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Abstract 
 

Flood hazards that originate in the Himalayas threaten the lives and livelihoods of 

millions of people in the downstream Ganga plain. The Himalayas are a region with high 

geomorphic activity that is sensitive to anthropogenic climate change. The development 

of effective flood management strategies, therefore, needs to predict the impact of 

geomorphic and climatic changes on the flood hazards which is not possible with 

currently existing hazard modelling frameworks.  

This thesis introduces an environmental modelling framework to predict potential flood 

hazards for the projected climatic and related topographic conditions that can be used 

to adapt to future flood hazards. This framework links hydrological, statistical, morpho- 

and hydrodynamic models to predict: i) the climate change impact on the flood discharge 

into the floodplain; ii) the topographic evolution of the floodplain for the projected flood 

flows, and; iii) the potential spatial flood hazard characteristics in the floodplain for the 

projected flood discharges and new topographies. This modelling framework is 

developed and implemented for the Central Himalayan Karnali River in Nepal.  

The predictions of the potential hazards provide evidence that flood hazards in the 

Karnali River will intensify with increased greenhouse gas emissions. The current 1-in-

100-year flood discharge into the plain (1975 – 2014) is projected to increase by 40% 

(medium emissions) and by 79% (high emissions) at the end of the century (2060 – 

2099) (median predictions). The return period of the current 1-in-100-year event is 

predicted to decrease to 11 – 16 years (medium emissions) and 2 – 7 years (high 

emissions). The projected increase in the flood discharge intensifies the magnitude of 

topographic change in the downstream floodplain. 

The projected increases in the flood discharge cause deeper inundations that extend 

further. The current 1-in-100-years event (1975 – 2014) inundates 39% of the simulated 

area of the floodplain. This extent is projected to increase to 51% (medium emissions) 

and 60% (high emissions) at the end of the century (2060 – 2099) (median predictions). 

The predictions indicate that topographic change alters flood hazards on the local scale 

and that river and flood engineering potentially intensifies the downstream hazard.  

The proposed modelling framework allows continued assessment of flood risk enabling 

the flood management strategies to be developed for future conditions. 

Recommendations are provided to improve the predictions by adjusting the modelling 

framework and targeted investments in surveys.  
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1  Introduction 
 

The Himalayas provide freshwater to 10% of the global population but also cause 

frequent flooding in the densely populated plains downstream of the mountain range 

(Dilley et al., 2005; Shrestha et al., 2015b; Dingle, 2018; Sharma et al., 2019). The steep 

slopes of the southern flanks of the Himalayas facilitate the fast conversion of rainfall to 

runoff during intense, large-scale monsoon rainfall (MacClune et al., 2015; Shrestha et 

al., 2015a; Bhandari et al., 2018; DHM, 2018). The dense drainage network and the 

steep slopes of the rivers cause runoff concentration resulting in flood events with a high 

magnitude and short duration. After exiting the Himalayas, the rivers enter the flat alluvial 

Indo-Gangetic plain where they rework the topography which alters the flood risk for 

future events (Dixit, 2009; Sinha et al., 2014). This thesis uses environmental modelling 

techniques to investigate how flood hazards may respond to the changing climate in the 

upstream catchment and how these large floods may change the topographies in the 

floodplain for the Central Himalayan Karnali River in Nepal.  

The next section provides an overview of the flood hazards in Central Himalayan river 

systems. Section 1.2 presents the research aim and objectives, Section 1.3 introduces 

the stages of the research approach, and Section 1.4 provides an overview of the thesis 

structure.  

 

1.1 Riverine floods in Nepal 
 

The Indo-Gangetic plain stands out as one of the global regions most susceptible to 

flooding, owing to a combination of its geographical characteristics and socio-economic 

factors (Dilley et al., 2005). Situated downstream of the southern slopes of the 

Himalayas, this plain encompasses territories in Pakistan, India, Nepal, and Bangladesh. 

Over the past five decades (1971 – 2020), these four nations collectively witnessed 508 

flood events, resulting in the loss of 128,114 lives and affecting 1.27 billion people (Table 

1.1). The high flood risk is underscored by the fact that these countries accommodate 

23% of the global population and experience 10% of the globally reported flood events 

but suffer 40% of the global fatalities. Although the reported statistics encompass 

national data and extend beyond the boundaries of the Indo-Gangetic plain, it remains 

evident that this region, among other regions, exhibits the highest flood risk in terms of 

mortality rates and economic losses (Dilley et al., 2005). 
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Nepal encompasses both the origin of floodwaters in the Himalayas and areas at risk of 

flooding within the Indo-Gangetic plain (Figure 1.1). Nepal is situated within the Central 

Himalayas and extends from east to west, the country's southern region transitions into 

the flat Terai region, which serves as the northern extension of the Indo-Gangetic plain 

(Upreti, 2001). This geographical configuration results in frequent and extensive riverine 

floods in the densely populated Terai plain during the monsoon season (DHM, 2018). 

These floods are of global significance due to their high lethality, averaging 150 

casualties per event, and ranking as the fifth-highest fatality ratio worldwide (Table 1.1).  

 

Table 1.1: Statistics of the casualties and affected population by flood hazards in the period 1971 – 2020  
recorded in EM-DAT/CRED (2021). The population is obtained from the World Bank (2023) and describes 
the population for the year 2022. South Asia includes the riparian states of the Indo-Gangetic Plain, namely 
Bangladesh, India, Nepal and Pakistan. 

 Population 
[Million] 

Flood 
Events 

Casualties Affected pop.  
[Million] 

   Total Per event Total Per event 
Global 7,950 5,112 328,613 64.3 3,716.1 0.727 
South Asia 1,858 508 128,114 252.2 1,272.2 0.250 
Nepal 30.5 49 7,364 150.3 5.6 0.115 

 

 

 

Figure 1.1: The Ganga-Brahmaputra basin (FAO, 2011) in South Asia and its main tributaries (FAO, 2022). 
Vast plains stretch along the Brahmaputra and Ganga rivers south of the Himalayas (ICIMOD, 2008). This 
plain subsides as the Indian plate submerges beneath the Eurasian plate. The average subsidence rates in 
the plain are obtained from Dingle (2018, Table. 3.1). The Terai is located south of the Himalayas in Nepal. 
The background map is a Bing Maps satellite composite.  
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The largest floods in the Terai region in recent years are: 

i) In 2013, widespread, intense monsoon rainfall over northern India and Nepal led 

to vast floods killing 1109 people and affecting tens of thousands (CARITAS 

India, 2013; Red Cross and Red Crescent, 2013; DWIDP, 2014);  

ii) In 2014, the flooding of multiple rivers across Nepal killed 202 people, displaced 

50,965 people, affected 184,745 people and caused damages equivalent to 

6.5% of the GDP (DWIDP, 2015; Shrestha et al., 2015a);  

iii) In 2017, severe floods of multiple rivers inundated 70% of the Terai region which 

caused 134 fatalities, destroyed or damaged 190,000 houses and affected 1.7 

million people (NPC, 2017; DHM, 2018).  

Flood hazards pose a severe threat to both the well-being of the population and the 

overall development of the country (Perera et al., 2015; Okura et al., 2020). The Terai 

region plays a pivotal role in providing housing and food for the people, with 

approximately half of Nepal's population residing on 13% of its land area (Khanal et al., 

2007; CBS, 2017). A significant portion of this populace relies on subsistence farming 

as their primary livelihood (Dixit et al., 2007; Perera et al., 2015). These livelihoods are 

threatened by flood hazards, which can devastate crops and livestock within a matter of 

hours (Dilley et al., 2005; MoHA, 2009; ADPC, 2010). Floods disrupt the vital links to 

markets and transportation networks, increasing food prices and threatening the food 

security not only of local communities but the entire nation (MoHA, 2009; Okura et al., 

2020; Red Cross and Red Crescent, 2021). Moreover, flood hazards potentially alter 

pollution levels, reduce freshwater availability and can lead to epidemics in the aftermath 

of the event (MoHA, 2009; Hannah et al., 2020; Kosow et al., 2022).  

The agriculture sector, which contributes approximately a quarter of the Gross Domestic 

Product (GDP), is of paramount importance to the Nepalese economy (MoF, 2021). 

When floods destroy crops and kill livestock, they not only reduce Nepal's GDP but also 

increase the costs associated with food imports, necessary to maintain the nation's food 

supply (MoHA, 2009). These economic repercussions not only hinder the ability of 

individuals to enhance their flood resilience but also impede the nation's capacity to 

mitigate flood risks on a broader scale. 

The riverine floods are sourced in the Himalayan catchments and are triggered by 

intense monsoon rainfalls over large parts of one or multiple catchments (DHM, 2018). 

Rainfall rates between 100 – 500 mm within 24 hours were reported during the flood 

events in 2013, 2014, and 2017 (DWIDP, 2014; Shrestha et al., 2015a; Bhandari et al., 

2018; MoHA, 2018). The environmental conditions of the Himalayas increase the flood 
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hazard; the shallow soils and steep slopes facilitate a rapid conversion of rainfall into 

runoff, which quickly drains in the dense river network creating sharp flood hydrographs 

with a short duration, high magnitude, and a short response time between rainfall and 

flood even in large river systems (Bhandari et al., 2018). The floods are further intensified 

by land-use change, predominately deforestation, abandonment and degradation of 

agricultural terraces, and urbanisation which decreases the infiltration and interception 

of rainfall (Gardner and Gerrard, 2003; Arnáez et al., 2015; Pearson, 2020).  

One key driver of changes in the flood runoff is the anthropogenic climate change. These 

changes to the climate have the potential to alter the hydrology of Central Himalayan 

river systems which may intensify the flood hazards. The annual and monsoon 

precipitation is projected to increase alongside an increase in intensity and frequency of 

heavy precipitation leading to an increase in the magnitude and frequency of flood 

hazards (Wijngaard et al., 2017; Krishnan et al., 2019; Douville et al., 2021; Hirabayashi 

et al., 2021; Seneviratne et al., 2021; Talchabhadel, 2021). This response is 

superimposed by temperature-induced changes which are projected to alter the 

evapotranspiration rates, the snowmelt and glacier melt and the melting seasonality but 

this response is complex and varies in time and space (Immerzeel et al., 2013; Lutz et 

al., 2014; Douville et al., 2021).  

Our current understanding of the potential climate change impacts on flood hazards is 

based on global and regional modelling which does not capture the significant small-

scale variations in the Himalayan climate. A range of studies have assessed the impact 

of climate change on the water availability on the subbasin (hundreds of square 

kilometres) to the regional scale (the Hindukush-Himalayas) but do not quantify the 

impact on the flood flows (Immerzeel et al., 2013; Bharati et al., 2014; Lutz et al., 2014; 

Nepal et al., 2014; Nepal, 2016; Shea and Immerzeel, 2016; Bajracharya et al., 2018; 

Bhattarai et al., 2018; Dahal et al., 2020; Chandel and Ghosh, 2021; Khanal et al., 2021). 

Several studies have quantified the changes in the flood magnitudes and frequencies 

for the projected climates on the regional to global scale (e.g. Hirabayashi et al., 2013, 

2021; Dankers et al., 2014; Huang et al., 2017; Krysanova et al., 2017; Pechlivanidis et 

al., 2017; Wijngaard et al., 2017). The global studies use the projections of global climate 

models which are too coarse to capture the small-scale variation in the climate arising 

from the complex topography of the Himalayas (Krishnan et al., 2019; Scott et al., 2019). 

The regional studies use downscaled climate projections with a better representation of 

the spatial variation in the climate, but these studies are based on older generations of 

climate models. There is, to the best knowledge of the author, no study that uses 
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projections from the latest generation of climate models to project future flood 

magnitudes and frequencies in Himalayan catchments.  

The spatial pattern of flood hazards is further influenced by the morphology of its river 

channels and floodplains in the Terai plain. The Terai is an alluvial plain which comprises 

sediments exported from the Himalayas and large megafans have formed along the 

mountain outlets of the major river systems (Upreti, 2001; Dingle et al., 2016). The Terai 

is characterised by its gentle elevation gradient between the river channels and the 

adjoining floodplains, and in some instances, the channel's elevation surpasses that of 

the floodplain which facilitates large-scale inundations (Sinha, 2008; Dixit, 2009; Sinha 

et al., 2014). The low cohesion of the Terai sediments, the high sediment delivery to the 

plain, and the high transport capacity of the rivers facilitate a dynamic topography 

shaped by bank erosion, channel aggradation and degradation and channel migration 

which alters flood hazards (Milliman and Syvitski, 1992; Upreti, 2001; Dixit, 2009; 

Dhakal, 2013; Sinha et al., 2014; Dingle et al., 2016, 2020a; MoHA, 2018; Scott et al., 

2019).  

The morphodynamic evolution in the Ganga plain varies regionally and is controlled by 

the basin subsidence on the millennial time scale (Dingle et al., 2016).  High subsidence 

rates in the Eastern Ganga plain (e.g. the Koshi River) facilitate the channel aggradation 

which decreases the channel capacity and increases the frequency of channel avulsions 

(Figure 1.1). The subsidence decreases in the Western direction, and the rivers shift to 

a degrading state (channel degradation) which increases the channel capacity and 

decreases the avulsion frequency (e.g. the Yamuna River) (Dingle et al., 2016).  

The 2008 Koshi flood illustrates the necessity to account for the morphodynamic 

evolution in flood management. This flood event was caused by an embankment breach 

which affected more than 3.5 million people in Nepal and India (Sinha, 2008; Dixit, 2009). 

The construction of embankments in the 1950s constrained the deposition of sediments 

to the channel. Consequently, the topographic gradient between the channel and 

floodplain increased which caused the avulsion in 2008. This avulsion shifted the river 

course by 120 km (Sinha et al., 2014). 

While the 2008 Koshi flood event was a turning point that increased the awareness that 

geomorphological processes alter the flood risk, the impact of the morphological 

evolution on flood hazards remains not well understood (Sinha, 2008; Dixit, 2009). So 

far, only a few studies have investigated the controls of the morphological changes in 

the context of flood hazards. Sinha et al. (2014) investigated the geomorphological 

mechanisms that drove the 2008 avulsion of the Koshi River. Dingle et al. (2016) found 
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that the morphological evolution of rivers in the Terai is controlled by the subsidence of 

the Ganga Plain. Dingle et al. (2020a) studied the effect of topographic changes on flood 

hazards in the Karnali River by comparing flood inundation maps predicted for a set of 

artificially altered Digital Elevation Models (DEM), and Thapa et al. (2023) investigated 

how sediment fluxes during flood events alter the inundation patterns in a small sub-

catchment of the Narayani River. 

We currently lack the tools to predict the potential impact of the morphological evolution 

on future flood hazards in Himalayan river systems. Previous studies have established 

that morphological changes alter flood hazards and improved our understanding of the 

controls of the morphological evolution, but no study has investigated how the evolution 

may alter the future flood hazards on a decadal time scale. Furthermore, climatic 

changes potentially alter the runoff rates and sediment delivery which are the primary 

controls of the morphodynamic evolution in these river systems (Leopold and Wolman, 

1957; Ferguson, 1987; Kleinhans, 2010; Kleinhans et al., 2013). It remains unclear how 

this alteration may affect flood hazards because we currently lack the tools to investigate 

the relationship between climate, catchment hydrology, geomorphology and flood 

inundation.  

A tool to predict the potential evolution of flood hazards in Himalayan river systems 

needs to consider climatic and morphological changes and, thus, needs to link 

processes in the upstream catchment and the downstream floodplain. Such a tool would 

improve our understanding of the spatial and temporal variability of flood hazards and 

the drivers of change. It would also expand our understanding of the climate change 

impact on flood hazards in mountainous environments because it links climatic and 

morphological changes which are currently investigated in isolation. Furthermore, it 

would enable the development of flood risk management plans for potential future flood 

hazards and may improve the effectiveness of flood mitigation and adaptation strategies 

which are commonly implemented on decadal time scales. This tool could be transferred 

or adjusted to other sediment-rich mountainous river systems and may be impactful 

beyond the Himalayas.  
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1.2 Research aim and objectives  
 

This research aims to predict the evolution of flood hazards until the end of the 21st 

century for the Karnali River, in the Central Himalayan region of Nepal. A geospatial 

modelling framework is developed that combines environmental and statistical models 

applied on different spatial scales. 

To meet this aim the research has the following objectives: 

- O1: To establish a hydrological model that replicates the hydrological system of the 

mountainous catchment and reproduces the observed discharge at the mountain 

outlet. 

- O2: To predict the flood discharge at the mountain outlet for the projected climates 

from an ensemble of climate models until the end of the century using the 

hydrological model established in O1. 

- O3: To quantify the flood frequencies and magnitudes at the mountain outlet for the 

flood discharge projected in O2. 

- O4: To predict the morphological evolution of the Karnali fan until the end of the 

century for the projected flood discharge (O2) from morphodynamic modelling. 

- O5: To map the spatial flood hazard characteristics (inundation extent and depth) for 

the projected flood magnitudes (O3) and topographies (O4).  

This case study contributes to an improved understanding of future flood hazards in 

Central Himalayan river systems and the sensitivity of these hazards to climatic and 

morphological changes. Furthermore, it improves our knowledge of the feedback 

between flood hazards and fan evolution in the Terai. The framework is designed as a 

modelling cascade where the output of one model feeds into another model. The 

propagation of uncertainty through the modelling cascade is inherent in the framework 

design and this study contributes to a better understanding of the uncertainty sources 

which can be used for targeted investments to improve the flood hazard projections in 

future studies.  

The developed framework is applicable beyond the Karnali River and provides 

researchers, planners and decision-makers with a set of tools to design flood risk 

management strategies for projected hazards. However, while it is designed as a 

comprehensive framework, it does not incorporate all drivers of flood hazard changes 

(e.g. land use change, river engineering, urbanisation) and might need adjustments in 

different geographic settings.   
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1.3 Research approach: An overview of the geospatial 
modelling framework 
 

The framework to predict the evolution of flood hazards on decadal time scales is 

developed and evaluated for the Karnali River. The catchment (45,600 km2) drains the 

the southern flanks of the Central Himalayas and is characterised by heterogeneous 

climatic and hydrological conditions making it susceptible to both, temperature and 

precipitation-related changes (Lutz et al., 2014). Downstream of the mountain outlet, the 

Karnali River traverses an alluvial fan and bifurcates into two branches. The distribution 

of water between these branches is controlled by the topography at the bifurcation node 

and affects the downstream flood hazards (Kleinhans et al., 2013; Dingle et al., 2020a). 

It is this sensitivity to climate change in the catchment and morphological changes in the 

fan that makes the Karnali River an ideal river system for the application of the modelling 

framework. This framework comprises four stages which build on each other and an 

overview of each of these stages is presented in Figure 1.2.  

 

 

Figure 1.2: Conceptual overview of the research design to predict the potential flood hazards in the Central 
Himalayan Karnali River. 
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1.3.1 Stage 1: Predicting the catchment hydrology of the Karnali 
River 
 

The flood discharge released into the fan is the sum of the hydrological processes in the 

upstream catchment. The prediction of future flood discharge, thus, requires an 

understanding of the catchment’s hydrology to predict the impact of changing climatic 

conditions on the hydrological regime. Stage 1 establishes a hydrological model that 

represents the hydrological system of the Karnali River to meet the first objective. This 

initial stage provides the foundation of the modelling framework which the later stages 

build upon.  

The complex hydrology of the Karnali River poses a challenge for hydrological modelling 

arising from the spatial and temporal heterogeneity of the climate. A model needs to 

simulate the hydrological processes of subtropical to alpine climates including the 

rainfall-runoff conversion, baseflow, and snow and glacier melt processes. In this stage, 

the hydrological model is calibrated and validated for the catchment until the mountain 

outlet / fan inlet. For the calibration, the model is established for the past climatic 

conditions and parameterised to optimise the agreement of the simulated and observed 

catchment behaviour. An ensemble of the best-performing model parameter sets is 

selected for the simulations in the following Stage 2 of the research. 

 

1.3.2 Stage 2: Predicting potential flood hazards on the catchment 
scale 
 

Stage 2 combines hydrological and statistical modelling with the projections of climate 

models to predict the flood runoff that is released into the floodplain for the projected 

climates (O2). For this analysis, the established hydrological model is applied with the 

projections of the latest generation of climate models for different climatic pathways 

(emission scenarios) which provides the flood runoff for the current (baseline scenario) 

and projected climatic conditions. An ensemble modelling approach is applied to quantify 

the uncertainty in the hydrological simulations by applying a hydrological ensemble with 

the climate projections from an ensemble of climate models.  

A flood frequency analysis (FFA) is conducted to determine the projected flood 

magnitudes and frequencies and meet O3. The FFA offers a method to standardise flood 

hazards which enables a meaningful comparison of different flood records. In this study, 

the FFA is used to quantify the changes of the past and projected flood hazards and to 
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compare the projections of different climate models and climate scenarios. The 

uncertainty of the flood frequency analysis is quantified using a stochastic modelling 

approach.  

 

1.3.3 Stage 3: Predicting the morphodynamic evolution of the 
alluvial fan 
 

The previous Stages 1 and 2 are applied on the catchment scale to predict the discharge 

of water that is released into the downstream fan. Stages 3 and 4 are applied on the 

local scale of the fan to predict the pathways of the floodwater. 

Stage 3 predicts the changes in the pathways of the floodwater for the hydrological 

conditions projected in Stage 2. A morphodynamic model is applied with the flood 

discharge of the projected climates (O2) to simulate the topographic changes of the 

channel and the floodplain to meet O4. The effect of these topographic changes on the 

pathways of flood water is twofold:  

i) processes of lateral erosion and deposition potentially alter the direction of flood 

water (channel migration) and;  

ii) the erosion from and deposition on the riverbed (channel aggradation and 

degradation) may alter the channel capacity and change the allocation of the 

water between the channel and floodplain or change the downstream distribution 

to downstream of flood water (i.e. at bifurcations). 

 

1.3.4 Stage 4: Predicting potential flood hazards on the floodplain 
scale 
 

Stage 4 is the final stage in the modelling framework that combines the projected flood 

magnitudes from Stage 2 (O3) with the projected topographies from Stage 3 (O4) in a 

hydrodynamic model to map the spatial flood hazard characteristics (i.e. inundation 

extent and inundation depths) and meet O5. This mapping identifies areas at risk and 

how these areas are changing for the projected conditions. It, thus, identifies the areas 

that are sensitive to changing environmental conditions which can be used for the 

targeted development of flood risk management strategies that account for the future 

hazards.  
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This stage synthesises the previous stages and contributes to a better understanding of 

the temporal and spatial variability of flood hazards, the driving mechanisms behind this 

variability, and the uncertainty sources and propagation within the modelling framework 

which may identify fields for targeted investments to reduce the uncertainty and improve 

the predictions in future studies. 

 

1.4 Thesis structure 
 

This thesis follows the structure of the geospatial modelling framework outlined in the 

previous section and contains eight chapters that combine to predict the potential flood 

hazards in the Central Himalayan Karnali River.  

Chapter 2 introduces the Karnali River system for which the modelling framework is 

developed and evaluated. This description includes the mountainous catchment in Nepal 

and China which is the study area of Stages 1 and Stage 2, and the Karnali fan which is 

the study area of Stage 3 and Stage 4.  

Chapter 3 reviews the literature of the current research state of the methods applied 

within the modelling framework including hydrological, morphodynamic, hydrodynamic, 

and statistical modelling, and frameworks for the uncertainty estimation in environmental 

modelling.  

Chapter 4 presents the hydrological modelling of the Karnali River catchment to 

reproduce the hydrological system of this river to address the first objective. In this 

chapter, an ensemble of behavioural parameter sets is identified which is used in Stage 

5 to quantify the climate change impact on flood flows. 

Chapter 5 presents the climate change impact assessment on the flood discharge (O2), 

the flood magnitudes and the flood frequencies (O3). The hydrological modelling of this 

chapter builds upon the results of the previous chapter and concludes the catchments 

modelling part of the modelling framework. 

Chapter 6 presents the prediction of the morphological evolution of the Karnali fan to 

determine the pathways of the floodwater for the projected climates. For this, a 

morphodynamic model is applied with the projected flood discharge (O2) to predict the 

evolution of the fan topography and meet O4.  
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Chapter 7 maps the spatial flood hazard characteristics in the Karnali fan to meet O5. 

For this, a hydrodynamic model is applied with the projected flood magnitudes of 

selected flood frequencies (1-in-10-years, 1-in-50-years, 1-in-100-years) of O3 and the 

projected topographies of O4 to map the spatial variation of the flood hazards for the 

projected climatic and topographic conditions.  

Chapter 8 summarises the modelling framework to predict the potential flood hazards 

in the Karnali River system. It presents the main conclusions and provides 

recommendations to reduce the uncertainty and improve the predictions in further 

studies.  
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  The Karnali catchment and fan 
 

 

2.1 Introduction 
 

The Karnali River is one of the three main river systems draining the Central Himalayas 

in Nepal. The study area is divided into the upstream catchment which generates the 

flood water and the downstream fan in the Terai (Figure 2.1). This fan is home to approx. 

250,000 people and experienced frequent floodings which killed hundreds of people, 

affected tens of thousands of residents and damaged private property, infrastructure and 

agricultural goods over the last decade (MacClune et al., 2015; Shrestha et al., 2015a; 

Bhandari et al., 2018; Practical Action, 2018). 

The projected climate change in the region has the potential to impact the hydrology, 

and thus the flood hazards, in two ways:  

- The warmer temperatures in the alpine parts alter the melting rates and 

seasonality of snow and glaciers which could, both, increase or decrease the 

flood discharge (Immerzeel et al., 2013; Lutz et al., 2014; Dahal et al., 2020; 

Chandel and Ghosh, 2021; Douville et al., 2021; Khanal et al., 2021);  

- ii) the projected increase in the frequency and intensity of heavy rainfall events 

increases the flood frequencies and magnitudes (Wijngaard et al., 2017; Chhetri 

et al., 2021; Hirabayashi et al., 2021; Talchabhadel, 2021).  

The riverine floods occur in the Himalayan foreland where the Karnali River flows across 

an alluvial fan which connects the sediment sources in the Himalayas with the sediment 

sinks in the Ganga plain (Harvey, 2018; Quick et al., 2019; Dingle et al., 2020a). The 

topographic evolution of this fan defines the path of the flood water and, thus, alters the 

flood hazards (Dingle et al., 2020a). This evolution is, however, shaped by flood events 

during which sediment pulses are delivered and the topography is reworked, and hence 

this evolution is affected by climate change induced changes in the flood discharge 

(Kleinhans et al., 2013). 

The sensitivity of the catchment hydrology to climate change, the high frequency and 

magnitude of flood hazards, and the dynamic fan topography make the Karnali River a 

suitable case study to develop and evaluate a modelling framework to predict the long-

term evolution of flood hazards. 
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Figure 2.1:  Overview of the study area comprising the Karnali catchment and the Karnali fan. The topography is derived from the SRTM 90m V4.1 (Jarvis et al., 2008). The station 
network shows the location of the hydrological and meteorological stations for which data is used in this study. The numbers on the station network relate to the gauge’s 
identification. These stations are maintained by the Department of Hydrology and Meteorology (DHM), Nepal. 
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The next section describes the location of the study area in its regional context. The 

environmental characteristics of the fan and the catchment are then described in 

Sections 2.3 and 2.4, respectively. The climatic conditions, the hydrological system, and 

the sediment cascade are introduced in Sections 2.5 – 2.7.  

 

2.2 Location of the study area 
 

The Karnali River originate in the Central Himalayas in the border region of Nepal and 

China and traverses the Ganga plain in Nepal and India (where it is called the Ghaghara 

River) before it flows into the Ganga River at Chapra in India. The catchment is located 

in Nepal and China and comprises the Himalayan parts of the Karnali catchment until 

the mountain gauge and the fan attaches south of this gauge (Figure 2.1). 

The catchment covers 45,600 km2 in the Mid-Western and Far-Western provinces of 

Nepal. Parts of the Humla Karnali subbasin in the North-West (3,100 km2) are located in 

China. The Karnali River drains the southern flanks of the Himalayas which are 

demarked by the Indo-Gangetic plain in the south and the Tibetan Plateau in the north. 

The Karnali forms at the confluence of the Humla Karnali which drains the North-Western 

subbasin and the Mugu Karnali which drains the North-Eastern subbasin. The West Seti 

drains the Western parts of the catchment and confluences with the Karnali 40 km 

upstream of the outlet. The Eastern parts of the catchment are drained by the Bheri River 

which confluences with the Karnali 10 km upstream of the mountain gauge.  

The fan investigated in this study is a 545 km2 large subsection of the whole Karnali fan 

(Figure 2.2). This subsection covers the gravel reaches of the river (30 – 35 km distance 

to the mountain outlet) and the flood-prone fan sections in the centre and the west. The 

areas in the east of the river are superelevated and excluded from the study area. The 

Karnali River bifurcates 5-6 km downstream of the mountain gauge to a Western branch 

and Eastern branch which confluence back together south of the India-Nepal border (see 

Figure 2.1).  
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2.3 Fan characteristics 
 

The fan is located in the Terai in Nepal which is the northern extension of the Indo-

Gangetic plain and is demarked by the Main Frontal Thrust in the North (Upreti, 1999). 

The Terai is made up of Himalayan Alluvium (average thickness of 1,500 m) (Upreti, 

1999). The grain sizes of this alluvium decrease with distance to the mountains and 

range, on the surface, from cobbles and boulders at the fan apex to fine gravel at the 

southern border of the study area (Quick et al., 2019; Dingle et al., 2020b).  

