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A B S T R A C T

Several numerical challenges exist in the analysis of water-mooring line systems which require robust, yet
practical, methods to address this type of fully coupled nonlinear dynamic problems. The present study
proposes a novel class of numerical techniques for the formulation and implementation of a fully coupled
dynamic system which involves water flows and catenary mooring line system. In particular, the three-
dimensional water flow model is replaced by a simplified multilayer shallow water system with mass exchange
terms between the layers including frictional forces at the bed topography and wind-driven forces at the water
free-surface. Coupling conditions between the multilayer shallow water model and the mooring line system
are also investigated in the current work. As numerical solvers we implement a fast finite volume method
for the multilayer shallow water equations and a nonlinear dynamic analysis for the mooring line based on
elastic catenary cable elements. Efficient calculations of the interaction forces between the shallow water flow
and the submerged mooring line system and associated numerical implementations are also discussed. The
accuracy and computational advantages of the proposed fully coupled system are verified using a series of well-
established benchmark problems and wind-driven flows over both flat and non-flat beds. The computational
results obtained show high performance the developed model and demonstrate the ability of the method to
simulate fully coupled dynamic water-mooring line systems.
1. Introduction

Most offshore wind turbine platforms with fixed foundations are fre-
quently installed in coastal areas. However, wind features (such as wind
speed, direction and turbulence) tend to be considerably improved in
the open-sea areas where water depth usually becomes deeper. Floating
Offshore Wind Turbine (FOWT) platforms with mooring systems are
more cost-effective and have significant advantages over those mounted
on fixed offshore wind turbine platforms, see for example Maffra et al.
(2003). For FOWT platforms in deep-sea areas, traditional steel wire
ropes and chain mooring lines are required to be replaced by synthetic
fibre ropes with lesser weights (API, 2001). Needless to mention that
the synthetic fibre ropes exhibit significant geometric non-linearity,
which yields significant influence on their mechanical behaviour, see Li
and Choung (2021b) and Li et al. (2016) among others. A wide liter-
ature on mooring models has been published using an assumption of
linear stiffness, see for instance (Harnois et al., 2015; Li and Choung,
2017; Li et al., 2018; Soulard et al., 2013; Yang et al., 2014) whereas,
a relatively limited number of studies have focused on the mooring
models with a nonlinear stiffness, see for example Thai and Kim (2011)
and Abad et al. (2013). Bhinder et al. (2015) adopted commercial
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softwares to examine the influence of nonlinear stiffness on the coupled
platform responses. The well-established lumped mass method has been
used in Xiong et al. (2018) to achieve the viscoelasticity and nonlinear
stiffness of a synthetic fibre rope in the taut-leg mooring systems. Thai
and Kim (2011) proposed a spatial two-node catenary cable element for
the nonlinear analysis of cable structures based on the exact analytical
expressions of elastic catenary. Note that the proposed cable system
requires fewer degrees of freedom and it exactly considers the nonlinear
effects of the cable, which is also preferred in this study for modelling
the dynamic motion of mooring lines.

Modelling water flows in stratified geophysical domains as those
considered in this study, is mainly based on the formulation and
solution of appropriate equations of continuity and dynamics of wa-
ter. In practice, free-surface flows involve three-dimensional turbulent
Newtonian fluids in complex geometrical domains with moving bound-
aries. For instance, the incompressible Navier–Stokes equations have
been widely considered as highly accurate systems for modelling and
simulating water flows, see for example Codina (1999) and Yan et al.
(2017). However, for most free-surface flows, these partial differen-
tial equations are difficult to solve mainly because the pressure in
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these equations is hydrostatic and the domain boundaries are moving
within the free-surface flow. Assuming a hydrostatic pressure and
the vertical scale is smaller than other scales in the flow domain,
the three-dimensional Navier–Stokes equations can be replaced by a
depth-averaged system well known in the literature by shallow wa-
ter equations, see for example Abbott (1979). In fact, shallow water
equations have been widely used for modelling many free-surface flows
in hydraulics such as open channel flows, floods in rivers and tidal
flows in coastal regions among others, see Ozgen et al. (2016) among
others. However, these depth-averaged equations fail to resolve the
vertical velocity as the bed friction is derived in terms of the mean
flow velocity only instead of the near-bed velocity. Therefore, the three-
dimensional equations are required for an accurate representation of
free-surface flows, especially for wind-driven recirculation flows and
for solution of near-field problems involving mooring-line systems. In
recent years, research in free-surface flows has been shifted to over-
come drawbacks of the depth-averaged equations related to the use of
single velocity profiles for the entire depth in the flow domain. Hence,
the introduction of multilayer shallow water models as an alternative
for the conventional single-layer shallow water equations for modelling
geophysical free-surface flows, see for example Audusse et al. (2011a,b)
and Bonaventura et al. (2018). In this class of multilayer models, the
𝑃0 finite element method is used to discretize the vertical velocity in
the three-dimensional incompressible Navier–Stokes equations. It has
also been shown in Audusse et al. (2011a, 2014) and Izem and Seaid
(2021) that these multilayer shallow water models drastically reduce
the computational costs required to solve the full three-dimensional
incompressible Navier–Stokes equations subject to free-surface bound-
ary conditions but still capturing the stratified flow velocities since
the pressure distribution remains hydrostatic. In the present work, to
model the free-surface flow in water-mooring line systems, we con-
sider a layered flow domain made of multiple shallow water systems
with different water heights but fully coupled through mass-exchange
terms between the embedded layers. The proposed model also includes
frictional forces at the bed topography and wind shear stresses at
the water free-surface generating vertical velocity distribution which
contributes to the dynamics of mooring-line systems considered in this
study. Interactions between the flow field and mooring-line system are
also investigated in the current work and transfer coupling conditions
between the two dynamics are also developed.

The main objective of the present study is to propose a novel fully
coupled model for solving water-mooring line systems in accurate and
efficient manners. To achieve this objective, we propose the multilayer
shallow water equations for free-surface flows coupled with the elastic
catenary cable elements for nonlinear dynamics of the mooring lines.
Frictional source terms are included in each layer of the water domain
for modelling the interaction between the shallow water flow and the
submerged mooring line system. The numerical solution of the coupled
equations is not trivial and it presents difficulties due to their nonlin-
earity, coupling between the free-surface equations and the equations
governing the mooring-line dynamics, and non-flat bed topography.
Furthermore, difficulties in solving multilayer shallow water equations
are also related to the presence of source terms involving derivatives
of the unknown variables which makes the system non-conservative
and eventually non-hyperbolic. Thus, numerical methods designed for
solving the conventional single-layer shallow water equations would
yield instabilities if they are applied to each layer separately in the
multilayer shallow water system. In the current work, to solve the
multilayer shallow water equations we adapt the finite volume char-
acteristics (FVC) method introduced in Benkhaldoun and Seaid (2010).
The FVC method provides a fast and accurate solver for the multilayer
shallow water system as it does not require Riemann-problem solvers
for the reconstruction of numerical fluxes, see in Audusse et al. (2014)
and Benkhaldoun et al. (2014). A second-order splitting operator along
with an explicit Runge–Kutta scheme is also presented in this study
2

for the time integration of multilayer shallow water equations. The l
numerical solution of nonlinear dynamics of the mooring line is car-
ried out using a group of elastic catenary cable elements for space
discretization and an implicit scheme using Newton’s iterations for the
time integration. A class of robust velocity/acceleration projections and
interpolation procedures are proposed for the transfer of coupling terms
between both models and full description of the coupled algorithm is
also discussed in the present work. Several numerical examples are
presented to verify the considered water-mooring line systems. First,
we examine the performance of the proposed numerical techniques
using well-established benchmark problems in free-surface flows and
mooring lines. Then, we demonstrate the capability of the coupled
model to accurately resolve lateral and vertical distributions of veloc-
ities for wind-driven recirculation flows over flat and non-flat beds in
the presence of mooring lines.

This paper is organized as follows. Description of the dynamic
motion for shallow water flows and mooring line systems is presented
in Section 2. This section covers the governing equations for multilayer
shallow water flows and nonlinear motion of the mooring line system.
Section 3 is devoted to the numerical formulation and implementation
of the fully coupled dynamic multilayer shallow water-mooring line
system. We consider a fast and robust second-order finite volume
method for the multilayer shallow water flows whereas, a fully dynamic
nonlinear catenary cable element for the mooring line is implemented
for the shallow water flows. Details on the dynamic coupling algorithm
between the shallow water and mooring line are also discussed in this
section. In Section 4, we present numerical results for several examples
of coupled multilayer shallow water flows and nonlinear motion of
the mooring line system. The proposed fully coupled system is shown
to enjoy the expected accuracy as well as the efficiency. Concluding
remarks are drawn in Section 5.

2. Governing equations for multilayer shallow water and mooring
line system

In the current work, we are interested in water flows occurring
on the free-surface where assumptions of shallow water flows are
applied coupled to the mooring line dynamics. In this section we
present mathematical equations governing dynamics of both systems
and we introduce coupling equations for transfer conditions between
their dynamics.

2.1. Multilayer shallow water equations for free-surface water flows

As illustrated in Fig. 1, the water body bounded by a non-flat bottom
topography 𝑍 (𝑥) and a free water surface is vertically discretized into
𝑁 fictitious layers. Following Audusse et al. (2011a,b), using a vertical
𝑃0 discretization of the horizontal velocity 𝑢, the well-known three-
dimensional hydrostatic incompressible Navier–Stokes equations with
free-surface yield the so-called multilayer shallow water equations. In
this section, only the derivations of these equations that directly related
to a complete description of the fully coupled system are provided, and
more details can be found in Audusse et al. (2011a,b). Thus, similar to
the conventional single-layer shallow water problems, the governing
equations for multilayer shallow water models with additional terms
for exchanging momentum between the layers are written as

𝜕𝐻
𝜕𝑡

+
𝑁
∑

𝛽=1

𝜕
𝜕𝑥

(

𝑙𝛽𝐻𝑢𝛽
)

= 0,

(1)
𝜕
𝜕𝑡

(

𝑙𝛽𝐻𝑢𝛽
)

+ 𝜕
𝜕𝑥

(

𝑙𝛽𝐻𝑢2𝛽 +
1
2
𝑔𝑙𝛽𝐻

2
)

= −𝑔𝑙𝛽𝐻
𝜕𝑍
𝜕𝑥

+ 𝑢
𝛽 + 𝜇

𝛽 + 𝑏
𝛽

+𝑤
𝛽 + 𝑚

𝛽 , 𝛽 = 1, 2,… , 𝑁,

here the subscript 𝛽 defines the 𝛽 th water layer, 𝐻 (𝑡, 𝑥) is the water
eight of the whole flow system, 𝑢𝛽 (𝑡, 𝑥) is the local velocity of the 𝛽 th

ayer, 𝑔 is the gravitational acceleration, 𝑍 𝑥 is the bed topography,
( )
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and 𝑙𝛽 is the ratio between the water height ℎ𝛽 (𝑡, 𝑥) of 𝛽 th layer and the
total water height defined as

𝑙𝛽 > 0,
𝑁
∑

𝛽=1
𝑙𝛽 = 1,

with the water height ℎ𝛽 (𝑡, 𝑥) of the 𝛽 th layer is defined by

ℎ𝛽 = 𝑙𝛽𝐻, 𝛽 = 1, 2,… , 𝑁.

