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The present study proposes a novel approach for efficiently solving an anisotropic transient diffusion problem 
using an enriched finite element method. We develop directional enrichment for the finite elements in the 
spatial discretization and a fully implicit scheme for the temporal discretization of the governing equations. 
Within this comprehensive framework, the proposed class of exponential functions as enrichment enhance the 
approximation of the finite element method by capturing the directional based behaviour of the solution. The 
incorporation of these enrichment functions leverages a priori knowledge about the anisotropic problem using 
the partition of unity technique, resulting in significantly improved approximation efficiency while retaining 
all the advantages of the standard finite element method. Consequently, the proposed approach yields accurate 
numerical solutions even on coarse meshes and with significantly fewer degrees of freedom compared to the 
standard finite element methods. Moreover, the choice of mesh coarseness remains independent of the anisotropy 
in the problem, enabling the use of the same mesh regardless of changes in the anisotropy. Using extensive 
numerical experiments, we consistently demonstrate the efficiency of the proposed method in attaining the 
desired levels of accuracy. Our approach not only provides reliable and precise solutions but also extends the 
capabilities of the finite element method to effectively address aspects of the heterogeneous anisotropic transient 
diffusion problems that were previously considered ineffective when using this method.
1. Introduction

In general, the diffusion equation describes the behaviour of the 
concentration of microparticles, molecules, or microorganisms as they 
strive to reach equilibrium in a surrounding environment. It can also 
represent the heat conduction in a medium and the diffusive behaviour 
strongly depends on the properties of the surrounding environment 
or participating medium. In many highly relevant cases, the diffusiv-
ity changes with the direction inside the medium. In fact, differences 
between directions can span several orders of magnitude and this be-
haviour, known as anisotropic diffusion, can be observed in biological 
processes [54,56], hydrological processes [35], and geological pro-
cesses [66]. A well-established example is found in the plasma fusion 
for which the thermal conductivity or diffusion coefficient can be up 
to 1012 times higher in certain directions compared to others [65]. 
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In these cases, the numerical solution of anisotropic diffusion prob-
lems can be computationally challenging because the accuracy of the 
solution highly depends on mesh alignment [46,17,64]. Even local mis-
alignments can cause severe computational issues related to numerical 
instabilities [10]. For instance, errors in the direction of the highest 
diffusion can significantly increase the numerical error in all other di-
rections [65]. To reduce the numerical diffusion, higher-order finite 
elements are used in the direction of the largest diffusivity [62,48,33]
and therefore, non-uniform meshes are employed. The multipoint flux 
approximation is a cell-centred finite volume method that can provide 
stability and it preserves local conservation when considering a discon-
tinuous diffusion tensor [1,2,25]. Different variations of the multipoint 
flux approximation have been developed for nonlinear [14] and het-
erogeneous [30] anisotropic problems. In these approaches, the flux 
continuity must be evaluated and satisfies a continuity condition on 
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each element edge and, in some cases, on the domain boundaries as 
well, which can impact the computational efficiency of the method 
[68]. Various schemes have also been proposed to approximate the 
fluxes, but in general, maintaining accuracy at extreme anisotropy lev-
els is difficult due to the non-symmetric nature of the diffusion operator 
[57]. To improve the accuracy, dual-grid methods such as the discrete 
duality finite-volume method [4] have been proposed. Although this 
method can achieve a convergence rate better than first-order, the mesh 
remains anisotropy-dependent, as reported for coarse meshes [41]. The 
hybrid finite volume method [29], the mixed finite volume method 
[23,24], and the monotone finite volume method [43,67] are other fi-
nite volume techniques that rely on dual meshes. Furthermore, these 
methods require the implementation of positivity-preserving mecha-
nisms in the discrete systems so that they are not dependent on the 
implemented solver [63]. In general, all the discussed finite volume 
methods treat the mathematical operator exactly while approximating 
the constitutive relations [65]. The same observation is also made in 
the mimetic spectral element method for anisotropic diffusion prob-
lems [7]. Another approach proposed for severely anisotropic problems 
is to split the problem using asymptotic preserving schemes into two 
parts namely, a limit problem for infinite anisotropy and a singular 
perturbation problem [15,16]. This approach is extended to unsteady 
anisotropic diffusion problems in [65] and later, limiters are imposed 
to avoid non-physical negative energy [40,58]. A comprehensive re-
view of the work carried out on asymptotic preserving schemes can be 
found in [39,37]. However, it should be noted that the majority of the 
asymptotic preserving schemes studied in the literature are restricted 
to one-dimensional problems and/or structured meshes [5]. To over-
come these restrictions, discontinuous finite element methods [9,3] or 
Trefftz discontinuous Galerkin methods [8] are employed. Compared 
to continuous approaches, the discontinuous Galerkin method has the 
advantage of flexible adaptivity. In this context, the control volume fi-
nite element method is proposed [55]. Here, an accurate across-face 
flux is maintained using a least square method. The control volume fi-
nite element method combines the flexibility of finite elements with 
the control volume efficiency in the conservation of transported prop-
erties [11]. Different discontinuous Galerkin methods are discussed in 
[36], while a hybrid discontinuous scheme is presented in [32]. How-
ever, discontinuous approaches can often result in ill-conditioned linear 
systems that worsen at high anisotropy.

To overcome the difficulties mentioned above, we propose enriching 
the finite element method with a set of special functions accounting for 
the anisotropy in the problem under study. The proposed enrichment 
method is based on the partition of unity method initially proposed in 
[49] and later developed for the diffusion problems in the context of 
the partition of unity finite element method [50]. It has since been ex-
tended to conduction-radiation problems [51] and nonlinear diffusion 
equations [45]. The enrichment approach is also employed to solve the 
inverse diffusion problems [38]. The advantages include not only coarse 
meshes that are independent of the problem but also a significant re-
duction in the computational time by increasing numerical efficiency 
[52,44]. A comprehensive framework for enhancing finite element ap-
proximations through additional enrichment functions establishing the 
validity of the finite element method can be found in [34] among oth-
ers. Furthermore, non-polynomial basis functions have also been shown 
to enhance the standard simplicial linear finite element, see for example 
[18,19].

The key idea in the present study is to enrich the finite element 
approximation space with exponential functions that reflect the diffu-
sion behaviour [20]. For example, the enrichment functions can have 
steep gradients to efficiently capture any boundary layers without the 
need for highly refined elements on the domain boundary [61,45], or 
they can be time-dependent to continuously adapt with the time [31]. 
In this work, we construct enrichment functions using the fundamen-
tal solutions of the anisotropic diffusion equations and the partition of 
unity method. By incorporating such a priori knowledge on the diffusion 
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problem into the finite element approximation, the resulting high-order 
basis functions can best describe the anisotropy without imposing any 
restrictions on the mesh. The proposed method is fully continuous, 
avoiding any shortcoming associated with discontinuous elements. Fur-
thermore, the approach inherits the full flexibility of the finite element 
method in dealing with general geometries and heterogeneous compu-
tational domains. To validate and assess the efficiency of the proposed 
method, we compare the results to those obtained using the conven-
tional finite element method.

