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Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these 
varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic 
and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input path-
ways converge to regulate a common set of “floral pathway integrators.” Variation in the predominance of the different input 
pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by 
flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific 
flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the 
network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene 
function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help 
define which genes act as critical flowering nodes in many other species.
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Introduction
Flowering is a major developmental transition in the life cycle 
of a plant. Correct timing of this process has a huge impact 
on reproductive success and has thus been of central import-
ance in plant breeding. Different strategies have evolved to 
ensure correct timing for successful outcrossing, alignment 
of flowering with pollinators, and sexual reproduction in fa-
vorable external conditions (reviewed in Lee et al. 2023). 
However, different critical factors influence the timing of 
the transition when environmental conditions change and 
flowering is a last defense against acute heat/drought stress, 
as seeds are more likely to survive (reviewed in Takeno 2016).

Early studies focused on flowering physiology—production 
of transmissible signals from the leaf to the apex, and changes 

in reproductive competence of the meristem (reviewed in 
Bernier et al. 1993). There were 3 major theories for flowering 
control: the “florigen/antiflorigen” concept (Lang 1984), envi-
sioning a specific floral promoter and inhibitor; the “nutrient 
diversion” hypothesis (Sachs and Hackett 1983), where modi-
fication of source/sink relationships in inductive conditions 
resulted in the shoot apex receiving a better supply of assim-
ilates; and finally, the “multifactorial control” theory (Bernier 
et al. 1981; Bernier 1988) postulated that multiple signals in-
volving chemicals, assimilates, and phytohormones synergize 
to induce the floral transition. These early studies still make 
good reading and suggest many new molecular experiments.

The Arabidopsis genetic revolution then transformed 
thinking: Arabidopsis thaliana mutants (Koornneef et al. 1991; 
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Koornneef et al. 1998) with altered flowering time revealed an 
integrated network of environmental and endogenous input 
pathways. These converge to quantitatively control the ex-
pression of floral pathway integrators, which when expressed 
above a certain threshold trigger the transition to flowering 
(Koornneef et al. 1991; Chandler et al. 1996; Koornneef et al. 
1998). This then provided the conceptual framework to explain 
the diversity of physiological requirements in different species. 
Although much of our understanding of flowering time has 
come from studies on A. thaliana, significant progress has also 
been made in other species such as rice, wheat, and the model 
temperate grass Brachypodium (Higgins et al. 2010; Tsuji et al. 
2013; Cao et al. 2021). We refer the reader to the following re-
views (Osnato et al. 2021; Quiroz et al. 2021; Li et al. 2022a) that 
cover the extensive recent literature on flowering time control. 
In this short review we focus on how the molecular understand-
ing of environmental signal integration fits into thinking from 
earlier physiological analyses. We also discuss how current 
knowledge may facilitate breeding in crops and pose questions 
for future research.

Arabidopsis: the Rosetta stone?
How did Arabidopsis genetics change thinking on flowering 
time regulation? Forward genetics analyses in A. thaliana iden-
tified many flowering time mutants (Koornneef et al. 1991). 
These mutants were categorized into pathways mediating en-
vironmental and endogenous cues that promoted the floral 
transition: maturity, photoperiod, autonomous, vernalization, 
light quality, and hormonal pathways (Fig. 1). These pathways 

converge to regulate a common set of genes known as “floral 
pathway integrators.” These include FLOWERING LOCUS 
T (FT) and SUPPRESSOR OF OVEREXPRESSION OF 
CONSTANS1 (SOC1). These in turn regulate the expression 
of the floral meristem identity genes such as APETALA1 
(AP1), AP2, FRUITFULL (FUL), CAULIFLOWER (CAL), and 
LEAFY (LFY). Over time, more and more genes (over 300) 
have been added to this complex interconnected network 
of Arabidopsis flowering time regulators (Bouche et al. 2016). 
Such a regulatory network can explain how flowering time 
can vary in different conditions, how different pathways are 
predominant in different seasons, and, together with analysis 
of shoot maturation, how diversity of reproductive strategies 
evolve. It also enabled the previous physiological understand-
ing of the floral transition—production of transmissible 
signals from the leaf to the apex and changes in meristem 
competence—to be described in genetic terms.

Transmissible floral-promoting signals
Transmissible signals are key to photoperiodic control of 
flowering. Systemic signaling mechanisms involving long- 
range inter-tissue transportation integrate the signals re-
ceived from different parts of the plant (Lifschitz et al. 
2006; Lin et al. 2007; Tamaki et al. 2007). The identification 
of FT as florigen (Kardailsky et al. 1999; Kobayashi et al. 
1999) was a major step forward in our understanding of 
the macromolecules that move through the phloem together 
with sugars and hormones to regulate flowering and develop-
ment (Giaquinta 1983; Corbesier et al. 2007; Molnar et al. 
2010; Regnault et al. 2015).

The first photoperiodic regulator, the B-box transcription 
factor CONSTANS (CO), was cloned (Putterill et al. 1995) 
and shown to transmit photoperiod information to flower-
ing time control through induction of FT in leaves. CO is 
regulated at the transcriptional and posttranslational level 
by the circadian clock. CO mRNA accumulates during the 
day, peaking 16 h after dawn during long day (more than 
12 h of light [LD]) photoperiods (Suarez-Lopez et al. 2001). 
In the morning CO mRNA levels are repressed by CYCLIN 
DOF FACTORs (CDFs) and through the day, but FLAVIN 
BINDING, KELCH REPEAT, F-BOX1 (FKF1), and ZEITLUPE 
(ZTL) relieve CDF-mediated repression in the evening, per-
mitting mRNA accumulation in the evening (Imaizumi 
et al. 2005; Song et al. 2014). CO protein is itself targeted 
at night by CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) 
and SUPPRESSOR OF PHYA-105S1 (SPA1) for degradation 
by the proteosome (Valverde et al. 2004; Laubinger et al. 
2006; Jang et al. 2008). This complex regulation culminates 
in CO accumulating only in LD conditions, when light coin-
cides with the evening, to bind to the promoter of FT and 
activate its transcription. Partly as a result of direct CO regu-
latory dependence on the circadian clock, the mutations 
in clock component genes, such as GIGANTEA (GI), EARLY 
FLOWERING3 (ELF3), and pseudo response regulators (PRRs), 
also affect flowering time (Hicks et al. 1996; Fowler et al. 1999; 
Nakamichi et al. 2007). However, many clock components 

ADVANCES

• Forward genetics screens in Arabidopsis thaliana 
identified many flowering time mutants and es-
tablished molecular understanding of the genetic 
pathways mediating the floral transition.

• Multiple pathways converge on a common set of 
genes specifying the floral meristem identity, so 
multiple environmental and endogenous cues 
can be integrated into the floral transition.

• Natural selection has targeted different nodes of 
the floral network to adapt flowering time to new 
environments. Nature has done the mutagenesis 
for us.

• These have also been selected in the domestica-
tion of crop species, although in each species a 
different node or pathway has been predomin-
antly selected and researched.

• Combining field studies with more accurate 
simulation in the laboratory is key to under-
standing flowering time control in natural 
environments.
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have direct transcriptional outputs affecting flowering through 
other pathways and themselves integrate temperature and 
light signals—mechanisms that are still being elucidated 
(for more detailed reviews, see Harmer et al. 2022; Maeda 
and Nakamichi 2022; Nakamichi et al. 2022; Oravec and 
Greenham 2022).