In Eq. (1), the source term 𝑢
𝛽 represents the momentum exchange

between the water layers. Following the vertical 𝑃0 discretization of
horizontal velocity, 𝑢

𝛽 is defined as

𝑢
𝛽 = 𝑢𝛽+ 1

2
𝛽+ 1

2
− 𝑢𝛽− 1

2
𝛽− 1

2
, (2)

where the mass exchange terms 𝛽− 1
2

and 𝛽+ 1
2

are evaluated using

𝛽− 1
2
=

⎧

⎪

⎨

⎪

⎩

0, 𝛽 = 1,
𝛽
∑

𝑖=1

(

𝜕
(

ℎ𝑖𝑢𝑖
)

𝜕𝑥
− 𝑙𝑖

𝑁
∑

𝑗=1

𝜕
(

ℎ𝑗𝑢𝑗
)

𝜕𝑥

)

, 𝛽 = 2, 3… , 𝑁,
(3)

and

𝛽+ 1
2
=

⎧

⎪

⎨

⎪

⎩

𝛽
∑

𝑖=1

(

𝜕
(

ℎ𝑖𝑢𝑖
)

𝜕𝑥
− 𝑙𝑖

𝑁
∑

𝑗=1

𝜕
(

ℎ𝑗𝑢𝑗
)

𝜕𝑥

)

, 𝛽 = 1, 2,… , 𝑁 − 1,

0, 𝛽 = 𝑁,

(4)

respectively. Here, the interface velocities 𝑢𝛽− 1
2

and 𝑢𝛽+ 1
2

are computed

according to the sign of mass-exchange terms in Eqs. (3) and (4) as

𝑢𝛽− 1
2
=

⎧

⎪

⎨

⎪

⎩

𝑢𝛽−1, 𝛽− 1
2
≥ 0,

𝑢𝛽 , 𝛽− 1
2
< 0,

𝑢𝛽+1∕2 =

⎧

⎪

⎨

⎪

⎩

𝑢𝛽 , 𝛽+ 1
2
≥ 0,

𝑢𝛽+1, 𝛽+ 1
2
< 0.

(5)

The vertical kinematic eddy viscosity term 𝜇
𝛽 in Eq. (1) represents the

relative friction between neighbouring water layers and it is defined as

𝜇
𝛽 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2𝜈
𝑢𝛽+1 − 𝑢𝛽

(

𝑙𝛽+1 + 𝑙𝛽
)

𝐻
, 𝛽 = 1,

2𝜈
𝑢𝛽+1 − 𝑢𝛽

(

𝑙𝛽+1 + 𝑙𝛽
)

𝐻
− 2𝜈

𝑢𝛽 − 𝑢𝛽−1
(

𝑙𝛽 + 𝑙𝛽−1
)

𝐻
, 𝛽 = 2, 3,… , 𝑁 − 1,

2𝜈
𝑢𝛽 − 𝑢𝛽−1

(

𝑙𝛽 + 𝑙𝛽−1
)

𝐻
, 𝛽 = 𝑁,

(6)

where 𝜈 is the eddy viscosity. Similarly, the external friction terms 𝑏
𝛽

and 𝑤
𝛽 in Eq. (1) are defined by

𝑏
𝛽 =

⎧

⎪

⎨

⎪

⎩

−𝑔𝑀2
𝑏
𝑢1 ||𝑢1||
𝐻1∕3

, 𝛽 = 1,

0, 𝛽 = 2, 3,… , 𝑁,

𝑤
𝛽 =

⎧

⎪

⎨

⎪

⎩

0, 𝛽 = 1, 2,… , 𝑁 − 1,

𝜎2𝑠 𝜌𝑎
𝑉wind ||𝑉wind||

𝐻
, 𝛽 = 𝑁,

(7)

here 𝑀𝑏 is the Manning’s roughness coefficient at the bed, 𝑉wind is
he wind velocity at 10m above the free water surface, 𝜎𝑠 is the wind
tress coefficient, and 𝜌𝑎 is the air density. Note that in Eq. (1), the
ed-friction forcing term 𝑏

𝛽 is acting only on the lower layer whereas,
he wind-driven forcing term 𝑤

𝛽 is only acting on the upper layer.
To account for effects of the mooring line on the shallow water flow

n the proposed fully coupled system, the final source term 𝑚
𝛽 in the

ight-hand side of Eq. (1) refers to the frictional force acting on the
hallow water owing to the presence of mooring line system. This term
3

ollows a similar mechanism as for the calculation of wind-driven forces
Fig. 1. Schematic illustration of the multilayer shallow water system.

Fig. 2. An elastic catenary cable element supported by two end points 𝐼 and 𝐽 in the
three space dimensions.

and it is defined as

𝑚
𝛽 = 𝜎2𝑚𝜌𝑤

𝑉𝑚,𝑐 ||𝑉𝑚,𝑐 ||
𝛽
∑

𝑖=1
𝑙𝑖𝐻

, 𝛽 = 1, 2,… , 𝑁, (8)

where 𝜎𝑚 is the Manning’s roughness coefficient of the mooring line,
𝑉𝑚,𝑐 is the velocity field mapping from the mooring line to the wa-
ter system, and its determination is discussed in the section below.
More details regarding the determination of the frictional force are
elaborated in Section 3.

2.2. Governing equations for the mooring line system

This section is devoted to some fundamentals regarding the mod-
elling of elastic catenary cable elements for the nonlinear simulation of
the mooring line system. To achieve this purpose, the elastic catenary
cable elements proposed in Thai and Kim (2011) are adopted in this
study. For a compact description, only those details essential to a
full understanding of the numerical implementation are given here
and more descriptions and further links to the adopted catenary cable
elements can be found in previous studies such as Abad et al. (2013)
and Thai and Kim (2011) among others. As shown in Fig. 2, the
suspended cable element (in three space dimensions) is assumed to be
supported by two end points 𝐼 and 𝐽 , and their Cartesian coordinates
are defined by (0, 0, 0)⊤ and

(

𝑙𝑥, 𝑙𝑦, 𝑙𝑧
)⊤, respectively. Three main uni-

form distributed loads 𝑤𝑖 (𝑖 = 1, 2 and 3) are separately applied along
three global directions, namely, 𝑥, 𝑦, and 𝑧 directions. In what follows,
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the cable elements are assumed to be perfectly elastic and flexible under
their own self-weight along its length, and their cross-sectional areas
remain constant during the whole computational process.

Let us assume that 𝑠 and 𝑝 are, respectively the Lagrangian coordi-
nates of the undeformed and the deformed configurations of the cable
element. Hence, the equilibrium equations for the cable element can be
formulated as

𝑇
(

d𝑥
d𝑝

)

= −
(

𝑤1𝑠 + 𝑓1
)

,
(

d𝑦
d𝑝

)

= −
(

𝑤2𝑠 + 𝑓2
)

, (9)
(

d𝑧
d𝑝

)

= −
(

𝑤3𝑠 + 𝑓3
)

,

here 𝑓1, 𝑓2, and 𝑓3 are the projected components of the cable force
t the starting node along the three global directions, and the ca-
le tension 𝑇 in the Lagrangian coordinates 𝑠 of the undeformed
onfigurations is given by

(𝑠) =

√

√

√

√

3
∑

𝑖=1

(

𝑤𝑖𝑠 + 𝑓𝑖
)2. (10)

For a perfect elastic cable element, the relationship between the cable
tension 𝑇 and the strain 𝜀 follows the well-known Hooke’s law as

𝑇 = 𝐸𝐴
(

𝜀 − 𝜀𝑇
)

= 𝐸𝐴
(

d𝑝 − d𝑠
d𝑠

− 𝛼𝛥𝑇
)

, (11)

where 𝐸 is the elastic modulus, 𝐴 the cross-sectional area of the
able, 𝜀 the total cable strain, 𝜀𝑇 the cable strain component related

to the temperature change, 𝛼 the linear thermal expansion coefficient,
and 𝛥𝑇 the temperature change. Note that relationships between the
Cartesian and Lagrangian coordinates under undeformed configuration
are defined by

𝑥 (𝑠) = ∫

𝑠

0
d𝑥 = ∫

𝑠

0

d𝑥
d𝑝

d𝑝
d𝑠

d𝑠,

𝑦 (𝑠) = ∫

𝑠

0
d𝑦 = ∫

𝑠

0

d𝑦
d𝑝

d𝑝
d𝑠

d𝑠, (12)

𝑧 (𝑠) = ∫

𝑠

0
d𝑧 = ∫

𝑠

0

d𝑧
d𝑝

d𝑝
d𝑠

d𝑠,

hich are subjected to the following boundary conditions

(0) = 0, 𝑦 (0) = 0, 𝑧 (0) = 0,
(

𝑙0
)

= 𝑙𝑥, 𝑦
(

𝑙0
)

= 𝑙𝑦, 𝑧
(

𝑙0
)

= 𝑙𝑧,

here 𝑙0 is the initial unstrained length of the cable element. By
ubstituting Eqs. (9)–(11) into Eq. (12), the following relationships are
btained

(𝑠) = ∫

𝑠

0

−
(

𝑤1𝑠 + 𝑓1
)

√

√

√

√

3
∑

𝑖=1

(

𝑤𝑖𝑠 + 𝑓𝑖
)2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

√

√

√

3
∑

𝑖=1

(

𝑤𝑖𝑠 + 𝑓𝑖
)2

𝐸𝐴
+ (1 + 𝛼𝛥𝑇 )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

d𝑠,

𝑦 (𝑠) = ∫

𝑠

0

−
(

𝑤2𝑠 + 𝑓2
)

√

√

√

√

3
∑

𝑖=1

(

𝑤𝑖𝑠 + 𝑓𝑖
)2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

√

√

√

3
∑

𝑖=1

(

𝑤𝑖𝑠 + 𝑓𝑖
)2

𝐸𝐴
+ (1 + 𝛼𝛥𝑇 )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

d𝑠, (13)

𝑧 (𝑠) = ∫

𝑠

0

−
(

𝑤3𝑠 + 𝑓3
)

√

√

√

√

3
∑

𝑖=1

(

𝑤𝑖𝑠 + 𝑓𝑖
)2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

√

√

√

3
∑

𝑖=1

(

𝑤𝑖𝑠 + 𝑓𝑖
)2

𝐸𝐴
+ (1 + 𝛼𝛥𝑇 )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

d𝑠.

