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Abstract
We consider quantum metrology with several copies of bipartite and multipartite quantum states.
We characterize the metrological usefulness by determining how much the state outperforms
separable states. We identify a large class of entangled states that become maximally useful for
metrology in the limit of large number of copies, even if the state is weakly entangled and not even
more useful than separable states. This way we activate metrologically useful genuine multipartite
entanglement. Remarkably, not only that the maximally achievable metrological usefulness is
attained exponentially fast in the number of copies, but it can be achieved by the measurement of
few simple correlation observables. We also make general statements about the usefulness of a
single copy of pure entangled states. We surprisingly find that the multiqubit states presented in
Hyllus et al (2010 Phys. Rev. A 82 012337), which are not useful, become useful if we embed the
qubits locally in qutrits. We discuss the relation of our scheme to error correction, and its possible
use for quantum metrology in a noisy environment.

1. Introduction

Quantum entanglement plays a central role in quantum physics, as well as in quantum information
processing applications [1–3]. There have been numerous experiments creating entanglement with photons,
trapped cold ions, cold atoms and superconducting circuits [4–33]. In the multiparticle scenario, a state can
be not only separable or entangled, but it can possess various levels of k-particle entanglement [9–15, 34–39].
The highest form of entanglement for N particles in this case is the genuine multipartite entanglement
(GME), which is just N-particle entanglement. The main goal of quantum experiments is often proving that
the quantum state created has a high level of multipartite entanglement or even showing that it has GME,
which involves all the parties [16–33, 40]. In the latter case, something qualitatively new has been created
compared to experiments with fewer particles.

In quantum metrology, it is known that quantum entanglement is needed to surpass the classical limit in
the precision of parameter estimation [41]. Even weakly entangled bound entangled states can still be better

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ad1e93
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ad1e93&domain=pdf&date_stamp=2024-2-16
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2839-0472
https://orcid.org/0000-0002-5737-1393
https://orcid.org/0000-0002-3233-1336
https://orcid.org/0000-0003-2935-290X
https://orcid.org/0000-0003-4437-9414
https://orcid.org/0000-0002-9602-751X
mailto:toth@alumni.nd.edu
https://doi.org/10.1088/1367-2630/ad1e93


New J. Phys. 26 (2024) 023034 R Trényi et al

than separable states [42–44]. It is also known that in order to reach a higher and higher metrological
precision, higher and higher levels of multipartite entanglement is needed [45, 46]. This way, we can define
metrologically useful k-particle entanglement, characterizing quantum states that are more useful
metrologically than any quantum state with at most (k− 1)-particle entanglement. States that do not possess
metrologically useful k-particle entanglement form a convex set [45–47], similarly to other important sets of
quantum states in entanglement theory, such as for instance separable states, which makes it possible to
detect such entanglement with methods similar to the ones used in other areas of entanglement theory [1–3].
Then, a quantum state of N-particles possesses metrologically useful GME, if it has metrologically useful
N-particle entanglement. From these we can see that GME is needed to reach the maximal precision in
parameter estimation. On the other hand, surprisingly, there exist pure states containing GME that are not
more useful for metrology than separable states [48]. Therefore, verifying the presence of metrologically
useful entangled states is even more desirable than detecting entanglement without proving metrological
usefulness [49–51].

The question naturally arises: how could one activate those entangled states that are not useful for
metrology, using a scheme that is relatively simple to implement in the lab, thus we will avoid applying a
distillation step or local operations and classical communication (LOCC). We will consider multicopy
metrology such that only copies of the same party interact with each other, which is typical in activation
schemes in quantum information science [52–59]. Looking for an optimal setup is challenging since the
modeling of large quantum systems is needed.

We find that for N qudits of dimension d, there is a class of entangled states of at most rank-d that
become maximally useful compared to separable states in the limit of large number of copies. Surprisingly,
the maximal usefulness is attained exponentially fast in the number of copies. Unexpectedly, the operators to
be measured in order to verify the presence of metrologically useful GME turn out to be simple correlations.
ForM copies, we need to measure a modest number ofM correlation terms. It is remarkable that this class
contains metrologically useless, weakly entangled states that can even have an arbitrarily large overlap with
product states. Thus, such states attain metrologically useful GME in the multicopy scenario, which
contributes to the recent intensive research on activating entanglement using many copies [57–59]. A similar
approach has been used to study the activation of genuine multipartite nonlocality [60]. We will also
consider how various relevant quantum states outside the subspace mentioned above perform in the
multicopy scenario. Moreover, we will also show that embedding quantum states into higher dimensional
spaces can also activate metrologically useful entanglement. We will support all our findings with powerful
analytical and numerical methods that can describe multicopy metrology with large quantum systems.

Our method might offer an approach for quantum metrology in the noisy, intermediate-scale quantum
(NISQ) era [61]. In particular, we will suggest a procedure to force states into the desired class where
metrologically useful GME activation is guaranteed, if they left the subspace due to an imperfect preparation
or noise during the dynamics.

The paper is structured as follows. In section 2, we describe quantum metrology and the basic quantities
to characterize the metrological performance of quantum states. In section 3, we introduce the metrological
scheme we use when considering multiple copies of quantum states. In section 4, we present the main result
of the paper, that is, we identify a class of states for which metrologically useful GME activation is possible in
the many copy limit. Moreover, we also provide the measurements that need to be performed in order to
reach the maximal metrological precision. Then, we provide examples for quantum states inside and outside
the above-mentioned subspace and evaluate their performance with our scheme. Furthermore, we also
demonstrate the possibility of improving metrological performance simply by embedding quantum systems
into larger dimensions. In section 5, we discuss a strategy that can be applied if the quantum states leave the
subspace where metrologically useful GME activation is possible by making use of ideas from quantum error
correction. Finally, in section 6 we conclude the paper.