In A. thaliana, FT expression is activated in the companion 
cells (CCs) in the leaf, and FT protein is then loaded into the 
sieve elements (SEs) and transported to the SAM, where it 
forms a floral activation complex with the bZIP transcription 
factors (TFs), FD and FD-related proteins, as well as 14-3-3 
proteins to induce the floral transition (Martignago et al. 
2023). Another phosphatidylethanolamine-binding (PEPB) 
protein related to FT, called TERMINAL FLOWER1 (TFL1), 
antagonizes FT’s function by competition for chromatin- 
bound FD at shared target loci (Goretti et al. 2020; Zhu 
et al. 2020). Many studies have shown that long-distance 
FT transportation is not just a result of diffusion but is highly 
controlled. The transport of FT protein from CCs to SEs is 
mediated by FT-INTERACTING PROTEIN 1 (FTIP1), QUIRKY 

(QKY), and SYNTAXIN OF PLANTS121 (SYP121). FTIP1 is an 
endoplasmic reticulum (ER) membrane protein that mediates 
the movement of FT protein through a continuous ER network 
running through the intercellular connections known as 
plasmodesmata between CCs and SEs (Liu et al. 2012). 
QKY and SYP121 (MCTP-SNARE Complex) coordinately 
facilitate FT export from CCs to SEs through the endosomal 
trafficking pathway (Liu et al. 2019). After entering into the 
phloem stream, the long-distance trafficking of FT from leaves 
to the SAM is regulated by a heavy metal–associated domain- 
containing protein, NaKR1 (Zhu et al. 2016). However, little is 
known about how FT is unloaded post-phloem and transported 
to the shoot apex (Yoo et al. 2013).

FT expression is also promoted by PHYTOCHROME- 
INTERACTING FACTOR 4 (PIF4) and its orthologs (PIF5 
and PIF7) (Kumar et al. 2012; Galvao et al. 2019). Under op-
timal ambient temperatures, red light converts photorecep-
tor phyB to the active (Pfr) state, which leads to the 
degradation of PIF4/5/7 and CO. Under elevated tempera-
tures (27 °C), the active state is rapidly converted to the 

Figure 1. The main genetic pathways controlling flowering time in Arabidopsis. Colored boxes highlight different pathways; FRI (purple) and clock 
components (brown), key integration nodes (FLC, CO, FT, and SOC1), and those with extensive natural variation (FRIGIDA, FLC, and FT) are in bold. 
Arrows indicate positive and bars represent negative regulatory relationships. Genetic pathways converge on FT, encoding a transmissible signaling 
molecule transported from the leaves to the SAM. The floral pathway integrators (in a circle) and floral meristem identity genes are shown in the 
green schematic meristem. The influence of sugar on some pathways is indicated. Different pathways are interconnected, for example, photoperiod 
and light quality and temperature pathways by COP1/SPA, and circadian and high temperature pathways by ELF3.
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inactive (Pr) state to allow the induction of PIF4/CO and sub-
sequently FT (Kumar et al. 2012; Fernandez et al. 2016). 
Flowering time can also be regulated by phyB through 
PHYTOCHROME AND FLOWERING TIME1 (PFT1) to regu-
late FT transcription (Cerdan and Chory 2003). In addition 
to FT mRNA expression, FT movement from CC to SE is 
also temperature sensitive; low temperatures facilitate FT 
sequestration in the cellular membrane of the companion 
cell due to its phospholipid-binding properties, thus reducing 
soluble FT levels and delaying flowering (Liu et al. 2020; Susila 
et al. 2021). FTIP1, QKY, and SYP121 single mutants show dif-
ferent temperature responses, indicating ambient tempera-
ture may influence different steps of FT trafficking (Liu 
et al. 2020). So, FT not only integrates environmental signals 
from different branches of the floral network but is itself 
directly regulated by these cues.

Reproductive competence
Before the floral transition, the shoot apical meristem (SAM) 
must first become competent. This competence is thought 
to be associated with the transition from juvenile to adult 
vegetative phase; however, this is not true for all species 
(Poethig 2003; Baurle and Dean 2006; Hyun et al. 2017; 
Poethig and Fouracre 2024). There are some species that 
flower without a juvenile to adult vegetative phase change, 
but in many cases, only the adult plants can respond to di-
verse environmental cues such as photoperiod or low tem-
perature to flower while some others show varied 
responses in the juvenile and adult phases (Hyun et al. 2017).

The transition from juvenile to adult phase (reviewed in 
Poethig and Fouracre 2024) is governed by a decrease in expres-
sion of microRNA156 (miR156), which represses the expression 
of SQUAMOSA PROMOTER BINDING-LIKE (SPL) TFs (Wu and 
Poethig 2006; Wu et al. 2009; Wang et al. 2009a; Yu et al. 2013; 
Gao et al. 2022). This decrease defines the length of juvenility; a 
recent study has revealed that the miR156 decline rate is corre-
lated with developmental age rather than chronological age. 
Upon seed germination, the onset of cell division in the SAM 
serves as a trigger for the decline in miR156. Concomitant 
with cell division, the transcriptional activity of MIR156C is 
gradually attenuated by the deposition of the repressive histone 
mark trimethylation of lysine 27 of histone 3 (H3K27me3) 
(Cheng et al. 2021). These results provide a plausible explan-
ation for why the decline in miR156 is unidirectional.

Genetic studies and mis-expression experiments have re-
vealed that miR156 regulates flowering time in both leaf and 
SAM through distinct mechanisms. In leaves, the miR156/SPL 
module primarily controls flowering via miR172, which targets 
5 AP2-like TFs. MIR172B is activated directly by SPL9 (Wu 
et al. 2009). The 5 AP2-like TFs act as flowering repressors 
by inhibiting the expression of the florigen gene FT, which 
normally contributes to signaling from leaves to meristem. 
Overexpression of miR172 leads to early flowering, while the 
simultaneous mutation of 5 MIR172 genes results in late flower-
ing, particularly under non-inductive conditions (Aukerman 

and Sakai 2003; Chen 2004; Lian et al. 2021; Ó’Maoileidigh 
et al. 2021).

Within the shoot apex itself, miR156-targeted SPLs (mainly 
SPL15) and FT promote flowering directly by activating 
a shared set of targets, including AP1, FUL, LFY, and SOC1 
(Wang et al. 2009a; Yamaguchi et al. 2009). Additionally, 
SPL15 releases the inhibition of flowering by AP2 itself 
through activating MIR172A and MIR172D (Lian et al. 2021; 
Ó’Maoileidigh et al. 2021). These findings demonstrate the 
highly redundant activities and feed-forward action of the 
miR156/SPL and FT modules in regulating flowering while 
also revealing the interplay between meristem competence 
and photoperiod.

Vernalization removes the floral repressors responsible for 
reducing the sensitivity of the meristem to inductive signals. 
In Arabidopsis, the major repressor is FLOWERING LOCUS C 
(FLC), whose expression is upregulated by FRIGIDA (FRI). 
FLC, a MADS-box transcription factor, forms a heterodimer 
with SHORT VEGETATIVE PHASE (SVP; also a MADS-box 
TF) to negatively regulate FT and SOC1 and thereby prevent 
flowering (Michaels and Amasino 1999; Searle et al. 2006). 
Progressive cold treatment represses FLC through a co- 
transcriptional mechanism involving FLC antisense tran-
scripts (known as COOLAIR) (see Box 1) and in parallel is 
epigenetically silenced by Polycomb Repressive Complex 2 
(PRC2) with both processes regulated through NTL8 (De 
Lucia et al. 2008; Csorba et al. 2014; Zhao et al. 2020; Zhao 
et al. 2021; Nielsen et al. 2024). PRC2 associates with a sense 
noncoding transcript, COLDWRAP, derived from the pro-
moter region of FLC (Heo and Sung 2011; Kim et al. 2017), in-
volved in the formation of a repressive intragenic chromatin 
loop at FLC (Kim and Sung 2017). A second sense noncoding, 
intronic transcript, COLDAIR, is also proposed to interact 
with PRC2 (Heo and Sung 2011), but its identity and function 
are still not fully resolved. The PRC2-induced epigenetic 
silencing is mitotically stable when temperatures rise in 
the spring but is reset every generation (Sheldon et al. 
2008; Crevillen et al. 2014). Early forward screens uncovered 
VERNALIZATION1 (VRN1), VERNALIZATION2 (VRN2), 
VERNALIZATION INSENSITIVE3 (VIN3), and VERNALIZATION5 
(VRN5), all of which compromise the plant’s ability to establish 
or maintain stable FLC silencing (Chandler et al. 1996; Greb et al. 
2007). During the cold, VIN3 protein accumulates and associ-
ates with the nucleation region of FLC (Sung and Amasino 
2004; Finnegan et al. 2005; Wood et al. 2006), where it functions 
with the VRN2-PRC2 complex through its interaction with 
VRN5 (Yang et al. 2017; Franco-Echevarria et al. 2023). 
PRC2 catalyzes the deposition of H3K27me3 around the 
nucleation region and when the plant is returned to warm 
conditions, this modification spreads across the whole locus 
to silence FLC. H3K27me3 is stable through cell division and 
maintains FLC in an epigenetically silenced state (Bastow 
et al. 2004).

