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Abstract

Landslides are one of the most damaging natural hazards and have killed tens of

thousands of people around the world over the past decade. Slow-moving landslides,

with surface velocities on the order of 10�2–102 m a�1, can damage buildings and

infrastructure and be precursors to catastrophic collapses. However, due to their

slow rates of deformation and at times subtle geomorphic signatures, they are often

overlooked in local and large-scale hazard inventories. Here, we present a remote-

sensing workflow to automatically map slow-moving landslides using feature tracking

of freely and globally available optical satellite imagery. We evaluate this proof-

of-concept workflow through three case studies from different environments: the

extensively instrumented Slumgullion landslide in the United States, an unstable lat-

eral moraine in Chilean Patagonia and a high-relief landscape in central Nepal. This

workflow is able to delineate known landslides and identify previously unknown

areas of hillslope deformation, which we consider as candidate slow-moving land-

slides. Improved mapping of the spatial distribution, character and surface displace-

ment rates of slow-moving landslides will improve our understanding of their role in

the multi-hazard chain and their sensitivity to climatic changes and can direct future

detailed localised investigations into their dynamics.
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1 | INTRODUCTION

Landslides, gravity-driven downslope movements of rock and soil, are

one of the most geographically widespread and damaging natural haz-

ards (e.g., Casagli et al., 2023; Emberson et al., 2020; Petley, 2012).

Landslides have killed over 50 000 people in the 21st century alone

and continue to cause several thousand deaths each year (Froude &

Petley, 2018; Petley, 2012). Monitoring and mitigating the impacts of

landslide hazard is challenging due to the extent of potentially suscep-

tible areas—virtually any mountainous region might be predisposed to

landsliding—and the wide range of potential triggering mechanisms.

Landslides can be triggered by climatic drivers such as rainfall

(Caine, 1980; Carey et al., 2019), earthquakes (e.g., Fan et al., 2018;

Harp & Jibson, 1996; Roback et al., 2018) and anthropogenic activity

such as road construction (Amatya et al., 2019; Petley et al., 2007;

Tanyaş et al., 2022). Due to their wide range of predisposing and
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triggering factors, developing landslide inventories is key to improving

our understanding of the underlying processes and for defining land-

slide susceptibility, hazard and ultimately risk.

The development of large-scale landslide inventories using tradi-

tional ground-based mapping techniques is challenging due to the

large spatial scales, inaccessibility and inherent risk involved in survey-

ing landslide-prone areas (Guzzetti et al., 2012; Uhlemann

et al., 2016). Spaceborne remote sensing provides an alternative data

source for large-scale landslide assessment and has been rapidly

developed in recent years in response to more widespread data avail-

ability and improved processing workflows (Casagli et al., 2023;

Kirschbaum et al., 2019; Mantovani et al., 1996; Metternicht

et al., 2005). Remotely sensed landslide mapping techniques range

from visual interpretation of satellite images (e.g., Kincey et al., 2021)

and automated change detection (Amankwah et al., 2022; Scheip &

Wegmann, 2021), to mapping of topographic change (Bernard

et al., 2021; Dai et al., 2020; Dille et al., 2021) and detection of sur-

face displacements (Bickel et al., 2018; Dille et al., 2021; Lombardi

et al., 2017; Manconi, 2021; Manconi et al., 2018; Rosi et al., 2018).

Each remote-sensing and ground-based method is associated with dif-

ferent spatiotemporal resolutions, uncertainties and intrinsic limita-

tions. To date, large-scale landslide mapping has primarily been

implemented through manual mapping or automated change detec-

tion in optical and radar imagery (Ambrosi et al., 2018; Burrows

et al., 2019, 2020; Kincey et al., 2021; Scheip & Wegmann, 2021).

Optical change detection-based landslide mapping relies on iden-

tifying a distinctive alteration of Earth-surface properties, most

commonly a reduction in NDVI as a proxy for the loss of vegetation

cover (e.g., Scheip & Wegmann, 2021). This is well suited for identify-

ing the footprints of rapid, shallow landslides, but is less successful in

identifying slow-moving landslides that might not remove vegetation

or significantly change the spectral character of the ground surface

(Figure 1). These landslides, with typical rates of surface displacement

of 10�2 to 102 m/year, can cause chronic damage or destruction of

infrastructure and have major impacts on land use or livelihoods.

While some slopes might only experience slow but continuous defor-

mation, others can experience increases in velocity and rapid failure

(Berg et al., 2018; Lacroix et al., 2020; Mansour et al., 2011;

Palmer, 2017). In some specific settings, monitoring of landslide veloc-

ities can be used to forecast the time of failure (e.g., Manconi, 2021;

Moretto et al., 2017; Petley et al., 2017), but to date, this has primarily

been applied retrospectively on known landslides. Slow-moving land-

slides are an important but often overlooked population in landslide

inventories and associated hazard assessments, although they may be

detected using alternative techniques.

Because slow-moving landslides often cannot be detected

through changes in surface properties on a scale observable by satel-

lites, alternative methods are necessary to identify them (Figure 1).

