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Abstract—Signal identification, a vital task of intelligent com-
munication radios, finds its applications in various military and
civil communication systems. Previous works on identification
for space-time block codes (STBC) of multiple-input multiple-
output (MIMO) system employing orthogonal frequency division
multiplexing (OFDM) are limited to additive white Gaussian
noise. In this paper, we develop a novel automatic identification
algorithm to exploit the generalized cross-correntropy function
of the received signals to classify STBC-OFDM signals in the
presence of Gaussian noise and impulsive interference. This
algorithm first introduces the generalized cross-correntropy func-
tion to fully utilize the space-time redundancy of STBC-OFDM
signals. The strongly-distinguishable discriminating matrix is
then constructed by using the generalized cross-correntropy for
multiple receive antennas. Finally, a decision tree identification
algorithm is employed to identify the STBC-OFDM signals which
is extended by the binary hypothesis test. The proposed algorithm
avoids the traditionally required pre-processing tasks, such as
channel coefficient estimation, noise and interference statistics
prediction and modulation type recognition. Numerical results
are presented to show that the proposed scheme provides good
identification performance by exploiting the generalized cross-
correntropy function of STBC-OFDM signals under impulsive
interference circumstances.

Index Terms—Impulsive interference, multiple-input multiple-
output, orthogonal frequency division multiplexing, signal iden-
tification, space-time block code.
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S IGNAL identification is the primary task of identifying the
transmission parameters of communication signals with

minimal requirements for a priori knowledge. It allows a
variety of applications in intelligent wireless communication
systems, such as software-defined and cognitive radios [2], [3].
In the context of software-defined radio systems, a flexible
hardware platform under software control permits the trans-
mitter to choose transmission parameters, such as modulation
type and coding rate [4], [5]. At the receiving terminal, signal
identification is required to determine transmission parameters
of communication signals subject to impairments. Moreover,
cognitive radio systems take sensing spectrum state and iden-
tifying existing signals as a major task to achieve transmission
with acceptable interference [6], [7]. A considerable amount
of literature has been conducted for efficient and applica-
ble methods of signal identification for single-input single-
output systems. However, the advent and rapid adoption of
multiple-input-multiple-output with space-time block coding
(STBC) presents new signal parameters to discriminate and
new challenges to conquer, such as the detection of transmit-
antennas number and STBC identification under complicated
circumstances [8]–[10].

Several previous investigations on STBC identification have
reported for multiple-input multiple-output with single-carrier
(MIMO-SC). Two commonly used algorithms are likelihood-
based (LB) and feature-based (FB) methods for MIMO-
SC. The former computes the conditional probability density
function of the received signal for multiple hypotheses and
then utilizes the likelihood ratio test to discriminate between
several STBCs. In [11], Choqueuse et al. proposed three
new maximum-likelihood (ML) based schemes to classify
STBC format, namely the optimal classifier, second-order
statistic (SOS) classifier and code parameter (CP) classifier.
The optimal and the SOS algorithms exhibit an acceptable
classification performance, but they assume ideal conditions.
The CP classifier performs well in the absence of prior
knowledge. Marey et al. in [12] developed a maximum-
likelihood-based scheme to recognize the STBC signals and
modulation formats. For the FB approach, the space-time
redundancy of the received signals is employed to construct a
discriminating feature for classifying STBCs. Choqueuse et al.
in [13] presented an algorithm relying on the Frobenius norms
of the space-time correlations. This algorithm exhibits a good
performance at low signal-to-noise ratios, but it assumes a per-
fect estimate of timing synchronization. In [14], a maximum-
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likelihood criterion-based classification algorithm and a false
alarm rate-based classification algorithm were presented by
exploiting the cross-correlation properties of the STBC signals.
These two schemes achieve a good classification performance
and avoid the need for a modulation format. Yahia et al.
in [15] designed a likelihood ratio algorithm relying upon
the fourth-order moment and three classification algorithms
exploiting the fourth-order lag product (FOLP) to distinguish
STBC signals. The first algorithm requires the prior knowl-
edge of signal parameters, but three FOLP-based algorithms
overcome this drawback. Shi et al. developed a classification
scheme based on the cyclic correlations introduced by the
space-time redundancy to distinguish STBC from Bell Labs
Layered Space Time Architecture [16]. In [17], Marey et al.
exploited the second-order cyclic statistics of STBC signals
as the discriminating feature and proposed a cyclostationarity-
based classification algorithm in the presence of transmission
impairments. Mohammadkarimi et al. in [18] formulated the
signal identification problem as a goodness of fit test and
employed the Kolmogorov-Smirnov test to classify spatial
multiplexing (SM) and Alamouti (AL) space-time block code.
This algorithm provides a good performance and requires little
prior information on signal parameters.

STBC identification for multiple-input multiple-output-
orthogonal frequency division multiplexing (MIMO-OFDM)
systems has received relatively less attention in the field of
signal identification than MIMO-SC. Existing works devoted
to STBC identification for MIMO-OFDM mainly follow the
FB approach. In [19], Marey et al. presented a new hypothesis
test-based method to identify STBC-OFDM signals by investi-
gating the cross-correlation of the received signals from differ-
ent antennas. While the method is sensitive to frequency offset,
it does not require a priori information of transmission param-
eters. Eldemerdash et al. in [20] developed an efficient scheme
to blindly the SM and AL codes for MIMO-OFDM systems.
A novel cross-correlation of received signals is introduced to
provide an efficient feature for STBC-OFDM identification. In
[21], Karami et al. focused on the application of second-order
cyclostationarity properties to blindly identify the SM-OFDM
and AL-OFDM signals. These algorithms in [20] and [21]
achieve a satisfactory performance with a shorter observation
time, and they are robust to the carrier frequency offset. In

[22], Marey et al. designed an STBC identification and channel
estimation scheme for OFDM transmissions. However, all
these works considered only the Gaussian noise assumption.
In practice, impulsive interference caused by man-made and
natural noise consistently occurs in wireless channels [23],
[24]. The α-stable distribution provides an efficient solution
to model non-Gaussian impulsive behavior. Unfortunately, the
STBC-OFDM identification algorithms designed for Gaussian
noise do not perform well in non-Gaussian interference. In the
literature, several solutions have been suggested to ameliorate
the performance of signal identification for SISO systems in
the presence of non-Gaussian noise/interference [25], [26].
Terms from the existing literature and investigations, there has
been no work involving the automatic identification of STBC
for MIMO-OFDM systems in the presence of Gaussian noise
and impulsive interference.