In addition to FLC, other floral repressors play important 
roles in temperature sensitivity of the Arabidopsis floral tran-
sition. FLOWERING LOCUS M (FLM/MADS AFFECTING 
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Box 1. The environmental sensitivity of FLC antisense transcription.

A set of cold-induced antisense transcripts, named COOLAIR, is expressed at the FLC locus in Arabidopsis thaliana 
(Swiezewski et al. 2009). COOLAIR initiates immediately downstream of the major sense FLC poly (A) site, can tran-
scribe through to the FLC promoter, and plays many roles in FLC silencing (Csorba et al. 2014; Kim et al. 2017; Nielsen 
et al. 2024). COOLAIR homologs in the semi-perennial relative Arabis alpina are induced each winter (Castaings et al. 
2014). COOLAIR transcripts adopt multiple secondary structures with different conformational dynamics, influenced 
by temperature (Hawkes et al. 2016; Yang et al. 2022). Monocot FLC homologs also show cold-induced antisense tran-
scripts (Jiao et al. 2019).

Cold temperature not only promotes COOLAIR RNA levels but also affects its processing; promoting the use of a 
proximal polyadenylation site and enhancing splicing to form a distal COOLAIR isoform called Class II.ii (Zhao 
et al. 2021; Zhu et al. 2021) (Box 1 Fig. A). Several cold-responsive TFs facilitate cold induction of COOLAIR including 
NTL8, CRT/DRE-binding factors (CBFs), and the group-III WRKY transcription factor WRKY63 (Zhao et al. 2020; Hung 
et al. 2022; Jeon et al. 2023) (Box 1 Fig. A). These factors have distinct cold sensitivities; for example, CBFs are upre-
gulated upon short cold (minutes/hours) exposure (Jeon et al., 2023), while NTL8 accumulates over weeks of cold 
exposure (Zhao et al. 2020). The slow timescale of NTL8 induction is due to an indirect thermosensory mechanism 
whereby cold slows cell division enabling NTL8 protein accumulation through reduced dilution. Thus, CBFs and NTL8 
are likely to be responsible for COOLAIR induction at different stages of vernalization. Because components of the 
growth medium, particularly sugar levels, change plant growth rate and influence protein accumulation, COOLAIR 
expression peaks at different stages when analysed in different laboratories (Box 1 Fig. B).   

There are contradictory conclusions on the role of COOLAIR in cold-induced FLC silencing. These are based on 
knockdown/out mutants generated using different genetic methods (Zhu et al. 2021; Jeon et al., 2023; Zhang et al. 
2023a; Zhu and Dean 2023). None of the antisense mutants entirely remove antisense transcription; when transcrip-
tion is suppressed from 1 region it initiates in another within the locus (Zhao et al. 2020; Zhu and Dean 2023). In 
addition, the overlap of the COOLAIR transcription start region containing transcription factor binding sites, with  

Figure A. Antisense transcription at FLC locus. A) Schematic illustration of FLC gene architecture and COOLAIR transcripts. Black lines 
represent introns, black boxes represent exons, and grey boxes indicate UTR regions. FLC and COOLAIR transcription start sites are shown 
by black arrows. The 3′ end of FLC is enlarged below to show binding motifs/regions and currently available mutants that disrupt 
COOLAIR. B) COOLAIR expression profile during cold treatment, measured using Q-RT-PCR and 2 amplicons shown in (A) at different 
conditions. The data in condition 1 is from Jeon et al., 2023 while the condition 2 is the same as described in Swiezewski et al. 2009.
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FLOWERING1), a MADS-box transcription factor related to 
FLC, represses FT and SOC1 (Balasubramanian et al. 2006a). 
The FLM locus is transcribed into a number of different iso-
forms via temperature-dependent alternative splicing me-
chanisms (Pose et al. 2013; Lutz et al. 2015; Sureshkumar 
et al. 2016). At low ambient temperatures, transcription of 
the repressive FLM-β isoform, which contains the functional 
DNA binding domain, is promoted compared with other iso-
forms, allowing FLM to multimerize with SVP and FLC to re-
press floral integrators (Lee et al. 2013a, 2013b; Pose et al. 
2013). At elevated temperatures, active SVP protein is re-
duced via decreased transcription and increased proteasomal 
degradation, permitting accelerated flowering (Lee et al. 
2007; Lee et al. 2013a, 2013b; Jin et al. 2022). However, muta-
tions in FLM and SVP have relatively small effects on A. thaliana 
flowering time.

Natural winter annual A. thaliana accessions show a FRI/ 
FLC-dependent dominant requirement for vernalization, in con-
trast to the mutation-induced flowering mutants such as fca 
(flowering locus ca), fpa (flowering locus pa), and flk (flowering 
locus k) that confer a recessive vernalization requirement—ra-
ther like the Vrn loci in wheat. These mutants flower late regard-
less of day length but respond to vernalization or growth in 
far-red light and were classified into the autonomous floral path-
way (Koornneef et al. 1991; Koornneef et al. 1998). The compo-
nents typically regulate flowering by limiting FLC expression 
levels. FCA, FPA, and FLK are general RNA binding and 3′ process-
ing factors that regulate FLC through a transcription-coupled 
chromatin silencing mechanism (Macknight et al. 1997; 
Schomburg et al. 2001; Lim et al. 2004; Marquardt et al. 2006). 
This involves proximal transcription termination linked to deliv-
ery of a chromatin environment that affects transcriptional out-
put—initiation, processivity, and elongation (Liu et al. 2007; 
Baurle and Dean 2008). The proximal termination process influ-
ences both COOLAIR transcripts from FLC and the sense FLC 
transcription (Box 2) (Schon et al. 2021; Menon et al. 2023).

Genes identified through flowering time 
mutants frequently encode general 
developmental and gene regulators
The molecular analysis of genes in the Arabidopsis integrated 
flowering network has led to important mechanistic informa-
tion as to how organisms can perceive different environmental 
signals and integrate them over time. The surprise has been that 
despite having relatively specific flowering time mutant 

phenotypes, many genes were found to encode general develop-
mental and gene regulators. We discuss a few examples below.