Three main techniques have been used: topographic change detec-

tion, interferometric synthetic aperture radar (InSAR) and feature

tracking (Dai et al., 2020; Dille et al., 2021; Lacroix et al., 2022; Shugar

et al., 2021; Stumpf et al., 2014; Stumpf et al., 2017; Van Wyk de

Vries, Bhushan, et al., 2022). Topographic change detection can be

used to identify vertical change associated with slope deformation

F I GU R E 1 Range of common spatial scales and deformation velocities for slow-moving landslides. Four different example landslides are
shown, along with possible displacement monitoring techniques: satellite-based interferometric synthetic aperture radar (InSAR), feature tracking
and ground-based methods such as terrestrial laser scanning. Assessments of elevation change are not shown here but can also be used to

monitor landslides. Velocity classification is from Cruden and Varnes (1996) and Varnes (1978).
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through ground-based, airborne or spaceborne LiDAR or photogram-

metry (e.g., subsidence or bulging; Bernard et al., 2021; Dai

et al., 2020). InSAR, using either ground-based or spaceborne instru-

ments, can be used to map line-of-sight displacements, providing a

combination of horizontal and vertical movement depending on the

viewing geometry (Ferrigno et al., 2017; Wasowski & Bovenga, 2014).

Feature tracking measures the horizontal displacement of coherent

patterns between a pair of images, which can be derived from optical

or radar sensors (Bickel et al., 2018). These methods have been widely

used for historical and ongoing monitoring of known slow-moving

landslides (Casagli et al., 2023; Delacourt et al., 2007; Ferrigno

et al., 2017; Wasowski & Bovenga, 2014), but low signal-to-noise

ratios complicate their use for automated detection of previously

unknown landslides, particularly in steep mountainous terrain

(Bekaert et al., 2020; Lacroix, 2016; Lacroix et al., 2022; Rosi

et al., 2018; Van Wyk de Vries, Bhushan, et al., 2022).

The majority of studies of slow-moving landslides have focussed

on known unstable slopes, using remote-sensing techniques either

alone or in concert with ground monitoring to better understand the

spatial and temporal changes in slope velocity (Dai et al., 2020; Dille

et al., 2021; Hu et al., 2020; Lacroix et al., 2018; Van Wyk de Vries

et al., 2022). Very large landslides, known as deep-seated gravitational

slope deformation (DSGSD) have been inventoried on a regional scale

in the European Alps (Agliardi et al., 2013; Clague & Stead, 2012;

Crosta et al., 2013), although these inventories cannot always distin-

guish inactive DSGSDs from ones with present-day motion. Other

studies have leveraged the displacement-tracking capabilities of either

InSAR (Dini, Daout, et al., 2019; Dini, Manconi, & Loew, 2019; Solari

et al., 2019) or optical feature tracking (Zhang et al., 2022) to inven-

tory slow-moving landslides on a local or regional scale. Dini et al.

(2019) for instance use InSAR in the Bhutan Himalaya to identify

almost 700 previously unknown unstable slopes in an area with very

limited field data.

Here, we develop and implement a proof-of-concept automated

workflow for the detection of deformation typical of slow-moving

landslides using optical satellite imagery. Through a series of case

studies, we show that our landslide detection workflow is able to

automatically delineate known and identify previously unknown slow-

moving landslide candidates across a wide range of environments. We

then discuss how slow-moving landslide identification, without the

requirement for prior knowledge of landslide locations or manual

processing, can assist with the construction of regional or global

inventories. Finally, we discuss the value of including slow-moving

landslides in multi-hazard inventories and possible interactions with

other Earth-surface processes.

2 | METHODOLOGY AND METHODS

We develop a workflow for identifying the location and extent of

slow-moving landslides without the requirement for any prior land-

slide location information. This workflow requires a minimum of two

optical satellite images and a digital elevation model (DEM) of the

location of interest, the latter being downloaded automatically

through an application programming interface (API). The optical satel-

lite image time series is first pre-processed, then used to calculate

pairwise displacement maps and finally post-processed into a single

median velocity map (Figure 2). The final median velocity map and

DEM are used to generate three products that describe potential

landslides: a binary landslide map, a map of landslide velocities and a

table of attributes for each coherent of deformation or landslide

(e.g., elevation and area; Figure 2). The details of this workflow are

described in more detail in Sections 2.1 and 2.2, and Sections 2.3–2.5

describe three case studies used to evaluate the workflow.

2.1 | Optical feature tracking

We adapt an optical feature-tracking workflow from the ice flow

speed mapping toolbox Glacier Image Velocimetry (GIV; Van Wyk de

Vries & Wickert, 2021). Two key differences between glacier flow and

landslide deformation are (i) in general, the displacement related to

glacier flow is on the order of 101–103 of m a�1, while slow-moving

landslide deformation is very slow to moderate at 10�2–102 m a�1

(Cruden & Varnes, 1996; Varnes, 1978); (ii) glacier surfaces can

change appearance rapidly due to high flow speeds and surface abla-

tion, while areas of slow-moving landsliding more commonly retain a

constant surface character over several years, notwithstanding sea-

sonal ground surface changes. The theoretical detection limit of fea-

ture tracking depends on the resolution of the images used, the

number of individual velocity maps stacked (each obtained from a

unique image pair) and the type of surface patterns. It is usually in the

range of 0.1–1 m for Sentinel-2 imagery (e.g., Millan et al., 2019;

Stumpf et al., 2017), corresponding to a landslide speed detection

limit of 0.13–1.3 m a�1 for a 9-month temporal baseline and 0.05–

0.5 m a�1 for a 2-year temporal baseline. The relatively low velocity

and increased persistence of surface features over time lead to three

changes to the feature-tracking workflow:

1. Longer temporal baselines (time intervals) between images can be

used for landslides than is generally possible for glaciers.