The fan topography is characterised by a comparatively low elevation gradient in the 

southern direction from ~160 masl at the mountain outlet to ~85 – 90 masl at the 

downstream fan border. The highest elevations are observed on a terrace in the East 

that stretches along the Eastern branch. This terrace is superelevated over the channel 

(10 – 20 m) and this terrace has remained stable for the last four millennia (Quick, 2021). 

The topography decreases in the western direction and the areas west of the Western 

branch are located below the riverbanks and are prone to flooding (Figures 2.2 and 2.3). 

The topography of the river is continuously reworked as a result of the high discharge 

and the low cohesion of the bed and bank material (Langhorst and Pavelsky, 2023). The 

exception is the terrace in the east for which no changes are observed in satellite 

imagery over the past 40 years which indicates that the terrace prevents the lateral 

channel migration in the eastern direction. The most noticeable change in recent years 

was the alteration of the bifurcation in the year 2009 which caused a change in the 

drainage distribution in favour of the Western branch (Dingle et al., 2020a). 

The Terai is intensively used for agriculture and 80 – 90% of the fan is agricultural land 

dominated by irrigated agriculture (Table. 2.1). The natural vegetation of the Terai are 

forests dominated by Sal trees (Shorea robusta) but most forests have been cleared and 

only prevail in the Bardiya National Park located along the Eastern border of the fan, and 

in patches along the Western branch of the Karnali (Zurick, 1988; DFRS, 2014). The 

dominant soil type is gleysol which indicates the abundance of water in this area. 

The fan is densely populated, particularly in the flood-prone areas in the Western fan 

and the centre between the branches. A population of around 250,000 (calculated from 

the population density shown in Figure 2.2) lives primarily in villages and Tikapur city. 

Half of the population lives in the municipalities Janaki and Tikapur which comprise most 

of the low-lying area West of the Western branch. Around 75,000 people live on the 

island between both branches. The Eastern parts of the fan are less populated because 

it is mostly occupied by the Bardiya National Park without permanent residencies.  
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Figure 2.2: Map of the Karnali fan. The basemap is a composite of two Sentinel-2 images taken in October 
2020. The insets in the yellow boxes are satellite images obtained from Google Earth (04/2018 and 
11/2021). The transects show the location of the elevation profiles in Figure 2.3. The population density 
(people per km2 in 2021) is shown in the brackets below the municipality borders (CBS, 2022).  

 

 

Figure 2.3: Elevation profiles of the Karnali fan at the transects shown in Figure 2.2 The topography is 
derived from a WorldView-2 DEM which is introduced in Chapter 6. The red lines indicate the location of the 
river banks of the main branches of the Karnali River.   
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Table 2.1: Summary statistics of the environmental conditions. The data sources are Jarvis et al. (2008) for 
the elevation and slope, RGI Consortium (2017) for the glaciated areas, Scherler et al. (2018) for the glacier 
type, Arino et al. (2012) for the land cover, and Dijkshoorn and Huting (2009) for the soil type. 

 Fan Catchment 
 

Total Total Siwalik Middle 
hills 

High hills High 
mountains 

Area [km2] 
 

545 45,619 1,760 8,185 14,793 20,881 

Fraction of 
catchment [%] 

- 100 4 18 32 46 

Mean elevation 
[masl]  

162 3,317 691 1,353 2,699 4,745 

Mean slope 
 [degree]  

1 26 16 24 29 26 

Glaciated area  
[%] 

- 3 - - - 6 

- Debris-free  
[%] 

- 71 - - - 71 

- Debris-covered 
[%] 

- 29 - - - 29 

Dominant land cover 
(2009) 

Irrigated 
croplands 

Herbaceous 
vegetation 

Shrubland Rainfed 
croplands 

Closed 
evergreen 

forest 

Herbaceous 
vegetation 

- Dominant land 
cover area [%] 

73 21 24 30 36 45 

Dominant soil type 
 

Eutric 
Gleysols 

Gelic 
Leptosols 

Dystric 
Regosols 

Eutric 
Cambisols 

Eutric 
Regosols 

Gelic 
Leptosols 

- Dominant soil 
area [%] 

70 34 85 67 55 72 

 

Embankments have been built in recent years (mostly after the year 2011) along both 

banks of the Western branch and along parts of the Western bank of the Eastern branch 

to protect the population and agricultural fields from flooding. However, a 300 m long 

section of an embankment was destroyed between the years 2020 – 2021 and ~ 100 – 

200 m of the riverbanks eroded in the process (see the insets in Figure 2.2). This erosion 

emphasises the erosive force of the Karnali and the limited flood protection provided by 

these embankments.  

 

2.4 Catchment characteristics 
 

The catchment is divided into four physiographic regions with distinct geologic, 

topographic, ecologic, and climatic (section 2.5) characteristics. These zones stretch in 

the E-W direction and separate the study area in the S-N direction from the foothills in 

the South to the high mountain ranges in the Northern parts of the catchment. The 

environmental characteristics of these four zones (Figure 2.4) are presented according 

to the topographic increase in the S-N direction in the following sections and are 

summarised in Table 2.1.  
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Figure 2.4: The physiographic regions of the study area (ICIMOD, 2011). The inset maps show satellite 
images (Google satellite accessed by QMS in QGIS) of selected areas of each physiographic division. 

 

2.4.1 The Siwaliks  
 

The Siwaliks are the first mountain range of the Himalayas (200 – 1,300 masl) and 

stretch in a narrow band (10 – 20 km width) in the E-W direction. The Siwaliks are made 

up of uplifted foreland deposits and comprise three units, the lower, middle, and upper 

Siwaliks. The lower and middle Siwaliks are made up of friable sandstone, mudstone 

and shale while the upper Siwaliks are made up of resistant pebble-to-bolder sized 

conglomerate (Zurick, 1988; Upreti, 1999; Dingle et al., 2017). The Siwaliks are the 

geologically most active mountain range and are characterized by a steep and rugged 

topography with a high density of gullies and landslides, and efficient sediment transport 

in the rivers (Hurtrez et al., 1999; Upreti, 2001; Ghimire et al., 2013). However, while the 

sediment production is high in all three units, almost all gravel supplied to the Karnali fan 

originates from the upper Siwaliks because the conglomerate is resistant and does not 

abrade before reaching the fan (Dingle et al., 2017; Quick et al., 2019).   

The soils are poorly developed and shallow Regosols dominate as a result of the high 

erosion rates. The potential vegetation in the Siwaliks are forests dominated by Sal trees 

but the dominant land cover type is shrublands covering one-quarter of the Siwaliks in 

the catchment (Zurick, 1988; Arino et al., 2012). However, the different forest types 

(mixed, deciduous, coniferous) cover together around one-third of the mountain range 

(Arino et al., 2012).  
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2.4.2 The Middle Hills 
 

The Middle Hills are delimited to the Siwaliks in the south by the Main Boundary Thrust 

(Upreti, 2001). This mountain range covers 18% of the catchment in a 30 – 65 km wide 

belt and is characterised by the steep and rugged topography. The Middle Hills are 

located at elevations between 1,000 – 3,000 masl and the mountains are intersected by 

steep valleys which reach for the Karnali and its main tributaries as low as 300 masl. 

The geology is comprised of thin, interlayered sequences of low-grade metamorphic 

rocks (including limestone, slate, phyllite, quartzite and dolomite) (Zurick, 1988; Upreti, 

1999). This area is highly susceptible to landslides due to the steep slopes and the weak 

geologic conditions(Upreti, 1999, 2001). 

The dominant soils are Cambisols which occupy 95% of this region (Dijkshoorn and 

Huting, 2009). These soils are deeper, more developed soils compared to Regosols and 

are more suitable for agriculture. Therefore, this region is intensively used for terraced 

agriculture (~50% of the area) and forests have declined (~30% of the area) (Arino et 

al., 2012). This conversion from forests to agriculture alters the hydrological processes 

but this impact is complex. Generally, the conversion of forests to agriculture decreases 

the retention of monsoon rain and increases the runoff (Gardner and Gerrard, 2003; 

Pearson, 2020). However, terraced agriculture increases soil infiltration and decreases 

the hydrological connectivity and runoff generation but this depends on the conditions of 

the terraces because abandoned and deteriorated terraces increase the runoff 

generation and soil erosion (Arnáez et al., 2015; Pearson, 2020). 

 

2.4.3 The High Hills 
 

One-third of the catchment is located within the High Hills. This region covers a 10 – 30 

km wide band parallel to the Middle Hills but it extends North into the High Mountains 

along the valleys of the Karnali and its tributaries. This region is characterized by steeper 

slopes and a more rugged terrain than the lower southern mountain ranges. The 

elevations range between 2,000 – 5,000 masl. but some peaks are higher and the deep 

valleys of the Karnali and the tributaries are located below 1,000 masl. The High Hills 

are a rapidly uplifting, young and fragile mountain range comprised of high-grade 

metamorphic rocks including gneiss, migmatites, schists, quartzites, marbles and 

granites (Upreti, 1999, 2001). The dominant soil types are regosols along the valleys 

and cambisols along the ridges (Dijkshoorn and Huting, 2009). Thick layers of bouldery 

colluvisols occupy the slopes (Upreti, 2001).  
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The valleys are primarily used for agriculture (34%) and the slopes and ridges are 

covered by evergreen forests (36%) (Arino et al., 2012). The climate is diverse 

(temperate to alpine) due to the large elevation range so the vegetation is variable with 

oaks and rhododendrons dominating the lower areas and hemlock and fir occupying the 

higher slopes (Zurick, 1988). 

 

2.4.4 The High Mountains 
 

The High Mountains are the highest mountain range of the Himalayas separating the 

southern slopes from the Tibetan Plateau. The peaks exceed 5,000 masl. up to 7,751 

masl at the Dhaulaghiri II located at the Western border of the catchment. This region 

covers almost half of the catchment (46%) and is characterised by a very rugged 

topography with very steep slopes. The geology comprises crystalline rocks, including 

gneiss, quartzite and migmatites which are stronger than those of the other mountain 

ranges (Upreti, 1999, 2001). However, shallow Leptosols have developed (70%) despite 

the intense rock weathering due to the steep slopes (Table 2.1).  

The land cover is stratified with the elevation and the highest areas are covered with 

snow and ice (23% of this zone). All glaciers are located within this region (6% of this 

zone) of which 30% are covered by debris (RGI Consortium, 2017; Scherler et al., 2018). 

Below this nival zone, herbaceous vegetation (mosses and lichens) dominate (44% of 

this zone) at elevations between 4,500 – 5,500 masl (Ives and Messerli, 1989). The 

lower-lying areas along the valleys are occupied by Rhododendron shrubs and birches 

(Ives and Messerli, 1989). Furthermore, barelands occupy the North-Western part of the 

catchment and along the northern border of the catchment (11% of this zone) (Arino et 

al., 2012).   
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2.5 The climate in the study area 
 

The climate in the study area is diverse ranging from a subtropical climate in the Terai 

in the south to a nival climate in the High Mountains in the North (Ives and Messerli, 

1989). The precipitation is dominated by the monsoon circulation. The presented 

temperature and precipitation statistics are derived from observations of meteorological 

stations maintained by the Department of Hydrology and Meteorology Nepal (DHM) and 

cover the period 1985 – 2014. The observed climate is presented in Figure 2.5 and the 

locations of the stations are shown in Figure 2.1.  

 

2.5.1 Temperature  
 

The temperatures are governed by the topographic variation in the study area. The Mean 

Annual Air Temperature (MAAT) is 24.4 ºC at the mountain outlet (Station 405, 225 

masl). The coldest month is January with an average temperature of 15.2 ºC and the 

warmest months are May and June with 30.3 ºC and 30.1 ºC, respectively. The climate 

cools with increasing elevations to warm-temperate of the ridges of the Siwalik range 

and to warm temperate and cold-temperate in the Middle Hills (Zurick, 1988). The MAAT 

is 19.6 ºC at Station 203 (1,360 masl) located in the western parts of the Middle Hills 

and 19.0 ºC at Station 514 (2,1000 masl) located at the border of the Middle Hills and 

the High Hills in the eastern part of the catchment. The temperature of the coldest month 

January is 11.5 ºC for both stations and the mean temperature of the warmest month 

June is 25.3 ºC (Station 207) and 24.0 ºC (Station 514). The climate transitions from 

temperate to alpine in the High Hills, and the highest station (3,050 masl) records an 

MAAT of 9.7 ºC. The mean monthly temperatures range from 2.2 ºC in January to 16.3 

ºC in July. The climate in the High Mountains is alpine and the MAAT is below 0 ºC along 

the slopes and ridges of the highest mountains but no station is located within this region 

(Ahmad et al., 2021).  
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Temperatures vary locally in the study area. This is indicated by the temperatures of 

stations 402 (1,400 masl) and 514 (2,100 masl) which are located at similar latitudes 

whereas station 402 is located 80 km East of station 514. The MAAT of station 402 is 

18.7 ºC and, thus, 0.3 ºC colder than the recorded MAAT at station 514. This is notable 

because station 514 is located at a 700 m higher elevation. No distinct E-W gradient in 

the temperatures is observed in Nepal (Ahmad et al., 2021). This difference is a local 

anomaly which might be driven by local variations in the dry and wet adiabatic cooling 

and warming patterns (Collier and Immerzeel, 2015).  

The lack of meteorological records is one key challenge for hydrological assessments in 

the Central Himalayas (Nepal et al., 2014). The station network concentrates on the 

accessible areas in the plains and valleys leaving the slopes and ridges vastly 

unobserved. No meteorological station is located within the High Mountains which 

occupy almost half of the catchment. One station (311) is located in the valley of the 

Humla Karnali close to the North-Western catchment boundary but the records have 

only a good coverage for the period 1997 – 2005. The annual lapse rate is -0.0054 ºC/m 

but this lapse rate only covers elevations until 3,050 masl (Dhami et al., 2018). It is 

questionable if it can be extrapolated because of the precipitation patterns and, thus, the 

wet-adiabatic cooling change at higher elevations (Winiger et al., 2005; Lutz and 

Immerzeel, 2016).  

 

 

Figure 2.5: Climographs at six stations in the catchment for the period 1985 - 2014. The data is obtained 
from the Department of Hydrology and Meteorology Nepal. The locations of the stations are shown in Figure 
2.1. 
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2.5.2 Precipitation 
 

The precipitation is dominated by the monsoon circulation which brings 80% of the 

annual precipitation during the summer monsoon (Jun – Sep) (Bookhagen and Burbank, 

2010; Krishnan et al., 2019). The remaining months are comparatively dry but the 

Westerly circulation provides some precipitation during the winter (Dec – Feb) (Hannah 

et al., 2005; Bookhagen and Burbank, 2010).  

The large-scale precipitation patterns follow the track of the summer monsoon; Central 

Nepal receives the highest precipitation due to the prolonged monsoon season while 

this season is shorter and precipitation rates are lower in Western Nepal (Hannah et al., 

2005). Furthermore, the precipitation patterns are characterized by a gradient in the 

south-north direction with high precipitation along the southern slopes of the Central 

Himalayas and low precipitation in the Tibetan Plateau which is located in the North in 

the rain shadow of the High Mountains. The Siwalik range and the High Hills receive the 

highest precipitation due to their effect as an orographic barrier while the precipitation is 

lower in the Middle Hills where the vapour concentration is reduced as it is located in the 

shadow of the Siwalik range and not high enough to be an efficient orographic barrier 

(Bookhagen and Burbank, 2010). 

This orographic effect is captured by the DHM station network (Figure 2.4); the annual 

precipitation is highest at the mountain outlet (Station 405: 2,200 mm) and the transition 

between the Middle Hills and the High Hills (Station 514: 2,200 mm). It is lower at the 

transition between the Siwalik range and the Middle Hills (Station 406: 1,600 mm) and 

in the Middle Hills (Station 203: 1,300 mm). The lowest precipitation of 900 mm is 

observed at the most Northern station 307. The months with the highest precipitation are 

July and August for all stations. 

The precipitation in the northern areas at high elevations (> 4,000 – 5,000 masl) is 

uncertain and the information is contradictory. Several studies suggest that these areas 

are comparatively dry and receive annual precipitation of 250 – 1,000 mm (Upreti, 2001; 

ICIMOD, 1996 in Gautam and Acharya, 2012; Ahmad et al., 2021). These studies are 

based on meteorological observations or remote sensing products. However, other 

studies suggest that the high mountains must receive substantially higher precipitation 

to sustain the observed glacier mass balances (Winiger et al., 2005; Immerzeel et al., 

2015; Lutz and Immerzeel, 2016).  
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The complex topography of the Himalayas causes small-scale variations in the 

orographic precipitation patterns which are not captured by the coarse station network 

and the coarse resolution of remote sensing products or climate models (Collier and 

Immerzeel, 2015). Furthermore, these stations are located within the drier valleys in the 

rain-shadows of mountain ridges but are used for the bias correction of satellite 

estimates (Bookhagen and Burbank, 2010; Huffman et al., 2019). Hence, the 

precipitation data is uncertain on the local scale and in the high mountains (see previous 

paragraph).  

The monsoon causes frequent heavy rainfall events which cause flash floods in the sub-

catchments and if occurring over larger areas, riverine floods in the Ganga plain. During 

such events, rainfalls of up to 500 mm within 24 hours have been observed (MacClune 

et al., 2015). The largest rainfall of 465 mm per day was observed at station 214 in the 

Middle Hills (Table 2.2). Rainfall rates of ≥ 200 mm per day were recorded for one or 

more stations on 56 days in the period 1985 – 2014. However, it is worth noting that 

daily precipitation does not equal the rainfall within 24 hours of maximum intensity and 

hence this is merely an indicator of the heavy rainfall events which might underestimate 

the frequency and the intensity of these events.  

 

 

Table 2.2: Highest daily rainfall observed during the period 1985 - 2014. The records are obtained from the 
Department of Hydrology and Meteorology. The location of these stations is shown in Figure 2.1.  

Date Station Rainfall 

[mm/d] 

18/08/2009 214 465.4 

19/09/2008 411 355 

06/09/2009 214 340.2 

26/08/2006 407 308.5 

12/02/2002 504 306.1 
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2.6 The hydrological system 
 

The hydrological regime of the Karnali River is dominated by the monsoon seasonality 

with high flows during the monsoon season (Jun – Sep) and low flows during the Non-

monsoon season (Oct – May) (Figure 2.6). Almost three-quarters (73%) of the annual 

discharge drains during the monsoon season. The monsoon hydrograph is 

characterised by a pronounced peak in August which is attributed to the comparatively 

short monsoon season in Western Nepal (Hannah et al., 2005). The discharge further 

recedes during the post-monsoon season (Oct – Nov) which contributes 12% to the 

annual budget. The remaining six months of the winter (Dec – Feb) and pre-monsoon 

season (Mar – May) contribute 15% to the annual budget.  

The hydrology of the Karnali is complex due to the diverse environmental and climatic 

conditions with seasonal variation in the runoff contributions. The monsoon season 

runoff is primarily composed of rainfall-runoff and to a lesser extent glacier melt runoff 

(Lutz et al., 2014; Nepal et al., 2014). A fraction of the monsoon rain percolates to the 

groundwater and drains as delayed baseflow. This baseflow maintains the flow during 

the winter and without it, the Karnali River would not carry water at times (Lutz et al., 

2014). Snowmelt becomes an important source during the pre-monsoon season as the 

groundwater storage depletes (Lutz et al., 2014; Nepal et al., 2014; Dhami et al., 2018).  

The loss of water from evapotranspiration Is less significant for the hydrology of 

mountainous sub-catchments for which it is generally below 10% (Bookhagen and 

Burbank, 2010). This loss is moderately higher in Central Himalayan River systems due 

to the warm temperatures in the lower mountain ranges of the Siwaliks and Middle Hills 

(Nepal, 2012). It is estimated that 14% of the annual precipitation evapotranspirates in 

the Karnali catchment mostly during the monsoon season (Bookhagen and Burbank, 

2010). The potential evapotranspiration rates are highest during the pre-monsoon 

season due to the lower cloud cover (Nepal, 2012). However, evaporation observations 

are sparse and inaccurate and do not depict the small-scale variability in the 

mountainous catchments (Hannah et al., 2005). 



 

27 

 

 

 

Figure 2.6: Mean monthly discharge (1985 – 2014) of the Karnali River at the mountain gauge. The gauging 
station is maintained by the Department of Hydrology and Meteorology, Nepal.  

 

The intense monsoon rainfalls and the steep slopes in the catchment cause frequent 

floodings in the Terai region. The most recent flood events occurred in 2013 and 2014 

which were with 17,400 m3/s and 17,900 m3/s (daily mean) the largest flood events 

recorded since the year 1970 (Figure 2.7). The third largest flood event occurred in 1983 

(16,000 m3/s) and stands out from the flood record because it is the only major flood 

which lasted more than a day (Figure 2.8). In 2009, a flood event (14,600 m3/s) altered 

the bifurcation after which more water drains through the Western branch (Dingle et al., 

2020a). The highest observed daily discharge (17,900 m3/s) at the mountain outlet (1985 

– 2014) exceeds the lowest one (170 m3/s) by a factor of 100 which emphasises the high 

range of flows. 

The flood-triggering mechanisms are diverse and depend on the catchment 

characteristics. Glacier Lake Outburst Floods (GLOF) and  Landslide Outburst Floods 

(LOF) cause the most catastrophic floods in the upstream sub-catchments (Cook et al., 

2018; Chen et al., 2023). Localised heavy rainfall causes flash floods in the Siwaliks and 

Middle Hills (Khanal et al., 2007; DHM, 2018). The riverine floods in the Terai Region 

are triggered by intense rainfalls over a large fraction of the catchment (MacClune et al., 

2015; Shrestha et al., 2015a; Bhandari et al., 2018; DHM, 2018). The steep slopes of 

Central Himalayan catchments facilitate a fast rainfall-runoff conversion and efficient 

transport to the Terai. Hence, these floods are characterised by a short response time, 

high magnitude and a quick recession.  
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Figure 2.7: Annual Maximum Flows recorded at the mountain outlet. The gauging station is maintained by 
the Department of Hydrology and Meteorology, Nepal. 

 

 

 

 

Figure 2.8: Flood hydrographs of the six largest flood events recorded at the mountain outlet in the period 
1970 – 2016. The gauging station is maintained by the Department of Hydrology and Meteorology, Nepal.  
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This high-responsive nature of the Karnali River is illustrated by the 2014 flood event 

(Figure 2.8). This event was triggered by a large rain field which passed through the 

catchment between the 14th and 15th of August with rainfall rates of up to 500 mm within 

24 hours (MacClune et al., 2015; Shrestha et al., 2015a). The discharge at the mountain 

outlet rose from 4,800 m3/s on the 14th to 17,900 m3/s on the 15th. The discharge receded 

to 7,800 m3/s (44% of the peak runoff) on the day after the event. However, these daily 

averages negate the temporal variability to some extent. The stage record shows that 

the water level has risen from 9 m at 00:00 to 16 m at 06:00 and receded to 11 m at 

23:59 (MacClune et al., 2015). Hence, this river responds on the sub-daily scale and the 

maximum flood discharge is considerably higher than the daily average indicates.   

The shape of the hydrograph and the lag time depend on the interaction between the 

rainfall pattern and the catchment topographic form. The lag time increases if the rain 

field is located further upstream and the shape of the hydrograph is affected by the timing 

and overlay of the subbasin hydrographs (Reaney, 2022). However, the mean runoff of 

the six largest floods since 1970 is 44% of the peak runoff on the day before the flood, 

and 57% on the day after the flood which illustrates that the Karnali is a highly responsive 

catchment. As a result, the floods have a high magnitude because the rainfall drains 

during a short period.  
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2.7 The sediment cascade 
 

The sediment cascade describes the geomorphological system of a landscape with the 

upstream sediment source and the downstream sediment sinks whereas the processes 

of production, transportation and deposition vary on spatial and temporal scales (Burt 

and Allison, 2010; Bracken et al., 2015). The young and fragile geology and the steep 

topography of the Himalayas in combination with the high tectonic activity and monsoon 

precipitation lead to high sediment production and efficient transport and hence 

Himalayan rivers are amongst the most sediment-laden rivers in the world (Milliman and 

Syvitski, 1992; Upreti, 2001; Ballard et al., 2013; Scott et al., 2019).  

The processes governing sediment production vary spatially. Glacial erosion dominates 

the sediment production in the High Mountains above 5,000 masl (Gabet et al., 2008). 

Further downstream, the most important processes are soil erosion, landslides triggered 

by earthquakes and heavy rainfall events, and fluvial erosion from glacial lake outburst 

floods and flash floods (Dingle et al., 2017; Cook et al., 2018; Morin et al., 2018; 

Maharjan et al., 2021; Adhikari et al., 2023; Chen et al., 2023). The sediment production 

is highest in the Siwaliks due to the weak geology of this mountain range. Landslides 

produce most sediments but sheet and gully erosion and to a lesser degree bank erosion 

contribute to the production (Upreti, 2001; Ghimire et al., 2013).  

The steep slopes of the rivers and the high flow rates facilitate the efficient sediment 

transport. This high transport capacity is generated by GLOFs and LOFs in the upstream 

subbasins which are the main facilitators for delivering sediment pulses downstream 

(Cook et al., 2018; Maharjan et al., 2021; Chen et al., 2023). The rainfall-runoff of the 

monsoon precipitation gains importance with increasing catchment size and dominates 

the sediment delivery to the Ganga plain (Scott et al., 2019). However, the coarse 

sediments (gravel, pebbles and boulders) which are delivered to the rivers ≥ 100 km 

upstream of the mountain front are stored within the channels, abrade and are then 

transported to the Ganga-Brahmaputra delta as fine sediments (sand or finer) (Lupker 

et al., 2011; Dingle et al., 2017). 

The Upper Siwalik conglomerate is the main source of gravel for the Karnali fan. This 

pebble-to-bolder-sized conglomerate is made up of resistant quartzite clasts, is loose 

and almost unconsolidated and is efficiently transported by the Siwalik Rivers (Hurtrez 

et al., 1999; Upreti, 2001; Dingle et al., 2017; Quick et al., 2019). The conglomerate is 

located in proximity (approx. 10 – 40 km) to the mountain front and hence does not 

abrade before reaching the fan (Dingle et al., 2017; Quick et al., 2019). The Lower 
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Siwalik and Middle Siwalik sediments comprise friable Silt-, Mud- and Sandstones which 

are, despite the proximity, eroded to fine sediments before reaching the mountain front 

(Dingle et al., 2017).  

The gravel that reaches the fan deposits upstream of the Gravel-Sand-Transition (GST) 

which is located ~30 km downstream of the mountain outlet (Dingle et al., 2020b). The 

fan slope reduces from ~0.002 m m-1 at the mountain outlet to 0.001 m m-1 at the gravel-

sand-transition which causes a decrease in the sediment-transport capacity and hence 

the coarser sediments deposit further upstream. This change is illustrated by the 

decrease of the median grain size (D50) from 231 mm at the bifurcation to 0.31 mm 

downstream of the GST (Dingle et al., 2020b).  

Alluvial fans are complex landscape features which connect the upstream sediment 

sources with the downstream sediment sinks and change their behaviour between 

aggradation (sediment storage) and degradation (sediment source)  (Bracken et al., 

2015; Harvey, 2018). This fan behaviour is controlled by the sediment supply, the river 

discharge, and the slope of the fan (Kleinhans et al., 2013; Dingle et al., 2016). The fan 

evolution is shaped by flood events because these flows deliver most of the sediments 

and have the highest potential to rework the topography (Kleinhans et al., 2013). On the 

other hand, flood hazards are affected by the fan behaviour because degrading channels 

are more stable and have an increased channel capacity while aggrading channels are 

more prone to avulsions and flood larger areas as the channel capacity is reduced and 

can be superelevated over the floodplain (Dingle et al., 2016). However, geomorphic 

processes also occur during lower flows and hence flood events are not the only driver 

of topographic changes (Kleinhans et al., 2013). 

The behaviour of Central Himalayan rivers is controlled by the basin subsidence caused 

by the subduction of the Indian plate under the Eurasian plate (Dingle et al., 2016). The 

Eastern Rivers (Koshi, Gandaki) are aggrading due to high subsidence rates while the 

slowly subsiding Western Rivers (Yarmuna, Ganga) are degrading (the subsidence rates 

are presented in Figure 1.1). For the Karnali fan both, the estimated subsidence rates 

and the position of the GST (a proxy for the basin subsidence) approach the 

characteristics of the degrading Eastern rivers which indicates that the Karnali fan is 

degrading (Dingle et al., 2016). However, the river channels are superelevated over the 

Western floodplain which indicates that the channels aggrade and contradicts the 

evidence of the fan degradation (Figure 2.3). It is, therefore, not clear whether the Karnali 

River is currently in a degrading or aggrading phase (Kleinhans et al., 2013; Sinha et al., 

2014; Dingle et al., 2016). 
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3  Review of environmental modelling approaches 
 

The prediction of potential flood hazards requires the linkage of environmental models 

that are applied in the mountainous Karnali catchment and the downstream Karnali fan. 

The first Section 3.1 reviews hydrological modelling approaches to simulate the 

catchment hydrology which are applied in Stages 1 and 2 (O1 and O2). Section 3.2 then 

presents methods to quantify the flood magnitudes and frequencies at the mountain 

outlet that are discharged into the fan (Stage 2, O3). Hydrodynamic models simulate the 

motion of water and are used to simulate the spatial flood hazard patterns (Stage 4, O5), 

and are combined with sediment transport models in morphodynamic models which are 

used to simulate the morphological evolution of the Karnali fan (Stage 3, O4). The 

hydrodynamic and morphodynamic models are reviewed in the Sections 3.3 and 3.4, 

respectively. 