After applying the associated boundary conditions, the projection
lengths 𝑙 , 𝑙 , and 𝑙 can be formulated as functions of the internal
4

𝑥 𝑦 𝑧 s
forces 𝑓1, 𝑓2, and 𝑓3 using

𝑙𝑥
(

𝑓1, 𝑓2, 𝑓3
)

= −
𝑙0𝑓1
𝐸𝐴

−
𝑙20𝑤1

2𝐸𝐴
+ 1 + 𝛼𝛥𝑇

𝑤3

(

𝑤𝑤1
(

𝑇1 − 𝑇2
)

+
(

𝑤2𝑓1 − 𝛽𝑤1
)

(

ln
( 𝛽
𝑤

+ 𝑇1
)

− ln
(

𝑙0𝑤 +
𝛽
𝑤

+ 𝑇2
)

)

)

,

𝑙𝑦
(

𝑓1, 𝑓2, 𝑓3
)

= −
𝑙0𝑓2
𝐸𝐴

−
𝑙20𝑤2

2𝐸𝐴
+ 1 + 𝛼𝛥𝑇

𝑤3

(

𝑤𝑤2
(

𝑇1 − 𝑇2
)

+
(

𝑤2𝑓2 − 𝛽𝑤2
)

(

ln
( 𝛽
𝑤

+ 𝑇1
)

− ln
(

𝑙0𝑤 +
𝛽
𝑤

+ 𝑇2
)

)

)

, (14)

𝑙𝑧
(

𝑓1, 𝑓2, 𝑓3
)

= −
𝑙0𝑓3
𝐸𝐴

−
𝑙20𝑤3

2𝐸𝐴
+ 1 + 𝛼𝛥𝑇

𝑤3

(

𝑤𝑤3
(

𝑇1 − 𝑇2
)

+
(

𝑤2𝑓3 − 𝛽𝑤3
)

(

ln
( 𝛽
𝑤

+ 𝑇1
)

− ln
(

𝑙0𝑤 +
𝛽
𝑤

+ 𝑇2
)

)

)

,

where 𝑤 =
√

∑3
𝑖=1 𝑤

2
𝑖 , 𝛽 =

∑3
𝑖=1 𝑓𝑖𝑤𝑖, 𝑇1 = 𝑇 (0), and 𝑇2 = 𝑇 (𝑙0). It

hould be noted that the tangent stiffness matrix 𝐊 and the internal
orce vector 𝑭 𝑖𝑛𝑡 of the catenary cable element can be determined by
olving the system of Eq. (14). Therefore, differentiating both sides of
q. (14), the differential projected components become

𝑙𝑥 =
𝜕𝑙𝑥
𝜕𝑓1

d𝑓1 +
𝜕𝑙𝑥
𝜕𝑓2

d𝑓2 +
𝜕𝑙𝑥
𝜕𝑓3

d𝑓3,

d𝑙𝑦 =
𝜕𝑙𝑦
𝜕𝑓1

d𝑓1 +
𝜕𝑙𝑦
𝜕𝑓2

d𝑓2 +
𝜕𝑙𝑦
𝜕𝑓3

d𝑓3, (15)

d𝑙𝑥 =
𝜕𝑙𝑧
𝜕𝑓1

d𝑓1 +
𝜕𝑙𝑧
𝜕𝑓2

d𝑓2 +
𝜕𝑙𝑧
𝜕𝑓3

d𝑓3,

and its compact matrix form is given by

⎡

⎢

⎢

⎣

d𝑙𝑥
d𝑙𝑦
d𝑙𝑧

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑙𝑥
𝜕𝑓1

𝜕𝑙𝑥
𝜕𝑓2

𝜕𝑙𝑥
𝜕𝑓3

𝜕𝑙𝑦
𝜕𝑓1

𝜕𝑙𝑦
𝜕𝑓2

𝜕𝑙𝑦
𝜕𝑓3

𝜕𝑙𝑧
𝜕𝑓1

𝜕𝑙𝑧
𝜕𝑓2

𝜕𝑙𝑧
𝜕𝑓3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

d𝑓1
d𝑓2
d𝑓3

⎤

⎥

⎥

⎦

∶= [𝐅]
⎡

⎢

⎢

⎣

d𝑓1
d𝑓2
d𝑓3

⎤

⎥

⎥

⎦

, (16)

here [𝐅] is known by the flexibility matrix of the considered element.
ore details regarding the calculation of the flexibility matrix can be

ound in Abad et al. (2013) and Thai and Kim (2011). Thus, after
etermining the flexibility matrix [𝐅], the global tangent stiffness [𝐊]
n terms of six degrees of freedom is obtained by taking the inverse of
he matrix [𝐅] and it is assembled using the following form

𝐊] =
[

− [𝐅]−1 [𝐅]−1

[𝐅]−1 − [𝐅]−1
]

. (17)

nce the internal force components 𝑓1, 𝑓2, and 𝑓3 for the first end point
re determined, the internal nodal forces 𝑓4, 𝑓5, and 𝑓6 at the second
nd point are computed using

4 = −(𝑤1𝑙0 + 𝑓1),

5 = −(𝑤2𝑙0 + 𝑓2), (18)

6 = −(𝑤3𝑙0 + 𝑓3).

n a similar manner, the internal force vector 𝑭 int for the catenary cable
lement is assembled as
int =

[

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6
]⊤ . (19)

nce the stiffness matrices and internal force vectors are determined,
he length and sag of each cable segment are thus determined. More
etails regarding calculations of the cable lengths and sags can be
ound in Thai and Kim (2011). It should be mentioned that, when
onsidering a fully coupled dynamic water-mooring line system, effects
f shallow water flows on the dynamic motion of the mooring line

ystem are required to be addressed, which is considered through
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Fig. 3. Spatial discretization of a multilayer shallow water and mooring line system.
water current force term in the equation governing the dynamic
otion of the mooring line. The calculation of the current force and

ts numerical implementation in the fully coupled system are discussed
n Section 3.

. Coupled dynamic multilayer shallow water-mooring line sys-
em

For a fully coupled multilayer shallow water-mooring line system,
t is of great significance to address the interactions between the
hallow water flow and the mooring line system. To achieve this
oal, this section first introduces the computational procedure of con-
act/interaction forces in the fully coupled system, and then the nu-
erical implementation of a coupled algorithm proposed in this study

s formulated.

.1. Numerical solution of the multilayer shallow water equations in the
ully coupled system

When considering the fully coupled multilayer shallow water-
ooring line system, the presence of a moving mooring line in the

hallow water is expected to affect dynamics of the water flow. Here,
n order to account for the influence of submerged mooring lines on the
ynamic behaviour of the shallow water flow, a mooring line-friction
orce term 𝑚

𝛽 is introduced. In a similar manner as for the calculation
f the wind-driven force, the mooring-line force term 𝑚

𝛽 considered in
his study is defined by

𝑚
𝛽 = 𝜎2𝑚𝜌𝑤

𝑉 𝑚,𝑐
𝛽

|

|

|

𝑉 𝑚,𝑐
𝛽

|

|

|

𝐻𝛽
, (20)

where 𝜎𝑚 is the dimensionless drag coefficient of the mooring line,
𝑉 𝑚,𝑐
𝛽 is the projected velocity of the mooring line at the 𝛽 th layer in

the water flow system, and 𝐻𝛽 is the total height of the 𝛽 th layer.
Before calculating the source term 𝑚

𝛽 for each layer, it is required to
determine the projected mooring line nodal velocities 𝑉 𝑚,𝑐

𝛽 .
As an illustration, Fig. 3 displays a typical schematic view of a struc-

tured spatial discretization of the multilayer shallow water equations
and mooring line system, where the shallow water domain is discretized
into a set of control volumes and the mooring line is discretized
into a number of catenary cable elements (as shown in Fig. 3(a)). In
order to account for the influence of dynamic motion in the mooring
line on the dynamic behaviour of the shallow water flow, Fig. 3(b)
identifies the active control volumes (i.e. cells that are intersected by
the mooring line and shaded in dark grey colour). On the contrary,
5

those control volumes that are not directly connected with the mooring
line are considered to be non-active and of zero projected velocities
(namely, mooring line-friction force term 𝑚

𝛽 equals zero). Thus, only
the projected velocities for these active control volumes are required
to be determined. It should be noted that the definition of active and
non-active control volumes in this subsection is primarily aiming for
a clear description about the calculation of mooring line friction force
for the shallow water flow. All these cells are adopted for solving the
governing equations of the shallow water flow using a finite volume
method.

Notice that it is not straightforward to calculate the projected
velocities for those active control volumes based on the nodal velocities
of cable elements for the mooring line system, which is related to the
fact that not all active control volumes contain cable nodes (solid dots
displayed in Fig. 3). To achieve this goal, a robust projection technique
is proposed in the current study. For example, Fig. 4 shows a local
computational domain that includes a group of nine control volumes
and a representative two-dimensional catenary cable element with end
points 𝐼 and 𝐽 that intersect with few control volumes. Instead of
a direct mapping from cable nodes, each catenary cable segment is
considered to be discretized into a number of evenly distributed ghost
points (shown by blue squares in Fig. 4) along its length. Since an
elastic cable element is adopted here, the cable velocities 𝒗𝑔 at these
ghost points are determined using a linear interpolation of the cable
element nodal velocities 𝒗𝑚. For a specific active cell (displayed as a
solid dot in Fig. 4) at the 𝛽 th layer in the water system, the projected
velocities 𝑽 𝑚,𝑐

𝛽 of the mooring line are determined by averaging the
velocities of all ghost points within the cell domain as

𝑽 𝑚,𝑐
𝛽 = 1

𝑁𝑔

𝑁𝑔
∑

𝑖=1
𝒗𝑔 , (21)

where 𝑁𝑔 is the total number of ghost points within the domain of
a specific control volume. Hence, the friction force term 𝑚

𝛽 for the
shallow water flow subjected to a moving mooring line is determined
by substituting the Eq. (21) in the system of Eq. (20).