The rest of this paper is organized as follows. In section 2 we in-
troduce the anisotropic transient diffusion problems considered in this 
work. The formulation of the proposed method is presented in section 3. 
This section defines the space discretization along with the directional 
enrichment functions includes and the time integration scheme used in 
the current study. Section 4 is devoted to numerical results using several 
test examples of anisotropic transient diffusion problems. Comparisons 
between numerical results obtained using the proposed partition of 
unity finite element method and those obtained using the conventional 
finite element method are also included in this section. In section 5 we 
summarize the conclusions and propose some recommendations for fur-
ther work.

2. Anisotropic transient diffusion problem

In the present study, we consider anisotropic diffusion problems de-
scribed by the following two-dimensional model [28]

𝜕𝑢

𝜕𝑡
−∇ ⋅ (𝐊∇𝑢) = 𝑓 (𝑡,𝐱), (𝑡,𝐱) ∈ (0, 𝑇 ] × Ω, (1)

where Ω is a bounded spatial domain with boundary 𝜕Ω, (0, 𝑇 ] is the 
time interval, 𝑢(𝑡, 𝐱) represents the temperature in a heat transfer prob-
lem or the pressure in a transport problem in porous media, 𝑡 denotes 
the time, 𝐱 = (𝑥, 𝑦)⊤ the space coordinates, 𝑓 (𝑡, 𝐱) is a source term, and 
𝐊 the diffusion tensor which may depend on the space and time as 
well. Here, the unit direction vector 𝐛 = (cos𝛼, sin𝛼)⊤ represents the 
misalignment of the grid with 𝛼 is the misalignment angle. For a two-
dimensional problem, the diffusion tensor is defined by 𝐊 = Λ⊤, 
with the rotation matrix given as

 =
(
cos𝛼 −sin𝛼
sin𝛼 cos𝛼

)
,

and Λ = diag(𝐾‖, 𝐾⟂), with 𝐾‖ and 𝐾⟂ represent the parallel and per-
pendicular diffusion coefficients, respectively. Hence, the diffusion ten-
sor can be formulated as

𝐊 =
(
𝐾𝑥𝑥 𝐾𝑥𝑦

𝐾𝑦𝑥 𝐾𝑦𝑦

)

=
⎛⎜⎜⎝
𝐾‖ cos2(𝛼) +𝐾⟂ sin2(𝛼)

1
2

(
𝐾‖ −𝐾⟂

)
sin(2𝛼)

1
2

(
𝐾‖ −𝐾⟂

)
sin(2𝛼) 𝐾‖ sin2(𝛼) +𝐾⟂ cos2(𝛼)

⎞⎟⎟⎠ . (2)

Notice that the diffusion tensor 𝐊 is positive definite and symmetric, 
satisfying 𝐾𝑥𝑥𝐾𝑦𝑦 −𝐾𝑦𝑥𝐾𝑥𝑦 > 0. We also define the anisotropy ratio as 
𝜍 = 𝐾‖

𝐾⟂
. In addition, we assume the diffusion equation is equipped with 

following boundary and initial conditions

𝐊∇𝑢 ⋅ 𝐧+ 𝑢 = 𝑔(𝑡,𝐱), (𝑡,𝐱) ∈ (0, 𝑇 ] × 𝜕Ω, (3)

𝑢(0,𝐱) = 𝑢0(𝐱), 𝐱 ∈Ω, (4)

where 𝐧 is the outward normal vector on 𝜕Ω, 𝑔(𝑡, 𝐱) and 𝑢0(𝐱) are given 
boundary and initial functions, respectively. It should be noted that we 
are limited to linear problems and therefore, only constant values of the 
diffusion tensor 𝐊 are considered in the present study.

To solve the boundary-value problem defined by (1)-(4), we divide 
the time interval [0, 𝑇 ] into 𝑁 subintervals 

[
𝑡𝑛, 𝑡𝑛+1

]
with a timestep 

Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 for 𝑛 = 0, 1, … , 𝑁 . We also use the notation 𝑤𝑛(𝐱) to de-
note the approximation of a generic function 𝑤(𝑡, 𝐱) at time 𝑡𝑛. We also 
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discretize the spatial domain 𝜔 into a finite set of conforming elements 
𝑗 (𝑗 = 1, 2, … 𝑁𝑒) with 𝑁𝑒 is the total number of elements. Recall that a 
method is considered to be “conforming” when the finite element space 
is a subset of the solution space. In such cases, it is well-established 
that the approximative finite element solution converges to the true so-
lution, as long as the finite element space appropriately approximates 
the given space, see for instance [60]. Here, the computational domain 
Ωℎ ⊆ Ω is the combination of all these finite elements. Applied to the 
diffusion equation (1), the implicit Euler scheme for time integration 
yields

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
−∇ ⋅

(
𝐊∇𝑢𝑛+1

)
= 𝑓𝑛+1. (5)

Multiplying by an arbitrary test function 𝑣, integrating over Ω and using 
Green’s theorem [50,47], one obtains

∫
Ω

∇ ⋅
(
𝐊∇𝑢𝑛+1

)
𝑣 𝑑𝐱 = ∮

𝜕Ω

𝐊∇𝑢𝑛+1 ⋅ 𝐧𝑣 𝑑𝐱 − ∫
Ω

𝐊∇𝑢𝑛+1 ⋅∇𝑣 𝑑𝐱. (6)

We then define the following weak formulation: find 𝑢𝑛 ∈𝐻1(Ω) such 
that

∫
Ω

𝑢𝑛+1𝑣 𝑑𝐱 +Δ𝑡∫
Ω

(
𝜕𝑣

𝜕𝑥

(
𝐾𝑥𝑥

𝜕𝑢𝑛+1

𝜕𝑥
+𝐾𝑥𝑦

𝜕𝑢𝑛+1

𝜕𝑦

)

+ 𝜕𝑣

𝜕𝑦

(
𝐾𝑦𝑥

𝜕𝑢𝑛+1

𝜕𝑥
+𝐾𝑦𝑦

𝜕𝑢𝑛+1

𝜕𝑦

))
𝑑𝐱 −Δ𝑡∮

𝜕Ω

𝐊∇𝑢𝑛+1 ⋅ 𝐧𝑣 𝑑𝐱

=Δ𝑡∫
Ω

𝑓𝑛+1𝑣 𝑑𝐱 + ∫
Ω

𝑢𝑛𝑣 𝑑𝐱, (7)

where 𝐻1(Ω) denotes the standard Sobolev space. We also define the 
conforming finite element space 𝑉ℎ as

𝑉ℎ =
{
𝑢ℎ ∈ 𝐶0(Ω) ∶ 𝑢ℎ

||| ∈ 𝑚( ), ∀  ∈Ωℎ

}
, (8)

with

 (𝑗) = {𝑝(𝐱) ∶ 𝑝(𝐱) = �̂�◦𝑌 −1
𝑘
, �̂� ∈ 𝑃𝑚

}
, (9)

where 𝑃𝑚 is the set of polynomials of degree ≤ 𝑚. The polynomial 
�̂�(𝐱) is defined on the element ̂𝑗 and 𝑌𝑘 is an invertible one-to-one 
mapping between the element ̂𝑗 and the reference element. Here, the 
average element size ℎ represents the typical size or the largest side of 
the elements ̂𝑗 used in discretizing a domain, and it significantly in-
fluences the accuracy and convergence of the numerical solution. Note 
that smaller values of ℎ result in finer and more accurate meshes but 
they require increased computational resources, while larger values of 
ℎ yield coarser and computationally demanding meshes but with po-
tential trade-offs in the accuracy. The approximated solution using the 
conventional finite element method is given by