 

3.1 An overview of hydrological modelling 
 

Flood hazards are shaped by the hydrological processes in the upstream catchment 

which implies that changes in the hydrological system affect the hazard (Beven, 2012; 

Lane et al., 2011; Lane, 2017). Drivers of such change can be of natural (e.g. solar 

radiation, volcanic activities) or anthropogenic (e.g. land-use change, agricultural 

practices, urbanisation) origin and act on different spatial and temporal scales (Holden, 

2008; Douville et al., 2021; Pearson et al., 2022). One key driver which has been shown 

to alter hydrological systems across the globe is anthropogenic climate change  (Todd 

et al., 2011; Prudhomme et al., 2014; Giuntoli et al., 2015; Bolch et al., 2019; Krishnan 

et al., 2019; IPCC, 2023). Changes in temperature and precipitation patterns affect key 

hydrological processes including evapotranspiration, rainfall-runoff conversion, and 

snow and glacier melt. Due to these changes, flood hazards are projected to increase in 

many regions of the world (Hirabayashi et al., 2013, 2021; Dankers et al., 2014; Douville 

et al., 2021; Seneviratne et al., 2021; Tellman et al., 2021; Caretta et al., 2022). In 

mountainous regions, climate change leads to elevation-dependent warming, an 

increase in orographic precipitation, a decrease in snow cover, a shift in snow 

seasonality, a decrease of glacier mass, and permafrost thawing and as a result increase 

in natural hazards (Wang et al., 2019; Ranasinghe et al., 2021). It is, therefore, important 

to assess the potential climate change impact on flood hazards so that flood 

management can be adapted to future flood hazards. 



 

33 

 

The prediction of the climate-change impact, therefore, requires an understanding of the 

hydrological system in the mountainous catchment that facilitates the flood water 

generation. This section reviews simulation techniques that provide such information, 

namely hydrological models (Section 3.1.1) that simulate the rainfall-runoff conversion 

under consideration of the antecedent conditions (e.g. soil moisture, snowmelt and 

glacier melt contributions), the calibration of these models to the individual catchment 

characteristics (Section 3.1.2), methods to estimate the uncertainty in hydrological 

modelling (Section 3.1.3), and methods to estimate the uncertainty in the discharge 

observations which are essential datasets for the calibration of hydrological models 

(Section 3.1.4).  

 

3.1.1 Hydrological modelling approaches 
 

Hydrological simulation models represent the flows of water within the landscape and 

river system to predict the catchment’s behaviour. Despite this mutuality, the models 

differ in their modelling approach, the temporal and spatial scales of application, 

simulated processes, predicted variables (the information gain), input data requirements, 

and computational resources (Pechlivanidis et al., 2011; Beven, 2012). These 

differences have implications for the suitability of a model for specific objectives and 

catchments. These different approaches and their applicability for the climate change 

impact assessment in Central Himalayan river systems are outlined in the following 

sections.  

 

3.1.1.1 The process description 
 

Empirical models simulate the catchment response to precipitation solely from 

observations without considering the underlying physical system. These models 

simulate the response (e.g. the discharge) to physical and climatic descriptors without 

quantifying the processes that determine the response and are, therefore, also referred 

to as data-driven black-box models (Pechlivanidis et al., 2011; Devi et al., 2015). 

Examples of empirical models are the Unit Hydrograph (Sherman, 1932), statistical 

regression and correlation models, and, more recently, data-based mechanistic models, 

artificial neural networks and machine learning techniques which exploit the exponential 

rise of computational processing power and development of new statistical methods 

(Pechlivanidis et al., 2011; Beven, 2012).  
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Empirical models have low computational costs and data requirements, are simple to 

implement and are applicable in ungauged catchments  (Pechlivanidis et al., 2011; Devi 

et al., 2015). However, these models have low explanatory depth due to their low 

complexity (i.e. no physical process description) (Devi et al., 2015). In other words, such 

models are capable of predicting the catchment’s response but deliver no information 

about the internal state of the hydrological system that causes the response. 

Furthermore, empirical models are not transferable across catchments and are based 

on the assumption of stationarity. Hence they can only be applied to stable physical and 

climatic conditions (Merritt et al., 2003). It is further criticised that the heterogeneity of 

catchment characteristics and non-linearities in the system are ignored and that the 

uncertainty is not depicted adequately (Wheater, 2002; Pechlivanidis et al., 2011; Beven, 

2012).  

Physics-based models (also mechanistic models) depict the hydrological system with 

physical equations that quantify the hydrological processes (Pechlivanidis et al., 2011). 

The physical process description offers several advantages. Physics-based models:  

- offer insights into the hydrological state and, thus, a high explanatory depth (white-

box models); 

-  are not bound to the assumption of stationarity and can be used to predict the impact 

of changes in the physical or climatic conditions;  

- are transferable to other catchments because the laws of physics are independent 

of space and;  

- are physically meaningful, measurable parameters that require (in theory) no 

calibration (Beven, 2012; Devi et al., 2015).  

On the contrary, the physical process description requires extensive information about 

the hydrological system and considerably higher computational resources compared to 

empirical models (Merritt et al., 2003). The theoretical foundation of the physical 

equations is based on laboratory or small-scale in-situ experiments. However, in 

practice, such models are applied on a larger grid scale which results in the lack of 

theoretical justification that the equations are applicable on the larger scale and the loss 

of physical significance of the parameters and subsequently the necessity of parameter 

calibration (Merritt et al., 2003; Gupta et al., 2005; Beven, 2012). Examples of physics-

based models include the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1993) 

and LISFLOOD (De Roo et al., 2000; Van Der Knijff et al., 2010). 

Conceptual models describe the hydrological system as a series of internal storages that 

represent a conceptual view of the important hydrological components. The allocation 
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and transfer of water to and between the storages are simulated by transfer mechanisms 

that are based either on empirical or physical equations. These ‘grey-box’ models are 

located in between empirical ‘black-box’ models and physics-based ‘white-box’ models 

as they consider the dominating hydrological processes without including specific details 

of process interactions (Beven, 2012; Terink et al., 2015a). Conceptual models have 

moderate data requirements and moderate computational costs while providing 

information about the internal state of the system through the quantification of water 

fluxes. However, models of this class can vary significantly in complexity and, thus, data 

requirements and the selection process needs to balance the required model complexity 

(e.g. research objective, catchment characteristics) and the available information 

(Wheater, 2002; Pechlivanidis et al., 2011). Conceptual models incorporate parameters 

that lack physical interpretation and are, thus, not measurable and require calibration 

which increases the uncertainty in the predictions (Beven, 2012). Examples of 

conceptual models include the Hydrologiska Byråns Vattenbalansavdelning (HBV) 

model (Bergström, 1976; Lindström et al., 1997), J2000 (Krause, 2001), and SPatial 

Processes in Hydrology (SPHY) (Terink et al., 2015a).  

It is worth mentioning that models often utilize a hybrid approach combining elements of 

different types to reduce model complexity and adjust to data scarcity or to increase 

model complexity to increase the explanatory depth (Pechlivanidis et al., 2011; Terink et 

al., 2015a). For example, a model could use physical equations to predict 

evapotranspiration rates while melt processes are predicted from empirical relationships. 

 

3.1.1.2 The spatial discretisation 
 

Hydrological models can further be grouped based on their spatial discretisation into 

lumped, distributed, and semi-distributed models. Lumped models are the models with 

the lowest complexity as these models represent the catchment as a homogenous unit 

and are driven by catchment-average parameters and input data (Beven, 2012). 

Therefore, these are characterised by low data requirements and computational costs. 

However, such models are only able to predict the catchment response without providing 

information about the spatial variability of hydrological processes because the spatial 

variability in the climatic and physical conditions is not depicted. For example, the 

predicted discharge at the catchment outlet cannot be decomposed into the subbasin 

contributions.   
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Distributed models divide the catchment into a large number of spatial entities (i.e. grid 

cells) and simulate the hydrological processes on the scale of these entities (Beven, 

2012). The scale of these entities is larger than the scale of the variation of processes 

and hence these models are somewhat lumped conceptual models at the entity scale 

(Beven, 2012). However, some distributed models implement routines that consider the 

variation at the sub-entity scale. One example is the SPHY model which simulates glacial 

processes for the grid cell fraction that is covered by glaciers (Terink et al., 2015a). 

Distributed models provide more detailed information about the hydrological state of a 

catchment than lumped models (e.g. the spatial variation of soil moisture within a 

catchment). However, this comes at the cost of higher data requirements and 

computational costs, and these models can easily become over-parametrized 

(Pechlivanidis et al., 2011). 

Semi-distributed models divide the catchment into non-continuous entities enabling the 

consideration and prediction of the heterogeneity of hydrological variables (Pechlivanidis 

et al., 2011). The spatial resolution of these entities can vary greatly between different 

approaches of spatial discretisation. The HBV model divides the catchment into 

subbasins and further into elevation bands and vegetation zones. The J2000 and SWAT 

models divide the catchment into Hydrological Response Units (HRUs) which are 

entities with similar hydrological relevant features such as land cover, soil types, 

elevation, slope, aspect, and groundwater aquifers. Such models aim to combine the 

advantages of lumped and distributed models to varying degrees. That is the 

representation of the heterogeneity of important hydrological features with moderate 

data requirements and computational costs (Pechlivanidis et al., 2011). While semi-

distributed models have, in general, a lower spatial resolution compared to distributed 

models, it is not proven that distributed approaches are superior to semi-distributed 

approaches in practical applications (Beven, 2012).  
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3.1.1.3 The temporal discretisation 
 

Models can further be distinguished by their temporal resolution; while event-based 

models simulate hydrological processes for single events, continuous models simulate 

hydrological processes on longer time scales (Pechlivanidis et al., 2011). Event-based 

models are commonly used for the simulation of single flood events (USDA, 2014; 

Nathan and Ball, 2019). Such models convert rainfall into runoff based on a simple loss 

model to quantify the rapid excess runoff and simulate the flood hydrograph (Berthet et 

al., 2009; Nathan and Ball, 2019). These loss parameters are calibrated for individual 

events and the transfer to other events can result in a loss of the predictive quality (Al-

Qurashi et al., 2008). Event-based models are furthermore sensitive to the antecedent 

conditions (e.g. soil moisture) to accurately predict the rainfall-runoff conversion and thus 

require information on the hydrological catchment conditions (Berthet et al., 2009).  

Continuous models simulate the hydrological processes continuously over longer 

scales. Generally, these models are more complex because the rainfall-runoff 

conversion is more sophisticated than the application of a simple loss model. Such 

models can include algorithms to simulate processes that gain importance on longer 

time scales, such as snowfall and melt, or glacier melt (Immerzeel et al., 2013; Lutz et 

al., 2014; Nepal et al., 2014). These models do not require the definition of the 

antecedent conditions (although they might be defined) because these are predicted by 

the model. Therefore, continuous models are most commonly used to simulate flood 

hazards for projected climates for which the antecedent conditions are naturally 

unknown (Nathan and Ball, 2019). However, both event-based and continuous models 

need to be calibrated which introduces uncertainty when transferring the parameters 

from past to future climatic conditions (Stephens et al., 2018; Bérubé et al., 2022). 

 

3.1.1.4 The inclusion of randomness 
 

Models can also be distinguished by the inclusion of randomness. Deterministic models 

predict similar results as long as the parameterisation and datasets are unchanged. 

Stochastic models add random variables and, therefore, every model run will produce 

different results even if the input data and model setup remain unchanged, which allows 

the estimation of uncertainty. It is worth noting that every deterministic model can be 

used as a stochastic model by using stochastic input data (e.g. rainfall) or using 

stochastically generated input parameters (e.g. Monte-Carlo simulations) (Beven and 

Binley, 1992).  
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3.1.1.5 Selection of a modelling approach 
 

The richness of model classes indicates the wide range of hydrological models whereas 

each model has unique characteristics that define its suitability for specific purposes. 

Therefore, model selection is a crucial step in any hydrological analysis. In general, 

model selection should be based on the research objective, dominating hydrological 

processes in the catchment, data availability, know-how, and financial, temporal, and 

computational resources (Gupta et al., 2005).  

In this study, the hydrological model is applied to predict the catchment hydrology for the 

projected climates. This cannot be achieved with empirical models which require stable 

conditions and therefore, either a physics-based or conceptual model is required. Any 

potential model needs to include routines for the prediction of snow and glacier 

processes to adequately reflect the hydrological system of the Karnali River. 

Furthermore, a distributed or semi-distributed spatial representation is preferred for two 

reasons: i) the wide range of climatic and physical conditions at a small scale in 

Himalayan watersheds cannot be captured by a lumped model and; ii) the more 

sophisticated output provides information about the spatial variability in the hydrological 

variables that shape flood hazards. The flood events in the Terai have a short duration 

(1-2 days) which would favour the selection of an event-based model. However, this is 

prevented by the lack of hydro-climatic datasets with the sub-daily resolution, and by the 

lack of information that defines the boundary conditions at the start of the flood event 

(e.g. soil moisture, groundwater aquifer saturation) which are unknown for the projected 

conditions. Therefore, a continuous approach is preferred because it predicts the 

antecedent conditions.  
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3.1.2 The calibration of hydrological models 
 

In practice, all models require parameter calibration to adjust the model to the unique 

catchment characteristics regardless of the process description. The calibration of a 

hydrological model is the process of matching the predicted behaviour with the observed 

behaviour of the catchment by identifying the set of parameters that best match the 

unique characteristics of the catchment (Gupta et al., 2005; Beven, 2012). The 

calibration aims to establish a model in which input-state-output behaviour is consistent 

with the observed behaviour, produces accurate (low bias) and precise (low uncertainty 

range) predictions, and has a model structure that reflects the current hydrological 

understanding of the reality (Gupta et al., 2005).  

The calibration process aims to identify behavioural parameter values. However, these 

parameters might lack physical interpretability and, thus cannot be measured, or are 

applied on spatial or temporal scales which cannot be measured (Gupta et al., 2005). 

Thus, the behavioural parameter value needs to be estimated by an indirect process 

which compares the simulated and observed catchment response (e.g. catchment 

discharge) (Gupta et al., 2005). This requires performance measures that evaluate the 

correlation between simulated and observed behaviour (Section 3.1.2.1).  

The model calibration can be conducted by a manual calibration, an automated 

calibration, or a combination of both. In the manual calibration process, the parameter 

values are adjusted one at a time and the performance is evaluated. This process is 

subjective, dependent on the experience of the modeller and complex due to parameter 

interactions and the non-linear nature of the response but can produce accurate results 

(Gupta et al., 2005). In the automated calibration process, the adjustment of parameter 

values is conducted by a computer which makes the process less subjective (Beven and 

Binley, 1992). This requires the identification of reasonable parameter spaces which is 

complicated by the complex interaction of the parameters and hence it is difficult to 

define the parameter boundaries. The quality of this approach depends on the number 

of samples; if the model is run for too few parameter combinations, not all behavioural 

parameter sets are identified, and if the sampling number is too high the calibration 

process is ineffective (Gupta et al., 2005). 
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3.1.2.1 Performance measures 
 

Performance measures (also referred to as objective functions) evaluate the correlation 

between simulated and observed catchment behaviour. The observed discharge is most 

commonly used because it is the product of all upstream processes but additional 

information (e.g. snow extent, evapotranspiration, groundwater levels, glacier mass 

balance) can be added to increase the robustness of the calibration process (Beven, 

2012; Immerzeel et al., 2013; Lutz et al., 2014). A range of different performance 

measures exist that focus on different aspects of the hydrograph, and it is recommended 

to use multiple measures to obtain a more robust and differentiated evaluation of the 

performance of a parameter value or a parameter set  (Legates and McCabe, 1999; 

Westerberg et al., 2011). However, there are no standardised guidelines for the choice 

of the performance measure and the classification into behavioural and non-behavioural 

parameter values or parameter sets (Moriasi et al., 2007; Beven and Binley, 2014). 

Performance measures can be classified into statistical and graphical techniques and 

Moriasi et al. (2007) group the statistical techniques further into standard regression, 

dimensionless, and error indices. 

Standard regression techniques evaluate the strength of the linear relationship between 

simulated and observed data. One example is the coefficient of determination (R²) which 

focuses on the temporal variation between simulated and observed behaviour but is 

sensitive to outliers, lacks information about volume differences, and should not be used 

as the sole criterion because also poor models can achieve high correlations (Legates 

and McCabe, 1999). 

Dimensionless techniques provide a relative model evaluation assessment (Moriasi et 

al., 2007, 2015a). One example is the Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe, 1970), which is the normalized Mean Squared Error (MSE) (Moriasi et al., 

2015a):  

��� = 1 −  ∑ (
�� �)�����∑ (
�� 
�)�����        Eq. 3.1 

Where O is the observed value, P is the predicted value and i is the time. This measure 

is sensitive towards higher flows because the differences between simulated and 

observed model behaviour are squared (Gupta et al., 2009).  

Error indices quantify the deviations between simulated and observed behaviour in 

absolute or relative units. Commonly used indices are mean absolute error (MAE), mean 

square error (MSE) and root mean square error (RMSE) which provide the modelling 

error in the unit (or squared unit) of the evaluated variable (e.g. m3/s for discharge) and 
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are, thus, easily interpretable (Moriasi et al., 2007). The percentage BIAS (PBIAS) 

describes the percentual difference between simulated and observed behaviour of the 

evaluated period. The formulas for the computation of these metrics can be found in 

Moriasi et al. (2015).   

Liu et al. (2009) calculate the percentage of the modelling time steps where the 

simulated runoff falls within the confidence interval of the observed runoff to account for 

the uncertainty in the discharge observations (eGLUE). Furthermore, graphical 

techniques can be used for performance evaluation. The most common type of 

visualisation is the hydrograph which shows how well models reproduce the timing and 

magnitude of the streamflow (Legates and McCabe, 1999; Moriasi et al., 2007, 2015a).  

 

3.1.2.2 Parameter sampling 
 

The optimal sample size for model calibration depends on the number of calibration 

parameters and the value points per parameter. Hydrological models are, in general, 

complex models with many parameters and large ranges of parameter values, resulting 

in large sample sizes and high requirements for computational resources (Beven and 

Freer, 2001). The random sampling of the parameter space of k dimensions (number of 

parameters) and P parameter values requires Pk parameter sets and hence a model with 

10 parameters and 10 values per parameter requires a sample size of 10 Billion 

parameter sets (Odoni, 2007). Assuming that the runtime of a model is 1 h it would take 

>1 Million years of CPU time to simulate all parameter combinations. It is, therefore, 

necessary to reduce the required sample size wherever possible and find a compromise 

between parameter sampling and the available resources (e.g. computational resources, 

time).  

One way to reduce the sample size is the application of more sophisticated sampling 

techniques than random sampling generators. The Latin Hypercube Sampling (LHS) 

technique (McKay et al., 1979) divides each parameter into non-overlapping intervals 

according to a probability distribution which are then paired randomly with the values of 

the other variables (Odoni, 2007). This approach reduces the problem of under-sampling 

certain areas in the parameter space and reduces the required sample size to 1/10th 

compared to a random sample generator (Vose, 2000; Odoni, 2007).  
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3.1.2.3 Parameter sensitivity analysis 
 

The required sample size can be reduced by reducing the number of parameter values 

P and the number of calibration parameters k. A common approach to reducing the 

number of calibration parameters is the exclusion of insensitive parameters (Nepal et 

al., 2014). The parameter sensitivity describes the degree of influence of a parameter 

on the model output, whereas sensitive parameters dominate the model behaviour 

(Nepal, 2012; Gan et al., 2014). The approaches for parameter sensitivity analysis can 

be grouped into two categories; firstly, the local sensitivity analysis which varies one 

parameter while keeping the others constant and; secondly, the global sensitivity 

analysis which evaluates the model response by varying all parameters simultaneously 

and requires a larger sample size. The local sensitivity analysis is simple and intuitive 

but it lacks information about parameter interactions (Gan et al., 2014).  

The Regional Sensitivity Analysis (RSA) (Hornberger and Spear, 1981) is a global 

sensitivity analysis approach that splits the parameter sets into behavioural and non-

behavioural sets. The RSA requires a performance measure (e.g. Nash-Sutcliffe 

efficiency) for grouping the parameter sets. The normalized cumulative frequency 

distributions (CFD) for the groups are calculated and plotted. The difference between 

the CFDs of the behavioural and non-behavioural groups determines the parameter 

sensitivity whereas the sensitivity increases with the distance of both CFDs (Nepal, 

2012; Gan et al., 2014). The obtained CDF plots also provide information about the 

model performance in the parameter space and can be applied to identify behavioural 

parameter ranges and decrease the parameter values P. 
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3.1.3 The uncertainty in hydrological modelling 
 

Hydrological models are simplified replications of complex systems and are developed 

based on incomplete knowledge of the physical processes and interactions, applied to 

catchments with incomplete information, and therefore subject to uncertainties that need 

to be quantified to judge the validity of the predictions.  

 

3.1.3.1 Uncertainty sources   
 

The main uncertainty sources in hydrological models (and environmental models in 

general) are the structural, parameter and measurement uncertainties (Gupta et al., 

2005; Beven and Binley, 2014). 

Structural uncertainty arises from the simplification of the complex hydrological system, 

for example, the aggregation of processes in time and space and is difficult to quantify 

(Gupta et al., 2005; Beven, 2012). The model structure is static (e.g. global parameters 

in space and time) and hence the non-linear response of hydrological processes to 

climate variability (daily – decadal time scale) cannot be simulated (Jehanzaib et al., 

2020; Bérubé et al., 2022). This static structure is a particular challenge for the 

application in Himalayan catchments due to the large climatic and hydrological variations 

between the monsoon and non-monsoon seasons (Nepal et al., 2014). The resulting 

structural errors manifest in a model’s inability to reproduce every aspect of the 

hydrograph equally well. This means that a modeller is forced to calibrate the model to 

the specific aspect of interest (e.g. high flows) and accept poorer performance for less 

relevant aspects.  

One strategy to estimate structural uncertainty is to calibrate the model using a multi-

criteria approach that uses multiple performance measures to evaluate the performance 

of different aspects of the hydrograph (Legates and McCabe, 1999). However, this 

approach cannot quantify the uncertainty that is inherent in the model structure (e.g. the 

conceptual design of the model). This model structure uncertainty can be quantified by 

simulating the catchment hydrology with an ensemble of different hydrological models 

with different model structures (Prudhomme et al., 2014; Giuntoli et al., 2015, 2018, 

2021; Huang et al., 2017; Krysanova et al., 2017; Pechlivanidis et al., 2017). However, 

this approach is complex because the input and output (e.g. data structures) potentially 

vary between the models.  
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Parameter uncertainty describes the uncertainty due to imperfect model 

parameterisation. The true parameter set could be estimated from a comparison of the 

simulated and observed catchment behaviour. This requires detailed information about 

the hydrological state of the components (e.g. soil moisture, groundwater recharge, etc.) 

which is unknown for most catchments which is why models are calibrated for a subset 

of information (e.g. discharge, snow cover, etc.). However, different parameter sets can 

produce similar results. This phenomenon is known as model equifinality and is not 

limited to hydrological models but applies to environmental models (Beven and Binley, 

1992, 2014; Beven and Freer, 2001; Odoni, 2007). The model equifinality, imperfect 

catchment knowledge, and unmeasurable parameters hamper the identification of the 

“true” parameter set. Therefore, all parameter sets that predict the variable of interest 

must be considered as equally likely representations of the catchment hydrology (Beven 

and Freer, 2001; Gupta et al., 2005). The parameter uncertainty can be estimated by 

applying the model with different parameter combinations, evaluating the performance 

of each parameter set and keeping all parameter sets that are classified as behavioural. 

Examples of parameter uncertainty estimation methods are the Generalized Likelihood 

Uncertainty Estimation (GLUE) (Beven and Binley, 1992) and the Bayesian Recursive 

Estimation (BaRE) (Thiemann et al., 2001).  

Measurement uncertainty is the uncertainty that relates to the observation error in the 

data that is used either as input (e.g. precipitation) or to calibrate and validate the model 

(e.g. discharge). All measurements are subject to systematic and random errors that 

result from the person conducting the measurements, the instruments, and the 

measured system and these errors in the data propagate in the modelling process (Liu 

et al., 2009). Measurement uncertainty can be quantified depending on the utilization of 

the dataset. For datasets that are used as modelling input, the uncertainty can be 

estimated by creating synthetic datasets that reflect the measurement error and applying 

the model with these synthetic datasets. However, this requires information about the 

distribution of the error which is unknown in most cases (Liu et al., 2009). A simple 

solution to estimate the uncertainty without any knowledge about the nature of the error 

is the introduction of a scaling factor as a calibration parameter (Crawford and Linsley, 

1966). For simulations of the projected hydrology, it is recommended to use probabilistic 

climate projections (climate projections from an ensemble of climate models) to account 

for the uncertainty in the climate models (Giuntoli et al., 2015, 2018, 2021). The 

measurement uncertainty of calibration and validation datasets can be considered by 

evaluating the model performance from the confidence intervals of the datasets (Liu et 

al., 2009). 
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The structural and parameter uncertainty can be quantified within the GLUE framework, 

which is introduced in the next section. However, this framework requires data about the 

catchment’s response which includes the measurement uncertainty. The extended 

GLUE (eGLUE) (Liu et al., 2009) accounts for the measurement uncertainty in the 

calibration data and is introduced in Section 3.1.3.3.  

 

3.1.3.2 The Generalized Likelihood Uncertainty Estimation framework 
 

One of the main challenges for the calibration of hydrological models is the lack of 

information about the internal state of the modelled system and the model equifinality. 

The GLUE framework (Beven and Binley, 1992) approaches model equifinality by 

assuming that it is impossible to identify the true parameter set. Instead, every parameter 

set is evaluated regarding the likelihood of being a behavioural (acceptable) simulator of 

the system. It is worth noting that likelihood is not defined in the sense of Maximum 

Likelihood Theory which assumes a normal distribution of errors. Instead, the likelihood 

in GLUE is a probabilistic measure of how well a parameter set replicates the observed 

behaviour (Beven and Binley, 1992). A performance measure is used to indicate this 

likelihood and all behavioural parameter sets are maintained and treated as equally likely 

simulators of the system. Maintaining n behavioural parameter sets results in a range of 

n simulated model outputs and this range defines the confidence interval of the model 

predictions, and, hence, quantifies the parameter uncertainty. The GLUE framework can 

be extended to estimate the structural uncertainty by combining it with a multi-criteria 

approach (Gupta et al., 2005). For this, the performance of each parameter set is 

evaluated for a set of performance measures and all parameter sets that are classified 

as behavioural for any of the performance measures are maintained. The measurement 

error can be estimated to some extent in GLUE by introducing calibration parameters 

that scale the input measurements (Crawford and Linsley, 1966; Lutz et al., 2014).  

The main criticism of GLUE is the lack of a formal statistical likelihood and hence the 

application of GLUE involves subjective decisions (Clark et al., 2011, 2012; Beven and 

Binley, 2014). There are no universal guidelines for the use of performance measures 

and the identification of behavioural parameter sets. The most common approach is the 

definition of performance measure thresholds, whereas no universally accepted 

thresholds exist (Beven and Binley, 2014). Moriasi et al. (2007, 2015) define thresholds 

based on a synthesis of published studies. However, the thresholds need adjustment to 

the catchment and objective, i.e. data quality and quantity, model calibration procedure, 

evaluation time step, and the project scope. The definition of thresholds can be avoided 
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when using a ranked selection approach which classifies the n parameter sets with the 

highest efficiencies as behavioural (Pearson, 2020). This approach has the 

disadvantage that classification is not based on the performance of a parameter set. 

Non-behavioural parameter sets can be classified as behavioural if there are not n 

better-performing parameter sets, and behavioural parameter sets can be eliminated if 

they are not among the n highest-performing parameter sets. 

 

3.1.3.3 The extended Generalised Likelihood Uncertainty Estimation  
 

The GLUE method estimates the uncertainty from various sources by evaluating the 

performance of a set of model realisations (parametrization, input data) based on the 

observed catchment behaviour. The discharge is an essential indicator of the catchment 

behaviour and is most commonly used in the hydrological modelling of gauged 

catchments because it contains information about all upstream processes. However, the 

observed discharge is usually derived from the observed stage using statistical methods 

(see Section 3.1.4) and contains uncertainty, especially towards the extremes of the flow 

range (McMillan et al., 2012; Kiang et al., 2018). Since the model realisations are 

classified based on the fit between the two (simulated and observed) flow time series, 

the uncertainty in the observed discharge propagates to the model. 

The extended GLUE (Liu et al., 2009) extends the GLUE by considering the error in the 

observation data. This is achieved by normalising the uncertainty in the observed 

discharge and calculating a normalised score at any time step t: 

Score (t) = �(�� − ��)/ (�� − ����,� )        �� <  ��(�� − ��)/ (��� ,� − ��)       �� ≥ ��     Eq. 3.2 

Where Yt is the simulated discharge at time step t, Qt is the best estimate of the observed 

discharge and Qmin, t and Qmax, t are the lower and higher confidence bands of the 

observed discharge at time step t. If the score lies within the range between -1 and 1, 

the model predictions fall within the uncertainty range of the observed discharge. 

Therefore, -1 and 1 define the lower and upper limits of acceptability.  