For simplicity in the presentation, the multilayer shallow water
Eqs. (1) are reformulated in a compact vector form as

𝜕𝐔
𝜕𝑡

+
𝜕𝐅(𝐔)
𝜕𝑥

= 𝐐(𝐔) + 𝐑(𝐔), (22)

where 𝐔 is the vector of conserved variables, 𝐅 is the vector of flux
functions, 𝐐 and 𝐑 are vectors of the source terms given by the
equations in Box I. Notice that one of the challenges in the numerical
solution of the system Eqs. (22) is related to the absence of explicit
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⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐻
𝐻𝑢1
𝐻𝑢2
⋮

𝐻𝑢𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑁
∑

𝛽=1
𝑙𝛽𝐻𝑢𝛽

𝐻𝑢21 +
1
2
𝑔𝐻2

𝐻𝑢22 +
1
2
𝑔𝐻2

⋮

𝐻𝑢2𝑁 + 1
2
𝑔𝐻2

⎞
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⎟
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⎟

⎟
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⎟
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⎠
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⎜
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⎝

0
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⋮
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0
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(

𝑢3∕23∕2 + 2𝜈
𝑢2 − 𝑢1

(

𝑙2 + 𝑙1
)

𝐻
− 𝑔𝑀2

𝑏
𝑢1 ||𝑢1||
𝐻1∕3

− 𝜎2𝑚𝜌𝑤
𝑉𝑚,𝑐 ||𝑉𝑚,𝑐 ||

𝑙1𝐻
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⎞
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⎟
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⎟

⎠
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⎞
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⎟

⎠
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𝑁
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⎟
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⎟
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⎟
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⎠
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Box I.
Fig. 4. Determination of projected mooring line velocity at control volumes using ghost
points.

exact expressions of its eigenvalues which are required in most finite
volume methods using the Riemann solvers such as the Roe, HLL, HLLC
schemes and other Godunov methods from computational fluids dy-
namics. However, by assuming that all layered velocities 𝑢𝛽 are closed
to the mean velocity 𝑢, an asymptotic estimation of these eigenvalues
s possible (see for example Audusse et al. (2011b)) for which the first-
rder approximation of the two barotropic eigenvalues are given by
6

𝜆±ext = 𝑢𝑚±

√

√

√

√

√𝑔
𝑁
∑

𝛽=1
ℎ𝛽 +

(

|

|

|

𝑢𝛽 − 𝑢||
|

2
)

, with 𝑢𝑚 =

𝑁
∑

𝛽=1
ℎ𝛽𝑢𝛽

𝑁
∑

𝛽=1
ℎ𝛽

. (23)

Similarly, a zeroth-order approximation of the barotropic eigenvalues
at the water layer interfaces yields

𝜆
±,𝛽+ 1

2
int = 𝑢 ±

√

√

√

√

√

1
2
𝑔

𝑁
∑

𝛽=1
ℎ𝛽 + 

(

|

|

|

𝑢𝛽 − 𝑢||
|

)

, 𝛽 = 1, 2,… , 𝑁 − 1. (24)

It should be pointed out that Eqs. (23)–(24) are approximations for
eigenvalues of the original system using water heights ℎ𝛽 for layers
instead of the total height 𝐻 , which gives a system of 2𝑁 equations
with each water layer having two eigenvalues.

For the numerical solution of the multilayer shallow water model
Eqs. (22), the Finite Volume Characteristics (FVC) method proposed
in Audusse et al. (2014) is adopted in the current work. The FVC
method was first introduced in Benkhaldoun and Seaid (2010) for solv-
ing the single-layer shallow water equations and extended in Benkhal-
doun et al. (2014) to density-driven shallow water flows. The main
feature of the FVC method lies in the fact that it does not use Riemann
solvers and therefore, no explicit calculation of eigenvalues for the
multilayer system is needed in its formulation. The method is fast,
accurate and explicit using the method of characteristics for the time
integration. However, the selection of time steps in the FVC method
is carried out using the asymptotic approximations Eqs. (23)–(24). In
the present work, unlike the previous works (Audusse et al., 2014;
Benkhaldoun et al., 2014; Benkhaldoun and Seaid, 2010), the stability

of the FVC method is improved by adopting a splitting operator used
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for the time integration along with a third-order Runge–Kutta method.
Thus, for the spatial discretization of Eq. (22), we discretize the spatial
domain into control volumes [𝑥𝑖−1∕2, 𝑥𝑖+1∕2] with non-uniform size 𝛥𝑥𝑖 =
𝑥𝑖+1∕2 − 𝑥𝑖−1∕2, 𝑥𝑖−1∕2 = 𝑖𝛥𝑥𝑖 and 𝑥𝑖 = (𝑖 + 1∕2)𝛥𝑥𝑖 is the centre of
the control volume. Integrating Eq. (22) with respect to space over the
control volume [𝑥𝑖−1∕2, 𝑥𝑖+1∕2], we obtain the semi-discrete equations

d𝐔𝑖
d𝑡

+
𝑖+1∕2 − 𝑖−1∕2

𝛥𝑥𝑖
= 𝐐(𝐔𝑖) + 𝐑(𝐔𝑖), (25)

where 𝐔𝑖(𝑡) is the space-averaged approximation of the solution 𝐔 in
he control volume [𝑥𝑖−1∕2, 𝑥𝑖+1∕2] at time 𝑡 given by

𝑖(𝑡) =
1
𝛥𝑥𝑖 ∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2
𝐔(𝑡, 𝑥) d𝑥,

and 𝑖±1∕2 = 𝐅(𝐔𝑖±1∕2) are the numerical fluxes at the cell interfaces
= 𝑥𝑖±1∕2 and time 𝑡 to be reconstructed in each control volume. For

he time integration of Eq. (25), we divide the time interval into sub-
ntervals [𝑡𝑛, 𝑡𝑛+1] with a length 𝛥𝑡𝑛 = 𝑡𝑛+1− 𝑡𝑛. We also use the notation

𝑛 to denote the value of a generic function 𝑊 at time 𝑡𝑛. Hence, the
plitting operator consists of the following three steps:

Step 1:

d𝐔∗
𝑖

d𝑡
= 𝐑(𝐔∗

𝑖 ), 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1],

(26)
∗
𝑖 (𝑡𝑛) = 𝐔𝑖(𝑡𝑛).

tep 2:

d𝐔∗∗
𝑖

d𝑡
+

∗∗
𝑖+1∕2 − ∗∗

𝑖−1∕2

𝛥𝑥𝑖
= 𝐐(𝐔∗∗

𝑖 ), 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1],

(27)
𝐔∗∗
𝑖 (𝑡𝑛) = 𝐔∗

𝑖 (𝑡𝑛).

Step 3:

d𝐔∗∗∗
𝑖
d𝑡

= 𝐑(𝐔∗∗∗
𝑖 ), 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1],

(28)
∗∗∗
𝑖 (𝑡𝑛) = 𝐔∗∗

𝑖 (𝑡𝑛+1).

n Eq. (27), the numerical fluxes are ∗∗
𝑖±1∕2 = 𝐅(𝐔∗∗

𝑖±1∕2). To complete the
ime integration, the explicit third-order Runge–Kutta scheme investi-
ated in Amiri et al. (2013) is used for the three steps Eqs. (26)–(28).
hus, to advance the solution of an ordinary differential equation of
he form Eq. (26), the Runge–Kutta scheme is carried out as

𝑖
(1) = 𝐔𝑛

𝑖 + 𝛥𝑡𝑛𝐑(𝐔𝑛
𝑖 ),

𝑖
(2) = 3

4
𝐔𝑛
𝑖 +

1
4
𝑖

(1) + 1
4
𝛥𝑡𝑛𝐑(𝑖

(1)), (29)

𝐔𝑛+1
𝑖 = 1

3
𝐔𝑛
𝑖 +

2
3
𝑖

(2) + 2
3
𝛥𝑡𝑛𝐑(𝑖

(2)),

where we have dropped the asterisk from the variables in Eq. (26)
for ease of notation. Note that the Runge–Kutta method Eqs. (29) is
a convex combination of first-order Euler steps which exhibits strong
stability properties and it has been widely used for time integration of
hyperbolic systems of conservation laws. It is also clear that using the
time stepping scheme in Eqs. (29), no nonlinear or linear systems of
algebraic equations are needed to be solved. In addition, the scheme
Eqs. (29) is TVD, third-order accurate in time, and stable under the
standard Courant–Friedrichs–Lewy (CFL) condition

𝛥𝑡𝑛 ≤ min
𝑖

⎛

⎜

⎜

⎜

⎜

⎜

𝛥𝑥𝑖

max
𝛽

(

|

|

|

𝜆±,𝑛ext,𝑖
|

|

|

,
|

|

|

|

𝜆
±,𝛽+ 1

2 ,𝑛
int,𝑖

|

|

|

|

)

⎞

⎟

⎟

⎟

⎟

⎟

, (30)
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⎝

| |

⎠

where 𝜆±,𝑛ext,𝑖 and 𝜆
±,𝛽+ 1

2 ,𝑛
int,𝑖 are the asymptotic eigenvalues defined in

Eqs. (23) and (24), respectively. In the current study, we use the FVC
reconstruction for the approximation of numerical fluxes 𝑖±1∕2 and
the well-balanced discretization for source terms 𝐐(𝐔𝑖) and 𝐑(𝐔𝑖) in
Eq. (25). Details on these techniques can be found in Audusse et al.
(2014) and are not repeated here for brevity in the presentation.

Once the water velocities 𝑢𝛽 are computed for each 𝛽 th layer, we
enerate the two-dimensional velocity fields from these one-
imensional results using the post-processing procedure studied in
udusse et al. (2014). Thus, the vertical velocity 𝑤 is obtained using

the divergence-free equation
𝜕𝑢
𝜕𝑥

+ 𝜕𝑤
𝜕𝑧

= 0. (31)

ence, integrating Eq. (31) over a control volume [𝑥𝑖−1∕2, 𝑥𝑖+1∕2] ×
[ℎ𝛽−1∕2, ℎ𝛽+1∕2] we obtain

𝑛
𝛽,𝑖 = 𝑤𝛽−1,𝑖 + 𝛥𝑧𝑛𝛽

(

𝑢𝑛𝛽,𝑖+1∕2 − 𝑢𝑛𝛽,𝑖−1∕2
𝛥𝑥𝑖

)

, 𝛽 = 2, 3,… , 𝑁,

where 𝛥𝑧𝑛𝛽 =
ℎ𝛽+1 + ℎ𝛽

2
is the vertical step between two layers. Here,

on the bottom boundary we use non-penetration boundary conditions.

3.2. Numerical solution of the mooring lines in the fully coupled system

When considering a fully coupled dynamic water-mooring line sys-
tem, the effects of shallow water flows on the dynamic motion of the
mooring line system is considered by including a current force term
in the governing equations. In this study, components of the external
force that govern the dynamic motion of the submerged mooring line
system are composed of the weight 𝑾 , buoyancy 𝑩, current force 𝑭 𝑐 ,
eabed reaction force 𝑭 𝑟, seabed damping force 𝑭 𝑑 , and seabed friction
orce 𝑭 𝑓 . For instance, the nodal force 𝑾 𝐼 at the node 𝐼 shared by the
ooring segments 𝑚 and 𝑚 + 1 is computed as

𝐼 = 1
2

𝑚+1
∑

𝑘=𝑚

(

𝑩𝑘 −𝑾 𝑘
)

= 1
2

𝑚+1
∑

𝑘=𝑚

(

𝜌𝑤 − 𝜌
)

𝒈𝐴𝑘𝑙𝑘, (32)

where subscript 𝑘 defines the 𝑘th mooring segment, 𝑩𝑘 and 𝑾 𝑘 are
respectively, the buoyancy and weight of 𝑘th mooring segment with its
cross-sectional area and (unstrained) length being defined by 𝐴𝑘 and
𝑙𝑘, respectively.