2. Quantummetrology

Before discussing our main results, we review some of the fundamental relations of quantum metrology
[62–72]. A basic metrological task in a linear interferometer is estimating the small angle θ for a unitary
dynamics

ϱθ = exp(−iHθ)ϱexp(+iHθ) , (1)
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where the Hamiltonian is the sum of local terms. In particular, for N-partite systems it is

H= h1 + h2 + · · ·+ hN, (2)

where hn for n= 1,2, . . . ,N are single-subsystem operators10. The precision is limited by the Cramér–Rao
bound as [62–76]

(∆θ)
2 ⩾ 1

νFQ [ϱ,H]
, (3)

where ν is the number of independent repetitions, and the quantum Fisher information, a central quantity in
quantum metrology is defined by the formula [62, 73–76]

FQ [ϱ,H] = 2
∑
k,l

(λk −λl)
2

λk +λl
|⟨k|H|l⟩|2. (4)

Here, λk and |k⟩ are the eigenvalues and eigenvectors, respectively, of the density matrix ϱ, which is used as a
probe state for estimating θ. From equation (3) it can be seen that the larger the quantum Fisher
information, the better precision we can achieve in parameter estimation. An efficient calculation method of
the quantum Fisher information for large systems appears in supplement A.

We are interested in the ratio of the quantum Fisher information of a state and the maximum of the
quantum Fisher information for the same Hamiltonian for separable states, which we call the metrological
gain for that particular unitary dynamics [47]

gH (ϱ) =
FQ [ϱ,H]

F (sep)
Q (H)

. (5)

The maximum for separable states is given as [43, 47, 77]

F (sep)
Q (H) =

N∑
n=1

[λmax (hn)−λmin (hn)]
2
, (6)

where λmax(X) and λmin(X) denote the maximum and minimum eigenvalues of X, respectively. Note that for
qubits, if

hn =
∑

l=x,y,z

cl,nσl, (7)

where cl,n are real numbers, and |⃗cn|= 1, then F (sep)
Q (H) = 4N [48]. We also define the metrological gain

optimized over all local Hamiltonians as

g(ϱ) =max
H

gH (ϱ) . (8)

If g(ϱ)> 1 then the state is entangled and we call it also metrologically useful. If hn all have identical lowest
and highest eigenvalues, then g(ϱ)> k implies metrologically useful (k+ 1)-partite entanglement. If
g(ϱ)> N− 1 then the state has metrologically useful GME, as discussed in appendix A. In general, for
quantum states g(ϱ)⩽ N holds [47]. Note also that the metrological gain g(ϱ) is convex in the quantum
state [47].

Finally, we mention that the variance and the Wigner–Yanase skew information defined as [78]

Iϱ (H) = Tr
(
ϱH2

)
−Tr(

√
ϱH√

ϱH) (9)

provide upper and lower bounds, respectively, on the quantum Fisher information as

4(∆H)2ϱ ⩾ FQ [ϱ,H]⩾ 4Iϱ (H) . (10)

It is often easier to calculate Iϱ(H) than FQ[ϱ,H], which will be used in our derivations.

10 For simplicity, we will denote by hn the operator acting on a single party as well as the operator acting on the entire system. The actual
meaning can be inferred from the context.
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Figure 1.Metrology withM copies of an N-partite quantum state ϱ. Each horizontal ellipse represents a copy of the quantum
state ϱ. The particles in the same vertical ellipse correspond to different copies of the same party An and they can interact with
each other during the evolution generated by the Hamiltonian hn for n= 1,2, . . .,N.However, there is no interaction between
particles corresponding to different parties, which is stressed by vertical dashed lines separating the parties.

3. Multicopy scheme for activation

In this section, we will consider metrology with several copies of the quantum state. First, we show that
without interaction during the evolution, one cannot obtain an improvement in gain. Thus, it is not at all
trivial that by adding new copies, the metrological gain will increase. Then, we study the setup based on an
interaction between the copies of the same party. In this case, even the maximal gain can be achieved with
very weakly entangled copies.

Let us considerM copies of a quantum state, all undergoing a dynamics governed by the same
HamiltonianH. Then, for the quantum Fisher information we obtain

FQ

[
ϱ⊗M,H⊗M

]
=MFQ [ϱ,H] , (11)

while the maximum for separable states also increases

F (sep)
Q

(
H⊗M

)
=MF (sep)

Q (H) . (12)

Thus, the metrological gain does not change

gH⊗M

(
ϱ⊗M

)
= gH (ϱ) . (13)

Here, this statement is true for all schemes realizing an unbiased estimator in which there is no interaction
during the quantum dynamics, however, after the dynamics the final states of the copies can be processed
with any quantum circuit, even with collective measurements acting on several copies. Note that the gain
remained the same since the quantum Fisher information given in equation (11) increasedM-fold, however,
the performance of separable states also increasedM-fold.

Hence, in order to increase the gain with the number of copies, we need to allow for interaction between
the copies corresponding to the same party during the quantum dynamics. We considerM copies of the

N-partite state ϱ acting on parties An, as shown in figure 1. The system consists of the subsystems A(m)
n for

m= 1,2, . . .,M and n= 1,2, . . .,N.We calculate gH[ϱ⊗M,H] with local Hamiltonians of the form
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hn =⊗M
m=1hA(m)

n
(14)

for n= 1,2, . . .,N, as well as more general local Hamiltonians. Extensive numerics show that hn of the
form (14) can often reach the maximal metrological performance, which makes the implementation
easier [47]. In supplement B, we consider a different type of hn with only two-body correlations.

We already know that any entangled bipartite pure state is maximally useful metrologically, in the limit of
large number of copies [47]. However, what is the situation in the multiqubit case, relevant for quantum
metrology with particle ensembles? What can we tell about the usefulness of mixed states?