𝑢𝑛
ℎ
(𝐱) =

𝑀∑
𝑖=1

𝑈𝑛
𝑖 𝜙𝑖(𝐱), (10)

where 𝑀 is the number of solution mesh points in the partition Ωℎ

and 𝑈𝑛
𝑖

are the unknown nodal solutions to be calculated. Note that 
the set 

{
𝜙𝑖
}𝑀
𝑖=1 forms a basis of 𝑉ℎ with 𝜙𝑖 ∈ 𝑉ℎ and 𝜙𝑖

(
𝐱𝑗
)
= 𝛿𝑖𝑗 for 

𝑖, 𝑗 = 1, … , 𝑀 , where 𝛿𝑖𝑗 is the canonical Kronecker delta. Thus, the 
conventional approximation space is defined as

𝑉 0
ℎ
= span

{
𝜙ℎ, 𝑈ℎ =

𝑀∑
𝑖=1

𝑈𝑛
𝑖 𝜙𝑖

}
. (11)

To enhance the finite element approximation (10) which is based on 
polynomial basis functions, we present in the next section a method-
ology to enrich the solution space (11) with a set of exponential basis 
functions accounting for the anisotropic nature of the considered diffu-
sion problem (1).
44
3. Directional enrichment functions

In the present study, to improve the conventional finite element ap-
proximation (10) which is based on polynomials, we enrich the finite 
element space with a class of Gaussian functions. The directional en-
richment functions are proposed based on the fundamental solution to 
have better approximation properties for solving the diffusion equations 
with anisotropic coefficients as those considered in this work. It should 
be noted that the partition of unity finite element method is selected 
because it ensures inter-element continuity in a straightforward man-
ner which simplifies its implementation in any existing finite element 
software with minimal changes. Here, to account for anisotropy, the fol-
lowing sum of anisotropic exponential functions are used to enrich the 
solution space

𝐹enr =
{
𝐺1,𝐺2,… ,𝐺𝑄

}
, (12)

with

𝐺𝑞(𝐱) =

exp

(
−

(√
det(𝐊)�̃�⊤𝐊−1�̃�

𝐶

)𝑞)
− exp

(
−
(
𝑅

𝐶

)𝑞)
1 − exp

(
−
(
𝑅

𝐶

)𝑞) ,

𝑞 = 1,2,… ,𝑄, (13)

where 𝑄 is the total number of enrichment functions and �̃� = 𝐱 − 𝐱0, 
with 𝐱0 = (𝑥0, 𝑦0)⊤ are control points placed in a region of the com-
putational domain with a zero or a minimum gradient such that the 
gradient increases in any direction inside the domain and away from 
these control points. Note that in most diffusion problems, the region 
of the domain with zero-gradient is often within the domain core far 
from the source terms. In the enrichment functions (13), 𝐊 the diffu-
sion tensor provide the directional behaviour of the enrichment while 
the exponent 𝑞, the parameters 𝐶 and 𝑅 are introduced to control the 
gradient of the sum of the exponential functions 𝐺𝑞 in the anisotropy 
directions. In a parametric study performed in this work and not pre-
sented here for brevity in the presentation, a value range of [1, 5] for 
the parameter 𝐶 and 𝑅 ≈ 2𝐶2, leads to the best performance of the pro-
posed enrichment. For illustration, the functions 𝐺𝑞 , with 𝑞 = 1, 2, … , 8
and three different misalignment angles, are depicted and compared in 
Fig. 1. The figure shows the impact of the exponent 𝑞 and the angle 𝛼 on 
the enrichment functions. The former changes the steepness of the func-
tion while the latter leads to anisotropic behaviour of the enrichment 
functions. Note that it is possible to optimize the parameters 𝑞, 𝐶 and 𝑅
for each specific diffusion problem under study, but such optimization 
procedure has a limited impact on the performance of enrichments as 
long as these constants remain within the above mentioned range. How-
ever, selecting these parameters to be an order of magnitude different 
may lead to inaccuracies for the enriched finite element approximation. 
It is also worth noting that for isotropic diffusion problems, the direc-
tional enrichment functions (13) reduce to a set of simple exponential 
functions similar to those functions first introduced in [50] for solv-
ing the isotropic diffusion equations. Notice that the sum of multiple 
functions 𝐺𝑞 with 𝑞 = 1, 2, … , 𝑄 can be considered as a generalization 
of the exponential functions considered in previous work so that the 
time-dependency of the anisotropic enrichment is avoided.

Hence, the anisotropic enrichment is included in the finite element 
approximation by expanding the nodal values to be rewritten as

𝑈𝑛
𝑗 =

𝑄∑
𝑞=1

𝐴𝑛
𝑗,𝑞𝐺𝑞(𝐱). (14)

Note that a global enrichment approach is adopted in this work such 
that the same directional enrichment functions are applied at all nodes 
in the computational domain. The inter-element 𝐶0 continuity is nat-
urally ensured using the partition of unity finite element method. In 
addition, the implementation of the approach in already existing finite 
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Fig. 1. Illustration of the directional enrichment functions 𝐺𝑞 for different values of 𝑞 and 𝛼.
element codes would require minimal changes. It is also evident that 
the finite element method is now used to find the values of the new set 
of unknowns 𝐴𝑛

𝑗,𝑞
instead of the nodal values 𝑈𝑛

𝑗
as in the conventional 

finite element method. Inserting (14) in (10), one obtains

𝑢𝑛
ℎ
(𝐱) =

𝑀∑
𝑗=1

𝑄∑
𝑞=1

𝐴𝑛
𝑗,𝑞𝜙𝑗 (𝐱)𝐺𝑞(𝐱). (15)

For simplicity, the multiplication of the polynomial shape functions 𝜙𝑗
by the enrichment functions 𝐺𝑞 is considered to be the new shape func-
tion 𝐿(𝑗−1)𝑄+𝑞 and denoted as

𝐿(𝑗−1)𝑄+𝑞(𝐱) = 𝜙𝑗 (𝐱)𝐺𝑞(𝐱), (16)

and the new approximation space becomes

𝑉 1
ℎ
= span

{
𝐿ℎ, 𝑈ℎ =

𝑀∑
𝑗=1

𝑄∑
𝑞=1

𝐴𝑛
𝑗,𝑞𝐿(𝑗−1)𝑄+𝑞

}
. (17)

It should be stressed that the new shape functions (16) are composed of 
the directional enrichment functions 𝐺𝑞(𝐱) which are written in terms 
of the global coordinates 𝐱 multiplied by the nodal polynomial shape 
functions 𝜙𝑗 (𝐱). These new shape functions have different approxima-
tion properties at different elements based on the behaviour of the 
global enrichment functions in these elements. The global approxima-
tions are made local in the vicinity of a feature of interest such as steep 
internal or boundary layers using the local basis functions. Injecting the 
approximation (15) in the weak formulation (7) yields the following 
system of algebraic equations to be solved at each timestep[
[𝐌] + 1

