base of erosion: 

RGE = ρ.g.zrel.V (2) 

where zrel is the relative elevation above a local base of erosion 
(Fig. 1). It is equivalent to HAND (Height Above Nearest Drainage) of 
Rennó et al. (2008). Excluding depressions below sea level, zrel ≤ z and 
so RGE ≤ GGE. The zrel of water divides represents maximal RGE 
(RGEmax): it corresponds to GAR – Glock’s Available Relief (Glock, 
1932) and can represent the minimum past exogenous work of a region 
preserved in its recent topography (Minár et al., 2018; Bandura et al., 
2021). 

Local Geomorphic Energy (LGE) can be defined by local relief Δz: 

LGE = ρ.g.Δz.V (3) 

where Δz = zmax – zmin in a window. If the window size is determined 
by the topographic grain, Δz ≅ GAR and RGE ≅ LGE. The ratio of Δz to 
the window size approximates the mean slope gradient (S̄): for 
decreasing window size this approaches the tangent of local slope 
inclination (S). 

GGE, RGE, and LGE are variants of the potential energy of mass 
transfers of Phillips (2009) – that means potential gravity energy of the 
unit volume of in situ material. Only a part of this energy can be directly 
used for geomorphic work. The following kinds of energy express the 
potential influence of topography on the distribution of the unit volume 
of moving material along unit distance (d = 1 m), where curvatures 
cannot exceed the value of 1 m− 1. 

Potential local energy on the land surface applicable to mass flow (in 
short: Potential Energy of Surface – PES) is defined by Minár et al. 
(2020) as a function of the sine of local slope inclination S: 

PES = ρ.g.sin S.d.V (4) 

where d = 1 m is the unit downslope distance. Regarding a smooth 
surface, where S ∈ [0◦, 90◦] and d, V = 1, the PES ≤ ρ. g = LGEunit, where 
LGEunit is the unit Local Geomorphic Energy of Δz = 1 m (Fig. 1) and so: 

PES = LGEunit.sin S (4a) 

Fig. 1. Basic types of geomorphic energy defined by geomorphometric variables and relationships between them. Local Geomorphic Energy and its types are in 
violet. For more explanation, see the text. 
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The d in (4) is 3-D surface distance; its map projection (dproj) is a 
function of S (dproj = d. cos S). The ratio of PES and dproj thus expresses 
the projected PES distribution in the map that can be termed the ‘pro
jected PES density‘(PESproj): 

PESproj =
PES
dproj

= LGEunit.tanS (4b) 

The PESproj expresses the apparent (projected) concentration of PES. 
It is only a projection of the real energy. If slopes reach 90◦ it has no 
physical meaning (tan S becomes infinite). Both PES (sin S) and PESproj 
(tan S) are represented in various forms in many dynamic and evolu
tionary geomorphic models, where they are seemingly equivalent but 
only for gentle slopes. Derivation of PESproj (4b) points to the physical 
interpretational priority of sin S over tan S, repeatedly mentioned in the 
literature (e.g. Strahler, 1952; Shary et al., 2002; Minár et al., 2020). 

Gravity-concordant changes of PES include the direct influence of 
profile-normal slope line curvature (kn)s and plan-normal contour line 
curvature (kn)c on the mass flow (Minár et al., 2020, Fig. 1): 

ΔPES(kn)s = ρ.g.(kn)s.d.V = LGEunit.(kn)s (5)  

ΔPES(kn)c = − ρ.g.(kn)c.d.V = LGEunit.–(kn)c (6) 

Both are originally expressed as geomorphic forces (kg.m.s− 2), but 
regarding the influence of this force along the unit downslope distance d 
= 1 m, they can also be considered extra kinds of unit geomorphic en
ergy equivalent to a part of the LGEunit. While the ΔPES(kn)s determines 
acceleration (convex, +ve values of (kn)s) or deceleration (concave, − ve 
values of (kn)s) of mass flow, the ΔPES(kn)c controls concentration 
(concave, − ve values of (kn)c) or dispersion (convex, +ve values of (kn)c) 
of the flow. Their summation defines the PES excess (PESe) (Minár et al., 
2020): 

PESe = ΔPES(kn)s
+ΔPES(kn)c

= ρ.g.2kd.d.V (7) 

where kd is the difference curvature of Shary (1995). While PES 
homogeneity expresses the equilibrium state of the land surface, PESe 
expresses the disequilibrium, which can be quantified by the Index of 
Slope Energy Disequilibrium (ISED, Minár et al., 2020): 

ISED[%] = 100
PESe

PES
= 50

kd

sinS
(8)  

where ISED expresses the local percentage increase or decrease of PES 
due to land surface curvature. 

All quantities (5) to (8) can take positive or negative values 
expressing increasing (+) or decreasing (− ) of PES in the slope line di
rection. If (5) to (7) are considered as geomorphic energy, negative 
values represent negative geomorphic energy connected with a decrease 
of denudation and transport capacity. 

Gravity-discordant change of PES is the PES change in direction of 
contours: it does not directly influence the mass flow in the given point. 
It can be defined using the principal representative of twisting curva
tures – the third from the basic trio of land surface curvatures after Minár 
et al. (2020) termed therein as contour geodesic torsion (τg)c. Because 
(
τg
)

c = ∂S
∂c (change of slope angle S in direction of contour c: Jenčo, 

1992), ∂(sinS)
∂c =

(
τg
)

c.cosS; the influence of (τg)c on PES change in direc
tion of c can be expressed (by analogy to (4) in Minár et al., 2020) as: 

ΔPES(τg)c
= ρ.g.∂(sinS)

∂c
.dc.V = ρ.g.

⃒
⃒
(
τg
)

c

⃒
⃒.cosS.dc.V

= LGEunit.cosS.
⃒
⃒
(
τg
)

c

⃒
⃒ (9)  

where dc is the unit distance in the direction of the contour (dc = 1 m). 
The sign of (τg)c reflects only the direction of action of ΔPES(τg)c 

not its 

value, therefore the absolute value of (τg)c is used in (9). 
Gravity discordance means disharmony between principal directions 

(defined by maximal and minimal curvature) and the gravity-principal 

directions (slope line and contour line). The ΔPES(τg)c 
then expresses 

the part of PES change that does not affect actual local mass flows: it 
reflects a change in spatial (regional) organization of gravity- 
determined processes indicating the influence of an adjacent regulator 
of land surface development (Minár et al., 2020). Rivers and boundaries 
of different rock resistance or different geomorphic processes are the 
most common regulators of this kind, forming gravity disequilibria 
quantitatively reflected by the ΔPES(τg)c

. Hence ΔPES(τg)c 
is a local 

manifestation of a regional influence affecting the long-term evolution 
of the land surface and leading to a long-term local gravity disequilib
rium. The relative importance of ΔPES(τg)c 

can be expressed by analogy 

to (8) as an Index of Gravity Discordant Energy Disequilibrium (IGDED): 

IGDED[%] = 100
ΔPES(τg)c

PES
= 100

⃒
⃒
(
τg
)

c

⃒
⃒.cotS (10) 

The regional mean of PES ( ¯PES) can be defined by analogy to PES (eq. 
4), substituting the local slope S with the mean slope S̄ determined by 
the ratio of zrel and distance to the nearest stream (ds) (Fig. 1): 

¯PES = ρ.g.sinS̄ .d.V = ρ.g.zrel

ds
.d.V (11) 

It is an equivalent of the areal Relief Brake Force (RBF) used in 
morphostructural segmentation (Minár et al., 2018; Bandura et al., 
2021): 

RBF =
g.(GAR≅ zmax − zmin)

2.d̄s .unit mass( = 1kg). However, the ¯PES is defined 
for unit volume (mass = ρ.V) and expressed as geomorphic energy or 
work, thus the action of RBF per unit distance (d): ¯PES ≈ ρ.V.RBF.d. The 
Melton Ruggedness Number (MRN; Melton, 1965) is equivalent to S̄ 
computed for a specific catchment area (a) (Marchi and Dalla Fontana, 
2005): MRN = zmax − zmin̅̅

a
√ . So MRN also approximates the ¯PES, which ex

plains its fruitfulness in landform classification (e.g. Marchi and Dalla 
Fontana, 2005; Ilinca, 2021). If ¯PES ≅ PES, the local and regional 
topography is in accord: discordance of ¯PES and PES points to the exis
tence of lower-order landforms disturbing the regional organization 
principle (e.g. landslides on valley slopes). 

Supply of ΔPES(kn)c 
from a specific catchment area (ΔPESa) is another 

extension of the PES concept beyond the local scale (Fig. 1). 
ΔPES(kn)c

expresses the rise of PES from the concentration of material 
only from the immediate surrounding of a point. Regionally, however, 
the material (and energy) is accumulated from the whole specific 
catchment area (a) of the point and so: 

ΔPESa = f

(
∑

a
ΔPES(kn)c

)

(12) 

where f is a function expressing the expenditure of 
∑

a
ΔPES(kn)c inside 

of a. After Gallant and Hutchinson (2011), a can be estimated by the 
integration of the projected contour curvature (kp)c along the flow path. 
Because (kp)c = (kn)c / sin S (Krcho, 1983) and regarding (12), a is 
equivalent to the integration of ΔPES(kn)c / sin S and so: 
∑

a
ΔPES(kn)c

≅ ρ.g.a.sinS⇒ΔPESa ≅ ρ.g.SPI (13)  

where SPI is Stream Power Index resulting from Mitasova et al. (1996) in 
the form: 

SPI = am.(sinS)n (14)  

and m, n are experimentally or physically-based coefficients (making 
specific the function f in (12)). The form of SPI using tan S instead of sin S 
(e.g. Moore et al., 1988) is not suitable for expressing ΔPESa. It yields 
similar results to (14) for common slopes, but for scarps (S → 90◦) the tan 
S leads to a nonsensical infinite ΔPESa. An important part of the ΔPESa is 
expended in geomorphic work inside the specific catchment, rising 
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exponentially with the catchment area (a). Therefore, the frequently 
used linear form of SPI = a. S (e.g. Conoscenti and Rotigliano, 2020) is 
also not suitable for the expression of ΔPESa. Theoretically, the appli
cation of the log form (using sin S instead tan S) looks more suitable, e.g. 
SPI = ln(1 + a.sinS) (c.f. Florinsky, 2017). Also the power function of a 
(n = 1 and 0 < m < 1 in (14)) resulting from empirical experiments (e.g. 
Vandaele et al., 1996; Clubb et al., 2014) seems suitable. However, the 
form (14) is the most general, reflecting the stream power law, which is 
a ‘nearly universal morphometric relation’ (Venditti et al., 2020). Co
efficients m and n theoretically depend on the catchment shape (more 
energy is lost in an elongated catchment than in a circular), but also on 
regional specifics of lithology or climate. Applications in various terri
tories point to regional calibrations being necessary (e.g. Daggupati 
et al., 2013), limiting application of SPI for elementary land surface 
segmentation. 