4. Ametrologically useful GME activatable subspace

Here, we present the main result of the paper, that is, we identify a subspace in which all entangled
multi-qudit quantum states can be made maximally useful. We also identify the measurements that have to
be performed in order to achieve the maximal precision in metrology.

Result 1. Entangled states of N⩾ 2 qudits of dimension d are maximally useful in the limit of large number
of copies if they live in the

{|000..00⟩, |111..11⟩, . . ., |d− 1,d− 1, ..,d− 1⟩} (15)

subspace. The maximally achievable metrological usefulness is attained exponentially fast in the number of
copies. States that can be transformed to this form with local unitaries have also the same property.

Proof. Let us consider

ϱ=
d−1∑
k,l=0

ckl (|k⟩⟨l|)⊗N
, H=

N∑
n=1

(
D⊗M

)
An
, (16)

with ckl being the matrix elements of ϱ in the basis from equation (15) and D= diag(+1,−1,+1,−1, . . .). To
simplify the calculation, we use the mapping

ϱ→ ϱ̃=
d−1∑
k,l=0

ckl|k⟩⟨l|, H→ H̃= ND⊗M, (17)

for which FQ[ϱ
⊗M,H] = FQ[ϱ̃

⊗M,H̃] holds. We can bound the quantum Fisher information as

FQ

[
ϱ̃⊗M,H̃

]
⩾ 4Iϱ̃⊗M

(
H̃
)
, (18)

where the Wigner–Yanase skew information is

Iϱ̃⊗M

(
H̃
)
= N2

[
1−Tr

(√
ϱ̃D
√
ϱ̃D
)M]

. (19)

In the limit of large number of copies, if [
√
ϱ̃,D] ̸= 0 then the skew information given in equation (19)

converges to the maximum. In this case, the state overcomes 4N, the separable limit of the quantum Fisher
information given in equation (6), hence all such states are entangled. For d⩾ 3, apart from the Hamiltonian
D, we should try other Hamiltonians that are obtained from D by permuting its diagonal elements. If

√
ϱ̃

does not commute with one of these Hamiltonians, then, in the limit of large number of copies, the skew
information with that Hamiltonian converges to the maximum, thus the state is entangled. If

√
ϱ̃ commutes

with D and with all the Hamiltonians obtained after permuting the diagonal elements, then ckl = 0 must hold
for all k ̸= l. Such a state is a mixture of product states.

The Wigner-Yanase skew information given in equation (19) can be written out as follows for d= 2

I

N2
= 1−

[
8|c01|2

√
−c200 + c00 − |c01|2 + 4(c00 − 1) c00 + 1

(1− 2c00)
2
+ 4|c01|2

]M
(20)

if c01 ̸= 0, otherwise I= 0. Moreover, if c00 = c11 = 1/2 then equation (20) can be simplified to

I(c01,N) = N2
[
1−

(
1− 4|c01|2

)M/2
]
. (21)

5
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In result 1, we computed lower bounds on the quantum Fisher information. At this point, it could
happen that the necessary measurements might be highly nonlocal operators. We will now show that,
surprisingly, with simple operators it is possible to reach the maximal precision in parameter estimation. The
operators to be measured are sums of simple multiparty correlations.

Result 2. To achieve the maximal usefulness for the states appearing in result 1, the following operator has to
be measured

M=
M∑

m=1

Z⊗(m−1) ⊗Y⊗Z⊗(M−m), (22)

where we define the multi-qubit operators acting on a single copy

Y=

{
σ⊗N
y for odd N,

σx ⊗σ
⊗(N−1)
y for even N,

Z= σz ⊗1⊗(N−1), (23)

whereσx,σy, andσz are the Pauli spinmatrices. By taking sufficientlymany copies, the precision corresponding
to the metrologically useful GME (g=N) can be approached fast and the required number of copies depends
on how noisy the state is. The proof is given in appendix B.

Next, we will look at some consequences and applications of result 1, and we will also test the
performance of our scheme for states living outside the subspace of result 1. Moreover, we will also provide
some results concerning the single-copy case.

4.1. Noisy GHZ states
The method given in result 1 can be used to calculate the precision of the multicopy metrology with the state

ϱp = p|GHZ⟩⟨GHZ|+(1− p)
(|0⟩⟨0|)⊗N

+(|1⟩⟨1|)⊗N

2
, (24)

where the Greenberger–Horne–Zeilinger (GHZ) state, playing a central role in quantum information science
and quantum metrology, is [79]

|GHZ⟩= 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
. (25)

The state ϱp is the one obtained after the particles of a GHZ state pass through a phase-noise channel, which
is a relevant type of noise in many physical systems [80].

Let us see a concrete example withM= 2 copies of the three-qubit case of the state ϱp given in
equation (24) with p= 0.8. Then, we have

FQ [ϱ,HM=2] = 28.0976, (26)

while in the single-copy case we have

FQ [ϱ,HM=1] = 23.0400. (27)

Here,HM=2 andHM=1 are the Hamiltonians for the two-copy and single-copy cases, respectively, as defined
in equation (16). For these two cases, the upper bounds for the quantum Fisher information for separable
states are

F (sep)
Q (HM=1) = F (sep)

Q (HM=2) = 12. (28)

Hence, for the corresponding metrological gains

gM=1 = 1.92< gM=2 = 2.34 (29)

holds.
The state ϱp turns out to be maximally useful in the limit of very many copies if p> 0 as it is an entangled

element of the set in result 1. For ϱp, a lower bound on the quantum Fisher information can be obtained
using the relation with the quantum Fisher information and the Wigner-Yanase skew information given in
equation (18) and the inequality given in equation (21) with c01 = p/2.We plot the lower bound on the
metrological gain in figure 2. It can be seen that the lower bound approaches the theoretical maximum
rapidly, as the number of copies is increasing.

