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Abstract
Phylogenetic diversity is a popular measure for quantifying the biodiversity of a col-
lection Y of species, while phylogenetic diversity indices provide a way to apportion
phylogenetic diversity to individual species. Typically, for some specific diversity
index, the phylogenetic diversity of Y is not equal to the sum of the diversity indices
of the species in Y . In this paper, we investigate the extent of this difference for two
commonly-used indices: Fair Proportion and Equal Splits. In particular, we determine
the maximum value of this difference under various instances including when the
associated rooted phylogenetic tree is allowed to vary across all rooted phylogenetic
trees with the same leaf set and whose edge lengths are constrained by either their
total sum or their maximum value.

Keywords Phylogenetic tree · Phylogenetic diversity · Diversity indices · Fair
Proportion index · Equal Splits index

Mathematics Subject Classification 05C85 · 68R10

1 Introduction

Phylogenetic diversity (PD) is prominent measure in evolutionary biology to quan-
tify the biological diversity of a collection of species. Intuitively, the phylogenetic
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diversity of such a collection quantifies how much of the ‘Tree of Life’ is spanned
by the species in the collection. Introduced by Faith in 1992 (Faith 1992), PD has
been analysed and applied in a variety of contexts for various taxa including plants,
bacteria, and mammals (Cadotte et al. 2008; Lozupone and Knight 2007; Safi et al.
2011). On the other hand, (phylogenetic) diversity indices, also called evolutionary
distinctiveness measures, quantify an individual species’ contribution to overall phy-
logenetic diversity, thus providing a convenient way to rank species as, for example,
in conservation planning (Redding et al. 2008, 2014). Intuitively, these indices assign
species with fewer and more distant relatives higher values than those species with
many more and closer relatives.

Diversity indices have been proposed and used as an alternative to PD in con-
servation prioritisation (Isaac et al. 2007; Redding et al. 2010; Stein et al. 2018).
However, although the sum of the diversity indices across all species equates to the
total phylogenetic diversity, in general, the sum of the diversity indices of a subset of
the species differs from the subset’s phylogenetic diversity. If a biologist or conserva-
tionist is switching from the ideal measure of full-tree PD to an approximation by a
simple diversity index, it is important for them to understand the scale of the possible
difference that this switch might involve.

Using empirical experiments, the authors in Redding et al. (2008) studied how well
different diversity indices ‘captured’ PD with respect to tree shape. Their experiments
indicate that diversity indices captured more PD on “more unbalanced trees and on
trees with many splits near the present” and concluded that “new measures... may
provide a transparent alternative to more complicated full-tree approaches.”

In this paper, we rigorously investigate the extent of this difference for two natural
and well-known diversity indices, Fair Proportion and Equal Splits. Both of these
indices were included in the empirical study in Redding et al. (2008) and are used, for
example, in the conservation initiative ‘EDGE of Existence Programme’ established
by the Zoological Society of London (Isaac et al. 2007). As well as determining the
maximumdifference under various scenarios (see below for details), whichwill inform
the practitioner as to the possible extent to which an index can fail to approximate PD,
we also characterised the shape and structure of the phylogenetic trees that realised
these differences. Such information is potentially useful to the practitioner in that
the more their phylogenetic trees of interest resemble an extremal instance, the more
attention they may need to pay to the real possibility of the diversity index failing to
accurately capture PD.

A version of the investigation in this paper was posed in earlier work (Haake et al.
2008) but, apart from the related simulation study (Redding et al. 2008), it has not
been explored further. Furthermore, the work in this paper is related to a recent study
in Wicke and Steel (2020) in which the authors consider the extent of the difference
between the Fair Proportion and Equal Splits indices of a species. We next formalise
the investigation in this paper, ending the introduction with a high-level overview of
the main results.

Throughout the paper, X is a non-empty finite set. A rooted phylogenetic X -tree T
is a rooted tree with leaf set X whose non-leaf vertices have out-degree at least two.
For technical reasons, if |X | = 1, we additionally allow a rooted phylogenetic tree
to consist of the single vertex in X . If all non-leaf vertices have out-degree exactly
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Fig. 1 An edge-weighted phylogenetic X -tree (T , �). The minimal subtree of T connecting the vertices in
{x2, x4, x5} ∪ {ρ} is indicated with dashed edges

two, then T is binary. For ease of reading, as all phylogenetic trees in this paper are
rooted and binary, we will refer to a “rooted binary phylogenetic tree” as simply a
“phylogenetic tree”.

Let T be a phylogenetic X -tree with root ρ, and consider a map � : E → R
≥0

from the set E of edges of T to the non-negative reals. Collectively, we denote T
and � by the ordered pair (T , �) and refer to (T , �) as an edge-weighted phylogenetic
X -tree. Furthermore, we use L(T , �) to denote the total sum of the edge lengths of
(T , �). The phylogenetic diversity of a subset Y of X on (T , �), denoted PD(T ,�)(Y ),
is the sum of the weights of the edges in the (unique) minimal subtree of T connecting
the vertices in Y ∪ {ρ}. Observe that PD(T ,�)(X) = L(T , �). To illustrate, consider
the edge-weighted phylogenetic X -tree shown in Fig. 1, where X = {x1, x2, . . . , x7}.
The minimal subtree of T connecting the vertices in {x2, x4, x5} ∪ {ρ} is indicated by
dashed edges, and so PD of {x2, x4, x5} is 18. The PD of {x5, x7} is 10.

A phylogenetic diversity index for an edge-weighted phylogenetic X -tree (T , �) is
a function ϕ(T ,�) : X → R

≥0 that assigns a score to each leaf of T such that

∑

x∈X
ϕ(T ,�)(x) = PD(T ,�)(X) = L(T , �).

Furthermore, if, for each x ∈ X , we can write ϕ(T ,�)(x) as a linear function of the
edge lengths of T , that is,

ϕ(T ,�)(x) =
∑

e∈E
γ(T ,�)(x, e) · �(e) (1)

for some constants γ(T ,�)(x, e) that are independent of �(e), we say ϕ(T ,�) is a linear
diversity index. It is easily checked that an arbitrary function ϕ(T ,�) of the form shown
in (1) is a phylogenetic diversity index if and only if, for each edge e of T , we have

∑

x∈X
γ(T ,�)(x, e) = 1. (2)

Twowell-studied linear diversity indices underlie the results in this paper. Let (T , �)

be an edge-weighted phylogenetic X -tree. The Fair Proportion index (FP) for a leaf
x ∈ X , denoted FP(T ,�)(x), is the value
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FP(T ,�)(x) =
∑

e∈P(T ;ρ,x)

1

n(e)
�(e),

where P(T ; ρ, x) denotes the (unique) path in T from the root ρ to x , and n(e)
denotes the number of leaves that are at the end of a directed path starting at the root
and traversing e. Intuitively, the FP index distributes the length of e evenly amongst
its descendant leaves. The Fair Proportion index is also called ‘evolutionary distinc-
tiveness’ (Isaac et al. 2007). The second index is the Equal Splits index (ES) which
for a leaf x ∈ X is the value

ES(T ,�)(x) =
∑

e∈P(T ;ρ,x)

1

�(e, x)
�(e),

where �(e, x) = 1 if e is the pendant edge of T incident with x , and if e = (u, v) is a
non-pendant edge of T , then �(e, x) is the product of the out-degrees of the non-leaf
vertices (including v) on the directed path from v to x . Since all phylogenetic trees in
this paper are binary, �(e, x) is always a power of 2. In particular, if e = (u, v) is a
non-pendant edge of T , then �(e, x) is 2m , where m is the number of edges from v

to x . The Fair Proportion and Equal Splits indices were introduced in Redding (2003)
and Redding and Mooers (2006), respectively, and a direct comparison of these two
indices was investigated recently in Wicke and Steel (2020).

