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Quantum-probabilistic Hamiltonian learning for generative modeling and anomaly detection
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The Hamiltonian of an isolated quantum-mechanical system determines its dynamics and physical behavior.
This study investigates the possibility of learning and utilizing a system’s Hamiltonian and its variational
thermal state estimation for data analysis techniques. For this purpose, we employ the method of quantum
Hamiltonian-based models for the generative modeling of simulated Large Hadron Collider data and demonstrate
the representability of such data as a mixed state. In a further step, we use the learned Hamiltonian for anomaly
detection, showing that different sample types can form distinct dynamical behaviors once treated as a quantum
many-body system. We exploit these characteristics to quantify the difference between sample types. Our
findings show that the methodologies designed for field theory computations can be utilized in machine learning
applications to employ theoretical approaches in data analysis techniques.
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I. INTRODUCTION

The Hamiltonian plays a crucial role in our theoretical
understanding of a physical system. The dynamics of an iso-
lated quantum system is governed by an effective Hamiltonian
which indicates the interaction of the system’s constituents.
In many, arguably simple, cases, it is possible to determine
the effective Hamiltonian through a set of theoretical con-
siderations such as observing its interactions and using the
underlying symmetries of the system. Often, however, it is
challenging to derive the algebraic form of a Hamiltonian
from theoretical considerations only. Hence, several Hamil-
tonian learning methods have been proposed by employing
thermal or eigenstates [1–6], short-time evolutions [7–10],
and data-driven approaches [11]. With recent technological
developments, it has become possible to simulate the effective
Hamiltonian that governs a quantum many-body system in an
actual quantum device. Widely used methods such as the vari-
ational quantum eigensolver [12,13] and its generalization, the
variational quantum thermalizer [14], have become the most
promising algorithms for noisy intermediate-scale quantum
devices [15].

There is a substantial yet often underappreciated similarity
between the computational methods used for data analysis,
e.g., in quantum machine learning and the theoretical de-
scription of quantum many-body systems. In both scenarios,
one optimizes the variational parameters of a given Ansatz
over an objective function. For the former, this is naturally
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the expectation value of a Hamiltonian, and for the latter, it
is a loss function chosen for the nature of the problem. In
machine learning (ML) applications, one usually chooses one-
or multiqubit measurement with a Pauli operator and opti-
mizes the probability of the expectation value of this operator
for a set of qubits. However, this operator is not necessarily
optimal for the optimization process, where it is only a subset
of possible combinations of different operators. In this study
we investigate the possibility of learning an optimal effective
operator for the optimization process and the implications of
this operator for the application.

In generative modeling, the aim is to learn the joint proba-
bility distribution between the target and the observed data,
which enables the model to generate new data resembling
the observed data. This requires representing the probability
distribution of the data within a quantum device. The mixed
states are an ideal surrogate for such representation since
they form probabilistic mixtures of pure states. Additionally,
mixed states attain the properties of both quantum and clas-
sical correlations, enhancing the representability of a given
probability distribution. The likeness of a given probability
distribution can be captured within a parametrized quantum
circuit (PQC) as a thermal state of a modular Hamiltonian.
Quantum Hamiltonian-based models (QHBMs) [14] have
been proposed as generative models which split the learning
process into two distinct parts. The first part is responsible
for learning a modular Hamiltonian with the aid of a classical
neural network for capturing the classical correlations within
the data. The second portion consists of a PQC that constructs
the learned Hamiltonian’s thermal state. The aim is to approx-
imate the probability distribution of the data by optimizing the
learned thermal state with respect to the mixed state based on
the data.

Motivated by the close methodical relation between data
analysis and the simulation of field theories, i.e., the use
of optimization methods on parametrized circuits, we pro-
pose to learn a Hamiltonian from data, according to the
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QHBM approach. Thus, we will demonstrate an end-to-end
hybrid quantum-probabilistic optimization procedure to si-
multaneously learn the probability distribution and modular
Hamiltonian for the data. We then use the learned probability
distribution to generate new data and, as a case study, ap-
ply it to top-quark production at the Large Hadron Collider
(LHC). Furthermore, we will use the learned Hamiltonian for
anomaly detection, as we will show that both the expectation
value of the learned Hamiltonian and the Hamiltonian-based
time-evolution sequence discriminate between signal and
background data samples.

Our findings in this study show that the optimization
methods developed to simulate quantum many-body systems
are easily transferable to data-analysis applications and can
be used to integrate the theoretical foundations of quantum
mechanics into ML techniques and vice versa.1 Previous stud-
ies on Hamiltonian learning techniques are mainly based on
learning the structure of a quantum state, e.g., with simulated
data from a known Hamiltonian with certain noise [11]. The
initial proposal of the QHBM [14] was designed to provide
a hybrid learning algorithm. However, due to the complex-
ity of the quantum systems, it is challenging for a classical
computer to generate efficient enough samples. To alleviate
that problem, various solutions have been proposed, such as
approximated free-energy techniques [23] and replacing clas-
sical sampling of the quantum data with a quantum circuit that
represents the sample itself [24]. Simulating thermal states are
especially challenging due to their circuit depth requirements,
which can be remedied via noise-assisted thermal state prepa-
ration [25]. Additionally, various density-matrix simulation
algorithms have been proposed for error mitigation [26] as
well as algorithms that are enhanced with classical postpro-
cessing techniques to simulate nontrivial Hamiltonian [27].
Despite the plethora of applications for quantum simulation,
such techniques have not been employed in data analysis
methodology, where the closest application was building a
covariance matrix for principal component analysis through
density matrices [28]. Our implementation goes beyond quan-
tum simulations and discusses the usage of such techniques
for data analysis by representing generic data as a mixed quan-
tum state of a learned operator and, in doing so, generating an
abstract representation of the entire data set as a Hamiltonian.