6
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Figure 2.Multicopy metrology with the noisy GHZ state given in equation (24) for p= 0.8. (solid) Lower bound on the
metrological gain as a function of N.M denotes the number of copies. The state and the Hamiltonian are given in equation (16).
We used the lower bound on the quantum Fisher information given in equations (18) and (21), where, for the case of ϱp we have

to set c01 = p/2.Moreover, the separable limit is F(sep)
Q = 4N. (dotted) The maximal gain, gmax = N. (inset) The increase of the

gain with the number of copies for N= 10 for various values for p. (dotted) The maximal gain gmax = 10. (dashed dotted) Curve
corresponding to g= 1.

4.2. GHZ-like states with qudits of dimension d> 2
Result 1 also implies that all entangled pure states of the form

d−1∑
k=0

σk|k⟩⊗N (30)

with
∑

k |σk|2 = 1 are maximally useful in the limit of large number of copies. This can be seen as follows.
Pure states given in equation (30) form a subset of the states considered in result 1. Among them, only states
of the type |k⟩⊗Nare separable, therefore this is the only case where result 1 does not apply.

Surprisingly, in the single-copy case not all entangled states of the type given in equation (30) are useful.
In particular, a single copy of the state given in equation (30) for d= 2 and N⩾ 3 is useful metrologically if
and only if [48]

1/N< E := 4|σ0σ1|2. (31)

For a short proof of this fact, which is more general than the one presented in [48], see appendix C. In
contrast, in the bipartite (N = 2) case all entangled pure states are metrologically useful [47] and to some
extent the following result can be considered as a generalization of this fact.

Result 3. All entangled pure states of the form given in equation (30) with
∑

k |σk|2 = 1 are useful for d⩾ 3
and N⩾ 3.

Proof. Let us see first the case of odd d⩾ 3 and the block diagonal matrix

h(odd)n = diag(1,Xd−1) , (32)

where Xd−1 is a (d− 1)× (d− 1)matrix with 1’s in the antidiagonal and all other elements being 0. Hence,

FQ

[
ϱ,H(odd)

]
= 4N+ 4N|σ1|2

[
N
(
1− |σ1|2

)
− 1
]
, (33)

where the separable limit is F (sep)
Q (H(odd)) = 4N. With an appropriate permutation of the local basis states,

fromH(odd) we can obtain a Hamiltonian for which σk appears in the place of σ1 in equation (33). Hence, if
for any σk

0< |σk|2 < (N− 1)/N (34)

7
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holds then the given state is useful. If the state is entangled, then at least two of the σk are nonzero, and one of
them fulfills equation (34).

Let us now consider the case of even d⩾ 4, with the block diagonal matrix

h(even)n = diag(1,1,Xd−2) , (35)

for which the quantum Fisher information is obtained as

FQ

[
ϱ,H(even)

]
= 4N+ 4N

(
|σ1|2 + |σ2|2

)[
N
(
1− |σ1|2 − |σ2|2

)
− 1
]

(36)

holds. Similarly to the case of odd d, with an appropriate permutation of the local basis states, from H(even)

we can obtain a Hamiltonian for which σk and σl with l ̸= k appear in the place of σ1 and σ2, respectively, in
equation (36). Hence, if

0< |σk|2 + |σl|2 < (N− 1)/N (37)

then the state is useful. If the state is entangled, then at least two of the σk are nonzero. We have to examine
the following cases. If the number of nonzero σk is three or more, then two of the σk will fulfill equation (37).
If only two of them are nonzero then we can consider a problem of odd d with d= 3 with one σk set to zero,
and the state is useful.

4.3. Activation of metrologically useful entanglement by embedding
A surprising consequence of result 3 is that all entangled states of the form given in equation (30) are useful
for d= 2, if we embed the qubits locally in qutrits, and consider a state as in equation (30) for d= 3 by setting
σ3 = 0. Thus, just by increasing the local dimension of the system, the states that have been found useless in
[48] can be activated and made useful. It is also clear from the proof of result 3 that in this case, if we take
1/N= 4|σ0σ1|2 (cf equation (31)) then for the asymptotic case of N→∞, and for a single copy we obtain

FQ = 5N, g= 5/4, (38)

by embedding, while F (sep)
Q = 4N.Here, in the spirit of the proof of result 3, we considerH(odd) and also

other Hamiltonians obtained from it after the local basis states are permuted. Thus, we improve metrological
performance in the single-copy scenario, just by embedding the quantum states locally into a higher
dimensional system. This can happen since after the embedding, new types of dynamics become possible
that lead out from the original space. If such dynamics is allowed then the quantum state can outperform all
separable states. Activation by embedding is related to activation by ancillas studied in [47]. The effect of
ancillas have also been studied in [81].

4.4. Activation of metrologically useful GME from a non-useful state
Let us take an entangled state of the form given in equation (30) for d= 2 and N⩾ 3 such that equation (31)
does not hold, which means that the state is non-useful (g⩽ 1).We note that such a state can even be
arbitrarily close to the fully polarized state. Despite being non-useful, according to result 1, just by having
several copies, we can reach metrologically useful GME with the above state (g=N). For further details see
supplement C. Thus, metrologically useful GME can be detected in these states [45, 46].

The related problem of activating GME is at the center of attention in entanglement theory [57–59].
Note, however, that in our examples all states have been GME even in the single-copy case. It remains an
important open problem whether metrologically useful GME can be activated using several copies of a
quantum state without GME.

4.5. Mixtures ofW andW states
Now, in order to demonstrate that states living outside of the subspace described in result 1 can also be
improved with our multicopy scheme let us consider a mixture ofW state defined as

|W⟩= 1√
N
(|100. . .00⟩+ |010. . .00⟩+ · · ·+ |000. . .01⟩) , (39)

and theW state given as

|W⟩= 1√
N
(|011. . .11⟩+ |101. . .11⟩+ · · ·+ |111. . .10⟩) . (40)

8
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Figure 3. Dependence of the metrological gain on p for three-qubit mixtures of the W state and theW state and the three-qubit
product state |000⟩ given in equation (42). (solid) Single copy and (dashed) two copies. (top two curves) States with r= 0, that is,
mixtures of the three-qubitW andW states. (bottom two curves) States with q= 0,mixtures of the three-qubitW state and
|000⟩. (Individual dots) Three-copy case for q= 0 and p= 0.4,0.45, and 0.5. For all of them, g> 1 holds.