The Topographic Wetness Index (TWI, Beven and Kirkby, 1979) has a 
similar physical basis to SPI. Inversion of the slope function (TWI = ln (a 
/ tan S)) allows for expression of the accumulation of material (water) 
instead of the energy itself. However, local homogeneity and differences 
in ΔPESa are also reflected in TWI values and can explain the success of 
using TWI in some segmentations. 

Interesting relations exist between these PES concepts and the pop
ular Index of Connectivity (IC, Borselli et al., 2008). IC is ratio of an 
upslope (Dup) and a downslope component (Ddn). Dup is a function of 
upslope contributing area (a) and Ddn depends on distance to the local 
base level (

∑

i
di, where di is length of the ith cell along the downslope 

path). Both Dup and Ddn depend on average slope gradient S (S̄ in a for 
Dup; average slope of path 

∑

i

Si
di 

for Ddn) and on a “weighing factor” 

(W̄;
∑

i

Wi
di

) interpreted alternatively as the C factor of the USLE model 

(Borselli et al., 2008) or as a roughness index (Cavalli et al., 2013). 
Neglecting factor W and substituting sin S instead tan S, Dup clearly 

corresponds to ΔPESa and Ddn to 1
¯PES on the downslope path. IC then 

corresponds to the sum of logarithms of ΔPESa and ¯PES: 

IC = log
(

Dup

Ddn

)

= log

⎛

⎜
⎜
⎝

W̄.S̄.
̅̅̅
a

√

∑

i

di
Wi .Si

⎞

⎟
⎟
⎠∝logΔPESa + log ¯PES (15) 

Connectivity describes the sediment flux behaviour and application 
of IC is focused on various morphodynamic problems (Heckmann et al., 
2018, Najafi et al., 2021). IC also has potential for detecting homoge
neous geomorphological units (Crema and Bossi, 2017), but its clus
tering leads to typological more than elementary segmentation. 

Potential local energy on the land surface applicable to diffusion (in short 
Potential Energy of Surface for Diffusion – PESD) can be derived by 
discretization of the diffusion equation (e.g. Martin and Church, 1997 
and references therein): 

∂z
∂t

= κ
[

∂2z
∂x2 +

∂2z
∂y2

]

= κ.∇2z⇒
Δz
Δt

≈ κ.∇2z (16)  

where κ is the diffusion coefficient [m2.s− 1], t is time and ∇2z is the 
elevation Laplacian. The ∇2z is an ‘imitation‘of mean curvature kmean =

kmax+kmin
2 =

(kn)s+(kn)c
2 : if S → 0 then ∇2z → 2kmean (Minár et al., 2020). 

Denudation Δh (responding to the local geomorphic work during Δt) is 
in the hilltop position equal to Δz (Fig. 2 a). From the setting Δz = 1 m 
(defining LGEunit) and 2kmean = 1 ⇒ Δt. κ = 1 m2. The member Δt. κ can 
be considered as the unit area (Area = 1 m2) for which the curvature 
2kmean = 1 m− 1 causes range of altitude Δz = 1 m: it determines the unit 
value of LGE (LGEunit). A decrease of ∇2z (kmean) results in a decrease of 
Δz and thus Δh. 

Then PESD can be expressed as potential diffusion work responding 
to LGE (Δz = Δh) for the unit area (Area = Δt.κ = 1 m2), responding to 
kmean value (Fig. 1 and Fig. 2 a): 

Fig. 2. Relationships of mean curvature kmean, PESD, and the diffusion process: Hilltop curvature as a measure of PESD represented by Δh, where Δh = Δz determines 
LGE ≈ PESD (a). Influence of the land surface on the diffusion dynamic: Omnidirectional movement is mutually eliminated on the horizontal plane (b) as well as on a 
linear slope (c). A convex slope elongates mean movement trajectories (le) in comparison with a linear slope (l), leading to a bigger dispersion of material and 
denudation (d). A concave slope shortens trajectories (ls), resulting in smaller dispersion and accumulation of material (e). The mechanism works in all com
pass directions. 
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LGE = Δz.ρ.g.V = Δt.κ.∇2z.ρ.g.V⇒PESD = 2kmean.ρ.g.Δt.κ.V (17)  

where Δt.κ.V = 1 expresses that it is part of the unit energy (LGEunit = ρ. 
g) of a unit volume of potentially denuded matter spread on the unit 
surface area. Consequently, PESD can be defined also as a part of LGEunit 
applicable to the diffusion of Area = 1 m2, determined by kmean or 
(regarding eqs. (5), (6)) as the difference of gravity concordant changes 
of PES: 

PESD = LGEunit.2kmean = LGEunit.
(
(kn)s + (kn)c

)
= ΔPES(kn)s

− ΔPES(kn)c

(17a) 

The first part of (17a) is an analogy to the relation (4a) valid for the 
hilltop position. The average sine of slope S from the peak to the unit 
distance (1 m) corresponds to the curvature: ¯sinS ≈ 2kmean (resulting 
from Fig. 2 a: the similarity of △ A A’B and △ A’BC and the relation ¯sinS 
≈ 0.5 sin SB). The maximum possible denudation Δh = Δz, thus PESD on 
the peak is equivalent to the PES in the immediate vicinity of the peak. 
Therefore so-called ‘hilltop curvature’ can well approximate the erosion 
rate also on hilltops with S = 0◦ (Hurst et al., 2012), where from defi
nition (4) the PES is zero. 

On a slope, however, the maximum possible denudation resulting 
from the curvature is Δh < Δz (Fig. 2 d) and so in the immediate vicinity 
of the peak PESD < PES. Moreover, ∇2z ∕= 2kmean and so only ∇2z or 
kmean should be used for the general PESD definition. Recalling that mass 
transport rates may be related to the sine of the slope angle rather than 
the tangent (e.g. Martin and Church, 1997) and geometric (kn)s 
(defining kmean) is the change of sine of slope (Minár et al., 2020), kmean is 
preferred in (17). As Δh = Δz. cos S and geomorphic work (denudation 
Δh) determined by PESD is projected in the map as Δz, the diffusion eq. 
(16) adequately describes the change of elevation a.s.l. with time (as 
used in evolutionary models), despite PESD being a function of kmean and 
not of ∇2z. Finally, by analogy to (4b), substituting kmean with ∇2z 
represents the projection of the 3D PESD into 2D PESDproj. 

PESDproj = ∇2z.LGEunit (17b) 

Diffusion best represents the set of geomorphic processes for which 
intensity directly depends on a single geomorphometric variable – the 
land surface curvature. Splash erosion is a typical example. Its intensity 
is zero on a horizontal plane and also on parts of variously inclined 
linear slopes, where shorter upslope and longer downslope movements 
of the material are mutually eliminated in the mass balance (Fig. 2 b, c). 
However, convex forms are denuded by diffusion, and the material is 
deposited on concave slopes (Fig. 2 d, e). The absolute value of diffusive 
geomorphic work (denudation and accumulation) depends on the 
effective external geomorphic energy of agents (raindrops in the case of 
splash erosion, wind in the case of windthrows, etc.). The unit value of 
this effective kinetic energy (1 kg.m2.s− 2) is all spent on the particle 
movement, without a geomorphic effect on a horizontal plane and most 
of a linear slope (Fig. 2 b, c). The efficiency of denudation on a curved 
slope depends on the elongation of the mean trajectory on a convex 
slope; accumulation depends on its shortening on a concave slope (Fig. 2 
d, e). The whole unit effective kinetic energy is spent on geomorphic 
work if the radius of curvature approaches the diffusion process extent 
(movement trajectory l). For a unit process extent (l = 1 m) this alter
native dynamic definition of PESD is equal to the previous derivation of 
the PESD (17). 

Integral Potential Energy of Surface Curvature (IPESC) can be intro
duced as a concept spanning the energetic influence of the basic trio of 
land surface curvatures ((kn)s, (kn)c, (τg)c) on land surface formation 
(Fig. 1). They determine changes in PES (5, 6, 9) and subsequently PESe 
(7) and PESD (17a). Only the sign of (kn)s has a straightforward physical- 
geomorphic meaning. Positive values of (kn)s increase PES (PESe) and 
PESD. Positive values of (kn)c also increase PESD but decrease PES 
(PESe); the sign of (τg)c has no physical meaning. However, each kind of 
basic curvature potentially deforms the energetic balance on the land 

surface and any summation of their absolute values (expressing devia
tion from an equilibrium state represented by zero curvature) should 

have interpretational meaning. Casorati curvature kC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2

max+k2
min

2

√

mea
sures the general curvedness of a surface, regardless of the sign of cur
vature (Koenderink et al., 2015), and is an expression of general non- 

linearity (Minár et al., 2020). If (τg)c = 0, kC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(kn)s

2
+(kn)c

2

2

√

. Simulta
neously increasing 

⃒
⃒
(
τg
)

c

⃒
⃒ > 0 increases the value of kC. Therefore, kC 

(integrating the influence of all three basic curvatures) can be used for 
the estimation of IPESC (as potential energy of unit Area = 1 m2): 

IPESC = ρ.g.2kC.Area.V = LGEunit.2kC (18) 

IPESC in this form integrates the energetic influences of PESe (7) and 
PESD (17) on geomorphic processes. On a gravity concordant land sur
face ((τg)c = 0) is valid: If (kn)s = (kn)c then PESe = 0 and IPESC =|PESD|. 
If (kn)s = − (kn)c then PESD = 0 and IPESC =|PESe|. If 

⃒
⃒(kn)s

⃒
⃒ ∕=

⃒
⃒(kn)c

⃒
⃒, 

then IPESC > PESD and IPESC > PESe. However, for partial linearity (i.e. 
(kn)s or (kn)c = 0) IPESC is bounded by IPESC =

̅̅̅
2

√
|PESD| =

̅̅̅
2

√
|PESe|. 