Δ𝑡
[𝐒]
]
{𝐚𝑛} = {𝐛𝑛} , (18)

where the set of unknowns 𝐴𝑛
𝑗,𝑞

is assembled into the vector 𝐚𝑛 which 
has 𝑀𝑄 entries, [𝐌] and [𝐒] are respectively, the 𝑀𝑄 ×𝑀𝑄-valued 
mass and stiffness matrices the entries of which are 𝑀𝑞𝑟 and 𝑆𝑞𝑟 defined 
by

𝑀𝑞𝑟 = ∫
(
𝜕𝐿𝑟

𝜕𝑥

(
𝐾𝑥𝑥

𝜕𝐿𝑞

𝜕𝑥
+𝐾𝑥𝑦

𝜕𝐿𝑞

𝜕𝑦

)

Ω

45
+
𝜕𝐿𝑟

𝜕𝑦

(
𝐾𝑦𝑥

𝜕𝐿𝑞

𝜕𝑥
+𝐾𝑦𝑦

𝜕𝐿𝑞

𝜕𝑦

))
𝑑𝐱 − ∮

𝜕Ω

𝐊∇𝐿𝑞 ⋅ 𝐧𝐿𝑟 𝑑𝐱, (19)

𝑆𝑞𝑟 = ∫
Ω

𝐿𝑟𝐿𝑞 𝑑𝐱,

and {𝐛𝑛} is the 𝑀𝑄-valued vector of the force term the entries of which 
are

𝑏𝑛𝑠 = ∫
Ω

𝑓𝑛+1𝐿𝑠 𝑑𝐱 +
1
Δ𝑡 ∫

Ω

𝑈𝑛𝐿𝑠 𝑑𝐱. (20)

It should be mentioned that the resulting linear system (18) may suf-
fer from conditioning issues particularly when increasing the number 
of enrichment functions. This has been well documented in the liter-
ature, see for example [50]. This behaviour is often attributed to the 
similarities between the enrichment functions as the number of these 
functions increases. To overcome this challenge in the present study, 
we have limited the maximum number of enrichment functions to six 
(i.e. 𝑄 = 6). Furthermore, the resulting linear systems of algebraic equa-
tions are solved using a direct solver. However, it should also be pointed 
out that various iterative solvers and pre-conditioning strategies are also 
possible to use with the proposed method as discussed in [53,22].

The solution of the transient anisotropic diffusion problem (1)-(4), 
can have steep gradients and fronts moving within the time. Similarly, 
the enrichment functions have steep gradients at different locations in 
the computational domain so that they accurately represent the solu-
tion at different stages in time. This feature would help to capture the 
solution steep gradients and fronts as they move in the domain, and this 
variation in time is well captured by the sum of enrichment functions 
although these functions are time-independent. Note that other enrich-
ment functions including time-dependent functions can also be used in 
our approach without major conceptual modifications. Moreover, the 
main advantage of the time-independent enrichment functions is the 
possibility to build the assembled matrix for the linear system (18) only 
at the first timestep to be used in subsequent timesteps. In addition, 
since only the right-hand side of the linear system (18) is updated in 
the time integration process, one may factorize the matrix using an 𝐿𝑈
decomposition at the first timestep and the solution is computed us-
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ing backward/forward substitutions. This can significantly increase the 
efficiency when a large number of timesteps is needed compared to 
updating the matrix and fully solving the system at every timestep. 
Recent studies such as those published in [12,27,21] have explored 
the computational performance of the partition of unity enriched el-
ements in comparison to high-order polynomial-based finite elements. 
Notably, these comparisons have been conducted in the context of heat 
transfer [27] and wave problems [12,21]. The results reported in these 
references consistently demonstrated a significant advantage for the 
enriched finite element method in terms of reducing the number of de-
grees of freedom required for accurate solutions. It is acknowledged that 
the enriched finite element method may encounter challenges related to 
ill-conditioned systems when compared to the traditional finite element 
methods. Comparatively, while increasing the polynomial order hierar-
chically allows for adaptive mesh refinement and enhanced accuracy, 
high-order finite element methods often demand tailored mesh designs 
specific to their polynomial orders. It is evident that not all high-order 
finite element methods exhibit the same sensitivity to element quality 
[26,42]. For example, some problems show good agreement in stiffness 
matrix condition numbers for different methods, while discrepancies 
are observed in others, emphasising the need for a nuanced understand-
ing of shape functions and element distortion [42]. Moreover, ongoing 
efforts in mesh adaptation strategies, such as the log-simplex method, 
aim to enhance the robustness and accuracy of high-order elements 
[13]. These findings highlight the importance of considering the nu-
ances of different high-order finite elements in ensuring mesh quality.

Our approach, employing low-order enriched elements within the 
enriched finite element method, offers simplicity and generality during 
mesh generation. It bypasses the need for tailored high-order mesh de-
signs and remains effective even on relatively poor-quality elements, 
as observed in numerical examples found in reference [53]. This en-
sures ease of implementation and reduces user involvement in mesh 
generation. Considering these findings, we anticipate a similar trend 
in our study when comparing the proposed anisotropic enriched finite 
element method with high-order finite element methods. Needless to 
mention that, while being mindful of the conditioning issues, we believe 
that our approach strikes a practical balance between computational 
efficiency and accuracy. Furthermore, the integrals appearing in (19)
and (20) are evaluated numerically using the standard Gauss-Legendre 
quadrature. We ensured in all presented numerical results that the cho-
sen number of quadrature points is high enough to eliminate the effect 
of integration errors. Although usually the number of integration points 
per element is much higher with the proposed partition of unity finite 
element method than with the conventional finite element method, the 
total number of integration points in the entire domain with the pro-
posed method is smaller to that of the corresponding number of the 
conventional method. This is mainly due to the much higher number of 
elements needed for the conventional finite element method compared 
to the partition of unity finite element method.

4. Numerical results and examples

To evaluate the performance of the proposed Anisotropic Partition 
of Unity Finite Element Method (Aniso-PUFEM), we conduct various 
numerical simulations for anisotropic diffusion problems. Firstly, we 
consider an anisotropic transient diffusion equation with known an-
alytical solutions. This example enables us to quantify errors in our 
numerical solutions and compare the effectiveness of our enrichment 
technique with the Gaussian-based enrichment available in the litera-
ture [50], as well as with the standard Finite Element Method (FEM). 
Subsequently, we apply the Aniso-PUFEM to solve transient anisotropic 
diffusion problems within different enclosures and considering local-
ized sources. Throughout all our simulations, we compare the results 
obtained for the Aniso-PUFEM on an Intel(R) Core(TM) i3 CPU clocked 
at 2.27 GHz, equipped with 4 GB of RAM using Fortran 95 for sequential 
coding. These tests provide insights into the accuracy and efficiency of 
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the Aniso-PUFEM in tackling anisotropic diffusion problems using un-
structured meshes and different enrichment options.