It is known that for three-qubit pure states, genuine multipartite entangled states can be equivalent to GHZ
states orW states under stochastic LOCC (SLOCC) [34]. Thus,W states represent a type of entanglement
very different from that of GHZ states.

Let us examine first the N = 3 case. Using the numerical methods of [47] that maximize the gain over
Hamiltonians, we find that the optimal Hamiltonian for the |W⟩ and the |W⟩ state is

H=
N∑

n=1

σ(n)
x . (41)

Now, let us now consider a broader family of states given by the mixture

ϱp,q = p|W⟩⟨W|+ q|W⟩⟨W|+ r|000⟩⟨000|, (42)

where p,q, r⩾ 0 and p+ q+ r= 1. First, let us examine the r= 0 case. Such states have been studied for odd
N, since they are genuine multipartite entangled, still possess no multipartite correlations for p= 1/2
[82–84]. We find that the metrological gain for states given in equation (42) for N = 3 is minimal for p= 1/2
and the optimal Hamiltonian is

H= σ(1)
z +σ(2)

z −σ(3)
z , (43)

which is translationally not invariant. For p≈ 1 and for p≈ 0 the maximal gain for two copies is the same as
for a single copy, while for intermediate p values the gain for two copies is larger, as can be seen in figure 3.

Next, let us consider states given in equation (42) in the q= 0 case. The maximal gain for two copies is
always larger than for a single copy for 0< p< 1 as can be seen in figure 3. We also tested the three-copy case
for some p values for which g⩽ 1. The metrological gain increases and states around p= 0.5 are activated.
Note that the state corresponding to p= 0.5 is the state obtained from a four-qubit W-state, after a particle is
lost. Thus, we can make such a state useful, if several copies are available.

For N = 4 qubits and for a single copy, we find that the optimal Hamiltonian is of the type given in
equation (41), for states |W⟩, |W⟩, and ϱ1/2,1/2. In such cases, the calculation of the quantum Fisher
information can be simplified as described in supplement D.

Note that W states have been created experimentally, for instance, in trapped cold ions and photons [20,
85], while quantum metrology has also been considered with the W and W states [86]. The type of noise
considered can also be realized experimentally. We will discuss later the experiments creating GHZ states.

9
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4.6. Cluster states
In this section, we study cluster states. They are highly entangled and can be used as a resource in
measurement-based quantum computing [87, 88]. Certain type of cluster states are known to be useless in
the single-copy case in linear interferometers. Here, we show that surprisingly they remain useless even for
multicopy metrology.

Result 4. The ring cluster states for N⩾ 5 are not useful even in the limit of large number of copies.

Proof. Since the state is pure, the quantum Fisher information equals the variance times four. Let us consider
an N-qubit ring cluster state |RN⟩, which is defined by the equations

σ(n−1)
z σ(n)

x σ(n+1)
z |RN⟩= |RN⟩ (44)

for n= 1,2, . . .,N,whereσ(0)
z ≡ σ

(N)
z andσ(N+1)

z ≡ σ
(1)
z . For ring cluster states forN⩾ 5 all two-qubit reduced

density matrices are the completely mixed state [48]. Hence, for the reduced two-qubit states ⟨σk ⊗σl⟩= 0
holds for k, l= x,y,z, while for all reduced single-qubit states ⟨σl⟩= 0 holds for l= x,y,z. It is easy to see that
this statement is also true for themulticopy case. Due to that, the variance equals the variance of the completely
mixed state and can be obtained as

FQ [ϱ,H] = 4(∆H)
2
ϱcm

= 4
N∑

n=1

Tr
(
h2n
)
/2M, (45)

where we assumed Tr(hn) = 0, and hn are now 2M × 2M matrices representing operators acting on An. The
quantum Fisher information given in equation (45) is never larger than the separable limit in equation (6)
based on the well-known relation [89, 90]

2M∑
k=1

λ2
k (hn)/2

M ⩽ [λmax (hn)−λmin (hn)]
2
/4, (46)

where λk(hn) denote the eigenvalues of hn.

4.7. Two-qubit isotropic state
Here, we considerM copies of the two-qubit isotropic state, which is defined as [91, 92]

ϱiso (p) = p|Φ+⟩⟨Φ+|+(1− p)
1

4
, (47)

where p is a noise parameter, and the maximally entangled state is

|Φ+⟩= 1√
2
(|00⟩+ |11⟩) . (48)

For the Hamiltonian, let us choose hn = σ⊗M
z for n= 1,2.

The results are illustrated in figure 4 for two different noise parameters. From this, we can see that there is
an optimal number of copies above which the metrological performance does not improve. In the example
with lower noise, the state is useful and the performance improves forM= 2,3 copies, but the gain starts to
decrease fromM= 4 copies. In the example with higher noise, the quantum Fisher information is increasing
withM but still does not overcome the separable limit.