This means the summary energetic effect of PESe and PESD cannot 
exceed a 

̅̅̅
2

√
multiple of the larger of these two energies. In the case of 

gravity discordance, IPESC increases based on ΔPES(τg)c
. 

Mean difference of Global Geomorphic Energy ( ¯ΔGGE ) is the difference 
between GGE at a point and the mean GGE in its surrounding (moving 
window): 

¯ΔGGE = GGE − GGEmean = TPI.ρ.g.V (19)  

where TPI = (z – zmean) is the Topographic Position Index (Weiss, 2001). 
¯ΔGGE expresses the abundance or deficiency of geomorphic energy of 

the given point in comparison with its surrounding. Although ¯ΔGGE is 
derived from GGE, in principle it also expresses the local change of RGE 
( ¯ΔGGE ≈ ¯ΔRGE ); but ¯ΔGGE ∕= ¯ΔLGE . In singular points (top, saddle 
and depression), the TPI approximate half of kmean for window size = 1 
and so (regarding 17): 

4. ¯ΔGGE
window size

≅ PESD (20) 

The Elevation percentile (Gallant and Wilson, 2000), identical to the 
Relative elevation of Anders et al. (2015) also expresses the energetic 
position of a point but on a qualitative scale. Various ‘Percent elevation’ 
measures of MacMillan et al. (2000) extend this expression from local to 
regional scales. Bathymetric position index suggested by Lundblad et al. 
(2006) has the identical energetic meaning as TPI, if zmean is computed in 
the circle. Its variant, computing zmean in the annulus (Moskalik et al., 
2018) should return correlated, generally higher (more contrast) abso
lute values, however, its energetic meaning is less straightforward. 

2.3. Geomorphometric variables, geomorphic units, landform 
development, and (geo)system theory 

TPI and other positional geomorphometric variables are related to 
variability measures of elevation such as Terrain Ruggedness Index TRI of 
Riley et al. (1999), Elevation standard deviation (Evans, 1972; Xiong 
et al., 2017), and Coefficient of variation (Na et al., 2021). The range of 
altitude (Δz) defining LGE (3) also belongs to this family. All these are 
local area-based variables (Evans and Minár, 2011) expressing the vari
ability of elevation (and so GGE) in a finite area. Changes of elevation 
over a vanishingly small area (derivatives) define local point-based var
iables (Minár et al., 2013a), that more exactly express various kinds of 
local gravity energy and the forces (PES, ΔPES(kn)c

, ΔPES(kn)s
, ΔPES(τg)c

,

PESe, PESD, IPESC). They drive the actual local geomorphic processes 
(work), and they are used for the definition of most types of elementary 
geomorphic units (Fig. 3). 

The mathematical hierarchy of local point-based variables is 
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essential for segmentation. Elevation z is a variable of zero order and 
parent variable of all other variables defined by derivatives of z (slope, 
aspect, curvatures, and changes of curvatures). Because the derivative of 
a constant is zero, homogeneous (constant) elevation leads to zero 
values of all derived variables (and energies). First-order variables (slope 
S and aspect A) are parent variables of curvatures. Therefore, constant 
values of S and A lead to zero values of derived curvatures and changes 
of curvature. In reverse, looking for homogeneity in changes of curva
tures, homogeneously low (zero) change of curvature means homoge
neous (constant) parent curvature; homogenously low plan curvature 
means a tendency to constant aspect, and so on. This mutual support of 
local point-based variables in searching for homogeneous segments is 
fundamental to elementary land surface segmentation (Minár and 
Evans, 2008). 

Global and regional geomorphic energy (GGE, GGEmax, RGE, RGEmax, 
¯PES, ΔPESa) well reflect past geomorphic work (Minár et al., 2018) and 

can be effectively used for identifying land systems (Fig. 3). They 
include traditional simple morphometric classifications (lowlands and 
highlands differentiated by elevation a.s.l.; plains, hill lands, … defined 
by relief and drainage density), as well as a recently published 
physically-based morphostructural segmentation (Bandura et al., 2021). 
The latter results from the conceptualization of topography as static 
waves whose energy is determined by wave amplitude (GAR ∝ RGEmax) 
and length (reflected in the S̄ ∝ ¯PES). It is compatible with the old 
concepts of local relief and topographic grain, expressing both as sta
tistical quantities (Pike, 1988). ΔPESa has a specific character. It ex
presses the regional influence on local PES, being a source of local 
disequilibrium but also (regionally) of equilibrial longitudinal profiles of 
rivers. 

Local area-based geomorphometric variables significantly depend on 
the window size (Florinsky, 1998; Xiong et al., 2022). Some of them are 
associated with local point-based variables (expressing local geomor
phic energy and forces) and with regional variables connected with 
regional geomorphic energy and work (Fig. 3). Δz coincides with GAR ∝ 
RGEmax (representing exogenous work) if the window size approaches 
topographic grain (Minár et al., 2018), but for a unit window size (1 m) 
Δz ≅ tan S, equivalent to the PESproj (eq. 4b). In singular points, TPI 
approximates half of kmean (quarter of PESD) for a unit window size and 
correlates with half of GAR (RGEmax) if the topographic grain is used. 
Openness (Yokoyama et al., 2002) is also related to kmean in a unit 
window size; for topographic grain, it approaches the average slope 
defining ¯PES or RBF (Minár et al., 2018; Bandura et al., 2021). These 
relationships lead to the similarity of frequently used classification 
schemes defined by various geomorphometric measures (curvature- 
based classifications of Krcho, 1983; Shary, 1995 and Wood, 1996, vs. 
openness-based classifications of Yokoyama et al., 2002 and Jasiewicz 

and Stepinski, 2013); also a mix of these measures can be effectively 
used (e.g. Walker et al., 2020). 

Integration of physical and positional information is an advantage of 
some area-based variables (TPI, openness). However, local point-based 
variables are in theory more carefully formulated, clearly inter
connected and hierarchized, and better interpretable physically. The 
effectiveness of their use in elementary land surface segmentation can be 
limited by computation from approximation polynomials with minimal 
freedom, from minimal computational windows, and using noisy, non- 
generalized DEMs. However, applying an adequate computational al
gorithm to a well-adapted DEM avoids that limitation: the resultant land 
surface segmentation can be interpreted effectively in terms of 
geomorphological development and (geo)system theory (Fig. 4). 

Geomorphological mapping anticipates the existence of genetically 
distinct landforms, their spatial structures, and their associations 
(Evans, 2012). This would be inconceivable unless self-organization 
mechanisms existed in land surface development. Knowledge of the 
interplay of geomorphometric variables, geomorphic energy, and 
various aspects of self-organization should be reflected in the segmen
tation algorithm. The theory of landscape self-organization operates 
with energy dissipation, minimization, and maximization, considering 
the role of (dis)equilibrium and chaos for convergence towards some 
characteristic forms and divergence into diverse spatial mosaics (Phil
lips, 1999). 

Convergence towards equilibrium elementary forms is at the core of 
the Minár and Evans (2008) concept. The geomorphological theory 
recognizes various types of equilibrium states that are attractors of land 
surface development, in various time extents. Davis’ cycle of erosion is 
completed when the surface is lowered to a peneplain, minimizing 
Global Geomorphic Energy (GGE) during a cycle of tens of millions of 
years. Development of pediments and alluvial plains minimizes Regional 
Geomorphic Energy (RGE) in lower-order time-spans, and various hor
izontal (gently sloped) surfaces (e.g. structural or cryoplanation ter
races) minimize local geomorphic energy (LGE and PES) at yet shorter 
times. It can be concluded that all horizontal planes (z ≅ constant) and 
low gradient surfaces (zrel ≅ constant) are related to a stationary state 
characterized ideally by the absence of gravity-driven surface geomor
phic processes. Disruption of this stability requires a strong external 
impulse (tectonic uplift, or incision of the base of erosion); typically, 
horizontal planes are only gradually degraded from the edge to the 
centre. Therefore horizontality is the strongest attractor of geomorphic 
development, with maximum persistence (time extent) and homogene
ity (see green section in Fig. 4). 

Minimization of energy and its dispersal (a general rise of entropy, in 
accordance with the 2nd thermodynamic law) is typical for physical self- 
organizing systems, including landforms (see blue section in Fig. 4). 

Fig. 3. Structural types of geomorphic units, driving energy and forces, and related groups of geomorphometric variables.  
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Linear slopes minimize energy and forces resulting from curvatures 
(IPESC) but the linearity is connected also with the uniform dispersal of 
PES. Both lead to the homogeneity of all local point-based variables 
derived from elevation, and frequently also to a steady state – a specific 
type of dynamic stability preserving the shape of landforms (Abrahams, 
1968). Local minimization of ΔPES(kn)c 

leads to the homogeneity of slope 
aspect (A), a parent variable of (kn)c. However, various regional drivers 
such as linear tectonic faults or prevailing wind directions also produce 
local uniformity of A. In gravity concordant forms, linearity in both 
gravity principal directions (constant slope and aspect) is linked with all 
curvatures having zero value, manifest in a zero value of Casorati cur
vature kC. Alone, zero profile or plan curvature represents partial line
arity with lower geomorphometric homogeneity and more complex 
conditions for dynamic stability. The simplest type is a combination of 
partial linearity in one direction with (non-zero) curvature homogeneity 
in the second direction. Non-zero curvature homogeneity in all di
rections corresponds to non-zero curvature isotropy. A part-spherical 
hilltop resulting from the linear diffusion equation is the best-known 
case (e.g. Small et al., 1999). It is conditioned by PESD (kmean) 
dispersal (homogeneity): this applies, however, only on convex-convex 
and concave-concave forms (when kmean = kC). The resulting steady 
state was already proposed by Gilbert (1909) and some modern studies 
confirm its existence (e.g. Anderson, 2002). Non-linear diffusion models 
combining hilltop curvature isotropy with linearity in lower parts of the 
slope (e.g. Roering et al., 2001) can represent another kind of non-linear 
symmetry, where a transition zone could be characterized by a homo
geneous change of curvature. With decreasing geomorphometric ho
mogeneity, steady-state elementary forms are dwindling as development 
attractors. Non-steady state dynamic equilibrium does not involve any 
regularity of form (Abrahams, 1968) but usually preserves gravity 
concordance: parallel contours represented by zero twisting curvatures 
(Minár et al., 2020). 