FT encodes florigen. FT is a member of the PEBP family that 
includes TWIN SISTER OF FT (TSF), MOTHER OF FT (MFT), and 
TFL1 (Yamaguchi et al. 2005; Xi et al. 2010; Hiraoka et al. 2013). 
In A. thaliana, FT, TSF, and TFL1 jointly affect shoot architecture 
through differential activation of axillary meristems, and FT, 
MFT, and TFL1 all affect seed development (Hiraoka et al. 
2013; Chen et al. 2014; Zhang et al. 2020a). In other species, 
the roles for the PEBP family have proliferated: in potato 
(Solanum tuberosum), the FT-like SELF-PRUNING 6A (StSP6A) 
gene is activated in leaves under short-day conditions (SDs) 
due to the inactivation of the FT-like repressor SELF 
PRUNING 5G (StSP5G) by unstable StCOL1 (Navarro et al. 
2011; Abelenda et al. 2016). Along with 2 other SD-activated 
transmissible FT-like proteins, StSP3D and FT-like 1 (StFTL1), 
SP6A protein is then transported via phloem from leaves to sto-
lons, where it forms a floral activation-like complex, termed the 
tuberigen activation complex, which promotes tuber forma-
tion (Teo et al. 2017; Jing et al. 2023). A similar shoot-to-root 
translocation is found in soybean (Glycine max), where the 
shoot-derived ortholog of Arabidopsis FT, GmNN1/FT2a, trig-
gers nodulation upon rhizobial infection (Kong et al. 2010; Sun 
et al. 2011; Li et al. 2022b). In the root, GmNN1/FT2a interacts 
with GmNFYA-C to activate symbiotic signaling through the 
GmNFYA-C-ENOD40 module (Li et al. 2022b). Therefore, the 
mobile signaling functions of FT-like proteins, first established 
in flowering time control, appear to be involved in many other 
environmentally controlled development processes.

Other genes first identified through their flowering time 
phenotype have now also been found to have additional func-
tions. For instance, miR156-targeted SPL TFs influence leaf mor-
phological changes associated with developmental progression 
(Poethig 2010), male fertility (Xing et al. 2010), nodulation 
(Wang et al. 2015; Yun et al. 2022), defense against insects 
(Mao et al. 2017), and anthocyanin biosynthesis (Gou et al. 
2011). PFT1 encodes MED25 of the plant Mediator complex 
and plays an essential role in transcription initiation, regulating 
jasmonate signaling, biotic and abiotic stress responses, and 
flowering (Backstrom et al. 2007; Kidd et al. 2009; Inigo et al. 
2012).

Many mutants affecting FLC expression were found to encode 
core transcription regulators. These include ELF7 (PAF1) 
and other Paf1C components, FRI (and FRIc), CAP-BINDING 
PROTEIN20 (CBP20), and CBP80 (He et al. 2004; Geraldo 
et al. 2009); splicing regulators: the apoptosis and splicing– 
associated protein (ASAP) complex and PRE-MRNA 

the sense transcript FLC 3′ UTR end, makes it difficult to completely remove the cold sensitivity of COOLAIR (Box 1
Fig. A). The combination of molecular analyses with computational modelling helped explain the contradictory find-
ings. FLC is silenced through pathways that function with different dynamics: a COOLAIR transcription-mediated path-
way capable of fast response; and in parallel a slow Polycomb Repressive Complex 2 (PRC2) switching mechanism that 
maintains each allele in an epigenetically silenced (Nielsen et al. 2024). The parallel repressive inputs and extensive 
feedback make the mechanism counter-intuitive but provide great flexibility to the plant to cope with ever-changing 
seasonal conditions.
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Box 2. Feedback that complicate analysis of FLC and its sensitivity to co-transcriptional regulators.

The feedback between transcription and chromatin is central to regulation of expression at FLOWERING LOCUS C 
(FLC). These mechanisms are difficult to tease apart without support of computational modelling (Menon et al. 
2023). Both transcriptional activation by FRIGIDA and repression by the autonomous pathway involve co- 
transcriptional pathways that link transcription termination with delivery of a changed chromatin environment. 
This chromatin environment then feeds back to affect transcriptional output by changing transcription initiation, pro-
cessivity and elongation. FRIGIDA promotes FLC transcription by acting as an anti-terminator in the developing em-
bryo, enhancing usage of distal termination sites for both sense and antisense transcription (Schon et al. 2021). The 
higher transcription delivers active chromatin modifications to the locus (H3K4me, H3K36me3), which enhance distal 
site usage (Liu et al. 2010). FCA represses FLC transcription by promoting proximal termination of both sense and 
antisense transcription (Menon et al. 2023). This is linked via FLD-mediated H3K4 demethylation to a changed chro-
matin environment that reduces transcriptional output by feeding back to enhance use of the proximal polyadenyla-
tion site (Liu et al. 2007; Liu et al. 2010). These feedback result in counter-intuitive outcomes on steady state RNA 
levels. For example, loss of FCA primarily reduces the relative propensity for proximal termination, but loss of that 
step affects the chromatin environment at the whole locus, which results in higher transcription of all the FLC and 
COOLAIR transcripts, including proximal COOLAIR (Liu et al. 2010). Thus, analyzing changes in absolute levels at steady 
state can give confusing answers. The answer has been to measure the ratio of proximal to distal polyadenylation. 
However, sufficient sequencing depth is required to reliably measure these low abundance transcripts. 3′RNA sequen-
cing approaches provide useful data on polyadenylation of both FLC and COOLAIR (Box 2 Fig. A-B) (Schon et al. 2021; 
Menon et al. 2023), and these confirm all the analyses using PCR (Liu et al. 2010).                                  

Figure B. Co-transcriptional 3′processing at the FLC locus. A) RNA 3′ sequencing at the FLC locus reveals altered polyadenylation site 
selection of both the sense (left) and antisense (right) transcripts by fca-9, fld-4 or ColFRI compared with Col-0. B) The proximal to distal 
polyadenylation ratio of FLC by 3′RNA sequencing matches conventional qPCR analysis of COOLAIR polyadenylation ratio. C) 
Differentially expressed genes in fca-9, fld-4 and ColFRI compared with Col-0 (padj < 0.05 and Log2FC > 1). Consistently, FLC is one of 
the top upregulated genes.
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PROCESSING8 (PRP8) (Marquardt et al. 2014; Mikulski 
et al. 2022); RNA binding proteins: THO/TREX, FCA, and 
FY (Liu et al. 2007; Xu et al. 2021); 3′ processing factors: 
CPSF, CstF64, CstF77, ANTHESIS PROMOTING FACTOR1 
(APRF1), and TYPE ONE SERINE/THREONINE PROTEIN 
PHOSPHATASE4 (TOPP4) (Liu et al. 2010; Mateo Bonmati 
et al. 2023). This raises the question: What makes FLC such a 
sensitive target to generic transcriptional regulators? Analysis 
of fold changes in genes mis-expressed in fca reveal the sen-
sitivity of FLC regulation compared with other targets (Box 2). 
Similarly, the vernalization mediators VRN2, VRN5, and VIN3 
are PRC2 core and accessory proteins, respectively, and associate 
widely with loci across the Arabidopsis genome (Franco- 
Echevarria et al. 2023). Redundancy and subfunctionalization 
between PRC2 forms may explain how some of the mutants 
have more vernalization-specific phenotypes. However, this 
relative specificity has provided a nonlethal platform for inves-
tigation of the mechanisms of these important general regula-
tors, allowing ongoing insights into conserved regulation of 
transcriptional processing and epigenetic chromatin memory.

Even the floral repressor FLC is not specific to the floral 
transition. FLC is known to bind to many genes and is asso-
ciated with broader developmental contexts such as seed 
dormancy, cold tolerance, juvenile-to-adult phase transition, 
and inflorescence patterning (Chiang et al. 2009; Deng et al. 
2011; Huang et al. 2013; Mateos et al. 2017; Auge et al. 2019). 
Moreover, FRI and FLC increase the stress tolerance of plants 
during drought and pathogen infection (Wilson et al. 2013; 
Chen et al. 2018; Chen et al. 2022; Shukla et al. 2022; Xu et al. 
2022). The naming of genes based on original forward screens 
implies a specificity to their function, which in reality is not 
the case. This convention has caused confusion in the whole 
field and is not exclusive to the flowering time field.