To support the above observations from figure 4, we can obtain a general upper bound on the quantum
Fisher information as

FQ ⩽ 4⟨H2⟩= 4
∑
n

w2
n + 4

∑
n̸=n ′

⟨hn ⊗ hn ′⟩⩽ 4

(∑
n

wn

)2

, (49)

where we used that

h2n = w2
n1, F (sep)

Q (H) = 4
∑
n

w2
n (50)

10
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Figure 4. The quantum Fisher information, and the upper and lower bounds given in equation (10) as a function of the number
of copiesM for the isotropic state of two qubits with hn = σ⊗M

z . (solid) FQ[ϱ
⊗M
iso ,H], (dashed) the variance 4(∆H)2

ϱ⊗M
iso

,

(dotted) 4I
ϱ⊗M
iso

(H) are plotted, as well as (dashed dotted) the maximal quantum Fisher information for separable states,

F(sep)
Q (H). The noise parameter of the isotropic state is (top three curves) p= 0.75 and (bottom three curves) p= 0.35.

hold, where wn > 0 is some constant11. Then, we have

⟨hn ⊗ hn ′⟩=
(
⟨σ(n)

z ⊗σ
(n ′)
z ⟩ϱ

)M

. (51)

Thus, if ⟨σ(n)
z ⊗σ

(n ′)
z ⟩ϱ < 1 then the upper bound on the quantum Fisher information given in

equation (49) is going to the separable limit for largeM.

5. Relation to the bitflip code

Even if the initial state is ideally within the desired subspace of result 1, in practice, due to imperfect
preparation or noise during the dynamics it can eventually be outside, where metrologically useful GME
activation is no longer guaranteed. Here, we suggest a method to transform states not living in the subspace
of result 1 into the subspace of result 1 based on ideas stemming from quantum error correction. This is to
make sure that they can achieve maximal metrological performance with our scheme.

Error correction has been considered for quantum metrology [93–95]. Using a bitflip error correcting
code, a single qubit is stored in many qubits in the subspace mentioned in result 1 [80, 96–98]. The syndrome
measurements and restoring steps of the bitflip code can be used to move the state into the desired subspace
even in our case. Note that we do not need to restore or protect a given quantum state, which is usually the
case in error correction. We need only to obtain a quantum state that has a large metrological gain. The error
correcting step mentioned above can be carried out initially, and also throughout the dynamics. We can even
avoid applying the correcting step. It is sufficient to employ a different Hamiltonian to states with different
syndrome measurement results. We also analyze further relations to error correction in supplement E.

GHZ states have been realized in trapped cold ions [16, 17, 25, 31], as well as error correction has also
been carried out [99–102]. The GHZ states created have errors both in the diagonal and the off-diagonal
elements of the density matrix when given in the computational basis. During the metrology, the main type
of error is the decay of the off-diagonal elements [25]. Errors in the off-diagonal elements can be mitigated
by multicopy metrology using hn = σ⊗M

z , while errors in the diagonal elements can be overcome by the error
correction scheme above. Even if the error correcting steps are not applied, the multicopy scheme can

11 It is sufficient to consider the case when h2n ∝ 1 for n= 1,2, ..,N. If an operator hn is not of the above form, then we can consider the
local Hamiltonians h ′

n with eigenvalues±λmax(h ′
n) and eigenvectors identical to those of hn, which fulfill (h ′

n)
2 ∝ 1. It has been shown

that the metrological gain of at least one of the HamiltoniansH constructed from the local Hamiltonians above is larger or equal to that
of the original Hamiltonian [47].
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increase the metrological gain. Superconducting circuits have also been used to create GHZ states [24, 30]
and implement error correction [103–108]. Error correction has recently been carried out in reconfigurable
atom arrays [109]. Our proposal might offer a viable information processing scenario in the NISQ era [61],
in which simple error mitigation technics are needed [110–121].

6. Conclusion

In summary, we have presented an approach to activate metrologically useful multipartite entanglement. If
the state is in a certain subspace, then, even if it was weakly entangled, it becomes maximally useful
compared to separable states in the limit of large number of copies, hence it will possess metrologically useful
GME. Operations similar to the ones applied in error correction can be used to force the state into the
desirable subspace. Our method involves simple measurements and can immediately be tested in present day
quantum devices requiring moderate resources.

We have also shown that our scheme can improve the metrological performance of states living outside
the above-mentioned subspace, like, for example for the two-qubit isotropic state. Moreover, we have also
demonstrated the possibility of improving metrological performance by embedding quantum states locally
into higher dimensions.

Deciding whether a quantum state is entangled or not is a hard problem, apart from small quantum
systems. Deciding whether a quantum state possess metrologically useful entanglement for a given
Hamiltonian is an easy task [1]. However, deciding whether a state is metrologically useful in general needs
an optimization over all local Hamiltonians [47]. It would be interesting to clarify whether this task is also
computationally hard.
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Appendix A. Metrological gain andmultipartite entanglement

We generalize the findings of [45, 46] from qubits to higher dimensional systems. Let us assume that
λmax(hn) and λmin(hn) are identical for all parties n= 1,2, . . .,N. Then, based on equation (6),

F (sep)
Q (H) = NΛ2 (A.1)

holds, where we define the difference between the largest and the smallest eigenvalue as

Λ = λmax (h1)−λmin (h1) . (A.2)

Let us consider a pure state of the form

⊗l|Ψkl⟩, (A.3)
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where |Ψkl⟩ denotes a pure state of kl qudits and let us define the entanglement depth as k=maxl kl. Then,
for the quantum Fisher information we obtain that a series of inequalities

FQ [ϱ,H]⩽ Λ2
∑
l

k2l ⩽ Λ2
[
sk2 +(N− sk)2

]
⩽ Λ2Nk, (A.4)

where s= ⌊N/k⌋. The first inequality is based on [45, 46]. For the second one, we need to prove that (page
68, [122])

sk2 +(N− sk)2 ⩽ Nk. (A.5)

By substracting sk2 from both sides of equation (A.5), we arrive at

(N− sk)2 ⩽ k(N− sk) . (A.6)

Equation (A.6) is evidently true, knowing that 0⩽ N− sk< k.
Due to the convexity of the quantum Fisher information, the same bound holds also for quantum states

that are mixtures of pure states with an entanglement depth at most k.Hence, we obtain that

g> k (A.7)

implies (k+ 1)-partite entanglement. From equation (A.4), a more complicated, but somewhat stronger
relation also follows

g>
[
sk2 +(N− sk)2

]
/N. (A.8)