In this paper, we present an efficient algorithm aimed at
identifying the STBC-OFDM signals corrupted by impulsive
interference in frequency-selective fading channels. A novel
generalized cross-correntropy is introduced for the received
signals, which provides a powerful discriminating feature.
Using this, a novel decision tree algorithm is developed.
The proposed algorithm does not require prior information
of the signal and channel parameters. Moreover, it has the
advantage of providing a good identification performance
under the Gaussian noise and impulsive interference. The main
contributions of this paper are summarized as follows.

• Unlike previous works considering the Gaussian noise
only, we investigate the efficient identification algorithm
for STBC-OFDM signals corrupted by both the impulsive
interference and Gaussian noise. We assume that impul-
sive interference follows a symmetric alpha-stable distri-
bution. The space-time code candidate pool of four linear
STBCs (SM, AL, STBC3, and STBC4) is considered.

• The generalized cross-correntropy function between re-
ceive antenna pairs is introduced to take full advantage of
space-time redundancy for STBC-OFDM signals. Then, a
decision tree algorithm is proposed to improve the iden-
tification performance in Gaussian noise and impulsive
interference over frequency-selective fading channels.
The identification algorithm based on generalized cross-
correntropy function does not need accurate information

TABLE I
NOTATIONS.

Notations Descriptions Notations Descriptions

[·]T Transposition |·| Absolute value

mod Modulo operation (·)∗ Complex conjugate

E {·} Mathematical expectation Uλ Block length of STBC

xf The symbol x at the f -th antenna G(il,ik) The variable G depend on antenna il and ik

exp (·) Exponential function ∥·∥F Frobenius norm

δ Kronecker delta Γ (·) Gamma Function

∥·∥l1 l1 norm ∥·∥l2 l2 norm

Pr (C) Probability of the event C ≈ Approximately equal sign
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Fig. 1. Block diagram of the STBC identification for MIMO-OFDM systems.

about the channel knowledge, the number of transmit an-
tennas, modulation type, and signal-to-noise/interference
ratio.

• The performance of the proposed identification algorithm
is also evaluated in the context of different system pa-
rameters. The experimental result indicated that the iden-
tification algorithm achieves a satisfactory identification
performance with symmetric alpha stable interference
in the moderate-to-high SNR range, and is robust with
respect to the characteristic exponent.

The remainder of this paper is organized as follows. Section
II defines the system model. Section III presents the gen-
eralized cross-correntropy function of different STBCs and
describes a decision tree identification algorithm for STBC-
OFDM signals. The simulation results are provided in Section
IV. Finally, this paper is summarized in Section V. Table I lists
the notations used in this paper.

II. SYSTEM MODEL

Consider a wireless MIMO-OFDM system with Mt transmit
antennas and Mr receive antennas, which employs an STBC
architecture as shown in Fig. 1. Assuming that the transmission
data symbols are random and independent, and drawn from
either an M -ary quadrature amplitude modulation (QAM) or
phase-shift keying (PSK) signal constellation. The modulated
data stream is parsed into data blocks of length Nz . The STBC
encoder employs a code matrix C ({dm}) of size Mt×NzU
to encode each data block {dm} to be transmitted during U
block instants. In this paper, the codewords include SM, AL,
and two STBCs with different code rates [19], [27], whose
codeword matrices are given by

CSM =
[
c0m+0 c1m+0

]
=
[
d2m+0 d2m+1

]
,

(1)

CAL=

 c02m+0 c12m+0

c02m+1 c12m+1


=

 d2m+0 d2m+1

−d∗
2m+1 d∗

2m+0

 ,
(2)

CSTBC3 =


c04m+0 c14m+0 c24m+0

c04m+1 c14m+1 c24m+1

c04m+2 c14m+2 c24m+2

c04m+3 c14m+3 c24m+3



=


d3m+0 d3m+1 d3m+2

−d∗
3m+1 d∗

3m+0 0

−d∗
3m+2 0 d∗

3m+0

0 −d∗
3m+2 d∗

3m+1

 ,
(3)

CSTBC4 =



c08m+0 c18m+0 c28m+0

c08m+1 c18m+1 c28m+1

c08m+2 c18m+2 c28m+2

c08m+3 c18m+3 c28m+3

c08m+4 c18m+4 c28m+4

c08m+5 c18m+5 c28m+5

c08m+6 c18m+6 c28m+6

c08m+7 c18m+7 c28m+7



=



d4m+0 d4m+1 d4m+2

−d4m+1 d4m+0 −d4m+3

−d4m+2 d4m+3 d4m+0

−d4m+3 −d4m+2 d4m+1

d∗
4m+0 d∗

4m+1 d∗
4m+2

−d∗
4m+1 d∗

4m+0 −d∗
4m+3

−d∗
4m+2 d∗

4m+3 d∗
4m+0

−d∗
4m+3 −d∗

4m+2 d∗
4m+0



.

(4)

The output of the encoder cfUm+u is fed into an Nz-point
inverse fast Fourier transform, yielding the time-domain block
x̃fUm+u =

[
x̃fUm+u (0) , x̃

f
Um+u (1) , · · · , x̃

f
Um+u (Nz − 1)

]
.