Similar to the influence of the shallow water flows on the motion
of mooring line, the semi-empirical Morison equation (Sarpkaya, 1986;
Sumer et al., 2006) is widely used in computational fluid dynamics
to estimate the current force 𝑭 𝑐 acting on a moving body in a flow
system (Gudmestad and Moe, 1996; Veritas, 2005). This includes con-
tributions of the Froude–Krylov force, the hydrodynamic mass force,
and the viscous drag force. For this purpose, this equation is also
adopted in the present study for determining the current force on the
mooring line owing to the flow field of the shallow water system.
Assuming a shallow water flow with a velocity 𝒖̇𝑤, the current force
𝑭 𝑐 per unit length acting on the mooring line is calculated following
the Morison’s equation as

𝑭 𝑐 = 𝑭 𝑐,𝜏 + 𝑭 𝑐,𝜈 ,

= 𝜌𝑤𝑉 𝒖̈𝜏𝑤 + 𝐶𝜏
𝑎𝜌𝑤𝑉

(

𝒖̈𝜏𝑤 − 𝒖̈𝜏𝑚
)

+ 1
2
𝐶𝜏
𝑑𝜌𝑤𝐷(𝒖̇𝜏𝑤 − 𝒖̇𝜏𝑚) ||𝒖̇

𝜏
𝑤 − 𝒖̇𝜏𝑚|| , (33)

= 𝜌𝑤𝑉 𝒖̈𝜈𝑤 + 𝐶𝜈
𝑎𝜌𝑤𝑉

(

𝒖̈𝜈𝑤 − 𝒖̈𝜈𝑚
)

+ 1
2
𝐶𝜈
𝑑𝜌𝑤𝐷(𝒖̇𝜈𝑤 − 𝒖̇𝜈𝑚) ||𝒖̇

𝜈
𝑤 − 𝒖̇𝜈𝑚|| ,

here the subscripts 𝑤 and 𝑚 define respectively, variables related
o the shallow water flow and the mooring system, 𝜌𝑤 is the water

density, 𝑉 = 𝜋
4𝐷

2 is the mooring line volume per unit length, with 𝐷
s the diameter of the mooring line, 𝒖̈𝑤 and 𝒖̇𝑤 are the acceleration and
elocity of water flow, 𝒖̈𝑚 and 𝒖̇𝑚 are the acceleration and velocity of

the mooring line, which are the time derivatives of its displacement 𝑢𝑚.
In Eq. (33), 𝐶 and 𝐶 are the added mass and drag force coefficients.
𝑎 𝑑
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Fig. 5. Schematic diagram of discontinuous velocity fields along 𝑥-direction for finite
volume cells.

It should be pointed out that, when using Eq. (33) to evaluate the nodal
current force for the mooring line system, the shallow water velocities
at the nodes of catenary elements should be determined.

Note that, because the mooring line system is discretized into a
group of catenary cable elements, the current force acting on a specific
catenary element is calculated by first evaluating the nodal incline
force at the two end points and then, a linear interpolation is used
for the whole element. However, when using the FVC solver for the
multilayer shallow water equations, the depth-averaged velocities and
accelerations are computed at the centres of finite volume cells, which
are generally discontinuous at the cell edges. For instance, Fig. 5
depicts the water velocity fields 𝑢̇𝑡𝑛𝑤 along the 𝑥-direction for a group
of nine cells at time 𝑡𝑛. Similar discontinuities are also expected for
the water acceleration fields. Owing to dynamic motion of the mooring
line, nodes of the catenary cable elements may move from one cell to
another. Therefore, when using Eq. (33) to determine the current forces
acting on the mooring line, these discontinuities in both acceleration
and velocity fields can lead to undesired oscillations in the calculated
forces and thus, resulting in a nonphysical vibration of the mooring
system. To alleviate such nonphysical oscillations, an improved interpo-
lation scheme for mapping velocities and accelerations from cell centres
to catenary element nodes is required. Following the ideas reported
in Zienkiewicz and Zhu (1992a), a linear patch recovery based on a
Moving Least Squares Approximation (MLSA) for interpolating veloci-
ties and accelerations is proposed in this study, which is also similar to
the one adopted in Zheng et al. (2021). As shown in Fig. 6, a patch of
four neighbouring finite volume cells (two cells along each direction)
can be identified. Here, within such a patch, a quadrilateral area which
is bounded by green dashed lines in Fig. 6 can be defined by using
the central points of the four neighbouring cells. For the interpolation
of velocities and accelerations, a polynomial approximation of order
𝑝 in the considered quadrilateral area is then introduced. Here, the
approximation for the interpolated water velocity at time 𝑡𝑛 is defined
by

𝒖̇𝑡𝑛𝑤 (𝑥, 𝑧) =𝑄𝑄𝑄 (𝑥, 𝑧)𝑎𝑎𝑎, (34)

where (𝑥, 𝑧) are coordinates of the centre points of finite volume cells in
the quadrilateral area, 𝑄𝑄𝑄 and 𝑎𝑎𝑎 are vectors containing polynomial basis
functions and interpolation degrees-of-freedom, respectively. Similar
treatments are also applied for interpolation of the acceleration and it
is therefore omitted for the purpose of simplification.

In general, different basis functions may be chosen to approximate
both velocity and acceleration variables. In this study, a linear version
of 𝑄𝑄𝑄

(

𝑥𝑖, 𝑧𝑖
)

=
(

1 𝑥𝑖 𝑧𝑖 𝑥𝑖𝑧𝑖
)⊤ is chosen, which leads after determination

of the coefficients 𝑎𝑎𝑎 =
(

𝑎0 𝑎1 𝑎2 𝑎3
)⊤, to a linear interpolation plane

shown in Fig. 6. Note that based on a posteriori error estimator, the
8

Fig. 6. Reconstructed continuous velocity fields along the 𝑥-direction for finite volume
cells based on a MLSA scheme.

relative error 𝐸(𝑎𝑎𝑎) of the interpolated velocities at the centres of finite
volume cells is calculated as

𝐸(𝑎𝑎𝑎) =
𝑁𝑐
∑

𝑖=1

(

𝒖̇𝑡𝑛𝑤
(

𝑥𝑖, 𝑧𝑖
)

−𝑄𝑄𝑄(𝑥𝑖, 𝑧𝑖)𝑎𝑎𝑎
)2

, (35)

where 𝑁𝑐 is the total number of finite volume cells in the approxima-
tion domain, and (𝑥𝑖, 𝑧𝑖) are the coordinates of the centre points of the
cells. It should also be stressed that, minimizing the error with respect
to 𝑎𝑎𝑎 requires the solution of a linear system as

𝐴𝑎𝑎𝑎 = 𝑏𝑏𝑏, (36)

with 𝐴𝐴𝐴 =
∑𝑁𝑐𝑝

𝑖=1 𝑄𝑄𝑄T(𝑥𝑖, 𝑧𝑖)𝑄𝑄𝑄(𝑥𝑖, 𝑧𝑖) and 𝑏𝑏𝑏 =
∑𝑁𝑐𝑝

𝑖=1 𝑄𝑄𝑄T(𝑥𝑖, 𝑧𝑖)𝒖̇
𝑡𝑛
𝑤
(

𝑥𝑖, 𝑧𝑖
)

.
fter solving the above linear system, the interpolated velocities 𝑢̇𝑡𝑛𝑤,𝐼
t the 𝐼th catenary element node of the mooring line located in the
omputational domain is computed using

𝑢̇𝑡𝑛𝑤,𝐼
(

𝑥𝐼𝑚, 𝑧
𝐼
𝑚
)

=𝑄𝑄𝑄
(

𝑥𝐼𝑚, 𝑧
𝐼
𝑚
)

𝑎𝑎𝑎, (37)

where
(

𝑥𝐼𝑚, 𝑧
𝐼
𝑚
)

are coordinates of the 𝐼th node of the mooring line in
the quadrilateral area. As discussed in Zheng et al. (2021), for those
catenary element nodes located near the domain boundary, there might
be insufficient finite volume cells to form a complete patch. In these
cases, the water velocities and accelerations at the catenary element
nodes are determined by extending internal patches up to the position
of these nodes. Similar ideas have been implemented for determining
variables at boundary nodes in the finite element methods, see for
example Zienkiewicz and Zhu (1992a,b) and Zienkiewicz et al. (2005).
Once the water velocities and accelerations at the catenary element
nodes are calculated, the current nodal force 𝑭 𝑐

𝐼 of the mooring line
can be readily evaluated.

It should be stressed that another main contribution of external
forces for the mooring line system that should be addressed is the
mooring line-seabed interaction force. In some previous studies, the
spring–damper model in the mooring system is frequently adopted to
control the interactions between the mooring line and the seabed, see
for example Li and Choung (2021a), Low et al. (2018), Webster (1995)
and Gobat and Grosenbaugh (2006). In a similar manner, the seabed
reaction force 𝑭 𝑟, seabed damping force 𝑭 𝑑 , and seabed friction force
𝑭 𝑓 between the node 𝐼 of mooring line and the seabed are computed
s

𝑭 𝑟
𝐼 = 𝐾𝑏

(

𝑧𝑠 − 𝑧𝐼
)

𝑘+1
∑

𝑖=𝑘

𝐷𝑖𝑙𝑖
2

,

𝑭 𝜈
𝐼 = 𝐶𝑏

𝑘+1
∑

𝑖=𝑘

𝐷𝑖𝑙𝑖
2

𝒖̇𝜈𝑚,𝐼 , (38)

𝑭 𝑓 = 𝐶 𝐷 𝒖̇𝜏 ,
𝐼 𝑓 𝑓 𝑚,𝐼
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where 𝐾𝑏 is the contact seabed stiffness per unit area, 𝑧𝑠 the reference
elevation and it is usually the same as seabed elevation, 𝑧𝐼 the elevation
of the catenary element node, 𝐷𝑖 the diameter of the 𝑖th catenary
segment of mooring line, 𝐶𝑏 the seabed damping coefficient per unit
area, 𝐶𝑓 the seabed friction coefficient, and 𝐷𝑓 the seabed friction
damping coefficient. Note that the seabed reaction force 𝑭 𝑟

𝐼 is active
only when the nodal elevation 𝑧𝐼 is smaller than 𝑧𝑠. In addition, the
seabed damping force 𝑭 𝜈

𝐼 becomes non-zero only when the node 𝐼
moves downward and the seabed reaction force does not vanish.

Once the nodal contact forces are computed, the full set of gov-
erning equations for the dynamic motion of the mooring line can be
reformulated in a compact form as

𝐊𝒖 + 𝐂𝒖̇ +𝐌𝒖̈ = 𝑭 , (39)

where 𝐊 is the global tangent stiffness matrix, 𝐌 the global mass
matrix, 𝐂 = 𝜇𝐌 + 𝜆𝐊 the global Rayleigh damping matrix, with 𝜇
and 𝜆 are respectively, the mass and stiffness proportional damping
coefficients, and 𝑭 is the time-varying external force vector accounting
for all forces as 𝑭 = 𝑾 + 𝑭 𝑐 + 𝑭 𝑟 + 𝑭 𝑣 + 𝑭 𝑓 .