2. The scale of displacement on a landslide are generally less than the

spatial resolution of the imagery used in tracking, so the accuracy

relies upon subpixel displacement algorithms.

3. Relatively low velocities associated with landslides mean that the

stacking of multiple individual velocity maps might be required to

distil actual deformation from background noise.

We apply feature tracking to Band 8 (833 nm wavelength; near

infrared) of Sentinel-2 L1C imagery, which has a 10 m spatial resolu-

tion (Van Wyk de Vries & Wickert, 2021). Starting with a stack of all

Sentinel-2 images (2015–2023) over each study region, we filter out

all images with greater than 10% scene-wide cloud cover and manu-

ally filter out remaining images with any degree of local cloud cover.

We manually edit Randolph Glacier Inventory glacier polygons to

cover the full current extent of any glaciers and mask these out

(Pfeffer et al., 2014). We then pre-process the imagery by applying an

orientation filter to enhance local spectral contrasts (Van Wyk de

Vries & Wickert, 2021) and standardize the resulting orientation

images.

We construct all possible image pairs (termed ‘multiple-pairwise

image correlation’, Stumpf et al., 2017) with a temporal baseline

greater than 9 months and run the feature-tracking algorithm on

these. Setting a minimum temporal baseline of 9 months increases the

VAN WYK DE VRIES ET AL. 3
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chance that a detectable level of displacement has occurred for typical

slow-moving landslide velocities of �100 m a�1. We do not apply a

maximum bound on the temporal separation between images as we

expect most surfaces to remain coherent over the �6 year time series

used, with the possible exception of seasonal changes

(e.g., vegetation loss and snow cover) or the incidence of shallow,

rapid landslides. We use a single pass chip-wise cross-correlation algo-

rithm with a window size of 16 pixels and 50% window overlap, for

an equivalent ground resolution of 80 m. This parameter combination

maximises the benefits of larger window sizes for background noise

reduction while retaining a final resolution of less than 100 m per

pixel. We choose a single pass algorithm instead of the GIV default

three-tier multipass algorithm as integer pixel displacements are

expected to be �0, reducing the benefit of prior integer displacement

information of initial coarse-chip searches (Van Wyk de Vries &

Wickert, 2021). The effective resolution of output velocity maps is

80 m, which balances the benefits of high spatial resolution with the

increased noise levels of small window sizes. We linearize the chip-

wise cross-correlation such that it is performed across the entire

image in a single operation instead of requiring a computationally

expensive double loop. We also implement an ensemble of subpixel

estimation methods instead of a single algorithm, which allows us to

quantify the subpixel-level uncertainty and propagate this into future

calculations. Modifications to the GIV cross-correlation algorithm are

described in more detail in the supporting online-only information.

We post-process each individual displacement map prior to merg-

ing the stack into a single median velocity map. We first multiply by

the image resolution and divide by the temporal baseline (in years) to

convert displacements to velocity vector. We then filter out all pixels

with a cross-correlation peak ratio—the ratio of the cross-correlation

maxima to the second largest correlation peak—of less than 1.5 (Van

Wyk de Vries & Wickert, 2021). Filtering by peak ratio removes false

matches in areas where decorrelation has occurred between the

images. We apply a local gap-filling algorithm in all areas with less

than 15 empty pixels within a 5 � 5 pixel neighbourhood, with any

larger gaps left unfilled. Finally, we remove the scene-wide median

velocity in the E–W and N–S directions to correct for any systematic

georeferencing errors between images. We compute median velocity

from the E–W and N–S velocity components separately to avoid

transforming the noise.

2.2 | Landslide identification

Landslide identification directly from a median velocity map is chal-

lenging, as background noise levels are commonly of a similar magni-

tude to the landslide displacement signal. Therefore, direct

thresholding or classification of the velocity commonly leads to many

type 1 errors (false positive identifications), including physically

implausible scenarios of upslope movement. To reduce some of this

complexity, we include additional topographic information in our

workflow. We automatically download the 30 m Copernicus DEM of

the study areas using the OpenTopography API (www.

opentopography.com) and use these to calculate the local slope

F I GU R E 2 Diagram showing the main steps in our automated slow-moving landslide detection algorithm.

4 VAN WYK DE VRIES ET AL.
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direction using TopoToolbox (Schwanghart & Scherler, 2014). We then

calculate the angle difference between feature tracking-derived velocity

direction and slope direction as projected onto a horizontal plane.