Curvature anisotropy is typical for a significant set of land surface 
elements (see brown section in Fig. 4). Disequilibrial landforms such as 
landslides, moraines, or badlands are built by catastrophic and turbulent 
processes related to dynamic instability and deterministic chaos. They 
are characterized by an abundance of local and regional geomorphic 
energy represented by slope energy disequilibrium (PESe ∝ ISED), 
gravity discordance (ΔPES(τg)c

∝ IGDED) and general nonlinearity 

(IPESC). The abundance of any geomorphic energy can lead to divergent 
land surface evolution, differentiating landscapes into more diverse 
spatial units (Phillips, 1999), normally increasing the geodiversity 
(Gray, 2019; Chrobak et al., 2021). This occurs also during repeated self- 
organization towards a critical (threshold) high-energetic state (Phillips, 
1999), which can be termed ‘intermittency’ (metastability), character
ized by long periods of relative stasis (dynamic stability) and short 
bursts of activity (Smerlak, 2021). 

2.4. Upgrading the concept of elementary forms 

Based on the previous analysis, the input variables for elementary 
land surface segmentation should be directly linked with basic types of 
local geomorphic energy. This provides for the detection of segments 
characterized by minimization or uniform dispersion as well as a high 
abundance of these energies. In their concept of elementary forms Minár 
and Evans (2008) broadly respected this principle without, however, an 
exact definition of particular geomorphic energies, hence their system of 
geomorphometric variables for use was not exhaustive and optimal. It 
consisted of altitude (z), slope aspect (A), slope gradient (tan S), plan 
(projected contour) curvature ((kp)c) inverted as R = 1/(kp)c, profile 
curvature as the second slope line derivative (zss), plus derived third and 
higher order variables. Regarding Minár et al. (2020) and the analysis 
performed here, the following substitutions are suitable: tan S → sin S, 
1/(kp)c → (kn)c, zss → (kn)s and subsequently a new set of third-order 

Fig. 4. Basic types of geomorphic equilibrium/disequilibrium and self-organization principles underlying geomorphic energy and geomorphometric expression. 
Dashed arrows: hierarchy of geomorphic energy. Double-headed arrows: definition dependence. Full single arrows: functional dependence. C – constant. Related 
categories are similarly coloured. For more explanation, see the text. 
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variables (Fig. 5). Moreover, explicit incorporation of the principal 
representative of twisting curvatures ((τg)c) defining gravity discordant 
change of PES (ΔPES(τg)c

) is desirable: Minár and Evans (2008) bypassed 

it by applying non-standard complex variables up to the 4th order. 
Fig. 5 depicts the basic types of elementary forms of Minár and Evans 

(2008) defined by the set of local point-based variables. Excluding 
aspect A and Gaussian curvature K, all these variables up to second order 
directly represent the variants of geomorphic energy defined above: z ∝ 
GGE, sinS ∝ PES, (kn)s ∝ ΔPES(kn)s

, (kn)c ∝ ΔPES(kn)c
, (τg)c ∝ ΔPES(τg)c

, 

kmean ∝ PESD. Aspect does not have a peculiar gravity-determined en
ergetic meaning: it is, however, the parent variable of (kn)c, so its ho
mogeneity means the absence (minimization) of ΔPES(kn)c

. Moreover, its 
homogeneity can also reflect the homogeneous influence of a unidirec
tional physical field such as tectonic stress, solar radiation, or wind 
pressure. A horizontal plane – the most stable elementary form and 
biggest attractor – is in the left top corner of Fig. 5. Potential stability 
(and evolutionary attraction) decreases to the right and down, with the 
order of defining variables. All gravity-concordant elementary forms 
have a potential for dynamic equilibrium: curved segments less than 
linear facets. The opposite roles of (kn)c in the definition of mass flow 
energy (PESe) and diffusion energy (PESD) can prevent dynamic stabil
ity. It can be overcome simply in linear forms. Full linearity minimizes 
both, PESe as well PESD. Partial linearity provides for equality of PESe 
and PESD (if (kn)c = 0), or their complementarity (if (kn)s = 0), giving 
conditions for dynamic stability. From the non-linear forms, only 
isotropic spherical hills and depressions at once minimize PESe and 
provide also for potentially uniform diffusion (dispersal of PESD). Dy
namic stability of all other concordant forms requires preconditions that 
are more complex and unlikely, e.g. a continuous change of rock 
resistance. 

Gravity-discordant elementary forms (bottom part of Fig. 5) are 
typically a manifestation of instability and transition states, as PES is 
unevenly distributed. In theory, linear-linear twisting slopes could have 
stability because PESD (kmean) and PESe (ΔPES(kn)c

= ΔPES(kn)s
= 0) are 

both zero. However, heterogeneous PES (given by non-zero ΔPES(τg)c
) 

can be sustained long-term only by the influence of an external factor – 
e.g. a nearby dynamic regulator (river, fault activity, …) or by a change 
of rock resistance. Zero ΔPES(kn)c 

and constant ΔPES(kn)s 
on particular 

slope lines ((kn)ss = 0) can provide for uniform erosion, preserving the 
distribution of ΔPES(τg)c 

on a slope with decreasing rock resistance in 

direction of contours. Any equilibrium of other gravity-discordant forms 
is yet more speculative. The ‘diffusion-free’ saddle with the equivalent 
plan and profile convexity/concavity ((kn)s = − (kn)c ⇒ kmean Λ PESD =
0) is not influenced by diffusion, but it is characterized by extreme 
contrast in PESe – minimal on ridges and maximal on valley lines. This 
energetic imbalance can be compensated only by an external factor, in 
this case mainly by different rock resistance. Divergent development of 
the land surface is more probable, rather than any stability. Similarly, 
cylindric valleys and ridges have homogeneously diffused PESD (kmean is 
constant), but PESe is extremal along the axis (because (kn)s = 0, PESe is 
minimal on ridge lines and maximal on valley lines). PESe is increasing/ 
decreasing towards valley/ridge sides. This is again a precondition of 
instability and divergent development: an incision of valleys and 
sharpening of ridges. 

A set of other gravity-discordant forms can be defined by homoge
neous derivatives of altitude in non-standard directions (Minár and 
Evans, 2008). Some of them have simple definition equations and are 
well represented by landforms such as a single landslide (consisting of 
simple concave denudation and convex accumulation sections), rem
nants of terraces, gravitational slump blocks (bottom-most forms on 
Fig. 5), multi-saddles (Peckham, 2011), and valley-ridge inflection 
points in which valley or ridge lines split into two branches (bifurcate); 
(Fig. 3 in Jenčo, 2018). However, their inner heterogeneity is clear – 

they resemble compounded rather than elementary forms. Also, signif
icant heterogeneity of all kinds of geomorphic energy points to the 
instability of these forms. The presence of degenerate critical points 
defined by a zero determinant of the Hessian matrix (Jenčo, 2018) yet 
underlines their principal instability and development bifurcation. 
Identification of such forms in wall-to-wall segmentation is problematic, 
as they cannot be detected by the homogeneity of standard physically- 
based geomorphometric variables. 

We thus suggest a set of standard physically-based geomorphometric 
variables up to third order (ringed in Fig. 5) for wall-to-wall land surface 
elementary segmentation. They are mathematically and physically 
interconnected, providing significant advantages. Clear physical mean
ing allows direct comparison and synthetic evaluation of variables. 
Regarding relations to LGEunit (eqs. (3), (4a), (5), (6), (9), (17a)), the 
energetic equivalence of values of sine of slope and various curvatures 
can be postulated. Moreover, this energetic equivalence also concerns 
derived third-order variables. As a consequence, the summation, dif
ference and ratio of energies defined by these variables (LGE, PES, 
ΔPES(kn)s

, ΔPES(kn)c
, PESe,ΔPES(τg)c

, PESD, IPESC) can easily be 

enumerated as a summation, difference, or ratio of the sine of slope, 
curvatures, and changes of curvatures multiplied by LGEunit. 

These mathematical relationships increase the effectiveness of the 
use of the whole set of variables in a segmentation procedure. Searching 
for uniformity of third-order variables also supports the detection of 
segments with low values of their parent curvatures (areas with mini
mum corresponding curvature energy). Uniformity of (kn)s and (kn)c 
supports the detection of forms with a low value of slope (PES); using 
slope as input also improves the detection of horizontal planes. In this 
way, the system is focused on searching for gravity-concordant 
elementary forms (upper part of Fig. 5), favouring delineation of the 
most geomorphologically important lower-order forms with the highest 
homogeneity and stability (Fig. 4). An arbitrary increase of the weight of 
lower-order input variables (elevation, slope, aspect) is an alternative. 
However, this frequently leads to over-segmentation (belts with similar 
altitude on steep slopes, or segmentation of homogeneous cones into 
various aspect sectors), which the use of third-order variables helps 
eliminate. 

Incorporating twisting curvature ((τg)c) supports the detection of 
some gravity discordant forms (variously twisting slopes) but also of all 
gravity concordant forms (with (τg)c → 0). Moreover, together with plan 
and profile curvatures (kn)c and (kn)s it completes the basic trio of land 
surface curvature from which all other curvatures can be derived (Minár 
et al., 2020). Three combined curvatures have also a clear energetic 
meaning (kmean ∝ PESD, kd ∝ PESe, kC ∝ IPESC). In theory, their incor
poration could also improve the discrimination of some forms, including 
some gravity-discordant forms such as saddle (without effective diffu
sion) and cylindric valley or ridge (Fig. 5). However, most gravity- 
discordant unstable forms are too complex and characterized not only 
by high values of any energy but also by high inner variability of this 
energy. 

