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A B S T R A C T 

Whilst X-rays and Sun yaev–Zel’do vich observations allow to study the properties of the intra- 
cluster medium (ICM) of galaxy clusters, their gravitational potential may be constrained 

using strong gravitational lensing. Although being physically related, these two components 
are often described with different physical models. Here, we present a unified technique 
to derive the ICM properties from strong lensing for clusters in hydrostatic equilibrium. In 

order to derive this model, we present a new universal and self-similar polytropic temperature 
profile, which we fit using the X-COP sample of clusters. We subsequently derive an analytical 
model for the electron density, which we apply to strong lensing clusters MACS J0242.5-2132 

and MACS J0949.8 + 1708. We confront the inferred ICM reconstructions to XMM-Newton 

and ACT observations. We contrast our analytical electron density reconstructions with the 
best canonical β-model. The ICM reconstructions obtained pro v e to be compatible with 

observ ations. Ho we v er the y appear to be v ery sensitiv e to various dark matter halo parameters 
constrained through strong lensing (such as the core radius), and to the halo scale radius (fixed 

in the lensing optimizations). With respect to the important baryonic effects, we make the 
sensitivity on the scale radius of the reconstruction an asset, and use the inferred potential to 

constrain the dark matter density profile using ICM observations. The technique here developed 

should allow to take a new, and more holistic path to constrain the content of galaxy clusters. 

Key words: gravitational lensing: strong – hydrodynamics – galaxies: clusters: individual: 
MA CS J0242.5-2132, MA CS J0949.8 + 1708 – galaxies: clusters: intracluster medium – X- 
rays: galaxies: clusters. 
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 I N T RO D U C T I O N  

n the last decades, tremendous progress has been achieved in 
ravitational lensing observations (see Kneib & Natarajan 2011 for 
 re vie w); from the first mass reconstruction of Abell 370 (Hammer
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987 ; Soucail et al. 1988 ) all the way to the Hubble Frontier Fields
HFF; Lotz et al. 2017 ), the Beyond the Ultra-deep Frontier Fields
nd Le gac y Observations (BUFFALO; Steinhardt et al. 2020 ),
nd the numerous JWST lensing surv e ys (see e.g. UNCOVER;
ezanson et al. 2022 ). As a result, our understanding of this

ndirect observation of dark matter has impro v ed, yet leaving open
roblems to discussions, such as the total matter (baryons and dark
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atter) potential distribution in galaxy clusters (Lilley, Evans &
anders 2018 ; Roncadelli & Galanti 2021 ), in particular in their
utskirts (Trevisan, Mamon & Stalder 2017 ), or the size of clusters
hemselves (see e.g. Chang et al. 2018 ; Tomooka et al. 2020 ; Baxter
t al. 2021 ; Aung et al. 2023 ). 

In parallel, the total matter distribution at large radii is assumed
o be traced by the ionized intergalactic medium, the signature
f which is detectable in the X-rays, and thanks to the Sunyaev–
el’dovich (SZ) effect. While the projected lensing gravitational
otential of galaxy clusters can be reconstructed from X-rays and
Z data through the Richardson-Lucy deprojection algorithm (see
onrad et al. 2013 ; Stock et al. 2015 ; Tchernin et al. 2018 ), the

everse path has not been explored yet. Efforts to relate the two
bservables range from Bulbul et al. ( 2010 ), describing the intra-
luster medium (ICM; composed of ionized gas) density through
 dark matter (DM) profile and inferring the potential using the
-ray observation, to CLUMP-3D (see Sereno et al. 2013 , 2017 ),

xploiting the triaxial hypothesis to perform a joint ICM-lensing
ptimization of the cluster physics, using disjoint models for the
otential and the ICM thermodynamics. 
We propose to predict the ICM thermodynamics using only

he gravitational lensing-inferred potential. This should light our
 ay tow ards a more holistic understanding of the dark matter
rofile, galaxy clusters thermodynamics, and interplay between
aryons and dark matter. For instance, an offset between the
ensing prediction and the X-ray observations could for instance hint
owards interacting dark matter scenarios. In order to establish such
 comparison, we convert the strong lensing detected gravitational
otential into a predictive ICM model. 
Deriving such a model requires to understand the

hermodynamics of galaxy clusters. Making precise measurements
rom X-ray observations is limited by a series of assumptions,
bout e.g. the halo geometry (Buote & Humphrey 2012 ; Sereno
t al. 2017 ), or the dynamical state of the cluster (Nelson et al.
014 ; Biffi et al. 2016 ). Multiple studies have shown the hydrostatic
egime to be an acceptable description of the ICM for cool-core and
elaxing clusters (Ettori et al. 2013 , 2019 ; Biffi et al. 2016 ; Vazza
t al. 2018 ). Conversely, recent mergers or dynamically disturbed
ystems present strong deviations to the hydrostatic equilibrium
Mahdavi et al. 2013 ). Moreo v er, galaxy clusters hav e followed a
ierarchical model of formation, made of mergers and gravitational
ollapse. For this reason, their thermodynamics scales according
o the cluster mass (Kaiser 1986 ; Bryan & Norman 1998 ), which
s confirmed by simulations (Frenk et al. 1999 ; Borgani et al.
005 ; Voit 2005 ) and observations (Ghirardini et al. 2019a ). These
ssumptions (hydrostatic equilibrium, self-similarity) are common
n joint X-rays and SZ analyses (cf. Capelo, Coppi & Natarajan
012 ; Ghirardini et al. 2019a , b ). 
Using these assumptions, we adopted an ef fecti ve polytropic

emperature law in order to describe the thermodynamic model
f the ICM of galaxy clusters (following e.g. Komatsu & Seljak
001 ). Capelo, Coppi & Natarajan ( 2012 ) predicted a constant
 ∼ 1.2 polytropic index for the ICM in hydrostatic equilibrium
ith a NFW density profile, and Ghirardini et al. ( 2019b )

eco v ered this value for the outskirts of clusters, but found radiative
ooling to bring this value to � ∼ 0.8 in the centre. In order
o produce precise predictions a priori , we conduct a study of
he polytropic index on the X-COP sample of data (described in
ckert et al. 2017 ). X-COP is a sample of 12 massive clusters
elected from the Planck all-sky survey for which a deep X-ray
ollow-up with XMM-Newton was conducted (see Ghirardini et al.
019a ; CHEX-MATE Collaboration 2021 ). The thermodynamic
NRAS 528, 1711–1736 (2024) 
roperties of the ICM (pressure, temperature, density) were
eco v ered o v er a broad radial range, which makes this sample
deal to derive the relation between the various thermodynamic
uantities. 

In Allingham et al. ( 2023 ), we analysed two galaxy clusters
nd reconstructed their gravitational potential with LENSTOOL (see
ullo et al. 2007 ) using strong gravitational lensing. Galaxy clus-
ers MACS J0242.5-2132 and MACS J0949.8 + 1708, dynamically
elaxed and relaxing respectively, provide the inputs to the ICM
redictions for this work, and allow to justify the hydrostatic
escription of the ICM (Biffi et al. 2016 ). In this paper, we also
est the β-model (see King 1966 ), commonly used by the X-ray
nd SZ communities to describe the ICM density distribution. We
efer to it, and to the family of empirical models introduced in
.g. Vikhlinin et al. ( 2006 ) as canonical , in contrast to our models,
hich are derived analytically from the full matter density, using

he Poisson and Euler equations, following the logic of Bulbul et al.
 2010 ). As our analytical ICM models scale with the gravitational
otential obtained with strong lensing, we directly work with the
arameters of the lensing model. 

After establishing the theoretical models, the quantitative ICM
esults are confronted to the XMM-Newton and the ACT Data
elease 5 millimetre-wave (see Naess et al. 2020 ; Mallaby-Kay
t al. 2021 ). The quality of the reconstruction is tested with a MCMC
n the density parameters, using these ICM data. 

This article is structured as follows: the data are presented in Sec-
ion 2 ; the strong lensing models are summarized in Section 3 ; the
heoretical possible models for the electron density, the temperature,
he gas fraction, the X-ray surface brightness and the SZ effect are
ntroduced in Section 4 ; quantitative results for the density and tem-
erature are presented in Section 5 ; the method to e v aluate the qual-
ty of observational predictions follows up in Section 6 ; ICM predic-
ions and MCMC optimization results using the ICM observations
re detailed in Section 7 ; a discussion on the limitations and possibil-
ties of such a model is given in Section 8 ; and a summary and con-
lusion are provided in Section 9 . We assume the � CDM cosmolog-
cal model, with �m 

= 0.3, �� 

= 0.7, and H 0 = 70 km s −1 Mpc −1 .

 DATA  

.1 X-ray obser v ations 

.1.1 MACS J0242 and MACS J0949 

he ICM is primarily probed with X-ray observations. We used the
MM-Newton publicly av ailable observ ations of the MACS J0242
nd MACS J0949 in the 0.7–1.2 keV band (see CHEX-MATE
ollaboration 2021 ). MACS J0242 was observed for a total of
0 ks (OBSID:0673830101), and MACS J0949 for a total of 36
s (OBSID:0827340901). We analysed the two observations using
MMSAS V17.0 , and the most up-to-date calibration files. We used

he XMMSAS tools mos-filter and pn-filter to extract
ight curves of the observations and filter out periods of enhanced
ackground, induced by soft proton flares. After flare filtering, the
vailable clean exposure time is 61 ks (MOS) and 53 ks (PN) for
ACS J0242, and 35 ks (MOS) and 34 ks (PN) for MACS J0949.

he EPIC MOS filter maximizes the signal-to-noise ratio, thus we
sed primarily these data. We extract the X-ray data following
he procedure detailed through Ghirardini et al. ( 2019a ), and the
ydrostatic mass through Eckert et al. ( 2022 ). 

With the NASA tool PIMMS , we get access to the conversion
onstants from flux to counts per second C 

count 
flux for both clusters:

https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl
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Figure 1. Composite RGB colour images of the two lensing clusters. Left: Composite DES colour image of MACS J0242. Right: Composite colour HST 
image of MACS J0949. Green: Hot gas distribution, obtained with XMM-Newton observations. Red: Contours of equal density, inferred from lensing models. 
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or MACS J0242 and MACS J0949, C 

count 
flux = 2 . 087 × 10 11 and

.084 × 10 11 counts erg −1 cm 

2 , respectively. 1 

.1.2 The X-COP clusters 

n order to tune our temperature and gas fraction models, we study a
umber of comparable clusters. The XMM cluster outskirts project 
X-COP, 2 described in Eckert et al. 2017 ) is ideal for this purpose: it
athers data from 12 massive clusters. These clusters are comparable 
o MACS J0242 and MACS J0949, with 3 × 10 14 M � < M 500 <

 . 2 × 10 15 M �, but are in the redshift range 0.04 < z < 0.1, smaller
han for MACS J0242 and MACS J0949, at redshifts 0.313 and
.383, respectively. 

.2 SZ obser v ations 

t is possible to study the ‘imprint’ of the ICM on the CMB through
he SZ effect, which is seen as a deficit of CMB photons in the
irection of clusters when observed at frequencies less than 217 
Hz. With the Atacama Cosmology Telescope (ACT), we use 

he f090 and f150 ‘daynight’ DR5 maps, 3 centred on respective 
requencies 97.8 and 149.6 GHz (see Hilton et al. 2021 ; Mallaby-
ay et al. 2021 ). 
The BCG of MACS J0242 is a bright radio source, whose spectral

nergy distribution (SED) is detailed by Hogan et al. ( 2015 ). At
 GHz, the source peaks at 1 Jy, making the extraction of the
CM signal with the SZ effect impossible. We thus only exploit the

ACS J0949 data in this article. 

 STRO NG  LENSING  ANALYSES  O F  

AC S  J 0 2 4 2  A N D  M AC S  J 0 9 4 9  

f distant background sources happen to be close to the line-of-sight
etween a massive galaxy cluster and an observer, the background 
 The temperature of the ICM of both clusters being > 3 keV, we can neglect 
he influence of temperature on the conversion constant. 
 https:// dominiqueeckert.wixsite.com/ xcop 
 https:// lambda.gsfc.nasa.gov/ product/ act/ actpol dr5 coadd maps get.html 

i
i  

a
i
2  

1  
mage can be strongly lensed, to the point multiple images appear
o the observer. Using this gravitational lensing effect in the strong
egime, we can precisely map the gravitational potential of the 
luster, and its total – baryonic and dark matter – mass density. 