We create a binary landslide mask by thresholding the median

velocity map using the 95th percentile. This is an empirically deter-

mined threshold, which we explore below through a sensitivity test in

the first case study with comparison to available field datasets. The

95th percentile provides a balance between a very low fraction of

false positives (necessary for application in areas where a minority

of the study area is actually moving) and sufficiently high true positive

rate (60% to 90% depending on the comparison used; see supple-

ment). We then compute regions retained by this velocity mask that

meet a set of further conditions: an angle between feature tracking-

derived velocity direction and slope direction of less than 45�, a slope

greater than 5�, a peak ratio greater than 1.5 and a signal-to-noise

ratio greater than 5 (Van Wyk de Vries & Wickert, 2021). The slope

direction threshold excludes areas with physically implausible appar-

ent surface motion not in the downhill direction. The slope threshold

is used to exclude lakes and other low slope regions which might oth-

erwise interfere with the results. The feature-tracking peak ratio

threshold is used to exclude areas with poor coherence, such as per-

sistent snow cover or river channels.

We then identify clusters of adjacent thresholded pixels within

the remaining mask and remove clusters smaller than a minimum

landslide area cut-off—set by default to 10 contiguous pixels in our

workflow. The choice of pixel threshold is a trade-off between

effective random noise removal and detection of small landslides—

the exact threshold choice is again explored in a sensitivity test and

comparison to available ground data in the first case study. Con-

nected component analysis allows the workflow to distinguish iso-

lated significant pixels (likely related to random noise) from clusters

of multiple significant pixels (likely related to a real signal). Following

this, we bridge significant pixels that have two unconnected neigh-

bours, buffer the resulting polygon by one pixel, filter out isolated

gaps in polygons using a 3 � 3 pixel neighbourhood majority vote

and finally erode the polygon boundary by one pixel. This sequence

of morphological operations smooths and closes gaps between

immediately adjacent clusters of significant pixels. The removal of

significant pixel clusters smaller than a threshold prior to this opera-

tion prevents merging of landslide regions with adjacent noise. We

note that any area without motion is not considered a landslide

according to this workflow, such that a ‘landslide’ with motion

observed only in some sectors separated by inactive zones would

be considered separate incidences. Any clusters retained following

this procedure are considered candidate slow-moving landslides and

their attributes (mean velocity, size and elevation range) are calcu-

lated accordingly.

In the following sections, we describe the three case studies from

a range of different environments: (1) the well-studied Slumgullion

landslide, USA, which provides an evaluation of the landslide delinea-

tion workflow; (2) a region around Glaciar Oriental, Chile, through

which we investigate the stability of lateral moraines around a rapidly

thinning glacier in an area with frequent snow cover; and (3) central

Sindhupalchok district, Nepal, a densely populated area combining

high relief, extreme seasonal rainfall, dense vegetation and recent

seismic activity. We explore these three very different case studies to

demonstrate the wide applicability of our workflow.

2.3 | Case Study 1: Slumgullion landslide

The Slumgullion landslide is a �4-km-long and �0.5-km-wide

earthflow located in the San Juan Mountains, Colorado, USA (Coe

et al., 2003; Parise & Guzzi, 1992). The active portion of the landslide,

with an estimated volume of 2.0 � 107 m3 (Parise & Guzzi, 1992), is

nested within an even larger inactive flow extending an additional

2 km downslope and damming Colorado’s largest natural lake, Lake

San Cristobal. The Slumgullion landslide is an ideal test case for this

workflow as (i) the landslide has been extremely well studied, with

several decades of remote-sensing and ground-based measurements;

(ii) it is located within complex mountainous terrain with variable veg-

etation cover and a lake, with potential for feature-tracking errors;

and (iii) the active portion of the landslide is nested within a larger

inactive flow, and the boundary between the two cannot easily be dis-

tinguished without velocity measurements. We run the workflow over

the region surrounding the Slumgullion landslide using 12 cloud-free

Sentinel-2 L1C images ranging from October 2016 to September

2022, for a total of 49 image pairs.

2.4 | Case Study 2: Glaciar Oriental, Chile

Glaciar Oriental is a large lake-terminating glacier located at the north-

eastern corner of the Southern Patagonian Icefield (SPI) in Chile. Similar

to much of the SPI, Glaciar Oriental has undergone rapid thinning and

frontal retreat in the 21st century (Abdel Jaber et al., 2019; Foresta

et al., 2018; Malz et al., 2018; Minowa et al., 2021; Willis et al., 2012).

This rapid retreat has exposed large expanses of loose, unconsolidated

sediment at the glacier flanks, which have the potential to form large

landslides. Ice-marginal landslides have been associated with tsunamis

(Winocur et al., 2015) and changes in ice dynamics (Van Wyk de Vries,

Wickert, et al., 2022) in Patagonia and other similar environments (Dai

et al., 2020). We choose the region around Glaciar Oriental as a case

study due to its complex environment (high relief, frequent snow cover,

presence of fast-flowing glaciers and large lakes). Due to the immedi-

ately adjacent large glacier, we carefully verify that any ground dis-

placements are not affected by measurements of glacier flow. We run

the workflow over the region surrounding the Glaciar Oriental using

19 cloud-free Sentinel-2 L1C images from January 2016 to January

2023, for a total of 127 image pairs.