This study is structured as follows. In Sec. II we outline the
methodology that is adapted. Section III introduces the data
set and preprocessing scheme, with a generative modeling
exercise in Sec. III A and anomaly detection in Sec. III B. We
present a summary and offer conclusions in Sec. IV.

II. QUANTUM HAMILTONIAN-BASED MODELS

In this section we first delve into the intricacies of
constructing the quantum variational Ansatz, emphasizing
the incorporation of data embedding (Sec. II A). We then

1In previous studies, the generative modeling was used in the
context of quantum generative adversarial networks [16–19], and
anomaly detection was presented via a PQC [20] and quantum vari-
ational autoencoders [21]. See Ref. [22] for an example of quantum
machine learning for particle physics.

elucidate the construction of the Hamiltonian, providing a
rationale for the specific approach chosen (Sec. II B). Next we
delineate the formulation of the objective function, drawing
parallels to classical generative modeling for a clearer under-
standing (Sec. II C). We provide a synthesis of the model in
Sec. II D.

A. Quantum variational Ansatz and data representation

The objective of generative modeling is to encapsulate
the entire feature space within a single probability distri-
bution function, enabling efficient sampling to replicate the
underlying distribution. Quantum mechanics provides a natu-
ral framework for this representation through the concept of
mixed states. In quantum theory, a mixed state is a composite
entity formed by combining pure states or other mixed states,
serving as a faithful representation of the probability distribu-
tion encompassing its constituent states. A mixed state can be
represented as

σ =
∑

i

pi|si〉〈si|, (1)

where pi is the probability of observing the state |si〉 in the
mixed state σ . Hence

∑
i pi = 1. If we aim to acquire a

density-matrix representation of the feature space for data
regeneration, a challenge arises due to the inherent nature of
quantum circuits as pure state simulators. Embedding a mixed
state directly in a quantum circuit is not straightforward. To
circumvent this challenge, we can reinterpret the data samples
as a probability distribution. Each feature within a data point
possesses an associated occurrence probability, which can be
effectively encoded onto the quantum circuit using binary
values (0’s and 1’s) derived from sampling a Bernoulli distri-
bution. By generating a sufficient number of such samples, the
mean of the sample set corresponds to the occurrence proba-
bility of the feature. Through the learning of these samples, it
becomes possible to reconstruct the correlation relationships
between the features within the quantum circuit.

By this method a single data point will be represented as a
collection of pure states which are sampled from a Bernoulli
distribution B

|pn〉i
d ≡ |p1, . . . , pn〉i

d = B(p1, . . . , pn), (2)

where the state for the dth data point with n individual feature
probabilities, given as pi, has been represented as the sample
i, drawn from the Bernoulli distribution. This state can be em-
bedded in a quantum circuit by applying Pauli-X gates where
the Bernoulli distribution results in 1. The combination of the
entire data set in terms of sampled states can be represented
as

|D〉 =
∑
d∈D

αd

N

N∑
i

|pn〉i
d , (3)

where αd is the weight of each data point within the data set
D. Here N represents the number of samples drawn from the
Bernoulli distribution for each data point. Finally, the mixed
state of the entire data set can be represented as σ̂D = |D〉〈D|
with appropriate normalization. Note that now a data point
does not correspond to a single circuit measurement but a
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stack of circuits with different binary inputs from a single
Bernoulli distribution. Furthermore, one can learn the corre-
lation structure by means of a variational Ansatz Û (φ), where
φ represents the trainable parameters of the Ansatz.

B. Building the Hamiltonian

To facilitate the optimization process, it is imperative to
establish a well-defined measurement protocol. This protocol
must employ an operator or Hamiltonian capable of accurately
encapsulating the entropic probability distribution associated
with the targeted mixed state for acquisition. While one option
involves the application of a preexisting Hamiltonian, such
as the Ising model, it is essential to acknowledge that this
approach inherently assumes specific correlation structures
among the features. Alternatively, a more ambitious endeavor
entails simultaneously acquiring both the complete Hamilto-
nian representation and the density matrix characterizing the
underlying data through an optimization process.

Given the resource-intensive nature of learning a Hamil-
tonian, we have opted for the utilization of a classical neural
network, which offers a more flexible structural framework.
However, it is worth noting that while any neural network
Ansatz can be employed for this purpose, the estimation of
the partition function may pose computational challenges that
exceed the allocated resources. The necessity of a partition
function will become evident in the subsequent section.

Energy-based models (EBMs) [29] present an ideal choice
for our task, as they inherently encompass the partition
function. An EBM establishes a mapping between a state con-
figuration and a scalar energy measure, defined as Eθ (v) :=
v ∈ V → R, where v ∈ V represents a spin configuration
within the set of all possible configurations. Energy-based
models are designed to determine the optimal energy by mini-
mizing the marginal probability distribution of the states in V ,
given by

p(v) = 1

Zθ

e−Eθ (v), Zθ =
∑
v∈V

e−Eθ (v).

Computation of the energy and partition function for
all possible state configurations is generally a formidable
task. To address this, we employ Monte Carlo (MC) al-
gorithms to sample states, accepting the most probable
ones based on the partition-free acceptance rate defined as
min (p(vn+1)/p(vn), 1) for a randomly initialized state vn+1

and a previously chosen random state vn. By doing so, the
MC algorithm generates an ensemble of |vn〉, i.e., Gibbs,
states. This algorithm can be visualized by the pseudocode
in Algorithm 1.