This score is then used to identify behavioural parameter sets. However, it is unlikely 

that the prediction of a model falls within the limits of acceptability at every time step due 

to model structural errors and model input errors. The authors suggest three ways to 

classify behavioural parameter sets; i) the selection of parameter sets for which the 

simulated output falls within the confidence interval for 95% (or any other quantile) of the 

time steps; ii) extending the limits of acceptability until a predefined number of model 
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realisations are classified behavioural and; iii) the derivation of the distribution of scores 

over all time steps and classifying all realisations as behavioural which 5% and 95% 

scores fall within the range of -1 to 1. If no model satisfies this condition, the models can 

be ranked based on their 5% and 95% (or any other quantile) scores and the best n 

models are considered as behavioural. 

 

3.1.4 The uncertainty in discharge observations 
 

The discharge contains information about all hydrological processes in the upstream 

catchment. It is an essential indicator of a catchment’s behaviour and hence discharge 

observations are used frequently (if available) for the calibration of hydrological models. 

However, discharge is difficult to measure directly and continuously, so most discharge 

time series are estimated from continuous stage measurements using stage-discharge 

rating curves (Kiang et al., 2018). This rating curve approach is the standard procedure 

for discharge records in Nepal (Nepal, 2012). Despite the statistical origin of discharge 

time series it is most commonly referred to as observed discharge in the literature. This 

terminology is misguiding because it indicates a false sense of accuracy. The observed 

discharge contains more uncertainty than one would expect from measurements. The 

uncertainty typically ranges between ±50 – 100% for low flows, ±10 – 20% for medium 

flows, and ±40% for high flows but the uncertainty can reach up to ±200% depending on 

the study site and sample size (McMillan et al., 2012; Kiang et al., 2018).  

 

3.1.4.1 The concept of rating curves 
 

Stage-discharge rating curves are statistical models that relate stage height (the water 

level) to the discharge. This relationship is derived from a relatively small sample of 

discrete, concurrent observations of discharge and stage heights (Kiang et al., 2018). 

Once a stage-discharge relation is established it can be used to estimate the discharge 

from stage heights measurement without the necessity of measuring discharge 

continuously. This relation is represented by a rating curve and can be expressed by the 

equation (Herschy, 1993): 

� = " (ℎ + %)&        Eq. 3.3 

where Q is the discharge, h is the stage height, a is the stage of zero flow (datum 

correction) and C and d are constants that depend on the control.  
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The control describes the channel characteristics at the gauging station and is defined 

by the geometry, bed slope, roughness of the bed and banks, sinuosity, stability and 

vegetation cover (Herschy, 1993; Wiche and Holmes, 2016). Eq. 3.3 is the basic function 

to describe the stage-discharge relationship, but a range of functions exist that are 

applied to specific cross-section geometries, such as triangular (Eq. 3.4), rectangular 

(Eq. 3.5) and parabolic controls  (Eq. 3.6) (Le Coz, 2014): 

� = "� '2) tan -./0 (ℎ − 1)2       Eq. 3.4 

� =  "�  '2) 3454 (ℎ − 1)2       Eq. 3.5 

� =  "�  '2) 67(ℎ − 1)2        Eq. 3.6 

Where  67 = spillway width (m), 68 = width of the parabola (m), 98 = height of the 

parabola (m), v = triangle opening angle (°),  "� = discharge coefficient, g = gravitational 

acceleration, c = exponent for rectangular/parabolic/triangular cross-section, and b is the 

offset. The flow is zero if the water level falls below this offset.   

The statistical nature of the rating curve implies that the curve is only valid for the 

conditions of the underlying stage and discharge samples. A new curve needs to be 

fitted if the control changes, e.g. due to erosion and sedimentation processes. It is 

necessary to fit different curves for the vegetation periods for controls with great 

seasonal variation of the vegetation cover (Kennedy, 1983; Coxon et al., 2015). Ideally, 

a gauging site has a stable control and is unaffected by seasonal variations. However, 

controls change with time which requires continuous sampling (Herschy, 1993).  

For gauging sites with irregular controls, it is required to fit multiple curves for each 

section of the control (Coxon et al., 2015). For example, a river in which water drains in 

a triangular channel during low and medium flows but during high flows, the water enters 

a wide flat flood plain requires the development of separate rating curves; one for the 

low to medium flow conditions and one that is activated when the stage exceeds the 

bank-full stage.  

The different stage-discharge relations for different stage heights requires the sampling 

over the full range of flows because the samples contain no information about the stage-

discharge relationship above the highest and below the lowest samples. However, 

extreme flows occur less frequently by definition and are more difficult or impossible to 

sample. Therefore, fewer samples are available for the extremes of the flow spectrum 

which manifests in the larger uncertainty ranges compared to the medium flow range 

uncertainty (McMillan et al., 2012). In practice, the samples do not cover the full range 
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of flows and rating curves are therefore extrapolated beyond the lowest and highest 

samples. As a guideline, the United States Geological Service (USGS) never 

extrapolates above twice the maximum observation (Wiche and Holmes, 2016). 

However, the extrapolation of rating curves is common practice in developing countries 

where site access and logistics make it difficult to measure during high flow conditions 

(Clarke, 1999).  

 

3.1.4.2 Uncertainty sources 
 

The uncertainty in the observed discharge results from errors in the measurements and 

the parameterisation of the statistical model. The measurement uncertainty comprises 

the errors in stage and discharge measurements and depends on various factors such 

as the measurement technique, velocity, number of verticals, and the duration of the 

measurements (ISO, 2007; Shrestha and Simonovic, 2010). The uncertainty in the stage 

measurements dominates for low flows and is comparatively small compared to the 

discharge measurement uncertainty which dominates for high flows (Clarke, 1999; 

Scanlon et al., 2008; McMahon and Peel, 2019). The parameter uncertainty relates to 

the parameterisation of the statistical models and results from an imperfect 

approximation of the true stage-discharge relationship, the limited number of samples 

and the extrapolation beyond the sampled minimum and maximum (Kiang et al., 2018). 

The structural uncertainty describes the fraction of uncertainty that results from the 

physical factors of the control that influences the stage-discharge relationship such as 

unsteady flow and backwater effects but also temporal changes in the channel cross-

section due to morphological processes, changes in vegetation and ice formation (Kiang 

et al., 2018).  
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3.1.4.3 Methods to estimate the discharge uncertainty 
 

An increasing focus was set on the development of methods to estimate the uncertainty 

of stage-discharge rating curve uncertainty in the past 2½ decades. These methods use 

different approaches to estimate different aspects of the uncertainty. Traditional 

statistical approaches estimate the parameter uncertainty based on the residual 

variance from the curve or the variance of the parameter estimates (Coxon et al., 2015). 

Examples are the approaches of Clarke (1999) which focuses on the uncertainty 

estimation of peak flows, and Petersen-Øverleir and Reitan (2005) which includes a 

methodology to detect rating curve shifts based on objective segmentation. Bayesian 

approaches are based on probability density functions that combine hydraulic 

knowledge to determine prior distributions of the model parameters and likelihood 

functions to account for the uncertainty in the individual gaugings into a posterior 

distribution (Le Coz et al., 2014; Coxon et al., 2015). The uncertainty is then estimated 

based on the percentiles of the posterior distribution. One example is the BaRatin model 

(Le Coz et al., 2014) which estimates the uncertainty from the measurements and the 

model parameterisation.  Alternative approaches utilize different methods such as fuzzy 

regression (Shrestha and Simonovic, 2010), variographic analysis (Jalbert et al., 2011) 

or non-parametric regression (Coxon et al., 2015) to estimate the rating curve 

uncertainty. All methods vary in the way that uncertainty is estimated, the considered 

sources of uncertainty, the temporal and spatial scale of their application, river types, 

data requirements and the output (Kiang et al., 2018). Therefore, the selection of an 

appropriate method depends on the study area, research aim and data availability.   
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3.2 The Flood Frequency Analysis 
 

A hydrological model is applied to the Karnali catchment to predict the flood discharge 

into the fan for probabilistic climate scenarios. However, flood hazards are shaped by 

the individual characteristics of the flood-triggering rainfall event and the antecedent 

conditions which hampers a direct comparison of individual flood events (Bérubé et al., 

2022; Reaney, 2022). The Flood Frequency Analysis (FFA) is a statistical method that 

standardises flood hazards by relating the flood magnitude (flood discharge) with the 

flood frequency (occurrence probability) from a record of flood events (Hosking and 

Wallis, 1997). The FFA, therefore, enables the comparison of flood hazards predicted 

for different climatic conditions (e.g. past and projected climatic conditions) or different 

datasets (e.g. simulated and observed flood records).  

 

3.2.1 The concept 
 

Flood frequency analysis (FFA) utilises extreme value statistics to establish a statistical 

relationship between flood magnitude and exceedance probability from a record of flood 

discharges. These flood discharges must be independent of each other (i.e. one 

discharge per event) (WMO, 1989). This relationship is described by a flood frequency 

curve and the flood magnitude for a specific exceedance probability can then be derived 

from this curve. Flood frequency curves can be compared in space or time to investigate 

how the magnitudes of a given exceedance probability differ, or to quantify the 

differences in the exceedance probabilities for a given magnitude. Therefore, the FFA 

can be used to compare the change in the flood magnitude between the baseline and 

projected climates for a given exceedance probability.  

The basic principle of the FFA is the relationship between flow rate and exceedance 

probability. The exceedance probability can be derived from the distribution of flows, 

particularly from the percentiles (also: non-exceedance probability) P that describe the 

fraction floods in the record that are below a given flow rate. The Annual Exceedance 

Probability (AEP) is defined as 1 – P and the return period as 1 / (1 – P). For example, 

assuming that the flow at the 80th percentile of a record of 100 years is 1000 m3/s, the 

AEP is 0.8 and, hence, the return period is five years. This means that every year there 

is a 20% probability that flows ≥ 1000 m3/s occur and hence these flows are exceeded 

statistically once every five years.  
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The quality of the FFA depends on the ability of an Extreme Value Distribution (EVD) to 

describe the statistical relationship between the flow magnitude and the frequency. A 

range of different approaches exists that differ regarding the sampling methods, 

methods to fit the distribution to the data, and the distribution itself. 

 

3.2.2 Sampling methods 
 

Every application of a FFA requires a record of flood discharges. However, only a 

fraction of a hydrograph is relevant for the analysis and the two most commonly applied 

models to extract the relevant information from the flow record are the Annual Maximum 

Flow model (AMAX) and Peaks-Over-Threshold model (POT) (also referred to as partial 

duration series) (Parkes, 2015). The AMAX model is a block sampling approach that 

divides the record into equally sized blocks of one year (or hydrological year) and 

extracts the maximum flow of each block. This model has the advantage that floods of 

different years can be considered independent (except for events during the turn of the 

year). On the other hand, information is lost if two floods occur within the same year, and 

non-flood flows are misclassified as floods during years without floods (Mangini et al., 

2018). The POT approach overcomes this limitation by keeping all flows above the 

defined flood level. This threshold is the bankfull flow (or stage) above which the 

floodplain is inundated. Hence the flood record is not restricted to a single value per year 

and does not contain any below-flood-level flows. However, this approach is sensitive 

towards the definition of the flood threshold and requires the validation that peaks are 

independent and not part of the same event (e.g. by defining a minimum number of days 

between the peaks) (WMO, 1989; Mangini et al., 2018). The choice of sampling model 

affects the predicted magnitudes for the more frequent events (<10 years), but the 

differences decrease with the frequency (WMO, 2008; Shaw, 2005).  
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3.2.3 Extreme Value Distributions 
 

The relationship between the magnitude and frequency is simulated from Extreme Value 

Distributions (EVD). Several distributions are suitable for the determination of the flood 

frequency and these distributions are classified based on the number of parameters that 

describe the distribution; the Gumbel and Weibull distributions have two parameters; the 

generalised extreme value, generalised logistic and Pearson Type III distributions have 

three parameters; the kappa and log Pearson Type III distributions have four parameters 

and; the Wakeby distribution has five parameters. More distributions exist, but the stated 

distributions are the most common for flood frequency analysis with AMAX datasets 

(Parkes, 2015). It is worth noting that the FFA evolved from extreme value statistics but 

not all distributions (i.e. Kappa, Wakeby) belong to the class of extreme value 

distributions (WMO, 2008). Nonetheless, for the sake of simplicity, all distributions that 

are commonly applied in the FFA are referred to as EVD in this thesis.  For POT, the 

generalized Pareto distribution is most commonly chosen (Parkes, 2015). A more 

detailed description of the distributions is provided by Rao and Hamed (2000) Rao & 

Hamed (1999) and WMO (2008).  

The application of the EVD involves the process of fitting the statistical distribution to the 

data. This fitting is the process of identifying the parameter values that best describe the 

observed distribution and, thus, produces the lowest differences between the simulated 

distribution (the cumulative distribution function of the EVD) and the observed 

distribution (the empirical distribution function of the flow record). A common approach 

for fitting distributions is the Maximum-Likelihood estimator approach which selects the 

parameters that are most likely to generate the observed data (Miura, 2011). However, 

this method is based on the large sample theory which conflicts with the low sample 

sizes of flood flows (Hosking et al., 1985). A more common method for fitting the EVD is 

the method of moments. Moments are measures that describe the location, scale and 

shape of probability distributions, in particular the expected value (1st moment), variance 

(2nd moment), skewness (3rd moment) and kurtosis (4th moment) (Hosking and Wallis, 

1997). However, the estimation of higher moments is biased which can, in some cases, 

result in unreliable estimations about the shape of the distribution. These biases are 

reduced in the L-Moments approach (Hosking, 1990) which is less sensitive towards 

outliers and provides more robust estimates for a wider range of shapes of the 

distribution (Hosking and Wallis, 1997). This method is widely used in FFA because it 

performs well for low sample sizes (Reiss and Thomas, 2007; WMO, 2008).  
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The EVD selection process aims to identify and select the fitted distribution that best 

describes the observed relationship between flood magnitude and frequency. The 

suitability of the distributions can be evaluated by their ability to reproduce those features 

of the data that are of importance for the application (Hosking and Wallis, 1997). The 

properties of a distribution that are most relevant for the FFA are the upper bound, the 

upper tail and the shape of the body of a distribution:  

- The upper bound defines a reasonable upper limit of the distribution. Physical 

quantities, such as river flows, have an upper limit (which might not be known) 

beyond which these quantities are deemed physically impossible, and it is 

sometimes argued that bounded distributions should be used (Hosking and Wallis, 

1997). However, this is only a concern for the extrapolation, and physically 

impossible values are only predicted for very high return periods (> 10,000 years) 

that are irrelevant for most applications. (Hosking and Wallis (1997) argue that it is, 

therefore, not required to select distributions that allow the definition of an upper 

bound for the FFA.  

- The upper tail of the distribution contains the largest flood discharges which are 

naturally of the highest interest in the FFA (e.g. 99% of the flow range is below the 

flow with the 1% Annual Exceedance Probability). The tail weight defines the 

behaviour of the frequency curve with the increasing discharge and determines the 

rate at which quantiles increase when extrapolated beyond the range of the data 

(Hosking and Wallis, 1997).  

- The shape of the body of the distribution is relevant for river systems where floods 

are caused by different processes (e.g. snow melt, heavy rainfall) and separate 

distributions can be applied for different parts of the data (e.g. separate distributions 

for snowmelt-induced floods and heavy rainfall-induced floods) (Hosking and Wallis, 

1997).  
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3.2.4 Evaluation of the performance 
 

The selection of the distribution depends on the catchment properties and flow regimes 

and while some distributions are recommended for specific sites, it is generally 

impossible to determine the most suitable distribution before the application (Hosking 

and Wallis, 1997; Parkes, 2015). Therefore, it is recommended to test multiple 

distributions and select the distribution that best describes the relationship between the 

flood discharge and AEP. This requires a procedure that evaluates the performance 

(also goodness-of-fit) of a distribution.  

Several performance measures are deemed appropriate for evaluating the ability of a 

cumulative distribution function (in this case the EVD) to capture the empiric (observed) 

distribution. However, to this point, there is no consensus about which measure is most 

appropriate for the FFA (Heo et al., 2013). The proposed measures can be classified as 

analytical or graphical measures. Graphical measures use visualisation techniques to 

compare the fitted distribution and the data. Commonly used graphical techniques 

include quantile-quantile plots and probability plot tests (Hosking and Wallis, 1997; Heo 

et al., 2008; Parkes, 2015). Analytical measures evaluate the performance from 

statistical analysis and provide comparable, objective statistical values. Empirical 

distribution tests evaluate the correlation between the simulated (EVD) and empiric 

(observed) Cumulative Density Functions (CDF) (Heo et al., 2013). Examples of such 

tests are the chi-squared test, the Cramer-von-Mises test, and the Kolmogorov-Smirnov 

test. These tests evaluate the performance across the range of the distribution, while the 

upper tail of the distribution is of particular importance for the FFA. The Anderson-Darling 

(AD) test (Anderson and Darling, 1952) emphasises the tails of the distribution by 

incorporating weights at the tails. The AD test was modified by Ahmad et al. (1988) who 

introduced weighting functions to give greater weight to one side of the tails. Heo et al. 

(2013) modified the AD test to consider the effect of unknown shape parameters. 
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3.2.5 The sources of uncertainty 
 

Flood frequency analysis is a data-driven method and the largest drivers of uncertainty 

relate to the input data. The main sources of uncertainty are model errors, sampling 

errors, measurement errors, and the non-stationarity of the hydrological system. The 

model error describes the differences between the modelled and true distributions 

because the flood record is not bound to converge on any mathematically defined 

distribution or combination of distributions (Parkes, 2015). However, the model error is 

small compared to the other sources of uncertainty and is usually not considered in 

uncertainty assessments (Kjeldsen et al., 2014). The measurement error results from 

inaccuracies in the flood record and is one of the main sources of uncertainty (Kjeldsen 

et al., 2014). For more details on estimating measurement errors, the reader is referred 

to the overview of stage-discharge rating curves (Section 3.1.4). The sampling error and 

the uncertainty related to the non-stationarity are described in the following sections. 

 

3.2.5.1 Sampling error 
 

The sampling error results from estimating the true flow-frequency relationship from a 

subset of flows and is a dominant source of uncertainty (Apel et al., 2008; Parkes, 2015). 

The root of the sampling error is the limited record length in any river system. Flood 

Frequency Analysis (FFA) is concerned with extreme values and hence the sample is 

low, even for well-observed rivers with long record lengths. This means that the sample 

is only a small subset of the true distribution which inevitably results in deviations 

between the true distribution and the sampled distribution. Consider two flood frequency 

curves fitted for the period 1950 – 2000 and 1960 – 2010, respectively. The sampling 

error describes the deviations of the two curves that result from using different samples 

of the same true distribution. The deviations, and thus the sampling error, increase with 

a decrease in the record length (Kjeldsen et al., 2014).  

The record length (sample size) is a crucial factor in the FFA that limits the estimation of 

flood magnitude for larger return periods. The 1-in-100-years flood is the benchmark for 

flood management in many parts of the world (Dalrymple, 1960; USDA, 2014; Parkes 

and Demeritt, 2016; Nathan and Ball, 2019). The estimation of this event requires 

extrapolation beyond the sample given the relatively short record range for most river 

systems. For example, the magnitude of a 1-in-100-years event might be estimated from 

a record of 30 years which might or might not contain a 1-in-100-years event. Thus, the 

sampling error is related to the large internal variation in extreme flows. The length of 
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extrapolation which still provides reasonable estimates depends on this internal variation 

and varies between river systems (Li et al., 2018). 

The common approach for reducing the sampling error is to increase the sample size for 

the parameter fitting (WMO, 2008). This can be achieved by adding information from 

additional sources such as the reconstruction of historic floods (Parkes and Demeritt, 

2016). The regional FFA adds observations of similar river systems that have a high 

degree of correlation to the sample to increase the sample size (Hosking and Wallis, 

1997; Kjeldsen et al., 2014). When conducting the FFA with simulated flows from 

hydrological models, the models can be applied with longer (i.e. 1000 years) synthetic 

climate datasets that mimic the distribution of the observed data (Kjeldsen et al., 2014). 

In the case that the sample size cannot be extended the sampling error can be estimated 

from statistical methods. Burn (2003) estimated the sampling error from bootstrapping 

using a balanced resampling procedure. A record of n observations is duplicated B 

times, concatenated, and B synthetic records are created by randomly selecting n 

samples from the concatenated record. The third approach quantifies the sampling error 

using Monte-Carlo Simulations (MCS). B synthetic records of length n are created by 

selecting the flow at n random (but uniform distribution between 0 - 1) locations 

(quantiles) of the empirical CDF and repeating this process B times. A frequency curve 

is then fitted to each of the B records (Kjeldsen et al., 2014).  

 

3.2.5.2 Non-Stationarity of flood flows 
 

The Flood Frequency Analysis (FFA) assumes that the data is stationary. Stationary 

data is identically distributed which means that the distribution does not change over 

time (Koutsoyiannis and Montanari, 2007).  Non-stationarity in FFA means that the 

distribution of the flood record changes with time. Such changes are caused by changes 

in the hydrological system which can, for example, result from natural climate variability 

(e.g. in atmospheric circulation systems), anthropogenic climate change, land-use 

change, and human interventions (e.g. the construction of dams) (Pattison and Lane, 

2012; Parkes, 2015; Bérubé et al., 2022).  

The assumption of stationarity is problematic for climate-change impact assessments 

because this implies a changing system and, thus, non-stationarity. The attribution of 

the observed climate change on flood discharge is challenged by the vast anthropogenic 

impact on the rivers in the past century, e.g. land use change, river engineering, and 

urbanisation (Douville et al., 2021). However, the observed streamflow trends can only 
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be simulated in models when accounting for the anthropogenic radiative forcing (Douville 

et al., 2021; Seneviratne et al., 2021). Climate change is projected to alter flood flows 

globally whereas the response correlates with the projected emissions (Hirabayashi et 

al., 2013, 2021; Dankers et al., 2014; Seneviratne et al., 2021). This indicates that the 

assumption of non-stationarity is not met for any kind of climate change impact 

assessment. Therefore, the violation of this assumption is inevitable for the objective in 

this research and this violation introduces uncertainty. The uncertainty could be reduced 

by lowering the record length so that the non-stationary signal perishes in the internal 

variation of flood flows. However, this reduction increases the sampling error and,  

therefore, the definition of the record length is a trade-off between the uncertainty 

introduced by the non-stationarity and the sampling error. 

The modelling framework to predict the evolution of flood hazards consists of four 

research stages. Stage 1 and Stage 2 utilise models that are applied on the catchment 

scale and Stages 3 and 4 focus on predictions in the Karnali fan (floodplain scale). Stage 

3 applies a morphodynamic model to predict the morphological evolution for the 

projected flood discharges. Stage 4 applies a hydrodynamic model for the projected 

flood magnitudes and topographies. Morphodynamic models often couple a 

hydrodynamic model to simulate the flow of water and a sediment transport model to 

predict sediment processes (erosion, transport, deposition) (Hardy, 2013). Therefore, 

hydrodynamic models are reviewed (Section 3.3) before the morphodynamic models 

(Section 3.4). 
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3.3 The simulation of water flow 
 

Hydrodynamic models simulate the flow of water based on the assumption that fluid can 

be considered as a continuum (Lane, 1998). These models are based on the equations 

for the conservation of mass and the conservation of momentum. Due to their physical 

process description, these models are also referred to as physics-based or process-

based models (Williams et al., 2016). The physical process description is based on the 

Navier-Stokes equations for the conservation of mass and momentum which describe 

the motion of fluids (Ingham and Ma, 2005; Williams et al., 2016). However, the 

simulation of this three-dimensional motion is overly complex for many applications and 

derivative equations reduce this complexity by reducing the dimensionality of the flow 

computations or by the level of process representation (Teng et al., 2017).  

 

3.3.1 One-dimensional models 
 

One-dimensional models simulate the flow of water in the longitudinal direction 

neglecting the lateral and vertical motion, and are, thus, the simplest hydrodynamic 

models. This 1-D flow may be simulated from the 1-D Saint-Venant equations (SVE) for 

the conservation of mass and the conservation of momentum, approximations of the 

SVE which are simplifications of the 2-D Shallow-Water equations (which are in turn 

simplifications of the 3-D Navier-Stokes equations), the Muskingum-Cunge routing 

which uses a diffusion representation of the conservation of momentum, and from the 

Mannings equations (Miller, 1984; Ponce et al., 1996; Teng et al., 2017). These models 

assume the one-dimensionality of flow with a uniform velocity in the lateral and vertical 

directions and a horizontal water level in the lateral direction (Tayefi et al., 2007).   

The topography of the channel and floodplain constrains the flow and is, thus, an 

essential boundary condition for any hydrodynamic model. The topography is 

represented by a series of cross-sections through the channel and floodplain in 1-D 

models. The flow between the cross-section is simulated as the cross-section average. 

This approach generally produces satisfactory results for in-channel flows (Tayefi et al., 

2007). The variation in velocity is often larger for floodplain flows due to the more 

complex topography which cannot be captured by the cross-section averages of 1-D 

models (Tayefi et al., 2007; Teng et al., 2017). The lack of the lateral diffusion of the 

flood wave and the simplistic representation of the floodplain topography as a series of 

cross-sections results in the poor prediction of out-of-bank flows in settings with a 
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complex floodplain topography (Tayefi et al., 2007; Williams et al., 2016). These 

limitations led to the development of the coupling of 1-D models to simulate the channel 

flow, and 2-D models for the simulation of flow over the floodplain (Teng et al., 2017).  

 

3.3.2 Two-dimensional models 
 

Two-dimensional horizontal models simulate the flow of water in the longitudinal and 

lateral directions ignoring vertical motions from the full Shallow-Water Equations (SWE) 

which apply where the lateral extent is greater than the vertical extent, and, hence the 

water is shallow (Jirka and Uijttewaal, 2004; Williams et al., 2016). These  equations are 

obtained from depth-averaging the Navier-Stokes equations (Parkes, 2015): 

Conservation of mass:   
:;:� + :(;<): +  :(;.):= = 0         Eq. 3.7 

Conservation of momentum:  
:;<:� + : (?;�// @ ;<�): + :;<.:= = )ℎ (�A −  �B )       Eq. 3.8 

    
:;.:� + :;<.: +  : (?;�// @ ;.�):= =  )ℎ (�A= − �B=)      Eq. 3.9 

Where x and y are the two spatial dimensions, u and v are the depth-averaged velocities 

in the x and y directions respectively, �A  and �A= are the ground slopes in the x and y 

direction, �B  and �B= are the friction slopes in the x and y direction, t is time, h is the 

water depth, and g is the gravitational acceleration.  

The full SWE are more complex than the 1-D SVE and some models use approximation 

of the full SWE to reduce this complexity by reducing the terms of the conservation of 

momentum equations (Neal et al., 2012). The diffusion wave model maintains the 

pressure, ground slope and friction slope (3-term model) and omits the convective 

acceleration. The kinematic wave model also removes the pressure term and maintains 

the ground slope and friction slope (2-term model) (Teng et al., 2017). The 2-D SWE (or 

approximations of the SWE) assume that the water depth is shallow in comparison to 

the longitudinal and lateral direction and hence these models cannot be applied to 

deeper systems such as reservoirs, lakes and estuaries (Teng et al., 2017; USACE, 

2020) 

Bates et al. (2010) developed a simple 1-D inertial model which was derived from the 

SWE and is applied in the longitudinal and lateral direction to simulate 2-D flow at low 

computational costs (Bates et al., 2010; Neal et al., 2012; Coulthard et al., 2013).  These 

simplifications of the full SWE reduce the complexity and, thus, the computational 
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requirements while maintaining the predictive capabilities for many applications ((Neal 

et al., 2012). However, the slope friction is related to Manning’s equation (or Chezy 

equation) which introduces a roughness coefficient. This roughness coefficient 

compensates for the loss of physical complexity and these models are sensitive to the 

parameterisation of the roughness coefficient which adds parameter uncertainty (Horritt 

and Bates, 2002; Tayefi et al., 2007; Bates et al., 2010). 

 

3.3.3 Three-dimensional models 
 

Three-dimensional models simulate the motion of water in all three directions and are, 

thus, the most complex models. These models are based on the Navier-Stokes 

equations to describe the 3D motion of fluid but some models simulate the lateral and 

longitudinal flow using the 2D SWE and implement a quasi-3D extension to simulate the 

vertical velocity (Teng et al., 2017). In general, these models provide a better 

representation of the hydrodynamic processes but require higher computation resources 

and are limited to the application on smaller spatial and temporal scales and are, thus, 

out of the scope for the application in the Karnali fan  (USACE, 2020). 

 

3.3.4 The selection of a model structure 
 

Hydrodynamic models vary in their process description and predictive capabilities. The 

model complexity increases with the flow dimensionality from 1-D models to 3-D models. 

The complexity varies within each class based on the selection of the hydrodynamic 

equations. The computational requirements increase with model complexity which raises 

the question of how much complexity is required to simulate the flow of the braided 

Karnali River on the alluvial fan downstream of the mountain front.  

The choice of the model dimensionality is determined by the characteristics of the 

simulated area and event. One-dimensional models provide a sufficient approximation 

of the flow in single-threaded channels (Tayefi et al., 2007). These models assume that 

water in the floodplain flows parallel to the main channel and that the importance of the 

lateral motion is negligible for the research question. The single flow direction is 

predefined by the location and orientation of the cross-section which requires knowledge 

about the flow paths (Teng et al., 2017; USACE, 2020). The floodplain flow is, thus, 

overly simplified in floodplains with a strong topographic effect on the flow  (Tayefi et al., 

2007). One-dimensional models are overly simplistic for the application in the Karnali 
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fan for two reasons; i) the braided channel with the multiple-pathway and multi-

directional flow cannot be adequately depicted by the one-directional flow (Williams et 

al., 2016; USACE, 2020) and; ii) the floodplain flow is not parallel to the main channel 

for aggradational systems where the floodwater drains away from the river (Dixit, 2009; 

Sinha et al., 2014).  