2.5 | Case Study 3: Central Sindhupalchok district,
Nepal

Nepal, located on the southern margin of the Himalaya, has one of

the steepest topographic gradients in the world. Combined with

extreme seasonal rainfall and frequent seismic activity, this high relief

makes much of the country highly susceptible to landslides. Large-

scale surveys of shallow landslides have been compiled (Adhikari

et al., 2017; Ambrosi et al., 2018; Kincey et al., 2021; Rosser

et al., 2021), but to date, studies of slow-moving landslides have

focussed on relatively small spatial extents (Bekaert et al., 2020;

Lacroix et al., 2022). Here, we run the landslide detection workflow

over a 165 km2 region of central Sindhupalchok district, including the

Bhote Koshi valley and adjacent areas. This valley hosts one of

VAN WYK DE VRIES ET AL. 5
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the main Nepal–China cross-border roads and was affected by a large

number of coseismic and post-seismic landslides associated with the

2015 Gorka earthquake (Kincey et al., 2021). A previous study has

identified a number of slow-moving landslides in this region using

feature tracking on very high-resolution Pleiades imagery and lower

resolution Sentinel-1 SAR imagery (Lacroix et al., 2022). We run the

slow-moving landslide detection workflow over this region using

11 cloud-free Sentinel-2 L1C images over the post-earthquake period

between January 2016 and March 2022, for a total of 35 image pairs.

As this area is densely populated, we compare the footprints of candi-

date slow-moving landslides to a population density map (Meta High

Resolution Population Density data, with 30 m cell size) and a building

location map (OpenStreetMap), which provide two different estimates

of local exposure to hazards.

3 | RESULTS

3.1 | Slumgullion

The 17 km by 10 km Slumgullion study area has a median velocity

magnitude (speed) of �0.0055 m a�1 (interquartile range

[IQR] = �0.132 to 0.128) in the E–W direction, �0.0088 m a�1

(IQR = �0.238 to 0.218) in the N–S direction. Our automated land-

slide detection workflow identifies three candidate slow-moving

landslides with areas of 1.16, 0.22 and 0.18 km2. The three candidate

landslides have median E–W speeds of 0.17, �1.4 and �0.18 m a�1

and median N–S speeds of �0.75, 0.33 and �0.89 m a�1, respectively

(Figure 3 shows a zoom on the main landslide).

The largest candidate slow-moving landslide also has the most

rapid motion, with a maximum E–W speed of 3.8 m a�1 and N–S

speed of 2.55 m a�1. The spatial extent of this candidate slow-

moving landslide closely matches the independently mapped active

section of the Slumgullion earthflow, and the maximum velocity

we calculate (4.40 m a�1, or 12.1 mm per day) is within the

range of previous ground and satellite-based estimates

(3.65–5.84 m a�1, Coe et al., 2003; �5.10 m a�1, Hu et al., 2020).

Visual inspection of satellite imagery suggests that two other can-

didate slow-moving landslides might correspond to rock glaciers,

but we cannot confirm this without additional ground-based

observations.

We conduct both a sensitivity test and an assessment of false

positive and false negative matches relative to prior knowledge on

the extent (Hu et al., 2020; Parise & Guzzi, 1992) of the landslide.

F I GU R E 3 Results of the Slumgullion automated landslide detection. (a) The active portion of the Slumgullion earthflow (extents from Hu
et al., 2020; Parise & Guzzi, 1992) is clearly delineated while the inactive portion is not. (b,c) Pixel frequency histograms of the E–W and N–S
velocity components across the entire study area, respectively. The red line represents the outline of the active earthflow (with dashed areas

uncertain) while the white line represents the extent of the inactive earthflow (Hu et al., 2020).
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The sensitivity test shows that the active portion of the Slumgullion

earthflow is detected in all cases, with an area ranging from 1.08 to

1.35 km2. Additional small candidate landslides are detected when

the minimum pixel threshold is reduced close to zero, particularly

when the cut-off threshold is also lowered (Figure S1), but our con-

fidence in these is low. There is a wide range of parameters in

which the key landslide is identified with very little change, and the

recommended parameters in this workflow effectively suppress less

reliable landslide candidates for automated usage over large areas.

Our assessment of false positive and false negative rates

(Figures S2 and S3) further shows that these parameters greatly

suppress false positive area detection (<0.5% of the Slumgullion

landslide area regardless of the minimum area cut-off chosen) while

retaining a moderate to high true positive area detection (62% to

85% depending on which prior extent is used) for the Slumgullion

earthflow. Altogether, these show that the workflow successfully

detects most of the active landslide while falsely detecting little to

none of the inactive landslide area or surrounding stable terrain.

Further details on these tests are discussed in the Supporting

Information.

3.2 | Glaciar Oriental

The Glaciar Oriental study area has a median velocity magnitude of

�0.0050 m a�1 (IQR = �0.203 to 0.134) in the E–W direction and

0.0015 m a�1 (IQR = �0.149 to 0.122) in the N–S direction. This

excludes all signal related to the flow of Glaciar Oriental and marginal

glaciers, the velocity of which reaches several hundred m a�1 on the

main branch. Our automated landslide detection workflow identifies

two candidate slow-moving landslides with areas of 0.65 and

6.16 km2. The candidate landslides have median E–W velocities of

�4.0 and �5.8 m a�1 and median N–S speeds of �3.9 and

�4.0 m a�1, respectively (Figure 4).