The time integration of Eq. (39) is performed using the well-
established Newmark algorithm (Newmark, 1959). Thus, in compliance
with Newmark’s time integration, the following recurrence relation-
ships for stepping from current time 𝑡𝑛 to the next time 𝑡𝑛+1 using two
integration parameters 𝛾 and 𝛽 are obtained

𝒖̈𝑛+1 = 𝒖̈𝑛 + 𝛥𝑡𝑛𝒖̈, (40a)

𝒖̇𝑛+1 = 𝒖̇𝑛 + 𝛥𝑡𝑛
(

(1 − 𝛾) 𝒖̈𝑛 + 𝛾𝒖̈𝑛+1
)

, (40b)

𝑛+1 = 𝒖𝑛 + 𝒖̇𝑛𝛥𝑡𝑛 +
𝛥𝑡2𝑛
2

(

(1 − 2𝛽) 𝒖̈𝑛 + 2𝛽𝒖̈𝑛+1
)

, (40c)

ith 𝛥𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛 is the time step. It is worth mentioning that the
overning equations for the mooring line is solved implicitly in time,
hus the choice of time step 𝛥𝑡𝑛 for the coupled system should only
atisfy the CFL condition required by the FVC method. Substituting
q. (40c) into Eqs. (40a) and (40b), the recurrence relations for the
cceleration 𝒖̈𝑛+1 and velocity 𝒖̇𝑛+1 can be reformulated as

̈ 𝑛+1 = 1
𝛽𝛥𝑡2𝑛

(

𝒖𝑛+1 − 𝒖𝑛
)

− 1
𝛽𝛥𝑡𝑛

𝒗𝑛 −
(

1
2𝛽

− 1
)

𝒖̈𝑛, (41a)

𝒖̇𝑛+1 =
𝛾

𝛽𝛥𝑡𝑛

(

𝒖𝑛+1 − 𝒖𝑛
)

−
(

𝛾
𝛽
− 1

)

𝒖̇𝑛 −
(

𝛾
2𝛽

− 1
)

𝛥𝑡𝑛𝒖̈𝑛. (41b)

ote that, in the case of linear elastodynamics, the Newmark time
ntegration is unconditionally stable, non-dissipative, and second-order
ccurate when 𝛽 = 0.25 and 𝛾 = 0.5, which is the sole parameter
air considered in this study. Here, after substituting Eqs. (41a) and
41b) into Eq. (39), the final algebraic system of the fully discretized
quations is

𝐊𝛥𝒖𝑛+1 = 𝑭 𝑛+1 − 𝑭 int
𝑛 +𝐌𝑛

(

1
𝛽𝛥𝑡𝑛

𝒖̇𝑛 +
(

1
2𝛽

− 1
)

𝒖̈𝑛
)

+ 𝐂𝑛

((

𝛾
𝛽
− 1

)

𝒖̇𝑛 +
(

𝛾
2𝛽

− 1
)

𝒖̈𝑛𝛥𝑡𝑛
)

, (42)

here 𝐊 = 1
𝛽𝛥𝑡2𝑛

𝐌𝑛 + 𝛾
𝛽𝛥𝑡𝑛

𝐂𝑛 + 𝐊𝑛 is the effective stiffness matrix.
Note that the above system is intrinsically nonlinear and it must be
solved in an iterative manner. For this purpose, each step in Eq. (42) is
solved in combination with a well-established Newton–Raphson itera-
tion scheme (Zienkiewicz et al., 2005). A convergent solution for 𝛥𝒖𝑛+1
is obtained when the residual unbalance force vector 𝑹𝑘 (i.e. the right
side of Eq. (42)) meets the following criterion
‖

‖

‖

𝑹𝑘‖
‖

‖

‖

‖

‖

𝑹0‖
‖

‖

≤ 𝑡𝑜𝑙, (43)

here the superscript 𝑘 refers to the Newton iteration counter, and
−8
9

𝑜𝑙 is a prescribed tolerance set to 10 in our simulations. When
he convergence is reached according to the prescribed tolerance, all
elevant variables for the mooring line system are updated.

In summary, details regarding the coupled solution algorithm for
he numerical implementation of the fully dynamic coupled system
roposed in the current work are summarized in Fig. 7. Here, for
ach considered step, the dynamic motion of the fully coupled water-
ooring line system is explicitly solved according to the following

equence of sub-steps:

(1) Initialize material parameters and state variables for the shallow
water system and mooring line system.

(2) Compute the eigenvalues 𝜆±ext and 𝜆
±,𝛽+ 1

2
int using Eqs. (23) and

Eq. (24), and adjust the time step according to the stability
condition Eq. (30).

(3) Reconstruct the source terms 𝐐(𝐔) and 𝐑(𝐔) as defined in
Eq. (22).

(4) For each control volume [𝑥𝑖−1∕2, 𝑥𝑖+1∕2], compute the numerical
fluxes 𝑖+1∕2 using the FVC method as described in Audusse et al.
(2014).

(5) Solve the first step (26) of the splitting procedure using the
Runge–Kutta scheme Eq. (29).

(6) Solve the second step (27) of the splitting procedure using the
Runge–Kutta scheme Eq. (29).

(7) Solve the third step (28) of the splitting procedure using the
Runge–Kutta scheme Eq. (29).

(8) Compute the local stiffness matrices 𝐤𝑛, mass matrices 𝐦𝑛, and
damping matrices 𝐜𝑛 for each catenary cable element.

(9) Assemble the global stiffness matrices (𝐊𝑛, 𝐌𝑛, and 𝐂𝑛) and
calculate the effective stiffness matrix 𝐊 using Eq. (42).

(10) Calculate the global loading vectors 𝑭 using Eq. (38) with incor-
porating the influence of the current force from shallow water
system 𝑭 𝑐 in Eq. (33).

(11) Solve the nonlinear governing equation of the mooring line
system using the Newton–Raphson iterations and update unbal-
anced force vectors using Eq. (42).

(12) Check the convergence of the dynamic mooring line system
using Eq. (43).

(13) Update the positions of mooring line using Eq. (40c) and other
related state variables (e.g., Eqs. (40a) and (40b)) for the solu-
tion of the next calculation step.

It should be stressed that, in the proposed fully coupled dynamic water-
mooring line system, the frictional source terms are included in each
layer of the water domain for modelling the interaction between the
shallow water flow and the submerged mooring line system, while
the numerical simulation of nonlinear dynamics of the mooring line is
carried out using a group of elastic catenary cable elements for space
discretization and an implicit scheme using the Newton’s iterations for
the time integration with the inclusion of water current forces which
account for the influence of shallow water on the mooring line.

4. Numerical results and applications

In this section, we first present a class of verification examples for
the multilayer shallow water flows and the nonlinear analysis of cable
systems to examine the accuracy of the proposed methods. It should be
pointed out that owing to the fact that very limited experimental data
are reported to include those dynamic interaction effects in the complex
coupled system, it is difficult to validate the fully coupled system
through comparison with the experimental measurements. For this
reason, we have considered several numerical examples to separately
validate the suitability of the multilayer finite volume solver for captur-
ing the shallow water flows and the fully dynamic nonlinear catenary
cable element for reproducing the dynamic motion of the mooring
line system. The second class of numerical results aim to demonstrate
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Fig. 7. Dynamic coupled algorithm for the multilayer shallow water-mooring line system.
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the computational performance of the fully coupled shallow water-
mooring line system using two examples for wind-driven flows over flat
and non-flat beds. For all results presented in this section, we assume
that the total water height 𝐻 and the total number of layers 𝑁 are
given whereas, the water height ℎ𝛽 at each 𝛽 th layer is equidistantly
calculated as

ℎ𝛽 = 𝑙𝛽𝐻, with 𝑙𝛽 = 1
𝑁

, 𝛽 = 1, 2,… , 𝑁.

In all results presented in this section, the Courant number is set to
𝐶𝑟 = 0.75 in all the examples and the time stepsize 𝛥𝑡𝑛 is adjusted at
ach step according to the CFL condition Eq. (30) as
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here 𝜆±ext and 𝜆
±,𝛽+ 1

2
int are the approximated eigenvalues in Eqs. (23)

nd (24), respectively. The following examples are selected:
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p

4.1. Verification of the multilayer finite volume solver for a dam-break
problem

First we verify the performance of the finite volume method for solv-
ing multilayer shallow water flows generated by a dam-break problem
over a flat bed. Here, we compare the numerical results obtained using
the FVC method for multilayer shallow water systems with 5 and 20
layers to the experimental results reported in Liu et al. (2018). To this
end, we consider the same benchmark set-up as described in Liu et al.
(2018) for a dam breaks over a flat frictionless bed flume 19m long
with no wind effects. The initial conditions for the water height and
velocities are given by

𝐻(0, 𝑥) =

⎧

⎪

⎨

⎪

⎩

0.60m, if 𝑥 ≤ 0,

0.24m, if 𝑥 > 0,
𝑢𝛽 (0, 𝑥) = 0m∕s.

n our simulations, the vertical kinematic eddy viscosity 𝜈 = 0.001 m2∕s,
he domain is discretized into 190 control volumes and results are

resented at the final time 𝑡 = 3.5 s. Fig. 8 depicts the obtained
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Fig. 8. Comparison between experimental measurements and computational results obtained for the dam-break problem over a fixed bed at time 𝑡 = 3.5 s using different numbers
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umerical results for the water height along with the experimental mea-
urements from (Liu et al., 2018). For comparison, numerical results
btained using the conventional single-layer shallow water equations
re also included in Fig. 8. It is clear that the numerical results obtained
sing the multilayer shallow water system are in good agreement
ith the experimental measurements for this dam-break problem. The

onventional single-layer model widely used in literature to model
hallow water flows fails to resolve this problem, compare the location
f the shock and rarefaction waves in Fig. 8. The high accuracy of
he FVC method solving this benchmark problem is also demonstrated
n these numerical results. Fig. 8 also confirms the advantage of the
ultilayer formulation of shallow water flows and the effect of numbers

f layers in the computed results. For instance, it is evident from the
esults displayed in Fig. 8 that more accurate results are obtained
y increasing the number of layers in the multilayer system for this
am-break problem. For the considered flow conditions, using the 5-
ayer model yields an 𝐿2-error (between numerical and experimental
esults) of 0.1933 whereas, using the 20-layer model this error becomes
.1732. It should also be stressed that although this improvement in
he accuracy is relatively small, it will become critical when evaluating
ully coupled shallow water-mooring line systems as the water depth
nd velocity field would be sensitive to the dynamics present in the
odel.