Appendix B. Optimal measurements for the GME activatable subspace in result 1

First, we will present the measurement operators explicitly for the N-qubit state

ϱ(p,q, r) = p|GHZq⟩⟨GHZq|+(1− p)
[
r(|0⟩⟨0|)⊗N

+(1− r)(|1⟩⟨1|)⊗N
]
, (B.1)

where we choose a parametrization convenient for our derivation. Here, 0< p⩽ 1, 0⩽ r⩽ 1, and the
generalized GHZ state is [79]

|GHZq⟩=
√
q|000..00⟩+

√
1− q|111..11⟩, (B.2)

where 0< q< 1 is real. Thus, the state ϱ(p,q, r) turns out to be maximally useful in the limit of very many
copies if p> 0 and 0< q< 1, otherwise the state is a separable state.

The error propagation formula, essentially, characterizes the uncertainty of the parameter estimation if
we measureM as

(∆θ)
2
M =

(∆M)
2

⟨i [M,H]⟩2
. (B.3)

The minimum is taken whenM equals the symmetric logarithmic derivative,Mopt which can be obtained
from an explicit formula for a given ϱ andH [64–68]. ForM= 1, it is well known that [16, 17, 25]

Mopt = σ⊗N
x . (B.4)

On the other hand, forM= 2 and N = 3, for q= r= 1/2 the optimal operator fulfills the following relations

⟨00|Mopt|00⟩= 0, ⟨00|Mopt|11⟩= 0,

⟨01|Mopt|11⟩=−i, ⟨00|Mopt|01⟩=+i, (B.5)

where |0⟩= |000⟩ and |1⟩= |111⟩. Based on these, one can obtain the optimal operator as

Mopt = σy ⊗σy ⊗σy ⊗σz ⊗1⊗1+σz ⊗1⊗1⊗σy ⊗σy ⊗σy. (B.6)

Each correlation term is inverting the qubits at one of the copies and adds an additional phase conditioned
on the state of the other copy.
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Based on these observations, with straightforward algebra, it is easy to see that the operator, given by
equation (22) leads to the following error propagation formula

(∆θ)
2
M =

1/ [4q(1− q)]+ (M− 1)p2

4MN2p2
. (B.7)

If the condition

1/ [4q(1− q)]≪ (M− 1)p2 (B.8)

is fulfilled andM≫ 1 holds, we have

(∆θ)
2
M ≈ 1

4N2
, (B.9)

which corresponds to the Heisenberg limit, which is the best achievable precision. Thus, measuring the
operators, we can reach the Heisenberg limit for all the entangled states of the subspace defined in result 1 in
the multiqubit case.

Thus, for a given noise level p and for a given value of the parameter q, we need

M≈ 1

4q(1− q)p2
(B.10)

copies, which already leads to an almost optimal precision. Much more copies will increase the precision
somewhat, but will not lead to a much better performance. Moreover, the number of copies needed,M, does
not increase even if N is increasing. Note that the operator given by equation (22) is not the optimal one for
M⩾ 3. The optimal operator contains more correlation terms.

The c matrix used in the proof of result 1 can be given for the multiqubit state given in equation (B.1) as

c=

(
(1− p) r+ pq p

√
(1− q)q

p
√
(1− q)q (1− p)(1− r)+ p(1− q)

)
. (B.11)

This shows that we considered the most general c with the only exception that c01 is real and positive. The
variable c01 can always be made real and positive with an appropriate basis transformation

|1⟩ → exp(−iϕ) |1⟩, (B.12)

where ϕ is an angle. Consequently, theM operator corresponding to a state with a complex or a negative c01
can be obtained by carrying out the inverse of such a basis transformation on σx and σy in the definition
given in equation (22).

Let us now consider the case of higher even dimensions d. Let us consider a concrete example, a state of
higher dimensional qudits that is analogous to a GHZ state given as

|Ad⟩=
1√
d

d−1∑
k=0

|k⟩⊗N, (B.13)

where d is the dimensional of the qudits. We can obtainM and all the hn operators for metrology with the
state given in equation (B.13) from the operators used in the qubit case using the substitution

σl →⊕d/2
k=1σl (B.14)

for l= x,y,z. After the transformation, the operator to be measured is of the form given in equation (22),
where X, Y, and Z are defined as

Y=


(
⊕d/2

k=1σy

)⊗N
for odd N,

⊕d/2
k=1σx ⊗

(
⊕d/2

k=1σy

)⊗(N−1)
for even N,

Z=
(
⊕d/2

k=1σz

)
⊗1

⊗(N−1)
d , (B.15)

where 1d is a d× d identity matrix. Note that

⊕d/2
k=1σz = D, (B.16)
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where D appears in the definition of the Hamiltonian given in equation (16). Thus, we really map the
Hamiltonian given in result 1 for qubit systems to the Hamiltonian given in result 1 for qudit systems. The
qubit states can also be mapped to qudit states as

|0⟩ → |0̃⟩= 1√
d/2

(|0⟩+ |2⟩+ |4⟩+ . . .) , (B.17)

and

|1⟩ → |1̃⟩= 1√
d/2

(|1⟩+ |3⟩+ |5⟩+ . . .) . (B.18)

Based on the transformations above, the multiqubit state given in equation (24) corresponds to the
multiqudit state

p|Ad⟩⟨Ad|+(1− p)

(
|0̃⟩⟨0̃|

)⊗N
+
(
|1̃⟩⟨1̃|

)⊗N

2
. (B.19)

For theM andH obtained via equation (B.14) from the operators used for the qubit case, for the error
propagation formula we obtain the same as in the qubit case we get for the state given in equation (24), i.e.
equation (B.7) for q= 1/2. Thus, the setup reaches the Heisenberg limit given in equation (B.9) in the case
of sufficiently largeM, if p> 0.