The 6.16 km2 candidate landslide complex identified is composed

of multiple lobes across the majority of Glaciar Oriental’s eastern lat-

eral moraine. This feature is inferred to be a composite landslide that

initiates at an elevation of �1330 m and has an elevation range of

approximately 1000 m from crest to toe. This landslide has a maxi-

mum E–W speed of 26.9 m a�1 and a N–S speed of 18.9 m a�1. The

second, smaller, candidate landslide is located in the same eastern lat-

eral moraine and separated from the main composite landslide by only

F I GU R E 4 Results of the Glaciar Oriental automated landslide detection. (a) A large portion of the eastern lateral moraine of this glacier is
unstable, while the western lateral moraine is stable. (b,c) Pixel frequency histograms of the E–W and N–S velocity components across the entire

study area, respectively.
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�300 m. The two candidate landslides might be a part of the same

landslide complex, with the intermediary area deforming at a velocity

slower than the detection threshold of this method or temporarily

stabilised.

3.3 | Central Sindhupalchok district, Nepal

The central Sindhupalchok district study area has a median velocity

magnitude of �0.0076 m a�1 (IQR = �0.138 to 0.121) in the E–W

direction and 0.0040 m a�1 (IQR = �0.127 to 0.121) in the N–S

direction. Our automated landslide detection workflow identifies

20 candidate slow-moving landslides with areas ranging from 0.14

1.72 km2 (mean = 0.50 km2). The largest candidate landslide

(Figure 5, Object 4) has a median speed of �0.11 and �1.46 m a�1 in

the E–W and N–S directions, respectively. A number of small landslide

scars are visible in optical satellite imagery at the toe of this landslide.

The attributes of all 20 landslides are summarized in Table 1.

Only one of the candidate landslides we identify directly matches

a landslide shown by Lacroix et al. (2022): 20 or d at Pokhan. This is

consistent with Lacroix et al.’s (2022) finding that landslides b, e, g

and h stabilized post-2015, while motion continued on d. Lacroix

et al.’s (2022) landslide c partially overlaps with Landslide 13 from this

work but with a different overall geometry, possibly representing the

activation of a different part of a larger unstable slope. Lacroix et al.’s

(2022) study however covers a different time period (2014–2017) to

our own (2016–2022) and observes that landslide velocities were

(i) substantially modified, in the short term, by the 2015 Gorka earth-

quake and (ii) vary through time even outside of this event. The

methods used by Lacroix et al. (2022), feature tracking of very high-

resolution Pleiades imagery and Sentinel-1 range displacement, also

differ from our own, as do the number of individual velocity maps

combined prior to landslide identification. Therefore, despite consid-

ering overlapping areas, the two studies are measuring different

expected surface deformation fields and differences in landslide iden-

tification and maximum velocity are expected. The close match

between the Pokhan landslide (20/d) in this study and Lacroix et al.

(2022) confirms that landslides with continued motion can be

detected with both methods.

A comparison of our candidate landslides with a high-resolution

population density map shows that the region of active deformation is

inhabited for 10 of these landslides (50%), with over 50 people living

on five of these (25%). All landslides have people living within 2 km of

the zone of active deformation, with an average of 2460 people living

F I GU R E 5 Results of the Sindhupalchok district automated landslide detection. (a) A number of large deforming slopes are present across
this high-relief terrain. The dashed lines show outlines of landslides b–g identified by Lacroix et al. (2022). (b,c) Pixel frequency histograms of the

E–W and N–S velocity components across the entire study area, respectively.

8 VAN WYK DE VRIES ET AL.

 10969837, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5775 by T

est, W
iley O

nline L
ibrary on [23/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



within this radius. Similarly, 11 landslides have at least one building

within the zone of active deformation (55%), with two having more

than 50 buildings (10%). These buildings are potentially at high risk of

destabilization due to gradual slope motion. All landslides have build-

ings with a 2 km radius, with an average of 811 buildings within this

zone. Assessment of the hazard resulting from these landslides would

require a further in depth analysis, but their proximity to populated

areas suggests that they should be closely monitored.

4 | DISCUSSION

We show, through a detailed analysis of three case studies, that it is

possible to automatically detect and map the geographic extent of

slow-moving landslides using openly available, frequently collected

Sentinel-2 optical satellite imagery. In a test case on the well-

documented Slumgullion earthflow, USA, our workflow was able to

effectively delineate the active portion of the earthflow and produced

velocity magnitudes consistent with both ground-based instrumenta-

tion and previous remote-sensing estimates. One particular benefit of

optical feature tracking over alternate techniques such as InSAR is its

capacity to measure velocities in the range of 100–102 m/year and,

therefore, might identify whether any landslides transition to more

hazardous rapid motion. In another test case on the margin of the SPI,

Chile, we identified a very large (>6 km2) composite landslide in the

eastern lateral moraine of Glacier Occidental and, conversely, demon-

strated that the western moraine of this glacier appears to be stable

within the bounds of this technique. Finally, we identified 20 candidate

slow-moving landslides in a 165 km2 area around central

Sindhupalchok district, Nepal, some of which have previously been

mapped and underlie or are in close proximity to densely populated

areas. These results, using three case studies from very different geo-

graphical environments, demonstrate the effectiveness and wide

applicability of our proposed workflow.