Subsequently, the last ν samples are appended as a cyclic
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prefix, with the resulting OFDM symbol given by xfUm+u =[
xfUm+u (0) , x

f
Um+u (ν) , · · · , x

f
Um+u (Nz + ν − 1)

]
. Hence,

the OFDM block can be expressed as

xfUm+u(n1)=
1√
Nz

Nz−1∑
p=0

cfUm+u (p) exp

(
j2πp(n1−ν)

Nz

)
, (5)

where n1 = 0, 1, · · · , Nz + ν − 1. Furthermore, the trans-
mitted sequence from the f -th antenna can be written as
Sf =

[
· · · ,xf−2,x

f
−1,x

f
0 ,x

f
1 ,x

f
2 , · · ·

]
. The transmit sequence

from the f -th antenna is distorted by an unknown Lh-path
frequency-selective fading channel characterized by the vector
hfi =

[
hfi (l) , · · · , hfi (Lh − 1)

]
. Accordingly, the received

signal at the i-th receive antenna can be written as

ri (n) = s̃i (n) + Ii (n) + wi (n)

=

Mt−1∑
f=0

Lh−1∑
l=0

hfi (l) s
f (n− l) + Ii (n) + wi (n),

(6)

where Lh is the number of propagation paths, hfi (l) is the
channel coefficient corresponding to the l-th path between the
f -th transmit antenna and the i-th receive antenna, wi (n) is
the Gaussian noise with mean and variance σ2

w and Ii (n) rep-
resents the impulsive interference at the i-th receive antenna.

The impulsive interference is modeled by the symmet-
ric alpha stable distribution (SαS) in this paper. SαS is
a simplification of the alpha stable distribution that is an
excellent model for impulsive interference [28]–[30]. A stable
distributed random variable y is denoted as y∼ SαS (γα, eα),
which is described by its characteristic function as

φ (y) = exp {jeαy − γα|y|α} , (7)

where γα is the dispersion coefficient, eα is the location
parameter, and α is the characteristic exponent with 1 <
α < 2. Two special-case alpha distributions are the Cauchy
distribution where α = 1 and the Gaussian distribution where
α = 2.

The next section discusses the STBC identification scheme
for MIMO-OFDM systems which leverages the generalized
cross-correntropy to overcome the shortcomings associated
with conventional identification algorithms.

III. IDENTIFICATION OF STBC-OFDM BASED ON
GENERALIZED CROSS-CORRENTROPY

In this section, we first analyze the generalized cross-
correntropy of the received signals from different antennas.
Then, a novel identification scheme using the generalized
cross-correntropy function is proposed to distinguish STBC-
OFDM signals.

A. Generalized Cross-Correntropy Function

The correntropy is a generalization of the correlation func-
tion that can better suppress the impulsive noise/interference.
The correntropy function and its extension recently find var-
ious applications in the field of signal processing as a novel
theory and approach for statistical characteristics, such as
signal detection, parameter estimation and target localization
[31]–[33]. In order to tackle the impulsive interference, a
novel generalized cross-correntropy is introduced to extract the
discriminating feature for identifying STBC-OFDM signals,
which relies on the space-time redundancy of the received
signals from different antennas.

We first define the generalized cross-correntropy function
between the i1-th receive antenna and the i2-th receive antenna
as

G(n, n+ τ)

=
1

Uλ

Uλ−1∑
g=0

E
{
κς
(
ri1(ng)−ri2(ng+τg)

)
J (ng, ng+τg)

}
,

(8)

where ng = n + g (Nz + ν), ng + τg = n +
(g + τ) (Nz+ν) and J (ng, ng+τg)= ri1 (ng) r

i2 (ng + τg).
κς
(
ri1 (ng)− ri2 (ng + τg)

)
is expressed as in (9) at the

bottom of the page, where υ is the width parameter, ς is the
shape parameter and υ > 0, ς > 0, ξg is the suppression
parameter and |ϑ| is a very small constant. Uλ denotes the
block length of STBC and λ ∈ {SM,AL,STBC3,STBC4}.

The generalized cross-correntropy function Gr (n, n+ τ)

κς
(
ri1 (ng)− ri2 (ng + τg)

)
=

ς

2υΓ (1/ς)
exp

(
−
∣∣∣∣ri1 (ng)− ξgr

i2 (ng + τg) + |ϑ|
υ

∣∣∣∣ς) (9)

Gr (n, n+ τ)=
1

Uλ

Uλ−1∑
g=0

ς

2υΓ (1/ς)
E

{
ri1 (ng) r

i2 (ng + τg)

Ωκ

}

=
1

Uλ

Uλ−1∑
g=0

ς

2υΓ (1/ς)
E

{
s̃i1 (ng)+I

i1 (ng)+w
i1 (ng)

Ωκ

(
s̃i2 (ng+τg)+I

i2 (ng+τg)+w
i2 (ng+τg)

)}

≈ 1

Uλ

Uλ−1∑
g=0

ς

2υΓ (1/ς)

(
E

{
s̃i1 (ng) s̃

i2 (ng+τg)

Ωκ

}
+E

{
Ii1(ng) I

i2 (ng+τg)

Ωκ

}
+E

{
wi1(ng)w

i2(ng+τg)

Ωκ

})
(11)
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can be rewritten as
Gr (n, n+ τ)

=
1

Uλ

Uλ−1∑
g=0

E
{
κς
(
ri1(ng)−ri2 (ng+τg)

)
J (ng, ng+τg)

}
=

1

Uλ

Uλ−1∑
g=0

ς

2υΓ (1/ς)
E

{
ri1 (ng) r

i2 (ng+τg)

Ωκ

}
,

(10)

where Ω−1
κ = exp

(
−
∣∣∣ ri1 (ng)−ξgri2 (ng+τg)+|ϑ|

υ

∣∣∣ς). Assuming

that the signal sij (n), the impulsive interference I
ij
(n) and

the Gaussian noise w
ij
(n) are all uncorrelated, Gr (n, n+ τ)

can be further written as in (11) at the bottom of the page.
Let Gs(n,n+τ) = 1

Uλ

∑Uλ−1
g=0

{
s̃i1(ng)s̃

i2(ng+τg)
Ωκ

}
, GI(n,n+τ)

= 1
Uλ

∑Uλ−1
g=0

{
Ii1 (ng)I

i2 (ng+τg)
Ωκ

}
and Gw (n,n+τ) =

1
Uλ

∑Uλ−1
g=0

{
wi1 (ng)w

i2 (ng+τg)
Ωκ

}
, Gr (n, n+ τ) can be fur-

ther expressed as

Gr(n, n+τ)≈Aς[Gs(n,n+τ)+GI(n,n+τ)+Gw(n,n+τ)] . (12)

where Aς = ς/2υΓ (1/ς).
In order to facilitate the analysis, for the condition of high

signal-to-noise ratio, Gr(n, n+τ) can be approximated as

Gr (n, n+ τ) ≈ Gs (n, n+ τ)

≈ Aς
UλCs

Uλ−1∑
g=0

E
{
s̃i1 (ng) s̃

i2 (ng + τg)
}
,

(13)

where C−1
s ≈ exp

(
−
∣∣∣ Ii1 (ng)−ξgIi2 (ng+τg)+|ϑ|

υ

∣∣∣ς) is related
to the amplitude of the impulsive interference for smaller
characteristic exponent.