4.1. Accuracy test problem

In this first example, we employ the Aniso-PUFEM to solve the 
anisotropic transient diffusion problem (1) in a squared domain Ω =
[−1, 1] × [−1, 1]. The following exact solution is imposed for this test 
problem

𝑢(𝑡, 𝑥, 𝑦) =
(5
3

)7 (
1 − 𝑒−10𝑡

)(
1 − 𝑥2

)(
1 − 𝑦2

)
×
(
6 − 𝑥2

(
𝐾‖ sin2(𝛼) +𝐾⟂ cos2(𝛼)

)
+2𝑥𝑦

(1
2
(
𝐾‖ −𝐾⟂

)
sin(2𝛼)

)
− 𝑦2

(
𝐾‖ cos2(𝛼) +𝐾⟂ sin2(𝛼)

))7
. (21)

Note that the source term 𝑓 (𝑡, 𝑥, 𝑦), the boundary function 𝑔(𝑡, 𝑥, 𝑦), 
and the initial condition 𝑢0(𝑥, 𝑦) are explicitly calculated based on this 
analytical solution (21). In our simulations for this example, the mis-
alignment angle is set to 𝛼 = 𝜋

4 as specified in [6], while the diffusion 
coefficients are chosen as 𝐾⟂ = 1 and 𝐾‖ = 3. It is important to note that 
to prevent the exact solution (21) from being a subset of the enrichment 
space (17), the analytical solution is manufactured using multiplicative 
polynomials and trigonometric functions in the spatial domain. Here, 
we solve the problem using the partition unity finite element method 
with two enrichment options. The first option utilizes the proposed di-
rectional enrichment functions (13) and referred to as Aniso-PUFEM, 
while the second option involves using the canonical Gaussian func-
tions initially proposed for isotropic media in [50]. This latter approach 
is referred to as Iso-PUFEM. In addition, this problem is solved using 
the conventional finite element method.

In Fig. 2, we illustrate the unstructured meshes used for this exam-
ple. Here, a coarse mesh (Mesh 1) composed of 67 elements and 44
nodes is used for the Aniso-PUFEM and Iso-PUFEM, and a fine mesh 
(Mesh 2) of 12442 elements and 6363 nodes is used for the FEM. The 
considered finite elements in both meshes are linear three-noded ele-
ments. All the integrals are evaluated using the Gaussian quadrature 
and the number of integration points has been increased until the inte-
gration has converged for the PUFEM solutions. A direct solver is used 
to solve the resulting linear system of equations. The main aim of this 
test example is to compare the results obtained using the Aniso-PUFEM 
to those obtained using the Iso-PUFEM on the coarse mesh and to those 
obtained using the FEM on the fine mesh. The three methods are com-
pared using the relative 𝐿2-error norm defined as

𝐿2-error =
‖𝑢ℎ − 𝑢‖𝐿2(Ω)‖𝑢‖𝐿2(Ω)

, (22)

where ‖ ⋅ ‖𝐿2(Ω) represents the 𝐿2-norm, 𝑈ℎ is the computational solu-
tion and 𝑈 is the exact solution.

Table 1 summarizes the errors obtained using the Iso-PUFEM, Aniso-
PUFEM, and FEM on the considered meshes at the final time 𝑡 = 10−3
using a timestep Δ𝑡 = 10−5. The relative errors obtained using Aniso-
PUFEM and Iso-PUFEM for an increased number of enrichment func-
tions are also presented in this table. Using the same number of en-
richment functions, the proposed Aniso-PUFEM achieves an order of 
magnitude improvement in the error compared to the Iso-PUFEM. 
For example, with only 132 degrees of freedom, the Aniso-PUFEM 
achieves an error of 8.30E-03 at the final time compared to an error 
of 7.47E-02 using the Iso-PUFEM. The better accuracy is attributed to 
the anisotropic enrichment functions that can better reflect the problem 
behaviour compared to enriching with the generic Gaussian functions. 
To further explain the impact of the enrichment, we show in Fig. 3 snap-
shots of the exact solution and the numerical solutions obtained using 
Aniso-PUFEM and Iso-PUFEM on the coarse mesh at 𝑡 = 10−3. It is clear 
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Fig. 2. Meshes used in the partition of unity finite element method (left) and the conventional finite element method (right) for the accuracy test problem.

Table 1

Relative errors obtained using Iso-PUFEM, Aniso-PUFEM, and FEM on a mesh with 67 elements and 
44 nodes for the accuracy test problem using different numbers of enrichments 𝑄 and Δ𝑡 = 10−5 at 
finite time 𝑡 = 10−3.

𝑄

1 2 3 4 5 6 7

Iso-PUFEM 2.47E-01 1.41E-01 7.47E-02 6.67E-02 6.37E-02 5.96E-02 5.90E-02
Aniso-PUFEM 4.59E-02 1.40E-02 8.30E-03 6.81E-03 6.62E-03 6.55E-03 6.45E-03
FEM 6.53E-03 6.53E-03 6.53E-03 6.53E-03 6.53E-03 6.53E-03 6.53E-03

Fig. 3. Analytical solution (left), Aniso-PUFEM solution with 𝑄 = 3 (middle) and Iso-PUFEM solution with 𝑄 = 7 (right) on a coarse mesh for the accuracy test 
problem at time 𝑡 = 10−3.
that the first and second plots are almost identical. However, the ap-
proximation obtained using the standard Gaussian enrichments shows 
a significantly poorer approximation. Furthermore, we display in Fig. 4
the radial cross-section of the solution along the line passing through 
the domain corners namely, the points with coordinates (−1, −1)⊤ and 
(1, 1)⊤. The figure shows a comparison between the solutions obtained 
using the Aniso-PUFEM and those obtained using the Iso-PUFEM at time 
𝑡 = 10−3. It is clear that Fig. 4 demonstrates the close match between the 
Aniso-PUFEM solution and the exact solution, with relatively large dis-
crepancies in the Iso-PUFEM solution. However, it should also be noted 
that the isotropic Gaussian enrichments are still efficient at capturing 
the steep gradients of the solutions. This is reflected in the meaningful 
approximations that are achieved at a relatively small number of de-
grees of freedom. Moreover, Table 1 shows consistent improvements in 
the solution accuracy as the number of enrichment functions increases 
with both Aniso-PUFEM and Iso-PUFEM.

It should also be stressed that, when compared to the Aniso-PUFEM, 
the standard FEM yields an error of 6.53E-03 at the final time using 
47
6363 degrees of freedom compared to an error of 8.30E-03 with only 
132 degrees of freedom using the Aniso-PUFEM. Note that although 
both methods produce comparable accuracy, the Aniso-PUFEM requires 
only around 2% of the total number of degrees of freedom otherwise 
needed in the FEM. Hence, the proposed Aniso-PUFEM can achieve 
similar accuracy but with a significantly smaller number of degrees of 
freedom, thanks to the enrichment technique using functions that in-
corporate prior knowledge of the problem.