Our workflow is an advance on previous optical satellite imagery

landslide identification methods in two main ways. Firstly, we identify

the location and extent of landslides using Sentinel-2 imagery, instead

of the airphotos or very high-resolution commercial satellite imagery

used in most previous studies (e.g., Lacroix et al., 2022; Stumpf

et al., 2017). Sentinel-2 imagery is freely available at a high revisit

interval (10 days at most and typically 2–3 days in mid-latitude loca-

tions) for any location on Earth (Lacroix et al., 2018; Provost

et al., 2022). Zhang et al., 2022 describe an alternative method for

blind slow-moving landslide detection at a site in SW China using

Sentinel-2 data, with noise reduction performed using time series

analysis methods. Second, our workflow produces an inventory of

slow-moving landslides in an automated manner, without the need for

prior location information, image georeferencing or manual data

processing. Taken together, this means that our workflow can be

applied to any region on Earth, regardless of the availability or

reliability of prior information. In addition, eliminating the need for

time-consuming manual intervention and computationally efficient

feature-tracking implementation facilitates the upscaling of this

method for national to continental-scale slow-moving landslide

surveys.

While the candidate slow-moving landslides from this workflow

can be used as a final product, further validation of their location,

extent and displacement magnitude using ground-based surveys or

alternative remote-sensing approaches is always recommended. There

are situations in which our workflow will either fail to identify true

T AB L E 1 Attributes of the Sindhupalchok district landslides.

Landslide
number

Size
(km2)

Maximum
elevation (m)

Elevation
range (m)

Population on
landslide

Population within
2 km

Buildings on
landslide

Buildings within
2 km

1 0.14 1587 254 0 3010 1 1676

2 0.24 1510 226 0 1520 14 854

3 1.22 2240 960 0 890 1 1067

4 1.72 2449 908 27 835 81 885

5 0.90 3149 917 8 844 0 466

6 0.20 3094 523 0 688 0 334

7 0.26 2518 471 0 1478 0 710

8 0.16 2069 268 10 959 0 471

9 1.29 3056 1096 0 1424 0 218

10 0.22 2419 375 0 1963 0 365

11 0.52 2204 565 0 2752 5 598

12 0.14 1722 311 70 2821 7 645

13 0.65 2428 658 278 3612 28 700

14 0.31 1891 577 0 4329 6 969

15 0.26 2483 420 0 2060 0 568

16 0.49 2060 689 70 3880 7 953

17 0.19 1444 205 21 4857 4 1433

18 0.26 1512 305 8 5138 0 1447

19 0.20 2201 214 98 4139 54 1278

20 0.61 1971 377 69 2065 8 590
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slow-moving landslides (false negative) or falsely identify non-

landslide areas (false positive). True landslides will be missed in two

main situations: either their movement is too slow or too intermittent

to be detected by a feature tracking-derived median velocity map or

rapid displacement and/or other surface change caused rapid surface

decorrelation. Landslides with velocities too low for detection using

feature tracking might be identifiable using alternative methods such

as InSAR (Ferrigno et al., 2017; Wasowski & Bovenga, 2014) or

ground-based monitoring (Khan et al., 2021). This workflow may work

less well in areas of the globe with conditions commonly leading to

decorrelation, most commonly due to persistent snow cover, but this

is likely to be the case with any optical feature-tracking workflow.

Another rare case in which real landslides would be missed is in the

event that their motion is not approximately oriented downslope, as

may be the case for lateral spreads. The use of median velocities may

also result in failure to detect landslides with movement over too

small a fraction of the time period covered, particularly where this is

close the beginning or end of the observation period. Future work will

determine whether time series analysis can identify some of these

false negative cases without greatly increasing the false positive rate.

False positive landslide identifications can currently occur in situations

with image distortions leading to large, topographically correlated

error or where other real, non-landslide surface displacements are

occurring. Glaciers are a common non-landslide source of surface dis-

placements, and any errors in ice masks will introduce artefacts into

landslide maps. Other geophysical surface displacements, such as cos-

eismic slip, can also lead to false positive identifications. In summary,

we can place bounds on the type of landslides which may be detected

using this technique: Their area must be greater than �0.05 km2, their

velocity must be greater than �0.1 m/year, their surface must retain

coherence between images, their motion must be approximately

downslope and they must not be underneath a glacier (which are

masked out). We, therefore, recommend that any resulting candidate

landslides or large-scale inventories be interpreted with these limita-

tions in mind.

The three examples investigated in this study highlight the impor-

tance of considering slow-moving landslides in multi-hazard assess-

ments. In the case of the Slumgullion earthflow, the toe of the

landslide has dammed a >1 km2 lake. Monitoring of the Slumgullion

landslide can therefore inform about any changes in the dam and pro-

vide advance warning of associated flooding or dam instability. In this

case, we see that the active portion of the landslide does not extend

into the dam, a finding confirmed by an extensive in situ monitoring

network (Coe et al., 2003; Parise & Guzzi, 1992). In the case of the

Glaciar Occidental lateral moraine, a very large and possibly para-

glacial landslide has formed adjacent to a rapidly retreating glacier.