As examples of the Fair Proportion and Equal Splits indices, consider the edge-
weighted phylogenetic X -tree in Fig. 1. The FP indices for x5 and x7 are

FP(T ,�)(x5) = 1
3 · 3 + 1 · 4 = 5

and

FP(T ,�)(x7) = 1
3 · 3 + 1

2 · 1 + 1 · 2 = 31
2 .

The ES indices for x5 and x7 are

ES(T ,�)(x5) = 1
2 · 3 + 1 · 4 = 51

2

and

ES(T ,�)(x7) = 1
4 · 3 + 1

2 · 1 + 1 · 2 = 31
4 .

For an edge-weighted phylogenetic X -tree (T , �) and diversity index ϕ, although
the sum of the diversity indices across all taxa in X equates to PD(T ,�)(X), the sum of
the diversity indices across all taxa in a proper subset Y of X will typically not equal
PD(T ,�)(Y ). For example, in Fig. 1, PD(T ,�)({x5, x7}) = 10, but
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∑

x∈{x5,x7}
FP(T ,�)(x) = 5 + 31

2 = 81
2 .

To quantify this, set

�(ϕ,T ,�)(Y ) = PD(T ,�)(Y ) −
∑

x∈Y
ϕ(T ,�)(x). (3)

We refer to �(ϕ,T ,�)(Y ) as the diversity difference of Y (relative to (T , �) and ϕ). In
this paper, we are interested in the extent of this difference for the Fair Proportion and
Equal Splits indices.

The following lemma shows that the diversity difference is always non-negative
provided ϕ satisfies a natural distribution property. This property says that, for an
edge-weighted phylogenetic X -tree (T , �) and all x ∈ X , the value ϕ(T ,�)(x) can be
written as a non-negative linear function of the lengths of edges in the path from the
root ρ of T to x .

Lemma 1.1 Let (T , �) be an edge-weighted phylogenetic X-tree with root ρ, and let
ϕ(T ,�) be a linear diversity index such that, for each x ∈ X,

ϕ(T ,�)(x) =
∑

e∈P(T ;ρ,x)

γ(T ,�)(x, e) · �(e) (4)

for some non-negative constants γ(T ,�)(x, e) that are independent of �(e). If Y ⊆ X,
then

�(ϕ,T ,�)(Y ) ≥ 0.

Proof Let Y ⊆ X . Then

PD(T ,�)(Y ) =
∑

e∈T (Y∪{ρ})
�(e)

and

∑

x∈Y
ϕ(T ,�)(x) =

∑

e∈T (Y∪{ρ})

(
∑

x∈Y
γ(T ,�)(x, e)

)
· �(e),

where T (Y ∪ {ρ}) denotes the minimal subtree of T connecting the leaves in Y and
ρ. Since γ(T ,�)(x, e) is non-negative for all x ∈ X and edges e of T , it follows by (2)
that

∑
x∈Y γ(T ,�)(x, e) ≤ 1. Hence �(ϕ,T ,�)(Y ) ≥ 0 as required. �	

We call a phylogenetic diversity index that satisfies (4) a descendant diversity index.
It is easily checked that the Fair Proportion and Equal Splits indices are examples of
descendant diversity indices.
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In this paper, for each of the Fair Proportion and Equal Splits indices, we will
determine, for all positive integers k, the maximum value of the diversity difference
over all subsets of X of size k under the following instances:

(i) a fixed phylogenetic X -tree whose edge lengths are fixed;
(ii) a fixed phylogenetic X -tree whose edge lengths are constrained by either their

(total) sum or their maximum value; and
(ii) across all phylogenetic X -trees whose edge lengths are constrained by either their

(total) sum or their maximum value.

In particular, for (i) and (ii), we give polynomial-time algorithms for finding these
maximum values for an arbitrary descendant diversity index while, for (iii), we char-
acterise the edge-weight phylogenetic X -trees and subsets of size k that realise this
maximum value for FP and ES. For (iii), it turns out that, in the case that the edge
lengths are constrained by their sum, the class of phylogenetic trees that maximise
the diversity difference under ES is always a subclass of the phylogenetic trees that
maximise the diversity difference under FP. The corresponding characterisations are
stated as Theorems 4.2 and 4.1, respectively. However, in the case that the edge lengths
are constrained by their maximum value, the class of phylogenetic trees that maximise
the diversity difference under FP and ES coincide (Theorem 4.7).

The paper is organised as follows. The next section contains some preliminaries
that are used throughout the paper. Section3 considers maximising the diversity dif-
ference on a fixed phylogenetic tree, while Sect. 4 considers maximising the diversity
difference across all phylogenetic trees. The last section, Sect. 5, consists of a brief
discussion.

2 Preliminaries

Let T be a phylogenetic X -tree, and let t and w be vertices of T . If P is a (directed)
path in T from t to w, the length of P , denoted |P|, is the number of edges in P . We
denote this path by P(T ; t, w). Furthermore, we sometimes refer to a path in T from
an edge e = (u, v) to w, in which case, we mean from v to w, and denote this path by
P(T ; e, w). Note that if (u, v) is an edge of T , then u is ancestral to v.

Subtrees. Let T be a phylogenetic X -tree with root ρ, and let X ′ be a subset of
X ∪{ρ}. The minimal subtree of T connecting the vertices in X ′ is denoted by T (X ′).
Furthermore, ifρ /∈ X ′, the restriction ofT to X ′, denoted byT |X ′, is the phylogenetic
X ′-tree obtained from T (X ′) by suppressing all non-root vertices of degree two.

Let T be a phylogenetic X -tree and let e = (u, v) be an edge of T . The subset of
leaves that are descendants of v is called a cluster of T and is denoted by C(v). The
set X as well as each of the singleton subsets of X are clusters of every phylogenetic
X -tree, and so such clusters are called the trivial clusters of T . Hence a cluster X ′ of
T is non-trivial if 2 ≤ |X ′| < |X |. Thus if T has a non-trivial cluster, then |X | ≥ 3.
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Furthermore, the rooted subtree obtained from T by deleting e and whose root is v is
a pendant subtree of T .

Cherries and chains.A2-element subset of X , say {a, b}, is a cherry of a phylogenetic
X -tree T if a and b have the same parent. Now let X ′ = {a1, a2, . . . , am} be a subset
of X such that m ≥ 2 and, for all i ∈ {1, 2, . . . ,m}, let pi denote the parent of ai . We
call X ′ a chain of T if there is an ordering of the elements of X ′, say (a1, a2, . . . , am),
such that

pm, pm−1, . . . , p1

is a (directed) path in T , in which case, pm is the first parent of the chain and p1 is
the last parent of the chain. Note that we still refer to X ′ as a chain of T if {p1, p2}
is a cherry and pm, pm+1, . . . , p2 = p1 is a path in T . The edge set of X ′ con-
sists of the pendant edges incident with a leaf in X ′ as well as the edges in the path
pm, pm−1, . . . , p1.