With a sufficient number of MC samples NMC, we define a
modular Hamiltonian as

K̂θ =
NMC∑
n=1

Eθ (vn)|vn〉〈vn|, (4)

where |vn〉 represents normalized spin states determined by
the MC algorithm and Eθ (vn) corresponds to their energy as
measured by the chosen EBM Ansatz. It is important to note
that Kθ is defined as a Hermitian operator. Using the modular
Hamiltonian definition in Eq. (4), the expectation value of the

Algorithm 1: The MC algorithm to form the modular
Hamiltonian.

dth data point can be defined as

〈K̂〉θ,φ = 1

N

N∑
i=1

〈pn|idÛ (φ)K̂θÛ †(φ)|pn〉i
d , (5)

where the mean expectation value has been computed by
taking the mean of N samples taken from the Bernoulli
distribution.

C. Objective function

The primary objective of this endeavor is to establish a
dependable representation of σ̂D through the acquisition of
a learned density matrix, denoted by ρ̂θ,φ . In classical prob-
abilistic learning, the optimization process revolves around
minimizing the Kullback-Leibler divergence DKL to diminish
the disparity between two probability distributions [refer to
Eq. (B4)] [30]. In this context, the goal is to approximate
ρ̂θ,φ � σ̂D. Extending this principle to our scenario, where we
work with a given Hamiltonian and temperature, the Gibbs-
Delbrück-Moliére variational principle [31] asserts that the
most suitable objective function for this process is the free
energy, defined as

F = E − 1

β
S (σ̂D ), (6)

which is bounded by the actual free energy of the system. Here
S (σ̂D ) denotes the entropy of the data [refer to Eq. (B3)],
β represents the inverse temperature, and E signifies the
expectation value of the given Hamiltonian as defined in
Eq. (5). Notably, both the Hamiltonian and the entropy are
unknown prior to data analysis, posing a significant chal-
lenge. Recognizing that the free energy can also be expressed
as the log-partition function, we can reformulate the entire
expression as

βE + kβ lnZθ � S (σ̂D ), (7)

where kβ is a constant related to the true entropy of the data
and the Boltzmann constant. This inequality offers a more
suitable objective function for our purpose. Since temperature
and the Boltzmann constant lack physical significance in the
context of data analysis, they can be employed as regularizers
of the objective function, and for this study we consider them
to be equal to one.

After looking at the left-hand side of Eq. (7), it becomes
evident that the entropy of the data essentially manifests as the
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FIG. 1. Schematic representation of the quantum modular Hamiltonian-based learning for data analysis. Two parts of the implementation
are represented as two parallel layers stacked on top of each other, with the top layer being responsible for forming a Hamiltonian by
generating a Gibbs state through a MC algorithm based on an EBM. The bottom layer is responsible for computing the expectation value
of the Hamiltonian for a sampled set of initial states. Finally, the expectation value and the partition function are combined to form the cost
function of the network.

negative log-probability distribution of a multivariate Gaus-
sian distribution centered at zero,

L(θ, φ) = 1

Zkβ

θ

e−β〈K̂〉θ,φ ≡ N (|Û (φ)pn〉|0, �(θ )),

where the Hamiltonian can be interpreted as the covariance
matrix �(θ ) among different features. Given that the deter-
minant of a Hermitian matrix is equivalent to the sum of its
eigenvalues, Zkβ

θ ≡ det[�(θ )]dim(�)
√

2π . Thus, our approach
essentially models the data as a multivariate Gaussian distri-
bution while simultaneously learning the covariance matrix
through the optimization of − lnL(θ, φ). Similar analogies
can be found in the context of simulating lattice field theories
using flow-based algorithms [32,33].

In unsupervised learning, the neural network serves as a
statistical model of the underlying data and the objective is
to minimize the negative log-probability distribution. Draw-
ing from the analogy presented earlier, it becomes evident
that reformulating this problem as a thermal state effectively
implies an assumption that the data can be suitably approx-
imated by a Gaussian distribution. This insight establishes a
direct connection between theoretical approaches and conven-
tional machine learning techniques, highlighting the interplay
between sophisticated modeling strategies and established
methodologies in the field of statistical thermodynamics.

D. Combining it all together

Figure 1 provides a schematic overview of the entire pro-
cess, segmented into two primary sections. Illustrated on top
is the generation of the modular Hamiltonian K̂θ and the
partition function Zθ through the utilization of a MC algo-
rithm. In contrast, the bottom depicts the variational circuit,
incorporating sampled data points as specified in Eq. (2) as
input. Leveraging the modular Hamiltonian, we compute the
expectation value for each data point, as detailed in Eq. (5).
Subsequently, we combine the partition function and the ex-
pectation value to formulate the loss function, as elucidated in
Eq. (7).

Once the mean loss function is computed for a batch of
data points, we update the trainable parameters θ and φ using
the expressions

θ ′ = θ + η
∂

∂θ
lnL(θ, φ), φ′ = φ − ηβ

∂〈K̂〉θ,φ

∂φ
,

where η denotes the learning rate. Algorithm 2 shows a sin-
gle training step for a batch of data. Within the concept of
batched learning, optimizing a negative log-probability dis-
tribution has two significant computational bottlenecks. First,
as mentioned above, one must estimate a proper modular
Hamiltonian for the optimization procedure. This has been
done independently of the input data where the MC algorithm
determines the most probable set of spin configurations and,
by doing so, automatically minimizes the energy of the EBM
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Ansatz. This requires reestimation of the modular Hamiltonian
after each update. It is important to emphasize that since the
MC algorithm proposes an input configuration completely
independent of the input data, the optimization procedure is
the only connection between data and the Hamiltonian. The
second bottleneck involves σ̂d estimation; since we do not
have access to quantum data, we need to sample through the
probability distribution of each data point and compute the
expectation value 〈K̂〉θ,φ .