In Allingham et al. ( 2023 ), we performed a reconstruction of the
otal matter density, ρm , of the two galaxy clusters MACS J0242
nd MACS J0949. These lensing models were obtained thanks to a
ombination of imaging with the Hubble Space Telescope ( HST ) and 
ES from the ground, together with spectroscopy obtained with the 
USE instrument at the Very Large Telescope. Fig. 1 shows colour-

omposite images of the two clusters used in this work, together with 
he ICM distribution obtained using X-ray observations, and density 
ontours from the strong-lensing analyses presented in Allingham 

t al. ( 2023 ). 
With spectroscopy, we detected six and two systems of multiply- 

ensed images in MACS J0242 and MACS J0949 respectively, for
 total of 18 and 9 images with spectroscopic redshifts. Four
dditional systems were detected with imaging HST observations 
n cluster MACS J0949, but do not have a redshift measurement.
sing a combination of photometry and spectroscopy, we identified 
7 and 170 cluster member galaxies respectively. We performed 
he strong lensing optimization with LENSTOOL (Jullo et al. 2007 ),
sing the multiply-imaged systems to invert the lens equation. We 
ave assumed the potential of a galaxy cluster to be a superposition
f dPIE potentials. We modelled each cluster with a large-scale 
ark matter halo (DMH), a brightest cluster galaxy (BCG), and a
 

� catalogue of elliptical galaxies, scaled using the Faber–Jackson 
elationship (Faber & Jackson 1976 ). Additionally, we introduced in 

ACS J0949 a clump in the south of the halo, to explain multiply-
ensed images in this region. 

Tables 1 and 2 present respectively the summary of the lensing in-
ormation available for each cluster, and the best-fitting parameters 
f the strong-lensing models obtained for the different potentials of
ach galaxy clusters. The average distance between the multiple 
mages predicted with the lensing models and the observations 
s 0.39 arcsec and 0.15 arcsec, and the reduced χ2 , χ2 

red = 0 . 86
nd 0.67, for clusters MACS J0242 and MACS J0949, respectively, 
ndicating a good quality reconstruction. The enclosed mass within 
00 kpc of the cluster centre were respectively M ( R < 200 kpc) =
 . 67 + 0 . 03 

−0 . 05 × 10 14 M � for MACS J0242, and M ( R < 200 kpc) =
MNRAS 528, 1711–1736 (2024) 

https://dominiqueeckert.wixsite.com/xcop
https://lambda.gsfc.nasa.gov/product/act/actpol_dr5_coadd_maps_get.html
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M

Table 1. Summary of the lensing reconstruction of galaxy clusters MACS J0242 and MACS J0949. 

Galaxy cluster N gal N im 

N spec − z rms χ2 
red M( R < 200 kpc ) [10 14 M �] 

MACS J0242 57 18 18 0.39 arcsec 0.86 1 . 67 + 0 . 03 
−0 . 05 

MACS J0949 170 20 9 0.15 arcsec 0.67 2 . 00 + 0 . 05 
−0 . 20 

We here list: (i) the galaxy clusters; (ii) number of galaxies in the cluster catalogue; (iii) number of multiply-lensed images detected; (iv) 
number of associated spectroscopic redshift measurements; (v) rms deviation of predicted multiply-lensed images positions from their observed 
positions in the image plane; (vi) reduced χ2 ; (vii) projected mass enclosed within 200 kpc (in 10 14 M �). 

Table 2. Best-fitting parameters of the strong lensing mass model for MACS J0242 and MACS J0949. 

	 α [arcsec] 	 δ [arcsec] e θ [deg] a [kpc] s [kpc] σ [km s −1 ] 

MACS J0242 

DMH −0 . 14 + 0 . 09 
−0 . 14 0 . 14 + 0 . 11 

−0 . 18 0 . 29 + 0 . 04 
−0 . 03 17 . 9 + 0 . 8 −1 . 8 57 . 2 + 6 . 0 −8 . 4 1500 � 918 . 5 + 29 . 0 

−36 . 1 

BCG 0.04 � −0.09 � 0.23 � 155 . 8 + 10 . 8 
−9 . 6 0.30 � 177 . 6 + 32 . 2 

−58 . 0 524 . 5 + 58 . 8 
−44 . 0 

L � 0.03 � 5 . 6 + 7 . 8 −1 . 8 199 . 2 + 30 . 7 
−53 . 3 

MACS J0949 

DMH −1 . 94 + 0 . 22 
−2 . 84 −0 . 67 + 0 . 57 

−0 . 67 0 . 25 + 0 . 40 
−0 . 05 92 . 4 + 0 . 6 −1 . 3 116 . 2 + 24 . 1 

−51 . 7 1500 � 1236 . 1 + 59 . 3 
−310 . 6 

BCG 0 � 0 � 0.48 � 120.1 � 0.25 � 98 . 0 + 153 . 7 
−34 . 3 253 . 7 + 196 . 5 

−18 . 5 

Clump O3 4 . 80 + 0 . 75 
−0 . 46 −60 . 13 + 2 . 39 

−1 . 42 0 . 01 + 0 . 29 
−0 . 06 128 . 6 + 41 . 4 

−27 . 5 20 . 5 + 31 . 6 
−8 . 8 232 . 5 + 180 . 1 

−119 . 9 323 . 2 + 120 . 2 
−54 . 9 

L � 0.15 � 23 . 1 + 111 . 5 
−2 . 1 139 . 3 + 25 . 8 

−18 . 5 

We here list the central coordinates, 	 α and 	 δ , in arcsec, relative to the centre, the ellipticity, e , the position angle in degrees, θ , the core 
radius in kpc, a , the cut radius in kpc, s , and the velocity dispersion in km s −1 , σ , for each component of the model. The centres are taken to 
be respectively ( αc , δc ) = (40.649555, −21.540485) deg and ( αc , δc ) = (147.4659012, 17.1195939) deg for MACS J0242 and MACS J0949. 
The asterisks highlight parameters which are fixed during the optimization. L � represents the cluster member galaxies catalogue, scaled with 
the Faber-Jackson scaling relation (Faber & Jackson 1976 ). MACS J0949 includes a southern dark matter clump O3. 
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 . 00 + 0 . 05 
−0 . 20 × 10 14 M � for MACS J0949. Cluster MACS J0242 is

ound to be dynamically relaxed, with a peaked central density,
hile MACS J0949 presents a flatter density distribution in the core

 R ∈ [10, 100] kpc), and is still relaxing, but not strongly disturbed.
The inferred 3D density profiles were well fit by NFW profiles

see Section 4.1 ). For MACS J0242, we found the best-fitting NFW
arameters to be ρS = 3.42 × 10 −25 g cm 

−3 and r S = 209.9 kpc, for
 reduced χ2 = 1.11. For MACS J0949, the best-fitting parameters
re ρS = 1.23 × 10 −25 g cm 

−3 , r S = 405.5 kpc, for a reduced χ2 =
.90. In this article, we only use the DMH and BCG potentials to
epresent the clusters’ gravitational potential. 

 G A L A X Y  CLUSTERS:  A  T H E O R E T I C A L  

E SCRIPTION  

his Section introduces the observables and models necessary
o describe the physics of the ICM using gravitational lensing.
ection 4.1 introduces the two general full matter density profiles we
se in this work; Section 4.2 presents the canonical description for
he ICM density; Section 4.3 shows the derivation of the analytical
CM density using a temperature model and total matter density;
ection 4.4 extends the common polytropic temperature density

o the higher electron densities found in the centre of clusters;
ections 4.5 and 4.6 define the X-ray surface brightness and the SZ
ffect temperature contrast respectively, in order to make observable
redictions. 

.1 Galaxy clusters matter density models 

he total matter density is modelled parametrically. We here present
wo cases, a Navarro–Frenk–White (NFW) density profile, and a
ual Pseudo-Isothermal Elliptical mass distribution (dPIE) density
NRAS 528, 1711–1736 (2024) 
rofile. The generalized NFW and Einasto profiles are described
n Appendix B . For the discussion and illustration purposes, we
iscuss purely radial profiles, but in our reconstruction, we use
he various geometrical parameters of the individual potentials
nferred from lensing (position of the centre, ellipticity, position
ngle). 

.1.1 NFW profile 

he NFW profile (introduced in Navarro, Frenk & White 1996 )
escribes the DM density. We here approximate it to the total density
istribution, ρm , 

m 

( r) = ρS 

{ 

r 

r S 

(
1 + 

r 

r S 

)2 
} −1 

, (1) 

here ρS is the density normalization, and r S , the scale radius.
hese are parameters different for each cluster. We assume the
FW profile to describe the total density with one profile for a

ingle cluster. 

.1.2 Dual Pseudo-Isothermal Elliptical mass distribution (dPIE) 
rofile 

n Kassiola & Kovner ( 1993 ) and El ́ıasd ́ottir et al. ( 2007 ), the dPIE
rofile scales as 

m 

( r) = ρ0 

{[
1 + 

( r 

s 

)2 
][

1 + 

( r 

a 

)2 
]}−1 

, (2) 

ith the core radius, a , of the order of 100 kpc for the dark matter
alo, and a truncation radius, s > a . Whilst this distribution is
pherically symmetric, we also consider two other parameters: a
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otation angle, θ , and an ellipticity, e (see Appendix A ). This model
s sometimes referred to as pseudo-Jaffe , as in the re vie w of Keeton
 2001 ). 

Contrarily to the NFW density profile, the dPIE profile does not
resent an y div ergence in r → 0, i.e. presents a finite density in the
ore. For our lensing reconstruction, we used a large scale DMH
odelled with a dPIE, and superposed it to individual profiles fitting

ndividual cluster member galaxies. In the case of the analysed 
lusters, their (relative) relaxation allows us to discard all individual 
galaxy) potentials but that of the BCG. The DMH and the BCG
espectiv ely go v ern the large and small radii total matter densities.
his DMH and BCG superposition was well fitted by a NFW profile

or both clusters (see Section 3 ). 

.2 Electron density 

e focus on the electron density n e because it can be derived from
-ray observ ations. Ho we ver, one could deri ve the ion or gas density

oo. The number density of electrons, n e , is related to the gas volume
ensity, ρg through 

 e ( r) = F I ( r) 
ρg ( r) 

μe m a 

, (3) 

here F I is the local ionization fraction which is taken to be 1,
 a = 1 Da is the atomic mass constant, and μe ≈ 1.15 is the mean
olecular weight of electron. 
A number of models have been proposed to fit the electron density

rofile, which we refer to as canonical . One of the most complete
odel can be found in Vikhlinin et al. ( 2006 ). As this model relies

n a large set of parameters, unnecessary here, we shall focus on
 simplified model, namely the (simple) β-model (see King 1966 ;
avaliere & Fusco-Femiano 1976 ), 

 e ( r) = n e, 0 

[ 

1 + 

(
r 

r c 

)2 
] − 3 

2 β

, (4) 

ith r c , the core radius, n e , 0 a density normalization, and β ∈ [0.5;
.9], an empirical index. We find this model to fit well both clusters’
CM distribution (see Sections 7.1.1 and 7.2.1 ), thus showing a more
omplex model to be unnecessary here. 

.3 A fully analytical electron density 

.3.1 General case 

e consider the total (DM and baryons) mass density as a sum of
ensities, 

m 

( r) = 

∑ 

i 

ρ0 ,m,i f i ( r) , (5) 

hich is constrained by the strong lensing analyses. Each potential 
an be normalized differently, and the distributions, f i , are assumed
o be of the same type (here NFW or dPIE). Here, we write them as
 sum of radial functions for simplicity. In practice, every profile,
 i , has its own geometric parameters (central position, ellipticity, 
otation angle), which we consider to be fixed from the strong
ensing analysis. 

Assuming integrability, we introduce 

 i ( r) = 

∫ r 

0 
d s s 2 f i ( s ) , 

 i ( r) = 

∫ r 

0 
d s s −2 g i ( s ) , (6) 
o

here integration constants are included. Denoting � the New- 
onian potential, integrating the gravitational Poisson equation, it 
eads 

 ( r) = −4 πG 

∑ 

i 

ρ0 ,m,i h i ( r) . (7) 

he conservation of momentum in the Lagrangian formalism, i.e. 
he momentum Navier–Stokes equation for a perfect fluid (viscosity 
eglected, see e.g. Landau & Lifshitz 1959 ) reads 

g 

D v 

D t 
= ρg [ ∂ t v + ( v · ∇ ) v ] = −∇ P g + ρg ∇ �, (8) 

ith v the velocity field, and P g the gas pressure. 
As the pressure in galaxy clusters is of the order of 10 10 Pa, the

lasma is thermalized, and therefore the temperature of the ions is
qual to that of the electrons. With equation ( 3 ), we can write the
umber density of the electron n e as being directly proportional to
he gas density ρg , as μe and F I are assumed to be constant in a
iven cluster. Using the ideal gas law, we rewrite equation ( 8 ) in the
urely radial case, 

k B 

μg m a 

∂ r ( n e T e ) 

n e 
+ ∂ t v r + v r ∂ r v r = −4 πG 

∑ 

i 

ρ0 ,m,i r 
−2 g i ( r) , (9) 

here T e is the electron temperature, μg ≈ 0.60 mean molecular 
eight of the gas, and k B the Boltzmann constant. As the galaxy

lusters used in our study are not strongly perturbed, we work
nder the hypothesis of hydrostatic equilibrium. Assuming we could 
ecompose the velocity in its radial and temporal dependencies, 
ne could then integrate numerically. As we do not have access
o the ICM velocity resolution, we here assume a polytropic 
emperature distribution and the stream to be hydrostatic, i.e. 
f constant velocity both in time and in all spatial directions
see e.g. Zaroubi et al. 2001 ). Thus, with ∂ t v r = ∂ r v r = 0,
e get 

∂ r ( n e T e ) 

n e 
= ε

∑ 

i 

ρ0 ,m,i r 
−2 g i ( r) , (10) 

here ε = −4 πG μg m a / k B . 
In order to reduce this expression, we define a general J function

hich contains information on the temperature profile as 

 ( n e ) = 

∫ n e 

0 

d [ nT e ( n ) ] 

T 0 n 
, (11) 

here T 0 is a temperature normalization (see Section 4.4 ). More
etails on the definition of J are given in Section 5.1 , given a
recise temperature model. 
Separating variables and integrating equation ( 10 ), we obtain 

 ( n e ) = 

ε

T 0 

∑ 

i 

ρ0 ,m,i h i ( r) = 

μg m a 

k B T 0 
� ( r) , (12) 

here the right-handed term stems from equation ( 7 ). If we
ssume J to be bijective 4 (which is justified given a temperature
odel in Section 5.1 ), then inverting this equation simply provides
 e ( r ) 

 e ( r) = J 

−1 

(
μg m a 

k B T 0 
� ( r) 

)
. (13) 
MNRAS 528, 1711–1736 (2024) 

nly if it is bijective. 
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Under reasonable ph ysical h ypotheses, we hav e pro vided a
eneral, completely analytical description of the electron density
sing only the gravitational potentials characterized with strong
ensing observations. To allow this reconstruction to be independent
rom other observations, we need to pair this analytical model with
n electron temperature model. 