Subtree prune and regraft. Let T be a phylogenetic X -tree. For the purposes of the
upcoming operation, view the root ρ of T adjoined to the original root via a pendant
edge. Let (u, v) be an edge of T such that u �= ρ. Let T ′ be the phylogenetic X -
tree obtained from T by deleting (u, v) and suppressing u, and then reattaching the
pendant subtree T (C(v)) by subdividing an edge, f say, in the component of T \(u, v)

containing ρ with a new vertex u′ and adjoining T (C(v)) with a new edge (u′, v). We
say that T ′ has been obtained from T by a rooted subtree prune and regraft operation.
More specifically, in this operation, we have pruned C(v) and regrafted it to f . In the
special case f is the pendant edge incident with the root of T , we say that C(v) is
pruned and regrafted to ρ. (Effectively, this corresponds to the subtree being regrafted
above the root.) At the completion of this operation, we no longer view the root ρ as
being joined via a pendant edge, and so the root of T ′ (labelled ρ) is the unique vertex
of T ′ of in-degree zero after deleting the temporary root and its incident edge.

Diversity indices. Let (T , �) be an edge-weighted phylogenetic X -tree with edge set
E , and let ϕ be a descendant diversity index. Then, for each x ∈ X ,

ϕ(T ,�)(x) =
∑

e∈P(T ;ρ,x)

γ(T ,�)(x, e) · �(e)

for some non-negative constants γ(T ,�)(x, e) that are independent of �(e). For a subset
Y of X , we denote the contribution of an edge e = (u, v) of T to �(ϕ,T ,�)(Y ) by
λ(T ,�)(e), that is,

λ(T ,�)(e) = �(e) −
∑

y∈Y∩C(v)

γ(T ,�)(y, e) · �(e) = �(e)

⎛

⎝1 −
∑

y∈Y∩C(v)

γ(T ,�)(y, e)

⎞

⎠
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if Y ∩ C(v) is non-empty, and λ(T ,�)(e) = 0 otherwise. Thus

∑

e∈E
λ(T ,�)(e) = �(ϕ,T ,�)(Y ).

It will be clear in the context which subset of X and which descendant diversity index
λ(T ,�)(e) is referring to. Observe that λ(T ,�)(e) ≥ 0. Moreover, if either C(v) ⊆ Y or
C(v) ⊆ X − Y , then λ(T ,�)(e) = 0.

3 Maximising the diversity difference on a fixed tree

In this section, we consider the problem of determining the maximum value of the
diversity difference for a fixed phylogenetic tree for when ϕ is an arbitrary descendant
diversity index.

3.1 Fixed edge lengths

We first consider the instance of a fixed phylogenetic tree with fixed edge lengths.
Let (T , �) be an edge-weighted phylogenetic X -tree, and let ϕ be an arbitrary linear
diversity index. Now let (T , �′) be the edge-weighted phylogenetic X -tree obtained
from (T , �) by adding, for each x ∈ X , the value

L(T , �) − ϕ(T ,�)(x)

to the length of the pendant edge incident with x . For all non-pendant edges e, we
have �′(e) = �(e). Note that the use of the value L(T , �) is simply to have a constant
large enough so that all pendant edges have non-negative lengths.

Lemma 3.1 Let (T , �) be an edge-weighted phylogenetic X-tree, let ϕ be a linear
diversity index, let k be a non-negative integer, and let Y be a subset of X of size k.
Then

�(ϕ,T ,�)(Y ) = PD(T ,�′)(Y ) − k · L(T , �).

Proof Now,

�(ϕ,T ,�)(Y ) = PD(T ,�)(Y ) −
∑

x∈Y
ϕ(T ,�)(x)

=
(
PD(T ,�′)(Y ) −

∑

x∈Y

(
L(T , �) − ϕ(T ,�)(x)

)
)

−
∑

x∈Y
ϕ(T ,�)(x)

= PD(T ,�′)(Y ) − k · L(T , �) +
∑

x∈Y
ϕ(T ,�)(x) −

∑

x∈Y
ϕ(T ,�)(x)

= PD(T ,�′)(Y ) − k · L(T , �).

�	
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Lemma 3.1 is the basis of the following algorithm which finds the maximum value
of the diversity difference under a linear diversity index for a given edge-weighted
phylogenetic tree. It is well known that Step 2 of the algorithm, that is, finding a
subset Y of X of size k such that PD(T ,�′)(Y ) ≥ PD(T ,�′)(Y ′) for all subsets Y ′ of X
of size k, takes quadratic time in the size of X (Pardi and Goldman 2005; Steel 2005).

MaxDiversityDiff

Input: An edge-weighted phylogenetic X -tree (T , �), a linear diversity index ϕ, and
a non-negative integer k.
Output: A subset Y of X of size k that maximises �(ϕ,T ,�)(Y ) across all subsets of
X of size k.

1. Let �′ : E(T ) → R
≥0 be the map defined by setting �′(e) = L(T , �) − ϕ(T ,�)(x)

for all pendant edges e, where x is the leaf incident with e, and �′(e) = �(e) for
all non-pendant edges. Construct (T , �′).

2. Find a subset Y of X of size k such that PD(T ,�′)(Y ) ≥ PD(T ,�′)(Y ′) for all
subsets Y ′ of X of size k.

3. Return Y and �(ϕ,T ,�)(Y ) = PD(T ,�′)(Y ) − k · L(T , �).

Thenext theorem is an immediate consequenceof the discussionprior to the descrip-
tion of MaxDiversityDiff and the fact that the construction of (T , �′) from (T , �)

takes linear time (in the size of X ).

Theorem 3.2 Let (T , �) be an edge-weighted phylogenetic X-tree, let k be a positive
integer, and let ϕ be a linear diversity index. Then applying MaxDiversityDiff to
(T , �), ϕ, and k correctly returns a subset Y of X of size k that maximises

�(ϕ,T ,�)(Y ) = PD(T ,�)(Y ) −
∑

x∈Y
ϕ(T ,�)(x)

across all subsets of X of size k in time O
(|X |2).

3.2 Maximum sum of edge lengths

Now consider the problem of maximising the diversity difference on a fixed phyloge-
netic tree whose edge lengths are constrained by their (total) sum. More particularly,
we consider the following optimisation problem:
Fixed Tree and Total Weight (k, T ,m, ϕ)

Instance: A positive integer k, a phylogenetic X -tree T , a positive real number m,
and a descendant diversity index ϕ.
Question: Find a subset Y of X of size k and a map � : E → R

≥0 on the set E of
edges of T with L(T , �) = m that maximise

�(ϕ,T ,�)(Y ) = PD(T ,�)(Y ) −
∑

x∈Y
ϕ(T ,�)(x).