The median total displacement of this landslide over the past 7 years

(49 m) is of the same scale as the lateral retreat of the glacier over the

same period (40–80 m), suggesting that ice loss and slope instability

might be coupled. Close monitoring of glacier margins can provide

insight into whether unstable areas are likely to collapse onto the ice

during retreat, collapse into the fjord or restabilize once the glacier

has retreated. Both collapses onto the ice and into the fjord can be

hazardous (Dai et al., 2020; Gardner & Hewitt, 1990; Van Wyk de

Vries, Wickert, et al., 2022), and ongoing monitoring of this area is

recommended to understand whether this landslide poses a glacial

lake outburst flood hazard to communities around Lago O’Higgins/

San Martin or Rio Pascua. For the central Sindhupalchok district study

area, Lacroix et al., 2022 showed that some slow-moving landslides in

the area accelerated in response to the 2015 Gorka earthquake. This

region is also extremely susceptible to shallow landslides, which are

found on at least 75% (15/20) of the 20 candidate slow-moving land-

slides and have killed more than 100 people in Sindhupalchok district

alone over the past decade (source: http://drrportal.gov.np/). The high

population densities of this region mean that any feedback with other

hazards would be particularly impactful.

Slow-moving landslides are sensitive to changes in climate, both

directly through changes in their hydrology and water availability

(Ardizzone et al., 2023; Gariano & Guzzetti, 2016; Handwerger

et al., 2019, 2022) and indirectly through changes in their boundary

conditions (Dai et al., 2020; Mititelu-Ionuş et al., 2011; Van Wyk de

Vries, Bhushan, et al., 2022; Yang et al., 2021). The close match

between the average displacement of the Oriental lateral moraine and

lateral retreat rate of the glacier is an example of this second category.

Rapid climate warming is a driving factor for the current high rates of

ice loss (Abdel Jaber et al., 2019; Willis et al., 2012), which in turn

impact the stability of surrounding slopes. Other changes in local con-

ditions such as vegetation cover, snow accumulation, rivers and land-

slide dam or glacial outburst floods can also affect the long-term

motion of slow-moving landslides (Cook et al., 2018; Mititelu-Ionuş

et al., 2011; Van Wyk de Vries, Bhushan, et al., 2022; Yang

et al., 2021). In many instances, slow-moving landslide motion is

driven by the availability of water which increases internal pore-water

pressure and decreases the frictional strength of slopes (Bogaard &

Greco, 2016; Lacroix et al., 2020). Climate change is projected to

cause a complex array of hydrological changes around the globe, with

increases in precipitation in some regions and drying in others (Eyring

et al., 2016; John et al., 2022; Pörtner et al., 2022; Tebaldi

et al., 2021). In Nepal specifically, forecasts of the Asian monsoon

change predict an increase in both the mean and intensity of precipi-

tation over the 21st century (Chevuturi et al., 2018; Wu et al., 2022),

although there remains considerable uncertainty in the magnitude of

these changes. Basic information about the abundance and geo-

graphic distribution of slow-moving landslides is a requirement for

evaluating their sensitivity to future climate change but is currently

lacking in most regions of the globe.

Systematic mapping of slow-moving landslides across varied envi-

ronments can increase our sample size of multi-hazard interactions

between slow-moving landslides and other hazards—including earth-

quakes, shallow landslides, debris flows and landslide-dammed lakes—

and raises the possibility of identifying new interactions that had

previously been overlooked or unresolvable due to a lack of data.

Large-scale, automated slow-moving landslide mapping can be used

to identify new locations for detailed field investigations, either to

improve our understanding of slow-moving landslide processes, to

quantify of the sensitivity of these landslides to future climate change,

or to monitor particularly dangerous landslides.

5 | CONCLUSIONS

Slow-moving landslides cause gradual deformation of the Earth’s sur-

face and have traditionally been more difficult to detect due to this

limited surface signature. Here, we describe a proof-of-concept
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workflow to automatically map slow-moving landslides using freely

available optical satellite imagery. We first evaluate the workflow

using a well-documented slow-moving landslide, the Slumgullion

earthflow, and show that our automated workflow reproduces both

the spatial extent and velocity of this landslide while successfully

suppressing false positive identifications. We then investigate a com-

plex ice-marginal terrain in Chilean Patagonia and identify a candidate

>6 km2 composite failure in the eastern lateral moraine of Glaciar Ori-

ental. Finally, we identify 20 slow-moving landslide candidates in cen-

tral Sindhupalchok district, Nepal, more than half of which have

buildings constructed on their actively deforming regions. The design

of this workflow makes it well suited for upscaling to regional map-

ping of slow-moving landslides in previously data-poor regions. Slow-

moving landslides are an important link in many multi-hazard chains,

and more comprehensive databases will enable a better understanding

of the processes involved and improve monitoring and early warning

capabilities for potentially dangerous landslides.
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