So, if the genes classified in the regulatory network affect-
ing flowering actually function in many processes important 
in plant growth and development, which genes are most influ-
ential in determining flowering in natural conditions and how 
have these evolved? The study of natural variation of flowering 
time has been most helpful in answering these questions.

Natural variation has identified critical nodes 
driving flowering time diversity
We summarize studies of the genetic basis of natural vari-
ation in flowering, focusing on Arabidopsis and its relatives 

as 1 example, and then contrast those findings with our un-
derstanding of the loci selected during domestication of our 
major crops.

Flowering time variation within Arabidopsis and 
relatives
Arabidopsis thaliana accessions show considerable variation 
for many aspects of flowering time. This has enabled adapta-
tion to their wide climate envelope, from the Arctic Circle to 
near the equator (Hoffmann 2005). Studies of natural vari-
ation of flowering time have focused on vernalization re-
quirement (winter vs rapid-cycling habit), vernalization 
response, or photoperiod sensitivity. Variation in vernaliza-
tion requirement was first mapped by Klaus Napp-Zinn in 
the 1950s, who showed that, despite the quantitative nature 
of flowering time control, FRI could be mapped as a single 
Mendelian locus (Napp-Zinn 1957; Clarke and Dean 1994). 
Subsequent QTL analyses between a range of winter annual 
and rapid cycling accessions showed approximately 70% of 
winter annual/rapid-cycling variation can be accounted for 
by allelic variation at FRI (Le Corre et al. 2002; Gazzani 
et al. 2003; Shindo et al. 2005; Werner et al. 2005a; Méndez- 
Vigo et al. 2011; Strange et al. 2011; Ågrena et al., 2013; 
Kinmonth-Schultz et al. 2021). Molecular analysis has shown 
loss-of-function FRI mutations are a recurrent feature in 
the evolution of the rapid-cycling habit (Johanson et al. 
2000; Shindo et al. 2005). Two amino acid polymorphisms 
in the central domain of the FRI protein that change stability 
or subcellular localization also cause early flowering (Zhang 
et al. 2020b). FRI alleles are associated with flowering time 
plasticity in regions experiencing high annual temperature 
variation (Fournier-Level et al. 2022), which may be related 
to its temperature-sensitive properties (Zhu et al. 2021). 
The evolutionary relevance of FRI variation extends to 
Cardamine hirsuta, where 3 distinct FRI loss-of-function al-
leles associate with early flowering (Baumgarten et al. 2023).

Variation in vernalization response mapped to FLC in QTL 
analysis of variation between different winter annual types 
(Shindo et al. 2006). Analysis of the FLC genomic sequence 
in the natural accessions revealed ∼20 major haplotypes, 
with 5 widely represented in the worldwide population. These 
haplotypes are distinguished by noncoding SNPs, which were 
shown to be causative for the different FLC expression levels 
and response to cold (Li et al. 2014). In many cases 1 noncoding 
SNP has a substantial effect on the phenotype (Li et al. 2014; 

These 3′ sequencing approaches show the extent of mis-regulation in the Arabidopsis genome when functionality 
of FRI or autonomous pathway components is disrupted. Several hundred genes are differentially transcribed in these 
genotypes (with significant P-values when compared with Col-0), fca-9 104 up, 69 down; fld-4 201 up,152 down; ColFRI 
511 up, 420 down; padj < 0.05. This agrees with their predicted roles as general co-transcriptional regulators. However, 
it is striking that FLC is in each case the most affected gene, with the highest fold change: 10.7 for fca-9, 10.8 for fld-4 
and 14.3 for ColFRI (Box 2 Fig. C). What confers this sensitivity to general acting co-transcriptional regulators is a fas-
cinating question, with major implications for why FLC has become the node for flowering time variation in the 
Brassicaceae (Li et al. 2014).
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Li et al. 2015; Qüesta et al. 2020; Zhu et al. 2023). In natural 
populations these SNPs accumulate over time, driven by natural 
selection, but their effect may be reduced or enhanced by 
epistatic interactions in the genetic background (Neto and 
Hancock 2023). The different causative SNPs at FLC are an 
excellent tool to dissect mechanism and act through influ-
ence on promoter activity, epigenetic silencing, or anti-
sense alternative splicing (Li et al. 2015; Qüesta et al. 
2020; Zhu et al. 2023). The major haplotypes of A. thaliana 
FLC have been introgressed into a common background to 
generate a set of near-isogenic lines. Use of these lines in 
field experiments across Sweden and the UK revealed 
that autumnal FLC expression determined by the non-
coding SNPs was the most important determinant modu-
lating flowering time and fitness in response to different 
natural fluctuating environments (Hepworth et al. 2020).

The variation in FLC epigenetic silencing is also a feature in 
Arabidopsis relatives. In the annual A. thaliana, the floral 
meristem is determinate and growth ceases, but for Arabis 

alpina, a polycarpic perennial, some meristems remain vege-
tative for growth in the following year. This requires reactiva-
tion of the FLC ortholog PERPETUAL FLOWERING1 (PEP1) 
(Wang et al. 2009b). Unlike FLC in Arabidopsis, PEP1 re-
pression by cold is not epigenetically stable (Wang et al. 
2009b). In A. alpina, miR156 repression of SPL15 in younger 
meristems prevents conversion of that meristem to flowering 
post vernalization, even in long photoperiods. FLC reactiva-
tion is required to prevent high FT expression overriding 
this, as it can in young A. thaliana shoots (Hyun et al. 
2019). This strategy for perennial growth is not isolated: in 
Arabidopsis halleri, Arabidopsis lyrata, Cardamine hirsute, 
Capsella rubella, A. alpina, and its close annual relative, 
Arabis montbretiana, FLC orthologs also influence flowering 
in an expression-dependent manner and contribute to nat-
ural variation and life histories (Wang et al. 2009b; Aikawa 
et al. 2010; Guo et al. 2012; Kemi et al. 2013; Kiefer et al. 
2017). FLC cis variation in 3 orthologs include gene duplica-
tions and noncoding changes to promoters and introns 

Figure 2. Natural variation in flowering pathways, comparing domesticated crops and natural species. Nodes circled in black in each pathway re-
present the major nodes with high allelic diversity. Yellow box shows selected photoperiodic regulators in rice (red text), maize (purple text), and 
barley (blue text). Extensive natural variation also occurs in vernalization regulators in barley (blue box), wheat, and brassica crops. Soybean breeding 
has predominantly targeted circadian clock components (pale brown box). White box: loci showing natural variation in A. thaliana.
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(Albani et al. 2012; Kemi et al. 2013; Kiefer et al. 2017). 
Conservation of COOLAIR sequences and structures across 
the Brassicaceae suggests the antisense functionality is also 
conserved (Castaings et al. 2014; Hawkes et al. 2016; Kiefer 
et al. 2017).

FT is an important contributor for major-effect 
QTLs underlying flowering time variation in response to en-
vironmental conditions, such as light and temperature 
(Schwartz et al. 2009; Li et al. 2010; Strange et al. 2011). In 
A. thaliana, long photoperiod induction of FT expression is 
controlled by 2 interdependent regulatory regions, with the 
distance between them essential for the responsiveness 
(Schwartz et al. 2009; Adrian et al. 2010). One polymorphism 
in 1 of the cis elements, the CCAAT box (C block), in the 
Ull2-5 accession is causative for impaired FT expression pat-
tern in response to LD induction (Strange et al. 2011). 
Natural promoter length variation at FT creates promoter 
length differences that correlate with longitudinal and latitu-
dinal clines (Liu et al. 2014). The bHLH transcription factor 
MYC3 competes with CO to repress the expression of FT un-
der unfavorable photoperiods (Bao et al. 2019). The MYC3 
binding site, the ACGGAT motif, is specifically present in ac-
cessions bearing the long FT promoter variant situated to-
ward more northern latitudes (Bao et al. 2019). It should 
be noted that FT can be functionally converted to TFL1 
and vice versa by a single amino acid substitution, and 
such mutations have been selected during crop domestica-
tion (Hanzawa et al. 2005). However, it is still unclear how 
these mutations are linked to the protein function, especially 
their movement; TFL1 moves within SAM only, outward 
from the central region (Conti and Bradley 2007), in a man-
ner very different from FT.

