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Abstract—With the integration of distributed energy resources
such as roof-top solar panels and wind turbines into the grid,
power generation can surpass demand-generation and thus, gives
rise to the negative pricing events, especially during summer
months. In this regard, a scientific case study is conducted in
this paper to analyse and predict the increasing instances of
negative energy prices against demand-generation in Australian
energy markets (AEMs) using real-time energy data from the
Hornsdale power reserve, South Australia. A robust machine
learning method, Light gradient boosting machine (LightGBM)
is utilised to detect and predict negative prices at different
quantiles to quantify the outliers in the pricing data. The
implementation results demonstrate that predicting the prices at
different quantiles can tackle outliers (negative prices) effectively
with the help of extracted upper and lower bounds using quantile
regression-based approach. The case study is further extended
to learn the complex statistical relationships between different
data features using Naive-Bayes Tree Augmented (NB-TAN)
algorithm considering ‘price’ as the dependent feature against
the independent features such as demand-generation, battery
charging/discharging, and frequency control ancillary services.

Keywords - Australian energy markets, battery storage
systems, light gradient-boosted machines, negative pricing,
quantile regression, renewable energy generation.

I. INTRODUCTION

With more renewable energy sources (RESs) getting inte-
grated into the electricity grid, increased instances of whole-
sale electricity prices going negative have been observed in
the Australian energy markets (AEMs) in the past 5 years1.
Negative pricing usually occurs when the demand is low but
the energy generation is high mainly due to renewable energy
sources such as solar and wind power [1], [2]. Lately, in the
United States of America (USA), a notable trend has also
been reported in the negative pricing events particularly in
the states of Texas and California due to the increased supply
of renewable energy from the wind and solar power plants
[3], [4]. Statistically, South Australia has maximum instances
of negative prices observed i.e., 2017 instances in the year

1https://flowpower. com.au/positives-of-negative-prices/

2019, which is more than any other states in Australia2. Fig.
1 reflects the analyses of electricity pricing values against
battery discharging (MW) and energy demand for the month
of Dec., 2021 in South Australia. According to the stats from
this month, 24.9% values of the total pricing data are reported
negative with a minimum of -$999/MWh against 864.78 MW
demand-generation with an interval of 5 minutes.
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Fig. 1. Battery discharging, price, and demand trends for Dec, 2021
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Fig. 2. Observed prices for 7 days

Furthermore, Fig. 2 shows a clearer image of price fluc-
tuations for the first week of Dec, 2021. It can be observed
that there is a frequent trend of negative pricing, especially

2https://www.energycouncil.com.au/analysis/ increases-in-negative-prices-
is-it-a-positive/



during the middle of the day. As during mid-day, especially
on warm and windy days, RESs produce energy with high
intensity leading to demand and supply deregulation in the
power grid.

To tackle this demand and supply variation, either gener-
ators producing energy should be turned off or consumers
need to be encouraged to consume more energy. However,
turning off the energy generators is a slow and not so cost
effective process. Instead, energy is being sold at lower prices
and thus, causing a rise in negative pricing instances, i.e.
consumers get paid to consume energy guaranteeing dispatch.
As RES generators get fixed turnovers, so they are happy
to sell it at lower prices causing the rise in negative pricing
instances. However, it can impact grid operations and planning
services as stakeholders seek to manage and mitigate the risks
associated with the negative pricing events in advance.

An effective way to tackle the negative pricing is by utilising
battery storage systems. As, it is more cost effective to pay
the battery operators than to shut the RES generators. When
the battery is getting charged, the energy gets stored and it can
later be discharged to be used at the consumer-end according
to the demand. However, to execute this solution, an optimal
battery charging technique needs to be implemented which fur-
ther relies on planing and predicting negative pricing instances
effectively against demand-generation and other key features
in the energy data such as battery charging/discharging, fre-
quency control ancillary services (FCAS) prices etc.

In the past few years, the Australian national electricity
market (NEM) has started to use automated methods involving
data-driven intelligent techniques [5] such as machine learning
algorithms for energy forecasting applications [6] to aid bid-
ding operations as opposed to conventional trading tools. This
has helped to increase the NEM revenue by 10% according to
a recent report from the Australian clean energy council3.