We will make use of the next lemma in this subsection as well as in Sect. 4.
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Lemma 3.3 Let (k, T ,m, ϕ) be an instance of Fixed Tree and Total Weight,
and let Y ∗ and �∗ be a solution to this problem. Let � : E → R

≥0 be a map on the set
E of edges of T with L(T , �) = m and let Y be a subset of X of size k such that

�(ϕ,T ,�)(Y ) = �(ϕ,T ,�∗)(Y
∗).

If e1 = (u1, v1) and e2 = (u2, v2) are distinct edges of T such that �(e1) > 0 and
�(e2) > 0, then

(i)
∑

y∈Y∩C(v1)
γ(T ,�)(y, e1) = ∑

y∈Y∩C(v2)
γ(T ,�)(y, e2), and

(ii) �(ϕ,T ,�′)(Y ) = �(ϕ,T ,�)(Y ), where �′(e1) = �(e1) + �(e2), �′(e2) = 0, and
�′( f ) = �( f ) for all f ∈ E − {e1, e2}.

Proof Let � : E → R
≥0 be such a map. For each i ∈ {1, 2}, let ei = (ui , vi ) and,

for each edge e of T , define λ(T ,�)(e) and λ(T ,�′)(e) to be the contribution of e to
�(ϕ,T ,�)(Y ) and �(ϕ,T ,�′)(Y ), respectively, where �′ is as defined in (ii). To prove the
lemma, it suffices to show that

λ(T ,�)(e1) + λ(T ,�)(e2) = λ(T ,�′)(e1) + λ(T ,�′)(e2).

Since �′(e2) = 0, it follows that λ(T ,�′)(e2) = 0. Now, for each i ∈ {1, 2},

λ(T ,�)(ei ) = �(ei ) −
∑

y∈Y∩C(vi )

γ(T ,�)(y, ei ) · �(ei ).

If

∑

y∈Y∩C(v1)

γ(T ,�)(y, e1) <
∑

y∈Y∩C(v2)

γ(T ,�)(y, e2),

then, by linearity,

λ(T ,�)(e1) + λ(T ,�)(e2) < �(e1) + �(e2) −
∑

y∈Y∩C(v1)

γ(T ,�)(y, e1) · (�(e1) + �(e2))

= λ(T ,�′)(e1) + λ(T ,�′)(e2),

a contradiction to the maximality of �. Using a symmetric argument, it follows that

∑

y∈Y∩C(v1)

γ(T ,�)(y, e1) =
∑

y∈Y∩C(v2)

γ(T ,�)(y, e2).

Hence

λ(T ,�)(e1) + λ(T ,�)(e2) = �(e1) + �(e2) −
∑

y∈Y∩C(v1)

γ(T ,�)(y, e1) · (�(e1) + �(e2))

= λ(T ,�′)(e1).
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This completes the proof of the lemma. �	
By repeated applications of Lemma 3.3(ii), we obtain the following corollary.

Corollary 3.4 Let (k, T ,m, ϕ) be an instance of Fixed Tree and Total Weight,
and let Y ∗ and �∗ be a solution to this problem. Then there exists a weighting � : E →
R

≥0 of the edge set E of T with �(e) = m for some edge e ∈ E and a subset Y of X
of size k such that

�(ϕ,T ,�)(Y ) = �(ϕ,T ,�∗)(Y
∗).

It follows by Corollary 3.4 that, given T , k,m, and ϕ as in its statement, we can find
an edge weighting � : E → R

≥0 that maximises �(ϕ,T ,�)(Y ) across all subsets of X
of size k as follows. For all e ∈ E , let (T , �e) denote the edge-weighted phylogenetic
X -tree, where �e is the edge weighting of T in which �(e) = m and �( f ) = 0 for
all f ∈ E − {e}. Now, for each e ∈ E , apply Theorem 3.2 and, more particularly,
MaxDiversityDiff to (T , �e), k, and ϕ. The maximum of the values returned by
these applications gives the desired value (as well as a subset of X of size k realising
this value). Since the total number of edges in T is 2|X |−2, we have the next theorem.

Theorem 3.5 The problem Fixed Tree and Total Weight (k, T ,m, ϕ) can be
solved in O

(|X |3) time, where |X | is the size of the leaf set of T .

3.3 Maximum edge length

Next consider the problem of maximising the diversity difference on a fixed phyloge-
netic X -tree T whose edge lengths are constrained by some maximum value, say κ .
We begin with a lemma that reduces the problem to an earlier problem.

Lemma 3.6 Let T be a phylogenetic X-tree, let Y ⊆ X, and let κ be a non-negative
real. If � : E → R

≥0 is a map on the set E of edges of T such that �(e) ≤ κ for all
e ∈ E, and ϕ is a descendant diversity index, then

�(ϕ,T ,�max)(Y ) ≥ �(ϕ,T ,�)(Y ),

where �max is the map �max : E → R
≥0 defined by �max(e) = κ for all e ∈ E.

Proof Let e = (u, v) ∈ E , and let λ(T ,�)(e) and λ(T ,�max)(e) denote the contribution
of e to �(ϕ,T ,�)(Y ) and �(ϕ,T ,�max)(Y ), respectively. To prove the lemma, it suffices
to show that λ(T ,�)(e) ≤ λ(T ,�max)(e).

Since �(e) ≤ κ and ϕ is linear,

λ(T ,�)(e) = �(e) −
∑

y∈Y∩C(v)

γ(T ,�)(y, e) · �(e)

= �(e) ·
⎛

⎝1 −
∑

y∈Y∩C(v)

γ(T ,�)(y, e)

⎞

⎠
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≤ κ ·
⎛

⎝1 −
∑

y∈Y∩C(v)

γ(T ,�)(y, e)

⎞

⎠

= λ(T ,�max)(e),

thereby completing the proof of the lemma. �	

By Lemma 3.6, wemay assume that all edges of T have length κ . Thus the problem
is reduced to maximising the diversity difference on a fixed phylogenetic tree with
fixed edge lengths. Therefore, we can find the maximum value in time O

(|X |2) by
applying Theorem 3.2 and, in particular, MaxDiversityDiff, to (T , �max), a non-
negative integer k, and a descendant diversity index ϕ.

4 Maximising the diversity difference across all trees

In contrast to the computational results in last section, in this section we characterise
the edge-weighted phylogenetic X -trees that maximise the diversity difference for FP
and ES. If the size of the subset of interest is |X |, the diversity difference is zero for all
edge-weighted phylogenetic X -trees. Thus, throughout this section, we will impose
the condition that k ≤ |X | − 1.

4.1 Maximum sum of edge lengths

We first consider the problem of maximising the diversity difference across all edge-
weighted phylogenetic trees whose edge lengths are constrained by their (total) sum:
All Trees and Total Weight (k, X ,m, ϕ)

Instance: A positive integer k ≤ |X | − 1, a positive real number m, and a diversity
index.
Question: Find an edge-weighted phylogenetic X -tree (T , �) with L(T , �) = m and
a subset Y of X that maximises

�(ϕ,T ,�)(Y ) = PD(T ,�)(Y ) −
∑

x∈Y
ϕ(T ,�)(x).

We begin with the Fair Proportion index.