Detection of forms with high but very variable energy can be a 
problem for methods based on the maximization of inner homogeneity 
of input variables (such as GEOBIA). A transformation of input variables 
before the segmentation process can help. Normalization of input vari
ables (reduction of the positive skewness of slope gradient and kurtosis 
of land surface curvatures) improves not only the reliability of para
metric statistics (Csillik et al., 2015) but also favours homogeneity of 
segments in low energy realms and allows their higher heterogeneity in 
high energy areas. Inputs explicitly expressing the variability of 
geomorphic energy (based on elevation and its derivatives) provide al
ternatives for specific detection of such kinds of disequilibrium forms. E. 
g. McKean and Roering (2004) used the ‘topographic surface roughness’ 
expressing the variability of slope and aspect (i.e. PES and its changes) 
for detection of landslides. However, this is no longer elementary seg
mentation but the detection of disequilibrial compounded forms 

J. Minár et al.                                                                                                                                                                                                                                   



Earth-Science Reviews 248 (2024) 104631

13

Fig. 5. Hierarchy and interconnection of geomorphometric variables and elementary forms: revised system of Minár and Evans (2008). Constant values (C) of 
variables define ideal types of elementary form and dispersal of corresponding geomorphic energy inside the form. Rings: interconnected variables up to third order, 
suggested for elementary segmentation; arrows express their definition and interpretation hierarchy. Third (and higher) order variables are marked as their parent 
curvature with an additional suffix expressing derivation in direction of slope line (s) or contour line (c). For more explanation, see the text. 
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(landforms). 

2.5. Measuring affinity to ideal elementary forms 

Investigation of the affinity of real segments to the ideal types of 
elementary forms from Fig. 5 is important for the interpretation of 
segmentation results. As an affinity measure, Minár and Evans (2008) 
used the function of unit average volumetric divergence between real 
segments and ideal models of elementary form. However, the divergence 
is always greater for a lower-order model than for a component higher- 
order model (constant change of curvature can approximate a slope 
better than constant curvature, constant curvature better than constant 
slope gradient, constant slope gradient better than constant elevation). 
No real segment has the highest affinity to the horizontal plane or linear 
slope in such a case. This makes a problem for geomorphological 
interpretation. 

Variability of the input (form-defining) variables can provide an 
alternative measure of the affinity. Scown et al. (2015) used standard 
deviation (SD) and coefficient of variance (CV) of elevation and “total 
surface curvature” for evaluating the complexity of floodplains, related 
to their morphodynamic and morphogenetic particularities. If the ideal 
model of elementary form is represented by the mean value of the form- 
defining variable (sin S, (kn)s, …), the SD expresses some kind of 
normalized distance between the ideal model and real segment (analo
gous to the volumetric difference of Minár and Evans, 2008). It can also 
be perceived as the root mean square error (RMSE) of the real segment 
compared with the ideal type. 

For comparability of the affinity of characteristics related to various 
geomorphic energies (S ∝ PES, (kn)s∝ΔPES(kn)s

, …) one can normalize SD 
by the mean value of a characteristic (energy) representing the ideal 
elementary form. The resultant coefficient of variance (CV = SD/mean) 
expresses the ‘relative’ RMSE (difference of real segment from the ideal 
type), and because of the comparability of background geomorphic 
energies, it can be used for the comparison of affinity to various types of 
ideal elementary forms. For example, horizontal planes are character
ized by the minimization of PES and linear slopes by uniform dispersion 
of PES. The same SD of slope gradient on a scarp and a very gentle slope 
is linked with a significantly lower CV in the first case and much higher 
in the second. Relatively small variation of the generally very high PES 
for a scarp means a strong affinity to a distinct steep linear slope (S =
const.) with a tendency to dynamic equilibrium, but not to horizontality 
(z = const.). In the second case, the low values of slope gradient point to 
minimization of PES linked with a tendency to horizontality (and a 
stationary state), but relatively high CV (relatively low homogenization 
of the PES) excludes higher affinity to linearity. Because a CV takes 
extremely high values as the mean approaches zero, using CV is prob
lematic in descriptive geomorphometry; however, it is meaningful in the 
case of physically-based affinity evaluation. 

Generally, zero SD (as well as zero CV) of a variable related to energy 
means the total energetic homogeneity of the segment, at an average 
value describing a theoretically ideal elementary form (attractor). Non- 
zero CV then represents a deviation from this ideal state (how many 
times the variability of background energy exceeds its average, the ideal 
value). If the average is very low, a high value of CV suggests that af
finity to a constant parent variable is more important (e.g. low average 
profile curvature points to a more important affinity to constant slope 
gradient). Therefore CVs of the slope, of all curvatures, and changes of 
curvature can be used as mutually compatible measures of segment af
finity to the local attractor (i.e. homogeneity of the given variable and its 
related energy). 

Affinity to an ideal elementary form is inversely proportional to the 
CV of the form-defining variable. For the simple comparability of convex 
and concave forms, absolute values of CV have to be used. We hypoth
esize that the mean of the form-forming variable (i) in a real segment 
represents an ideal elementary form (attractor) to which the 

development of the segment can tend. However, this role of the mean 
vanishes if the mean is too small in comparison with the standard de
viation. We can establish a threshold: SD ≥ 2. mean as inadequate af
finity and subsequently, we quantify affinity to the homogeneity of a 
morphometric variable i (Afi) as follows: 

Af i = 1 −
1
2

SDi

|meani|
= 1 −

|CVi|

2
(21) 

After (21), affinity is considered on the interval [0,1] and Afi ≤
0 means NULL affinity. However, negative values of Afi can also be 
interpreted as a measure of disequilibrium of the form in terms of var
iable i. 

Two special cases are elevation (z) and aspect (A) affinity. CV of z 
(CVz) represents the variation of Global Geomorphic Energy GGE, but 
GGE is much higher than Local Geomorphic Energy LGE, from which all 
other local energies (PES, PESD, ΔPES …) are derived. Therefore CVz is 
much smaller than other CVs and applying (21) on all input variables, all 
segments have the biggest affinity to z = const. For comparability, the 
homogeneity of elevation should be evaluated by the medium of some 
local energy. That cannot be directly the LGE (represented by Δz) as Δz 
has no parent variable and if the average of Δz = 0, CVΔz → ∞, and so an 
ideal horizontal plane would have zero affinity to horizontality. How
ever, instead of the mean value of Δz, an arbitrarily determined Δ̄zT can 
be used in (21). Let Thor be the threshold of horizontality and an ideal 
linear slope with S = Thor have half affinity to the horizontal plane (Afz =

0.5). Then |CV|T = 1 and ¯ΔzT has to be equal to the unbiased estimation 
of standard deviation: 

Δ̄zT = SDzT ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1
3.46

tanThor.lds

)2
√

≅
tanThor.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
segment area

√

3.46
(22)  

where lds is the downslope length of the surface and lds 
2 can be 

approximated by the segment area. Subsequently, a variable analogous 
to the CV of other variables (CVz

*) can be derived: 

CV*
z =

SDz

Δ̄zT
=

3.46.SDz

tanThor
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
segment area

√ (23) 

Eq. (23) returns CV*
z ≈ 1 for a linear, and in the plane ideal, compact 

(circular) segment with S = Thor and SDS = 0. The shape of the segment 
influences the results: equally sloped segments elongated along slope 
lines (including ridges and valley bottoms) have lower CV*

z than seg
ments elongated along contours (terraces). 

Aspect A is a circular quantity for which CV has no physical meaning. 
To avoid problems of directional statistics, both, sin A and cos A are used 
as inputs in segmentations (e.g. Drăgut and Blaschke, 2008; Drăguţ 
et al., 2013; Amatulli et al., 2018). Because A expresses the direction of 
S, and affinity to aspect linearity (A = const.) is exceeded by horizon
tality for S → 0, the average value of sin S ( ¯sin S) can be used also for the 
determination of CVA*: 

CV*
A =

SDsinA
¯sinS

(24)  

3. Physically-based elementary land surface segmentation in 
GEOBIA: a worked example 

An algorithm to demonstrate the concept of geomorphic energy has 
been designed using the multiresolution segmentation technique (MRS) 
implemented within the Trimble eCognition® software. MRS creates 
objects from adjacent raster cells that have similar values (Baatz and 
Schäpe, 2000). The size of the objects depends on a homogeneity 
threshold called scale parameter (SP), which can be determined in an 
objective manner (Drăguţ et al., 2010). Here we employed an automatic 
version of the Estimation of Scale Parameters (ESP, Drăguţ et al., 2014), 
which produces three scale levels of segmentation from detailed (L1) to 
broad (L3), based on the concept of Local Variance (Woodcock and 
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Strahler, 1987). Additional settings optimize the shape of the resulting 
objects (Shape parameter) by favouring either the compactness of the 
objects (Compactness), or the smoothness of their boundaries 
(Smoothness). 

3.1. Territory and DEM adaptation 

Sandberg hill at the contact of the Carpathians and Vienna Basin, 
Slovakia (Fig. 6 a) provides a pilot application of the theoretical concept 
presented above. The territory (0.25 km2 in area) is a part of the man- 
made detailed geomorphological map of Minár and Mičian (2002): 

Fig. 6. Segmentation of Sandberg hill: (a) Input DEM. (b) Other inputs for GEOBIA generated from the DEM: goniometric functions of slope gradient S and aspect A; 
normal slope line curvature (kn)s; normal contour curvature (kn)c; basic twisting curvature (τg)c; change of (kn)s in slope line direction (kn)ss; changes of (kn)c in slope 
line and contour line directions (kn)cs, (kn)cc. (c) Segmentation used for geomorphological interpretation (Figs. 7, 8). 
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part of it (Slovinec hill, ~0.1 km2) was used as a test area in previous 
stages of development and application of the elementary form concept 
(Minár and Evans, 2008; Pacina, 2009; Drăguţ et al., 2013; Minár et al., 
2015). The local geology comprises Mesozoic limestones, Neogene sand 
and sandstone, and Pleistocene and Holocene fluvial and slope deposits. 
The Quaternary tectonic uplift of the territory determines the high 
geodiversity of this site. Ancient fortification and intensive modern land 
use resulted in significant anthropic modification of the land surface. 
Consequently, this complex territory comprises many landforms of 
varied geometry, order, genesis, and age. 