Algorithm 2: Pseudocode for a single training step.

Such an optimization process allows the quantum cir-
cuit to learn a nonlinear distribution by minimizing
Eθ (vn)〈σ̂DÛ (φ)||vn〉〈vn||σ̂DÛ (φ)〉. Since |vn〉 is constructed
from a nonlinear classical neural network, |σ̂DÛ (φ)〉 is being
forced to approximate such nonlinear behavior to reduce the
distance of the projection.

Although it is a powerful representation of the data,
learning a completely free Hamiltonian is computationally
challenging simply because the Hamiltonian has to be decom-
posed into Pauli operators at every step of the optimization
process. It is possible to avoid the EBM if we assume a
certain structure for the modular Hamiltonian K̂. For instance,
a generic Hamiltonian that captures the nearest-neighbor in-
teractions can be suitable to capture near-term complexity of
the data,

K̂θ =
∑

i∈qubits

θi,i+1(σ+
i σ−

i+1 + σ+
i+1σ

−
i ),

where σ+ and σ− are raising and lowering operators, re-
spectively, and θ is the trainable coupling strength. Since the
summation captures only nearest-neighbor interactions, this
Hamiltonian may not be able to capture the complexity of
the data, but it will simplify the optimization process signifi-
cantly. Additionally, tensor network techniques can aid in the
decomposition of large Hamiltonian matrices. However, such
simplifications are beyond the scope of this paper, where we
focus on the most generic application and see if it is indeed
possible to create a useful operator through this procedure.

III. RESULTS

As a case study, we use a top tagging data set [34,35],
which includes over 106 mixed collider events for semilep-
tonic top and dijet production channels at

√
s = 14 TeV.

Events are generated and showered in PYTHIA 8 [36], and the
detector simulation is achieved using DELPHES 3 package [37]
with a default ATLAS configuration card. All jets are recon-
structed via the anti-kt algorithm [38] with R = 0.8 within the
FASTJET [39] package. Furthermore, the central-boosted phase
space is captured by requiring the jet transverse momentum
pT to be within [550, 650] GeV and absolute pseudorapidity
to be |η| < 2.

The jets are further processed to be represented as
calorimeter images, potentially captured by the hadronic
calorimeter in the LHC experiment. Following the procedure
presented in Refs. [40,41], leading jet constituents are cen-
tered around the jet axis on the pseudorapidity–azimuthal
angle η-φ plane within [−1.5, 1.5]. Each image is divided
into four quadrants and the most energetic quadrant has been
moved to the top right corner by horizontally and vertically
flipping the image. Finally, all the training samples are stan-
dardized over randomly chosen 200 000 images by fitting
pT within the [0, π ] range. This standardization procedure
yields calorimeter images of 37 × 37 pixels; however, since
it is not possible to process this within a quantum circuit, we
simplify our data by cropping 12 pixels from each axis and
downsampling the resulting image by taking the mean of four
adjacent pixels.

Figures 2(a) and 2(b) show the mean of 5000 images for
the signal and background, respectively, where η′ and φ′ are
the modified pseudorapidity and azimuthal angle axes after
standardization. The color represents the value of the trans-
verse momentum in each pixel, measured in Fig. 2(d). Note
that this is before normalizing the pT distribution within the
[0, π ] range. The following two images capture only a single
event within the signal [Fig. 2(c)] and background [Fig. 2(d)]
samples. All the images are cropped to show only a 27 × 27
central image to focus on the main activity. Even though the
averaged images are easily differentiable, single events are
usually random looking and not easily differentiable; hence
various ML techniques have been developed to differentiate
these samples.

Because the top decays into two light jets through a W
decay and a b jet, it creates a three-prong signature, as shown
in Fig. 2(a). Such topological behavior has been exploited
by many analytic tagging algorithms (see, e.g., Ref. [42]).
The dijet signature, on the other hand, leaves a single-prong
signature on the calorimeter, as shown in Fig. 2(b). This is due
to the fact that dijet events do not contain enough energy to
produce two distinct jet signatures. Such a process is crucial
to investigate at the LHC because the top quark’s mass can
further our understanding of the Higgs mechanism and its cou-
pling to the top quark since mass comes with a large coupling
to the Higgs boson. Even with larger center-of-mass energies,
the production of top quark pairs has been improved at the
LHC. These events are usually contaminated with dijet events,
making it challenging to isolate top quark events. Hence it
is vital to separate top events from the dijet background to
improve the experiment’s sensitivity to its couplings.
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(a) (b) (c) (d)

FIG. 2. Signal and background images projected on the η′-φ′ frame: (a) signal and (b) background represented with a mean of 5000
randomly chosen events and (c) signal and (d) background with a single event for each sample. For this representation, ten pixels have been
cropped from each axis of the images from the original 37 × 37 pixels. Color represents the magnitude of energy deposited in each pixel.

In the following sections we will use only a fraction of
these images by cropping and downsampling them due to
computational limitations. This mainly affects the span of
information since it is highly dependent on the geometrical
positions of the energy deposits on each pixel. We will start
with the central pixels and increase the pixel count from
there, but it is important to note that the central four pixels
are maximally similar throughout both samples. Hence one
includes more information regarding the nature of the event
once we go beyond the central four pixels.