Theorem 4.1 Let (k, X ,m, FP) be an instance ofAll Trees and Total Weight.
Let (T , �) be an edge-weighted phylogenetic X-tree with L(T , �) = m and let Y be
a subset of X of size k. Suppose that (T ∗, �∗) and Y ∗ is a solution to this instance of
All Trees and Total Weight. Then

�(FP,T ,�)(Y ) = �(FP,T ∗,�∗)(Y
∗)
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Fig. 2 (i)An illustration of Theorem4.1,where X−Y = Z , Z∪{y} = C(v), andY = Y1∪Y2∪· · ·∪Ys∪{y}.
All edges have weight zero except the edge (u, v) which has weight m. The “triangles” represent pendant
subtrees whose leaf sets are Y1, Y2, . . . , Ys , Z ∪ {y}. (ii) An illustration of Theorem 4.2, where X − Y =
{x1, x2, . . . , xt }, Y = Y1 ∪Y2 ∪ · · · ∪Ys , and Ys is non-empty. All edges have weight zero except the edge
(u, v) which has weight m. The “triangles” represent pendant subsets whose leaf sets are Y1, Y2, . . . ,Ys

if and only if (T , �) has an edge e = (u, v) such that �(e) = m, |Y ∩ C(v)| = 1, and
X − Y ⊆ C(v), in which case,

�(FP,T ,�)(Y ) = m

(
1 − 1

n − k + 1

)
,

where n = |X |.
To illustrate Theorem 4.1, a generic edge-weighted phylogenetic X -tree optimising

�(FP,T ,�)(Y ) as in the statement of this theorem is shown in Fig. 2(i).

Proof of Theorem 4.1 First note that if (T , �) and Y satisfy the conditions described in
the statement of the theorem, then it follows that

�(FP,T ,�)(Y ) = m

(
1 − 1

|X | − |Y | + 1

)
= m

(
1 − 1

n − k + 1

)
.

To show that the only if direction holds, let (T , �)be an edge-weighted phylogenetic X -
tree, and suppose that (T , �) togetherwith a subsetY of size kmaximises�(FP,T ,�)(Y )

across all edge-weighted phylogenetic X -trees (T ′, �′)with L(T ′, �′) = m and subsets
of X of size k. For each edge e = (u, v) of T , let Ye = Y ∩C(v) and, for convenience,
Xe = C(v) = X ∩ C(v). Thus

λ(T ,�)(e) = �(e)

(
1 − |Ye|

|Xe|
)
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if |Ye| �= 0 and λ(T ,�)(e) = 0 if |Ye| = 0. Let e1, e2, . . . , et denote the edges of T in
which λ(T ,�)(ei ) > 0. Note that, for such edges, Xe −Ye is non-empty. We next show
that t = 1 by showing that if t ≥ 2, then

∑

i∈{1,2,...,t}
λ(T ,�)(ei ) < m

(
1 − 1

|X | − |Y | + 1

)
,

contradicting the maximality of �(FP,T ,�)(Y ).
Suppose t ≥ 2. Since FP is descendant, it follows by Lemma 3.3(i) that

|Yei |
|Xei |

= |Ye j |
|Xe j |

for all i, j ∈ {1, 2, . . . , t}. Therefore
∑

i∈{1,2,...,t}
λ(T ,�)(ei ) = �(e1)

(
1 − |Ye1 |

|Xe1 |
)

+ · · · + �(et )

(
1 − |Yet |

|Xet |
)

= �(e1)

(
1 − |Ye1 |

|Xe1 |
)

+ · · · + �(et )

(
1 − |Ye1 |

|Xe1 |
)

≤ m

(
1 − |Ye1 |

|Xe1 |
)

< m

(
1 − |Ye1 |

|X | − |Y | + |Ye1 |
)

≤ m

(
1 − 1

|X | − |Y | + 1

)
,

where the second-to-last inequality holds as the size of Xe1 can be no more than the
sum of the sizes of X − Y and Y ∩ Ye1 = Ye1 . Moreover, it is strict when t ≥ 2 since
(i) if there is no directed path containing e1 and e2, then Xe1 and Xe2 are disjoint and,
in particular, X − (Xe1 ∪ Y ) is non-empty and (ii) if, without loss of generality, there
is a directed path from e2 to e1, then Xe1 ⊂ Xe2 and, as

|Ye1 |
|Xe1 |

= |Ye2 |
|Xe2 |

,

again X − (Xe1 ∪ Y ) is non-empty.
Hence t = 1 and so, to maximise the diversity difference, �(e1) = m, |Ye1 | = 1,

and X − Y ⊆ Xe1 , in which case,

�(FP,T ,�)(Y ) = m

(
1 − 1

n − k + 1

)
.

This completes the proof of the theorem. �	

123



Phylogenetic diversity and diversity indices Page 15 of 25    40 

The next theorem is the analogue of Theorem 4.1 for the Equal Splits index.

Theorem 4.2 Let (k, X ,m, ES) be an instance ofAll Trees and Total Weight.
Let (T , �) be an edge-weight phylogenetic X-tree (T , �) with L(T , �) = m and let
Y be a subset of X of size k, and suppose that (T ∗, �∗) and Y ∗ is a solution to this
instance of All Trees and Total Weight. Then

�(ES,T ,�)(Y ) = �(ES,T ∗,�∗)(Y
∗)

if and only if (T , �) has an edge e = (u, v) such that �(e) = m, X − Y is a chain
whose first parent is v, and Y ∩ C(v) is non-empty, in which case,

�(ES,T ,�)(Y ) = m

(
1 − 1

2n−k

)
,

where n = |X |.
A generic edge-weighted phylogenetic X -tree optimising �(ES,T ,�)(Y ) as in the

statement of Theorem 4.2 is shown in Fig. 2(ii). The proof of Theorem 4.2 takes a
similar approach to that of Theorem 4.1 but is slightly more involved. We begin with
a lemma.

Lemma 4.3 Let T be a phylogenetic X-tree, and let Y ⊆ X. Let e = (u, v) be an edge
of T , and suppose that (X − Y ) ∩ C(v) and Y ∩ C(v) are both non-empty. Let T ′
be the phylogenetic X-tree obtained from T by replacing the pendant subtree T |C(v)

with a phylogenetic tree on leaf set C(v), where C(v)−Y is a chain whose first parent
is v and C(v) ∩ Y is a pendant subtree below the chain. If C(v) − Y is not a chain
whose first parent is v in T , then

1

2n1−k1
=

∑

y∈Y∩C(v)

1

2|P(T ′;v,y)| <
∑

y∈Y∩C(v)

1

2|P(T ;v,y)| ,

where n1 = |C(v)| and k1 = |Y ∩ C(v)|.
Proof Suppose that T is not of the same form as T ′. Then there is a z ∈ C(v) − Y
such that either z is in a cherry {z, z′} of T , where z′ /∈ Y or z is a leaf of a pendant
subtree of T whose two maximal subtrees each contain an element of Y . Let T ′′ be
the phylogenetic X -tree that is obtained from T by pruning z and regrafting to the
edge e. Relabel the vertex v as v′ and the newly created vertex in the subdivided
edge v (so that C(v) is unchanged). It is now easily checked that if y ∈ Y ∩ C(v),
then |P(T ; v, y)| ≤ |P(T ′′; v, y)|. Moreover, for some y′ ∈ Y ∩ C(v), we have
|P(T ; v, y′)| < |P(T ′′; v, y′)|. In particular,

∑

y∈Y∩C(v)

1

2|P(T ′′;v,y)| <
∑

y∈Y∩C(v)

1

2|P(T ;v,y)| .