4.2. Diffusion problem with a single source

In our next example, we solve a transient anisotropic diffusion prob-
lem as described by (1) in the squared domain [−1, 1]2. However, now 
we choose a general source defined as

𝑓 (𝑡, 𝑥, 𝑦) =

{
1800, if (𝑥, 𝑦) ∈ [−0.1,0.1]2

300, otherwise
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Fig. 4. Cross-section of the solutions in Fig. 3 along the main diagonal.

Fig. 5. Configuration (left), Mesh 1 (middle) and Mesh 2 (right) used for the diffusion problem with a single source.

Table 2

Time evolution of the solution at points A, B, and C for the diffusion problem with a single 
source.

# timesteps Point A Point B Point C

FEM Aniso-PUFEM FEM Aniso-PUFEM FEM Aniso-PUFEM

1 4.01 4.01 3.51 3.53 3.04 3.04
7 25.88 25.90 24.62 24.66 22.12 22.11
13 45.66 45.68 44.34 44.39 41.46 41.45
19 64.96 64.97 63.63 63.68 60.65 60.64
25 84.06 84.08 82.75 82.79 79.73 79.71
31 103.08 103.09 101.77 101.81 98.72 98.71
37 122.05 122.06 120.74 120.78 117.68 117.66
43 140.99 140.99 139.68 139.72 136.61 136.59
49 159.91 159.91 158.60 158.64 155.53 155.51
Fig. 5 shows the computational domain with a source located in its 
centre. In this example, the initial condition 𝑢0(𝑥, 𝑦) = 0, the boundary 
function 𝑔(𝑡, 𝑥, 𝑦) = 0, the misalignment angle 𝛼 = 𝜋

16 , and the diffusion 
coefficients 𝐾⟂ = 1 and 𝐾‖ = 3. Note that this problem does not have 
an analytical solution and must be solved numerically. To this end, the 
timestep is set at Δ𝑡 = 0.01 and numerical results are presented at dif-
ferent times. Again, the problem is solved using the Aniso-PUFEM and 
the obtained results are compared to those obtained using the FEM. We 
consider two unstructured meshes with different element densities as 
shown in Fig. 5. A coarse mesh (Mesh 1) of 136 nodes is equipped with 
𝑄 = 6 directional enrichment functions to calculate the Aniso-PUFEM 
solution. A very fine mesh (Mesh 2) is used with the standard FEM to 
calculate a reference solution for this example. The enrichment is cen-
tred at the origin i.e., we choose 𝐱0 = (0, 0)⊤ in (13) which is also the 
centre of the domain.
48
The solution distributions obtained using the Aniso-PUFEM and FEM 
are illustrated in Fig. 6 where the numerical results are shown at three 
different time instants namely, 𝑡 = 0.01, 𝑡 = 0.1 and 𝑡 = 0.5. It can be 
clearly seen from this figure that similar results are obtained using both 
methods. To facilitate the comparison of the results, a cross-section 
along the horizontal at 𝑥 = 0 of solutions at time 𝑡 = 0.5 is depicted 
in Fig. 6. The results obtained using the Aniso-PUFEM with 𝑄 = 6
exhibit similar solution trends to those obtained using the FEM. Fur-
thermore, to assess the solution changes throughout the time domain 
for both methods, Table 2 presents the solution evolution captured by 
both methods at three different points for 49 timesteps up to 𝑡 = 0.5. 
The considered points, A, B, and C are shown in Fig. 5. The solution 
values obtained at these three points are similar with at least three sig-
nificant digits of agreement. These results indicate that both the FEM 
and Aniso-PUFEM capture the same dynamics of the solution and the 



A. Bahssini, N. Izem, M.S. Mohamed et al. Computers and Mathematics with Applications 163 (2024) 42–55

Fig. 6. Solutions obtained using the FEM on Mesh 2 (first row) and Aniso-PUFEM on Mesh 1 (second row) for the diffusion problem with a single source at three 
different instants 𝑡 = 0.01, 𝑡 = 0.1 and 𝑡 = 0.5 from left to right.

Fig. 7. Cross-section of the solution at 𝑥 = 0 for the diffusion problem with a single source at time 𝑡 = 0.5.
movement of solution fronts. However, it is worth noting that the FEM 
results are obtained using 10535 nodes or degrees of freedom, while 
the Aniso-PUFEM utilizes only 136 × 6 = 816 degrees of freedom. To 
evaluate the impact of the number of degrees of freedom on the com-
putational cost, Table 3 summarizes the CPU time required in both 
methods to build the linear system of equations and solve it. The ta-
ble demonstrates that the Aniso-PUFEM exhibits higher efficiency due 
to the low number of degrees of freedom. The Aniso-PUFEM results are 
obtained in approximately 64 seconds, with around 49 seconds spent 
on building the linear system and approximately 15 seconds on solving 
it. In contrast, the corresponding FEM results are obtained in approx-
imately 546 seconds, with around 401 seconds spent on building the 
linear system and approximately 146 seconds on solving it. Therefore, 
the proposed Aniso-PUFEM achieves a similar accuracy with approxi-
mately 10% of the CPU time required in the conventional FEM (Fig. 7).

Our final concern in this example is to test the ability of the proposed 
Aniso-PUFEM to capture transient anisotropic diffusion for different val-
ues of the misalignment angle. Hence, we solve the problem using the 
same spatial and temporal discretization as before, but for three differ-
49
Table 3

Computational requirements in seconds for 
the FEM and Aniso-PUFEM solutions on the 
considered meshes with a number of enrich-
ment functions 𝑄 = 6 and Δ𝑡 = 0.01 for the 
diffusion problem with a single source.

CPU time

Build Solve Total

FEM 400.89 145.48 546.37
Aniso-PUFEM 49.08 14.84 63.92

ent misalignment angle 𝛼 = 3𝜋
4 , 𝛼 = 𝜋

4 and 𝛼 = 0. Retaining the spatial 
discretization for the selected values of 𝛼 would help assess the reliance 
of the Aniso-PUFEM on the chosen mesh. The same meshes used previ-
ously are retained for the new set of results, while all other parameters 
in the problem remain unchanged. Fig. 8 presents distributions of the 
solution obtained using the FEM and Aniso-PUFEM for the considered 
values of 𝛼 at time 𝑡 = 0.5. The plots show very similar patterns re-
covered using both methods, albeit with a much smaller number of 
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Fig. 8. Solutions obtained using the FEM on Mesh 2 (first row) and Aniso-PUFEM on Mesh 1 (second row) for the diffusion problem with a single source at time 
𝑡 = 0.5 for three different values of the misalignment angle 𝛼 = 0, 𝜋

4
, and 3𝜋

4
from left to right.

Fig. 9. Configuration (left), Mesh 1 (middle) and Mesh 2 (right) used for the diffusion problem with multiple sources.
degrees of freedom when using the Aniso-PUFEM. This similarity is ob-
served in all cases, despite the coarse mesh used for the Aniso-PUFEM 
results. These findings suggest that the method is not sensitive to the 
mesh choice, thanks to incorporating the misalignment angle into the 
Aniso-PUFEM directional enrichment functions.