Two-dimensional models predict the motion in the longitudinal and lateral direction and 

can, thus, simulate complex flow paths of braided river systems (Williams et al., 2016). 

Furthermore, these models do not require prior knowledge of the flow paths which are 

predicted from the topographic data instead (USACE, 2020). These models are 

constrained by the availability of topographic data which need to capture the flow-

affecting features with sufficient detail. However, the assumption of shallow water is met 

for braided river systems so 2D models have a sufficient complexity to simulate the flow 

of the Karnali River (Williams et al., 2016).  

The choice of the modelling equation depends on the flow characteristics of the 

simulated system. The approximations of the full SWE omit the acceleration terms which 

are important to predict dynamic flood waves such as dam outburst floods, levee 

branches and flash floods. Such flood waves are characterised by large changes in the 

velocity in time and space which requires the computation of the local acceleration 

(changes in velocity over time) and the convective acceleration (changes in velocity in 

space) (USACE, 2023). The acceleration is also important for rivers with a very flat slope 

because control of gravity and friction on the flow decreases (USACE, 2020, 2023). 

Hence, the full SWE need to be applied to dynamic flood waves and flat river systems. 

Furthermore, these equations are required for the simulation of transitions between 

subcritical and supercritical flows such as hydraulic jumps (Neal et al., 2012).  

The approximations of the full SWE can be applied for gradually-varied flows such as 

the riverine floods of the Karnali River. Neal et al. (2012) compared the predictions from 

the full SWE, a diffusive wave approximation, and the inertia model (Bates et al., 2010) 

within the LISFLOOD-FP framework (Bates and De Roo, 2000; Bates et al., 2010). The 

model differences were small in terms of velocity and depth so the full SWE are overly 

complex to simulate gradually-varied flow. The inertia model is the fastest and, thus, 

suited to simulate large ensembles or large areas at high resolution as long as the friction 

is not very low (Manning’s n ≤ 0.03). Furthermore, the modelling complexity had a lower 

impact on the results than model setup decisions such as the spatial resolution and the 

intervals of modelling outputs (Neal et al., 2012).  
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3.4 The simulation of geomorphic changes 
 

The field of morphodynamics investigates the topographic evolution of different drivers 

(e.g. water) on different spatial and temporal scales (Syvitski et al., 2010). In this thesis, 

the term morphodynamics is used synonymously for fluvial morphodynamics which 

investigates the response of the morphology to river flows and the interactions between 

the river bed morphology, the sediment dynamics, and the flow (Syvitski et al., 2010).  

 

3.4.1 Introduction to morphodynamics 
 

Morphodynamics involves a range of processes that interact and operate in a 

heterogeneous environment which changes constantly on different spatial and temporal 

scales. The river bed affects the flow field by causing turbulences which determine the 

dynamics of the sediment transport (Papanicolaou et al., 2001, 2008; Hardy, 2013). The 

flow alters the river bed by depositing or eroding particles which induce changes to the 

flow field. The sediments can be transported as suspended load, or as bedload via 

saltation (consecutive hops), rolling, sliding, and creeping. Hence, sediments can be 

moved by different processes and these processes can occur simultaneously for 

sediments of different sizes (Hardy, 2013). However, the relationship between flow and 

sediment transport of different sizes is highly non-linear because larger sediments are 

heavier and require more force to be moved but are also more exposed to the flow than 

smaller sediments (Mosselman, 2012; Hardy, 2013). The complexity of the 

morphodynamic system is further increased by interactions between sediment particles 

(Papanicolaou et al., 2008).  

No modelling framework exists to describe the complex morphological system for all 

processes in all environments satisfactorily on all spatial and temporal scales. The 

imperfections of current modelling approaches arise from; i) the limited process 

understanding; ii) the non-linearities in the flow and sediment transport relationship; iii) 

the complexity of positive and negative feedbacks between these two; iv) the 

heterogeneity of the natural environment (e.g. bedrock and alluvial rivers); v) the wide 

range of fluvial behaviour (e.g. meandering and braided rivers) and; vi) the wide range 

of spatial scales (mm – thousands of km) and temporal scales (seconds – millennia) on 

which the processes operate (Hardy, 2013; Nicholas, 2013a; Ancey, 2020b). This is 

further challenged by the poor transferability of laboratory experiments to the natural 

environment and the lack of natural field studies for model verification and model 
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validation (Syvitski et al., 2010; Mosselman, 2012; Hardy, 2013; Ancey, 2020b). 

Consequently, it is to this point not possible to predict bedload transport better than one 

order of magnitude (Ancey, 2020b).   

 

3.4.2 Concepts in morphodynamic modelling 
 

A range of morphodynamic models exists to simulate different environments (e.g. 

coasts, deltas, lagoons, rivers) on different scales (e.g. catchment, reach) (Syvitski et 

al., 2010). This review focuses on models which simulate the morphodynamic behaviour 

of river systems on the reach scale. These models are based on the assumption that 

sediment transport is correlated with fluid flow and therefore couple flow models to 

simulate the motion of fluids with sediment transport models (Hardy, 2013). However, 

the models can vary widely in their representation of the processes and the environment. 

For example, the models differ in the type of flow (steady flow, unsteady flow), type of 

transport (bedload, suspended load), type of sediment (cohesive, non-cohesive), 

representation of sediment sizes (average grain size, multiple grain sizes), the modelled 

dimensions (1-D, 2-D or 3-D), and the modelling approach (Papanicolaou et al., 2008; 

Williams et al., 2016). Morphodynamic models can use either; i) a physics-based 

approach (also referred to as process-based approaches) which is based on classical 

continuum mechanics and aims to predict the morphodynamics from solving physical 

equations, or; ii) a cellular approach (also known as reduced-complexity or exploratory 

approaches) which use simple rule-based abstractions of the governing physics to 

represent the processes (Nicholas et al., 2006; Hardy, 2013; Williams et al., 2016).  

 

3.4.2.1 Physics-based morphodynamic models 
 

Physics-based models aim to predict the morphodynamic system from equations 

describing the physics of the system. For this, the models combine a hydrodynamic flow 

model which is based on the equations of continuity of mass and momentum (see 

Section 3.3) with a sediment transport model which is based on the equation for 

sediment continuity (Papanicolaou et al., 2008). However, despite being physics-based, 

these models are not fully physical by reducing the complexity both within the flow model 

(e.g. the roughness coefficient – Section 3.3) and the sediment transport model).  
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Physics-based models simulate the flow and sediment transport processes in three 

consecutive steps (Spasojevic and Holly, 2008; Williams et al., 2016). In the first step, 

the flow is predicted from a hydrodynamic model which provides the boundary condition 

or parameterisation for the sediment transport model (Hardy, 2013). In the second step, 

sediment transport processes (erosion, transport, deposition) are predicted by the 

sediment transport model. This simulation is the most complex one because the non-

linear relationship between transport rate and flow strength is highly non-linear 

(Ferguson and Church, 2009; Hardy, 2013; Williams et al., 2016). The bathymetry is 

then updated based on the predicted sediment transport processes in the third step. 

The sediment transport model operates on the same spatial discretisation as the 

hydrodynamic model (1-D, 2-D or 3-D). One-dimensional models can predict the 

longitudinal morphological evolution but the cross-section averaged bed shear stress, 

the ignoration of secondary circulation and lateral sediment movement limit their 

applicability for braided river systems (Williams et al., 2016). Two-dimensional models 

predict the lateral movement of water and sediments and have been able to predict the 

morphology of braided rivers (Kleinhans, 2010; Nicholas, 2013b; Williams et al., 2016). 

However, model parameterisation remains a challenge for the application in natural river 

systems.  

Three-dimensional models simulate the vertical fluid motion including turbulences which 

exhibit significant effects on sediment entrainment and provide better predictions than 

2-D models (Papanicolaou et al., 2001, 2008; Hardy, 2013; Williams et al., 2016). These 

models can either use an Eulerian concept as 1-D and 2-D models which focuses on 

specific locations through which fluids and sediment pass, or a Langangean concept 

which focuses on the movement of fluid and sediment parcels and enables the tracking 

of particles (Hardy, 2013). Three-dimensional models provide the most complex 

representation of the morphodynamic system and are valuable tools to improve the 

system understanding but the higher computational costs limit the applicability to small 

spatial and temporal scales (Hardy, 2013; Williams et al., 2016).  

One main issue of morphodynamic modelling is that the morphodynamic system is not 

fully understood and, thus, cannot be fully replicated (Hardy, 2013). Furthermore, the 

predictive capability is reduced by modelling assumptions. For example, many models 

assume steady flow and thus ignore the effect of turbulent flow on sediment transport 

(Papanicolaou et al., 2008; Hardy, 2013). Many models use the mean boundary shear 

stress which is insufficient to replicate the complex interactions of wake decay, 

boundary-layer development and topographically-induced acceleration and deceleration 
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(Hardy, 2013). In addition, the effect of vegetation on flow and sediment transport is not 

adequately considered in many models (Mosselman, 2012; Nicholas, 2013a).  

 

3.4.2.2 Cellular models 
 

Cellular models aim to describe the complex morphological system through interactions 

between elements without describing these interactions with detailed physical equations. 

The basic principle of these models is that the landform (e.g. the river and floodplain) is 

represented by a lattice of cells which interact with each other and that these interactions 

can be described by simple rules which are abstractions of the governing physics 

(Nicholas et al., 2006). Thus, these models are two-dimensional and based on physics 

but simplify the system by neglecting or parameterising physical processes that are 

considered less important on larger temporal and spatial scales (Nicholas, 2013a). This 

simplification enables the simulation of the morphodynamic evolution at larger temporal 

and spatial scales compared to physics-based models (Coulthard et al., 2013).  

Cellular models share several similarities with physics-based models. As for physics-

based models, these are based on the assumption that sediment transport is correlated 

with the flow. Hence these models incorporate routines to predict flow which provides 

the boundary condition for the prediction of the sediment transport. The simulation of 

flow and sediment transport is underpinned by the principle of mass conservation of 

sediment and water (Nicholas, 2013a). Furthermore, similar equations for the prediction 

of bedload transport may be incorporated. However, unlike physics-based models, these 

models do not use hydrodynamic models but flow routing schemes which neglect the 

principle of the conservation of momentum (Nicholas, 2013a).  

This difference in flow routing is one key difference between cellular and physics-based 

models. Cellular models use simple rule-based routing schemes. The flow routing is 

either predefined or directed to all neighbouring cells whereas the distribution of water 

is determined from the local bed slope and, depending on the model, the local water 

surface elevation (Murray and Paola, 1994; Van De Wiel et al., 2007; Coulthard et al., 

2013; Nicholas, 2013a). This simplistic flow representation results in an 

overconcentration of flows in local depressions and the locally false prediction of flow 

convergence and divergence (Thomas and Nicholas, 2002; Nicholas et al., 2006). 
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Cellular models have, despite the simplified rule-based abstractions of physics, been 

able to replicate the morphological evolution of braided river systems. Murray and Paola 

(1994) replicate the highly non-linear relationship of bedload and flow and capture the 

spatial and temporal patterns of braided rivers. Ziliani et al. (2013) reproduce the 

macroscale evolution of a braided natural river in the Italian Alps. Examples of other 

cellular model applications are the investigation of the impact of vegetation on channel 

evolution (Murray and Paola, 2003; Ziliani and Surian, 2016), the evolution of upland 

rivers and alluvial fans (Coulthard et al., 2002), the evolution of meandering rivers (Van 

De Wiel et al., 2007), and the influence of aggradation and degradation on the channel 

morphology (Nicholas and Quine, 2007).  

The simplistic nature of cellular models limits their predictive capability. These models 

cannot improve the understanding of the morphological processes due to the abstraction 

of the governing physics to simple rules (Hardy, 2013). A main criticism relates to the 

highly simplified flow models. These may produce unrealistic routing patterns that differ 

from hydrodynamic flow predictions and are sensitive to the grid structure (e.g. 

rectangular, hexagonal) (Nicholas, 2005). The flow algorithms do not redistribute 

momentum so the predictions are overly sensitive to the local bed slope whereas this 

sensitivity increases with the grid resolution (Nicholas et al., 2006; Nicholas and Quine, 

2007; Nicholas, 2013a; Williams et al., 2016).  Williams et al. (2016) found that the flow 

algorithm by Murray and Paola (1994) overestimated the branding for low flows and 

underestimated it for high flows and was inferior to a 2-D physics-based model.  

Cellular models capture the complex balance of positive and negative feedback which 

control the morphodynamic systems and provide insights into the controls of the 

morphodynamic system despite their reduced complexity (Murray and Paola, 1994, 

2003; Nicholas et al., 2006; Nicholas and Quine, 2007). The main advantages of these 

models are their computational efficiency which enables simulations over large spatial 

and temporal scales, sensitivity analyses, and ensemble modelling (Nicholas, 2005, 

2013a). Furthermore, several models have implemented improved flow routing 

algorithms.  

The CAESAR-LISFLOOD (Coulthard et al., 2013) model is a hybrid model which 

combines a physics-based flow model  (Bates et al., 2010) with a cellular sediment 

transport model. The updated flow model tackles one of the main weaknesses of cellular 

models and has significantly improved the performance for the application in braided 

river systems (Ziliani et al., 2020).  
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3.4.3 Bedload transport equations 
 

Morphodynamic models incorporate sediment transport models to simulate the sediment 

flux for the simulated flow. Different models are used for the simulation of suspended 

sediment and bedload transport. This overview of sediment transport models focuses on 

bedload as this dominates the morphodynamic evolution of the Karnali fan (Section 2.7).  

Bedload transport equations are mathematical expressions that quantify the movement 

of coarse sediments transported as bedload. However, bedload sediment transport is 

complex as it occurs on different spatial and temporal scales and involves multiple 

processes that interact nonlinearly (Hardy, 2013; Ancey, 2020a). Consequently, bedload 

transport cannot be predicted accurately, with typical uncertainty being an order of 

magnitude, and no universally accepted bedload transport equation applies to all natural 

gravel bed rivers (Wainwright et al., 2015; Ancey, 2020a). 

Bedload transport models relate the sediment transport rate to the hydraulic conditions 

(e.g. discharge, bottom shear stress, stream power) of the modelled river system (Ancey, 

2020a). This relationship is typically determined from laboratory observations, field 

observations, or theoretical considerations and is classified into empirical, stochastic, 

and mechanical models (Ancey, 2020a). The bedload transport models are developed 

for specific conditions (e.g. grain sizes, water, and sediment discharges) and, thus, the 

suitability of a bedload transport model depends on the hydraulic and morphological 

characteristics of the modelled river system (Wilcock and Crowe, 2003; Wainwright et 

al., 2015).  

The earliest quantitative formulation of a bedload equation was developed by du Boys 

(1879: in Ancey, 2020a): 

CD = E FG(FG − F2)          Eq. 3.10 

Where qs is the bedload transport rate per unit width, Tb is the bottom shear stress (Pa), 

Tc is the critical shear stress (Pa), and X is a material coefficient (s2 m-1).  

Du Boys model is an empirical model that introduced the concept that bedload transport 

is driven by excess shear stress and occurs if the bottom shear stress exceeds this 

critical bed shear stress (Ancey, 2020b). This concept was later formalised into the 

dimensionless Shields parameter (Shields, 1936) which is still used in bedload transport 

models.  
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The bedload model developed by Meyer-Peter and Müller (1948) refines the relationship 

between bedload transport and the hydraulic conditions by integrating the grain size of 

the sediment (represented by the median grain size D50) and incorporating a hiding and 

exposure function of the grains (Deltares, 2023). The relationship was developed from 

flume experiments with high sediment discharge and hence is applicable for alluvial river 

sections in which the D50 ranges between 0.4 mm and 29 mm (Schwindt et al., 2023). 

The bedload transport is calculated from the equation (Ancey, 2020b): 

Φ = 8 (Θ − Θ2∗)L//        Eq. 3.11 

With Θ =  8?MN�?O84�8P&Q =  MN�(D�R)STU        Eq. 3.12 

Where Φ is the dimensionless bedload transport rate (-), Θ2∗ = 0.047 is the dimensional 

critical shear stress (-), Θ is the Shields stress (-), p is the water density (kg m-3), g is the 

gravitational acceleration (m s-2), Rh is the hydraulic radius (m), i is the bed slope (%), pp 

is the particle density (kg m-3), p is the water density (kg m-3), D50 is the median grain 

size (m) and s is the particle-to-water-density ratio (-).   

One of the most accepted approaches for simulating the bedload of sand and gravel 

rivers is the Wilcock and Crowe (2003) model which calculates the bedload transport for 

different fractions of the grain sizes. It replaces the Shields parameter with a reference 

shear stress at which a small but constant sediment transport occurs (Parker et al., 

1982b, 1982a; Wilcock and Crowe, 2003). It quantifies the hiding and exposure effects 

of gravel transport as a function of the sand fraction in the riverbed (Wilcock and Crowe, 

2003; Schwindt et al., 2023). This empirical model is based on flume experiments of a 

wide range of grain sizes, flow conditions, and sediment discharges and applies to sand 

and gravel beds. The bedload transport rate Φi (-) of the grain fraction i is calculated as 

(Wilcock and Crowe, 2003): 

Φ� = V0.002 XY.Z,                     X < 1.35
14 -1 − A.^_`aU.T 0`.Z ,      X ≥ 1.35       Eq. 3.13 

With X =  bbc� 

Where τ is the shear stress (Pa) and τri is the reference shear stress for fraction i (Pa).  

This model is a surface-based model that requires no information about the subsurface 

grain sizes. Furthermore, it does not require the calibration to the reach-specific 

conditions (Wilcock and Crowe, 2003; Deltares, 2023). The separate quantification for 
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multiple grain size classes enables the simulation of reaches with highly variable grain 

size distributions (e.g. downstream fining).  

 

3.4.4 The predictive capabilities of morphodynamic models 
 

Morphodynamic models are challenged to predict the complex morphodynamic system 

of natural real-world rivers as indicated in 3.4.1. This limited predictive capability arises, 

to a large degree, from the sediment transport models which Hardy (2013) describes as 

an incomplete science because of the poor process understanding and the complexity 

introduced by the heterogeneity of natural environments. The fundamental issues of 

sediment transport modelling are introduced briefly in the following section through the 

example of bedload sediment transport which is the governing transport mode in braided 

river systems (Murray and Paola, 1994; Williams et al., 2016). 

The incomplete knowledge about the sediment processes is compensated for by 

empirical relationships which reduce the complexity of the model. Current sediment 

transport models are based on physics by describing mass conservation as a continuity 

principle for the bed morphology but lack a real physical description (Hardy, 2013).  

Sediment transport models commonly rely on empirical relationships which relate 

sediment transport to the flow but are overly simplistic to simulate the complex, dynamic 

interactions between the bedload, riverbed and flow (Ancey, 2020a). Sediment transport 

involves many interrelated processes which vary nonlinearly due to the heterogenous 

environment, and occur on various spatial and temporal scales(Hardy, 2013; Ancey, 

2020b). This results in large variations in bedload transport rates even in controlled 

laboratory experiments which cannot be replicated by simple empirical relations (Ancey, 

2020b). The use of empirical relationships constricts the application to systems with 

similar conditions (e.g. grain sizes, transport rates) as those for which the relationship 

was derived (Wilcock and Crowe, 2003).  

The predictive capability of sediment transport processes is further induced by the 

inability to quantify the effect of the near-bed turbulence. The near-bed turbulence 

exhibits a strong effect on sediment transport (Papanicolaou et al., 2001, 2008). This 

turbulence is omitted in the steady state assumption of many flow models (Hardy, 2013). 

Furthermore, the use of velocity profiles for the determination of mean boundary shear 

stress leads to an inaccurate description of the effect of the bed roughness on the flow 

characteristics (Hardy, 2013).  
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Morphodynamic models combine flow and sediment transport models so that flow and 

sediment transport processes are simulated separately. This structure of separately 

simulated flow and sediment transport implies that the interactions of the riverbed and 

the flow field can not be predicted but only be approximated (Papanicolaou et al., 2008).  

Recent developments have improved the physical foundation of morphodynamic models 

(e.g. by improving the description of turbulent forces). In particular, Lagrangian schemes 

which enable the tracing of particles are promising tools to deepen the process 

understanding and improve the parameterisation of less complex models (Hardy, 2013). 

However, the fact that bedload transport cannot be predicted better than within one order 

of magnitude underlines the current limitations of morphological modelling (Ancey, 

2020b).  

 

3.4.4 The simulation of natural systems 
 

The previous section showed that the capabilities of morphological models for the 

prediction of the morphological evolution of rivers are limited due to the limited process 

understanding, the complexity of the system, and structural model deficits. However, all 

environmental models are simplifications of the modelled system and reduce the 

process complexity by using parameters, and average processes in time and space. The 

lower predictive capability of morphodynamic models also arises from the lack of 

observations on adequate temporal and spatial scales that can be used to determine the 

boundary conditions, and to verify (the correct solution of the equations), calibrate (the 

identification of parameter values), and validate (the evaluation of the performance of 

the calibrated model) the model.  

Morphodynamic models are sensitive towards the boundary conditions which are difficult 

to determine on adequate temporal and spatial scales. The required data comprises the 

topography, the inflow of water and sediments to the modelling domain, and the grain 

sizes of the sediment inflow and the riverbed. These datasets are scarce in most river 

systems so the determination of the boundary conditions is a common problem for the 

application of morphodynamic models in natural river systems (Papanicolaou et al., 

2008). 

This data scarcity results from measurement difficulties, the involved spatial and 

temporal scales, and the heterogeneous environment. For example, bedload transport 

rates vary greatly in time and hence the measured rate is highly sensitive towards the 

measurement interval, which is further aggravated by the technical difficulties of 
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measuring bedload, and the lack of a universally accepted definition of the bedload 

transport rate (Ancey and Pascal, 2020).  

Topographic data can be obtained at high resolution from remote sensing techniques 

but such datasets lack the description of the channels which is essential for 

morphodynamic modelling (Ziliani et al., 2013). The field measurements of the riverbed 

properties (e.g. topography, surface and subsurface grain size distributions) are only 

applicable at limited spatial and temporal resolution (e.g. cross-sections) and need to be 

extrapolated to the unsampled areas (Papanicolaou et al., 2008; Ziliani et al., 2013). The 

issues of extrapolating spatially limited measurements are illustrated by the large 

variation of sediment grain sizes in the lateral (e.g. riverbed and river bank) and 

longitudinal directions (upstream, downstream) (Quick et al., 2019; Dingle et al., 2020b).  

These challenges to measuring data at sufficient temporal and spatial scales also 

account for datasets which can be used for model calibration and validation. Examples 

of useful datasets to assess and optimise the model performance are sediment flux at 

the downstream outlet or repetitive topographic measurements (Ziliani et al., 2013, 2020; 

Williams et al., 2016). These measurements are commonly constrained to shorter 

periods (events – years) which stands in contrast to the millennia scale on which some 

morphodynamic processes occur (Nicholas, 2005).  

The model calibration and validation are further complicated by the incomplete process 

description and the model’s sensitivity towards the boundary conditions. Even for the 

hypothetical case that an ideal dataset exists it could not be used for a direct (e.g. pixel-

to-pixel) calibration and validation. Model deficits and the uncertainty in the boundary 

condition cause deviations between the simulated and observed changes even if the 

model is a behavioural representation of the system (Nicholas, 2005; Mosselman, 2012; 

Hardy, 2013; Williams et al., 2016). In other words, the model may predict the correct 

morphodynamic patterns (e.g. development of bars and pools) but not at the observed 

locations which complicates the model validation.  

Most studies use indirect comparisons or a combination of direct and indirect 

comparisons of simulated and observed or simulated by a more complex model for the 

calibration and validation of the model performance. Direct comparisons include pixel-

to-pixel performance indices (e.g. wet area, vegetated area, active channel area, 

morphological change, discharge per unit width) or sediment discharge at the outlet of 

the modelling domain (Thomas and Nicholas, 2002; Nicholas et al., 2006; Ziliani et al., 

2013, 2020; Williams et al., 2016). Indirect comparisons evaluate morphological 

relationships (e.g. bar perimeter and bar area, the width-depth ratio of channels), 
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channel characteristics (e.g. mean active channel width, mean wet area width, mean 

braided index) or total changes (e.g. erosion and deposition) (Nicholas et al., 2006; 

Kleinhans et al., 2008; Ziliani et al., 2013, 2020; Williams et al., 2016).  

The data scarcity in conjunction with the sensitivity towards the boundary conditions, the 

non-linearity in the system, and the discrepancy between simulated and observed 

behaviour are fundamental challenges because they limit the model verification. This 

means that at the current stage, it is even a challenge to test whether a model solves 

the equations correctly. Mosselman (2012) suggests the establishment of hypothetical, 

laboratory and field cases that can be used to verify models in a more standardized and 

comparable way.  

 

3.4.5 Summary 
 

Stage 1 (Chapter 4) establishes a hydrological model to replicate the hydrological 

system of the Karnali River for the observed climatic and hydrological conditions which 

is the foundation for the quantification of the climate change impact on flood hazards in 

Stage 2. Empirical models are unsuitable for predicting changes because these are only 

applicable under stable conditions so either a physics-based or conceptual model needs 

to be applied. These models must be calibrated to the specific conditions of the 

catchment which requires information on the catchment behaviour, and performance 

indices to evaluate the fit between simulated and observed behaviour, whereas a 

combination of indices provides a more robust evaluation. Uncertainty in hydrological 

modelling arises from the simplification of the complex hydrological system in the model 

structure (structural uncertainty), errors in the calibration data which, for catchment 

discharge, can be quantified from stage-discharge rating curves (measurement 

uncertainty), and parameter uncertainty resulting from the imperfect parametrisation of 

the model. The uncertainty can be estimated using the GLUE framework which 

maintains all behavioural parameter sets and, thus, provides an ensemble of predictions 

(Section 3.1).  

In Stage 2 (Chapter 5) probabilistic climate projections are applied to the hydrological 

model to predict the potential flood discharge for different climate scenarios. The change 

in the projected flood hazards can be quantified from a Flood Frequency Analysis (FFA) 

which predicts the flood magnitudes and frequencies from a flood record. This flood 

record can be obtained from the flow record using the Annual Maximum Flow model 

(AMAX) which does not require information about flood thresholds (bankfull discharge 
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or stage). The optimal Extreme Value Distribution (EVD) of the FFA is unknown before 

fitting the distributions to the flood record so multiple EVD should be evaluated using 

test statistics. The Anderson-Darling test evaluates the fit between the observed and 

simulated distributions with a focus on the tails of the distributions which affect the 

performance of floods with higher magnitude. The main sources of uncertainty in the 

FFA are the sampling error which can be quantified from MCS sampling or bootstrapping 

approaches, the measurement error which can be estimated by using an ensemble of 

flood records, and the non-stationarity of the data which relates to changes in the 

hydrological state of the catchment (Section 3.2). 

Stage 3 (Chapter 6) applies a morphodynamic model to predict the fan evolution. Fluvial 

morphodynamics describes the complex system of flow and topography with positive 

and negative feedback and non-linear interactions on different spatial and temporal 

scales. Different approaches simulate this system with varying complexity. Physical-

based models have a stronger physical basis but are computationally expensive and 

restricted to applications on smaller temporal and spatial scales. Cellular models are 

applicable on larger temporal and spatial scales but are based on weaker process 

descriptions. However, all models are limited in their predictive capabilities which results 

from the incomplete knowledge of the morphodynamic system, but also of the lack of 

data for the model verification, calibration, validation, and for the definition of the 

boundary conditions. Hence, the uncertainty of the prediction of the morphological 

evolution of fluvial systems arises from incomplete knowledge about the system as such, 

and the incomplete knowledge of the modelled environment (Section 3.4). 

In Stage 4 (Chapter 7), a hydrodynamic model is applied to predict the spatial flood 

hazard patterns for the projected topographies and flood magnitudes. Hydrodynamic 

models differ in their spatial representation of the flow processes from 1-D (longitudinal 

flow), 2-D (longitudinal and lateral flow), and 3-D (longitudinal, lateral and vertical flow). 

The simulation of lateral flow is required for the simulation of braided river systems which 

restricts the model choice to 2-D models (3-D models are too complex for the spatial and 

temporal scales). Two-dimensional models differ in their process description whereas 

lower complexity models are not less accurate but restricted to fewer flow conditions 

(Section 3.3).  
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4  The simulation of the catchment hydrology of the 
Karnali River  

 

This chapter presents the first stage of the environmental modelling framework which is 

the reproduction of the hydrological system of the mountainous catchment up to the 

mountain outlet from hydrological modelling to meet the first objective O1. The 

established modelling ensemble is the foundation to predict the potential flood 

discharge, flood magnitudes and frequencies for the projected climates in Stage 2 

(Chapter 5). 

The catchment hydrology determines the flood water that is released into the Karnali 

fan. The flood hydrographs are controlled by the interaction of rainfall pattern and the 

catchment topographic form, and by the antecedent hydrological conditions in the 

catchment (e.g. soil moisture) (Berthet et al., 2009; Beven, 2012; Nathan and Ball, 2019; 

Reaney, 2022). While riverine floods in Central Himalayan catchments are caused by 

heavy and large-scale rainfall events, baseflow, snowmelt and glacier melt also 

contribute water which has to be predicted by the hydrological model (Lutz et al., 2014; 

Nepal et al., 2014; MacClune et al., 2015; Wijngaard et al., 2017; DHM, 2018).  