Other genes showing natural variation in both A. thaliana 
and relatives include photoperiod and vernalization regula-
tors. VIN3 underlies GWAS and QTL peaks in A. thaliana 
and Brassica napus (Dittmar et al. 2014; Song et al. 2020). 
The blue light receptor gene CRYPTOCHROME2 (CRY2) is a 
rare QTL in A. thaliana. In a recent study of the evolution 
of the ruderal weed species Cardamine occulta, CRY2 was 
selected for photoperiod insensitivity, as well as FLC (Li 
et al. 2023a; Li et al. 2023b). In addition, the photorecep-
tors PHYTOCHROME C (PHYC), PHYB, and CO are likely 
targets to explain phenotypic variation in other studies 
(Balasubramanian et al. 2006b; Caicedo et al. 2009; 
Salome et al. 2011; Rosas et al. 2014). Apart from these 
pathways, variant alleles at FLM have also been associated 
with flowering time in A. thaliana (Lutz et al. 2015; Lutz 
et al. 2017; Kinmonth-Schultz et al. 2023) as well as 
MADS AFFECTING FLOWERING2 (MAF2, a relative of FLM), 
SVP, GIS5, and HUA2 albeit at lower frequency (El-Din El-Assal 
et al. 2001; Werner et al. 2005b; Wang et al. 2007; Filiault et al. 
2008; Schwartz et al. 2009; Méndez-Vigo et al. 2013; 
Fournier-Level et al. 2022; Kinmonth-Schultz et al. 2023).

In summary, the natural variation in flowering time pre-
dominantly influences either light or temperature pathways. 
Natural variation for alternative (less predictable) 

environmental conditions such as light quality, annual rainfall, 
drought, or heat stress have yet to be fully explored 
(Kobayashi et al. 2013; Yeoh et al. 2017). To date these have 
been categorized as stress factors and linked indirectly to 
flowering time (Takeno 2016).

Crop domestication
Flowering time variation has been a major trait during crop 
domestication. The current growing regions of many crop 
species are frequently very far from their centers of origin. 
As such, many aspects of their biology have been bred to ac-
commodate the latitudinal range expansion. Traits such as 
annual, biennial, and perennial habits; ability to grow in high- 
density monoculture; and shoot architecture have all been 
modified as breeders selected for higher yield (Gaudinier 
and Blackman 2020; Liang et al. 2021). Initial domestication 
likely selected unconsciously for predictability of flowering 
time and maximizing the growing period to improve yield. 
Further crop range expansion required local adaptation of 
the crop to the new environmental conditions and involved 
selection for variants alleles (Gaudinier and Blackman 2020). 
Extreme phenotypes in different cultivars of the same species 
have been bred: for example, shorter lifecycles to meet strict 
rotation requirements, or highly delayed bolting to increase 
storage organ size (for classic Brassica examples, see Cheng 
et al. 2016; Helal et al. 2016).

Wild rice and maize (Zea mays) species are naturally found 
in low latitudes and exhibit characteristics of short-day 
plants (Matsuoka et al. 2002; Huang et al. 2012). To adapt 
to cultivation regions in high latitudes with longer daylight 
periods, the selection process involved the frequent choice 
of loss-of-function or weakened alleles of long-day suppres-
sor genes enabling domesticated cultivars to flower early 
and maximize yield (Izawa 2007; Zhang et al. 2023b). For ex-
ample, QTL mapping has revealed natural mutations in Ghd7 
and Ghd8/DTH8 with reduced functions that enable rice to 
be cultivated in temperate regions. Ghd7 is a CCT domain 
protein showing homology to Arabidopsis CO and CO-LIKE 
(COL) (Xue et al. 2008), while Ghd8/DTH8 encodes a HAP3 
subunit of a CCAAT-box binding protein the HEME 
ACTIVATOR PROTEIN (HAP) complex (Fig. 2) (Wei et al. 
2010; Yan et al. 2011; Dai et al. 2012). In A. thaliana, CO 
and HAP also form a transcriptional activation complex to 
modulate FT expression (Wenkel et al. 2006; Gnesutta et al. 
2017; Lv et al. 2021). Similarly, 2 COL genes, ZmCCT9 and 
ZmCCT10, have been cloned as flowering-time QTLs in maize 
(Yang et al. 2013; Huang et al. 2018). Extensive studies on nat-
ural variation in rice has identified Hd16 and Hd6, encoding 
casein kinase I (CKI) and alpha subunit of casein kinase II 
(CKII alpha), respectively (Takahashi et al. 2001; Hori et al. 
2013), and DTH7, which encodes a pseudo-response regula-
tor protein whose expression is regulated by photoperiod 
(Fig. 2) (Liu et al. 2013; Gao et al. 2014).

In addition to disrupting LD suppressor genes, mutations 
that lead to enhanced flowering activators under both LD 
and SD have also been identified during domestication. For 
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instance, the FT ortholog genes Hd3a and RFT1 in rice and 
ZCN8 in maize have been preferentially selected at different 
evolutionary times for local adaptation (Fig. 2) (Kojima 
et al. 2002; Komiya et al. 2008; Ogiso-Tanaka et al. 2013; 
Guo et al. 2018). Sequence polymorphisms in the regulatory 
and coding regions of RFT1 and ZCN8 may underlie diver-
gence of flowering time among various cultivars and wild ac-
cessions (Fig. 2) (Ogiso-Tanaka et al. 2013; Guo et al. 2018). 
Moreover, rice Ehd1, which encodes a B-type response regu-
lator that does not have a clear ortholog in Arabidopsis, pro-
motes flowering under both LD and SD conditions (Doi et al. 
2004). Finally, ZmMADS69, a MADS-box gene, contributed to 
the difference in flowering time between maize and its wild 
ancestor (teosinte) and may have played an important adap-
tive role during the expansion of maize from the tropics to 
temperate zones (Fig. 2) (Liang et al. 2019). ZmMADS69 likely 
downregulates the expression of the flowering time repressor 
ZmRap2.7, thereby alleviating the repression on ZCN8 and 
promoting early flowering.

Unlike maize and rice, cultivated soybean has its origin 
near the temperate Yellow River region (Li et al. 2008). As 
such, the spread of soybean cultivars involved adaptation 
to both lower and higher latitudes. Evidence suggests that 
circadian clock genes were the primary targets for flowering 
time regulation during domestication (Lu et al. 2022a). 
Specifically, the adaptation of soybean to higher latitudes 
was facilitated by naturally occurring loss-of-function muta-
tions in 5 flowering suppressors. Among them, E1 encodes a 
legume-specific B3-like transcription factor acting as a suppres-
sor in photoperiod pathway (Xia et al. 2012). E2 and E3 are likely 
the orthologs of Arabidopsis GI and PHYTOCHROME A 
(PHYA) (Watanabe et al. 2009; Watanabe et al. 2011). Tof11/ 
Gp11 and Tof12/Gp12, paralogs of Arabidopsis PRR genes, func-
tion via homologs of LATE ELONGATED HYPOCOTYL1 
(LHY1), a central component of the plant circadian clock. 
Tof11/Gp11 and Tof12/Gp12 promote E1 expression and delay 
flowering under LD (Li et al. 2019; Gong 2020; Lu et al. 2020). 
The adaptation of soybean to lower latitudes, on the contrary, 
was driven by an impairment in J, the soybean ortholog of 
Arabidopsis ELF3 that plays a highly conserved role maintaining 
circadian rhythms in different species (Fig. 2) (Lu et al. 2017). J 
promotes flowering under SD through repressing E1. Loss- 
of-function mutations in J led to an extended vegetative phase 
and higher yields at lower latitudes (Lu et al. 2017).