The lemma now follows by repeating this process until we have constructed a phylo-
genetic tree in the same form as T ′. �	
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Proof of Theorem 4.2 If (T , �) and Y satisfy the conditions described in the statement
of Theorem 4.2, then it is easily checked that

�(ES,T ,�)(Y ) = m

(
1 − 1

2n−k

)
.

To complete the proof, let (T , �) be an edge-weighted phylogenetic X -tree, and sup-
pose that (T , �) together with a subset Y of X of size kmaximises�(ES,T ,�)(Y ) across
all edge-weighted phylogenetic X -trees (T ′, �′) with L(T ′, �′) = m and subsets of X
of size k. For each edge e = (u, v) of T , define λ(T ,�)(e) to be the contribution of e
to �(ES,T ,�)(Y ). Thus

λ(T ,�)(e) = �(e)

⎛

⎝1 −
∑

y∈Y∩C(v)

1

2|P(T ;v,y)|

⎞

⎠

if |Y ∩ C(v)| �= 0 and λ(T ,�)(e) = 0 if |Y ∩ C(v)| = 0. Note that, if λ(T ,�)(e) > 0,
then C(v) − Y is non-empty. Let e1 = (u1, v1), e2 = (u2, v2), . . . , et = (ut , vt )
denote the edges of T in which λ(T ,�)(ei ) > 0. We next show that t = 1 by showing
that if t > 1 then

m

(
1 − 1

2n−k

)
>

∑

i∈{1,2,...,t}
λ(T ,�)(ei ).

Say t ≥ 2. Since ES is descendant, it follows by Lemma 3.3(i) that

∑

y∈Y∩C(vi )

1

2|P(T ;vi ,y)| =
∑

y∈Y∩C(v j )

1

2|P(T ;v j ,y)| (5)

for all i, j ∈ {1, 2, . . . , t}. Hence

∑

i∈{1,2,...,t}
λ(T ,�)(ei ) = �(e1)

⎛

⎝1 −
∑

y∈Y∩C(v1)

1

2|P(T ;v1,y)|

⎞

⎠ + · · ·

· · · + �(et )

⎛

⎝1 −
∑

y∈Y∩C(vt )

1

2|P(T ;vt ,y)|

⎞

⎠

= �(e1)

⎛

⎝1 −
∑

y∈Y∩C(v1)

1

2|P(T ;v1,y)|

⎞

⎠ + · · ·

· · · + �(et )

⎛

⎝1 −
∑

y∈Y∩C(v1)

1

2|P(T ;v1,y)|

⎞

⎠
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≤ m

⎛

⎝1 −
∑

y∈Y∩C(v1)

1

2|P(T ;v1,y)|

⎞

⎠

≤ m

(
1 − 1

2n1−k1

)
,

where n1 = |C(v1)| and k1 = |Y ∩C(v1)|, and the last inequality holds by Lemma 4.3.
Since t ≥ 2, it follows by (5) that X − (C(v1)∪Y ) is non-empty, so n− n1 > 0. That
is,

∑

i∈{1,2,...,t}
λ(T ,�)(ei ) ≤ m

(
1 − 1

2n1−k1

)
< m

(
1 − 1

2n−k1

)
.

Hence t = 1, and so to maximise the diversity difference, a single edge e = (u, v) say
of (T , �) has length �(e) = m and, by Lemma 4.3, X − Y is a chain with first parent
v, and Y ∩ C(v) is non-empty, in which case,

�(ES,T ,�)(Y ) = m

(
1 − 1

2n−k

)
.

This completes the proof of the theorem. �	

4.2 Maximum edge length

We next consider the problem of maximising the diversity difference across all phy-
logenetic trees whose edge lengths are constrained by some maximum value. By
Lemma 3.6, we may assume all edges of T have the same weight. Thus, without loss
of generality, we will assume that all edges have weight 1 and so, for simplicity, we
write T for (T , �). To this end, for a descendant diversity index ϕ, the contribution of
an edge e of T to �(ϕ,T )(Y ) is denoted by λT (e). We begin with two lemmas and a
corollary.

Lemma 4.4 Let T be a phylogenetic X-tree, let Y ⊆ X such that |Y | ≤ |X | − 1,
and let ϕ ∈ {FP, ES}. If C is a non-trivial cluster of T such that either C ⊆ Y or
C ⊆ X − Y , then there exists a phylogenetic X-tree T ′ such that

�(ϕ,T ′)(Y ) > �(ϕ,T )(Y ).

Proof Let v be a non-leaf vertex of T , and suppose thatC(v) ⊆ Y orC(v) ⊆ (X−Y ).
Without loss of generality, we may assume that C(v) is maximal with this property.
Let (u, v) be the edge of T directed into v and note that, for (u, v) and all edges
on a path from v to a leaf, the contribution of these edges under either FP or ES to
�(ϕ,T )(Y ) is zero regardless of whether C(v) ⊆ Y or C(v) ⊆ (X − Y ). Let w be
the child vertex of u that is not v. By maximality and |Y | �= |X |, if C(v) ⊆ Y , then
(X − Y ) ∩C(w) �= ∅ and, if C(v) ⊆ (X − Y ), then Y ∩C(w) �= ∅. Let E denote the
edge set of T , let P denote the set of edges of T on the path from its root ρ to u, and
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let a ∈ C(v). Depending on whether C(v) ⊆ Y or C(v) ⊆ (X − Y ), we will compare
T with two other phylogenetic X -trees.

Let T1 denote the phylogenetic X -tree obtained from T by pruning a and regrafting
it to ρ. Let E1 denote the set of edges of T1, let ρ1 denote the root of T1, let q denote the
child of ρ1 that is not a, and let P1 denote the set of edges of T1 on the path from q to
u. Let T2 denote the phylogenetic X -tree obtained from T by pruning a and regrafting
it to (u, w). Let E2 denote the set of edges of T2, let pa denote the parent of a in T2,
and let P2 denote the set of edges of T2 on the path from its root to pa .

First suppose that ϕ is FP. If C(v) ⊆ Y , then

∑

e∈E−P

λT (e) =
∑

e1∈E1−(P1∪{(ρ1,q)})
λT1(e1).

Furthermore, as a ∈ Y , and CT1(u) ∩ Y and CT1(u) ∩ (X − Y ) are both non-empty,

∑

e∈P

λT (e) <
∑

e1∈P1

λT1(e1)

and λT1((ρ1, q)) > 0. Hence �(FP,T1)(Y ) > �(FP,T )(Y ). On the other hand, if
C(v) ⊆ (X − Y ), then it is easily checked that

∑

e∈E
λT (e) =

∑

e2∈E2−{(u,pa)}
λT2(e2)

and

λT2((u, pa)) > 0

as CT2(pa) has a non-empty intersection with Y and X − Y . Thus �(FP,T2)(Y ) >

�(FP,T )(Y ), and so the lemma holds if ϕ is FP.
Now suppose that ϕ is ES. If C(v) ⊆ Y , then

∑

e∈E
λT (e) =

∑

e1∈E1−{(ρ1,q)}
λT1(e1).