.3.2 Case of a dPIE density 

n the case of a dPIE profile, we give 

 ( r) = 

{[
1 + 

( r 

s 

)2 
][

1 + 

( r 

a 

)2 
]}−1 

, 

g( r) = 

a 2 s 2 

a 2 − s 2 

[ 
a arctan 

r 

a 
− s arctan 

r 

s 

] 
, 

h ( r) = 

a 2 s 2 

a 2 − s 2 

[
s 

r 
arctan 

r 

s 
− a 

r 
arctan 

r 

a 
+ 

1 

2 
ln 

(
r 2 + s 2 

r 2 + a 2 

)]
, 

(14) 

here a and s represent the core r core and scale r cut radii of the i -th
PIE potential, respectively. Indices were a v oided for clarity. To
 v oid confusion, we write idPIE the n e distribution with h i given
y a dPIE. 

.3.3 Case of a NFW density 

n the case of a NFW potential (see equation 1 ), we can rewrite the
ifferent integrals given equation ( 14 ) for the dPIE, 

 ( r) = 

{ [
r 

r S 

] [
1 + 

r 

r S 

]2 
} −1 

, 

g( r) = r 3 S 

[
ln 

(
1 + 

r 

r S 

)
− r 

r + r S 

]
, 

h ( r) = − r 3 S 

r 
ln 

(
1 + 

r 

r S 

)
. (15) 

ere ρ0, m , i of equation ( 12 ) is ρS , m . In case of a NFW profile, we
ssume the total density to be represented by a single profile. We
hall write the resulting n e distribution iNFW . 

.4 Temperature 

n order to derive the ICM density and thermodynamic profiles
sing strong lensing constraints only, we need to adopt a general
emperature model, independent of the specific observations of one
luster. We shall consider polytropic models (for example in Capelo,
oppi & Natarajan 2012 ) of the form 

 e ( r) = T 0 

(
n e ( r) 

n 0 

)�−1 

, (16) 

ith n 0 the central electronic density, T 0 the temperature in the
entre, and � ≈ 1.2, the polytropic index. 

Following Ghirardini et al. ( 2019b ), we can extend this definition
o a self-similar polytropic temperature model, with a varying
olytropic index, �( n e ): 

P e 

P 500 ,c 
= ηP 

(
n e E( z) −2 

ηn 

)�( n e ) 

, 

T e 

T 500 ,c 
= ηT 

(
n e E( z) −2 

ηn 

)�( n e ) −1 

, (17) 
NRAS 528, 1711–1736 (2024) 
here E ( z) = H ( z)/ H 0 is the normalized Hubble factor assuming a
 CDM cosmology with �m 

= 0.3 and �� 

= 0.7. ηP and ηT are
imensionless proportionality constants, and ηn the volume number
ensity normalization. We write T 0 ( z) = ηT T 500 ( z) and n 0 ( z) =
n E ( z) 2 . Section 5.1.2 presents a new model for the index �( n e ),
nd also provides the quantitati ve v alues for the different constants
resented here. 

.5 X-ray surface brightness 

n order to compare our results to observations, and therefore to
 v aluate the quality of our ICM reconstruction, we introduce the
-ray surface brightness S X (see B ̈ohringer & Werner 2010 , for a

e vie w). In a band of wavelength (such as the [0.7, 1.2] keV band
or XMM-Newton ) integrated over the line-of-sight, it reads 

 X ( 	E ) = 

1 

4 π(1 + z) 4 
μe 

μH 

∫ ∞ 

0 
n 2 e ( r ) � ( 	E , T e , Z)d l. (18) 

here μH ≈ 1.35 is the mean molecular weight of hydrogen, � ( 	 E ,
 e , Z ) is the X-ray spectral emissivity (or cooling curve ), as a
unction of the X-ray energy band, 	 E , the electron temperature
f the gas, T e , and the metallicity of the gas, Z . In this article, the
etallicity is assumed to be constant for a given cluster. 

.6 SZ effect 

nother observable, depending on the electron density and temper-
ture is the SZ ef fect. Gi ven an observable frequency, ν, we use the
educed frequency, x , 

 = 

hν

k B T r 
, (19) 

ith h , the Planck constant, and T r � 2.726 K, the temperature of
he CMB. We define the Compton parameter (see Rephaeli 1995 ): 

( r ) = 

k B σT 

m e c 2 

∫ ∞ 

0 
T e ( r ) n e ( r )d l, (20) 

ith σ T , the Thomson cross-section, and m e , the mass of the
lectron. The thermal SZ contrast then reads 

 SZ ( r) = 

	T 

T r 
= 

[ 
x coth 

(x 

2 

)
− 4 

] 
y( r) . (21) 

 QUANTI TATI VE  M O D E L S  

e have presented in the previous section a completely different
anner to use the lensing study of galaxy clusters to predict their

aryonic distributions. Assuming the hydrostatic equilibrium and a
iven temperature distribution, equation ( 13 ) presents an analytical
CM density prediction using lensing. Moreo v er, in Appendix D1 ,
e present an alternative method, reducing the gas fraction to

n analytical model, and using knowledge of ρm , constrained by
ensing analysis. Although the general profile of the gas fraction is
etrieved, this study is however not completely generalizable, and
e do not use it here. 
In this section, we provide the electron temperature models

eeded for the analytical method. We make quantitative estimates
n order to yield quantitative predictions for ICM density profile
rom lensing data only. 
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Figure 2. Calibration of the variable �( n e ) polytropic model (equation 24 ) on X-COP data. Left: Relation between self-similar scaled ICM pressure and 
electron density for the 12 X-COP clusters. The solid line and the shaded area show the best-fitting model and the intrinsic scatter around the model, respectively. 
Right: Polytropic index � = dln P e /dln n e as a function of electron density. The solid line and shaded area shows the best-fitting model with equation ( 24 ), 
whereas the data points show the result of a piece-wise fit with constant polytropic index over several ranges in electron density. 
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.1 Polytropic index scaling 

.1.1 Constant polytropic index 

s shown in Section 4.3 , one can reconstruct the ICM profile
sing equation ( 13 ) and an analytical expression for the function
 which contains the information about the electron temperature 
rofile. Here, we assume the following form for J , based on a self-
imilar polytropic temperature law with a constant index γ > 1 (see
quation 17 ): 

 z ( n e ) = 

γ

γ − 1 

(
n e 

n 0 ( z) 

)γ−1 

. (22) 

e can write the electron density from equation ( 12 ), 

 e = n 0 ( z) 

[ 

γ − 1 

γ

ε

T 0 ( z) 

∑ 

i 

ρ0 ,m,i h i ( r) 

] 1 / ( γ−1) 

. (23) 

o we ver, we find such a description to fail to describe the higher
lectron densities ( n e > 10 −2 cm 

−3 ), which is consistent with a
onstant γ index fixed with the largest radii of clusters, i.e. the
east dense regions. We notice the specific case of a polytropic
emperature density associated to a NFW profile has already been 
tudied in Bulbul et al. ( 2010 ), where a self-normalization in the
entre is utilized. 

.1.2 Polytropic index model 

o describe the relation between ICM thermodynamic quantities 
 n e , P e , T e ), it is common practice to describe the stratification
f the ICM using a polytropic equation of state P ( n e ) ∝ n � e (e.g.
ulbul et al. 2010 ; Capelo, Coppi & Natarajan 2012 ; Tchernin et al.
018 ; Ghirardini et al. 2019b ). Analytic models assuming the ICM
o be in hydrostatic equilibrium within a NFW potential predict that
he polytropic index � should be close to a constant value of ∼1.2
hroughout the cluster volume (Capelo, Coppi & Natarajan 2012 ). 
bservationally speaking, the measured values of the polytropic 

ndex closely match the NFW expectation in cluster outskirts ( R
 0.2 R 500 ), but significantly deviate from it in the cluster core,
here � decreases down to ∼0.8 under the influence of radiative
ooling (Ghirardini et al. 2019b ). Using the data from the X-COP
rogramme, Ghirardini et al. ( 2019b ) showed that the P ( n e ) relation
s nearly universal across the cluster population with a low scatter of

15 per cent , independently of a system’s dynamical state. Here we 
ropose a new functional form to describe the self-similar polytropic 
odel (supported by e.g. Mostoghiu et al. 2019 ). We describe the

elation with a smoothly varying polytropic index �( n e ) as 

d ln P e 

d ln n e 
≡ �( n e ) = � 0 

[
1 + � S arctan 

(
ln 

n e E( z) −2 

ηn 

)]
, (24) 

ith ηn the reference number density around which the transition 
etween core (low �) and outskirts (NFW �) occurs, � 0 the
olytropic index at ηn , and � S the slope of the transition. 
We used the publicly available X-COP data, which provide high- 

uality observations of the ICM thermodynamic properties o v er 
 wide radial range ( ≈[0.01 − 2] R 500 ), to calibrate the model and
etermine the parameters of equation ( 24 ). We fit the X-COP density
nd pressure data using the Bayesian analysis package PYMC3 
Salvatier , W iecki & Fonnesbeck 2016 ), including uncertainties on
oth axes, and a free log-normal intrinsic scatter. The observational 
ata points on both axes are scaled by their respective self-similar
caling values (Arnaud et al. 2010 ). The result of this procedure is
hown in Fig. 2 . The model provides an excellent representation
f the data o v er three decades in electron density, with a low
ntrinsic scatter of σ ln P = 0.19 ± 0.02. The right-hand panel of
ig. 2 also shows that the results obtained with the model defined in
quation ( 24 ) are consistent with the values estimated by Ghirardini
t al. ( 2019b ) when fitting a piece-wise power law over several
anges in density. The fit parameters are included in Table 3 . 

Supposing the ICM to be an ideal gas, following Ghirardini et al.
 2019a ), we write: 

T = 

(
3 . 87 × 10 −4 cm 

−3 
) ηP 

ηn 

f b 

0 . 16 

μe 

1 . 14 
, (25) 

ith f b is the universal baryon fraction, taken to be f b =
.158 ± 0.002 (Ade et al. 2016 ). We find ηT ≈ 1.034. 
MNRAS 528, 1711–1736 (2024) 
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Table 3. Parameters of the smoothly varying polytropic model defined in equations ( 17 ) and ( 24 ). 

ηP ηn [cm 

−3 ] � 0 � S σln P e 

6.05 ± 1.57 (2.26 ± 0.59) × 10 −3 0.97 ± 0.04 −0.15 ± 0.03 0.19 ± 0.02 

Figure 3. J z ( n e ) in a range of redshifts, including those of galaxy cluster 
MACS J0242 and MACS J0949 – which are almost identical. The J z 

function is therefore e xtremely sensitiv e, i.e. a small error on the potential 
is associated to a much larger error in the determination of n e . 
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5 https:// xmm-tools.cosmos.esa.int/ external/ xmm calibration/ calib/ 
documentation/epic cal meetings/200111/PSF-MOS Ghizzardi.pdf
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As for the full T 500 ( z), we use the results of Ghirardini et al.
 2019a ), which we reproduce here 

 500 ( z) = 8 . 85 keV 

(
M 500 E( z) 

h 

−1 
70 10 15 M �

)2 / 3 ( μg 

0 . 6 

)
, (26) 

ith h 70 = h /0.7 = 1. We therefore can normalize the temperature
niversally. 

.1.3 Varying polytropic index 

t a given redshift, z, using the self-similar polytropic temperature
escribed equations ( 17 ) and ( 24 ), we can define the integral J z ,
.e. a redshift dependent J , defined equation ( 11 ), 

 z ( n e ) = 

∫ n e 

0 

⎡ 

⎢ ⎣ 

�( n ) + 

� 0 � S ln 
(

n 
n 0 ( z) 

)
1 + 

[ 
ln 
(

n 
n 0 ( z) 

)] 2 
⎤ 

⎥ ⎦ 

(
n 

n 0 ( z) 

)�( n ) −1 

n −1 d n. 