Based on the above discussion and the analysis in [19],
the following observations can be made for different STBC-
OFDM signals.

Lemma 1: For SM-OFDM signal, the generalized
cross-correntropy is approximately equal to zero, i.e.,
Gr (n, n+ τ) ≈ 0.

Proof: Considering that the signal si (n), the impulsive
interference Ii (n) and the Gaussian noise wi (n) are uncor-
related, the Gaussian noise and the impulsive interference are

assumed to be independent and identically distributed. From
(1) and (6), we can obtain

E
{
xf1m (n1)x

f2
m′ (n2)

}
= 0. (14)

According to (13) and (14), Gr (n, n+ τ) can be approxi-
mated as

Gr (n, n+ τ) ≈ 0. (15)

Lemma 2: The generalized cross-correntropy for AL-
OFDM signal is nonzero only at τ = 1, that is, GAL

r (n, n+ 1)
exhibits peaks.

Proof: For different moments at different antennas the
symbols, xf12m+0 (n1) and xf22m+1 (n2) exhibit the following
properties in (16) and (17) at the bottom of the page.

Using (16) and (17), GAL
r (n, n+ 1) can be approximated

as

GAL
r (n, n+ 1) ≈ B1

∞∑
ρ=−∞

Lh−1∑
l,l′=0

η1 (l, l
′) δ (n− ρl), (18)

where B1 = AςC
1
σs

/
Cs, Cσs is associated with σ2

s , η1 (l, l′)
is a polynomial with respect to hfi (l) and ρl is a polynomial
with parameters of l, Nz and ν.

Lemma 3: The generalized cross-correntropy for STBC3-
OFDM signal is nonzero values at τ = 2, that is,
GSTBC3
r (n, n+ 2) exhibits nonzero magnitudes.

Proof: Based on the coding matrix in (3),
E
{
xf14m+u (n1)x

f2
4m′+u′ (n2)

}
can be expressed as

E
{
xf14m+u (n1)x

f2
4m+u (n2)

}

=


σ2
sM (n1, n2,m,m) ∀ (f1, f2, u, u′) ∈ T3

−σ2
sM (n1, n2,m,m) ∀ (f1, f2, u, u′) ∈ T4

0 otherwise,

(19)

where M (n1, n2,m,m)=δ (mod (n1+n2, Nz)) δ(m−m′), T3

and T4 represent the value set of variables (f1, f2, u, u
′).

From (13) and (19), we can obtain

GSTBC3 (n, n+2)≈B2

∞∑
ρ=−∞

Lh−1∑
l,l′=0

η2 (l, l
′) δ (n− ρl), (20)

E
{
xf12m+0 (n1)x

f2
2m+1 (n2)

}
=

1

Nz

Nz−1∑
k,k̃

{
d2m+0 (k) d

∗
2m+0

(
k̃
)}

exp

j2π
(
kn1 + k̃n2

)
Nz


=
σ2
s

Nz

Nz−1∑
k

exp

(
j2πk (n1 + n2)

Nz

)
= σ2

sδ (mod (n1 + n2, Nz))

(16)

E
{
xf12m+1 (n1)x

f2
2m+0 (n2)

}
=

1

Nz

Nz−1∑
k,k̃

{
−d2m+1 (k) d

∗
2m+1

(
k̃
)}

exp

j2π
(
kn1 + k̃n2

)
Nz


= −σ2

sδ (mod (n1 + n2, Nz))

(17)
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Fig. 2. The magnitudes of G(n, n+ τ) for the a) SM-OFDM, b) AL-OFDM, c) STBC3-OFDM, and d) STBC4-OFDM, respectively.

where B2 = AςC
2
σs

/
Cs, η2 (l, l′) is a polynomial with respect

to hfi (l).
Lemma 4: The generalized cross-correntropy for STBC4-

OFDM signal is nonzero when τ = 4, that is,
GSTBC4
r (n, n+ 4) exhibits discriminating peaks.

Proof: STBC4-OFDM According to the coding matrix in
(4), E

{
xf18m+u (n1)x

f2
8m′+u′ (n2)

}
can be written as

E
{
xf18m+u (n1)x

f2
8m+u (n2)

}

=


σ2
sM (n1, n2,m,m) ∀ (f1, f2, u, u′) ∈ T5

−σ2
sM (n1, n2,m,m) ∀ (f1, f2, u, u′) ∈ T6

0 otherwise.

(21)

Based on (13) and (21), we can obtain

GSTBC4 (n, n+ 4)≈B3

∞∑
ρ=−∞

Lh−1∑
l,l′=0

η3 (l, l
′) δ (n− ρl), (22)

where B3 = AςC
3
σs

/
Cs, η3 (l, l′) is a polynomial with respect

to hfi (l).
Remark 1: Based on lemma 1- lemma 4, we note that the

generalized cross-correntropy Gr (n, n+ τ) exhibits signifi-
cant differences for different STBC-OFDM signals at different
values of τ . More specifically, Gr (n, n+ τ) for SM-OFDM
does not exhibit peaks at τ , and Gr (n, n+ τ) exhibits peaks
for AL-OFDM, STBC3-OFDM and STBC4-OFDM when
τ = 1, τ = 2 and τ = 4. Furthermore, STBC4-OFDM
can be distinguished from STBC3-OFDM, AL-OFDM and
SM-OFDM by utilizing Gr (n, n+ τ) at τ = 4; STBC3-
OFDM can be discriminated from AL-OFDM and SM-OFDM

by exploiting Gr (n, n+ τ) at τ = 2; SM-OFDM can be
identified from AL-OFDM by using Gr (n, n+ τ) at τ = 1.
Fig. 2 shows the magnitudes of G(n, n+ τ) for different
STBC-OFDM signals. These results validate the theoretical
findings for Gr (n, n+ τ).