This chapter presents an introduction to assessed modelling approaches (Section 4.1), 

the methodology of the selected modelling approaches (Section 4.2), the utilised 

datasets (Section 4.3), the modelling results (Section 4.4) and the discussion of these 

results (Section 4.5). The final section concludes this chapter. 
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4.1 The model selection 
 

Hydrological simulation models represent the flows of water within the landscape and 

river system to predict the catchment’s behaviour. It is, therefore, possible to apply such 

models with data of climate change projections to predict the future streamflow. 

Hydrological models differ in their process representation (empirical, conceptual, 

physics-based), spatial domain (lumped, distributed), time domain (event-based, 

continuous), data requirements, and parametrisation (Devi et al., 2015). For this study, 

the model selection is based on the following criteria:  

i) A physical process representation is required since empirical models are based 

on the assumption of stationary (environmental conditions are stable) which 

excludes the impact assessment of changing climatic conditions (Pechlivanidis 

et al., 2011);  

ii) A continuous model is preferred because event-based models are sensitive to 

the antecedent conditions which are unknown for the projected flood events in 

stage 2 (USDA, 2014; Nathan and Ball, 2019); 

iii) The ability to simulate glacier melt and snowmelt since these are important runoff 

components that are significantly affected by climate change (Immerzeel et al., 

2012; Lutz et al., 2014; Nepal, 2016); 

iv)  Low data requirement as the location is data poor and the definition of the 

boundary conditions is dependent on satellite imagery; 

v) Computational efficiency to predict the hydrological uncertainty and simulate 

climate ensembles in Stage 2. 

Several continuous models were assessed against these criteria. The Hydrologiska 

Byråns Vattenbalansavdelning (HBV) model (Bergström, 1976; Lindström et al., 1997) 

is a conceptual model with moderate data requirements (e.g. daily temperature, 

precipitation, potential evapotranspiration) that includes algorithms to simulate glacier 

melt processes (Seibert et al., 2018). This model has a coarse spatial resolution that 

does not capture the small-scale heterogeneity of the environmental conditions in the 

catchment and is therefore disregarded.  

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1993) and J2000 (Krause, 

2001) models aggregate areas with similar environmental conditions (e.g. elevation, 

slope, aspect, soil, land cover, etc.) to Hydrological Response Units (HRU) enabling a 

more realistic representation of the spatial variability. Both models include snowmelt and 

glacier melt routines using a degree-day-factor (DDF) (Nepal, 2012; Omani et al., 2017). 
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The glacier representation in both models assumes an infinite glacier storage which can 

result in the overprediction of glacier melt for glaciers that are projected to decrease or 

vanish during the study period (Immerzeel et al., 2012, 2013). 

The Spatial Processes in HYdrology (SPHY) model (Terink et al., 2015a) is selected 

because it is characterized by moderate data requirements and an advanced description 

of snowmelt and glacier melt processes, matching the criteria set out above. The 

decisive argument for SPHY was the distributed representation of the environmental 

conditions to capture the heterogeneity of Himalayan catchments, and the model’s ability 

to simulate the retreat of glaciers (Khanal et al., 2021). This representation is an 

important asset compared to models with static glacier extent since the glacier melt 

depends on the glacier mass (increasing melt for decreasing mass) and hence the 

importance of the glacier dynamics increases with the length of the modelled period 

(Immerzeel et al., 2013; Lutz et al., 2014). Furthermore, it is an open-source model that 

can be adapted to the catchment and objective. 
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4.2 Methods 
 

The hydrological model SPHY is a conceptual model that simulates the hydrological 

processes as a series of storages considering the underlying physics. This model is 

introduced in the next section. The methods to calibrate the model to the hydrology of 

the Karnali catchment are presented in Section 4.2.2. This calibration aims to maximise 

the agreement between the simulated and observed catchment behaviour. The 

discharge at the mountain outlet is an essential indicator of the catchment behaviour 

because it is the sum of all upstream processes. However, discharge records may 

contain substantial uncertainty which propagates to the model during the calibration. 

Therefore, the discharge uncertainty is estimated and the method for this estimation is 

presented in Section 4.2.3. 

 

4.2.1 Spatial Processes in Hydrology (SPHY) 
 

SPHY (Terink et al., 2015a) is a raster-based, conceptual cryospheric-hydrological 

model that simulates the hydrological processes at daily resolution. It is written in the 

Python programming language and uses the PCRaster modelling framework 

(Karssenberg et al., 2001; Karssenberg, 2002). The catchment’s hydrology is simulated 

conceptually as a series of water fluxes and storages which enables the computationally 

efficient quantification of hydrological processes (Devi et al., 2015). The fluxes and 

storage changes are simulated as averages of the cells of the modelling grid. A sub-grid 

routine is implemented for glacial processes; grid cells can be fully or partly covered by 

glaciers and the melt, runoff and percolation processes are only simulated for the 

glaciated cell fraction.   

 

4.2.1.1 Model structure 
 

The model is structured as a collection of storages that store the water and fluxes that 

connect these storages. The conceptual layout of the model structure is presented in 

Figure 4.1. Precipitation is separated into snow and rainfall based on a temperature 

threshold parameter (tcrit); if the temperature in a cell is below the threshold all the 

precipitation falls as snow, if not as rain. Precipitation (rain and snow) that falls in cells 

covered by snow or glaciers is added to the snow or glacier storage. If the cell is covered 

by vegetation, the precipitation is added to the interception storage where it is either 
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stored until the next time step or lost as evapotranspiration. Surplus rainfall that exceeds 

the interception storage capacity (effective precipitation) is passed on to the soil storage.  

The soil storage is divided into three separate layers that represent the root zone, 

subzone and groundwater zone. The effective precipitation can either infiltrate the root 

zone or is routed downstream as surface runoff. The water in the root zone can be lost 

as evapotranspiration, routed downstream as lateral flow or percolate into the subzone 

where it either percolates further to the groundwater layer or rises back up to the root 

zone. Glaciated areas have no root zone and subzone layers so meltwater drains as 

runoff or percolates to the groundwater layer.  

 

 

Figure 4.1: The conceptual layout of the SPHY model. The grey fluxes are only simulated if the groundwater 
module is not used. P is the precipitation; Ps is the snowfall; Pl, is the rainfall; Pe, is the effective precipitation; 
Int is the intercepted precipitation, T is temperature; ETa, is the actual evapotranspiration; Glacfrac is the 
glaciated fraction of the cell; SW1 is the upper soil water storage; SW2 is the lower soil water storage, and 
SW3 is the groundwater layer. This figure is taken from Terink et al. (2015, Figure 2).  
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The model distinguishes four runoff components that differ in their origin, path and 

timing. The fastest runoff component is the rainfall-runoff (surface runoff, lateral flow). 

The slowest runoff is the baseflow, which ensures river flows during dry seasons. Snow 

and glacier runoff originate from melt processes, whereas glacier meltwater does not 

require precipitation. 

 

4.2.1.2 The process representation in the model 
 

This section describes the equations that represent the hydrological processes and 

calculate the fluxes between the storages and the water that leaves the model. The 

model uses parameters that require the adjustment to the catchment-specific conditions 

and are highlighted in italic.  

 

Evapotranspiration 

 

SPHY calculates three evapotranspiration rates to simulate how much water is lost from 

the system by evapotranspiration (Terink et al., 2015a).  

The reference evapotranspiration (ETref) describes the evapotranspiration of the climatic 

conditions that would occur on a reference surface with an unlimited water supply (Allen 

et al., 1998). This rate is calculated by the modified Hargreaves equation (Hargreaves 

and Samani, 1985):  

�FdeB = 0.0023 ∗ 0.408 ∗  f% OF�.? + 17.8P ∗  FhA.Z    Eq. 4.1 

where Tavg is the average daily temperature (°C), Ra is the extraterrestrial radiation (MJ 

m-2 day-1)  which is calculated from the day of the year and the latitude, and the daily 

temperature range TD (°C). 

The potential evapotranspiration (ETpot) describes the evapotranspiration rate for a 

specific vegetation type under ideal conditions (e.g. no water stress, pests, diseases, 

etc.). In SPHY, ETpot is estimated by introducing a crop coefficient (Kc) after Allen et al., 

(1998) which determines the difference in the evapotranspiration rates between the 

specific vegetation and the ETref (Terink et al., 2015a): 

�F8i� = �FdeB ∗ jk        Eq. 4.2 

In most cases, the actual evapotranspiration (ETact) is lower than ETpot because several 

limiting factors reduce the evapotranspiration rate. SPHY considers the reduction of 
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evapotranspiration rates that are caused by water excess and water shortage stresses 

by introducing a reduction parameter that is determined by the water content in the root 

zone layer (Terink et al., 2015a): 

�F�2� =  �F8i� ∗  �F7e� ∗  �F&d=      Eq. 4.3 

The reduction parameter (ETwet) can only be set to 0 and 1; if the soil is saturated, the 

parameter is set to 0 and no water is lost to evapotranspiration. The ETdry parameter 

describes the reduction in evapotranspiration caused by water shortage and can take 

any value from 0-1. It is calculated using the Feddes equation (Feddes et al., 1978 in: 

Terink et al., 2015) which assumes a linear decline in rootwater uptake if water pressure 

drops below a critical value (pF): 

�F&d=,� =  lm�,n� lm�,4op.�lm�,4oq�lm�,4op.�         Eq.4.4 

The critical value (pF) can be obtained from the soil water retention curve (pF curve) and 

is a conversion of the suction force (H) (Terink et al., 2015a): 

rs =  tu)RA (−9),        Eq. 4.5 

where pF4.2 represents the critical value at the permanent wilting point and pF3 is the 

critical value at the start of the linear decline in rootwater uptake (Terink et al., 2015a).  

 

Snowmelt 

 

Snow processes are simulated by implementing the dynamic snow storage model by 

(Kokkonen et al., 2006) using a degree-day-factor approach (Hock, 2003). The snow 

storage is adjusted for each time step by simulating melt, refreeze and runoff processes 

(Terink et al., 2015a).  

The precipitation either falls entirely as snow or rain depending on the air temperature 

at a particular time step and grid cell. Precipitation falls as snow and is added to the 

snow storage if the air temperature (Tavg) is below a calibrated threshold (tcrit) (Terink et 

al., 2015a).  

The snowmelt is temperature-dependent and occurs if the air temperature exceeds 0°. 

In this case, the potential snowmelt is the product of the air temperature and a calibrated 

degree-day factor (DDF) sDDF. The actual snowmelt of day t (Aact,t) equals the potential 

snowmelt but the upper limit is the snow storage of the previous day (SSt-1). The snow 

storage of the current day (SSt) is then updated (Terink et al., 2015a): 
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��� = v����R + wD,� + ��x��R, F�.?,� < 0����R + wD,� − y�2�,�     , F�.?,� ≥ 0     Eq. 4.6 

   

where SSWt-1 is the meltwater stored in the snowpack from the previous time step. The 

amount of liquid water stored in the snowpack depends on a calibrated storage capacity 

parameter (snowsc) that describes the total water equivalent of snowmelt (mm) that can 

freeze per mm water equivalent of snow. The liquid water content of the snowpack is 

calculated using equations 4.7 and 4.8 (Terink et al., 2015a): 

��m�� = ��" ∗ ���        Eq. 4.7 

��x� = v��x��R + wz,� + y�2�,� , F�.?,� ≥ 00                      , F�.?,� < 0     Eq. 4.8 

where Pl,t is the precipitation that falls as rain. If the temperatures are below 0°, SSWt is 

zero.  

Runoff from snowmelt (SRo) occurs when Tavg is above 0 and no more meltwater is 

available to refreeze (Terink et al., 2015a): 

�fu� = vy�2�,� + wz,� −  ∆��x, F�.?,� ≥ 0 0                  , F�.?,� < 0     Eq. 4.9  

 

Glacier melt 

 

The glacier melt processes are, like the snow melt processes, simulated using the DDF 

approach, whereas different factors for glaciers with and without debris cover can be 

provided. The daily melt (Agl) for a specific glacier type (clean ice, debris-covered) 

depends on the air temperature, the type-specific degree day factor (for clean ice 

glaciers and gDDFdb for debris-covered glaciers) (°C) and the fraction of the cell that is 

covered by glaciers (Glacfrac) (Terink et al., 2015a): 

y?z = vF�.?,� ∗ hhs?z ∗ |t%kBd�2 , F�.?,� ≥ 00, F�.?,� < 0     Eq. 4.10 

The glacier meltwater drains the glaciers either as surface runoff or percolates to the 

groundwater. The path of the meltwater is defined by the glacF parameter which 

represents the fraction of water that drains as surface runoff on day t (Gro,t). The 

remaining fraction of the meltwater (Gperc,t) is added to the groundwater layer in the soil 

module (Terink et al., 2015a): 
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|di,� =  y?z ∗ )t%ks         Eq. 4.11 

|8ed2,� =  y?z ∗ (1 − |t%kf}s)      Eq. 4.12 

The glacier evolution is simulated for each glacier by using a mass-conserving ice 

redistribution approach (Khanal et al., 2021). This redistribution is based on the mass 

balance of the individual glaciers (I) calculated from the total accumulated snow (SnowS) 

and the total melt generated from the glaciers (GM) at the end of the hydrological year 

(Khanal et al., 2021): 

~�,� = ��u���,� −  |��,�       Eq. 4.13 

Where n and j are the glacier and the unique grid cell identification.  

The accumulated snow in the accumulation zone is transformed into ice and 

redistributed to the ablation zone if the total melt exceeds the snow accumulation (In,j < 

0) (Khanal et al., 2021): 

�����,� = V0                                                  , ��6�,�∑ ~�,�  ∗  �����,�∑ �����,�� � ��,�  � �3�,� , ��y�,�     Eq. 4.14 

Where, A is the part of the glacier with a negative imbalance, and B is the one with a 

positive imbalance. Vini is the initial total volume of ice and hence the redistribution 

scales with the initial ice volume (Khanal et al., 2021). 

  

Soil water processes 

 

The soil module is the most complex in terms of the pathways that water can take and 

greatly affects the shape and timing of the simulated hydrograph (Terink et al., 2015a). 

The upper layer SW1 (root zone) interacts with the atmosphere, receiving water from 

precipitation or delivering water as evapotranspiration. The water is either stored in the 

upper layer, percolates to the lower layer SW2 (subzone) or is routed downstream as 

overland flow or lateral flow. In the second layer SW2, water can either rise back up to 

SW1 through the capillary rise, or percolate further to the groundwater layer SW3, but no 

water is lost to evapotranspiration or lateral flow. The capillary rise is limited by a 

calibration parameter (capRise). The groundwater layer SW3 is fed by glacier melt 

contributions and water percolating from SW2. The water is either stored in the layer or 

drains the cell as baseflow, but no water can rise back up to the second layer SW2 

(Terink et al., 2015a). 
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The percolation from SW1 to SW2 is calculated following a storage routing methodology 

that is also implemented in the SWAT model (Neitsch et al., 2011). Percolation only 

occurs if the lower layer is not saturated and only the surplus water Wl,exec that exceeds 

the field capacity is available for percolation. However, only a fraction Wl,perc of the 

surplus water percolates depending on the percolation travel time TTperc, l (days) which 

depends on the saturated hydraulic conductivity Ksat,l (mm day-1), the field capacity SWl,fc 

(mm) and the saturated water content SWl,sat (mm) (Terink et al., 2015a):  

xz,8ed2 = xz,e e2 ∗ (1 − ��r �R��8ed2,z).      Eq. 4.15 

FF8ed2,z =  lm�,��n � lm�,�����n,�  .      Eq. 4.16 

This routine is implemented to calculate the amount of water that percolates to the lower 

layer. Water that percolates to the groundwater layer SW3 will eventually reach the 

shallow aquifer from where it drains as baseflow. The groundwater recharge rate of day 

t is calculated using an exponential decay weighing function (Venetis, 1969 in Terink et 

al., 2015) to account for the slower nature of groundwater recharge (Terink et al., 2015a):  

Gchrg� = �1 − exp  �¡¢£¤ ∗ W/,¦§¨© +  exp  �¡¢£ ∗ Gchrg��R,   Eq. 4.17 

where δgw is the delay time (d) which can be treated as a calibration parameter 

(deltaGW), Gchrg��R the groundwater recharge on the previous day  (mm) and W/,¦§¨© 

(mm) the amount of water that percolates from SW2 to SW3 (mm).  

 

Runoff components 

 

The overland flow RO comprises saturation excess flow (ROsat) and infiltration excess 

flow (ROinf). The saturation excess flow begins if the water stored in SW1 exceeds the 

saturated water content of the layer SW1,sat (mm) A second routine enables the 

simulation of infiltration excess runoff if the infiltration capacity Infcap is exceeded. For 

this, three calibration parameters are required that describe i) the rainfall fraction of daily 

rainfall that occurs during the hour of the most intense rainfall (alphaInf); ii) a coefficient 

that determines the reduction speed of the infiltration capacity (t%1�%) and; iii) a factor 

which the effective saturated hydraulic conductivity kEff (Terink et al., 2015a):  

f} = f}D�� + f}��B         Eq. 4.18 

f}D�� = v�xR −  �xR,D��                       ¬ �xR > �xR,D��0                                                ¬ �xR ≤ �xR,D��     Eq. 4.19 
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f}��B = ° ��(�z8;�±�B∗ �� z�G&�)�
(�z8;�±�B∗ �)     ¬ ~�2�8 < alphaInf ∗  wz0                                               ¬ ~�2�8 ≥ alphaInf ∗  wz   Eq. 4.20 

~�2�8 =  µ¶BB  ∗ �D��c··n/` ∗ (1 + lm�,��n� lm�lm�,��n )¸,      Eq. 4.21 

where  Ksatroot describes the saturated hydraulic conductivity of SW1. 

The lateral flow of each cell (LFl, hill) (mm) in the root zone SW1 and subzone SW2 is 

calculated according to Sloan and Moore (1984 in: Terink et al., 2015) as a function of 

available water and flow velocity. The amount of water available for drainage is 

determined by the soil properties and only the excess water (Wl,exec) (mm) exceeding the 

field capacity is available for lateral drainage (Terink et al., 2015a):  

¹sz,;�zz =  xz,e 2Bd�2 ∗  ºz��,z       Eq. 4.22 

xz,e e2Bd�2 =  m�,»Q»�lm�,��n� lm�,��       Eq. 4.23 

ºz��,z =  jD��,z ∗  ¼tr,        Eq. 4.24 

where Ksat,l  is the saturated hydraulic conductivity of soil layer l (SW1, SW2), SWl, fc is the 

field capacity of soil layer l, and slp is the slope (increase in elevation per unit distance) 

of the hill. The units of vlat,l and Ksat,l  are mm day-1. 

The lateral flow is slower than surface runoff and only a fraction of the available water 

drains on the same day. The lateral flow entering the channel on day t (LFl) (mm) is 

calculated based on Neitsch et al. (2011) using the travel time (TTlag,l) (days), which 

depends on the field capacity (SWl,fc) (mm), the saturated water content (SWl,sat) (mm) 

and the hydraulic conductivity of the soil (Ksat,l) (mm day-1) (Terink et al., 2015a): 

¹sz = O¹sz,;�zz + ¹sz,;�zz,��RP ∗ �1 − exp ½ �R����¾,�¿¤    Eq. 4.25 

FFz�?,z =  lm�,��n � lm�,�����n,�  .       Eq. 4.2 6 

The baseflow into the channel on day t BF3,t (mm) from SW3 is calculated based on the 

steady-state response of groundwater flow to recharge and water table fluctuations 

which result in a non-steady response of groundwater to periodic groundwater recharge 

after Smedema & Rycroft (1983 in Terink et al., 2015). Two parameters are implemented 

to adjust the baseflow simulation to the catchment characteristics; i) a threshold 

(baseThr) (mm) below which no baseflow occurs and; ii) a recession coefficient 

(alphaGW) (-) that relates the baseflow response to changes in groundwater recharge 
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and determines the speed with which the baseflow drains into the channels (Terink et 

al., 2015a):  

6sL,� = �0                                                                                                   ¬ �xL ≤ 1%¼�Fℎ�6s��R ∗ ��r��z8;�Àm + |kℎ�)� ∗ O1 − ��r�z8;�ÀmP ¬ �xL  > 1%¼�Fℎ� Eq. 4.27 

 

Routing 

 

The cell-specific total runoff (QTot) (mm) is the sum of the rainfall-runoff (RRo) (mm) 

(surface runoff Ro + lateral flow LF1 from SW1), snow runoff (SRo) (mm), glacier runoff 

(Gro) (mm), and baseflow (BF) (baseflow BF3 from SW3) (mm). 

This cell-specific total runoff at day t (QTott) (mm) is routed through a simple routing 

scheme to obtain the river discharge (Qroutt) (m3 s-1). It is routed through the 

downstream cells to the catchment outlet based on the flow direction (Fdir) derived from 

a DEM using the D8 algorithm (O’Callaghan and Mark, 1984). The cell-specific runoff is 

accumulated for all upstream cells and the travel time of the water is simulated using a 

recession coefficient recessCoef that delays the runoff which would otherwise reach the 

outlet within one day (Terink et al., 2015a):  

�Fu��∗ =  Á�i�n∗A.AAR∗Â/`∗LÃA         Eq. 4.28 

��22<,� = %kkÄtÄ�(s&�d, �Fu��∗)      Eq. 4.29 

�di<�,� = (1 − Å���k�¼¼"u�) ∗ ��22<,� + ��k�¼¼"u� ∗  �di<�,��R,  Eq. 4.30 

where A represents the grid cell area (m2). 

This approach is an efficient way to simulate water transport in channels without relying 

on solving the St. Venant or Manning equations which have higher demands towards 

data and computational resources (Terink et al., 2015a).  

 

Precipitation correction 

 

A precipitation correction factor is introduced which scales the daily precipitation input to 

account for biases in the precipitation data (Lutz et al., 2014; Nepal et al., 2014). The 

precipitation correction is used as a calibration parameter (precipFactor).  
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4.2.2 Model calibration 
 

The model calibration is conducted to fit the model to the conditions of the Karnali 

catchment by identifying the model parameter combinations that result in the best match 

of simulated and observed catchment behaviour. A Regional Sensitivity Analysis (RSA) 

is conducted in the first stage to identify insensitive parameters. These parameters are 

removed from the further calibration process which reduces the required sample size of 

the calibration. The calibration is conducted within a GLUE framework to account for 

model equifinality and estimate the uncertainty in the model predictions.  

 

4.2.2.1 Regional Sensitivity Analysis 
 

In the first stage of the calibration process, the model is run with 1,500 different 

combinations of 21 parameters sampled using Latin Hypercube Sampling (LHS). An 

overview of these parameters is presented in Table 4.1. The Regional Sensitivity 

Analysis (RSA) is conducted for multiple performance measures that evaluate different 

aspects of the hydrograph, namely:  

i) the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) of the discharge at the 

catchment outlet because of its emphasis on high flows (Gupta et al., 2009);  

ii) the coefficient of determination (R2) to evaluate the correlation between simulated 

and observed discharge; 

iii) the percentage BIAS (PBIAS) of the simulated and observed discharge (PBIASrunoff);  

iv) the PBIAS of the discharge during the winter months (PBIASwinter);  

v) the PBIAS of the simulated and reference snow extent (PBIASsnow);  

vi) the PBIAS  of the simulated and reference annual actual evapotranspiration 

(PBIASactET).  

The performance measure PBIASwinter was introduced because it was observed that 

many parameter sets with high efficiencies vastly underestimate the low flows during the 

winter months which indicates a poor representation of the catchment’s hydrology. All 

parameters that are classified as sensitive for either of the performance measures are 

maintained in the further calibration process. A single value is used for the insensitive 

parameters. This value is obtained from the parameter set with the highest NSE. 

The actual evapotranspiration is calibrated using the scaling factor kcFactor. The kc 

values of the individual factors are determined from the comparison with remote sensing 

estimates in initial model runs. These kc values are then multiplied with the kcFactor in 

the calibration.   
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Table 4.1: The parameter and their range used for the Regional Sensitivity Analysis (RSA). 

Module Parameter Description Unit min max 

Glacier 

 

gDDF_cl Degree-day factor debris-free 

glaciers 

mm ◦C-1 day-

1 

0.5 9 

gDDF_db Degree-day factor debris-covered 

glaciers 

mm ◦C-1 day-

1 

0.5 9 

glacF Fraction of glacier melt that becomes 

glacier runoff 

- 0.2 0.7 

Groundwater 

 

alphaGW Baseflow recession coefficient day-1 0.01 0.07 

deltaGW Groundwater recharge delay time day 15 50 

gwSat Saturated soil water content of the 

groundwater layer 

mm 250 600 

h_gw Initial groundwater table height m 0.8 2.2 

yieldGW Specific yield of the groundwater 

storage 

m/m 0.1 0.5 

baseThr The threshold for baseflow to occur mm 50 250 

Routing recessCoef Flow recession coefficient - 0.7 0.99 

Snow sDDF Degree-day factor for snow mm ◦C-1 day-

1 

0.5 9 

tcrit Temperature threshold for 

precipitation to fall as snow 

◦C -3 3 

snowsc Water storage capacity of snow pack mm mm-1 0.1 0.7 

Soil 

 

alphaInf Fraction of daily precipitation that 

occurs during the hour of most 

intense rainfall  

- 0.1 0.5 

lambda Infiltration coefficient that affects the 

speed of infiltration capacity reduction 

- 0.25 0.8 

kEff Effective saturated hydraulic 

conductivity 

- 0.1 0.5 

rootDepth Thickness of root zone mm 350 800 

soilDepth Thickness of subzone mm 350 1000 

capRise Maximum capillary rise from subzone 

to root zone  

mm day-1 5 20 

Correction precipFactor Precipitation correction factor - 1.2 1.45 

kcFactor Crop coefficient multiplication factor - 0.5 1.5 
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4.2.2.2 Sampling design 
 

The 11 parameters identified as sensitive are calibrated using the GLUE framework. The 

parameters are sampled using the LHS design to reduce the sample size to 10% of the 

size of a random sampling generator. However, the required sample size is unfeasible 

even within an LHS framework which is illustrated by the following example: the optimal 

sample size of 11 parameters and 10 parameter values is 1011 x 0.1 = 10 Billion (see 

3.1.2.2). The computation and post-processing of a single model run requires ~2h so the 

calibration would take > 2 Million years in CPU time, which is beyond the scope of this 

project.  

Most studies which apply complex, (semi-) distributed models use considerably lower 

sampling sizes. Shen et al. (2012) used a sampling size of 10,000 for 20 parameters 

with LHS; Nepal et al. (2014) used a sample size of 1,600 for 16 parameters with Monte-

Carlo-Sampling (MCS), and Pearson (2020) used a sampling size of 5,000 for 12 

parameters with LHS.  

In this research, a sample size of 10,000 is deemed appropriate for the 11 sensitive 

parameters with LHS using a uniform probability distribution. However, the sample size 

selection is a tradeoff between the sampling density and available computational 

resources and while it orients on the sampling strategy of previous studies, the choice is 

somewhat subjective as GLUE lacks formal guidelines for the parameter sampling 

(Beven and Binley, 2014).  

 

4.2.2.3 Performance measures 
 

Performance measures evaluate the fit between simulated and observed catchment 

behaviour and are used for the identification of behavioural parameter sets. This study 

uses a multi-criteria approach that includes one graphical technique, one dimensionless 

technique, and one error index as proposed by Legates and McCabe (1999). The choice 

of appropriate evaluation techniques depends on the objective and availability of 

calibration data. In this case, the objective is the estimation of the evolution of flood 

hazard frequency and magnitude so that the focus of the hydrological modelling is on 

the simulation of flood peaks. Therefore, the selection of evaluation techniques is based 

on the ability to depict the performance during high flows. The NSE is chosen as a 

dimensionless evaluation technique because of its sensitivity towards high flows. The 

PBIAS is calculated for flows ≥ 5000 m3/s to gain information about discharge volume 

differences during high flows (PBIAShigh). A modified version of eGLUE (eGLUEmod) (Liu 
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et al., 2009) is applied to account for the uncertainty in the observed discharge. The 

original eGLUE quantifies the number of days for which the simulated discharge is within 

the uncertainty intervals of the observed discharge. The modified eGLUEmod describes 

the mean discharge of all days for which the simulated discharge is within the uncertainty 

intervals of the observed discharge. This adjustment is made to prevent the low flow 

conditions which prevail during nine months from dominating this performance measure.  

 

4.2.2.4 Selection of behavioural parameter sets 
 

The selection of behavioural parameter sets contains two stages, the identification of 

unbehavioural parameter sets, and the selection of the best-performing parameter sets. 

The thresholds for the identification and exclusion of unbehaviorual parameter sets are 

obtained and adjusted to account for the modelling time step and data quality based on 

Moriasi et al. (2007, 2015).  

In the first stage, the unbehavioural parameter sets are identified from multiple 

performance measures. The parameter sets are evaluated in regards to the snow 

dynamics and annual evapotranspiration rates and parameter sets with larger PBIAS of 

±30% in snow extent and annual ETA are removed. The inspection of the hydrographs 

reveals that a fraction of parameter sets with high efficiencies vastly underpredict the 

discharge in the winter months which indicates a poor representation of groundwater 

processes. The PBIAS for winter months is calculated and all parameter sets that deviate 

more than ±30% are eliminated from the selection.  