.2. Verification of the multilayer finite volume solver for a wind-driven
ecirculation flow

Our next concern is to examine the numerical performance of
he FVC method for solving wind-driven recirculation flow problems
sing the multilayer shallow water equations Eqs. (1). To this end,
e consider a test example of wind-driven recirculation flows in a

ong water channel with flat topography studied in Audusse et al.
2011b, 2014) and Izem and Seaid (2021) among others. Note that
his example has been widely used in the literature because analytical
elocity profiles are available in Shankar et al. (1997). Hence, we use
he same parameters as in Shankar et al. (1997) and solve the system
f Eq. (22) in a flat rectangular channel of 3400 × 1400 × 10m subject
o a uniform wind stress of 𝜎 = 1.5 N∕m2 applied at the surface,
quivalent to a wind speed of 𝑉wind = 28.83m∕s blowing from the left
f the channel. As in Shankar et al. (1997), the viscosity coefficient
= 100 cm2∕s, the Manning’s roughness coefficient 𝑀𝑏 = 0.1 cm∕s, the
ind stress coefficient 𝜎2𝑠 = 0.0015, the water density 𝜌 = 1025 kg∕m3,

he air density 𝜌𝑎 = 1.2 kg∕m3 and the gravity 𝑔 = 9.81 m∕s2. Using
o-slip conditions, it has been shown in Shankar et al. (1997) that at
given elevation 𝑧 ∈ [−10, 0] an analytical solution of the velocity can
e derived as

(𝑧) = 𝜎 ( 3 𝑧2 +𝐻𝑧 + 1𝐻2
)

. (44)
11

𝜌𝜈𝐻 4 4
Note that the velocity profile in Eq. (44) is a parabola with two zeros
attained at 𝑧 = −𝐻 and 𝑧 = −𝐻

3
whereas, the minimum and maximum

vertical velocities are −1
12

𝜎𝐻
𝜌𝜈

and 1
4
𝜎𝐻
𝜌𝜈

, respectively. In Fig. 9 we
present the velocity profiles at the channel centre 𝑥 = 1700m at time
= 20 s using 170 control volumes for 5-layer, 10-layer and 20-layers
odels. For comparison reasons, the exact velocity profile and results

btained for the three-dimensional system using the TELEMAC-3D.1
software are also presented in Fig. 9 Notice that the three-dimensional
simulations on TELEMAC-3D are carried out on a structured mesh of
25 600 elements and 15 015 nodes using a fixed time step 𝛥𝑡 = 1.0 s.
It is clear from the obtained results that, under the actual wind and
flow conditions, the FVC method accurately solves this problem and the
computed solutions compare very well with the exact solution. It is also
evident that an increase in the number of layers in the shallow water
model results in an excellent convergence to the analytical solution.
The computational results obtained using the multilayer shallow water
systems are also in good agreement with those obtained using the
three-dimensional model. Overall, the numerical results obtained for
this wind-driven recirculation flow problem demonstrate the ability
of the FVC method to resolve the small flow features within the
channel without generating spurious oscillations. For instance, a simple
inspection of these results confirm that the vertical velocity profiles
are accurately captured by the finite volume method. In addition, for
the considered flow conditions, the computational cost for the three-
dimensional simulation using TELEMAC-3D is more than 235, 110 and
53 times higher than the simulations obtained using 5-layer, 10-layer
and 20-layers models, respectively. This confirms the high efficiency
of the proposed multilayer shallow water model and the finite volume
solver adopted in the present study.

4.3. Verification of nonlinear quasi-static analysis of a cable system

To illustrate the capability of the adopted catenary cable elements,
the quasi-static nonlinear analysis of an isolated cable under a static
concentrated load, which has been previously studied (Michalos and
Birnstiel, 1962; O’Brien and Francis, 1965; Jayaraman and Knudson,
1981; Tibert, 1998; Andreu et al., 2006; Yang and Tsay, 2007; Thai
and Kim, 2011; Abad et al., 2013), is investigated in this study. As
shown in Fig. 10, the isolated cable has a span of 304.8m, a mid-span
sag of 30.48m, and it is supported by two end points (1 and 3) located
t the same elevation. A concentrated load of 35.586 kN is applied at the
oint 2, and its initial distance from point 1 is 121.92m. The considered
aterial and geometrical properties of the cable are listed in Table 1.

Table 2 compares the calculated displacements at point 2 of the
solated cable from the present study and those from previous studies,

1 http://wiki.opentelemac.org/.

http://wiki.opentelemac.org/
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Fig. 9. Comparison between numerical results and the analytical solution obtained for the wind-driven circulation flow problem at time 𝑡 = 20 s using different numbers of layers.
Fig. 10. An isolated cable under the concentrated load of 35.586 kN at point 2.

Table 1
Material and geometrical properties of an isolated cable under the concentrated load.

Variable Symbol Value

Cross-sectional area 𝐴 5.484 cm2

Elastic modulus 𝐸 13 100.0 kN∕cm2

Cable self-weight 𝑤3 46.12 N∕m
Sag under self-weight at load point 𝑠 29.276 m
Unstressed cable length of sections 1–2 𝐿1

0 125.88 m
Unstressed cable length of sections 2–3 𝐿2

0 186.85 m

and an excellent match can be readily observed. In addition, it can
be concluded that the elastic catenary elements adopted in this study,
generally provide slightly larger displacements owing to its more de-
formable property compared to those results reported in Thai and Kim
(2011). This comparison demonstrates the capability of the adopted
catenary cable elements in capturing the nonlinear motion of the cable
system.

4.4. Verification of nonlinear dynamic analysis of an inclined cable sub-
jected to an earthquake loading

As a further verification for the dynamic behaviour of the cable
system, nonlinear motion of an inclined cable subjected to an earth-
quake loading reported in Thai and Kim (2011) is investigated and
12
it is shown in Fig. 11. Here, Fig. 11(a) displays the schematic model
for an inclined cable with the presence of an earthquake loading. The
inclined cable is composed of two segments with a lumped mass of
𝑚 = 1.0 N s2∕mm located at the centre of the cable. Each cable has
an initial unstressed length 𝑙𝑢 = 4.995m, a projected horizontal length
𝑙 = 4.0m, and a projected vertical length ℎ = 3.0m. The associated cable
properties include the cross-sectional area 𝐴 = 100 mm2 and the elastic
modulus 𝐸 = 200GPa. For the purpose of comparison, the self-weight
of the cable system is not considered (i.e. 𝑤 = 0), while the earthquake
record of the EI Centro (as shown in Fig. 11(b)) is chosen as the ground
excitation that activates the dynamic motion of the cable system.
Fig. 12 illustrates the time evolution of the horizontal displacement 𝑢𝑥
for the centre point of the inclined cable under the influence of the
earthquake record of EI Centro obtained using the proposed method.
It can be concluded that the proposed nonlinear dynamic solutions
are in good agreement with those published in Thai and Kim (2011)
(despite not included in this study). Here, Table 3 compares the peak
displacement responses in both horizontal and vertical directions from
the present study with those presented in Thai and Kim (2011), the
excellent match further demonstrates the robustness of the adopted
elastic catenary element and the accuracy of the present numerical
implementation.

4.5. Multilayer wind-driven shallow water-cable system on a flat bottom

To illustrate the computational performance of the proposed fully
coupled shallow water-mooring line system, the wind-driven flow of
multilayer shallow water and dynamic motion of mooring lines in a
rectangular flat channel are first investigated. The schematic diagram
of the computational model is shown in Fig. 13(a). Here, a wind blows
from the left-hand side of the domain with a speed of 𝑉wind = 20m∕s.
The flat channel has a length of 𝑥 = 100m and it is filled by the water
with an initial depth of 𝐻 = 10m. The density 𝜌𝑤 = 1000 kg∕m3,
the viscosity coefficient 𝜈 = 0.1 m2∕s, the friction coefficient 𝜅 =
1 × 10−5 m∕s, the wind stress coefficient 𝜎2 = 1.5 × 10−3, and the
𝑠
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Table 2
Comparison of displacements at point 2 for an isolated cable under the concentrated load.

Study Element type Vertical
displacement (m)

Horizontal
displacement (m)

Michalos and Birnstiel (1962) Elastic straight −5.472 −0.845
O’Brien and Francis (1965) Elastic catenary −5.627 −0.860
Jayaraman and Knudson (1981) Elastic straight −5.471 −0.845
Jayaraman and Knudson (1981) Elastic catenary −5.626 −0.859
Tibert (1998) Elastic catenary −5.626 −0.859
Andreu et al. (2006) Elastic catenary −5.626 −0.860
Yang and Tsay (2007) Elastic catenary −5.625 −0.859
Thai and Kim (2011) Elastic catenary −5.626 −0.859
Abad et al. (2013) Elastic catenary −5.592 −0.855
Abad et al. (2013) Elastic catenary −5.626 −0.859
Present study Elastic catenary −5.626 −0.859
Fig. 11. Schematic model for an inclined cable system with the presence of an earthquake loading.
Fig. 12. Time evolution of the horizontal displacement 𝑢𝑥 at the centre of inclined
cable with the presence of an earthquake loading.

Table 3
Comparison of the peak displacement responses at the centre of inclined cable subjected
to an earthquake loading.

Displacement Thai and Kim (2011) Present study

(mm) Elastic catenary
element

SAP2000 Elastic catenary element

Max 𝑢𝑥 66.884 66.932 66.887
𝑢𝑧 77.076 77.038 77.078

Min 𝑢𝑥 −57.730 −57.832 −57.733
𝑢𝑧 −89.093 −89.102 −89.095

gravitational acceleration 𝑔 = 9.81 m∕s2, which are the same parameters
as those adopted in Audusse et al. (2014). The mooring line has an
13
initial unstressed length 𝐿0 = 30m and we assume that the mooring
line has a fixed anchor point and a fairlead point. Referring to previous
study (Li and Choung, 2021a), the properties of the mooring line
adopted in this study are summarized in Table 4.

Fig. 13(b) shows the spatial discretization of the computational
domain of the shallow water-mooring line system using the proposed
coupled method. Initially, the water domain is evenly discretized into
20 layers along the vertical direction whereas, a total number of 100
control volumes is adopted in the horizontal direction. The mooring
line is equally divided into 30 segments with each having an unstrained
length of 1m. The total computational time of the simulation is 200 s.
Fig. 14 illustrates the obtained water velocity fields and mooring line
configurations at different instants using the proposed coupled method
with water layers 𝑁 = 20 and mooring line segments 𝑀 = 30. In the
presence of the considered wind-driven force on the water surface, the
shallow water on the free-surface of the channel moves to the right
direction. The flow gradually circulates when it flows and interacts
with both closed right boundaries. As a result, the flow force leads to
a dynamic motion of the mooring line along the flow direction. It can
be observed that the top free-surface of the mooring line moves in the
downwards direction. However, due to the recirculation of the water
flow, the suspended mooring line at the bottom seabed of the channel is
uplifted as the flow at the half-bottom of the channel recirculates from
the right to the left. The good resolution of this fully coupled dynamic
behaviour demonstrates the excellent performance of the proposed
coupled model for the simulation of dynamics of the shallow water flow
and the mooring line system.

To examine the influence of space discretization in the proposed
coupled method, Tables 5 and 6 summarize the obtained maximum
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Fig. 13. Computational model and numerical discretization for multilayer shallow water-mooring line system.
Table 4
Properties of the mooring line in the simulation of the wind-driven multilayer shallow water-cable system on a flat bottom.