In the following, we will develop a novel decision tree clas-
sification scheme for STBC-OFDM signals. First, the feature
matrix of the generalized cross-correntropy is employed to
construct the discriminating matrix for different STBC-OFDM
signals. Using the discriminating matrix, the test statistic and
detection threshold will be constructed in a sequential binary
hypothesis test. Finally, a decision tree identification algorithm
will be developed to identify the STBC-OFDM signals.

B. STBC-OFDM Identification Scheme
In practice, it is usually not possible to obtain the general-

ized cross-correntropy. Hence, it is generally estimated as

Ĝ(i1,i2)
r (n, n+ τ)

=
1

Nb

Nb−1∑
k=0

{
κς
(
ri1(nk)−ri2(nk+τk)

)
J (nk, nk + τk)

}
=

1

Nb

Nb−1∑
k=0

{
ri1 (nk) r

i2 (nk + τk)

× exp

(
−
∣∣∣∣ri1 (nk)− ξkr

i2 (nk + τk) + |ϑ|
υ

∣∣∣∣ς)}
≈ G̃s (n, n+ τ) + ε̃G (n, n+ τ) ,

(23)

where J (nk, nk+τk) = ri1 (nk) r
i2 (nk+τk), nk = n +

k (Nz+ν), nk+ τk = n+(k+τ) (Nz+ν), and ε̃G (n, n+τ)
is the estimation error.

Ĝτ=1
AL =

[
G̃

(1,2)
AL (n, n+1) + ε̃

(1,2)
G (n, n+1) · · · G̃

(Mr−1,Mr)
AL (n, n+1)+ε̃

(Mr−1,Mr)
G (n, n+1)

]T
(28)
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Without loss of generality, we first use SM and AL as
illustrative examples. When Nb → ∞, the generalized cross-
correntropy estimator Ĝ

(i1,i2)
r (n, n+ τ) approximately ap-

proaches zero for SM, and it exhibits the peak value for AL.
Based on this, the following hypothesis testing is formulated
to differentiate the AL-OFDM and SM-OFDM signals asH0 : Ĝ

(i1,i2)
r (n, n+τ)= ε̃G(n, n+τ)

H1 : Ĝ
(i1,i2)
r (n, n+τ)=G̃AL(n, n+τ)+ε̃G(n, n+τ) ,

(24)

where H0 denotes the hypothesis that SM-OFDM is ture and
H1 represents that AL-OFDM is ture.

For multiple receive antennas, we denote a set of receive
antenna pairs as

Υ = {(i1, i2) : i1 ̸= i2, 1 ≤ i1 ≤Mr, 1 ≤ i2 ≤Mr} . (25)

Based on (23), we obtain the generalized cross-correntropy
feature matrix for the antenna index set Υ as

Ĝτ
r=
[∣∣∣Ĝ(1,2)

r (n, n+τ)
∣∣∣ · · ·

∣∣∣Ĝ(Mr−1,Mr)
r (n, n+τ)

∣∣∣]T, (26)

where n ∈ [0, Pn] Pn > Nz/2 + ν and Ĝ
(i1,i2)
r (n, n+ τ)

denote the generalized cross-correntropy of the signals from
different receiving antennas.

According to (15) and (26), the feature matrix Ĝτ=1
SM of SM-

OFDM can be expressed as

Ĝτ=1
SM=

[
ε̃
(1,2)
G (n, n+1) · · · ε̃

(Mr−1,Mr)
G (n, n+1)

]T
. (27)

Similarly, the feature matrix Ĝτ=1
AL can be given as (28) at

the bottom of the page.
We recall that Ĝ(i1,i2)

AL (n, n+ 1) exhibits the peaks when
n = ρl, and Ĝ

(i1,i2)
SM (n, n+ 1) does not exhibit peaks. From

the discussion, we extract the elements of the peak position in
the feature matrix to construct the discriminating matrix as

Vτ=1G =
[∣∣∣Ĝ(1,2)

r (v1,v1+1)
∣∣∣· · ·∣∣∣Ĝ(Mr−1,Mr)

r (vLe ,vLe+1)
∣∣∣]T, (29)

where ve represents the e-th peak position in∣∣∣G̃(i1,i2)
AL (n, n+ 1)

∣∣∣. To reduce the error, we extend the
peak position by discriminating all ∆ values around ve, i.e.
ṽl ∈ [ve −∆, ve +∆]. Hence, the discriminating matrix Ṽτ=1G

can be further expressed as

Ṽτ=1G =
[∣∣∣Ĝ(1,2)

r (̃v1,ṽ1+1)
∣∣∣· · ·∣∣∣Ĝ(Mr−1,Mr)

r (̃vLe ,ṽLe+1)
∣∣∣]T, (30)

where the discriminating matrix Ṽτ=1
G for Ĝτ=1

AL contains large
non-zero peaks, while the elements of Ṽτ=1

G for Ĝτ=1
SM remain

as error terms. Thus, we can exploit the discriminating matrix
Ṽτ=1

G to obtain the test statistic TĜτ=1
r

as

TĜτ=1
r

=
1

Lτ=1
Ṽ

Iτ=1
Ṽ

∥∥∥Ṽτ=1
G

∥∥∥
l1
, (31)

where Lτ=1
Ṽ

and Iτ=1
Ṽ

are the numbers of rows and columns
of matrix Ṽτ=1

G , respectively, and ∥U∥l1 denotes the sum of
the absolute values of elements in matrix U.