In this study, the selection of behavioural models uses a combined selection approach 

that combines threshold and ranking selection approaches. This is a pragmatic choice 

to prevent one criterion from dominating the others due to a discrepancy in the number 

of classified behavioural parameter sets. The threshold for NSE is 0.7 and ± 25% for 

PBIAShigh. These thresholds are based on the recommendations of Moriasi et al. (2007, 

2015) and are adjusted to account for the uncertainty in the discharge observations. No 

threshold is defined for eGLUEmod due to the lack of reference thresholds and 

interpretability. For each performance measure, the n highest performing parameter sets 

are maintained, whereas n is the number of behavioural parameter sets of the 

performance measure with the lowest number of behavioural parameter sets. 
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4.2.2.5 Model setup 
 

The SPHY model (Version 3.0) is run at daily time steps for the period 2002 – 2006 as 

the calibration period, and 2007 – 2015 as the validation period. The year 2001 is the 

warm-up period to fill the water storages and is not considered in the evaluation. The 

spatial resolution of the model is 500 x 500m resulting in ~ 182.000 modelling cells. The 

model version is V3.0 and the infiltration, glacier, groundwater, and snow modules are 

used.  

The calibration is conducted on the Hamilton Supercomputer of Durham University. 

Minor adjustments in the model code were conducted by Dr S. Reaney to adapt it to the 

Linux environment. The precipitation correction factor was added to the source code. It 

multiplies the precipitation input rasters with the precipitation correction factor when 

loaded into the memory.  
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4.2.3 Estimation of the discharge uncertainty 
 

 

4.2.3.1 Bayesian Rating Curve Framework 
 

The Bayesian Rating Curve Framework (BaRatin) (Le Coz et al., 2014) is used to 

estimate the uncertainty of the discharge time series. The method is selected because:  

i. the uncertainty estimates include the parametric, structural, and observational 

uncertainty sources;  

ii. the model output is presented as confidence intervals and matches the eGLUE 

format;  

iii. the uncertainty is estimated based on hydraulic knowledge of the gauging site 

which makes the method less uncertain when extrapolating compared to other 

Bayesian approaches (Kiang et al., 2018); 

iv. the uncertainty ranges can be provided for the hydraulic knowledge and 

measurements which is very useful since the gauging site could not be visited 

during this study. 

In BaRatin, the estimation of the stage-discharge relationship and the associated 

uncertainty is based on the hydraulic knowledge about the controls at the gauging site 

(Le Coz et al., 2014). This information determines the stage-discharge relationship and, 

thus, the model parameterisation. The relationship between stage and discharge can be 

represented by a segmented regression in the case that the gauging site is characterized 

by multiple controls that alter the stage-discharge relationship at different stage levels.  

The estimation of measurement uncertainty is based on the assumption that stage 

measurement errors are negligible and that discharge measurement errors follow a 

Gaussian distribution with mean zero and known standard deviation (Le Coz et al., 

2014). The uncertainty of each discharge gauge can be specified as a percentage. A 

remnant error is implemented to account for the structural uncertainty in the rating curve. 

It is assumed that this error follows a Gaussian distribution with mean zero and unknown 

standard deviation and is estimated from the gaugings (Le Coz et al., 2014). The prior 

distributions of the rating curve parameters and the specified measurement uncertainty 

are combined using Markov Chain Monte Carlo (MCMC) simulations (n = 1000) and 

hence a large set of rating curves is created with different values for the parameters and 

observations. The remnant error is added to each rating curve and the total uncertainty 

interval is then determined from the 5 and 95 percentiles of rating curves. 
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4.2.3.2 Rating-curve parameterisation 
 

Rating curve methods are based on the assumption of stable controls which means that 

the geometry of the channel (or subsets of the channel for channels with multiple 

controls) which determines the stage-discharge relationship remains constant. Thus, 

multiple rating curves need to be established if one or more controls shift during the 

study period which requires information about the timing of shifts. Additionally, the 

BaRatin method requires information about the geometry of the controls to estimate a 

reasonable parameter range for the parameter fitting.  

 

Investigation of temporal shifts 

 

In this study, temporal shifts in the stage-discharge relation are identified from a 

combination of graphical and statistical methods. In the first step, a log-log 

transformation is conducted on the stage and discharge measurements to convert the 

logarithmic stage-discharge relationship to a linear relationship (Herschy, 1993). This 

relationship is plotted and it is investigated whether for certain stage ranges (hereafter 

referred to as stage groups) the variances in discharge are larger compared to other 

stage ranges. A higher variance in one of the stage groups indicates that the active 

control (for the given stage group) shifts more frequently or stronger compared to the 

controls that determine the stage-discharge relation for the other stage groups.  

The unequal variance t-test (also Welch’s t-test) (Welch, 1947) is conducted for each of 

the stage groups to identify the timing of the shift. This test compares the means between 

two independent populations without assuming equal variances to investigate if both 

populations are similar (evidence for no shift) or different (evidence for shift) (Ahad and 

Yahaya, 2014). The unequal variance t-test is chosen over the student's t-test and Mann-

Whitney U test because it provides robust evidence for populations with equal variance 

as well as populations with unequal variance (Ruxton, 2006). However, Welch’s t-test 

assumes that the populations are normally distributed. It cannot be verified that this 

assumption is met because of the low sample size (see section 4.3.3.3).  

The unequal variance t-test requires a measure that contains information about the stage 

and discharge. Since the log-log transformed stage-discharge relationship follows a 

linear trend, this measure can be obtained by dividing log(discharge) and log(stage). 

The test is then conducted for the populations of this measure of subsequent years. If 

the null hypothesis is rejected with high confidence (p-value ≤ 0.05) it indicates that the 
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distributions of the measure of the two groups (years) are different and, hence, that the 

stage-discharge relationship has shifted.   

 

Prior hydraulic knowledge 

 

The hydraulic information is required to identify the number of controls and the parameter 

range of each control. This information comprises the activation stage, width, slope and 

Strickler coefficient of each control. In the ideal case, detailed knowledge of the gauging 

site from a field survey or the expertise of the gauging site manager would be used to 

define the controls and their initial parameter range. In the case of the gauging station 

at the mountain outlet, no official information is available, and no field survey could have 

been conducted. Therefore, the information is derived from literature and remote sensing 

products. The derivation of the rating curve parameter from remote sensing products is 

more uncertain compared to field surveys. However, the information is used to provide 

a first rough estimation of the parameter range and not the exact parameter values (Le 

Coz, 2014; Le Coz et al., 2014). The software allows the definition of uncertainty ranges 

for the prior hydraulic information and hence higher uncertainty ranges account for the 

lower accuracy of the remote-sensing-based information.  

The identification of the different controls is based on a cross-section profile of a DEM 

derived from World-View imagery (Figure 4.2). This DEM does not depict the topography 

of those parts of the riverbed which are covered by water during the acquisition of the 

images. This part is defined at the low flow control for which an activation stage of 0 ± 2 

m is assumed (the activation stage can be negative depending on the calibration of the 

stage). The medium control is activated at the median stage height of 2.9 m in the first 

week of March (the week of the image acquisition). The activation stages of the high flow 

and flood flow controls are measured from the cross-section profile.  

A rectangular geometry is chosen for each control which seems most in line with other 

rating-curve applications of comparable cross-sections (Le Coz, 2014). The stage-

discharge relationship of rectangular channels is calculated as (Le Coz, 2014) ; 

�(ℎ) = % (ℎ − 1)2  u� ℎ > Å       Eq. 4.31 

% =  jD67√�          Eq. 4.32 

where Q = discharge (m3/s), h = stage (m), k = activation stage (m), jD = Strickler 

coefficient (m/s), 67 = Channel width (m) and S = channel slope. The exponent c is 5/3 

for rectangular channels, and the parameter b does not require specification in the 

BaRatin framework.  
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The width (Bw) is measured at the upper bound of each control but excludes the width 

of the next lower control. The slope is measured from the DEM and averaged over 2 km 

to remove the local noise. The Strickler coefficient is the inverted Manning’s n and is 

obtained from Chow (1959); the value for mountain streams with gravel, cobbles and 

few boulders is selected for all three controls, which seems most reasonable because 

the gravel-sand transition occurs further downstream (Dingle et al., 2020b). The BaRatin 

parameterisation is summarised in Table 4.2.  

 

 

 

Figure 4.2. Controls of the Rating Curves. The solid line is the cross-section profile of the Gauging station 
which was derived from the WV-2 DEM (Section 6.2.5) and the rectangular areas indicate the identified 
controls. 

 

Table 4.2: The parameterisation of BaRatin. 

Control Geometry Width  
[m] 

Activation 
stage  
[m] 

Slope 
 [m/m] 

Strickler-
coefficient 
[m s-1] 

Low flow rectangular 207 ± 20 0.0 ± 2 0.001 ± 0.0005 25 ± 12 
Medium flow rectangular 107 ± 20 2.9 ± 2 0.001 ± 0.0005 25 ± 12 
High flow rectangular 157 ± 20 8.8 ± 2 0.001 ± 0.0005 25 ± 12 
Flood flow rectangular 115 ± 20 11.0 ± 2  0.001 ± 0.0005 25 ± 12 
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4.3 The utilised datasets 
 

The datasets used for the hydrological model fall into three categories; static data which 

does not change throughout the modelling period (Section 4.3.1), climate forcing data 

that describes the daily atmospheric conditions and changes with time (Section 4.3.2), 

and calibration data is not fed into the model but used to calibrate the model and validate 

its performance (Section 4.3.3). The datasets and their sources are summarized in Table 

4.3. 

All spatial datasets are reprojected to the modelling coordinate system (CRS) WGS84 / 

UTM Zone 44N (EPSG: 32644), converted to the raster format, resampled to the 

modelling resolution (500 x 500m), and aligned to the model grid in the preprocessing 

stage. The data sources and individual processing steps are described in this chapter.  

 

Table 4.3: The datasets used for the hydrological modelling.  

Variable Dataset Usage Source 
Topography HydroSHED V 1.0 Watershed delineation, temperature 

downscaling, Flow routing 
Lehner et al., 2008 

Soil HiHydroSoils Soil saturated water content, field 
capacity, permanent wilting point of the 
root zone and subzone layers 

De Boer, 2016 

Geology Physiographic 
Divisions of Nepal 

Demarcation of zones with different 
geological properties 

ICIMOD, 2011 

Vegetation Globcover 2009 
V2.3 

Demarcation of land use zones for 
actET simulation 

Arino et al., 2012 

Glacier Randolph Glacier 
Inventory 6.0 

Glacier delineation RGI Consortium, 
2017 

Debris-covered 
glaciers 

Classification of debris-covered 
glaciers 

Scherler et al., 
2018 

Ice thickness  Glacier depth Farinotti et al., 2019 
Snow  MOYDGL06 8-day snow cover composites Muhammad and 

Thapa, 2020 
Temperature WFDEI  Minimum, maximum and mean daily 

air temperature 
Weedon et al., 
2011, 2014 

Precipitation GPM IMERG Final 
Precipitation L3 1 
Month V006 

Monthly precipitation maps Huffman et al., 
2019 

Gauged 
precipitation (daily) 

Temporal disaggregation of monthly 
precipitation maps 

DHM  

Actual 
Evapo-
transpiration 

MODIS 16A3GF 
V006  

Model calibration Running et al., 
2019 

Discharge Gauged discharge 
(daily) 

Model calibration 
 

DHM 

DHM stage-
discharge 
observations 

Uncertainty estimation of daily 
discharge 

DHM 
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4.3.1 Static datasets 
 

Static datasets are spatial maps that represent the environmental conditions and remain 

similar over the full modelling period. In reality, environmental conditions are dynamic 

and change over time. For example, the geomorphological processes (i.e. landslides) 

alter the topography and human activities change the land cover and vegetation. 

However, the modelling period covers 13 years, and it is assumed that the effect of these 

changes is negligible for the modelling period (e.g. Lutz et al., 2014; Nepal et al., 2014; 

Dhami et al., 2018; Chandel and Ghosh, 2021; Khanal et al., 2021).  

The topography is represented by the HydroSHED V 1.0 DEM (Lehner et al., 2008). This 

Digital Elevation Model (DEM) is a derivative of the Shuttle Radar Topography Mission 

(SRTM) DEM that is optimized for hydrological applications (Figure 4.3). It has a spatial 

resolution of ~90 m and represents the topography of the year 2000. The dataset is used 

to delineate the watershed boundaries, the runoff routing and the downscaling of the 

temperature data.  

The Globcover 2009 V2.3 dataset (Arino et al., 2012) is used to represent the spatial 

distribution of different land cover types in the catchment. This dataset is based on 

images collected from January – December 2009 by the Merris sensor on board the 

ENVISAT satellite and has a resolution of 300 m. The overall accuracy of the dataset 

reaches 67.5% (Bontemps et al., 2011) but varies with the landcover class; classes that 

are classified with high confidence (i.e. croplands, permanent snow and ice, water) cover 

36% of the catchment, while uncertain classes (sparse vegetation, herbaceous 

vegetation) cover 21%. The land cover raster is presented in Figure 4.4.  
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Figure 4.3: The HydroSHED DEM (Lehner et al., 2008) which represents the topography in the hydrological 
modelling. The coordinates are in WGS 84 / UTM  Zone 44N (km) 

 

Figure 4.4: The Globcover dataset (Arino et al., 2012) which represents the land cover in the hydrological 
modelling. The class names were simplified and the Globcover ID is provided in the brackets for 
identification. The coordinates are in WGS 84 / UTM  Zone 44N (km). 
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Soil information is derived from the HiHydroSoil database (De Boer, 2016). This dataset 

has a resolution of 900 m and is based on the SoilsGrid1km (Hengl et al., 2014), and is 

gap-filled with data from the Harmonized World Soil Database (HWSD). The HiHydroSoil 

database converts the soil properties of the gap-filled SoilsGrid1km data to hydraulic soil 

properties using the Mulan Van Genuchten model (Van Genuchten, 1980). The SPHY-

Preprocessor (Terink et al., 2015b) is used to derive maps of the wilting point and 

permanent wilting point (only root zone SW1) (Figure 4.5), and the field capacity, 

saturated water content, saturated hydraulic conductivity (separate maps for root zone 

SW1 and subzone SW2) (Figure 4.6), and There is a lack of information on the depth of 

the root zone and subzone layers so that the depth of the layers is calibrated.  

The SPHY model requires information on the groundwater storage capacity. Despite the 

availability of data on the spatial distribution of geological layers in the Himalayas, there 

is a lack of information about the storage capacity of these layers. Nepal et al. (2014) 

used the physiographic divisions of the Himalayas to estimate the spatial distribution of 

groundwater storage capacities. Even though the physiographic divisions do not reflect 

the local variability in geologic conditions, the large-scale differences are captured. The 

storage capacity reduces with elevation in the northern direction. In this work, the 

Physiographic Divisions of Nepal dataset (ICIMOD, 2011) is used (Figure 2.1). The 

storage capacities were estimated in personal communication with Dr. S. Nepal and are 

1650 mm (Siwalik range), 1350 mm (Middle Hills) and 1050 (High Hills, High Mountains).  

 

 

Figure 4.5: The permanent wilting point and the wilting point of the root zone layer (De Boer, 2016). The 
coordinates are in WGS 84 / UTM  Zone 44N (km). 
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Figure 4.6: Soil properties for the root zone and subzone layers (De Boer, 2016). The coordinates are in 
WGS 84 / UTM  Zone 44N (km).  
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Three datasets are used as input for the glacier module; the Randolph Glacier Inventory 

6.0 (RGI Consortium, 2017) dataset is used for the delineation of glaciers (Figure 4.7). 

The outlines of supraglacial debris cover for RGI 6.0 (Scherler et al., 2018) are used to 

classify the glaciers into clean ice and debris-covered glaciers. The ice thickness is 

represented by the modelled ice thickness distribution for RGI 6.0 (Farinotti et al., 2019). 

The fraction of a modelling cell that is covered by glaciers is calculated during the data 

preparations. In SPHY a glaciated modelling cell can either be of type clean ice or debris-

covered. Therefore, the glacier type for each glaciated modelling cell is classified based 

on the dominating glacier type. The glacier elevation for each glaciated cell is obtained 

from the RGI 6.0 dataset (median elevation). In the case that the median RGI 6.0 

elevation is higher than the DEM elevation, the minimum RGI 6.0 elevation is used.  

 

 

 

 

 

Figure 4.7: Glaciated areas in the hydrological modelling (RGI Consortium, 2017). The value indicates the 
fraction of the grid cell that is glaciated. The coordinates are in WGS 84 / UTM  Zone 44N (1000 km).  
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4.3.2 Climate forcing data 
 

The climate forcing data represents the atmospheric conditions of the modelling period 

at the daily resolution. This data comprises the minimum, maximum and average daily 

air temperature and the daily precipitation. Gridded products for temperature and 

precipitation are used in this study due to the low density and concentration along valleys 

of the climate station network. The gridded products can be grouped into three 

categories: i) interpolated datasets that are based on ground observations; ii) satellite-

based datasets, and; iii) datasets that are generated by merging reanalysis data and 

ground-based observations (Lutz and Immerzeel, 2016). The main criteria for the 

dataset selection are the spatial resolution because of the high variability of atmospheric 

conditions on the local scale in the Himalayas (Collier and Immerzeel, 2015) and the 

accuracy of the product. A reanalysis product is used to represent the temperature, and 

a combination of satellite-based datasets and ground observation is used as 

precipitation input.  

 

4.3.2.1 Temperature forcing data 
 

Interpolated temperature datasets lack observations at high elevations and lack 

accuracy in mountainous regions (Winiger et al., 2005; Lutz and Immerzeel, 2016; Pan 

et al., 2019). Comparisons of observed temperatures and temperatures retrieved from 

remote sensing indicate that satellite-based products are useful data sources for global 

analyses (Sobrino et al., 2020). However, these products lack data for pixels with cloud 

cover, and hence large data gaps are inherent during the monsoon season. Therefore, 

this research uses reanalysis data for the temperature forcing. The WATCH forcing data 

methodology applied to ERA-Interim dataset (WFDEI) (Weedon et al., 2011, 2014) 

depicts the temperatures with low biases and is, therefore, chosen in this research (Lutz 

and Immerzeel, 2016; Bhattacharya et al., 2020).  

The basis for WFDEI is the ERA-Interim data which is bias-corrected and elevation-

corrected using monthly average and diurnal temperature data of the Climate Research 

Unit (CRU) gridded station observation products CRU TS 3.1 for 1979-2009 and CRU 

TS 3.21 for 2010-2012 (Weedon et al., 2014). The WDFEI dataset has a spatial 

resolution of 0.5 X 0.5° and is downscaled to the modelling resolution using a lapse rate. 

This lapse rate is derived from gauges within and in proximity to the catchment using 

linear regression modelling.  
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The lapse rate Is different for dry and wet adiabatic conditions which vary in time and 

space (Immerzeel et al., 2014; Lutz and Immerzeel, 2016). The orographic rainfalls are, 

therefore, expected to cause elevation-dependent differences in the lapse rates. 

However, the highest temperature gauge is located at ~3,000 masl which prevents the 

determination of separate lapse rates for elevation bands. Therefore, the lapse rate is 

applied to the total catchment. Both annual and seasonal lapse rates, which account for 

the seasonal variation in the cooling, are calculated (Figure 4.8).  

These lapse rates are used to downscale the temperature data from the WFDEI 

resolution to the modelling resolution. This downscaled temperature is then compared 

with the temperature gauges for validation (Figure 4.9). This comparison reveals that the 

temperatures at higher elevations which are downscaled by the winter lapse rate 

systematically underestimate the observed temperatures. The data downscaled by the 

annual lapse rate does not contain a systematic bias and, hence, the annual lapse rate 

of -0.0054  ºC/m is used for the spatial downscaling. This lapse rate is identical to the 

one used by Dhami et al. (2018) for the Karnali catchment.  
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Figure 4.8: Lapse rates calculated from gauges (DHM) in the period 1998 – 2016. The red lines indicate the 
linear regression model of the lapse rates. The x in the regression equations is the temperature decrease 
(ºC/m). 

 

 

Figure 4.9: Elevation corrected WFDEI temperatures and observed temperatures of selected gauges (DHM) 
at daily resolution for the years 2001 – 2006. The dashed line is the line of the perfect fit. The elevation 
correction is conducted using the annual lapse and seasonal lapse rates presented in Figure 4.8.  
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4.3.2.2 Precipitation forcing data 
 

As for the interpolated temperature datasets, the interpolated precipitation datasets 

suffer from observation gaps along the hillslopes and mountain ridges and hence these 

datasets are more robust in the southern regions of the study area. The central and 

northern parts of the catchment with elevations ≥ 3000 masl lack observations and hence 

the precipitation is more uncertain. Satellite-based precipitation products have large 

spatial coverage and are useful to improve the understanding of spatiotemporal 

precipitation patterns in data-scarce regions (Arias-Hidalgo et al., 2013). However, the 

accuracy of such products decreases with the temporal resolution and the daily products 

may include large biases (Arias-Hidalgo et al., 2013; Bhardwaj et al., 2017; Pearson et 

al., 2022). Furthermore, precipitation estimates are more accurate in oceanic and flat 

environments than in areas with complex topographies which is due to the complex 

convection mechanics that are not captured in the remote sensing imagery and the 

sparser gauge network to identify and correct biases (Arias-Hidalgo et al., 2013; Collier 

and Immerzeel, 2015; Sunilkumar et al., 2019). Precipitation of climate reanalysis 

products also may exhibit large biases in mountainous regions which may lead to poor 

performance of hydrological models if forced with this data (Bhattacharya et al., 2020). 

It is therefore not clear which precipitation product captures the spatiotemporal 

precipitation patterns at the daily resolution in the catchment best.  

Several gridded precipitation products are compared with gauged precipitation to asses 

their potential for application in hydrological modelling (Figure 4.10). These evaluated 

datasets are APHRODITE-2 (Yatagai et al., 2012) and CPC Global Unified Precipitation 

(National Center for Atmospheric Research, 2023) (interpolated gauge-based datasets), 

TRMM 3B42_Daily (Huffman et al., 2016), GPM Level 3 IMERG Daily 

(GPM_3IMERGDF) (Huffman et al., 2019) and PERSIANN-CDR (Ashouri et al., 2015) 

(all satellite-based precipitation estimates), and the reanalysis product WFDEI (Weedon 

et al., 2011, 2014). 
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Figure 4.10: Comparison of gridded daily precipitation and DHM observations for three stations in the Karnali 
River catchment. The investigated period is 2000 - 2009. The red line indicates the linear regression and 
the black dashed line indicates the line of the perfect fit. 
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None of these products depicts the observed precipitation at any rainfall gauge (Figure 

4.10). The observed precipitation extremes are systematically underestimated by the 

precipitation products. Furthermore, the precipitation extremes are often estimated on 

days with no or low observed precipitation. The poor performance of all products can 

partly be explained by comparing gridded products with point observations at the 

stations. However, the degree of non-correlation indicates that none of the products 

reflects the daily variations of precipitation in the study area sufficiently, which agrees 

with the findings of Bhardwaj et al. (2017) for the Garhwal Himalaya and Pearson et al. 

(2022) for the East Rapti catchment in the Central Himalayas. Therefore, none of the 

products is of sufficient quality for the application in hydrological modelling. 

A gridded precipitation product is combined with gauged precipitation to generate the 

precipitation input for the hydrological modelling. The accuracy of satellite precipitation 

estimates increases with decreasing temporal resolution (Huffman et al., 2010; Arias-

Hidalgo et al., 2013). A gridded monthly product is used to represent the spatial 

precipitation patterns and this dataset is downscaled to the daily resolution using 

precipitation gauges of the Department of Hydrology and Meteorology Nepal (DHM) 

following the temporal disaggregation approach of Arias-Hidalgo et al. (2013). This 

approach was also applied by Pearson et al. (2022) in the Himalayan East Rapti 

catchment. In this study, the monthly GPM precipitation product GPM IMERG Final 

Precipitation L3 1 Month V006 (Huffman et al., 2019) is selected because it has the 

highest spatial resolution (0.1° x 0.1°). 

The temporal disaggregation combines the spatial patterns of the giddded precipitation 

estimate and the temporal pattern of the precipitation gauges. To obtain the temporal 

patterns, the observations of the gauges are interpolated using the Inverse Distance 

Weighting (IDW) method. The obtained daily rasters are summed to the monthly raster. 

The daily fraction of the monthly rainfall is then obtained by dividing the daily rasters by 

the monthly raster. The monthly gridded precipitation of the satellite estimate is then 

multiplied by the daily fractions to disaggregate the monthly precipitation estimates. With 

this approach, the temporal variation observed in the DHM gauges is transferred to the 

GPM data. The gauge network is not dense enough to depict the local variations in the 

precipitation patterns, but the large-scale patterns (e.g. westward-moving monsoon rain 

fields) should be reflected in the gauge data. 
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The disaggregated satellite estimate precipitation correlates significantly better with the 

gauged precipitation than the daily products (Figure 4.11). The disaggregated GPM data 

is not bias-corrected in this study because there is no information about the bias in vast 

unobserved regions of the catchment. Therefore, it is assumed that the spatial variations 

are better reflected by the GPM data than by the gauge network. However, the 

precipitation correction factor implemented in SPHY accounts for under-, or 

overestimations in the GPM data without changing the spatial patterns of the GPM 

precipitation.  

 

 

 

 

 

 

Figure 4.11: Comparison of the disaggregated monthly GPM precipitation and the observed daily 
precipitation for all 40 stations (plot 1) and selected stations (plots 2-4). The red lines indicate linear 
regression models and the black dashed lines indicate the line of the perfect fit. The comparison for each of 
the 40 stations is presented in the Appendices 4.1 and 4.2. 
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4.3.3 Calibration data 
 

A multi-criteria approach to calibrate different aspects of the model with different 

datasets is more robust than the calibration with a single type of data. Three different 

datasets are used in this study to calibrate different modules. These datasets describe 

the actual evapotranspiration to calibrate the evapotranspiration rates (Section 4.3.3.1), 

the snow cover to calibrate the snow module (Section 4.3.3.2), and the discharge to 

calibrate the remaining modules that simulate the rainfall-runoff conversion (Section 

4.3.3.3). 

  

4.3.3.1 Actual evapotranspiration estimates 
 

There is no continuous information on the evapotranspiration rates available for the 

Karnali basin. Therefore, the gridded satellite estimate product Moderate Resolution 

Imaging Spectroradiometer (MODIS) MOD16A3GF V006 dataset (Running et al., 2019) 

with a spatial resolution of 500 m and a temporal resolution of one year is used for the 

calibration of the actual evapotranspiration rate (ETact). Two versions  exists which are 

based on the imagery of the MODIS Terra and MODIS Aqua satellites, respectively. The 

MODIS Terra product is chosen because this satellite was launched earlier and covers 

the complete modelling period. This product combines remotely sensed data such as 

land cover, Leaf Area Index (LAI), the fraction of absorbed photosynthetically active 

radiation (FPAR) and albedo with meteorological data of reanalysis products such as air 

pressure, air temperature, humidity and radiation to estimate ETact based on the 

Penman-Monteith equation (Monteith, 1965). The spatial resolution of the dataset equals 

the spatial resolution of the underlying satellite product (500 x 500 m). However, the 

resolution of the underlying reanalysis products is coarser (1°) and hence the spatial 

heterogeneity of ETact is only partly depicted at the grid scale (Sullivan et al., 2019).  

Cloud cover leads to an increase in the albedo and a decrease in FPAR and LAI which 

decreases the product accuracy. The yearly product uses gap-filling algorithms to 

reduce the errors that are caused by cloud cover. Running et al. (2019) compared the 

daily ETact with ground observations for two sites and found that the average mean 

absolute error lies within the accuracy range of the observations. However, Long et al. 

(2014; in Sullivan et al., 2019) found that satellite-based ET retrievals underestimate 

ETact in wet conditions and overestimate them in dry conditions. Sullivan et al. (2019) 

found that the MODIS products underestimate ETact during the months with the highest 

ETact in the Southern Great Planes in the U.S. which leads to an underestimation of 
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yearly ETact of 38%. There is no information about the accuracy of the product in the 

Himalayas, but ETact is likely underestimated due to the frequent cloud cover during the 

monsoon season.  

 

4.3.3.2 Snow cover 
 

The simulated snow extent is compared with snow extent observations for the calibration 

of the snow module. Snow features such as snow coverage and thickness are difficult 

to measure in the field, especially in remote areas in the mountains (Muhammad and 

Thapa, 2019, 2020). Remote sensing products overcome this limitation and provide 

continuous snow observations on a global scale. The snow cover products derived from 

the MODIS satellite provide daily records (MOD10A1) at 500 m resolution dating back 

to the year 2000 (Riggs et al., 2019).  

Satellite-based snow products underestimate the snow coverage in areas with dense 

cloud cover (Muhammad and Thapa, 2020). This effect is reduced in the 8-day 

composite product (MOD10A2) in which the snow cover represents every pixel that is 

classified as snow for at least one day. However, underestimations due to persistent 

cloud cover persist especially during the winter and monsoon seasons (Hall and Riggs, 

2007; Muhammad and Thapa, 2020). Furthermore, thin snow layers during the early and 

late snow seasons are only depicted with low accuracy by the MODIS sensors (Hall and 

Riggs, 2007). While the snow cover is underestimated in certain conditions, the spatial 

resolution and the large zenith angle result in an overestimation of snow cover, 

especially in the outer cells of the sensing swath (Li et al., 2016).  

Despite these limitations, an accuracy of 93% is observed for the daily product 

(MOD10A1) in the Rio Grande region in the U.S., whereas the accuracy depends on the 

land cover, seasonality, and topography (Hall and Riggs, 2007). For the complex 

topography of the Hindu Kush Himalayas (HKH), the accuracy of the composite product 

is 77% and therefore considerably lower and the greatest source of uncertainty is related 

to the large zenith angle (Muhammad and Thapa, 2020).  