Barley (Hordeum vulgare) is primarily cultivated in temperate 
regions. The different varieties of barley can be categorized 
into 2 main groups based on their response to photoperiod: 
photoperiod-sensitive and photoperiod-insensitive. The Ppd-1 
gene, an Arabidopsis PRR ortholog, controls this photoperiod 
sensitivity (Turner et al. 2005). The presence of functional alleles 
of Ppd-1 results in photoperiod insensitivity, allowing barley 
plants to flower under both LD and SD conditions (Fig. 2). As 
such, in higher latitudes with shorter summers, barley varieties 
with functional Ppd-1 alleles are particularly advantageous as 
they enable earlier flowering and maturity. This trait ensures 
successful reproduction and higher yields in areas where the 

growing season is limited. By enabling barley to thrive in diverse 
environments, Ppd-1 alleles contribute significantly to the culti-
vation of barley in temperate regions around the world.

Natural variations in vernalization are responsible for the 
differences in winter or spring growth habit observed in cer-
eals (Kippes et al. 2018; Xu and Chong 2018). In wheat 
(Triticum aestivum), VRN1 encodes a MADS-box transcrip-
tion factor that shares homology with Arabidopsis AP1 
(Yan et al. 2003; Konopatskaia et al. 2016). VRN2 (not the 
same protein as Arabidopsis VRN2!) and VRN3 show high 
similarities to Arabidopsis COL and FT, respectively (Yan et al. 
2004, 2006). VRN2 functions as a floral repressor. Similar to 
FLC in Arabidopsis, the expression of VRN2 is downregulated 
through vernalization. Loss-of-function alleles of VRN2 lead to 
an increased level of VRN1 and VRN3, thereby converting wheat 
from a winter annual to a spring annual growth habit (Fig. 2) 
(Yan et al. 2004). Dominant overexpressors of VRN1 can also 
cause spring habit by overriding VRN2, and like FLC, VRN1 alleles 
with differing expression influence both vernalization require-
ment and environmental sensitivity (Fu et al. 2005; Dixon 
et al. 2019). The core components of the vernalization path-
way—VRN1, VRN2, and VRN3—are conserved between wheat 
and barley (Yan et al. 2004; Yan et al. 2006; Oliver et al. 2009). 
Notably, natural allelic variations in VRN-H3 (HvFT) gene also 
contribute to difference in vernalization requirement in barley 
(Yan et al. 2006). Moreover, EPS2/CEN, which is a homolog of 
Arabidopsis TFL1, is involved in differentiating between win-
ter and spring barley and has been selected and maintained 
during geographic range extension (Comadran et al. 2012).

Unlike the highly conserved flowering roles of the PEBP 
proteins, CO homologs and clock components, the FLC clade 
of MADS-box genes has not been reported as major flower-
ing time regulators in crops outside of the Brassicaceae 
(Becker and Theißen 2003; Schilling et al. 2018). Members 
of other MADS-box clades quantitatively regulate phenology 
in crops: as well as the cereal VRN2s (AP1 family), ODDSOC2 
in barley is also a vernalization regulator but is cereal specific 
(Greenup et al. 2010). The DORMANCY ASSOCIATED MADS- 
BOX (DAM) genes involved in chilling requirement for bud 
break and bloom time across a range of perennial fruit trees 
(from apple to pear, peach, and sweet cherry) are most close-
ly related to the SVP clade (Bielenberg et al. 2008; Falavigna 
et al. 2019; Calle et al. 2020), although an FLC-like gene has 
been found beneath QTL peaks in apple too, along with 
AGL24 and FT homologs (Allard et al. 2016).

Compared with Arabidopsis, the “diploid” Brassica are me-
sohexaploids, and these diploids have further hybridized to 
form amphidiploids, which have preferentially retained cop-
ies of flowering time genes (Jones et al. 2018). Brassica rapa 
and Brassica oleracea, the main vegetable species, have at 
least 4 and 5 copies of FLC respectively, and their hybrid, B. na-
pus, thus has at least 9, most of which have been implicated in 
flowering time variation between different cultivars and which 
underlie the majority of the main flowering time QTLs, with FT 
homologs accounting for several of the rest (for a comprehen-
sive review, see Schiessl 2020; Song et al. 2020). Critically, these 
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FLC copies have different expression sensitivity over cold as well 
as different expression dynamics between alleles, and it is total 
FLC expression, rather than expression of specific FLC paralogs, 
that best explains differences in cold requirement between cul-
tivars (Schiessl 2020; Calderwood et al. 2021a). Given the very 
wide variation in flowering timing between conspecific 
Brassica crops, it is likely that the proliferation of FLC, each 
copy with different alleles, has contributed to the evolutionary 
space that permitted these different domesticated morphs 
(Calderwood et al. 2021a).

Taken together, while different alleles conferring acceler-
ated or delayed flowering time were selected to aid the adap-
tation of crops to diverse cultivation areas at various latitudes, 
the underlying genes involved in these processes appear to be 
repeatedly selected across different crops. We direct the read-
er to further literature of major effect genes in other minor 
crop species (chickpea, Upadhyaya et al. 2015; sunflower, 
McAssey et al. 2016; apple, Urrestarazu et al. 2017; strawberry, 
Gaston et al. 2020; litchi, Lu et al. 2022b; flax, Saroha et al. 2022; 
pepper, Choi et al. 2023). Despite our focus on major crops, 
the conclusions are likely to extend to other crops. The 
main pattern observed is that during domestication, there is 
a notable preference for selection of master regulatory genes 
within each flowering time pathway—for example, ortholo-
gues of CO and COL in the photoperiod pathway, FT and 
TFL1 in the florigen-related pathway, PRR and ELF3 in the cir-
cadian clock, and AP1 in the floral-promoting MADS-box gene 
family. Although the exact reasons for this are yet to be fully 
understood, variation at these genes may have provided com-
patibility with high-density field growth conditions and culti-
vation practices aimed at achieving high yield. In support 
of this notion, it has been shown that Ghd7 has a broad 
impact on various traits in rice, including yield, plant height, 
and heading date (Xue et al. 2008). Similarly, in soybean do-
mestication, Tof12/Gp12-dependent acceleration of maturity 
is associated with reduced dormancy and seed dispersal (Lu 
et al. 2020). Under this scenario, the aforementioned genes 
hold great potential as targets for crop breeding and future 
de novo domestication of wild crop-related species using gen-
ome editing approaches (Li et al. 2018; Zsogon et al. 2018; Yu 
et al. 2021).

In conclusion, a comparison between genes underpinning 
natural diversity in Arabidopsis and relatives compared with 
those selected during domestication of our major crops re-
veals crop domestication has utilized fewer loci with reduced 
allelic diversity. Perhaps nature hedges its bets maintaining 
high variation in the population, while crop domestication 
has prized predictability, at the cost of maximizing plant fit-
ness in a fluctuating environment.