According to the test statistic TĜτ=1
r

, we formulate the
decision criterion asH0 : TĜτ=1

r
≤ ψĜτ=1

r

H1 : TĜτ=1
r

> ψĜτ=1
r

,
(32)

where ψÛτ=1
r

represents the decision threshold. Under H0, the
test statistic TĜτ=1

r
is not greater than the decision thresh-

old ψĜτ=1
r

, i.e., Ĝτ=1
r does not exhibit peaks. Under H1

hypothesis, there is least one peak in Ĝτ=1
r . Based on the

central limit theorem, |ε̃G (n, n+ 1)| approximately follows a
Gaussian distribution for sufficiently large Nb. As a result, we
can set the detection threshold as

ψĜτ=1
r

= µTG|H0
+ tψσTG|H0

, (33)

where µTG|H0
and σ2

TG|H0
are the moment and variance of

TÛτ=1
r

under H0, respectively.
Then, TĜτ=1

r
under H0 is used to estimate µTG|H0

and
σ2
TG|H0

.
Based on (27) and (28), the elements of Ĝτ=1

SM can be
expressed as

Ĝ
(i1,i2)
SM (n, n+1)= ε̃

(i1,i2)
G (n, n+1) , (34)

and the elements of Ûτ=1
AL can be written as

Ĝ
(i1,i2)
AL (n, n+1)=G̃

(i1,i2)
AL (n, n+1)+ε̃

(i1,i2)
G (n, n+1) . (35)

By comparing (34) and (35), we can see that the main
difference between Ĝ

(i1,i2)
AL (n, n+ 1) and Ĝ

(i1,i2)
SM (n, n+ 1)

is attributed to G̃(i1,i2)
AL (n, n+ 1). If the elements of the dis-

criminating matrix Ṽτ=1
G are removed from the feature matrix

Ĝτ=1
r , the error matrix Ẽτ=1

G is obtained, which consists of
the error term ε̃

(i1,i2)
U (n, n+ 1) as

Ẽτ=1
G = Ĝτ=1

r ©Ṽτ=1
G , (36)

where A©B denotes the removal of elements of matrix B
from matrix A.

As mentioned previously, it is clear that the elements of
Ṽτ=1

G for Ûτ=1
SM are error terms, and the elements of the error

matrix Ẽτ=1
G are similarly error terms. Therefore, the moment

of TÛτ=1
r

under H0 can be approximated as

µ̂TG|H0
=

1

Lτ=1
Ẽ

Iτ=1
Ẽ

∥∥∥Ẽτ=1
G

∥∥∥
l1
, (37)

where Lτ=1
Ẽ

and Iτ=1
Ẽ

denote the number of rows and columns
of Ẽτ=1

G , respectively. ∥E∥l1 represents the sum of the abso-
lute values of the elements in E. Under H0, the variance of
TĜτ=1

r
can be approximated as

σ̂2
TG|H0

=
1

Lτ=1
Ẽ
Iτ=1
Ẽ

(
1

Lτ=1
Ẽ
Iτ=1
Ẽ

∥∥∥Ẽτ=1G

∥∥∥2
l2
−µ̂2

TG|H0

)
, (38)

where ∥E∥2l2 is the sum of the squares of the absolute values
of the elements in E.

Using this discriminating matrix, we extend the binary
hypothesis test to develop a decision tree scheme based on
the generalized cross-correntropy for identifying the STBC ∈
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{STBC4, STBC3,AL, SM}. The structure of the decision tree
identification algorithm is shown in Fig. 3. As shown in Fig.
3, the STBC4 is distinguished from {STBC3,AL, SM} at
the top-level node of the decision tree. The generalized cross-
correntropy feature matrix Ĝτ=4

r for τ = 4 is calculated to
extract the discriminating matrix Ṽτ=4

G and the error matrix
Ẽτ=4

G , which in turn constructs the test statistic TĜτ=4
r

and
detection threshold ψĜτ=4

r
. Correspondingly, the generalized

cross-correntropy feature matrix Ĝτ=4
r can be expressed as

Ĝτ=4
r =

[∣∣∣Ĝ(1,2)
r (n, n+4)

∣∣∣, · · · , ∣∣∣Ĝ(Mr−1,Mr)
r (n, n+4)

∣∣∣]T. (39)

STBC4

NOYes

STBC3

NOYes

AL

NOYes

SM

Received Signal

4 4ˆ ˆ
r r

G G
T  

 


4ˆ
r

G


2ˆ
r

G


2 2ˆ ˆ
r r

G G
T  

 


1ˆ
r

G


1 1ˆ ˆ
r r

G G
T  

 


Fig. 3. Decision tree based on the generalized cross-correntropy function
for the identification of STBC-OFDM signals.

Using the feature matrix Ĝτ=4
r , the discriminating matrix

Ṽτ=4
G can be constructed as

Ṽτ=4
G =

[∣∣∣Ĝ(1,2)
r (̃v1,ṽ1+4)

∣∣∣, · · · ,∣∣∣Ĝ(Mr−1,Mr)
r (̃vLe ,ṽLe+4)

∣∣∣]T. (40)

According to (40), the detection statistic TĜτ=4
r

at the top-
level node is expressed as

TĜτ=4
r

=
1

Lτ=4
Ṽ

Iτ=4
Ṽ

∥∥∥Ṽτ=4
G

∥∥∥
l1
. (41)

By exploiting the feature matrix Ĝτ=4
r and the discriminat-

ing matrix Ṽτ=4
G , the error matrix can be obtained as

Ẽτ=4
G = Ûτ=4

r ©Ṽτ=4
G . (42)

Now, using the error matrix Ẽτ=4
G , the moment µ̂

T
C1
G |H0

and variance σ̂2

T
C1
G |H0

can be expressed as

µ̂
T

C1
G |H0

=
1

Lτ=4
Ẽ

Iτ=4
Ẽ

∥∥∥Ẽτ=4
G

∥∥∥
l1
, (43)

σ̂2

T
C1
G |H0

=
1

Lτ=4
Ẽ

Iτ=4
Ẽ

(
1

Lτ=4
Ẽ

Iτ=4
Ẽ

∥∥∥Ẽτ=4
G

∥∥∥2
l2
−µ̂2

T
C1
G |H0

)
. (44)

Using (43) and (44), the detection threshold ψĜτ=4
r

is
obtained as

ψĜτ=4
r

= µ̂
T

C1
G |H0

+ tψσ̂TC1
G |H0

. (45)

If TĜτ=4
r

> ψĜτ=4
r

, the received signal is identified as
STBC4, otherwise go to the middle level node of the decision
tree.