A. Generative modeling

As the first set of applications for the QHBM, we will aim
to learn the probability distribution of the pixel intensity in
calorimeter images. Each standardized sample pixel has pT

intensity within [0, π ]. The pixel intensity can be interpreted
as probability distribution if it passes through a bijective func-
tion, which outputs values in the range [0,1], such as a sigmoid
function. This will allow us to simultaneously interpret pixel
intensities as probability distributions and convert them back
to their status quo. Due to the computational cost of the
quantum simulation and the optimization methodology, we
choose to perform our investigation with only the central four
pixels, which retain the necessary information to differentiate
between top and dijet images as presented in a previous study
[43].

The modular Hamiltonian is determined via a restricted
Boltzmann machine (RBM), with details presented in Ap-
pendix A. We reestimate the modular Hamiltonian for each
batch training by collecting a set of spin states via the MC
algorithm presented above. The initial state for each training
is set to |↑ · · · ↑〉; each following MC algorithm is initiated
by the last state determined in the previous MC run. For each
execution the MC algorithm runs for 100 steps to converge
on a stable Gibbs state without collecting any; the number of
collected states is analyzed case by case below. Note that these
states are entirely independent of the input data; hence the MC
algorithm independently minimizes the energy of the RBM by
determining the most probable set of states.

The expectation value for each image is estimated via
Eq. (5). Since we are employing batched learning, the expecta-
tion value of the batch is computed by taking the mean of each
expectation estimation in the batch. Finally, the variational
parameters of the network are updated with respect to the

mean objective function

arg min
θ,φ

1

Nbatch

Nbatch∑
i

− lnL(θ, φ|σ̂i ).

Note that the mean only entitles the expectation value of the
modular Hamiltonian. We divided our study into different
benchmarks to study the effects of σ̂D and K̂θ estimations.
The PENNYLANE package [44] is employed for quantum cir-
cuit simulation; the RBM and optimization are held within
TENSORFLOW [45,46] and TENSORFLOW-PROBABILITY [47]
packages. Our implementation can be found in [48]. All the
benchmarks are trained with 1000 training samples, and over-
training is monitored with the same number of validation
events.2 The Adam optimization algorithm [49] is employed
with a 10−2 initial learning rate, with the learning rate reduced
by half if validation loss does not improve for over 25 epochs.
Each benchmark is trained for 100 epochs, and training is
terminated if the validation loss does not improved for over
50 epochs.

For the quantum Ansatz, we use a matrix product state
(MPS) structure [50] where two-qubit operators are applied
to each adjacent qubit in a staircaselike architecture, which is
depicted in Fig. 3. We refer to each of these constructions from
the first qubit to the last as a layer. Each two-qubit operator
Ûi(φ) includes two rotation gates around the Pauli-Y axis
for each input qubit with an independent variational rotation
angle followed by a controlled-NOT gate. For each benchmark,
we use three layers. Note that the algorithm is also tested
with different architectures such as a simplified two-design
[51] and strongly entangling layers [52], which is observed to
improve the results.

Figure 4 shows the test metrics for each benchmark where
each point is tested with 10 000 mixed test events and pre-
sented with one standard deviation, estimated by dividing
the test sample into batches of 25. The left column shows
the benchmarks for σ̂D estimation where the NMC for K̂θ

estimation is set to 200, while the right column shows the
benchmarks for K̂θ estimation where the N smp for σ̂D esti-
mation is set to 5000. It is also important to note that the

2It is essential to note that we did not observe any significant im-
provement in generalization for more extensive training sets; hence,
due to the computational cost, we limited the analysis to 1000 events.
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(a)

(b)

FIG. 3. (a) Schematic diagram of the MPS variational circuit
Ansatz and (b) structure of each Û (φ) gate that has been used.

samples to estimate σ̂D for the right column are generated
before the optimization process to speed up the application;
however, for the left column, each sample produced during
the training effectively allows those benchmarks to experience
different samples in each iteration. Figures 4(a) and 4(b) show
the Kullback-Leibler distance between input images (q) and
the sampled output images (p) and Figs. 4(c) and 4(d) the
batched mixed state of the data (σ̂D) and estimated mixed
state (ρ̂φ).3 Figures 4(e) and 4(f) present the trace distance and
Figs. 4(g) and 4(h) the fidelity between the thermal state of the
data and the estimated thermal state. Finally, Figs. 4(i) and 4(j)
plot the estimation of the von Neumann entropy separately for
the signal [blue (dark gray)] and the background [red (light
gray)]. Note that for the thermal state of the data all images in
the input are assigned the same weight, i.e., αi in Eq. (3). For
details about these metrics, we refer the reader to Appendix B.

During our tests, we observed that the performance of the
generative model is mainly based on the wellness of the esti-
mation of the mixed state of the data, where for larger samples
we observed improved the fidelity and trace distance (see the
left column of Fig. 4). Furthermore, we observed that the
wellness of the estimation also improves the Kullback-Leibler
distance between the input and estimated states and exponen-
tially reduces this metric’s uncertainty. Note that S (σ̂D ) is
presented separately for the signal and background. Although
we do not see any significant difference in signal or back-
ground for any other metric, the entropy for different sample

3Note the difference in notation here. For the variational thermal
state we use ρ̂θ,φ during the training since the density matrix at this
stage is influenced by both the EBM and Û (φ). However, during the
testing, the modular Hamiltonian is not used; thus, the variational
thermal state is only influenced by Û (φ).

sets is clearly separated. Note that all benchmarks are trained
with mixed data and they are not exposed to the information
regarding the data type.