Since CT1(q) ∩ Y and CT1(q) ∩ (X − Y ) are both non-empty, λT1((ρ1, q)) > 0, and
so �(ES,T1)(Y ) > �(ES,T )(Y ) if ϕ is ES. Furthermore, if C(v) ⊆ (X − Y ), then

∑

e∈E−P

λT (e) =
∑

e2∈E2−P2

λT2(e2).

Hence, as a ∈ (X − Y ),

�(ES,T2)(Y ) − �(ES,T )(Y )
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=
∑

e2∈P2

λT2(e2) −
∑

e∈P

λT (e)

=
∑

e2∈P2−{(u,pa)}

⎛

⎝1−
∑

y∈Y∩C(w)

1

2|P(T2;e2,y)|

⎞

⎠ + λT2((u, pa))

−
∑

e∈P

⎛

⎝1−
∑

y∈Y∩C(w)

1

2|P(T ;e,y)|

⎞

⎠

= − 1
2 ·

⎛

⎝
∑

e∈P

⎛

⎝
∑

y∈Y∩C(w)

1

2|P(T ;e,y)|

⎞

⎠

⎞

⎠ + λT2((u, pa))

+
∑

e∈P

⎛

⎝
∑

y∈Y∩C(w)

1

2|P(T ;e,y)|

⎞

⎠

= 1
2 ·

⎛

⎝
∑

y∈Y∩C(w)

1

2|P(T ;e,y)|

⎞

⎠ + λT2((u, pa))

> 0

as λT2((u, pa)) > 0 since CT2(pa) ∩ Y and CT2(pa) ∩ (X − Y ) are both non-empty.
Therefore �(ES,T2)(Y ) > �(ES,T )(Y ). This completes the proof of the lemma. �	

An immediate consequence of Lemma 4.4 is the next corollary.

Corollary 4.5 Let T be a phylogenetic X-tree, let k be a positive integer such that
k ≤ |X | − 1, let Y be a subset of X of size k, and let ϕ ∈ {FP, ES}. Suppose that T
and Y maximises

�(ϕ,T )(Y ) = PDT (Y ) −
∑

x∈Y
ϕT (x)

across all phylogenetic X-trees and all subsets of X of size k. If {a, b} is a cherry of
T , then |{a, b}∩Y | = 1. In particular, T has no non-trivial cluster C such that either
C ⊆ Y or C ⊆ (X − Y ).

Lemma 4.6 Let T be a phylogenetic X-tree, let k be a positive integer such that
k ≤ |X | − 1, let Y be a subset of X of size k, and let ϕ ∈ {FP, ES}. Suppose that T
and Y maximises

�(ϕ,T )(Y ) = PDT (Y ) −
∑

x∈Y
ϕT (x)

across all phylogenetic X-trees and all subsets of X of size k. If (a1, a2, . . . , as) is a
chain of T , in which {a1, a2} is a cherry, then
(i) |{a1, a2} ∩ Y | = 1 and
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(ii) for some p ≥ 3, we have |{a1, a2, . . . , ap−1} ∩ Y | = 1 and {ap, ap+1, . . . , as} ⊆
Y .

Proof By Corollary 4.5, (a1, a2, . . . , as) satisfies (i). Suppose that (a1, a2, . . . , as)
does not satisfy (ii). Let i ≥ 3 be the least index such ai ∈ Y but ai+1 ∈ X − Y .
Let T ′ be the phylogenetic X -tree obtained from T by interchanging ai and ai+1,
that is, pruning ai and regrafting it to the edge directed into the parent of ai+1 so that
(a1, a2, . . . , ai−1, ai+1, ai , ai+2, . . . , as) is a chain of T ′. Let pi and pi+1 denote the
parents of ai and ai+1 in T , respectively, and let p′

i and p′
i+1 denote the parents of ai

and ai+1 in T ′, respectively.
If ϕ is the Fair Proportion index, then

�(FP,T ′)(Y ) − �(FP,T )(Y ) = λT ′((p′
i , p

′
i+1)) − λT ((pi+1, pi ))

= (
1 − 1

i

) − (
1 − 2

i

)

> 0.

This contradiction to the maximality of T and Y implies that the lemma holds when
ϕ is FP.

Now suppose that ϕ is the Equal Splits index. Let P denote the path in T from the
root to pi and let P ′ denote the path in T ′ from the root to p′

i . Then

�(ES,T ′)(Y ) − �(ES,T )(Y ) = −ϕT ′(ai ) + ϕT (ai )

= −
∑

e′∈P ′

1

2|P(T ′;e′,ai )| +
∑

e∈P

1

2|P(T ;e,ai )| .

For all e ∈ P − {(pi+1, pi )}, we have |P(T ′; e, ai )| = |P(T ; e, ai )| − 1, and the
contribution of (pi+1, pi ) to EST (ai ) is 1

2 . So

�(ES,T ′)(Y ) − �(ES,T )(Y ) = −2
∑

e∈P−{(pi+1,pi )}

1

2|P(T ;e,ai )|

+
⎛

⎝ 1
2 +

∑

e∈P−{(pi+1,pi )}

1

2|P(T ;e,ai )|

⎞

⎠

= 1
2 −

∑

e∈P−{(pi+1,pi )}

1

2|P(T ;e,ai )|

≥ 1
2 −

(
1
4 + 1

8 + · · · + 1
2|P|

)

> 0.

This contradiction to the maximality of T and Y implies that the lemma holds when
ϕ is ES, thereby completing the proof of the lemma. �	

The next theorem is illustrated in Fig. 3. In particular, an edge-weighted phyloge-
netic X -tree optimising �(ϕ,T ,�)(Y ) as in the statement of this theorem is shown in
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Fig. 3 An illustration of
Theorem 4.7, where
Y = {x1, xi , xi+1, . . . , xn}, so
|{x1, x2} ∩ Y | = 1, and
X − Y = {x2, x3, . . . , xi−1}

Fig. 3, where ϕ ∈ {FP, ES}. It is interesting to note that the outcome of Theorem 4.7
is the same for FP and ES, although the proof of the theorem requires FP and ES to
be considered separately.

Theorem 4.7 Let k be a positive integer such that k ≤ |X | − 1, let κ be a positive
real, and let ϕ ∈ {FP, ES}. Then an edge-weighted phylogenetic X-tree (T , �) with
�(e) ≤ κ for all e ∈ E(T ) and a subset Y of X of size k maximises

�(ϕ,T ,�)(Y ) = PD(T ,�)(Y ) −
∑

x∈Y
ϕ(T ,�)(x)

across all phylogenetic X-trees (T ′, �′) with �′(e) ≤ κ for all e ∈ E(T ′) and all
subsets of X of size k if and only if �(e) = κ for all e ∈ E(T ) and X is a chain
(x1, x2, . . . , xn) such that |{x1, x2}∩Y | = 1, and, for some i ≥ 3, |{x1, x2, . . . , xi−1}∩
Y | = 1 and {xi , xi+1, . . . , xn} ⊆ Y .