Similarly, the generalized cross-correntropy feature matrix
Ĝτ=2

r is exploited to discriminate STBC3 from {AL,SM}
at the middle level node. The detection statistic TĜτ=2

r
at the

middle level node is expressed as

TĜτ=2
r

=
1

Lτ=2
Ṽ

Iτ=2
Ṽ

∥∥∥Ṽτ=2
G

∥∥∥
l1
, (46)

with Ṽτ=2
U given as

Ṽτ=2
G =

[∣∣∣Ĝ(1,2)
r (̃v1,ṽ1+2)

∣∣∣, · · · ,∣∣∣Ĝ(Mr−1,Mr)
r (̃vLe ,ṽLe+2)

∣∣∣]T, (47)

where the feature matrixĜτ=2
r can be expressed as

Ĝτ=2
r =

[∣∣∣Ĝ(1,2)
r (n, n+2)

∣∣∣ · · · ∣∣∣Ĝ(Mr−1,Mr)
r (n, n+ 2)

∣∣∣ ]T. (48)

Similar to ψĜτ=4
r

, the detection threshold ψĜτ=2
r

can be
obtained as

ψĜτ=2
r

= µ̂
T

C2
G |H0

+ tψσ̂TC2
G |H0

, (49)

where µ̂
T

C2
G |H0

and σ̂2

T
C2
G |H0

can be expressed as

µ̂
T

C2
G |H0

=
1

Lτ=2
Ẽ

Iτ=2
Ẽ

∥∥∥Ẽτ=2
G

∥∥∥
l1
, (50)

σ̂2

T
C2
G |H0

=
1

Lτ=2
Ẽ

Iτ=2
Ẽ

(
1

Lτ=2
Ẽ

Iτ=2
Ẽ

∥∥∥Ẽτ=2
G

∥∥∥2
l2
−µ̂2

T
C2
G |H0

)
, (51)

with
Ẽτ=2

G = Ĝτ=2
r ©Ṽτ=2

G . (52)

If TĜτ=2
r

> ψĜτ=2
r

, the received signal is determined as
STBC3; otherwise, at the bottom level node of the decision
tree, AL and SM are identified by using the test statistic TĜτ=1

r

in (31) and the detection threshold ψĜτ=1
r

in (33).
The procedure of STBC-OFDM identification algorithm

based on the generalized cross-correntropy function is sum-
marized in Algorithm 1.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we will show the identification performance
of the proposed algorithm using Monte Carlo simulation.
We consider a MIMO-OFDM wireless communication system
that employs STBC architecture. Unless otherwise mentioned,
we consider an OFDM system with quadrature phase shift
keying (QPSK). The number of sub-carriers is Nz = 64,
the cyclic prefix length is ν = Nz/4. The number of
observed blocks is Nb = 2000 and the number of receive
antennas is Mr = 4. The width parameter and the shape
parameter are set as υ = 5 and ς = 0.3. The Monte
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Algorithm 1: Identification of STBC-OFDM based on
generalized cross-correntropy function.
Input : The observed signal r (n).
Output: STBC

1 Initialize parameters τ = 4.
2 Calculate the generalized cross-correntropy feature matrix
Ĝτ=4

r .
3 Extract the discriminating matrix Ṽτ=4

G and the error
matrix Ẽτ=4

G by utilizing Ĝτ=4
r .

4 Construct the test statistic TĜτ=4
r

and detection threshold
ψĜτ=4

r
by using Ṽτ=4

G and Ẽτ=4
G .

5 if TĜτ=4
r

> ψĜτ=4
r

then
6 the received signal is identified as STBC4 .
7 else
8 go to step 9.
9 Set parameters τ = 2 and calculate Ĝτ=2

r , Ṽτ=2
G , Ẽτ=2

G ,
TĜτ=2

r
and ψĜτ=2

r
.

10 if TĜτ=2
r

> ψĜτ=2
r

then
11 the received signal is identified as STBC3.
12 else
13 go to step 14.
14 Set parameters τ = 1 and calculate Ĝτ=1

r , Ṽτ=1
G , Ẽτ=1

G ,
TĜτ=1

r
and ψĜτ=1

r
.

15 if TĜτ=1
r

> ψĜτ=1
r

then
16 the received signal is identified as AL.
17 else
18 the received signal is SM.

Carlo method is used to set the parameter tψ . The received
signal was affected by Gaussian noise and symmetric alpha
stable interference. The signal-to-interference ratio SIR is
defined as SIR = E

[
∥r (n)− I (n)−w (n)∥2F

]/
(Mrγα),

with γα being the dispersion coefficient of the symmetric alpha
stable interference. Furthermore, the channel is assumed to be
a frequency-selective Rayleigh fading channel consisting of
Lh = 4 statistically independent taps. For the performance of
STBC-OFDM identification, the average probability of correct
identification Pc is used as a performance measure, which is
defined as

Pc =
1

Lλ

∑
Pr

(
ĈT |CT

)
, (53)

where CT ∈ λ and λ = {STBC4,STBC3,AL, SM}, Lλ
denotes the number of elements of λ.

First, the influence of the number of OFDM subcarriers Nz
on the identification performance of the proposed algorithm
is analyzed. In Fig. 4, the average probability of correct
identification Pc of STBC-OFDM signals is presented ver-
sus SNR for Nz = 64, 128, 256 in symmetric alpha stable
interference. In the simulation, the cyclic prefix length of
OFDM is ν = Nz/4, SIR = 18dB, and the characteristic
exponent is α = 1.8. It is evident from Fig. 4 that the
identification performance of the proposed algorithm improves
significantly as the number of OFDM subcarriers Nz increases.
For example, for SNR = 0dB, the average probability of
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Fig. 4. Average probability of correct identification versus SNR for different
numbers of OFDM subcarriers.
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Fig. 5. Average probability of correct identification versus SNR for different
numbers of receive antennas.

correct detection is close to 0.98 with Nz = 256, and just 0.78
with Nz = 64. That is mainly because the generalized cross-
correntropy features become much more significant when the
number of OFDM subcarriers Nz increases, which facilitates
the identification of different space-time coding types.