In this direction, electricity price forecasting is one of the
key applications to support decision making process in the
energy markets to support energy trading operations. In [7],
the authors have conducted a detailed study about existing
price forecasting methods, their strengths and weaknesses.
The authors highlighted that data-driven intelligent methods
are the future for energy forecasting domain [8]. Currently,
the most commonly used methods for price forecasting are
statistical models and non-linear machine learning models
such as linear regression (LR) and exponential smoothing
[9]. Furthermore, non-linear artificial intelligence-based neural
networks are gaining popularity in their ability to learn hidden
patterns effectively in the data [10]. Although these methods
provide a reasonable computational performance and accuracy,
these are not robust enough when dealing with the outliers
(negative instances) [11]. Therefore, the authors emphasised
the need to propose a robust and holistic technique for effective
price forecasting, especially when the energy data distribution
is skewed and has outliers. In this case, conditional quantiles

3https://reneweconomy.com.au/australias-wind-and-solar-farms-seek-to-
dodge-negative-prices-and-grid-costs/

need to be quantified in the form of prediction intervals rather
than just the conditional mean.

In this regard, quantile regression (QR)-based methods
such as quantile regression averaging (QRA) and factor QR
averaging (FQRA) have been proven successful to compute the
prediction intervals and generate probabilistic forecasts in the
Global Energy Forecasting Competition 2014 [12]. In specific,
QRA which is a forest combination approach achieved 3rd
rank for solar, wind, and price forecasting. While QRA and
FQRA were proven to be effective to capture the conditional
quantiles for the target feature, they lack interpretability and
flexibility. In this regard, machine-learning based Light gra-
dient boosted machines (LightGBMs) are found to be more
scalable and can be of vital importance with their superior
feature selection and handling capabilities [13].

A. Motivation

Considering the aforementioned research challenges and
lack of effective research proposals, it can be inferred that
there is a dire need of a robust negative price forecasting
method quantifying outliers in the pricing data. In addition,
statistical and probabilistic analysis among various features
for the target ‘price’ variable needs to be entailed with the
forecasting technique.

B. Key Contributions

To be specific, we make the following contributions:
• A QR-based Light gradient boosted machine (LightGBM)

is adopted to predict negative prices in Australian energy
markets. A case study is presented using real-time energy
dataset taken from Australian energy market operator
(AEMO) and Hornsdale Power reserve, South Australia.
The target variable ‘price’ in the data is predicted against
energy demand-generation feature at 10%, 50%, and 90%
percentiles.

• In addition, statistical and probabilistic relationships be-
tween various features in the given data are modeled and
analysed using Naive-Bayes Tree Augmented (NB-TAN)
algorithm. The analysis verifies higher dependencies be-
tween demand-generation and ‘price’ (target) feature.

• Furthermore, to support the efficiency of LightGBM,
a comparative analysis is performed for two different
months (Dec., 2021 and Sep., 2022) of data against LR,
QRA, and FQRA using root-mean square and Pinball
errors. The numerical and graphical results demonstrate
that predicting energy prices at different percentiles can
cover more instances in advance using the extracted upper
and lower bounds.

C. Organisation

The rest of the paper is organised as follows. Section II
elaborates the proposed methodology including preliminaries
of QR using LightGBM and feature analysis using NB-
TAN algorithm. Section III presents implementation results
and discussions. Finally, Section IV concludes the paper and
outlines the future work.



II. PROPOSED METHODOLOGY

A. Preliminaries of QR

QR is a type of regression analysis used when conditions of
LR are not met and the conditional quantiles are of interest.
In case of high variability it becomes challenging for LR to
accurately generate predictions in the presence of outliers. In
this regard, QR algorithms can be of prime importance as they
can quantify outliers with the help of upper and lower bounds
extracted outside the mean of the data. In a regression problem,
with y as dependent (target) variable and x as independent
variable, the regression equation is given as:

y = f(x) (1)

The linear cost function for above regression problem is
computed by the squared loss (l), as:

l = (y − ŷ)2 (2)

l = (y − ˆf(x))2 (3)

where ŷ symbolizes the predicted value and y denotes the
actual value for the dependent variable. Furthermore, l is used
to compute the root-mean square error (RMSE) to access
the performance of deterministic or point-based regression
methods with total n number of samples as:

RMSE =

√√√√ 1

n

n∑
i=1

(l) (4)

On the other hand, to assess the efficacy of QR, quantile
loss (Ql) is utilised, as:

Ql =

{
τ(y − ŷ) if(y − ŷ) ≥ 0

(τ − 1)(y − ŷ) if(y − ŷ) < 0
(5)

where τ can take any value between 0 to 100 percent or (0, 1).
First case in (5) signifies when actual values are greater than
or equal to predicted values. When going for lower bound
percentiles, higher values are penalised. Second case signifies
when predicted values are higher than the actual values, i.e.,
when dealing with higher percentiles.

Therefore, the cost function formulates to minimise the error
between predicted and actual values, as given below:

min
φ
Ql (6)

where, φ represents model parameters for the training process
such as learning rate, no. of estimators or trees, maximum
depth, etc.