Our previous work (Drăguţ et al., 2013; Minár et al., 2015) showed 
that the accuracy and level of the DEM detail are crucial for the suc
cessful segmentation of a complex territory. An airborne unclassified 
LiDAR point cloud (declared mean vertical error: 0.07 m) was used to 
generate a fine-scale initial DEM. Ground points were filtered from the 
last returns using the Cloth Simulation Filter (Zhang et al., 2016). The 
filter parameters differed in parts distinguished by land cover (vegeta
tion, built-up area, grassland, rocky areas). Small holes without enough 
ground points were filled based on Poisson surface reconstruction 
(Kazhdan et al., 2006). The ground points formed vertices of a polygonal 
(triangular) model (with ~2,000,000 triangles). The basis for generating 
the input 1 m resolution DEM raster for analysis was a generalized 
polygonal model (with 500,000 triangles) generated by Quadric Error 
Metric Simplification (Garland and Heckbert, 1997). 

In line with theoretical assumptions (Fig. 5), elevation and nine other 
local point-based variables up to third order were used for the seg
mentation (Fig. 6 b). As the third-order derivatives are very sensitive to 
noise in the data (Florinsky, 2009) we developed a procedure to deter
mine the appropriate level of DEM generalization. In modification of 
Minár et al. (2015), directional partial derivatives up to third order were 
computed in the MATLAB environment by the least squares method 
(Florinsky, 2009), using a fourth-order polynomial and window sizes 
from 5 × 5 pixels (m) up to 25 × 25 pixels. Subsequently, three curva
tures ((kn)c, (kn)s, (τg)c) (using equations given in Minár et al., 2020) and 
three changes of curvatures ((kn)cs, (kn)cc, (kn)ss) (equations in Minár 
et al., 2013b) were computed for all 20 variants of window sizes. Their 
K0 indexes, kurtosis, standard deviations, and Moran’s I were subse
quently used to ascertain the suitable generalization level. The first 
mutual threshold was detected on the generalization level 9 × 9 pixels 
using graphs of dependence between the window size and the mean 
values of K0, kurtosis, standard deviations, and Moran’s I. Besides cur
vatures and their changes, slope and aspect were derived from the same 
DEM generalized in a 9 × 9 window. The sine of slope shows a bi-modal 
distribution of values that corresponds to the flat and sloping areas. 
Because of the circular character of aspect data, sine and cosine of aspect 
were used. Curvatures and their changes were transformed to approxi
mate Gaussian distributions using the tool created by Csillik et al. 
(2015). Finally, all layers were normalized to the range 0–255 to avoid 
random weighting caused by the different types and ranges of the data. 

3.2. Segmentation and digital geomorphological maps 

The 10 layers were segmented with MRS in two steps. The first 
segmentation aimed at defining the flat objects in the scene, thus sine 
and cosine of aspect were not employed (both were assigned zero 
weights). The sine of slope was double weighted as compared to cur
vatures and their changes. The ESP was run with the default settings and 
a Shape parameter of 0.1, thus largely ignoring shape optimization and 
focusing on the statistical properties of the land surface (Drăgut and 
Blaschke, 2008). The value of Compactness was set to 0.5. Resulting 
objects with mean normalized slope values equal to or lower than 215 
were separated as (relatively) ‘flat’. That value separates the two modes 
in the slope histogram (note that this is after sine-transform and 
normalization to range). These flat objects were excluded from further 
processing, according to the concept of geomorphic energy. The second 
segmentation was run on the sloping objects using the same 

segmentation settings. All layers (including sine and cosine of aspect) 
were assigned normal weights (1) except for the sine of slope, which was 
doubled again. 

Because the shape parameter was minimized in segmentation, 
several objects resulted in unnatural geometries. These objects were 
selected based on the geometry indices, as follows: objects with Shape 
Index ≥ 2.5 OR Compactness ≥ 2.5 OR Border Index ≥ 2.5 were first 
separated as geometrically anomalous. Objects with Density < 1, which 
may represent elongated features (e.g. valleys, ridges), were excluded 
from this class. The anomalous objects were refined with the “Shape 
Split” function, in 25 iterations. This function splits the objects based on 
the shape of their border, trying to adjust the geometry to “optimal” 
shapes. From the resultant three scale levels of segmentation, the middle 
level (L2) was used for the subsequent geomorphological analysis, based 
on having the closest comparability with the man-made geomorpho
logical map of Minár and Mičian (2002). 

Segmentation (basic differentiation of the territory) is only the first 
step of the geomorphological analysis. Field verification of elementary 
forms, their genetic interpretation, identification of compounded forms, 
and systemization (synthetic outlining of geomorphic development) are 
subsequent tasks (Mentlík et al., 2006). Linkage of the geometric, 
physical, and geosystem content of elementary forms with their genesis 
is fundamental and can be performed using the set of analytical maps 
(Fig. 7). 

The geometric type of elementary form (Fig. 7 a) was defined by 
maximum affinity (Fig. 7 b) to one of the following ideal elementary 
forms: z = const.; S, A = const.; S, (kn)cc = const.; S, (kn)cs = const.; A, 
(kn)s = const.; A, (kn)ss = const.; (kn)s, (kn)cs = const.; (kn)ss, (kn)cs =

const.; (τg)c, (kn)s = const.; (τg)c, (kn)ss = const. The affinity was 
computed using relations (21), (23) and (24) with setting Thor = 0.2 rad 
(≈11.5◦). 

High affinity points to an equilibrium state related to the minimi
zation or dispersal of PES, PESD and/or changes of PES (Fig. 4). Low 
maximal affinity points to general instability, related to the various 
kinds of local potential geomorphic energy (Fig. 7 c, d, e, f, i) and 
expressed by disequilibrium indexes (Fig. 7 g, h). Indices of instability 
can be interpreted in terms of catastrophic and anthropogenic form- 
forming processes and/or various transitional states. Examples from 
the following regional analysis explain these basic principles in more 
detail. 

Automatically detected elementary forms cover all those mapped by 
Minár and Mičian, 2002 (Fig. 8 a), specifying their boundaries in more 
detail, dividing them into meaningful genetically distinct subparts and 
revealing also a set of distinct anthropogenic and erosional forms of 
lower order. Two digital morphogenetic maps were compiled inter
preting the physical-geomorphometric content of elementary forms in 
the light of older research (Minár and Mičian, 2002; Minár et al., 2003) 
and additional field research. The first map abstracts the influence of 
human activity, assigning elementary forms to bigger units of natural 
geomorphic development (Fig. 8b). The second map depicts distinct 
anthropic forms and significant anthropization of natural landforms 
(Fig. 8c). This differentiation of morphogenetic forms into elementary 
forms is genetically meaningful. Every specific elementary form can thus 
be interpreted in the framework of the geomorphic development of the 
territory. 

The oldest (Pliocene) land surface is represented by the flat top of 
Sandberg (segments 2, 3), interpreted as a regional pediment – ‘river- 
side level’ (Minár et al., 2004), protected by strong layers of resistant 
sandstone. A gentle structural slope (segment 1) separates it from a 
higher (older) pediment (outside the map). The low affinity of (1) to an 
equilibrium elementary form (a linear slope) is a consequence of 
structural steps inside the form. Structural steps, visible in Fig. 6, are 
contained also inside the main segment of the ‘river-side level’ (2) that is 
changed by early Medieval fortification leaving disequilibrium remnants 
of ramparts and ruins. It probably contributes to this segment having the 
smallest maximal affinity to an ideal elementary form (Fig. 7b). A small 
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segment (3) represents a preserved natural transition of the planation 
surface to the fault slope. 

Older fault-landslide slopes (segments 4–21) were formed after tec
tonic uplift (by about 50 m) around the Pliocene – Pleistocene boundary. 
Their formation was accompanied by the activation of block landslides. 
These differ in the character and magnitude of degradation. In the 
prevailingly sandy NW part, small blocks protected by thin sandstone 
plates form a strongly eroded dissected segment (17). Segment 18 differs 
from 17 by subsequent excavation – being used once as a local sand pit- 
quarry. The older SW fault-landslide slope reveals thick sandstone layers 
that were mined during the first half of the 20th century, reforming the 
slope into an industrial quarry. The quarry now consists of the quarry 
cliff (segment 20) and talus slope: the north part with only minimal 
recent activity of gravity processes (segment 19), and the south part 
(under the highest cliff) that is already very active (segment 21). The SE 
part of the slope is better preserved. Long homogeneous landslide scarps 

are elongated NNW-SSE in line with the master fault (segments 9, 13, 
16). Asymmetric erosional valleys and gullies start below scarps (e.g. 
segments 14, 15). Ancient ramparts on the landslide block boundary 
(10, 6) influenced the formation of subsequent gullies and dells (12, 5) 
and slopes between them (11, 8). All anthropogenic features (and a 
majority of related segments) are characterized by lower affinity to an 
ideal elementary form and more extremal curvature energies and in
dexes (Fig. 7). 

Segments with affinity to horizontality rim the foothills of the older 
fault-landslide slopes. Minár and Mičian (2002) interpreted them as 
partly an Early Pleistocene cryopediment (exhuming an abrasion plat
form) and partly a quarry flat. Analysis of the segmentation results 
points to the mutual initial genesis of segments 22–44 as a polygenetic 
planation surface. The flat of the former industrial quarry (23) is an 
erosion surface on the Miocene sands, only slightly transformed by the 
quarry deposition (up to 1 m). The flat (27) below a local sand pit-quarry 

Fig. 7. Physical-geomorphometric analysis of Sandberg hill: Type of equilibrium elementary form (EF) with maximal affinity (a) and affinity magnitude (b) 
expressed by relationship (21), (23) or (24). Partial unit geomorphic energies (c, d, e, f, i) expressed for a unit body of water (ρ = 1000 kg.m− 3) in kJ. Disequilibrium 
indexes ISED (g) and IGDED (h) expressed in % of PES. 
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is the best-preserved planation surface truncating inclined Mesozoic 
limestone. Small boundary segments are characterized by various de
formations: 26 – small gravity subsidence, 28 – small structural step, 29 
– eroded convex (ridge), and 30 – eroded concave (dell) remnant. Seg
ments 22, 24, and 25 are remnants of the natural planation surface, 
extended by mining inwards to the fault slope and covered by colluvium 
from the quarry scarps. They differ in the character of their colluvium: 
sand in 25, inactive sandstone blocks in 24, and still active rock fall 
under the main scarp in 22. 