(27

n this case, J z can be easily computed at a given redshift, and
everted. It is however not analytically solvable. An example of J z 

s displayed in Fig. 3 . 
We find empirically J z to be a monotonically increasing function,

.e. a bijection. Therefore we can take its inverse function, allowing
o define n e as a function of the radius, as displayed in equation ( 13 ).
NRAS 528, 1711–1736 (2024) 
.2 Relating all density models to lensing 

e assume the metallicity of clusters MACS J0242 and
ACS J0949 to be constant, and the plasma to be fully ionized
 I = 1. The X-ray data suggest metallicities in the range 0.2–
.7 Z � for the two strong lensing clusters. The metallicity profiles
btained are in agreement with the Z = 0 . 3 Z � in both clusters,
nd we therefore make this assumption. Moreo v er, the influence of
etallicity on the cooling function is limited at these temperatures

to justify this approximation, read e.g. McDonald et al. 2016 ). 
For the analytical density profiles (such as idPIE or iNFW ),

he parameter priors are directly given from the lensing analysis
ection 3 . Conversely, we can not assume the parameters of the
-profile a priori . Ho we ver their optimization requires priors, for
hich we take β = 0.63 (in agreement with e.g. B ̈ohringer, Chon &
ronberg 2016 ), n e , 0 is taken to be the normalization of the DMH
ensity, and r c to be a 1 , i.e. the core radius of the DMH obtained
ith the lensing optimization. 

 M E T H O D :  MEASURABLE  I C M  

R E D I C T I O N S  A N D  OPTI MI ZATI ONS  

n this section, we present the results of the method developed
n Sections 4 and 5 to convert the ICM predictions into ICM
bservables ( S X , � r ), in order to compare them to observations.
oreo v er, we contrast these predictions with a profile of the

ame type (e.g. idPIE ) optimized with a MCMC using the ICM
bservations. We summarize the whole process undertaken in the
resent article in Fig. 4 . 

.1 Point spread function of XMM-Newton 

n order to analyse the XMM-Newton observations, we reduce
hem to smaller maps centred around the cluster, of around 1 Mpc
idth (respectively 88 and 78 pixels for clusters MACS J0242 and
ACS J0949). We then need to take into account the point-spread

unction (PSF). At first order, we define the PSF as 

 SF ( r) = 

[ 

1 + 

(
r 

r 0 

)2 
] −α

, (28) 

ith r the distance to the centre, r 0 = 5.304 arcsec and α = 1.589. 5 

e note that the number of pixels of the PSF must be odd to account
or the centre. The measured surface brightness writes 

 

conv 
X ( x , y ) = ( S model 

X � P S F )( x , y ) (29) 

here S model 
X is provided in equation ( 18 ). 

As the edge effect is quite important, we decide not to use the
orders, and to cut eight pixels on each side of the map. The
nal comparison maps are respectively 72 and 62 pixels wide
or MACS J0242 and MACS J0949. We note that we still have to
ompute our model for the full width of the original maps, as they

https://xmm-tools.cosmos.esa.int/external/xmm_calibration/calib/documentation/epic_cal_meetings/200111/PSF-MOS_Ghizzardi.pdf
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Figure 4. Full workflow diagram. Models are denoted by green diamonds, data by red rectangles, while results are in blue ellipses. The light magenta rectangle 
denotes work carried out within our previous companion article Allingham et al. ( 2023 ). 
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Figure 5. Radiated power (cooling curve) for a metallicity Z = 0 . 3 Z � , 
using the metallicities described in Asplund et al. ( 2009 ), in the band [0.7; 
1.2] keV, at the respective redshift of MACS J0242 (blue, z = 0.313) and 
MACS J0949 (red, z = 0.383). 
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.2 Converting surface brightness into count signal 

e use the EPIC count maps of XMM-Newton , masking point-
ike sources, including diffuse emission only. As we also have 
ccess to the time of exposure, E , and total background, B (particle
ackground, soft protons, PN chip out-of-time events), maps from 

urface brightness models, we can make predictions on the number 
ount of detection, 

 X,c = C 

count 
flux S conv 

X × E + B + C sky (30) 

here C sky is the sky constant, measured in the empty regions of
he raw count map. 

We also take dust absorption into account, with the absorption 
atio (see e.g. Wilms, Allen & McCray 2000 ), 

I obs 

I em 

= exp 
[ 
−n 

gal 
H 

σ( E X ) 
] 
, (31) 

here n gal 
H 

is the galactic hydrogen, and σ , the extinction cross-
ection of that same dust for a photon energy, E X . We report
bsorption factors of 0.9439 and 0.9398 for clusters MACS J0242 
nd MACS J0949, respectively. 

.3 Cooling cur v e 

n order to access the X-ray spectral emissivity, � ( 	 E , T e , Z ),
entioned in equation ( 18 ), we use AtomDB (see Foster et al.

012 ). With the metallicities of set Asplund et al. ( 2009 ) adjusted
o our Z cl = 0 . 3 Z � , we can plot the cooling curve in the energy
and of XMM-Newton (adjusted for K-correction). The results at the 
edshifts of clusters MACS J0242 and MACS J0949 are displayed in
ig. 5 . 

.4 SZ maps filtering 

e simply filter both ACT DR5 map � 

obs 
r,f of MACS J0949 with

 Gaussian filter of radius 0.05 degrees G(0 . 05 deg ), with NEMO . 6 

e then subtract it from the original map, thus high-pass Gaussian
ltering the original map. Although this does not allow to fully
emo v e either the CMB signal or the atmosphere variability, at the
cale of the cluster, it allows to smooth and attenuate the CMB
ariability. In order to compare our SZ effect model to the filtered
 https://nemo-sz.readthedocs.io 

t  

t  

D

ata maps, we convolve the modelled signal map � 

mod 
r,f with the ACT

eam B f at the map frequency f . This allows to take the telescope
SF into account. We further apply the Gaussian filter, and compare

he resulting maps, 

� 

obs , filt 
r,f = � 

obs 
r,f − � 

obs 
r,f � G(0 . 05 deg ) , 

 

mod , filt 
r,f = 

(
� 

mod 
r,f � B f 

)
� G(0 . 05 deg ) . (32) 

n a similar fashion to that of the X-ray PSF, we have to remo v e
he borders of the SZ filtered image because of border effects. We
herefore used model maps of ∼4 Mpc initially (26 pixels), reduced
o ∼2 Mpc (14 pixels), and compared these predictions to the ACT
R5 filtered data. 
MNRAS 528, 1711–1736 (2024) 
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.5 Working hypotheses on the density distribution 

e based our analysis on the mass models described in our previous
ork (Allingham et al. 2023 ). We model the total mass profile of
A CS J0242 and MA CS J0949 using strong lensing constraints

f radii ranging in R ∈ [50, 200] kpc. While we acknowledge the
imitations of the constraining power, we extrapolate the 3D density
ut to R 500, c , and reco v er a mass M 500 ,c = 5 . 95 + 0 . 40 

−0 . 46 × 10 14 M � and
1 . 48 + 0 . 00 

−3 . 42 × 10 14 M � for clusters MACS J0242 and MACS J0949,
espectively. With equation ( 26 ), we find temperature normaliza-
ions T 0 = ηT T 500 = 7.30 keV and 11.63 keV, respectively. 

Given the quality of the X-ray and SZ observations, and the
ominant importance of the DMH and BCG in strong lensing
odels, we neglect the potentials associated to the individual

alaxies, owing to the dynamical state of the clusters, analysed
n Allingham et al. ( 2023 ). As they are not strongly perturbed, the
CM distribution should be go v erned by the large-scale potential. In
ig. 1 , we can for instance see cluster MACS J0949 Southern halo
ass contours to be undetectable on the X-rays – see the large red

ircle in the South of the image, crossed by the dashed green line. 
Moreo v er, we postulate that the ICM density distribution is

llipsoidally symmetric, and of the same ellipticity as the DMH
otential. This simply follows the hypothesis ‘ICM traces potential’.
herefore, as a natural consequence of the hydrostatic equilibrium,
e expect the potential to be rounder than the total matter dis-

ribution (this is qualitativ ely v erified on Fig. 1 , and the potential
llipticity formula is presented in Appendix A ). 

Finally, as the line-of-sight ellipticity of the potential is assumed
o be equal to the geometric average of the semimajor and semiminor
xes, 

√ 

ab . As the goal of this article is to present new methods to
redict the density profile of the ICM using strong lensing analyses,
e fix all geometric parameters to their best lensing values. The

semidepth’ of the cluster is unknown from lensing, but it is also
egenerate with the density distribution. Therefore, we do not
ptimize this parameter. 

.6 MCMC optimizations 

or the two different types of models of the electron density –
anonical and analytical – represented by three different models –
, idPIE and iNFW – we let a number of parameters free. For

he β profile, we set all three parameters of the density distribution
 ρ0 ; r c ; β} free. For the idPIE profile, we initially let { ρ0, 1 ; a 1 ;
 1 ; ρ0, 2 ; s 2 } free, but as discussed in Section 7 , s 2 appears entirely
egenerate in the optimization, and we therefore fix it to its lensing
alue. The two parameters characterizing a NFW distribution, { ρS ;
 S } , are set free for the iNFW optimization. We optimize them with
he data for each galaxy cluster. For cluster MACS J0242, we only
se the X-ray data, while for MACS J0949, we have the choice to
se either X-rays, SZ, or both. 
We define the log-likelihood for the X-ray data. As the photon

ounts are limited, the X-ray maps are following a Poissonian
istribution. We take them to follow the Cash statistic (Cash 1979 ), 

ln L X ( � ) = 

1 

N X 

∑ 

i 

[
C i − M i ( � ) − C i ln 

(
C i 

M i ( � ) 

)]
, (33) 

here C i = N X , c , i is the data count in the i -th pixel (see equation 30 ),
 X , the number of pixels, and M i ( � ), the model prediction for the
arameter vector, � . 
As for the SZ statistic, with M i now being the temperature contrast
odel, and C i , its SZ measurement, we simply tak e the lik elihood
NRAS 528, 1711–1736 (2024) 
o be Gaussian, 

ln L SZ ( � ) = − 1 

2 N SZ 

∑ 

i 

[ (
M i ( � ) − C i 

σi 

)2 

+ ln σ2 
i 

] 

, 

σ2 
i = M 

2 
i ( � ) + σ2 

C,i , (34) 

here σ i is the standard deviation in the i -th pixel, and N SZ , the
umber of SZ pixels. We take the model standard deviation to be the
odel itself, accordingly to a Gaussian model. σ2 

C,i is the instrument
ariance of ACT. This does not take into account the CMB variance
or the atmosphere, but these are smoothed out on the scale of a
luster by the top-hat filtering (we follow Hilton et al. 2018 , 2021 ).
 i and M i represent here the data and model respectively, but for

he SZ data. In the case of cluster MACS J0949, we sum the log-
ikelihood of the 90 and 150 GHz ACT DR5 bands. 

In the case of the joint optimization of X-rays and SZ, the data
re of the same type, i.e. detections in pixels. We therefore define
he joint likelihood as the weighted sum, 

ln L J = 

N X ln L X + N SZ ln L SZ 

N X + N SZ 

, (35) 

here N SZ must be understood as the sum of all SZ pixels, both
n band f090 and f150. This takes into account the different
ixelisations, and attributes equal weights to each pixel. The X-
ay observations thus dominate, given the much better resolution
a XMM-Newton pixel represents 2.5 arcsec, and an ACT pixel
0 arcsec). 

We used the package EMCEE , took 100 w alk ers, iterated o v er
000 steps, with a step type emcee.StretchMove . We provide
he cornerplots, realized with package CORNER (F oreman-Macke y
016 ), in Appendix E . 

 ICM-OPTIMIZED  RESULTS  

e present in this section the results of MCMC optimizations of
ach of the four ICM density models, for each galaxy cluster. 

.1 Cluster MACS J0242 

.1.1 β model 

n order to compare our profiles inferred from lensing with the more
opular profiles describing the ICM, we run a MCMC optimization
or the β profile. We present the optimized parameters in Table 4 ,
longside all other optimizations for MACS J0242. The associated
ornerplot is presented Fig. E1 . 

We find the best likelihood to be ln L = −0 . 68, close enough
rom the best possible likelihood, −0.5, so that we can expect other
anonical ICM profiles – such as double- β – not to significantly
mpro v e the model. 

.1.2 idPIE 

n the strong lensing optimization – presented Table 2 – parameters
 ρ0, 1 ; a 1 ; ρ0, 2 ; s 2 } were optimized, and the DMH cut radius, s 1 , to
hich strong lensing is insensitive, was fixed to 1.5 Mpc. Here, we
ptimize the idPIE density profiles with these density parameters
sing the XMM-Newton observations. We display both the strong
ensing and ICM optimizations for the { ρ0, 1 ; a 1 ; s 1 ; ρ0, 2 } and
 ρ0, 1 ; a 1 ; ρ0, 2 } parameter spaces in Figs 6 and E2 , respectively. 
The X-ray optimization of the BCG cut radius, s 2 , is degenerate

see Fig. E3 ). We therefore fix s 2 to its lensing value, s 2 = 177.6 kpc

https://emcee.readthedocs.io/en/stable/user/moves/
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Table 4. Best-fitting of all optimization models for cluster MACS J0242. 