In the right column of Fig. 4 we present the effect of the
K̂θ estimation on the same test metrics. Although we do not
observe any significant improvement in fidelity, trace distance,
and Kullback-Leibler distance [except a minor refinement in
DKL(q|p)], we observe that the wellness of K̂θ estimation
improves the entropy estimation of the data and reduces the
uncertainty. Hence Fig. 4(j) indicates that for good enough
K̂θ and σ̂D estimation, signal and background samples will
produce unique entropy values. Thus this information can also
be used to identify the nature of the data. However, S (σ̂D ) is
not observed to be a powerful discriminator. We compute the
receiver operating characteristic curve to quantify the differ-
ence between the signal and background, and the highest area
under the curve value we observe is around 0.7.

Note that we have not discussed the advantage of learning
an operator for the data. In the following section we will
discuss a possible usage of the modular Hamiltonian in the
context of anomaly detection.

B. Anomaly detection

Anomaly detection is a methodology in which the network
Ansatz learns the structure of the known data and tries to
detect the difference in new data, if any. For this purpose,
we use two test cases. For the first case, we use six qubits,
where in addition to the central four pixels we add the top two
pixels into the collection. For the second case, we also include
the bottom two pixels to test the algorithm for the eight-qubit
scenario.

We are using the same procedure outlined in Sec. III A,
training both scenarios using background-only samples for
100 epochs and 1000 events with σ̂D estimated by 5000 sam-
ples before the training. The only difference between the two
test cases is that we use 500 MC samples for the six-qubit
scenario and 1000 for the eight-qubit scenario. The difference
is due to the size of the latent space, where we observe that a
larger latent space requires more MC samples to estimate K̂θ

for the stability of the result, which we will discuss later in
this section.

The network results are tested with 10 000 background-
only test samples. For the six-qubit scenario, we observe a
fidelity of 0.81 and a trace distance of 0.3, whereas for the
eight-qubit scenario we observe 0.79 and 0.3, respectively.

Although von Neumann entropy, as shown in Sec. III A,
can lead to a significant observable to differentiate two types
of samples, we propose a different observable based on the
modular Hamiltonian. We will analyze two different cases; for
the first, we will look into the effect of time evolution. We will
define the time-evolution operator of a modular Hamiltonian
as

e−iT K̂θ �
N∏

e−i�tK̂θ ≡ TN ,

where T = N�t . For small �t , this operator can be applied in
the quantum circuit under the Trotter-Suzuki approximation.
Using this relation, one can compute the fidelity F of the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 4. Test metrics for (a), (c), (e), (g), and (i) the network trained with a different number of samples for density-matrix estimation and
(b), (d), (f), (h), and (j) the network trained with a different number of MC samples for K̂θ estimation, showing (a) and (b) the KL divergence
between input and output samples, (c) and (d) the KL divergence, (e) and (f) the trace distance, (g) and (h) the fidelity between the truth level
density matrix and the network’s density-matrix estimation, and (i) and (j) the network’s estimation for von Neumann entropy, where red (light
gray) and blue (dark gray) represent background and signal samples. The results are prepared using 200 MC samples for the estimation of the
Hamiltonian (left column) and 5000 samples for σ̂D estimation (right column). Each result is presented with one standard deviation, estimated
by dividing 10 000 test samples into batches of 25 events.

time-evolved quantum state as

Fidelity = 〈ψ (t )|ψ (0)〉, (8)

where |ψ (0)〉 = Û (φ)|pn〉i
d and |ψ (t )〉 = TN |ψ (0)〉. For the

second case, since it is computationally less costly, we will
analyze the expectation value without time evolution.

We computed the time evolution up to T � 500 for es-
timated K̂θ in each scenario with �t = 0.1 time steps.
Figures 5(a) and 5(c) show the fidelity (8) concerning each
time step for signal (blue) and background (red) samples,
for the six-qubit scenario [Fig. 5(a)] and the eight-qubit sce-
nario [Fig. 5(c)]. The thickness of each curve shows one
standard deviation for the entire test sample.4 Note that for
the sake of visibility, Fig. 5(a) is limited to T � 200, while
Fig. 5(c) is for T � 500. In order to devise a quantitative mea-
sure, we computed the power-frequency curve from the
fast Fourier transform of the time-evolution sequence [see

4Note that the test sample is limited due to the high computational
cost.

Eq. (B5)]. For the mean time-evolution sequence, we present
the power-frequency distribution in Figs. 5(b) and 5(d) for
each respective time-evolution result. Although we do not
observe any significant difference in low-frequency regions,
the power of both curves becomes significantly different for
high-frequency regions. It is essential to note that the power-
frequency curves become identical once the network is trained
with mixed signal and background samples. Additionally, for
the four-qubit scenario, the differentiability is observed to be
significantly low. We computed the receiver operating char-
acteristic (ROC) curve concerning the power distribution for
a frequency threshold to quantify the ability to differentiate
between two samples via the time-evolution sequence. The
true (false) positive rate, i.e., signal (background) efficiency,
has been computed by counting the number of events in the
binned power distribution between its maximum and mini-
mum values for a given frequency. Figure 6(a) shows the ROC
curve and corresponding area under the curve (AUC) values
for six-qubit (blue) and eight-qubit (red) scenarios. The black
dashed line shows the random choice where the classification
quality improves as the curves move further away from this
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(a) (b)

(c) (d)

FIG. 5. Time evolution of the modular Hamiltonian for (a) and (b) six-qubit and (c) and (d) eight-qubit scenarios for (a) and (c) the fidelity
distribution and (b) and (d) the power spectrum of the FFT of the distributions. The signal and the background are represented by blue (dark
gray) and red (light gray), respectively.

line towards the top left corner of the plot. The best minimum
frequency value has been chosen for both distributions; hence
we did not observe any improvement in the AUC value for
larger frequencies. We observe that the eight-qubit scenario
reaches saturation at a frequency of 0.056 with a 0.85 AUC
value. In contrast, the six-qubit scenario requires a frequency
of 0.2 to reach saturation at a 0.82 AUC.