The narrow belt of planation north of Sandberg is almost completely 
covered by the ancient fortification: ramparts and their inner slopes 
(segments 32–36, 38), inter-rampart depression (31), subsequent 
anthropo-terrace along the path (37) and related erosional depression 
(39). They are again characterized by more extreme curvature energies 
and indexes and lower affinity to an ideal elementary form. Segments 40 
and 41 represent the biggest and best-preserved rampart on the rim of 

the exhumed abrasion surface of Slovinec hill, sharing characteristic 
signs of previous anthropogenic forms. Segments 42 and 43 are built by 
resistant Mesozoic limestone exhumed from below Miocene sands. They 
differ significantly in affinity to z = constant, as in all geomorphic en
ergies. The higher anthropic modification of 43 (remnants of small 
ramparts, ruins, and waterworks, not distinguished in this segmenta
tion) can be one reason: a change in rock resistance (more and less 
resistant limestone) can be a second. Slope segment 44 dividing seg
ments 42 and 43 can be a signal of the rock change. The biggest segment 
of the whole territory (45) represents a relatively subsided part of the 
cryopediment, in the Vienna Basin. It is formed on soft Miocene sedi
ments as an erosional glacis that merges downward into old Pleistocene 
river terraces. Indistinct anthropogenic (building) terraces on its south 
boundary are nearly completely smoothed by the DEM generalization; 
hence a generally high affinity to z = constant and minimization of all 
geomorphic energies point to the stationary state of the segment. 

Fig. 8. Geomorphological mapping of Sandberg hill. a) Man-made geomorphological map (Minár and Mičian, 2002, adapted). b) and c) Digital geomorphological 
maps – expert-based classification of 86 automatically detected elementary forms based on physical-geomorphometric analysis and field verification: (b) Initial (on 
natural) forms; (c) Anthropic forms and anthropization of natural forms. Specific elementary forms (segments) are numbered and referred to in the text. 
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That is not the case of the contrast slope (segments 46–57) separating 
segment 45 from the rest of the cryopediment in the Carpathians. This 
younger fault-landslide slope formed since the Early-Middle Pleistocene 
boundary, during the last (late Quaternary) tectonic pulse separating the 
Carpathians from the Vienna Basin (Bella et al., 2022). Segment 47 was 
classified as an elementary form with low affinity to z = constant, but its 
higher ΔPES(τg)c

and IPESC also points to a transition towards the fault 

slope. It can be identified with the ‘tectonically inclined’ cryopediment 
of Minár and Mičian (2002) and classified as a part of that cryopediment. 
However, we interpret it as a footslope component of the fault-landslide 
slope, fully represented by segment 46. The remaining segments of the 
slope consist of embedded anthropic forms: ancient ramparts (54, 56) 
and their outer slopes (55, 57), an inter-rampart depression (52) that 
was partially reformed into a modern building terrace (53) together with 
a part of a rampart (51) and rampart outer slope (50). The slope (48) of 
the most distinct building terrace (49) is probably remodelled lower
most gravity-tectonic scarp. 

The transition between relatively uplifted cryopediment (exhumed 
abrasion surface) and subsided cryopediment is yet more complicated 
on the north side of Slovinec hill. Segments 58–60 were classified by 
Minár and Mičian (2002) as a denudational slope on the lithological 
boundaries because the slope generally does not follow a straight tec
tonic line, but rather the circular lithological contact of Mesozoic 
Limestone and Miocene sand and sandstone. The main segment (59) 
shows the greatest (but low) affinity to horizontality: it consists of big 
flat surfaces (blocks) separated by steep short slopes (reflected only in 
more detailed segmentation). Their origin could be natural (landslide, 
structural steps) or anthropic (building terraces). Although both factors 
could play a role, high gravity discordance (Fig. 7 e, h) could point to a 
dominant role of anthropic modification. This is also the case for 
segment 58, where the main natural scarp was emphasized by ancient 
fortification creating the outer slope of the biggest rampart, erosionally 
degraded in segment 60. 

The western slope below the cryopediment (segments 61–79) 
generally follows a master fault controlling the orientation of the Mor
ava River, which cuts the foothill of the slope. The northern part of the 
resulting fault-erosion-landslide slope is built of Mesozoic limestone. Its 
huge rocky erosion scarp has been transformed into an industrial quarry 
(66) separating small segments (65, 67) of the natural slope. The steep 
foothill of the quarry scarp is covered by rocky blocks (68), with its 
gentle part covered by finer colluvium (69). The relatively preserved 
more moderately-sloping part of the fault-erosion slope (62, 64) is 
divided by a block landslide (61) and asymmetric gully slope (63) 
reflecting probably the westernmost fault limit of the Carpathians from 
the N. A denudational slope developed on the lithological boundary 
between Mesozoic limestone and Miocene sand. Within it, the segmen
tation separated a limestone ridge (72) and the asymmetric slope of a big 
dell (71). Segment 70 represents a bite of the dell into the Early Pleis
tocene cryopediment. The SW part of the fault-erosion-landslide slope is 
developed on Miocene sands with occasional thin sandstone layers. It is 
affected more by block landsliding than by river erosion. The best- 
preserved segment (76) is surrounded by anthropically remodelled 
segments. A deep abandoned sand pit to the south consists of an undu
lating floor (80) and quarry scarps that are more (77, 79) or less (78) 
well preserved. Originally the largest scarp was the most denuded and 
backward erosion shifted its rim deep into the cryopediment. The seg
mentation merged relatively contrasting parts into segment 78, with an 
exceptional PESe value (Fig. 7 d) indicating continuing mass flow 
disequilibrium. Segments 73 and 74 represent the distinct slope and step 
of an abandoned anthropic terrace. Its less clear continuation can be 
observed also inside segment 75 which generally came from gravity- 
tectonic deformation of the upper cryopediment. 

The lowermost segments (81–86) represent variously transformed 
fluvial accumulation forms. The basis of segment 82 is the Middle 
Pleistocene terrace of the Morava River which is covered by sandy 

colluvium. Segment 81 is an unstable rim of the terrace on the contact 
with the sand pit; segment 83 is a remnant of the terrace covered by a 
talus cone from the upper dell. The Morava River has a two-level 
floodplain (segments 84–86) here. The upper level (segment 84) is 
marked by human activity – mining, building, and road construction. 
The latter emphasizes the natural step (segment 85) between upper and 
lower floodplain levels. The natural character of the lower floodplain 
level (segment 86) underlines the minimization of all geomorphic en
ergies (Fig. 7). 

4. Summary and conclusion 

Physical geomorphometry is based on the coupled study of landform 
geometry (geometric fields) and physical fields (e.g. Krcho, 1973; Shary 
et al., 2005; Krcho and Benová, 2013; Florinsky, 2017; Franklin, 2020); 
it also includes the use of other physical concepts and various physical 
analogies. It has significant explanatory potential in geomorphology and 
other geosciences: it can extend their theoretical and methodological 
basis and facilitate successful applications. Land surface segmentation 
and digital geomorphological mapping are one such application. 

The geomorphometric representation of geomorphic energy is a basis for 
physically-based land surface segmentation. Geomorphic units of 
various hierarchical levels (land systems, compounded forms, and 
elementary forms) can be characterized by global (GGE), regional 
(RGE), and local (LGE) geomorphic energy (eqs. (1), (2), (3)). LGE is 
coupled with the geometry of elementary forms. Parts of the LGE 
applicable for various geomorphic processes are reflected in the local 
point-based geomorphometric variables (eqs. (4), (5), (6), (17)). The 
mathematical and physical interrelationships of these variables can be 
used efficiently in the design of segmentation procedures. The basic 
physical meanings of elevation a.s.l. (potential gravity energy), slope 
gradient (downslope gravity force), plan curvature (concentration of 
flow), and profile curvature (acceleration of flow) have long been 
known. However, every change of the energy per unit distance also 
expresses part of the energy: hence elevation derivatives also represent 
parts of the potential gravity energy. 

Minár et al. (2020) defined the energy applicable to mass flow (PES) 
using the sine of slope, and by the normal slope line (profile), normal 
contour (tangential), and difference curvatures they defined the parts of 
PES changes responsible for acceleration (ΔPES(kn)s

) and concentration 
(ΔPES(kn)c

), plus the summary PES excess (PESe). Here we extend this 
concept to the energetic interpretation of three other curvatures: basic 
twisting curvature defining the gravity-discordant change of PES 
(ΔPES(τg)c

), mean curvature defining the potential gravity energy 

applicable to diffusion (PESD), and Casorati curvature defining the In
tegral Potential Energy of Surface Curvature (IPESC). Such unified en
ergetic expression of local point-based geomorphometric variables 
enables their direct energetic comparison (by summation, difference and 
ratio) which is crucial for the delimitation and interpretation of 
elementary forms. It relates also to third-order variables (changes of 
curvature), which were suggested for elementary land surface segmen
tation some time ago (Minár, 1992; Minár and Evans, 2008). The 
innovative evaluation of segment affinity to various ideal types of 
equilibrium elementary forms (eqs. (21)–(24)) is one of the advantages 
of this unified energetic expression. 

Minimization, dispersal, and variation of geomorphic energy deter
mine various types of equilibrium and instability of elementary forms, 
reflecting convergence, intermittency, and divergence in land surface 
development. The energetic state of an elementary form is also linked to 
the kind of geomorphometric homogeneity (Fig. 4). It can be used to 
upgrade the Minár and Evans (2008) concept of elementary forms 
(Fig. 5). Use of the sine of slope (eq. (4)), of tangential and profile 
curvature (normal curvatures – eqs. (5), (6)) and of the related changes 
of the normal curvatures (contour line change of tangential, and slope 
line changes of tangential and profile curvatures) gives the potential for 
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more exact energetical interpretation. Incorporating twisting curvature 
(eq. (9)) improves the distinction of gravity concordant and gravity- 
discordant forms. 