Observation Profile ρ0, 1 , ρS , or ρc a 1 , r S , or r c s 1 ρ0, 2 s 2 β − ln L X 

Unit [g cm 

−3 ] [kpc] [kpc] [g cm 

−3 ] [kpc] 

Lensing dPIE 1 . 0 + 3 . 4 −0 . 2 × 10 −24 57 . 2 + 6 . 0 −8 . 4 1500 � 1 . 2 + 0 . 3 −0 . 2 × 10 −20 177 . 6 + 32 . 2 
−58 . 0 ∞ 

NFW 3 . 4 + 0 . 5 −0 . 4 × 10 −25 209 . 9 + 17 . 1 
−15 . 8 ∞ 

ICM β 2 . 6 + 11 . 0 
−1 . 8 × 10 −23 17 . 9 + 38 . 1 

−13 . 3 0 . 54 + 0 . 20 
−0 . 08 0.68 

(X-rays only) idPIE 5 . 3 + 9 . 3 −2 . 4 × 10 −25 73 . 0 + 34 . 7 
−23 . 2 2720 + 460 

−890 4 . 3 + 3 . 9 −2 . 7 × 10 −21 177.6 � 0.67 

iNFW 1 . 3 + 15 . 9 
−0 . 6 × 10 −25 320 . 5 + 99 . 0 

−230 . 1 0.70 

The columns are as follows: (i) The observation type used to constrain the profile. (ii) The profile type. (iii) ρ0, 1 denotes the DMH central density in the case 
of idPIE profile, ρS in the iNFW case, and the central gas density ρc in the case of a β-profile. All density values are displayed in g cm 

−3 . (iv) a 1 denotes 
the DMH core radius in the idPIE model, r S the scale radius in the iNFW case, and r c in the β-model. All of these distances are displayed in kpc. (v) s 1 
denote respectively the cut radius of the DMH and of the BCG, in the case idPIE . (vi) ρ0, 2 denotes the BCG central density in the idPIE case. (vii) s 2 is 
the cut radius of the BCG. (viii) β is the power index of the β profile. (ix) − ln L X is the ne gativ e log-likelihood evaluated on X-rays data. When a parameter 
set is out of the invertible range of function J z (i.e. ∼[0, 10]), we denote the log-likelihood ln L as infinite. For cluster MACS J0242, the optimization is only 
performed with XMM-Newton data. The core radius of the BCG a 2 is fixed for both the lensing and ICM optimizations. Starred values were fixed. We find 
the optimization of s 2 to be degenerate; we therefore fix this parameter. 
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rom now on. Although the prediction from lensing is diverging in
he cluster centre ( r → 0) – due to the central matter density being
ut of the J z function bijective range – we find the ICM optimization
n the { ρ0, 1 ; a 1 } space to provide results in agreement with those
rom the lensing optimization, despite the larger ICM error bars. 
he density normalization of the BCG, ρ0, 2 , yields different results 

han strong lensing. This may be explained by the high central
atter density, which yields values out of the J z function inversion

ange. As the validity of equations ( 17 ) and ( 24 ) paired together is
ot verified beyond n e > 10 −1 cm 

−3 , the ICM optimization a v oids
egions of the parameter space yielding an ICM density above this
alue. Moreo v er, since the X-ray signal in the centre carries a high
ariability, we can not conclude about its significance. 

We note that fixing the parameter s 1 to a value of 1.5 Mpc in the
CM optimization results in a best log-likelihood ln L < −1 . 06. On
he contrary, when this parameter is optimized, the best value gets
loser to the ‘perfect fit’ −0.5 value at ln L < −0 . 67 (i.e. as good as
he β model). In this case, we can only notice the X-ray optimization
s bound to diverge from the fiducial 1.5 Mpc value, as the best
ptimization yields s 1 = 2 . 72 + 0 . 44 

−0 . 87 Mpc. The electronic densities,
 e , are represented in Fig. 7 , and the XMM-Newton physical – i.e.
ithout PSF effects – X-ray surface brightness, S X , in Fig. 8 . If s 1 is
ot optimized, we notice a discrepancy between the ICM best-fitting 
nd X-ray data profile at large radii ( R > 200 kpc). This emphasizes
he necessity to let this parameter free. We conclude our method can
roperly fit the X-ray signal for this cluster, provided the potential
s optimized, and notably s 1 . We further discuss the the importance
f s 1 and the large discrepancy between the lensing-inferred model 
nd the observations in Section 7.3 . 

We can moreo v er outline the much larger error bars in the ICM
ptimization, compared to the lens optimization, in Fig. 6 . This is
ue to the inherent difference in the data quality. The high sensitivity
f the J z function (represented in Fig. 3 ) could be described as
 double-edged sword: on the one edge, this sensitivity means 
ny imprecision in the determination of the parameters, or even 
n the hypotheses (temperature model, temperature normalization, 
etermination of the total mass density, etc.) would result into a
agnified error, i.e. a prediction error on the ICM density much

arger than the total matter density associated error. On the other
dge, this allows to finely tune certain parameters. In order to reach
uch a quality in the reconstruction, the strong lensing parameters 
o

hould be very finely determined, and fixed. The parameters not fit
ith strong lensing ( s 1 here) could then be optimized. 

.1.3 iNFW 

he NFW distributions attributed to strong lensing are all reductions 
f dPIE LENSTOOL optimizations to NFW best fit. In Fig. E4 ,
e compare these to the ICM-optimized iNFW parameters. The 

atter yields a very satisfactory best likelihood value again at 
n L = −0 . 70, and although the { ρS ; r S } values we find are different
rom those of the strong lensing reduction, they are compatible with
he total density we found. 

.2 Cluster MACS J0949 

imilarly to the study performed on the cluster MACS J0242, 
e present the results of the ICM optimization of MACS J0949.
e primarily present the joint fit results (X-rays and SZ

ffect). 

.2.1 β model 

ig. E5 presents the optimization with the ICM data from XMM-
ewton and the SZ data taken with ACT. Using both the X-rays
nd SZ data for this optimization, we find the best likelihood to
e ln L J = −0 . 61, a value which supports the good quality of the
t. In detail, the X-ray likelihood is ln L X = −0 . 58, and the SZ

ikelihood is ln L SZ = −0 . 88. 

.2.2 idPIE 

s for MACS J0242, the optimization of the BCG cut radius, s 2 , is
egenerate. We therefore choose to fix this parameter to its strong
ensing value, 98.0 kpc. We display in Fig. 9 the strong lensing and
CM optimizations in the { ρ0, 1 ; a 1 ; s 1 ; ρ0, 2 } parameter space. The
est-fitting value to the ICM data is ln L J = −0 . 60. The o v erlap
etween the strong lensing and ICM optimized spaces is obvious 
n this cornerplot. Ho we ver, the quality of the reconstruction with
he ICM does not converge as efficiently as that of strong lensing –
 result to be expected given the difference in methods and quality
f data. 
MNRAS 528, 1711–1736 (2024) 
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M

Figure 6. MCMC optimization for idPIE model of the four rele v ant parameters for cluster MACS J0242: DMH central density ρ0, 1 in g cm 

−3 , core radius a 1 
and cut radius s 1 in kpc, and BCG central density ρ0, 2 in g cm 

−3 . Blue: Optimization performed using the available ICM data (X-ray here). Red: Strong lensing 
optimization. Cyan: Best-fitting value of the ICM optimization. Gold: Median ICM optimization. Ma g enta: Best-fitting strong lensing model (described in 
Table 2 ). 
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We present the comparison between the observations, the
heoretical prediction using the lens model and the ICM-optimized
odel for observables, n e , S X , and � r on Figs 10 , E7 , and E8 ,

espectively. Again, not optimizing s 1 leads to a worst ICM
ptimization (best log-likelihood −1.06, see Fig. E6 ). In Fig. 10 ,
he right-hand panel shows the discrepancy between the X-rays
nferred electron density and the best optimization with a fixed
MH cut radius, s 1 = 1.5 Mpc. This demonstrates the importance
f this parameter optimization to reco v er the X-ray measured
ensity profile. We further discuss this in Section 7.3 . 
NRAS 528, 1711–1736 (2024) 
.2.3 iNFW 

n Fig. E9 , we compare the best strong lensing optimization fit
o the ICM-optimized iNFW parameter space. We find a best
og-likelihood of ln L J = −0 . 61. The strong lensing fit NFW
arameters and the ICM-optimized values are compatible within
 σ . 
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Figure 7. Electron density n e for idPIE model, for cluster MACS J0242. Green: X-ray surface brightness deprojected profile (assuming spherical symmetry). 
Blue: Best ICM-optimized profile, with an idPIE model. Red: Best lens model inferred profile. Left: In the case of the optimization of parameters ρ0, 1 , a 1 , s 1 , 
and ρ0, 2 , as illustrated in Fig. 6 . Right: In the case of the optimization of parameters ρ0, 1 , a 1 and ρ0, 2 , as illustrated in Fig. E2 . This shows the lens-optimized 
ICM density model to be inconsistent with the X-ray data. As shown on Fig. 6 , the X-ray optimized ρ0, 2 parameter yields lower values than the SL ones. This 
may be caused by ICM turbulence in the centre, or simply due to central total densities much larger than modelled through the polytropic temperature model 
(equation 24 ). More significantly, the offset in the ICM-optimized model on the right-hand panel shows that if s 1 is not optimized, the larger scales ( � 100 
kpc) n e densities can not be properly fitted. 

Figure 8. Expected X-ray surface brightness S X for idPIE model, for cluster MACS J0242. Green: X-ray surface brightness deprojected profile (assuming 
spherical symmetry). Blue: Best ICM-optimized profile, with an idPIE model. Red: Best lens model inferred profile. Left: In the case of the optimization of 
parameters ρ0, 1 , a 1 , s 1 , and ρ0, 2 , as illustrated in Fig. 6 . Right: In the case of the optimization of parameters ρ0, 1 , a 1 , and ρ0, 2 , as illustrated in Fig. E2 . 
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.3 Optimizing the DMH cut radius with ICM core data and 

L priors 

s strong lensing is only efficiently probing the most central regions
f galaxy clusters ( R < 200 kpc), it only allows to ef fecti vely con-
train the ‘central’ parameters amongst those presented in idPIE 
ptimizations, i.e. ρ0, 1 , a 1 , ρ0, 2 , and s 2 – leaving s 1 aside. Even these
trong lensing constrained parameters are not perfectly determined 
n the case of our study as we are limited in the number of multiple
MNRAS 528, 1711–1736 (2024) 
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M

Figure 9. MCMC optimization for idPIE model of the four rele v ant parameters for cluster MACS J0949: DMH central density ρ0, 1 , core radius a 1 and cut 
radius s 1 , and BCG central density ρ0, 2 . The optimization was performed with the X-ray and SZ data. Blue: Optimization performed using the available ICM 

data. Red: Strong lensing optimization. Cyan: Best ICM optimization. Gold: Median of the ICM optimization. Ma g enta: Best strong lensing model (described 
in Table 2 ). 
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mages and spectroscopic redshifts detected (Allingham et al.
023 ). 
In this context, for the idPIE ICM optimizations, we notice

he efficiency of the optimization of the dark matter halo cut
NRAS 528, 1711–1736 (2024) 

7

p
o
i

adius, s 1 . For MACS J0949, 7 we can use the idPIE model
ntroduced in Section 7.2.2 and Fig. 9 , and fix the parameters
 For MACS J0242, we did not perform this optimization, as the central 
ixels present a total density out of the invertible range of function J z , and 
ptimizing s 1 only would not suffice to bring the central density into the 
nvertible range. 
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Figure 10. Electron density n e for idPIE model, for cluster MACS J0949. Green: X-ray surface brightness deprojected profile (assuming spherical symmetry). 
Blue: Best ICM-optimized profile, with an idPIE model. Red: Best lens model inferred profile. Left: In the case of the optimization of parameters ρ0, 1 , a 1 , 
s 1 and ρ0, 2 , as illustrated in Fig. 9 . Right: In the case of the optimization of parameters ρ0, 1 , a 1 , and ρ0, 2 , as illustrated in Fig. E6 . Similarly to Fig. 7 , we 
observe that not optimizing s 1 prevents our idPIE model to fit the ICM density properly for r � 200 kpc. 
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onstrained through strong lensing, i.e. ρ0, 1 , a 1 , and ρ0, 2 . This
ew model, only performing the s 1 -optimization, reaches the 
est-fitting value, s 1 = 3500 + 520 

−740 kpc, at ln L J = −0 . 63. This is
uch better than optimizing all the other parameters excluding s 1 

 ln L J = −1 . 06). Thus optimizing s 1 could suffice to fit the ICM
ensity. 
To verify this s 1 -optimization does not affect the lens opti-
ization, we used the s 1 value for the best ICM optimization of

he idPIE model presented in Tables 4 and 5 for respectively
lusters MACS J0242 and J0949. Fixing the DMH cut radius 
o (respectively) 2720 and 3780 kpc, we perform a new lens
ptimization for each cluster, following the procedure detailed in 
llingham et al. ( 2023 ). We find that, for both clusters, this does
ot change significantly any of the optimized parameters. We find 
 close match between the respective rms of 0.37 and 0.16 arcsec,
ompared to 0.39 and 0.15 arcsec rms with s 1 fixed to 1.5 Mpc. We
onclude that using the ICM-optimized s 1 values does not strongly 
nfluence the strong lensing reconstruction. 