For the second, less costly, method we compared the ex-
pectation value for the signal and background without any
time-evolution step T = 0. Figure 6(b) shows the ROC curve
computed for 200 different thresholds chosen between maxi-
mum and minimum expectation values. We tested the results

for a 10 000-event signal and background test sample where,
as before, the red and blue curves show the results for
eight- and six-qubit scenarios, respectively. Even at the initial
time step, we observe that AUC values for both cases are
above 0.9.

Utilizing the time-evolution sequence, we observe up to
a 3% difference between the six- and eight-qubit scenarios,
reducing the required frequency by 72%. Note that we are
barely able to achieve 50% using a four-qubit scenario with
the largest frequency that we compute; thus, adding new in-
formation significantly affects the ability to differentiate two
sequences. Using only the information from the expectation

(a) (b)

FIG. 6. ROC curve computed for the two types of measure used in this study. Results are shown for (a) the time-evolution sequence of
the learned Hamiltonian and (b) the expectation value at T = 0. The red (light gray) and blue (dark gray) solid curves represent eight- and
six-qubit scenarios and the black dashed curve shows the random choice.
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FIG. 7. Solid bars show the pixel density of each site for all the test data, with the value bound to the left y axis. Crosshatched bars show
the relative entropy, computed from the lowest eigenvector of the learned Hamiltonian, between each site and the value which is bound to the
right y axis. The x axis shows the site or pixel location.

value provides significantly better differentiability, whereas
in the six-qubit (eight-qubit) scenario we observed 9% (6%)
improvement in AUC values.

As mentioned before, the stability of the results relies
on sufficient MC samples for K̂θ estimation. Due to the
probabilistic nature of the EBM, the computation of K̂θ leads
to a slightly different modular Hamiltonian. Hence the sta-
bility depends on increasing the number of samples; in other
words, it depends on reaching a stable Gibbs state. For a
lower number of MC samples, we observed a more significant
standard deviation in each sample and lower differentiability
between two sets of samples where the AUC value was signif-
icantly lower.

This exercise shows that the data from different sources
can be interpreted as distinct quantum states; hence their cor-
responding Hamiltonian will produce different results when it
acts on different states produced by these data samples. Since
the Hamiltonian should be able to capture the entropic proba-
bility density of the given data, we investigate von Neumann
entropy between each site at the ground state of the learned
Hamiltonian. The reason for using von Neumann entropy is
that it captures the information flow between reduced density
matrices, and the change in the entropy value indicates statis-
tically viable information for the optimization process. This
measure has also been utilized in Ref. [41] to compress the
feature space with an MPS Ansatz. The von Neumann entropy
has been computed by first finding the lowest eigenvector of
the six-qubit learned Hamiltonian via direct diagonalization.
Furthermore, we constructed the reduced density matrix be-
tween two sites corresponding to each pixel. Figure 7 shows
the pixel density averaged over the test set for signal (blue)
and background (red) bars captured by the left y axis. This
shows which pixels are statistically more active. The green
crosshatched bar shows the relative entropy between two sites,
where the right y axis has captured the value. The x axis shows
the location of each pixel on the circuit and the green bars are
placed in between each pixel location. We observe that the
entropy values remain high between the low-density pixels.
However, we observe exponentially low-entropy values be-
tween pixels 3 and 4, where pixel 3 has the highest density
among all background pixels. It is essential to emphasize here

that the learned Hamiltonian does not have any access to
the input data and it is constructed by generating a Gibbs state
through an MC algorithm. Hence the only link between the
data and the Hamiltonian is the optimization algorithm, which
enables the Hamiltonian to capture the statistical distribution
of the input.

IV. DISCUSSION AND CONCLUSION

Quantum Hamiltonian-based models are a group of An-
sätze that attempts to approximate the probability distribution
of the data by representing it as a thermal state of a learned
Hamiltonian. In this context, the computationally intensive
Hamiltonian learning has been mitigated to a classical net-
work, and a variational quantum circuit has been optimized
with respect to the expectation value of the learned Hamil-
tonian. This method is a generalization over the variational
quantum thermalizer technique, where one generates the ther-
mal state of a given Hamiltonian at a target temperature.
However, using a specific Hamiltonian for an ML application
will be highly constrained since it is not always possible
to a priori know the correlation structure of a given data.
Hence, it has been learned during the optimization process
by utilizing a classical energy-based model. This enables us
to create a unique Hamiltonian for the data, which can then be
used to scrutinize the properties of the data further. Thus this
study demonstrates that the methods developed for quantum
simulations are flexible and reusable for ML applications,
hence showing the strong link between theoretical approaches
and statistical ML techniques. This can lead to a more inter-
pretable and intuitive Ansatz by virtue of our knowledge of
quantum theory, and this study has aimed to take a step further
to achieve a fully theory-driven ML technique.