Local point-based geomorphometric variables suggested originally 
as input to elementary land surface segmentation (Minár and Evans, 
2008) have similar but not identical physical meanings as those sug
gested here. Generally, they express only apparent energies, projected 
into map view (eqs. (4b), (17b)). Curvatures used herein are the basic 
trio of the curvatures system of Minár et al. (2020), thus they carry 
complete information about land surface curvature. The combined 
curvatures (difference curvature – eq. (7), mean curvature – eq. (17), 
and Casorati curvature – eq. (18)), with strong energetic meanings, are 
possible alternative inputs to a segmentation procedure. Some authors 
already evaluated mean curvature and found it useful (e.g. Wieczorek 
and Migoń, 2014). In our experiments, the incorporation of combined 
curvatures appeared redundant, probably because the basic trio already 
covered their information potential. However, we capitalized on the 
energetic meaning of the combined curvatures in the subsequent 
geomorphological analysis (Fig. 7). 

Some local area-based and regional geomorphometric variables used 
in segmentation procedures also have an energetic meaning. Regional 
variables such as elevation above the base of erosion (zrel), distance to 
nearest stream (ds), and Stream Power Index (SPI) define regional 
geomorphic energy (eqs. (2), (11), (12), (13)). Index of Connectivity (IC) 
can be considered as logarithmic sum of upstream regional convergence 
energy ΔPESa and downstream ¯PES; connectivity shows natural depen
dence on both these energies. All these variables, however, determine 
and reflect the formation of land systems (typological units), rather than 
elementary forms (Fig. 3). Area-based local variables such as relief (Δz), 
Topographic Position Index (TPI), and openness approximate some 
regional energy if the window size approaches topographic grain; if they 
are computed at 1 m window size, they can approximate some local 
energy. This explains the relative fruitfulness of these variables in 
various segmentation procedures. However, physical-geomorphometric 
aspects of local area-based and regional variables are only selectively 
outlined here and deserve a full separate study. Topics such as quanti
fications of downslope controls on local drainage (Hjerdt et al., 2004) 
and sediment flow connectivity expressed by IC (Borselli et al., 2008) 
should be analysed systematically therein. 

Generalization of input DEM to the level most suitable for the detec
tion of elementary forms should precede segmentation (Feciskanin and 
Minár, 2021; Popov et al., 2021). It can be done explicitly – by changing 
the DEM resolution (e.g. Florinsky and Kuryakova, 2000; Hengl, 2006) 
or implicitly, by changing the computational window size of derived 
geomorphometric variables (e.g. Drăguţ et al., 2009). A combination of 
both approaches was used in this study and led to plausible results. 
Because the determination of analytical rules to establish an optimal 
DEM generalization level is problematic, an empirical approach is sug
gested. Generally, approaches maximizing the information content of 
the generalized DEM (Hengl, 2006) can be recommended. 

Various machine learning procedures and GEOBIA dominate in the 
recent discourse of land surface segmentation or classification. The 
advantage of the first is an ability to elaborate complex information and 
big datasets, well simulating the holistic approach of mapping geo
morphologists. The supervised approaches are useful mainly for the 
identification of specific well-known genetic landforms (e.g. Xiong et al., 
2022 and citations therein). Wall-to-wall physically-based elementary 
segmentation, however, should be more heuristic – looking for the 
specific physical-geomorphic spatial structures that can subsequently be 
genetically (or dynamically) interpreted. In principle, the segmentation 
requires the unsupervised approach, but the key role is not the pro
cedure itself, but its input variables and the ability of the procedure to 
respect the described mathematical-physical relationships. 

GEOBIA is a suitable tool for physically-based elementary land sur
face segmentation, providing for energetic homogeneity of the resultant 

objects. The geometric values of local point-based variables directly 
reflect their energetic meaning. Energetically, elevation > slope > cur
vatures > changes of curvature. Hence the emphasis on horizontal 
planes (z = const.) and linear facets (S, A = const.) in traditional 
geomorphological mapping has an energetic explanation: their forma
tion requires the biggest energetic input, and so they are the most 
distinct morphogenetic equilibrium individuals. The mathematical 
interrelationship of local point-based variables provides for the 
preferred identification of plain and linear segments, disregarding the 
number of input curvatures and changes of curvatures. An ideal hori
zontal plane has homogenous (zero) values of all derived local point 
variables; an ideal linear slope has all curvatures and changes of cur
vatures homogeneous (at zero). Therefore increasing the number of in
puts (curvatures and changes of curvatures) does not attenuate but 
reinforces the identification of plains and linear facets. The DEM sur
faces depart, however, from the ideal because of inherent errors during 
data acquisition, as well as the persistent issue of the calibration to scale. 
Making the concept of minimization of geomorphic energy in elemen
tary forms operational thus requires managing the appropriate tolerance 
around zero values (i.e. making operational the concept of homogene
ity) relative to the DEM at hand. Object-oriented analysis can handle this 
issue, as it has the built-in concept of homogeneity in the definition of 
objects from raster data. Moreover, the appropriate degree of homoge
neity is determined statistically (by measuring the local variance) with 
the ESP tool. 

Digital geomorphological mapping in a broad sense can be considered 
as a digital collection of information layers for the modern geomor
phological map by using information from DEMs (e.g. Garcia and 
Grohmann, 2019): its further development, however, consists in the 
(semi-) automated extraction and classification of geomorphological 
features from DEMs (Seijmonsbergen, 2013; Li and Zhao, 2022). 
Moreover, a detailed geomorphological map should also be a synthesis 
of broad research (De Jong et al., 2021) including geomorphometric, 
morphodynamic, morphogenetic, morphochronologic, and lithologic 
data (Minár et al., 2005; Gustavsson et al., 2006). Other than geo
morphometry, the detailed spatial distribution of the majority of this 
information is hidden. Therefore, the spatial distribution of elementary 
forms with interconnected geometric, physical, and geosystem proper
ties can well reflect not only the spatial distribution of morphogenetic, 
morphochronologic, morphodynamic, and lithologic properties but also 
other essential characteristics of the natural landscape: soil, microcli
matic and hydrologic regimes and potential vegetation (e.g. Minár, 
2003; Barka et al., 2011; Romstad and Etzelmüller, 2012; Mokarram and 
Sathyamoorthy, 2018; Petrikovičová et al., 2020). 

As documented in the worked example (Fig. 8), physically-based 
elementary land surface segmentation produces resultant segments 
with clear morphogenetic and morphodynamic interpretations. A 
geomorphologist can assign morphogenetic individuality to every 
segment, so the segmentation can be directly used for the construction of 
a geomorphological map. Traditional qualitative expert-based mapping 
can be significantly improved (complemented) in this way. The 
physical-geomorphometric characterization of segments (Fig. 7) is an 
analytical tool for (expert-based) deduction of genetic and dynamic in
terpretations. Moreover, it can facilitate the construction and testing of 
non-trivial scientific hypotheses. Analysing the human topographic 
signature, Tarolli and Sofia (2016) recognised the diagnostic potential of 
the ‘surface peak curvature’ for detecting anthropic forms. Our an
thropic forms and anthropized natural forms in Fig. 8c visually corre
spond well with higher geomorphic energies and instability (Fig. 7) 
related to the curvatures. Thus, it is possible to test a hypothesis that 
various kinds of anthropization, and the age, velocity, and type of 
renaturalization of the abandoned anthropic forms, have specific ex
pressions in geomorphic energies and instability indexes that can be 
compared with empiric results such as those presented in Tarolli and 
Sofia (2016). 

The morphogenetic information of our results is compatible with the 
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hierarchical geomorphological mapping of De Jong et al. (2021). The 
morphogenetic classification of our Fig. 8 corresponds to their ‘Tier 2’, 
suggested for scales of 1:10,000–1: 30,000. The following detailed 
morphogenetic description of particular segments corresponds to their 
‘Tier 3’ (scales 1: 2500–1:10,000). However, the manual delineation of 
the most detailed Tier 3 objects is substituted in our case by automatic 
GEOBIA segmentation. Recent attempts to automate wall-to-wall (‘full 
coverage‘) detailed digital geomorphological mapping typically used 
segmentation methods based on variables with physical meaning. They 
are not only local point-based variables as suggested by us (e.g. Gerçek 
et al., 2011; Foroutan et al., 2013; Mashimbye et al., 2014; Furlan et al., 
2018) but also local area-based and regional variables such as zrel (e.g. 
Gharari et al., 2011), TPI (e.g. Trentin and Robaina, 2018; Bufalini et al., 
2021; Siervo et al., 2023) or openness – geomorphons (e.g. Dutra et al., 
2020; de Amorim et al., 2021). However, the resultant units were 
interpreted only morphologically or in terms of descriptive statistics. 
Incorporation of any individual quantitative measures is exceptional (e. 
g. Hansen et al., 2021). On the contrary, the physically-based approach 
generates individual geometric, physical and geosystem specifications of 
each object, extending possibilities of scientific and practical applica
tions. It can be used for morphodynamic analysis (e.g. by Fryirs and 
Brierley, 2022) and also for morphogenetic interpretation as presented 
here. The effectiveness of results of geomorphometric research depends 
not only on measurement and computational quality but also on the 
exact definition of measured objects and exactness of interpretation of 
the geomorphometric variables (Minár et al., 2015; Sofia, 2020). Hence 
physical geomorphometry can contribute to the reproducible character 
of geosciences. 
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Jasiewicz, J., Zwoliński, Z., Mitasova, H., Hengl, T. (Eds.), Geomorphometry for 
Geosciences. Bogucki Wydawnictwo Naukowe, Poznan, pp. 27–30. 

Minár, J., Bandura, P., Holec, J., Popov, A., Gallay, M., Hofierka, J., Kaňuk, J., Drăguţ, L., 
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Corrêa, G.R., 2022. Evaluation of machine learning algorithms to classify and map 
landforms in Antarctica. Earth Surf. Process. Landf. 47 (2), 367–382. https://doi. 
org/10.1002/esp.5253. 
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