4.3. Diffusion problem with multiple sources

In this test example, we solve the same problem as before but with 
multiple sources. Again, the governing equations are given by the dif-
fusion model (1) with the diffusion characteristics of the medium are 
taken to be similar to the previous example. However, we now assume 
four sources, the dimensions and location of which are shown in Fig. 9. 
The four embedded sources are defined as

𝑓 (𝑡, 𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪

1800, if |𝑥− 0.5| < 0.1 and |𝑦− 0.5| < 0.1 and 𝑡 ≤ 0.2,

1800, if |𝑥− 0.5| < 0.1 and |𝑦+ 0.5| < 0.1 and 𝑡 ≤ 0.2,

1800, if |𝑥+ 0.5| < 0.1 and |𝑦− 0.5| < 0.1 and 𝑡 ≤ 0.2,

1800, if |𝑥+ 0.5| < 0.1 and |𝑦+ 0.5| < 0.1 and 𝑡 ≤ 0.2,

300, otherwise.
⎩
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In our simulation for this example, the misalignment angle 𝛼 = 5𝜋
4 , the 

parallel and perpendicular coefficients for all sources are respectively 
𝐾⟂ = 1 and 𝐾‖ = 3. In addition, the comparison study of this test ex-
ample is designed similarly to the previous one, where two meshes are 
used with the reference solution based on a fine mesh and a FEM so-
lution. Fig. 9 presents the two meshes considered in the simulations. 
In this example, the number of degrees of freedom in the reference 
solution is again 10535, while a much lower number is used for the 
Aniso-PUFEM, which is 846 = 141 × 6. The timestep is again taken as 
Δ𝑡 = 0.01. It should be pointed out that to handle multiple sources in 
this example, each enrichment function is taken to be the sum of four 
exponential functions 𝐺𝑞 that are of the same order 𝑞 but centred at a 
different source. Thus, an exponential function is centred at each of the 
sources. In equation (13), we choose four different values for 𝐱0 to re-
construct the enrichment functions. The considered values are (0.5, 0.5), 
(−0.5, 0.5), (0.5, −0.5) and (−0.5, −0.5). The four exponential functions 
are then summed into one enrichment function for each order 𝑞.

Fig. 10 displays the solution distributions obtained using the Aniso-
PUFEM on Mesh 1 compared to the reference solution at three consid-
ered instants 𝑡 = 0.01, 0.1 and 0.2. As can be seen in this figure, the 
Aniso-PUFEM solution matches the reference solutions at all consid-
ered times. The symmetry in the Aniso-PUFEM solutions should also be 
noted in the presented results. It is important to highlight the significant 
difference in the number of degrees of freedom under the considered 
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Fig. 10. Solutions obtained using the FEM on Mesh 2 (first row) and the Aniso-PUFEM on Mesh 1 (second row) for the diffusion problem with multiple sources with 
𝛼 = 5𝜋

4
at three different instants 𝑡 = 0.01, 𝑡 = 0.1 and 𝑡 = 0.2 from left to right.
Table 4

Computational requirements in seconds for 
the FEM and Aniso-PUFEM solutions on the 
considered meshes with a number of enrich-
ment functions 𝑄 = 6 and Δ𝑡 = 0.01 for the 
diffusion problem with multiple sources.

CPU time

Build Solve Total

FEM 388.12 93.12 481.25
Aniso-PUFEM 27.29 5.31 32.60

diffusion conditions. The Aniso-PUFEM results are obtained with 864
degrees of freedom, whereas 10535 degrees of freedom are used in the 
FEM. Next we run the test again but this time with a reduced misalign-
ment angle of 𝛼 = 𝜋

16 , while keeping all other parameters unchanged. 
The new set of results is displayed in Fig. 11. This figure shows the so-
lution distributions obtained using the Aniso-PUFEM compared to the 
reference solution at the time instants 𝑡 = 0.01, 0.1 and 0.2. The Aniso-
PUFEM results capture the same solution trends as those obtained using 
the FEM. It is evident that for the considered diffusion conditions, both 
the FEM and the Aniso-PUFEM accurately resolve the moving solution 
fronts and capture the solution dynamics. The reduced misalignment 
angle is clearly reflected in the diffusion patterns seen in this figure 
compared to Fig. 10. However, it is important to note that the FEM 
results are obtained on a fine mesh with 20648 elements and 10535 
nodes, while the Aniso-PUFEM results are computed using a coarse 
mesh with 242 elements and 141 nodes, along with six enrichment 
functions. This significant reduction in the total number of degrees of 
freedom is also reflected in a corresponding reduction in the CPU time 
required. Table 4 presents the CPU time required for both solutions, 
showing the advantage of using the Aniso-PUFEM in terms of computa-
tional efficiency. We also observe that the same coarse mesh is retained 
here although the misalignment angle has changed. Nevertheless, the 
performance of the Aniso-PUFEM has not deteriorated thanks to the 
proposed directional enrichment functions.

Our last concern in this example is to assess the performance of 
the Aniso-PUFEM when the problem involves multiple misalignment 
angles. We reconsider the example where the angles associated with the 
sources are 𝛼 = 𝜋

4 , 
𝜋

2 , 
3𝜋
4 and 2𝜋 as illustrated in Fig. 9. All the remaining 

problem parameters are kept the same as before. The meshes used for 
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the numerical solutions, as well as the number of enrichment functions, 
are also retained. Fig. 11 presents the solution obtained with the Aniso-
PUFEM compared to the reference solution at 𝑡 = 0.01, 0.1 and 0.2. The 
figure demonstrates the close match between the two solutions. Again 
it is important to highlight that the Aniso-PUFEM solution accurately 
captures the different misalignment angles without the need to change 
the mesh. This flexibility is achieved through the directional enrichment 
functions which can adapt to changes in the misalignment.

4.4. Diffusion problem in a circular domain

In the last test example, we solve an anisotropic diffusion problem 
with multiple heat sources in a circular geometry. The computational 
domain is a circle centred at the origin with a unit radius as shown in 
Fig. 12. In this example, four embedded heat sources are considered 
and two different cases are examined separately. In the first case, all 
four sources dissipate the same amount of heat with the heat sources 
defined as

𝑓 (𝑡, 𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1800, if |𝑥− 0.5| < 0.1 and |𝑦− 0.5| < 0.1 and 𝑡 ≤ 0.2,

1800, if |𝑥− 0.5| < 0.1 and |𝑦+ 0.5| < 0.1 and 𝑡 ≤ 0.2,

1800, if |𝑥+ 0.5| < 0.1 and |𝑦− 0.5| < 0.1 and 𝑡 ≤ 0.2,

1800, if |𝑥+ 0.5| < 0.1 and |𝑦+ 0.5| < 0.1 and 𝑡 ≤ 0.2,

300, otherwise.

(23)

In the second case, the sources dissipate different amounts of heat. The 
heat sources are given by:

𝑓 (𝑡, 𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1300, if |𝑥− 0.5| < 0.1 and |𝑦− 0.5| < 0.1 and 𝑡 ≤ 0.2,

2300, if |𝑥− 0.5| < 0.1 and |𝑦+ 0.5| < 0.1 and 𝑡 ≤ 0.2,

2800, if |𝑥+ 0.5| < 0.1 and |𝑦− 0.5| < 0.1 and 𝑡 ≤ 0.2,

1800, if |𝑥+ 0.5| < 0.1 and |𝑦+ 0.5| < 0.1 and 𝑡 ≤ 0.2,

300, otherwise.