In this study we demonstrated the usage of the QHBM for
generative learning and anomaly detection for LHC data. We
showed that the calorimeter images could be embedded in
quantum circuits as a mixed state, and a variational thermal
state of a learned Hamiltonian can represent their probability
distribution. As a by-product of the optimization process, the
objective function converges to the entropy of the data, which
has been observed to produce unique values for different types
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of data. Hence, this information can be further used to identify
the generated data samples.

It is essential to ask if it is possible to use the learned
Hamiltonian to understand the data structure further. We have
presented two possible use cases of the learned Hamiltonian
for anomaly detection. For the first case, we analyzed the ex-
pectation value of the time-evolution sequence for the learned
Hamiltonian. We showed that by converting the sequence
to the frequency domain, one could observe significantly
different curves for two types of samples by computing the
power distribution for the fast-Fourier-transformed sequence.
Second, we showed that even the expectation value of the
learned Hamiltonian is significantly different for different data
types, which we quantified by analyzing the difference at
various thresholds.

Our findings signify a fundamental property of the
quantum many-body Hamiltonian. Once learned, the given
Hamiltonian represents the dynamical properties of a specific
quantum state. Since signal and background samples form
significantly different state representations, a Hamiltonian de-
signed for one type of sample reacts differently to a different
system, since these systems have distinct dynamical proper-
ties. Hence we showed that it is possible to treat a given data
sample as a quantum many-body system, and by using theory-
driven optimization techniques, one can learn this system’s
Hamiltonian to be used to understand its properties. Although
we only showed two possible use cases for generative mod-
eling and anomaly detection, we hope that such approaches
can be taken to devise more interpretable ML applications
and build dedicated optimization algorithms that can utilize
the system’s physical properties.

Although the usage of the quantum theory comes with
significant advantages, it is essential to admit that this method
comes with undeniable computational costs and limitations.
The obvious problem is the ability to execute these quantum
circuits within a quantum device. Although we used a rela-
tively small number of qubits, since generating the mixed state
of each data point within the circuit requires many executions,
we could not reproduce these results with a current quantum
device. However, this can be improved by storing the input
mixed states within a quantum memory device, which allevi-
ates the need to regenerate such a computationally expensive
process. As presented in the anomaly detection example, for
this particular data set, the geometrical position of the active
pixels is crucial to characterize the data set. Hence increasing
the number of qubits will allow more information, and our
experiments indicated that it would allow for the simulation
of fewer time steps for discrimination. Increasing the num-
ber of qubits also requires the implementation of extensive
correlations between features. An MPS Ansatz was suitable
enough since our experiments were implemented with a few
features. Still, we observed significant gains when more com-
plex circuit architectures were implemented, which will be
increasingly important with the implementation of larger fea-
ture spaces and makes the classical computation of the circuit
increasingly challenging.

A further obstacle to the method is the completely free
modular Hamiltonian which significantly affects the algo-
rithm’s scalability. With the increasing qubit size, the modular
Hamiltonian grows exponentially via 2Nq × 2Nq , which makes

it quite challenging to scale the algorithm for larger systems.
As we discussed before, this can be avoided by imposing
certain assumptions on the modular Hamiltonian to limit its
shape.
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APPENDIX A: RESTRICTED BOLTZMANN MACHINE

The restricted Boltzmann machine is a generative network
which learns the joint probability distribution that maximizes
the log-likelihood function [53–55]. Compared to the generic
Boltzmann machines, the RBM is formed as an undirected,
asymmetrical bipartite graph with two layers, i.e., visible and
hidden, where all visible nodes are connected to all hidden
nodes. The energy of the RBM is defined as

E (v, h) = −
∑

i

Bvis
i vi −

∑
j

Bhid
j h j −

∑
i, j

vih jWi j, (A1)

where Bvis and Bhid stand for visible and hidden biases,
respectively, Wi j is the weight matrix between visible and
hidden state, and h and v stand for hidden (or latent) and
visible (or input) states, respectively. Each configuration of
the visible state is associated with a scalar energy measure
[Eq. (A1)], which measures the compatibility of a given visi-
ble state where high-energy stands for low compatibility. The
goal of an energy-based model is to minimize the predefined
energy function.

A hidden state is constructed with respect to the given
visible state where the probability of the hidden state being
one is given as

p(h|v; θ ) = σ (vW + Bhid),

where θ stands for the collection of the trainable parameters
presented in W , Bhid, and Bvis and σ stands for the sigmoid
function. In order to construct hidden states h, one samples
from a Bernoulli distribution with probability p(h|v; θ ). Simi-
larly, the reconstruction probability of the visible state is given
by

p(v|h; θ ) = σ (hWT + Bvis ).

APPENDIX B: METRICS

The fidelity of two matrices is given by

F (σ, ρ) = [Tr(
√√

σρ
√

σ )]2. (B1)

The trace distance between two matrices is defined as

T (σ, ρ) = 1
2 Tr[

√
(σ − ρ)†(σ − ρ)]. (B2)

The von Neumann entropy of a matrix is given as

S (σ ) = Tr[σ ln(σ )]. (B3)

The Kullback-Leibler divergence between two probability
distributions (or two density matrices) is defined as

DKL(p|q) = p ln(p) − p ln(q). (B4)
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The power P of the fast Fourier transform is defined as [56]

P(λ) = Re

(
2
�t2

T
‖F(λ − λ̄)‖2

)
, (B5)

where λ is the signal in question, λ̄ stands for the mean of the
signal, T stands for the fast Fourier transform, and T = N�t ,
with N the number of time iterations with �t separation.
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