Proof Let (T , �) be an edge-weighted phylogenetic X -tree with �(e) ≤ κ for all
e ∈ E(T ) and let Y be a subset of X of size k. Suppose that (T , �) and Y maximise
�(ϕ,T ,�)(Y ) across all edge-weighted phylogenetic X -trees (T ′, �′) with �′(e) ≤ κ

for all e ∈ E(T ′) and all subsets of X of size k. Recall that, by Lemma 3.6, we may
assume that all edges have weight κ = 1.

We first show that T does not have two distinct cherries. Suppose that T has two
such cherries. Then T has a vertex v in which C(v) contains exactly two cherries.
By Lemma 4.6 and the maximality of (T , �) and Y , the set C(v) consists of two
disjoint chains (a1, a2, . . . , as) and (b1, b2, . . . , bt ) each of which satisfies properties
(i) and (ii) in the statement of Lemma 4.6. Let A = {a1, a2, . . . , as} and let B =
{b1, b2, . . . , bt }.

First suppose that ϕ is FP. Without loss of generality, we may assume that

|Y ∩ A|
s

≥ |Y ∩ B|
t

.

Say s ≥ 3 and as ∈ Y . Let T ′ be the phylogenetic X -tree obtained from T by pruning
as and regrafting it to the edge (u, v) directed into v. This operation is shown in Fig. 4,
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where T is drawn above T ′. Let ps and p′
s denote the parents of as in T and T ′,

respectively. Then it is easily seen that

∑

e∈E(T )−{(v,ps )}
λT (e) =

∑

e′∈E(T ′)−{(p′
s ,v)}

λT ′(e′).

Furthermore, as |Y ∩ A|/s ≥ |Y ∩ B|/t ,

λT ((v, ps)) = 1 − |Y ∩ A|
s

≤ 1 − |Y ∩ (A ∪ B)|
s + t

< 1 − |Y ∩ (A ∪ B)| − 1

s + t − 1
= λT ′((p′

s, v)).

Thus�(FP,T )(Y ) < �(FP,T ′)(Y ). It follows that |Y ∩ A| = 1, and so wemay assume
that Y ∩ A = {a1}.

Say t ≥ 3 and bt ∈ Y . Now let T ′ be the phylogenetic X -tree obtained from T by
pruning bt and regrafting it to (u, v). let pt and p′

t denote the parents of bt in T and
T ′, respectively. Then

∑

e∈E(T )−{(v,pt )}
λT (e) =

∑

e′∈E(T ′)−{(p′
t ,v)}

λT ′(e′).

Also, as |Y ∩ A| = 1 and |Y ∩ B| ≥ 2,

λT ((v, pt )) = 1 − |Y ∩ B|
t

< 1 − |Y ∩ B|
s + t

≤ 1 − |Y ∩ (A ∪ B)| − 1

s + t − 1
= λT ′((p′

t , v)).

Thus �(FP,T )(Y ) < �(FP,T ′)(Y ), contradicting the maximality of (T , �) and Y .
Therefore |Y ∩ B| = 1, and so we may assume that Y ∩ (A ∪ B) = {a1, b1}.

Without loss of generality, we may now assume that t ≥ s. Let ps and qt denote the
parents of as and bt in T , respectively. Let T ′′ be the phylogenetic X -tree obtained
from T by pruning as and regrafting it to the edge (u, qt ). Let p′′

s denote the parent
of as in T ′′. Then

∑

e∈E(T )−{(v,ps )}
λT (e) =

∑

e′′∈E(T ′′)−{(v,p′′
s )}

λT ′′(e′′)

123



Phylogenetic diversity and diversity indices Page 23 of 25    40 

and

λT ((u, ps)) = 1 − 1
s

< 1 − 1
t+1

= λT ′′((u, p′′
s ))

as t ≥ s. Repeating this process for each of as−1, as−2, . . . , a2, we obtain a phyloge-
netic tree X -tree T1 with one less cherry than T , and

�(FP,T )(Y ) < �(FP,T1)(Y ),

a contradiction to maximality. We deduce that T has exactly one cherry if ϕ is FP.
Now suppose that ϕ is ES. Without loss of generality, we may assume that t ≥ s

and a1, b1 ∈ Y . Let T ′ be the phylogenetic X -tree obtained from T by pruning a2
and regrafting it to the edge (q2, b1), where q2 is the parent of b2 in T (as depicted in
Fig. 5). Then, noting that a2 is not in Y ,

∑

y∈(Y−{a1,b1})
EST (y) =

∑

y∈(Y−{a1,b1})
EST ′(y).

Furthermore, since the length of the each path from an edge to a1 is reduced by 1
in forming T ′ as edge (p3, p2) is suppressed,

∑

e∈P(T ;ρ,a1)

1

2|P(T ;e,a1)| −
∑

e′∈P(T ′;ρ,a1)

1

2|P(T ′;e′,a1)| = 1

2|P(T ;ρ,a1)|−1

and. since the length of the each path from an edge to b1 is increased by 1 in forming
T ′ as edge (q2, p′

2) is added,

∑

e′∈P(T ′;ρ,b1)

1

2|P(T ′;e′,b1)| −
∑

e∈P(T ;ρ,b1)

1

2|P(T ;e,b1)| = 1

2|P(T ′;ρ,b1)|−1
.

But, as t ≥ s,

1

2|P(T ′;ρ,b1)|−1
<

1

2|P(T ;ρ1,a1)|−1
.

Therefore

∑

y∈{a1,b1}
EST (y) −

∑

y∈{a1,b1}
EST ′(y) = 1

2|P(T ;ρ,a1)|−1
− 1

2|P(T ′;ρ,b1)|−1

> 0.

It now follows that �(ES,T )(Y ) < �(ES,T ′)(Y ). This contradiction to maximality
implies that T has exactly one cherry if ϕ is ES. It now follows by Lemma 4.6 that,
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Fig. 4 Illustrating the pruning and regrafting of the leaf as in the proof of Theorem 4.7 for FP

Fig. 5 Illustrating the pruning and regrafting of the leaf a2 in the proof of Theorem 4.7 for ES

if ϕ ∈ {FP, ES}, then to maximise �(ϕ,T )(Y ) we have that X is a chain and Y is a
subset of X of size k as described in the statement of the theorem. �	

5 Discussion

The results for Fair Proportion and Equal Splits in the last section are strikingly simi-
lar. Indeed, they are exactly the same when considering the outcomes of Theorem 4.7.
While the proof of Theorem 4.7 eventually required separating into two parts to inde-
pendently consider FP and ES, the two approaches taken were alike. This suggests
that there is probably a natural class of phylogenetic diversity indices which these
results are representative of. If so, what is this class? The class of descendant diver-
sity indices is unlikely to be sufficient. However, what if we additionally required the
following property? Let (T , �) be an edge-weighted phylogenetic X -tree and let ϕ be
a descendant diversity index. Let e = (u, v) be an edge of T , and let {x, y} ⊆ X such
that {x, y} ⊆ C(v). If the number of edges from v to y is at most the number of edges
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from v to x , then the contribution of �(e) to ϕ(T ,�)(x) is at most the contribution of
�(e) to ϕ(T ,�)(y).
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