B. Gradient Boosting using LightGBM

Gradient boosting is an ensemble machine learning tech-
nique that combines multiple weak prediction learners. In this
paper, we utilise light gradient boosted machine (LightGBM)
framework to implement QR for negative price forecasting
[14]. LightGBM supports faster training with the help of
parallel and distributed learning module in it. Furthermore, it
uses smart featuring and advanced sampling methods to obtain

optimised results using various techniques such as binning
[15].

LightGBM utilises ensemble approach for predictive mod-
eling working with M number of weak learners (decision
trees), say m0, m1 , · · · , mn and m0 being the baseline
model/learner. To begin with, m0 is used to model the actual
values and errors are computed as the end product. Consecu-
tively, the other models are trained on these errors one by one
and after combining the results it entails a more efficient and
accurate final model, as presented by the following equation:

F (x) =

M∑
m=1

fm(x) (7)

where F (x) is the final model and fm(x) is the output value
of the mth weak regression tree.

It is important to note that the tree in LightGBM grows
leaf-wise as shown in Fig. 3, which helps in effective loss
reduction and improves the accuracy. While other boosting
algorithms grow trees level-wise and horizontally, LightGBM
grow decision trees vertically.

Algorithm 1 QR using LightGBM for negative price forecast
No. of models to fit: M
No. of observations: N
Parameters: φ
Performance metrics: Ql, RMSE

1: Initialise the model with actual/constant values;
2: Fit the baseline model (m0) with N ;
3: for m=1 to M do:
4: Compute the pseudo-residuals;
5: Fit the learners on φ using (7);
6: Compute Ql and RMSE using (4) and (5), res.;
7: Update m;
8: end for

Algorithm 1 represents pseudo-code for tree-based Light-
GBM method. As given, the algorithm involves M number of
models/learners/decision trees to be iterated and N number of
actual data points over parameters φ. The performance metrics
used to access the performance of algorithm are pinball error
(Ql) and RMSE. The model is initialised with constant values
(line 1), m being the index of each decision tree (line 3), each
m + 1 attempts to improve the errors of its predecessor m.
GBM learns the errors or residuals in previous rounds and
tries to improve the errors in every round. The new weak
model is then fitted to the negative gradient, aiming to reduce
the overall error.

C. Feature analysis using NB-TAN method

This section presents analysis conducted on real-time pric-
ing data to model dependencies between features. Various
statistical and probabilistic properties of different features in
the pricing data are learned which can further support the
detection and predictive analysis of negative price forecasting
in Australian energy markets. We use probability distribution
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Fig. 3. Leaf-wise tree growth in LightGBM

visualiser also known as ‘Genie’ software to conduct this task.
This module is basically used to create and refine network
models and includes various parameter learning algorithms
such as Naive Bayes classifier. Fig. 4 depicts the representation
of relationships between different features in pricing data and
how they are statistically impacted by each other.

The main implementation steps are described as follows:

• Data description: The main features considered for this
analysis are time, price (energy) ($/MWh), demand, price
(FCAS regulation raise) ($/MWh), price (FCAS regu-
lation raise) ($/MWh), battery discharging (MW) and
battery charging (MW).



• Data discretisation: This step involves discretising vari-
ous features into different bins using hierarchical method
based on data distribution of a particular feature. To be
precise, for demand and price features, bin size of 4 is
taken. While for FCAS and battery related variables, bin
size of 2 is considered as reflected in Fig. 4. It is impor-
tant to note that to discretise the target variable ‘price’,
uniform counts method is used instead of hierarchical to
give equal importance to the pricing values below 0.

• Feature selection: In this step, the dependent (target) and
independent variables are selected. As reflected in the
figure, price is the target variable and rest of the five vari-
ables are selected as the independent variables/features.

• Parameter learning: For parameter learning, NB-TAN
algorithm is utilised.

• Validation: Furthermore, k-fold validation is utilised to
validate the parameter learning process.

• Extract the statistics and probabilities: It can be inferred
from the nodes and arrows of the directed cyclic graph
in Fig. 4 that ‘price’ is the parent node which is closely
related to all other variables (nodes). Here, a special case
is demonstrated, where negative (s1 below 0) ‘price’
values are considered and its impact on other variables
is analysed. It can be observed that negative prices arise
when 72% of total demand-generation comes from below
863 kW; and 99% of battery discharges from below 48
MW.
Furthermore, in Fig. 5, it can be seen that when demand
is highest, which is above 2066 kW, the energy prices
are high as well i.e., more than 72 $/MWh, which is
98%. Therefore, it is inferred that price and demand-
generation are two closely related features and for fore-
casting purposes, demand-generation has been considered
as independent variable to perform the predictive analysis.

Fig. 4. Complex relationships and probabilistic visualisations between fea-
tures (with energy prices less than zero (negative))

III. CASE STUDY

This section presents an elaborated and reproducible case
study for negative price forecasting carried on real-time energy
data using state-of-the-art LR and QR-based algorithms.