Variable Value Variable Value

Line diameter, 𝐷 0.0766 m Tangential added mass coefficient, 𝐶𝑎𝑡 0.25
Line density, 𝜌 113.35 kg∕m Seabed stiffness coefficient per area, 𝐾𝑏 3.00 × 106 Pa∕m
Line stiffness, 𝐸𝐴 7.54 × 108 N Seabed damping coefficient per area, 𝐶𝑏 5.20 × 106 Pa s/m
Normal drag coefficient, 𝐶𝑑𝑛 2.00 Seabed friction coefficient, 𝐶𝑓 0.50
Tangential drag coefficient, 𝐶𝑑𝑡 0.4 Seabed friction damping coefficient, 𝐷𝑓 200.00 N s/m
Normal added mass coefficient, 𝐶𝑎𝑛 0.8 Coefficient of mooring line, 𝜎𝑚 0.0015
Fig. 14. Water velocity fields and mooring line configurations obtained using the proposed fully coupled method with 20 water layers and 30 mooring line segments for the
multilayer wind-driven shallow water-mooring system on a flat bottom.
Fig. 15. Mooring line configurations under different wind speed 𝑤 obtained by the proposed fully coupled model with 𝑁 = 30 and 𝑀 = 15 for the multilayer wind-driven shallow
water-mooring system on a flat bottom.
14
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Fig. 16. Mooring line configurations with different values of water viscosity coefficients 𝜈 obtained by the proposed coupled model with 𝑁 = 30 and 𝑀 = 15 for the multilayer
wind-driven shallow water-mooring system on a flat bottom.
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Table 5
Computational results of multilayer wind-driven shallow water-mooring system on a
flat bottom with water layers 𝑁 = 30 and different values of the mooring segments 𝑀
at four instants.
𝑀 𝑡 = 10 s 𝑡 = 20 s 𝑡 = 50 s 𝑡 = 200 s

|𝛥𝑢|𝑚max |𝑣|𝑤max |𝛥𝑢|𝑚max |𝑣|𝑤max |𝛥𝑢|𝑚max |𝑣|𝑤max |𝛥𝑢|𝑚max |𝑣|𝑤max

15 0.5683 3.0231 2.6021 4.7642 2.0583 5.4197 2.2329 5.4149
30 0.4768 3.0231 2.8317 4.7642 2.5127 5.4197 2.5775 5.4150
45 0.4776 3.0231 2.9514 4.7643 2.5755 5.4197 2.6457 5.4149

Table 6
Computational results of multilayer wind-driven shallow water-mooring system on a
flat bottom with mooring line segments 𝑀 = 30 and different values of the water
ayers 𝑁 at four instants.
𝑁 𝑡 = 10 s 𝑡 = 20 s 𝑡 = 50 s 𝑡 = 200 s

|𝛥𝑢|𝑚max |𝑣|𝑤max |𝛥𝑢|𝑚max |𝑣|𝑤max |𝛥𝑢|𝑚max |𝑣|𝑤max |𝛥𝑢|𝑚max |𝑣|𝑤max

20 0.5100 2.3239 2.8409 3.9597 2.5742 4.8832 2.5742 4.8832
30 0.4768 3.0231 2.8317 4.7642 2.5127 5.4197 2.5775 5.4150
40 0.4796 3.4603 2.8893 5.1945 2.5767 5.7610 2.5767 5.7610

Fig. 17. Mooring line configurations at 𝑡 = 200 s with different values of the friction
coefficient 𝜎𝑚 using the proposed coupled method with 𝑁 = 30 and 𝑀 = 30 for the
multilayer wind-driven shallow water-mooring system on a flat bottom.
15

m

values of nodal displacement of mooring line and shallow water ve-
locity using different values of mooring segments 𝑀 and water layers

, respectively. In both cases, the proposed coupled method captures
he dynamic motion of the shallow water-mooring system with an
bvious converging trend with an increased number of water layers
nd mooring segments. In Fig. 15, configurations of the mooring line
t two different times 𝑡 = 20 s and 𝑡 = 200 s obtained by the proposed
ethod using a wind speed of 𝑉wind = 10m∕s, 15m∕s, and 20m∕s with
= 30 and 𝑀 = 15. It can be seen that the values of 𝑉wind have a

ignificant influence on the dynamic motion of the mooring line system.
s expected, a larger wind speed results in a larger flow force acting on

he mooring line, which leads to larger displacements of the mooring
ystem. In addition, the configuration difference gradually reduces
s the computational time increases, which is due to the fact that
ccelerations of the water flow are gradually reduced and a steady-state
low is thus reached.

To demonstrate the influence of the water viscosity coefficient
on the coupled system, Fig. 16 depicts the mooring line position

btained using the proposed method with three different values of 𝜈
arying from 0.01 to 0.1. It can easily be seen that the mooring line
onfigurations are in great agreement with the different considered
alues of 𝜈 at 𝑡 = 20 s. However, a non-negligible difference in the
ooring configurations is observed at the end of simulations. This is
ainly related to the flow pattern associated with each value of the

iscosity coefficient 𝜈. It is expected that the velocity profile in the
low problem changes from straight to curved lines for small values
f the viscosity coefficient. Weak exchange between the flow layers is
lso expected for small values of 𝜈 and this exchange becomes strong
or large values of 𝜈. Needless to mention that, solving the multilayer
hallow water system without the mass exchange terms (i.e. = 0 and
= 0) yields a stationary flow which is identical to the one obtained

sing the conventional single-layer shallow water model.
To further explore the multilayer shallow water system with the

resence of the mooring lines, Fig. 17 displays the final mooring
ine configurations with four different mooring friction coefficients,
amely 𝜎𝑚 = 0.5, 0.15, 0.015, and 0.0015. It should be noted that
ith an increase in the values of 𝜎𝑚, the frictional force term for

hallow water accordingly increases, which further prevents the water
low and leads to a significantly reduced flow velocity. In contrast,
s shown in Fig. 17, the change of 𝜎𝑚 shows small influences on the
btained final configuration of the mooring line system. Under the
onsidered flow and mooring conditions, it has been shown that it is
ossible to resolve recirculation flow problems using only one global
ass equation for the entire one-dimensional multilayer shallow water
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Fig. 18. Illustration of the multilayer wind-driven shallow water-mooring line system on a non-flat channel with two mooring lines.
Fig. 19. Velocity fields and mooring line configurations for multilayer wind-driven shallow water-mooring system in a non-flat channel with two mooring lines.
Fig. 20. Tension forces for multilayer wind-driven shallow water-mooring line system
on a non-flat channel with two mooring lines.

system. The results obtained for this example also demonstrate that
out coupled finite volume method and elastic catenary cable elements
perform very satisfactorily for this shallow water-mooring line system
since it does not produce excessive numerical dissipation in the flow
fields and no spurious oscillations have been detected at the mooring
lines in the computational domain.
16
4.6. Multilayer wind-driven shallow water-mooring system on a non-flat
channel

In this example, analysis of multilayer wind-driven shallow water-
cable system on a non-flat channel with two mooring lines is solved
using the proposed coupled method. As shown in Fig. 18, the problem
domain is defined by 𝑥 = 100m and 𝑧 = 10m. The non-flat bed of
the channel is symmetric along the middle line of the problem domain
and defined by 𝑙1 = 30m, ℎ1 = 5m, and 𝛽 = 45◦. In our simulations,
the density 𝜌𝑤 = 1000 kg∕m3, the viscosity coefficient 𝜈 = 0.1 m2∕s,
the friction coefficient 𝜅 = 1 × 10−5 m∕s, the wind stress coefficient
𝜎2𝑠 = 1.5 × 10−3, and the gravitational acceleration 𝑔 = 9.81 m∕s2. Both
mooring lines have an initial unstrained length of 𝐿0 = 23m, and their
properties are given in Table 4.

Fig. 19 illustrates the obtained flow velocities and mooring line
configurations at different times using the proposed coupled method
with 20 water layers. Notice that both left and right mooring lines are
evenly discretized into 15 segments with an initial unstrained length
of 2.3m for each segment. Similarly, with the presence of wind-driven
force on the water surface, the water free-surface on the top part of the
channel moves to the right direction. The flow gradually recirculates
when it flows and interacts with both closed right boundaries and the
non-flat bed. In addition, it can also be observed that the left mooring
line is uplifted and becomes in tension after a short computational time.
This is mainly due to a large jump of the flow velocity occurring at
the local area above the left slope surface. This large jump can cause
a large uplifting force that acts on the mooring line, and it can lead
to a dynamic motion of the mooring line along the top-right direction.
However, due to the recirculation of water flow, the right suspended
mooring line at the bottom part of the channel is uplifted as the flow
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at the half-bottom of the channel flows from the right to the left
side, while the upper part moves in the right direction. Moreover, as
shown Fig. 20, the tension forces at the anchor and fairlead points
are also obtained from the proposed model, which can be directly
used for the design of offshore platforms and mooring line systems.
This computational results demonstrate the capability of the proposed
method that can provide insight to coupled free-surface recirculation
flows with mooring lines in large domains with non-flat beds. This
simulation further demonstrates the high performance of the proposed
coupled model for the simulation of the dynamic motion of the shallow
water and mooring line system. Note that results from the proposed
coupled model should be compared with observations of real dynamics
within the water flow at the seabed. However, there is no such data
available until now in the literature to carry out this work. Thus, at the
moment we can only perform simulations and verify that results are
plausible and consistent. In summary, the dynamics of mooring lines
are captured accurately and the flow features are resolved reasonably.
It should be stressed that all these excellent computational features
are achieved using one-dimensional multilayer shallow water equations
without requiring complex three-dimensional free-surface flow models.

5. Conclusions

In the present study, we have presented a novel numerical method
for dynamic analysis of a fully coupled system of shallow water and
mooring lines. The proposed method is based on an efficient and accu-
rate coupled finite volume solver for multilayer shallow water flows to
an elastic catenary cable element for the mooring line systems. Combin-
ing a class of robust velocity/acceleration projection and interpolation
procedures, the proposed method addresses the key aspects for the
modelling and simulation of interaction forces between the multilayer
shallow water flow and the mooring line system. This would allow
effects from the water flow to the mooring-line system and from the
mooring-line system to the water flow through frictional transfer terms.
Algorithmic details of the numerical formulation and implementation
of the proposed coupled method have also been discussed in this
study. Several numerical examples have been presented to examine
the performance of these techniques. Computational results obtained
for verification examples supported the conclusion that the proposed
method can effectively be used to capture the dynamic motion of the
shallow water and mooring line systems. In particular, two examples
involving fully coupled shallow water-mooring line systems have been
used to demonstrate the good performance of the developed coupled
method. Further validations through comparison against experimental
measurements (possibly obtained using centrifuge tests) and applica-
tions to coupled problems with more realistic seabed geometries will
also be tackled in the future work. Extension of the proposed method
to similar problems in three-dimensional domains using multilayer
shallow water flows and catenary cable elements would also be subject
of a future work.
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