 DISCUSSION  

.1 Importance of the DMH cut radius 

e remind the reader that the full idPIE ICM optimization 
or clusters MACS J0242 and MACS J0949 respectively yielded 
 1 = 2720 + 440 

−870 kpc and 3780 + 390 
−1540 kpc – this latter value being

ompatible with the s 1 -optimization only. Amongst all idPIE 
rofile parameters, s 1 is the only one not to be optimized with strong
ravitational lensing. Given the uncertainty in the determination of 
he lensing parameters due to observational limitations, the stiffness 
f function J 

−1 
z magnifies small errors in the potential profile 

nto significant ones in the ICM density. Thus, these errors may
ontaminate the ICM-optimized s 1 value. If we could fix all other
arameters (density parameters, geometry, and use a measured ICM 
emperature profile), the ICM-optimized value for s 1 should yield 
 physical result, with respect to the dPIE profile choice and the
 ydrostatic equilibrium h ypothesis. In spite of this constraint on
he data quality, we have presented the importance of the DMH
ut radius parameter, s 1 , in the ICM density prediction, as its
ptimization modifies the electron density, n e , and thus the surface
rightness, S X , at all radii . Indeed, this DMH cut radius parameter,
 1 , is related to the total matter density density in the cluster
utskirts, but has a direct influence in the central X-ray surface
rightness. This noticeable change in the ICM central density due 
o the s 1 DM halo cut radius is represented in Fig. E10 . In the
 ydrostatic h ypothesis, we can understand this as the effect of
aster clustering of (baryonic) matter due to a larger dark matter
alo, thus increasing the central baryonic density. In other words, if
he gravitational potential at large radii is more important, a cluster
hould have accreted gas faster, and thus the ICM should be denser
n the centre. 

In order to securely compare the lens model to the ICM ob-
ervables using the method presented in this article, future works
hould focus on relaxed, strong lensing galaxy clusters with a well-
onstrained lens model, including a large number of multiply-lensed 
ystems. Given the utmost importance to know the limits of strong
ens modelling (as demonstrated in e.g. Lin, Wagner & Griffiths
023 ), one should not conclude on the dark matter halo properties
ithout solid evidence. Moreo v er, weak lensing or a number of
 alaxy–g alaxy strong lensing events far from the cluster centre
hould be coupled to the strong lens model, in order to lift the
e generac y on the potential constraints at large radii. In the settings
f a similar parametric lens model as presented here, this would
llow to constrain s 1 and to verify our optimization results. 

We may compare the cut radius to the splashback radius . This
adius is defined as the largest distance from the cluster centre
onnected to the cluster dynamics, i.e. the largest orbital apocentre at
hich matter is accreted to the DMH. The cut radius values we find
MNRAS 528, 1711–1736 (2024) 
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Table 5. Best-fitting of all optimization models for cluster MACS J0949. 

Observation Profile ρ0, 1 , ρS , or ρc a 1 , r S , or r c s 1 ρ0, 2 s 2 β − ln L J 

Units [g cm 

−3 ] [kpc] [kpc] [g cm 

−3 ] [kpc] 

Lensing dPIE 4 . 6 + 3 . 6 −1 . 0 × 10 −25 116 . 3 + 24 . 1 
−51 . 7 1500 � 3 . 9 + 8 . 3 −0 . 6 × 10 −18 98 . 0 + 153 . 7 

−34 . 3 3.54 

NFW 1 . 2 + 1 . 6 −0 . 0 × 10 −25 405 . 5 + 0 . 0 −156 . 1 1.42 

ICM β 1 . 7 + 1 . 6 −1 . 0 × 10 −24 108 . 4 + 175 . 0 
−48 . 2 0 . 50 + 0 . 28 

−0 . 13 0.61 

(X-rays and SZ) idPIE 3 . 6 + 8 . 2 −1 . 8 × 10 −25 96 . 1 + 60 . 0 
−32 . 6 3780 + 420 

−1600 1 . 9 + 9 . 5 −1 . 1 × 10 −21 98.0 � 0.60 

iNFW 6 . 4 + 8 . 9 −2 . 1 × 10 −26 546 . 2 + 110 . 3 
−186 . 0 0.61 

The columns are as follows: (i) The observation type used to constrain the profile. (ii) The profile type. (iii) ρ0, 1 denotes the DMH central density in the case 
of idPIE profile, ρS in the iNFW case, and the central gas density ρc in the case of a β-profile. (iv) a 1 denotes the DMH core radius in the idPIE model, r S 
the scale radius in the iNFW case, and r c in the β-model. All of these distances are displayed in kpc. (v) s 1 denote respectively the cut radius of the DMH and 
of the BCG, in the case idPIE . (vi) ρ0, 2 denotes the BCG central density in the idPIE case. (vii) s 2 is the cut radius of the BCG. (viii) β is the power index 
of the β profile. (ix) − ln L J is the ne gativ e joint SZ-X-ray log-likelihood. The core radius of the BCG a 2 is model-dependent, and is thus it is not optimized 
here. Starred values were fixed. 
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re larger than splashback radii measured by Chang et al. ( 2018 ).
heir typical values provided in a redshift range corresponding

o our lensing clusters are in the 1.5–2 Mpc range. These values
re averaged for clusters of typical mass M 200 ,m 

� 2 . 5 × 10 14 M �,
o compare to the (extrapolated) 5.6 and 10 . 4 × 10 14 M � for

ACS J0242 and MACS J0949 respectively. As we expect more
assive clusters to be larger, we do not find any contradiction to

ur s 1 values in this broad comparison. For a more quantitative
ssessment, we compare the logarithmic deri v ati ves of the dPIE
adial densities to the Diemer & Kravtsov ( 2014 ) density profiles
hereafter DK14 ). We find the transition between a logarithmic
eri v ati ve of −2 to −4 to occur for the dPIE profile (with an
ptimized s 1 cut radius) from 0.5 R vir to ∼5 R vir . This is in clear
pposition to the DK14 predictions, for which the heaviest clusters
resent a steepening of the deri v ati ve (see Fig. 2 ), and reaches a −4
ogarithmic deri v ati ve for ∼R vir . 

We can also compare the cut radii obtained to the predicted edge
adius , defined as the smallest radius at which no more orbiting
alaxies can be found. According to Tomooka et al. ( 2020 ) and Aung
t al. ( 2023 ), the edge radius can be approximated to r e ∼ 2 R 200, m .
sing the ICM-optimized values for R 200, m , we can compare the
ptimized cut radius values to the edge radii for both clusters. We
btain for MACS J0242, s 1 = 2720 + 440 

−870 and 2 R 200, m = 4632 kpc. In
he case of MACS J0949, we measure s 1 = 3780 + 390 

−1540 and 2 R 200, m =
751 kpc. Computing the ratios s 1 / r e = 0.59 and 0.80 for the two
lusters respectively, we obtain values of the same order. It should
e noted that the cut, splashback, and edge radii are not necessarily
ssumed to describe the same physical limit. As MACS J0242
resents a more cored profile than MACS J0949, we expect a higher
M concentration in the cluster centre. As a consequence, for
 comparable bounded mass (e.g. M 200, m ), we expect a lower s 1 
alue. This is compatible with the smaller s 1 / r e ratio found here.
his serves to illustrate that, although of comparable orders of
agnitude, s 1 and r e do not exactly represent the same physical

bservables. The shock radius, describing the size of a shock of gas
alling into the ICM of a cluster, is predicted by Baxter et al. ( 2021 )
o be equally of order ∼2 R 200, m , using SZ profiles issued from the
hree Hundred Project hydrodynamic simulations. Although not
uite observable with the ACT resolution, future SZ surv e ys will be
ble to assist detecting this critical ICM large scale cluster radius.
e conclude that the optimized cut radii is commensurable to these

arious radii attempting to measure the ‘size’ of galaxy clusters, and
e find s 1 to fall between the splashback and the edge radii. Using
ur analytical model, the thorough comparison of these different
NRAS 528, 1711–1736 (2024) 

c  
luster-size radii should be greatly assisted by the combination of
trong lensing and ICM observations. 

.2 ICM and DMH geometries 

n order to understand the effect of the density profile parameters
ptimization, one must decorrelate these from the geometric differ-
nces between the DMH and the ICM. Our measurements suggest
hat the ICM presents rounder shapes than the DMH (see e.g. Fig. 1 ).
ndeed, in the case of clusters MACS J0242 and MACS J0949, the
-ray measured ellipticities are negligible, but the strong lensing
ptimization of the DMH presents ellipticities in the range 0.2–0.3.
s studied in e.g. Debattista et al. ( 2008 ) and Lau et al. ( 2012 ), the
eometry of the ICM of (relaxed) galaxy clusters may differ from
hat of their DMH. Beyond baryonic effects associated to the ICM,
he inability of CDM to dissipate kinetic energy tends to fa v our

ore elliptical DMH. According to Lau et al. ( 2011 ), simulations
how both fluids’ ellipticity also varies importantly depending on
he radius in which it is measured. As the ICM ellipticity is measured
n a significantly larger radius, it is expected to be smaller. In this
rticle, we modelled the ICM ellipticity to be that of the DMH
easured through strong lensing. Any attempt to optimize the ICM

ensity with spherical profiles yielded equi v alent density profile
arameters ( ρ0 , a , s ) and best-fitting likelihoods as using an elliptical
rofile (for both clusters, the Mahalanobis distance between the
est-optimizations is of 0 . 3 σ, and the ln L difference < 0.01). 

At last, line-of-sight projection effects were entirely neglected
n this paper, and in the strong lensing reconstruction. The com-
ination of SZ effect and X-ray observations may allow to inform
symmetries on the line-of-sight. Ho we ver, gi ven the SZ ef fect data
esolution and the adoption of a self-similar temperature profile in
his work, this is beyond the scope of this article. Such effects may
onetheless affect the quality of the reconstruction. For instance,
metsu et al. ( 2015 ) display a case of apparent mismatch between

CM and lensing observations due to the presence of a line-of-sight
symmetry. 

.3 Relationship between DM and ICM densities 

 number of additional observational effects limit the analytical
CM density reconstruction method. In general, relaxed galaxy
lusters are expected to present a cool core, due to the radiated
ower in X-rays at high ICM densities. However, the observed
entral temperatures tend to be higher than the expected values
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onsidering only X-ray cooling (Peterson et al. 2001 ; B ̈ohringer
t al. 2002 ). This is generally explained by feedback effects, and
ost notably active galaxy nuclei (AGN; see e.g. Puchwein et al.

010 ) and the cooling of the plasma. The change produced in the
emperature profile was here taken into account by using the varying
ndex, self-similar polytropic temperature model, which represents 
he physically measured temperatures, without implementing AGN 

eedback itself. Ho we ver, this self-similar model is imperfect to
ake into account the feedback specific to each cluster. This may
ecorrelate the central ICM density from the DM in the outskirts.
or instance, Ghirardini et al. ( 2019a , fig. 7) present up to a
0 per cent intrinsic scatter in the central density. The inclusion 
f a theoretical model for such baryonic effects would represent 
n important impro v ement to our models. Modelling the ICM fluid
elocity evolution would also allow to understand the evolution of 
lusters, thus challenging the hydrostatic hypothesis. 

Nevertheless, with precise lensing constraints and temperature 
odel measurements in a cluster, we could directly compare 

he ICM data to the parametric lensing reconstruction, given our 
nalytical models. The difference between the observations and the 
odel, with respect to systematic errors, could yield constraints on 

he ICM velocity field and on dark matter models. 

 C O N C L U S I O N  

sing a comparison between a parametric strong lensing mass 
econstruction model and the ICM observations (X-rays and SZ) 
n two non-perturbed galaxy clusters, we have shown it is possible
o use a unique model to describe both the total and ICM density
rofiles. In fact, under the hydrostatic hypothesis and assuming self- 
imilar electron temperature profiles, the bijection J z (equation 12 ) 
e have established between the total matter density and the ICM
ensity allows to describe both the electron and dark matter density
ith the same parameters. We applied this technique to the dPIE and
FW potentials, and convincingly found the parameters optimized 

hrough lensing to be either compatible with their ICM optimization, 
r to be degenerate and thus difficult to optimize with the ICM. 
Gi ven the sensiti vity of this J z function, and as strong lensing

oes not allow to probe regions out of the cluster inner core, we
aired our models to ICM observations. This allows to probe the
ut or scale radii of relaxed clusters. Indeed, the ICM central
ensity appears to be bounded to these matter density large- 
cale parameters. The method exposed in this article differs from 

raditional ways of accounting for ICM data in conjunction with 
trong lensing models, where the inferred gas potential is added 
o the lens model as a fix ed (P araficz et al. 2016 ; Bonamigo et al.
017 ) or evolving (Beauchesne et al. 2024 ) component. Our new
echnique should be verified using clusters’ outskirts surveys, such 
s weak lensing, and could only be efficiently applied with stringent
onstraints on the strong lensing parameters. 