Importance of in natura flowering analysis
A new realization in the field is the importance of undertak-
ing experiments under field conditions; plants have not 
evolved to grow in the constant conditions we provide in 
the laboratory (Shimizu et al. 2011; Nishio et al. 2016; 

Hepworth et al. 2018; Zhao et al. 2021). So-called in natura 
field experiments are increasingly important for dissection 
of molecular mechanisms. Natural fluctuations in both 
photoperiod and temperature averages and ranges influence 
the plant transcriptome widely and have multifaceted effects 
on plant fitness (Nagano et al. 2019). Analysis of classic flow-
ering time mutants revealed that under field conditions, 
many have much fewer phenotypic effects than in the la-
boratory (Wilczek et al. 2009; Song et al. 2018; Taylor et al. 
2019). Conversely, field conditions may reveal critical me-
chanisms considered less important when studied in the la-
boratory (Brachi et al. 2010). Temperature dynamics in 
autumn, not winter, are likely to be the critical variable for 
vernalization (Duncan et al. 2015; Dixon et al. 2019; 
Hepworth et al. 2020) partly because as temperatures reduce 
during autumn their fluctuations have different effects on FLC 
silencing depending on their precise range and timing 
(Antoniou-Kourounioti et al. 2018; Hepworth et al. 2018). 
Early freezing is one such effect (Zhao et al. 2021). 
Temperature fluctuations also turn out to be key to the func-
tion of the photoperiod pathway in the field, reducing the im-
pact of mutations in FKF1 and GI compared with the laboratory 
but revealing important roles for ELF3 and PHYA in natural con-
ditions (Song et al. 2018; Kinmonth-Schultz et al. 2023). By in-
vestigating the expression dynamics of haplotypes in the field 
and the subsequent fitness of plants carrying these haplotypes, 
avoidance of precocious flowering in autumn rather than in 
spring was revealed as a key driver for the vernalization pathway 
in a sub-artic environment, with high-expression “slow vernaliz-
ing” alleles providing protection against precocious flowering 
(Hepworth et al. 2020). This fits with findings by 
Fournier-Level et al. (2022) that late-flowering alleles are pro-
moted in environments with high seasonal temperature fluctu-
ation. Most of these studies monitored the behavior of genes in 
the field itself: however, many then recapitulated these observa-
tions in laboratory settings, in order to test and quantify the ob-
served environmental drivers of different molecular responses. 
This combination of approaches nullifies some of the distorting 
effects of laboratory investigation, while exploiting its power to 
verify interactions, and is likely to be of continuing importance 
to future research on plant environmental sensitivity.

Analyzing flowering in a new species
What lessons have emerged from all these studies that will 
influence identification of critical nodes for flowering regula-
tion in newly researched species? Research on rice, wheat, 
barley, and soybean shows that many of the same principles 
hold, and A. thaliana has (and continues to have) lessons for 
the functioning of fundamental pathways. A favored strategy 
in crops with the advent of deep sequencing has been to use 
RNA-seq analysis and GWAS to look for gene expression vari-
ation and linked polymorphism. In the original GWAS studies 
in A. thaliana, FRI and FLC were not detected as significantly 
associated loci partly due to population structure in the ori-
ginal set of 96 lines (Atwell et al. 2010), although larger 
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studies with more advanced statistical tools have improved 
on this (Sasaki et al. 2015). Subsequent QTL (Shindo et al. 
2005) and molecular analysis (Li et al. 2014) showed that al-
lelic heterogeneity (different haplotypes having the same 
phenotype) also reduces the statistical significance, so pre-
venting detection by GWAS. Sample size will also influence 
detection—GWAS and QTL studies require very large sample 
sizes, and they can only map those differences that are cap-
tured between the initial parental strains. The environmental 
sensitivity of flowering time is also probably one of the largest 
difficulties in any single GWAS or QTL experiment. Field 
studies have demonstrated that much selection is condition-
al—and the power of GWAS studies to investigate GxE inter-
actions can be low (Sasaki et al. 2015).

So going forward, this is we learned that will be useful to 
define flowering time regulators in a new species, enabling 
us to breed staple crops adapted to climate change, or de-
velop underutilized crops: 

1) Make the most of the considerable molecular knowl-
edge of flowering time gene action.

2) Select GWAS on diversity panels (Harper et al. 2012; 
1001 Genomes Consortium 2016) to detect a wide variety 
of natural alleles affecting flowering; but use intercrossed 
mapping populations to better identify loci of critical 
nodes such as FLC (Brachi et al. 2010; Song et al. 2020).

3) Once a critical quantitative node has been identified, 
explore the dynamics of standing variation of that 
gene across a wide diversity of accessions. SNPs, pres-
ence/absence, transposons etc. within haplotypes will 
assist in generating targeted, quantitative change in 
flowering responses while reducing interference with 
pleiotropic functions of these master regulators (Turner 

et al. 2005; Liu et al. 2014; Bao et al. 2019; Dixon et al. 
2019; Song et al. 2020).

4) Dynamic genes require dynamic methods: many of the 
critical nodes change quantitatively over time, so time- 
course analyses are essential (Shindo et al. 2006; 
Duncan et al. 2015; Nagano et al. 2019; Schiessl et al. 
2019; Calderwood et al. 2021a), and tools are becoming 
available for easier comparison of transcriptomics 
(Calderwood et al. 2021b).

5) Move molecular experimentation into the field early in 
the research pipeline—but then return to the labora-
tory to validate and quantify the results.

Knowledge from molecular research has had high barriers 
to implementation in crops, in part because phenotypic ana-
lysis from the laboratory does not always translate into the 
field (Atwell et al. 2010). One reason for this is lack of knowl-
edge about critical field conditions, such as the temperature 
profiles required for vernalization (Hepworth et al. 2018; 
Dixon et al. 2019) or the light patterns that induce FT in natura 
(Song et al. 2018). However, by combining field studies with 
more accurate simulation in the laboratory, Arabidopsis re-
search is developing a range of new methods for understand-
ing, and crucially predicting, how pathways respond and 
control flowering in the changing field conditions (Antoniou- 
Kourounioti et al. 2018; Song et al. 2018; Nagano et al. 2019). 
With climate change challenging the key mechanisms plants 
rely on for their timing, Arabidopsis research remains critical 
to fundamental knowledge and plant breeding alike.

Mechanistic information from A. thaliana has significantly 
accelerated understanding of flowering time regulation in all 
plant species. This is readily recognized by breeding compan-
ies (Enza Zaden Box 3). Thus, for the timely production of a 

Box 3. Impact of flowering time research to advance plant breeding.

Drs. Xana Verweij and Jeroen Rouppe van der Voort Global Biotech director and Research Manager IP/External 
Projects at Enza Zaden Research and Development.

Flowering time plays a crucial role in breeding. There are numerous examples ranging from breeding for different 
seasonal product types in e.g. cauliflower and lettuce (Leijten et al. 2018), balancing the switches from vegetative to 
generative plant growth in peppers, climate zone adaptation in onion types (Lee et al. 2013a, 2013b), to escaping 
Phytophthora disease pressure in potato (by planting “early varieties”) and seed quality and yield (applicable to 
any seeded crop variety). In addition, the finding that flowering time regulators are involved in many other plant 
developmental pathways stresses the importance of obtaining a deep understanding of flowering-related processes in 
food crops. The advent of the application of omics tools to create any type of data, and the increased capabilities for 
analyzing such data sets finally enables breeders to identify the key loci and allelic variation to breed for. The work 
done by fundamental research is essential to uncover the spatio-temporal regulation of flowering time laying the 
foundations of knowledge that can be translated by breeding companies to create predictable and adaptable crop 
products. We aim to identify floral pathway integrators in different crops which might serve as breeding targets, al-
lowing us to design strategies towards optimal flowering and robust fruit and seed production even under adverse 
growing conditions. Therefore, it is essential to bring fundamental research and commercial crop breeding objectives 
closer together. This will guarantee that we work in synergy for the relevant traits that can have a positive impact in 
our agricultural systems by e.g. developing resilient crops with optimal yield and quality potential and minimal trade- 
off effects.
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range of climate-proof crops, we need to focus on expanding 
our mechanistic understanding of flowering time gene function 
in natural environments and those mechanisms that have chan-
ged during adaptation. This will be the fastest route to open 
new opportunities for crop improvement.
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