The effect of the number of receive antennas Mr on the
identification performance of the proposed algorithm is then
investigated. Fig. 5 shows the average probability of correct i-
dentification Pc of STBC-OFDM signals for different Mr = 4,
Mr = 5, Mr = 6 and Mr = 7. The results in Fig. 5 show that
the identification performance of the proposed algorithm based
on the generalized cross-correntropy significantly improves by
increasing Mr. For instance, the average probability of correct
identification Pc is close to 0.97 with Mr = 7, and just 0.78
with Mr = 4, when SNR = −2dB and SIR = 18dB. This
is because the peak values in the discriminating matrix Ṽτ

G

are significantly enhanced with increasing Mr, which make
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Fig. 6. Average probability of correct identification versus SNR for different
cyclic prefix length.
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Fig. 7. The effect of the modulation type on the average probability of
correct identification versus SNR.

increasingly different the test statistic TĜτ
r

and the detection
threshold ψĜτ

r
.

Fig. 6 illustrates the average probability of correct identifi-
cation of the proposed algorithm is influenced by the different
cyclic prefix length ν (ν = Nz/4, Nz/8, Nz/16, Nz/32).
From Fig. 6, it is observed that by increasing the cyclic prefix
length ν, the performance slightly improves. For example,
the average probability of correct identification Pc tends to
0.9 with ν = Nz/4, and just 0.88 with ν = Nz/8, when
SNR = 0dB and SIR = 18dB. This can be explained by the
fact that the peak values in the discriminating matrix Ṽτ

G

slightly increase with ν.
The effect of modulation type on the proposed algorithm is

shown in Fig. 7. From Fig. 7, when SNR = 0dB, the average
probability of correct identification of the proposed algorithm
approaches 0.9 for four modulation types with ν = Nz/4,
SIR = 18dB and α = 1.8. One can see that the performance
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Fig. 8. The effect of the signal-to-interference ratio on the average probability
of correct identification versus SNR.

10-6 10-5 10-4 10-3 10-2

 f 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
c

SIR=10dB

SIR=8dB

SIR=6dB

Fig. 9. The effect of the frequency offset on the average probability of
correct identification.

of the proposed algorithm based on the generalized cross-
correntropy is not affected by the modulation type. The reason
is that the space-time redundancy of the MIMO-OFDM signal
is introduced by the STBC architecture, which is independent
of the modulation type. In other words, the discriminating
matrix Ṽτ

G and the error matrix ẼτG does not depend on
the modulation type. This makes the test statistic TĜτ

r
and

detection threshold ψĜτ
r

independent of modulation type too.
Fig. 8 presents the effect of the signal-to-interference ratio

(SIR) on the average probability of correct identification Pc

versus SNR. As shown in Fig. 8, it can be seen that the
performance of the proposed algorithm improves by increasing
SIR under the same conditions. This is mainly due to the fact
that the received signal is less affected by the alpha stable
interference when the value of SIR is large. In other words,
when the value of SIR is larger, the peak characteristics of the
discriminant matrix Ṽτ

G are more significant, so as to achieve
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Fig. 11. The average probability of correct identification of the STBC-OFDM
signals versus SNR, with different α values.

a good identification performance for STBC-OFDM signals.
In the previous simulation, we assumed that timing syn-

chronization and carrier synchronization are accurate. Fig. 9
shows the influence of the frequency offset ∆f on the average
probability of correct identification Pc with SNR equal to 6
dB. We consider the normalized carrier frequency offset to
the sub-carrier spacing of STBC-OFDM signals. As shown in
Fig. 9, it can be seen that the performance of the proposed
algorithm is affected by the frequency offset ∆f . With ∆f
increasing, the performance of the proposed algorithm dete-
riorates, and when ∆f > 10−4, the performance degrades
significantly. These results indicate that the generalized cross-
correntropy features lack robustness for the frequency offset
when the value of ∆f is large.

Fig. 10 depicts the influence of the sample timing offset
δ∆ on the average probability of correct identification Pc with
SNR equal to 8 dB. As shown in Fig. 10, it can be seen

that the performance of the proposed algorithm degrades by
increasing the sample timing offset δ∆. This is because the
generalized cross-correntropy is affected by sample timing
offset δ∆. Especially, when δ∆ > 2 or δ∆ < −2, the peak
characteristics of the generalized cross-correntropy is damaged
significantly to degrade identification performance for STBC-
OFDM signals.

Fig. 11 shows the effect of the characteristic exponent
α on the average probability of correct identification Pc.
A comparison with the algorithm based on cross-correlation
function (CCF) in [19] is also included. According to Fig.
11, it can be seen that the proposed algorithm performance
improves when the value of α increases. For SNR = 2dB,
the average probability of correct identification Pc decreases
from 0.96 to 0.82 when the characteristic exponent decreases
from 1.5 to 1.3. Note from Fig. 11 that, by comparing the CCF
algorithm and the proposed algorithm based on the generalized
cross-correntropy function (GCCF), the proposed algorithm
outperforms the CCF algorithm in symmetric alpha stable
interference. This fact illustrates that the proposed algorithm is
more robust to the symmetric alpha stable interference. Mean-
while, the main computational complexities of the proposed
and existing algorithms are evaluated. When the number of
observed blocks and receive antennas are Nb and Mr, the cal-
culation complexity for GCCF estimator is O (2MrNbNz) and
the CCF estimator also have order O (MrNbNz). As a result,
the proposed algorithm achieves significant performance gain
at the expense of increasing calculation complexity.

V. CONCLUSION

The blind identification algorithm based on a novel gen-
eralized cross-correntropy function for STBC-OFDM signals
over frequency-selective fading channels has been proposed.
The generalized cross-correntropy feature of the received
signal from antenna pairs has been used by taking advantage
of the space-time redundancy. The proposed algorithm used
a strongly-distinguishable discriminating matrix to develop
a decision tree scheme for identifying the STBC-OFDM
signals. This algorithm has the advantage of avoiding the
requirement for a priori information, such as modulation type,
channel coefficients, signal-to-noise ratio, and interference
power. Theoretical analysis and simulation have demonstrated
that the proposed algorithm can achieve a good identification
performance in the presence of impulsive interference, and is
relatively robust with respect to the characteristic exponent,
modulation type and signal-to-interference ratio. Future work
includes developing a robust identification scheme for STBC-
OFDM signals to tackle the influences of timing and frequency
offsets, and exploring identification schemes in multi-user
cases.
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