We can also reverse this perspective. If we had a perfect descrip-
ion of the full density mass model, e.g. including the cut radius
f the DM halo through weak lensing, we could then compare the
redicted ICM signal to that detected. If our model were satisfactory
nough, we could then probe possible discrepancies, associated to 
ther physical phenomena. 
We here summarize the main results of this analysis: 

(1) We have proposed a self-similar polytropic temperature 
odel with a varying index, using the X-COP sample of clusters.
his allows to predict the ICM temperature for any cluster of
easured mass M 500, c . 
(2) As a major result, we exhibited an analytic relationship 
etween the ICM density and that of DM, assuming hydrostatic 
quilibrium. We have further shown this relationship to allow to 
redict the ICM density using strong lensing, as a proof of concept.
(3) We have demonstrated that the strong lensing ICM predic- 

ions are compatible with data through the ICM optimization. We 
xpect the strong lensing prediction to yield convincing results as
ong as: (i) the lensing galaxy cluster is not strongly perturbed,
nd (ii) we are able to properly predict the large-scale total density
rofile. 
(4) This requirement to probe the large scales demonstrates 

he limitations of our current analysis. We ho we ver foresee weak
ensing constraints as a mitigating solution to adjust our models to
arge scale variations, thus allowing us to make precise predictions. 

(5) Re verting the perspecti ve, this means the combination of X-
ays or SZ data with strong lensing could allow to probe the dark
atter profile of relaxed galaxy clusters far from their centres. 

We have presented a proof of concept for the possibility to tie
trong lensing constraints to the ICM. With higher-quality data and 
ore observations on the large-scale profile, this should lead to 

owerful constraints on galaxy clusters physics. 
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PPENDI X  A :  ELLIPTICITIES  

e define the mass ellipticity e as 

 = 

a 2 − b 2 

a 2 + b 2 
, (A1) 

here a and b are the semimajor and semiminor ax es, respectiv ely.
Due to the Poisson equation, the ellipticity of the gravitational

otential, i.e. here that of the ICM, differs from that of the mass
llipticity, 

 = 

1 − √ 

1 − e 2 

e 
= 

a − b 

a + b 
. (A2) 

Upon defining an ellipsoidal radius, in order to take into account
he potential ellipticity, assuming the ellipticity to be e , we take it
o be 

 = 

√ (
x cos θ + y sin θ

a 

)2 

+ 

(
y cos θ − x sin θ

b 

)2 

+ 

( z 

c 

)2 
, 

(A3) 

n the Cartesian coordinates, with θ the rotation angle on the sky
lane. c is the semi-axis along the line-of-sight, which we take to
e the geometric average of a and b here. 

PPENDI X  B:  A LT E R NAT I V E  DENSITY  

I STRI BU TI ONS  

eyond the NFW and dPIE density distributions, presented in
ection 4.1 , alternative models may be used to compute the ICM

hermodynamic parameters using relationship ( 13 ). 

1 Generalized NFW profile 

n the case of a generalized NFW potential (proposed as early
s Hernquist 1990 ), we compute the different integrals given
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quation ( 6 ), 

 ( r) = x −γ ( 1 + x α) −
β−γ

α , 

g( r) = r 3 S 

x 3 −γ

3 − γ
2 F 1 ( μ, ξ, 1 + μ, −x α) , 

h ( r) = r 2 S 

{
x 2 −γ

[
2 F 1 ( ν, ξ, 1 + ν, −x α) 

2 − γ
(B1) 

− 2 F 1 ( μ, ξ, 1 + μ, −x α) 

3 − γ

]
− � ( ν) � ( ξ − ν) 

α� ( ξ ) 

}
, 

here x = r / r S , 2 F 1 is the Gauss hypergeometric function, � the
xtended factorial function (i.e. the complete gamma function), and 
, ν and ξ are simple reformulations of the three indices α, β, γ , 

= 

3 − γ

α
; ν = 

2 − γ

α
; ξ = 

β − γ

α
. (B2) 

his integration takes constants into account, but requires α > 0, β
 2, and γ < 2. The generalized NFW density is normalized by ρS ,

imilarly to NFW: ρgNFW 

( r ) = ρS f ( r ). 

2 Einasto profile 

he Einasto potential was proposed in Einasto ( 1965 ). Following
ardone, Piedipalumbo & Tortora ( 2005 ) and Retana-Montenegro 
t al. ( 2012 ), the different functions equation ( 6 ) write 

 ( r) = exp 
(
−s n 

−1 
)

, 

g( r) = l 3 n 
[ 
�(3 n ) − � 

(
3 n, s n 

−1 
)] 

, 

h ( r) = −nl 2 

s 

[ 
�(3 n ) − � 

(
3 n, s n 

−1 
)

+ s � 

(
2 n, s n 

−1 
)] 

, (B3) 

here n is the inv erse inde x of the density slope at large radii, s =
2 n ) n r / r −2 the reduced scale radius, with r −2 a transition radius,
 = r −2 /(2 n ) n the scale length, and ρ0 the central density. � ( α) is
he complete gamma function, and � ( α, x ) the incomplete upper
amma function, 

( α, x) = 

∫ ∞ 

x 

d t t α−1 e −t . (B4) 

he Einasto density writes ρE ( r ) = ρ0 f ( r ). 

PPENDIX  C :  SELF-NORMALIZED  I C M  

ENSITY  DISTRIBU TION  

ollowing equation ( 11 ), assuming J to be a bijection, we can also
nvert it and normalize the distribution at a given radius 	 (e.g. 100
pc, where the strong lensing signal is strongly constraining the 
otal density profile, or R 500, c ), if we happen to know n e , 	 

. We can
herefore write 

 e ( r) = J 

−1 

[
J ( n e,	 

) 
� ( r) 

� ( R 	,c ) 

]
. (C1) 

e call this latter expression self-normalized . 
We did not include any self-normalized models in the opti- 
izations, as these imply to use X-ray data both as input (as a

ormalization) and to perform the optimization, which would make 
ne or several parameters degenerate. 
PPENDI X  D :  G A S  F R AC T I O N  STUDY  

1 Gas fraction definition 

e define the gas fraction as the ratio of the gas mass to the total
ass. The gas mass includes all baryons except stars. We distinguish

he local gas fraction, f g ( r ) = ρg ( r )/ ρm ( r ), considered in this article
o be a radial function, and the cumulative gas fraction, F g , given
ithin a radius r : 

 g ( r) = 

∫ r 
0 d s s 

2 ρg ( s ) ∫ r 
0 d s s 

2 ρm 

( s ) 
= 

M g ( < r) 

M m 

( < r) 
, 

f g ( r) = 

d F g 

d r 
( r ) 

∫ r 
0 d s s 

2 ρm 

( s ) 

r 2 ρm 

( r ) 
+ F g ( r ) . (D1) 

he full knowledge of either of these gas fractions would provide a
ijective relationship between the gas and matter content of galaxy 
lusters. We will therefore name gas density reconstruction our 
lectron density prediction using an empirical gas density model. 

We here present an alternative attempt to model the hot gas
istribution using the gravitational potential. Using the local gas 
raction f g = ρg / ρm , a general model for f g coupled with the lensing
onstraints on ρm would yield a ρg prediction in each lensing cluster. 

In order to derive a quantitative model for the gas fraction, we use
he ‘X-COP + 2’ sample analysis, i.e. the X-COP ( XMM Cluster
utskirts Project) sample, complemented with similar analyses for 
ur two strong-lensing clusters, MACS J0242 and MACS J0949. 
e compare the cumulative gas fraction reconstruction (as defined 

n equation D1 ) in each of the 14 clusters in the sample, and propose
wo new ad hoc models. 

2 Proposed models 

ith respect to the data analysed in Section D3 , we propose the
ollowing models. First, we attempt to describe the increasing 
umulative gas fraction, F g , as a power law, 

 g ( r) = f 0 g 

(
1 + 

r 

r c 

)ζ

, (D2) 

here r c is a pivot, or core radius, f 0 g = F g ( r = 0), the central gas
raction, i.e. the baryonic fraction excepted the stellar fraction, and 
, the power exponent to find. 
Ho we ver, for all clusters, the integrated gas fraction presents a

ransition between the inner and the outer regions of the cluster, as
epresented on Eckert et al. ( 2019 , fig. 1). We propose to analytically
escribe this transition with a transitive model, 

 g ( r) = a 

[
2 

π
arctan 

(
exp 

r − r c 

r f 

)
− 1 

2 

]
+ b, (D3) 

here a and b are defined with the expected gas fraction at two given
adii, respectively at R E , a radius where the potential is typically
onstrained through strong gravitational lensing (e.g. the Einstein 
adius), and at R 500, c , where the gas fraction should tend towards
he Universal gas fraction. We respectively write these gas fractions
 

E 
g and F 

500 
g , 

( r) = 

2 

π
arctan 

[
exp 

(
r − r c 

r f 

)]
, 

a = 

F 

500 
g − F 

E 
g 

υ( R 500 ) − υ( R E ) 
, 

b = F 

500 
g − aυ( R 500 ) , (D4) 
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Table D1. Average over all clusters of the optimized parameters for the gas 
fraction power law model. 

f 0 g (%) r c [kpc] ζ

1.26 ± 1.12 1.01 ± 0.62 0.41 ± 0.14 

r c is in kpc. 

Table D2. Average over all clusters of the optimized parameters for the gas 
fraction transitive model. 

F 

E 
g (%) F 

500 
g (%) r p [kpc] r f [kpc] 

5.59 ± 2.21 13.6 ± 2.1 20.4 ± 65.6 259.8 ± 135.8 

r p and r f are in kpc. 

Table D3. Updated parameters and model for the gas fraction transitive 
model, for the X-COP clusters only. 

F 

E 
g (%) F 

500 
g (%) r f [kpc] 

5.40 ± 1.83 13.7 ± 1.9 290.7 ± 122.1 

r f is in kpc. 

i  

w
 

I  

l  

t  

t  

b  

a  

e  

a  

t  

f
 

t  

C  

i  

t  

r  

f  

F  

n
 

A  

q  

l  

C  

t  

a

F

H  

t  

c  

w
 

i  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/528/2/1711/7517098 by guest on 21 M
arch 2024
nd r p and r f are the pivot radius and flattening distance, respectively,
.e. the radii of the transition inflexion point, and the characterization
f the slope of the transition. 
In the simplest model, i.e. assuming a cluster to be dynamically

elaxed, the local gas fraction pivot scale should be related to the
ivot parameter in the total matter density ρm . For instance, in
 NFW description, this parameter would be the scale radius r S ,
s f g ( r ) = ρg ( r ; r S )/ ρm ( r ; r S ), using the hydrostatic relationship
 13 ). Therefore, we can take a 1 , a typical BCG-to-DMH transition
adius, to be a reasonable prior on both the pivot radius r p and
he flattening distance r f . Important limitations nonetheless prevent
rom identifying these values to be identical. Indeed, multiple
arametrizations of the typical pivot radius exist in the potential,
nd are not identical to a unique pivot scale. More importantly, the
istribution of hot gas is dominated by non-gravitational phenomena
AGN feedback, plasma turbulence, etc.), whose characteristic radii
ave no a priori reason to match the potential’s. For F 

500 
g , we

ssume F 

500 
g � f 500 

g , and we use the universal gas fraction �b / �m 

=
.1580 ± 0.0021 (Ade et al. 2016 ), corrected for the stellar fraction
 � , not accounted for in the intra-cluster gas, and the baryon depletion
actor Y b (see Eckert et al. 2019 ), 

 

th 
g ( r) = Y b ( r) 

�b 

�m 

− f � ( r) . (D5) 

ckert et al. ( 2019 ) provide Y b, 500 = 0 . 938 + 0 . 028 
−0 . 041 , which we use

ere. Following the same study, we take the error on f � , 500 to be
 × 10 −3 . The study of the lensing galaxy clusters gives stellar
raction of f � , 500 = (1.92 ± 0.21) × 10 −2 and (1.87 ± 0.36) × 10 −2 

or MACS J0242 and J0949, respectively. 

3 X-COP + 2 study 

ith the power-law and the transitive models, equations ( D2 ) and
 D3 ) respectively, we conduct a study for the 14 galaxy clusters of
he X-COP + 2 sample. 