(24)
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Fig. 11. Solutions obtained using the FEM on Mesh 2 (first and third rows) and the Aniso-PUFEM on Mesh 1 (second and fourth rows) at three different instants 
𝑡 = 0.01, 𝑡 = 0.1 and 𝑡 = 0.2 from left to right. Here, the top half shows the results obtained with the same 𝛼 while the bottom half shows the results for sources with 
different 𝛼.

Fig. 12. Configuration (left), Mesh 1 (middle) and Mesh 2 (right) used for the diffusion problem in a circular domain.
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Fig. 13. Multi-heat sources on a circular domain: Temperature distributions obtained using the FEM on Mesh 2 (first row) and using the Aniso-PUFEM on Mesh 1 
(second row) for two-dimensional heterogeneous anisotropic transient diffusion problems with four sources in a circular domain at three different instants.
As a consequence of this selection, the symmetry is not preserved in 
the solution field in the second case. In our simulations for both cases, 
the misalignment angle is set to 𝛼 = 𝜋

4 as demonstrated in Fig. 12, the 
parallel and perpendicular diffusion coefficients are 𝐾⟂ = 1 and 𝐾‖ = 3, 
respectively.

Similar to the previous test examples, the conventional FEM is used 
to create a reference solution using an ℎ-refinement convergence study. 
It should be mentioned that the results obtained in this convergence 
study confirm the conclusions made in the previous examples, that the 
proposed Aniso-PUFEM yields a significant reduction in the total num-
ber of degrees of freedom compared to the conventional FEM. However, 
it is important to note that measuring the error using a numerically 
refined mesh for the reference solution will yield a more accurate rep-
resentation of the geometry compared to the coarse mesh used in the 
Aniso-PUFEM. In all simulations carried out in this section, the un-
structured meshes were generated using Triangle software [59]. For 
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the finite element mesh, the element size ℎ is refined in the range from 
0.0003 to 0.0005. A comparatively larger size ℎ in the range from 0.018 
to 0.09 was employed in the Aniso-PUFEM to ensure convergence in the 
numerical solutions. The FEM reference solution is obtained on a dense 
mesh composed of 12205 elements and 6285 nodes, and it is used for 
qualitative comparisons with the Aniso-PUFEM solution. On the other 
hand, the Aniso-PUFEM solution is obtained on a coarse mesh of 268 
elements and 155 nodes. For illustrative purposes, the two considered 
meshes are displayed in Fig. 12. Following a 𝑞-refinement convergence 
study, where we increase the number of enrichment functions until the 
Aniso-PUFEM solution converges, it is achieved using 𝑄 = 4 in the en-
richment functions. The time domain in both solutions is discretized 
using Δ𝑡 = 0.01 and the obtained solutions are presented at three differ-
ent instants.

Fig. 13 depicts the results obtained for the two considered cases 
using the conventional FEM and the proposed Aniso-PUFEM at three 
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different instances, namely, 𝑡 = 0.01, 0.1, and 0.2. The solution snap-
shots demonstrate that similar heat patterns are obtained with both 
methods at all times and in both cases. The results are consistent with 
the conclusions made in previous test examples. Despite the close sim-
ilarities, the Aniso-PUFEM solutions show a significant improvement 
in efficiency compared to the standard FEM. In the first case, we ob-
serve the preserved symmetry when using equivalent heat sources in 
the simulation. As expected, this symmetry is disturbed in the second 
case. Furthermore, for different values of temperature at the sources, 
the thermal fronts travel faster towards the domain boundary. The re-
sults in this diffusion problem confirm our previous conclusions on the 
accuracy and efficiency of the proposed Aniso-PUFEM and reveal its 
ability in dealing with complicated and non-symmetric heat patterns. 
It should be noted that despite the large difference between the num-
ber of degrees of freedom used in the Aniso-PUFEM and the FEM, both 
methods produced similar results. Therefore one may conclude that the 
proposed Aniso-PUFEM performs very well for the anisotropic diffusion 
on this enclosure and it resolves all the solution features without the 
need for refined meshes in the simulations.

5. Conclusion

In this study, we proposed a novel approach for solving anisotropic 
diffusion problems using an enriched finite element method. The pri-
mary objective is to achieve accurate solutions while improving approx-
imation efficiency and leveraging the advantages of the conventional 
finite element method. For the spatial discretization, we employ the 
partition of unity finite element method, while an implicit technique 
is implemented for the time integration. To enhance the approxima-
tion properties of the finite element method, we introduced exponential 
functions as enrichments. These functions incorporate the misalignment 
angle, capturing the solution behaviour with steep gradients. Conse-
quently, the accuracy of the numerical approximation is significantly 
improved even on coarse meshes. The incorporation of these directional 
enrichment functions not only leverages a priori knowledge about the 
problem but also allow for adaptability to changes in the misalignment 
angle without the need for remeshing. This adaptability is a valuable 
feature, as it ensures that the method remains independent on the mesh. 
This feature further enhances the applicability and versatility of our 
approach. In addition, the proposed approach demonstrates remark-
able improvements in approximation efficiency, requiring significantly 
fewer degrees of freedom compared to the standard finite element 
method. Moreover, the directional enrichment functions can adapt to 
the changes in the misalignment angle, accommodating multiple steep-
ness levels in the solutions and various directions of misalignment.

Extensive numerical results consistently demonstrate the efficiency 
of our proposed method in achieving the desired levels of accuracy. 
Comparisons to the conventional finite element method and other en-
richments, showcase significant improvements in the efficiency of the 
proposed enrichments. For the considered anisotropic diffusion prob-
lems, the proposed method achieves the same level of accuracy as the 
standard finite element method but it utilizes only 10% of the number of 
degrees of freedom. This reduction in the computational cost makes our 
approach practical for solving complex anisotropic transient diffusion 
problems. In fact, compared to other enrichments with a similar num-
ber of degrees of freedom, our method achieves an order of magnitude 
improvement. The proposed partition of unity finite element method 
not only provides reliable and precise solutions but also extends the ca-
pabilities of the finite element method to effectively address aspects of 
anisotropic diffusion problems that were previously considered ineffec-
tive using this method. It should be stressed that the partition of unity 
finite element method enables using large elements to retrieve steep so-
lution gradients and moving fronts without the need for small elements. 
However, requiring a highly accurate geometry representation may re-
quire the use of small elements. Therefore, it would be very useful in 
future developments to consider an Isogeometric partition of unity fi-
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nite element method for which non-uniform rational basis spline can 
be implemented to exactly represent the geometry on a coarse mesh 
while capturing the steep solution gradients and moving fronts with 
the proposed anisotropic enrichments. In such situations, dense refined 
meshes can be avoided. Future work will also focus on developing adap-
tive enrichments based on an error estimator for anisotropic diffusion 
and extension of these approaches to conduction-radiation models in 
anisotropic three-dimensional domains.

Data availability

Data will be made available on request.
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