Fig. 5. Complex relationships and probabilistic visualisations between fea-
tures (with high demand i.e., greater than 2066 kW)

A. Dataset generation and description

The proposed method is implemented on real-time pricing
data against demand-generation with a training to testing
ratio of 80:20 generated from AEMO4. In addition, battery
(150 MW) dataset is also considered from Hornsdale power
reserve, South Australia5 to verify the statistics. The data gets
generated at the interval of 5 minute and includes battery
charging/discharging, demand-generation, price (energy), price
(FCAS regulation lower) and price (FCAS regulation raise)
values. As of now, for the predictive analysis, ‘demand-
generation’ is considered as the independent variable and
‘price’ is considered as the target variable.

For implementation purposes, the months of Dec., 2021
and Sep., 2022 are considered for brevity. Furthermore, to
test the efficacy, a comparative analysis is provided in which
LightGBM has been tested against state-of-the-art LR, QRA
and FQRA algorithms. The implementation is executed using
Python machine learning libraries such as scikit-learn.

B. Results and discussions

This section presents implementation results and discussions
for the predictive analysis conducted on pricing data using
state-of-the-art LightGBM method. Figs. 6(a) and 6(b) show
comparative plots for actual and obtained predictions for
energy prices for Dec., 2021 by LR and QR using Light-
GBM, respectively. As reflected in Fig. 6(a), LR provides
only mean prediction values, i.e., at (50%), which are not
accurate enough. On the other hand, plot in Fig. 6(b) provides
predictions at different percentiles, and thus, covers prices at
larger variance from negative to larger prices at percentile
values 10, 50, and 90. Also, it is important to note that
at 10th percentile more accurate predictions are obtained
with lesser error. Similarly, Figs. 7(a) and 7(b) outline the
graphical representations of linear vs LightGBM methods to
predict the negative prices for the month of Sep., 2022 for
South Australia. It can be observed from these figures that

4https://www. aemo.com.au/about
5https: //hornsdalepowerreserve.com.au/



0 50 100 150 200 250 300
Day (test data)

50

0

50

100

150
Pr

ic
e 

($
/M

W
h)

Linear predictions 
Actual

(a) Actual vs linear predictions

0 50 100 150 200 250 300
Day (test data)

100

0

100

200

300

400

500

600

Pr
ic
e 

($
/M

W
h)

10%
50%
90%
Actual

(b) 10%, 50% and 90% percentiles (LightGBM) vs Actual prices

Fig. 6. Dec., 2021
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Fig. 7. Sep. 2022

the outlier at $4000 cannot be quantified by LR. However,
using LightGBM, at three different percentiles, prices can be
predicted accurately within a range.

A comparative analysis of the price prediction errors using
LR, QRA, FQRA, and LightGBM is provided in Table I. It is
important to note that for LR the RMSE value is slightly lower
than QR-based methods as the average of three percentiles,
i.e. at 10, 50, and 90 is taken for the latter. To evaluate the
performance of QR, Pinball score (avg.) is considered using
Eq. (5). Also, please note that for LR, pinball loss can not
computed as just the conditional mean is considered and thus,
the space is left blank. From the numerical values under pinball
scores, it can be observed that LightGBM outperforms other
state-of-the-art methods namely, QRA, and FQRA.

Furthermore, Fig. 8 shows the scatter-plot for a comparison
between actual and predicted prices with respect to battery
discharging values at the horizontal axis. It is plotted against
entire test data mainly to show that the apart from few outliers,
rest of the data points are covered effectively by LightGBM
with large variance in the price values, ranging from -$999
to $15100. Most values are covered around the mean pricing,
which is $73.20.
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Fig. 8. Actual vs predictions with respect to battery discharging

IV. CONCLUSION

In this work, a predictive and probabilistic case study is
presented to analyse and predict the increasing rate of negative
prices in Australian energy markets, for the months of Dec.,
2021 and Sep., 2022. The state-of-the-art LightGBM method is



TABLE I
LINEAR VS QR FOR PRICE FORECASTING

Sr. no. Method RMSE (quantile avg.) Pinball (avg) RMSE (quantile avg.) Pinball (avg)

Dec., 2021 Sep., 2022

1 LR 946.64 - 150.52 -

2 QRA 1024.23 142.54 269.04 124.91

3 FQRA 1104.12 181.24 280.34 134.89

4 LightGBM 955.93 88.74 247.56 73.90

employed at 10, 50 and 90 percentiles to highlight the impor-
tance of QR methods contrary to LR in order to detect outliers
(negative prices) effectively in the energy data. In addition,
feature analysis is performed using NB-TAN algorithm. The
future work will focus on how battery storage systems can be
benefited from effective negative price forecasting.
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