All these clusters were tested with both the power-law and
ransitive models, optimized for all respective 3 and 4 parameters
 { f 0 g , r c , ζ } and { F 

E 
g , F 

500 
g , r p , r f } ) with a MCMC, with package

MCEE (see F oreman-Macke y et al. 2013 ). We arbitrarily took R E =
0 kpc, as both lensing clusters present strong constraints in this
egion, and the gas fraction at this radius is significantly different
rom that at R 500, c for all clusters. We define the log-likelihood
unction as Gaussian, with an underestimated variance of fractional
mount, f : 

ln L f g ( � ) = −1 

2 

∑ 

i 

⎡ 

⎣ 

( 

F 

val 
g,i − F 

pred 
g,i ( � ) 

σi 

) 2 

+ ln σ2 
i 

⎤ 

⎦ , (D6) 

here F 

val 
g,i are the values of the cumulative gas fraction in radius

ins (the gas mass being measured through X-ray deprojection, and
he total mass obtained using the hydrostatic equilibrium), F 

pred 
g,i are

he predictions in the same bins, and 

2 
i = 

(
σerr 

i 

)2 + 

[ 
F 

pred 
g,i ( � ) 

] 2 
f 2 , (D7) 

here σerr 
i are the F 

val 
g,i measured standard deviation error. In

ractice, the model scatter f is optimized. 
Out of the 14 clusters, 5 were found to be better modelled with

he power-law, and 9 with the transitive relationship – including
ACS J0242 and MACS J0949. We performed the optimization

 v er all radii accessible in the X-ray data range, except for
ACS J0242, where non-statistically significant perturbations exist
NRAS 528, 1711–1736 (2024) 
n the gas fraction reconstruction. To a v oid these, the optimization
as performed in r ∈ [20; 350] kpc for this specific cluster. 
Overall, we find the transitive model to be consistently better.

ndeed, even the clusters which were better modelled by a power-
aw are well fit by a transitive model. The largest model scatter on
he power-law model reaches f = 17 per cent , to be compared with
he maximum of f = 9 per cent for the transitiv e model. Moreo v er,
y construction, the transitive model can use physical parameters
s priors for F 

500 
g , r p and r f , and converges at large radii, which is

xpected from the Universal hot gas fraction. We give in Tables D1
nd D2 the optimized parameters for respectively the power-law and
he transitive models. These are the averages of the best parameters
ound by the MCMC for each individual cluster. 

Trying to relate these parameters to physical values, we notice
hat f 0 g is the gas fraction at the centre of the clusters. The X-
OP + 2 sample does not precisely provide the hot gas fraction

n the centre of clusters ( r < 20 kpc), due to the stellar effects,
urbulence, feedback, and resolution of X-ray surv e ys. F or these
easons, we do not directly use a physically measurable value for
 

0 
g , and simply use a fit of this parameter across all radii. Conversely,
 

E 
g is well measured for all the clusters of the sample, but we can
ot generalize this value o v erall. 

The exponent ζ of the power-law model is purely empirical.
s for the power-law pivot radius, r c , its relative error bars are
uite important. Ho we ver, discarding the two clusters coming from
ensing yields r c = 0.96 ± 0.65 kpc, i.e. a result very close the X-
OP + 2 one. The same process on ζ and f 0 g gives results similar

o those presented in Table D1 , for respectively ζ = 0.41 ± 0.14
nd f 0 g = (1 . 2 ± 1 . 1) × 10 −2 . We can therefore propose a model, 

 g ( r) = 1 . 3 × 10 −2 

[
1 + 

r 

1 . 0 kpc 

]0 . 41 

. (D8) 

o we ver, gi ven the important error bars found on all parameters of
his model, its inability to predict accurately the gas fraction for most
lusters, and the lack of theoretical moti v ation for its parameters,
e conclude to the inef fecti veness of this model. 
As for the transitive model, all parameters may be physically

nterpreted. The quantity F 

500 
g not only can be found quite precisely,

ut is also in agreement with equation ( D5 ). Indeed, for all X-COP
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Figure D1. Cumulative gas fraction F g ( r ) in lensing galaxy clusters MACS J0242 (left) and MACS J0949 (right). Black: Reconstructed gas fraction from 

XMM-Newton data analysis. Errors are 1 σ . Green: Universal gas fraction �b / �m . Orange: Gas fraction at R 500, c (see equation D5 ). Red: Transitive gas fraction 
model (see equation D3 ) optimized for the specific cluster. Blue: Transitive model with the cluster lensing parameter a 1 as r p , and F 

0 
g and F 

500 
g determined 

using the general reduction o v er X-COP + 2 and the theoretical gas fraction f 500 
g respectively. As presented in e.g. Eckert et al. ( 2022 ), the baryon fraction is 

approximately constant out of the central regions of clusters. Baryons are distributed between stars and the ICM, with a higher concentration of the former in 
the centre, and of the latter in the outskirts ( r > 0.2 R 500 ). This matches the trend presented here. 
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lusters, the stellar fraction is considered to be unknown. We could
se the X-COP average value f � , 500 = 0.015 ± 0.005, but prefer to
se the results of simulations presented in Angelinelli et al. ( 2023 ).
iven a M 500 , which we have for X-COP clusters, we can draw a
alue for f � , 500 . Completing the set with the stellar fractions found in
llingham et al. ( 2023 ) for the lensing clusters, we can fix the F 

500 
g 

alue for each cluster. These values are in remarkable agreement 
ith Table D2 . As for r p and r f , we can not study the X-COP clusters

nd our lensing clusters jointly. Indeed, we are using a 1 , the core
adius of the DMH, as a prior on both these parameters. Ho we ver,
his radius is unknown for the X-COP clusters due to the lack of
ensing data. Moreo v er, the best-fitting values of r p for the X-COP
lusters are all <2 kpc, while for MACS J0242, r p = 22 . 9 + 48 . 0 

−16 . 2 kpc
nd for MACS J0949, r p = 256 . 1 + 16 . 7 

−29 . 2 kpc. 
Therefore, for the dynamically relaxed X-COP clusters, we can 

et r p = 0. After performing an optimization on the X-COP clusters
nly of this restricted model, we find the average best parameters
ummarized in Table D3 . The largest model scatter across all 12
lusters is still of f = 9 per cent . If we chose to constrain F 

500 
g 

sing equation ( D5 ), the largest f would be of 36 per cent . 
Given the results in the lensing clusters transitive model opti- 
ization, we choose to fix r p to the a 1 prior for both MACS J0242

nd MACS J0949. This is an ef fecti ve model, which should be
urther informed using observations on other lensing clusters. We 
hen find the model error to be respectively f = 1 . 7 per cent and
 . 8 per cent . On all 14 clusters, we may prolong the transitive
unction into a central gas fraction F 

0 
g , which is predicted to be

 

0 
g = 2 . 6 ± 1 . 9 per cent , averaging on all clusters, with the fixed
 p models. We may thus fix all parameters (using formula D5 for
 

500 ), except r f . This final model is represented and compared to
g 
he transitive model with all parameters let free on Fig. D1 . We
nd a maximum scatter of f = 40 per cent , but the average scatter
t 8 . 7 per cent . As expected, the local models appear to be better
ts, but we notice the reduced model ( r f free only displayed in
lue is a good approximation (the X-ray reconstruction is never 
istant of more than 2 σ from the ‘reduced’ models, in the fitting
adii range). For the lensing clusters, we can not conclude on the
cale to set for r p , but found the approximation r p ≈ a 1 to be
mpirically reasonable. We can not conclude absolutely on the 
attening distance r f , with the final model yielding r f = 26 . 5 + 4 . 0 

−2 . 8 

pc for MACS J0242 and r f = 267 . 3 + 19 . 9 
−16 . 4 kpc for MACS J0949. A

arger study would be necessary to conclude to the general validity
f a reduced transitive model without any free parameter. For the
-COP clusters, r f ranges from 80 to 750 kpc, and we can thus
ot conclude either. Studying the morphology and dynamical state 
arameters may allow to determine r f using observable data. 
As we could not extract a general, Universal prediction for the

as fraction simply using lensing-determined parameters, we can 
ot conclude to the success of this technique for the moment. The
ransitive model is however encouraging, and a more general study
oupling X-ray and lensing data may manage to generalize the 
esisting parameter r f . 

PPENDI X  E:  C O R N E R P L OTS  

e display here the cornerplots of the MCMC optimizations of the
otential of the ICM data, as described Section 8 . In the following
raphs, densities ρ are displayed in g cm 

−3 , while core, scale, and
ut radii in kpc. 
MNRAS 528, 1711–1736 (2024) 
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Figure E1. MCMC optimization for β model of the three rele v ant parame- 
ters for cluster MACS J0242: central density ρ0, 1 , core radius r c and density 
index β. As per all other cornerplots, the density ρ0, 1 is here displayed in 
g cm 

−3 and the core radius r c in kpc. Blue: Optimization performed using the 
available ICM data (X-ray here). Gold: Median of the ICM optimization. 
Cyan: Best ICM optimization (described in Table 2 ). These best ICM- 
optimization values are displayed o v er the histogramme distributions. 
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Figure E2. MCMC optimization for idPIE model, for cluster MACS J0242: DMH central density ρ0, 1 and core radius a 1 , and BCG central density ρ0, 2 . The 
DMH cut radius is fixed to the fiducial value of 1.5 Mpc. Densities are displayed in g cm 

−3 , distances in kpc. Blue: Optimization performed using the available 
ICM data (X-ray here). Red: Strong lensing optimization. Cyan: Best ICM optimization. Gold: Median of the ICM optimization. Ma g enta: Best strong lensing 
model (described in Table 2 ). Comparing this to Fig. 6 , we notice the importance of the optimization of parameter s 1 , as the ICM best-fitting likelihood here is 
−1.06, i.e. the optimization is of much worse quality than with this optimization. 
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Figure E3. MCMC optimization for idPIE model, for cluster MACS J0242: DMH central density ρ0, 1 , core radius a 1 , cut radius s 1 , and BCG central density 
ρ0, 2 and cut radius s 2 . Densities are displayed in g cm 

−3 , distances in kpc. Blue: Optimization performed using the available ICM data (X-ray here). Red: 
Strong lensing optimization. Cyan: Best ICM optimization. Gold: Median of the ICM optimization. Ma g enta: Best strong lensing model (described in Table 
2 ). Comparing this to Fig. 6 , we can see that the s 2 optimization is degenerated, and therefore not necessary. This explains why we fixed the s 2 value to that of 
lensing in Section 8 . 
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Figure E4. MCMC optimization for iNFW model of the two rele v ant 
parameters for cluster MACS J0242: the density normalization ρS and the 
scale radius r S . Densities are displayed in g cm 

−3 , distances in kpc. Blue: 
Optimization performed using the available ICM data (X-ray here). Red: 
Strong lensing optimization. Cyan: Best ICM optimization. Gold: Median 
of the ICM optimization. Ma g enta: Best strong lensing model (described in 
Table 2 ). 

Figure E5. MCMC joint optimization for the β model, for cluster 
MACS J0949. Densities are displayed in g cm 

−3 , distances in kpc. Blue: 
Optimization performed using the available ICM data (X-ray and SZ here). 
Cyan: Best ICM optimization. Gold: Median of the ICM optimization. 

Figure E6. MCMC joint optimization for idPIE model, for cluster 
MACS J0949: DMH central density ρ0, 1 and core radius a 1 , and BCG 

central density ρ0, 2 . The DMH cut radius is fixed to the fiducial value of 1.5 
Mpc. Densities are displayed in g cm 

−3 , distances in kpc. Blue: Optimization 
performed using the available ICM data (X-ray and SZ here). Red: Strong 
lensing optimization. Cyan: Best ICM optimization. Gold: Median of the 
ICM optimization. Ma g enta: Best strong lensing model (described in Table 
2 ). Similarly to Fig. E2 for MACS J0242, the comparison between this 
optimization excluding s 1 and Fig. 9 displays the importance of the s 1 
optimization. 
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Figure E7. X-ray surface brightness S X for idPIE model, for cluster MACS J0949. Green: X-ray surface brightness deprojected profile (assuming spherical 
symmetry). Blue: Best ICM-optimized profile, with an idPIE model. Red: Best lens model inferred profile. Left: In the case of the optimization of parameters 
ρ0, 1 , a 1 , s 1 , and ρ0, 2 , as illustrated in Fig. 9 . Right: In the case of the optimization of parameters ρ0, 1 , a 1 , and ρ0, 2 , as illustrated in Fig. E6 . 

Figure E8. Compton parameter y for idPIE model, for cluster MACS J0949. Green: SZ effect Compton y parameter observed profile with ACT. Blue: Best 
ICM-optimized profile, with an idPIE model. Red: Best lens model inferred profile. Left: In the case of the optimization of parameters ρ0, 1 , a 1 , s 1 , and ρ0, 2 , 
as illustrated in Fig. 9 . Right: In the case of the optimization of parameters ρ0, 1 , a 1 , and ρ0, 2 , as illustrated in Fig. E6 . 
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Figure E9. MCMC joint optimization for iNFW model. The individual 
values for the best optimization here presented are: ln L X = −0 . 58 and 
ln L SZ = −0 . 90. Densities are displayed in g cm 

−3 , distances in kpc. Blue: 
Optimization performed using the available ICM data (X-ray and SZ here). 
Red: Strong lensing optimization. Cyan: Best ICM optimization. Gold: 
Median of the ICM optimization. Ma g enta: Best strong lensing model 
(described in Table 2 ). 

Figure E10. Electron density n e of the ICM for the idPIE model, for 
cluster MACS J0949. Green: X-ray surface brightness deprojected profile 
(assuming spherical symmetry). Blue: Best ICM-optimized profile, with an 
idPIE model. Red: Best lens model inferred profile. The ICM optimization 
was here only performed on parameter s 1 , setting the other profile parameters 
to their strong lensing value. The comparison between the red and blue 
outlines the importance of the DMH cut radius optimization. Indeed, the n e 
density does not only change dramatically in the outskirts, but also in the 
centre of the cluster. This is due to the sensitivity of the function J 

−1 
z and 

of the shape of the potential � , and is discussed in Section 8.1 . 
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