Finally, let us consider the noisy state

p|Ad⟩⟨Ad|+(1− p)
1

d

d−1∑
k=0

|k⟩⟨k|⊗N. (B.20)

The error propagation formula with the transformedM andH give the same result for the state given in
equation (B.20) as for the state given in equation (B.19), since the operators appearing in the error
propagation formula cannot distinguish the two states from each other. In particular, they cannot distinguish
the superposition of |n⟩ and |n+ 2⟩ from their mixture. Thus, even for the state given in equation (B.20), the
error propagation formula is given by equation (B.7) for q= 1/2 and the setup reaches the Heisenberg limit
given in equation (B.9) in the case of sufficiently largeM, if p> 0.

Appendix C. GHZ-like states

The condition for the usefulness of multipartite states given in equation (30) for d= 2 and for N⩾ 3 has
been presented already in [48], considering Hamiltonians given in equation (7), where cl,n are real numbers,
and |⃗cn|= 1. For completeness, we present a very short proof, which also includes the case |⃗cn| ̸= 1.

Result 5. A single copy of the state given in equation (30) for d= 2 is useful metrologically if and only if
equation (31) holds.

Proof. Let us consider local Hamiltonians of the type given in equation (7), where |⃗cn|= Ln. For this case, we
obtain

⟨H2⟩=
∑
n

L2n +

(∑
n

cz,n

)2

−

(∑
n

c2z,n

)
,

⟨H⟩2 =

(∑
n

cz,n

)2

(1− E) . (C.1)

Let us first assume that E> 1/N. Then, we have the series of inequalities

gH = 1+
E
(∑

n cz,n
)2 −∑n c

2
z,n∑

n L
2
n

⩽ 1+
(E− 1/N)

(∑
n cz,n

)2∑
n L

2
n

⩽ 1+
(E− 1/N)

(∑
n Ln
)2∑

n L
2
n

⩽ N · E. (C.2)

In the first inequality, we used the inequality between the arithmetic and quadratic means for the

cz,n,
(∑

n cz,n
)2
/N⩽

∑
n c

2
z,n. In the third inequality, we used the same relation for Ln. All inequalities are
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saturated if cz,n = Ln for all n and they are all equal to each other. Thus, in this case we have gH > 1 for a
certain choice of localH, hence the state is useful.

Next, let us consider the E⩽ 1/N case. Now, the first inequality in equation (C.2) is still valid and it leads
to gH ⩽ 1 for any choice of localH, hence the state is not useful.

Thus, we obtain that the state is useful if and only if equation (31) is fulfilled.

Note also that for odd N, states given in equation (30) for d= 2 do not violate Bell inequalities with full
correlation terms and two two-outcome observables per party if E< 1/2N−1 [123] (cf equation (31)).
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[12] McConnell R, Zhang H, Hu J, Ćuk S and Vuletíc V 2015 Nature 519 439–42
[13] Hosten O, Engelsen N J, Krishnakumar R and Kasevich M A 2016 Nature 529 505–8
[14] Zou Y-Q, Wu L-N, Liu Q, Luo X-Y, Guo S-F, Cao J-H, Tey M K and You L 2018 Proc. Natl Acad. Sci. USA 115 6381–5
[15] Xin L, Barrios M, Cohen J T and Chapman M S 2023 Phys. Rev. Lett. 131 133402
[16] Sackett C et al 2000 Nature 404 256–9
[17] Leibfried D et al 2005 Nature 438 639–42
[18] Kiesel N, Schmid C, Weber U, Tóth G, Gühne O, Ursin R and Weinfurter H 2005 Phys. Rev. Lett. 95 210502
[19] Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature 434 169–76
[20] Häffner H et al 2005 Nature 438 643–6
[21] Kiesel N, Schmid C, Tóth G, Solano E and Weinfurter H 2007 Phys. Rev. Lett. 98 063604
[22] Wieczorek W, Krischek R, Kiesel N, Michelberger P, Tóth G and Weinfurter H 2009 Phys. Rev. Lett. 103 020504
[23] Prevedel R, Cronenberg G, Tame M S, Paternostro M, Walther P, Kim M S and Zeilinger A 2009 Phys. Rev. Lett. 103 020503
[24] Song C et al 2017 Phys. Rev. Lett. 119 180511
[25] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M and Blatt R 2011 Phys.

Rev. Lett. 106 130506
[26] Huang Y-F, Liu B-H, Peng L, Li Y-H, Li L, Li C-F and Guo G-C 2011 Nat. Commun. 2 546
[27] Wang X-L et al 2018 Phys. Rev. Lett. 120 260502
[28] Friis N et al 2018 Phys. Rev. X 8 021012
[29] Gong M et al 2019 Phys. Rev. Lett. 122 110501
[30] Song C et al 2019 Science 365 574–7
[31] Pogorelov I et al 2021 PRX Quantum 2 020343
[32] Thomas P, Ruscio L, Morin O and Rempe G 2022 Nature 608 677–81
[33] Cao S et al 2023 Nature 619 738–42
[34] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[35] Acín A, Bru D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87 040401
[36] Sørensen A S and Mølmer K 2001 Phys. Rev. Lett. 86 4431–4
[37] Gühne O, Tóth G and Briegel H J 2005 New J. Phys. 7 229
[38] Vitagliano G, Apellaniz I, Kleinmann M, Lücke B, Klempt C and Tóth G 2017 New J. Phys. 19 013027
[39] Vitagliano G, Colangelo G, Martin Ciurana F, Mitchell MW, Sewell R J and Tóth G 2018 Phys. Rev. A 97 020301
[40] Tóth G and Gühne O 2005 Phys. Rev. Lett. 94 060501
[41] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
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