Muhammad & Thapa (2020) propose a methodology that combines MODIS Terra and 

MODIS Aqua images to decrease the overestimations and applies spatial, temporal and 

seasonal filters to decrease the underestimations. Following this approach, the accuracy 

of the 8-day composite is increased by 10% to 87% in the mountains of the HKH. Two 

improved MODIS derivatives are published for the high mountains in Asia; a daily 

product (MOY10A1GL006; Muhammad and Thapa, 2019) and an 8-day composite 

(MOYDGL06, Muhammad and Thapa, 2020). 
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The snow extent of these MODIS-based products varies in absolute amounts and 

temporal dynamics (Figure 4.12). The daily MOD10A1 snow cover is highly variable and 

for some days during the winter and pre-monsoon season, no snow is observed which 

is unrealistic. Furthermore, the snow extent varies by several thousands of kilometres 

within a few days which indicates the strong noise in this product. The temporal variation 

in the snow extent of the improved daily product (MOY10A1GL006) is lower and appears 

more reasonable.  

The snow cover is larger in the 8-day composites than in the daily products. The MODIS 

8-day composite shows higher snow cover extents throughout the year compared to the 

improved MODIS product. This difference is explained by the overestimations due to the 

large zenith angle. In this study, the MOYDGL06 dataset is used because this data – in 

light of the absence of field observations to validate the datasets – is least affected by 

noise (e.g. cloud cover) and represents the snow conditions of the study area best. This 

dataset covers the period 2002 – 2018 and glaciated areas are removed.  

 

 

 

 

 

Figure 4.12: Comparison of the satellite-based snow extent estimation over the Karnali river for the year 
2003. The compared products are the daily products MOD10A1 (Hall et al., 2016) and  MOY10A1GL006 
(Muhammad & Thapa, 2020), and the 8-day composites MOD10A2 (Hall & Riggs, 2021) and MOYDGL06 
(Muhammad & Thapa, 2019). 
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4.3.3.3 Discharge data 
 

Discharge data is available for three stations in the Karnali catchment; Station 280 is the 

discharge of the Karnali River at the mountain outlet (catchment size 45,600 km²); 

Station 265 is the Chera river which drains a subbasin of 7,100 km² in the Eastern parts 

of the catchment; and Station 251 records the West Seti River which drains a small 

subbasin in the Eastern middle hills of the mountain (157 km²). The discharge data is 

the mean daily discharge and covers the period 2001 – 2015 (Stations 280 and 265),  

and 2001 – 2014 (Station 251). The data was obtained from the Department of 

Hydrology and Meteorology Nepal (DHM). It was generated from stage observations at 

08:00, 12:00 and 16:00 for each day using stage-discharge rating curves by DHM. The 

records are characterised by large flow ranges whereas the maximum flow exceeds the 

median flow by the factors 28 at station 280, 25 at station 265, and 55 at station 251 

(Figure 4.13).  

Stage-discharge measurements are available for station 280 at the mountain outlet. This 

dataset comprises 410 observations that are measured at the same point in time and 

used by DHM to generate rating curves and convert the continuous stage measurements 

into discharge rates. The dataset was provided by DHM and is used to estimate the 

uncertainty associated with the daily discharge rates for this station. The observations 

date back to the year 1963 to the year 2013. However, stage-discharge relations 

frequently change and hence only the 73 samples since 2000 are considered hereafter. 

The average number of samples per year is 5.2; the maximum number of samples were 

collected in 2004 (11 samples) and in the years 2005 and 2007 no samples were 

collected (Figure 4.14).  

 

 

Figure 4.13: Boxplots of the observed discharge at three stations in the Karnali River. Station 280 is the 
Karnali River catchment at the mountain outlet in Chisapani  (45,500 km²); Station 265 is the Chera subbasin 
(7,100 km²); and Station 251 is the West Seti subbasin (160 km²). The records are in the period 2001 – 
2015 for Stations 280 and 265, and 2001 – 2014 for Station 251.  
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The stage-discharge samples concentrate on low to medium flow conditions. The mean 

discharge rate is 1,020 m3/s and the highest discharge of 5,530 m3/s was measured at 

a stage of 10.75 m on the 2nd August 2000. This observation captures a high-flow event 

that exceeds the warning level (10 m) and the danger level (10.7 m) (MacClune et al., 

2015) (Figure 4.14).  The remaining observations are more than 2 m below the warning 

level and cover low to medium flow ranges. The highest observation after 2004 was 

taken in 2008 at a stage of ~8 m and the highest observation after 2009 was taken in 

2012 at a stage of 4.9 m. Hence no information about the stage-discharge relationship 

during high flows is available for recent years. Two outliers are identified at stages ~4.5 

m and 8 m which have both corresponding discharge measurements of < 500 m3/s.  

The low sampling density, the concentration on low and medium flows, and the presence 

of outliers indicate the uncertainty in the discharge data and the confidence interval 

estimation which are both derived from these observations.  

 

 

 

 

 

Figure 4.14: The number of stage-discharge samples (left) and the stage-discharge measurements (right). 
The samples are taken at the mountain outlet of the Karnali River in Chisapani by DHM. 
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4.4 Results: Predicting the historical catchment hydrology 
 

The hydrological model SPHY is used to simulate the hydrological system of the Karnali 

River catchment until the mountain outlet for the period 2002 – 2015. The model is 

calibrated using a multi-criteria approach that includes the discharge, actual 

evapotranspiration, and snow extent. The uncertainty in the discharge observations is 

considered in the calibration process. Therefore, the quantification of this uncertainty is 

presented in the first Section 4.4.1 before the model calibration (Section 4.4.2) and 

validation (Section 4.4.3). The runoff composition provides information about the 

hydrological system and is presented in Section 4.4.4. The last Section 4.4.5 then 

presents the predictions of the flood events.  

 

4.4.1 Estimation of the discharge uncertainty 
 

The uncertainty in the discharge data is estimated from stage-discharge observations at 

the mountain outlet using the BaRatin model. This requires the detection of shifts in the 

stage-discharge relationship which result in changes in the cross-section geometry 

(Section 4.4.1.1). The uncertainty is then estimated from an ensemble of rating curves 

which are fitted for the periods with stable control (section 4.4.1.2).  

 

4.4.1.1 Temporal analysis of the stage-discharge relationship 
 

In the first step, a log-log transformation is conducted on the stage and discharge 

measurements to convert the logarithmic stage-discharge relationship to a linear 

relationship (Herschy, 1993). The variation in the measurements is larger for lower flows 

< 665 m3/s (< 6.5 log discharge) than above this threshold (Figure. 4.15). This indicates 

that controls which are activated at higher stage levels shift less frequently and are, thus, 

more stable. This is reasonable because these controls are activated less frequently.  
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Therefore, the identification of temporal changes in the stage-discharge relationship is 

conducted for the lower and higher flows separately. Since the log-log transformed 

stage-discharge relationship follows a linear trend, it is possible to divide log(discharge) 

by log(stage) to obtain a measure that indicates the stage-discharge relationship. The 

unequal variance t-test (also Welch-test) is performed on this measure of different years. 

A shift in the stage-discharge relationship is indicated by a rejection of the null hypothesis 

with high confidence (p-value ≤ 0.05). Four shifts are identified for the period 2000 – 

2013. Three shifts are detected for the low-flow range and one for the high-flow range 

(Table. 4.4).  

 

 

Figure 4.15: Logarithmic stage-discharge relationship for the observations between 2000 - 2013. The 
dashed line divides the samples into lower flows and higher flows for which temporal shifts are investigated 
separately. The red dots indicate outliers that are removed from the processing. 

 

 

Table 4.4: Unequal variance test statistics of groups that are classified as different in their distributions of 
log(stage) / log(discharge).  

Group 1 Group 2 t-value p-value Flow 
2000 - 2004 2005 - 

2008 
-6.3 <0.05 low flow (< 650 m3/s) 

2005 - 2008 2009 - 
2011 

-7.7 <0.05 low flow (< 650 m3/s) 

2009 - 2011 2012 - 
2013 

12 <0.05 low flow (< 650 m3/s) 

2009 - 2011 2012 - 
2013 

12 <0.05 low flow (< 650 m3/s) 

2000 - 2004 2006 - 
2013 

-3.1 <0.05 high flow (≥ 650 m3/s) 
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Four stage-discharge datasets are prepared based on the identified temporal shifts in 

the control. These datasets combine lower flow and higher flow observations of different 

periods to maintain as many of the sparse high flow observations as possible. These 

four datasets are: 

i) 2000 – 2004 (low flow) and 2000 – 2004 (high flow); 

ii) 2005 – 2008 (low flow) and 2006 – 2013 (high flow); 

iii) 2009 – 2011 (low flow) and 2006 – 2013 (high flow); 

iv) 2012 – 2013 (low flow) and 2006 – 2013 (high flow). 

It is worth mentioning that the Welch test does not identify any temporal shifts except 

between 2004 and 2006 (no measurements were conducted in 2005) for the high flow 

control. This does not mean that no shifts occurred, just that there is no statistical 

evidence for a shift which may also be caused by the low sampling density after 2004 

after which only 30% of the samples were collected.  

Preliminary rating curves are generated for the four datasets and all observations that 

deviate more than 10% from the simulated value are considered outliers and removed 

from the datasets (McMahon and Peel, 2019). The observations are classified as outliers 

and removed from the rating curve generation (Figure 4.15).  

 

4.4.1.2 Curve fitting and uncertainty estimation 
 

The uncertainty in the discharge data is estimated from an ensemble of rating curves (n 

= 1,000). These rating curves are fitted to each of the four identified stage-discharge 

datasets and are presented in Figure 4.16.  

The median predictions of the rating curve ensembles of RC2 and RC4 are similar. The 

discharge predicted by the ensemble median of RC1 is lower compared to the other 

rating curve ensembles above a stage of 3.25 m (300 – 400 m3/s) (Figure 4.16 A). The 

largest difference is observed for RC3 which predicts larger discharges than the other 

rating curves above a stage of 8 m (3,600 – 3900 m3/s). The slope of RC3 is steeper 

than the ones of the other ensembles, particularly for stages ≥ 8 m, and hence higher 

discharge rates are predicted and this difference increases with the stage. RC 3 predicts 

a discharge of 8,400 m3/s at the warning level at stage 10.7 m, whereas this is with 7,300 

– 7,700 m3/s lower for the remaining rating curves (median predictions).  
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The prediction interval (the predictions at the 2.5th and 97.5th percentiles of the rating 

curve ensembles) are similar for RC2, RC3, and RC4 but are lower for RC1 for all stages 

(Figure 4.14 A). The absolute difference in the predicted discharges between RC1 and 

RC2-4 increases with the stage. At the danger level (stage 10.75 m), the lower boundary 

(P2.5) of RC1 is 600 – 800 m3/s lower than the ones of RC2-4, and the upper boundary 

(P97.5) is 1,100 – 1,200 m3/s lower than the ones of RC2-4. This difference increases to 

2,000 – 2,500 m3/s and 3,000 – 3,500 m3/s at stage 17.5 for P2.5 and P97.5, respectively. 

The predictions of the upper boundary of RC1 are similar to the median predictions of 

RC3 above stages ≥ 8 m. 

 

 

 

Figure 4.16: A) The predictions of the rating curve ensembles. The solid lines indicate the median and the 
dashed lines the P2.5 and P97.5 confidence intervals (n = 1000). B: Absolute range of the predicted discharges 
( P97.5 – P2.5 ) with stage. C: The %-difference between the P2.5 and the median predictions (negative values), 
and between the P97.5  and median predictions (positive values). 
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The percentage difference between the P2.5 and P97.5 and the median rating curves is 

highest for extremely low flows (stage < 2.5 m) and then decreases to ± 25 – 30% for 

the medium to high flow range (stage 5 – 10 m). The uncertainty range increases for 

flood flows (> 10 m) to ± 35 – 40% but it remains stable with the increase in the stage. 

The %-range is similar for all rating curves but for RC1 and RC3 the uncertainty leans 

towards the lower bound whereas it leans to the higher bounds for RC2 and RC4 (Figure 

4.16 C). However, the absolute uncertainty range (m3/s) is similar for RC2 – RC4 for 

stages ≥ 10 m but is lower for RC1 (Figure 4.16 B).  

The discharge uncertainty (the predictions at P2.5 and P97.5 of the rating curve ensembles) 

is transferred to the discharge observations. However, the stage data is not available for 

the complete modelling periods. Therefore, the observed discharge is related to the 

median discharge of the rating curve predictions to transfer the discharge uncertainty. 

The median discharge of the rating curves is consistently lower than the DHM discharge 

observations and this difference increases with the flow rate (Figure 4.17). This indicates 

that the rating curve used by DHM is steeper than the median BaRatin one, and that 

uncertainty estimation is distorted by the uncertainty transfer using the discharge 

observations.  

 

 

Figure 4.17: Comparison of the observed discharge (DHM) and the estimated discharge from the median 
rating curve prediction (BaRatin). Left: Hydrograph of the monsoon season 2009. Right: Difference between 
both discharge datasets with the stage observations of the corresponding date. 
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4.4.2 The calibration of the hydrological model 
 

The SPHY model is calibrated for the period 2002 – 2006 within a GLUE framework to 

account for the model equifinality and quantify the uncertainty of the predictions. These 

predictions are validated for the period 2007 – 2015 to assess the performance of the 

model in reproducing the temporal variations of different hydrological variables. The 

results of the calibration process are presented in the next section including the 

identification of sensitive parameters and the selection of behavioural parameter sets. 

Section 4.4.2.2 validates the hydrological simulations from the comparison of the 

simulated and observed catchment behaviour.  

 

4.4.2.1 The calibration process 
 

A hybrid calibration approach which combines manual and automated calibration 

procedures is applied in the initial calibration phase to reduce the parameter ranges for 

further calibration. In the manual calibration, a sensitivity analysis is conducted where a 

single parameter value is varied to gain an understanding of the effects of the parameter 

on the simulated hydrographs. Afterwards, an iterative automated calibration is 

conducted with a Regional Sensitivity Analysis (RSA) to identify sensitive parameters 

which are maintained in the further calibration process and identify the parameter space 

of behavioural model realisations. 

 

Identification of sensitive parameters 

 

The RSA is conducted for 21 parameters and 1,500 parameter combinations to assess 

the sensitivity and eliminate insensitive parameters from the further calibration process. 

Each parameter set is classified into behavioural and non-behavioural models based on 

five different performance measures (NSE, R2, PBIASrunoff, PBIASsnow, PBIASactET). The 

cumulative frequency curves of the parameter values of the behavioural and non-

behavioural classes are then plotted. The sensitivity of a parameter increases with the 

split between the curves. The thresholds for the classification into behavioural and non-

behavioural models were pragmatically chosen based on balanced group sizes to 

enhance the interpretability of the sensitivity plots.   
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The RSA identifies 13 parameters (parameters are highlighted by italic fonts) as 

sensitive to one or more performance measures (Figure 4.18). The parameter sensitivity 

depends on the performance measure; the groundwater parameters alphaGW, 

deltaGW, and gwSat control the amount and timing of the baseflow and are sensitive 

towards NSE and R2. The parameters kEff and lambda affect the infiltration capacity 

and, thus, the generation of surface runoff and are also classified as sensitive. However, 

kEff is sensitive towards NSE, R2, PBIASrunoff, and PBIASactET, whereas lambda only 

influences the performance of R2. The alphaInf parameter determines the fraction of 

daily rainfall that falls during the hour of most intense rainfall and, thus, affects the 

amount of overland flow, and is sensitive towards R2 and PBIASrunoff. The recessCoef 

parameter determines the speed of the transport in the channel network and is highly 

sensitive toward NSE and R2. The precipitation-correction-factor precipFactor affects 

how much water enters the catchment and is sensitive towards the NSE and PBIASrunoff. 

The scaling factor of the crop coefficients (kcFactor) affects the actual 

evapotranspiration and is highly sensitive towards PBIASactET. 

 

 

Figure 4.18: Regional Sensitivity Analysis (RSA) of the parameters identified as sensitive to at least one 
performance measure. The red line indicates the cumulative frequency of the non-behavioural realisations 
and the blue line is the cumulative frequency of the behavioural simulations. The performance measure of 
the RSA is shown in the top-left corner of each parameter. The RSA of all parameters and performance 
measures is included in the Appendices 4.3 – 4.6.  
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The RSA also classifies four parameters of the snow and glacier modules as sensitive. 

The Degree-Day-Factor (DDF) for clean ice glaciers (gDDF_cl) controls the melt rates 

and is sensitive towards the NSE and R2. However, the DDF for debris-covered glaciers 

(gDDF_db) is not classified as sensitive which can be explained by the smaller fraction 

of this glacier type. The glacF factor controls the amount of meltwater that percolates to 

the groundwater storage and is slightly sensitive towards R2. The DDF of the snow  

module (sDDF) is highly sensitive towards PBIASsnow but the RSA also indicates a 

moderate sensitivity towards PBIASactET. The tcrit parameter defines the temperature 

threshold for snowfall and is highly sensitive towards PBIASsnow, and moderately 

sensitive towards R2. 

The remaining 11 parameters are classified as insensitive from the RSA and are, thus, 

excluded from the further calibration process in the GLUE framework.  

 

Generalized Likelihood Uncertainty Estimation 

 

The final model calibration is conducted in a Generalized Likelihood Uncertainty 

Estimation (GLUE) framework with 10,000 parameter sets for the 13 sensitive 

parameters. The selection of behavioural parameter sets is conducted in three steps: 

firstly, the removal of non-behavioural parameter sets based on PBIASwinter, PBIASsnow, 

and PBIASactET; secondly, the identification of behavioural parameter sets based on the 

observed discharge at the catchment outlet using NSE, PBIAShigh, and eGLUEmod and; 

the selection of the highest n parameter sets of each performance measure, whereas n 

is the number of behavioural parameter sets of the efficiency with the lowest number of 

behavioural parameter sets in the final step (see Section 4.2.2.4).  

In the first step, 2,462 of 10,000 parameter sets are classified as non-behavioural and 

removed from the selection process. This parameter removal is based on the 

performance of PBIASwinter because all parameter sets are within the ± 30% interval of 

the PBIASsnow and PBIASactET (Figure 4.19). The analysis found that 6,138 of the 

remaining parameter sets exceed the NSE threshold (0.75). There are 25 parameter 

sets within the threshold boundary of PBIAShigh (± 25%), and hence the 25 highest 

parameter sets of each of NSE, eGLUEmod, and PBIAShigh are selected for the 

simulations. This results in the selection of 64 parameter sets after the removal of 

duplicates. The parameter ranges of these 64 models are presented in Table 4.5. 
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Figure 4.19: Efficiencies of all parameter sets (n = 10,000) regarding the performance measures PBIASwinter, 
PBIASsnow, and PBIASactET. The red lines indicate the 30% threshold for the classification as a non-
behavioural parameter set. 

 

Table 4.5: The parameter range of the sensitive parameters of the ensemble of the 64 behavioural 
parameter sets. 

Module Parameter Description Unit Parameter value 
    Min Max Median 

Glacier gDDF_cl Degree-day factor debris-free 
glaciers 

mm ºC-1 
day-1 

1.55 8.90 6.71 

gDDF_db Degree-day factor debris-
covered glaciers 

mm ºC-1 
day-1 

1.80 8.94 6.89 

glacF Fraction of glacier melt that 
becomes glacier runoff 

- 0.31 0.60 0.49 

Ground-
water 

alphaGW Baseflow recession 
coefficient 

day-1  0.01 0.04 0.03 

deltaGW Groundwater recharge delay 
time 

day 20 46 26 

gwSat Saturated soil water content 
of groundwater layer 

mm 325 500 390 

h_gw Initial groundwater table 
height 

m 1.10 2.10 1.60 

Routing recessCoef Flow recession coefficient - 0.75 0.95 0.84 
Snow sDDF Degree-day factor for snow mm ºC-1 

day-1 
2.32 8.97 5.72 

tcrit Temperature threshold for 
precipitation to fall as snow 

ºC -3.5 -0.6 -2.4 

Soil alphaInf Fraction of daily precipitation 
that occurs during the hour of 
most intense rainfall  

- 0.16 0.40 0.34 

lambda Infiltration coefficient that 
affects the speed of 
infiltration capacity reduction 

- 0.26 0.79 0.44 

kEff Effective saturated hydraulic 
conductivity 

- 0.20 0.50 0.24 

Correction 
factors 

precipFactor Precipitation correction factor - 1.35 1.42 1.40 
kcFactor Crop coefficient multiplication 

factor 
- 0.80 1.19 0.85 
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4.4.3 The validation of the hydrological simulations 
 

The performance of the hydrological ensemble is evaluated by comparing the simulated 

catchment behaviour with the observed one. This evaluation includes the discharge at 

the catchment outlet and two subbasins, the snow extent, and the actual 

evapotranspiration (ETact).  

 

4.4.3.1 Catchment discharge 
 

The simulated discharge at the catchment outlet reproduces the observed seasonality 

during the calibration and validation periods as indicated by the hydrograph comparison 

(Figure 4.20). The seasonal dynamics are captured with low flows during the Non-

monsoon season (Oct – May) and high flows during the monsoon season (Jun – Sep). 

The timings of the rising and recession limbs are predicted well by the ensemble. This 

high agreement of simulated and observed discharge rates is also indicated by the high 

NSE and R2 efficiencies; the NSE of the ensemble members ranges between 0.75 – 

0.87 and 0.71 – 0.85 for the calibration period (2002 – 2006) and the validation period 

(2007 – 2015), respectively. The median NSE of the ensembles is 0.85 and 0.82, for 

both periods respectively. The R2 of the ensemble ranges between 0.77 – 0.87 and 0.80 

– 0.86 and the median R2 is 0.85 and 0.84 for the calibration and validation period, 

respectively (Table 4.6).  

The visual inspection of the hydrographs (Figure 4.20) indicates some systematic 

deviations between the simulated and observed discharge. The discharge peaks in the 

first six months of the year are overestimated consistently throughout the calibration and 

validation periods by all ensemble members. This includes the first month of the 

monsoon season (Jun) and hence the peaks of the rising limb are consistently 

overestimated. These overestimations lead to positive PBIAS values for most months in 

the first half of the year (Figure 4.21). The PBIAS for May is 10% in the calibration period 

and 23% in the validation period. The highest monthly PBIAS is simulated in June and 

reaches 58% in the calibration period and 47% in the validation period. The BIAS 

decreases afterwards and the discharge is underestimated in August by 21% in the 

calibration period but reproduced well in the validation period (PBIAS: -3%). The PBIAS 

is low (within ± 10%) at the end of the monsoon season in September. The post-

monsoon season (Oct – Nov) discharge of the recession limb is overestimated in both 

periods, and this gradually declines and turns into an underestimation at the start of the 

winter season in December.  
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Figure 4.20: Hydrographs of the simulated and observed discharge at the catchment outlet. The solid lines 
indicate the observed discharge and the ensemble-median predictions (red). The shaded areas indicate the 
95th confidence intervals of the observations and the simulations.  

 

Table 4.6: Statistics of the performance measures of the 64 behavioural parameter sets for the calibration 
period (2002 – 2006) and the validation period (2007 – 2015). The P10 and P90 are the efficiencies of the 
10th and 90th percentile of the ensemble.  

  Min P10 Median P90 Max 

NSE Calibration 0.75 0.78 0.85 0.86 0.87 

Validation 0.71 0.743 0.82 0.84 0.85 

R2 Calibration 0.77 0.79 0.85 0.86 0.87 

Validation 0.80 0.82 0.84 0.85 0.86 

PBIAS Calibration -6.8 -1.84 3.15 6.57 9.6 

Validation 4.2 8.82 13.9 17.21 20.2 

eGLUE Calibration 18.8 28.5 38.6 47.6 51.7 

Validation 22.3 28.7 35.6 44.9 47.5 

eGLUEmod Calibration 318 419 533 582 600 

Validation 408 470 540 599 620 
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The performance of the hydrological predictions varies between the years. Overall, the 

timing and shape of the monsoon season hydrographs are depicted well but for the years 

2008, 2011 and 2015 the flows in the early monsoon season are overestimated (Figure 

4.20). On the contrary, the monsoon season flows of the years 2004 and 2005 are vastly 

underestimated. The transition from high to low flows in the post-monsoon season is 

well timed for all years except 2011 where the lag between simulated and observed 

recession is around 10 days. In the following months, the discharge is consistently 

overestimated, which is only observed for this particular period. For all other years, the 

low flow during winter (Dec – Feb) is underestimated except for the discharge peaks. 

This underestimation is most prevalent in the winters of 2005 – 2006, 2008 – 2009, and 

2015.  

 

 

 

 

 

Figure 4.21: The monthly PBIAS of the simulated discharge (median) and the discharge observations for 
the calibration and validation periods at the catchment outlet.  
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The variation of the predictions of river flow between the calibration and validation 

periods is low for the model ensemble. This manifests in the very similar median NSE 

and R2 performance measures which only deviate by 0.03 and 0.01 between the 

calibration and validation periods (Table 4.6). However, several differences are 

observed; the simulated and observed discharge sums are almost similar and only 

deviate by 3% (PBIAS) for the calibration period. These differences increase in the 

validation period to an overall overestimation of 14% (Table 4.6). On the contrary, high 

flows are underestimated whereas the underestimations decrease during the validation 

period. The eGLUEmod performance increases slightly in the validation period, while the 

eGLUE performance decreases by 3%. Therefore, the increase in eGLUEmod results 

from higher flows for the days where the simulated discharge falls within the observed 

confidence intervals while the number of such days decreases which is indicated by the 

decrease in eGLUE (Table 4.6). 

The ensemble variation is higher for the upper percentiles and the low-flow seasons. 

The ensemble-median discharge is 3,150 m3/s in the monsoon season, the Q2.5 

discharge is 84% of the median discharge, and the Q97.5 discharge is 118% of the median 

discharge (Table 4.7). The variation of the upper percentiles is higher for all seasons 

except for the post-monsoon season where it is 25% higher and the lower percentiles 

28% lower. The variation relative to the median flow decreases with the flow rate from 

84 – 118% during the monsoon season to 63 – 164% during the winter. However, the 

absolute variation in the ensemble is lowest during the low flow seasons in the winter 

and pre-monsoon seasons.  

 

 

Table 4.7: The seasonal prediction range of the modelling ensemble. The uncertainty interval of the 
observed discharge is presented for comparison in the brackets. Qn is the discharge predicted for the nth 
percentile of the ensemble.  

  Median 

discharge [m3/s] 

Q2.5 relative 

to Q50 [%] 

Q97.5 relative 

to Q50 [%] 

Range 

[%] 

Pre-monsoon 546  (481) 73  (78) 143  (123) 70  (45) 

Monsoon 3,150  (2,917) 84  (86) 118  (115) 34  (29) 

Post-monsoon 1,110  (974) 72  (84) 125  (116) 53  (32) 

Winter 365  (355) 63  (77) 164  (126) 101  (49) 
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4.4.3.2 Discharge of the Chera and West Seti subbasins 
 

The model ensemble also depicts the general hydrological dynamics in the subbasins of 

the small West Seti (157 km2) and the medium-sized Chera (7,076 km2) (Figure 4.22).  

As for the catchment outlet, the rising limb is overestimated for both subbasins for the 

calibration and validation period. In the West Seti subbasin, the PBIAS of May is 75% in 

the calibration period while it is -1% for the validation period (Figure 4.23). In June, the 

PBIAS of the validation period exceeds the one of the calibration period by 64% and 

reaches 116%. For the Chera subbasin, the monthly PBIAS increases throughout the 

first half of the year, reaching the peak of 68% in June. In the following months, the 

hydrographs show a contrary behaviour between the subbasins; the monsoon season 

flows are overestimated with a decreasing trend towards the post-monsoon season and 

the low flows in winter are underestimated in the West Seti subbasin. In the Chera 

subbasin, the monsoon season flows are increasingly underestimated until the start of 

the post-monsoon season, in which the flows are overestimated (Figure 4.23).  

 

 

Figure 4.22: Hydrographs of the West Seti and Chera subbasins. The solid lines indicate the observed runoff 
(blue) and the median simulated runoff (red). The shaded area indicates the prediction interval of the P2.5 
and P97.5 of the ensemble, and the vertical black line indicates the break between the calibration and 
validation period. The discharge observations of the West Seti subbasin are not available for the year 2015. 
The number in the bracket is the gauge identification of DHM. 
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The performance measures for the Chera and West Seti subbasins are presented in 

Table 4.8. The model ensemble performs better for the larger Chera subbasin. The 

median R2 is 0.70 and 0.68 in the calibration and validation periods for the Chera, and 

the median R2 is 0.51 in both periods for the West Seti. The NSE indicates a good 

performance of the ensemble for Chera in both periods (0.70 and 0.65), whereas it is 

considerably lower for the West Seti (0.17 and 0.3). The overall PBIAS lies within the ± 

5% interval for the Chera basin, while the discharge is overestimated by 41% and 25% 

in the West Seti subbasin for the calibration and validation period, respectively. 

 

 

Figure 4.23: Monthly PBIAS of the simulated (median) and the observed discharge for the West Seti and 
Chera subbasins. 

 

Table 4.8: Efficiencies of the discharge for the West Seti and Chera subbasins. 

Subbasin Efficiency Period Min P10 Median P90 Max 

West Seti 
 

NSE Calibration -0.16 -0.1 0.16 0.27 0.32 
Validation -0.01 0.06 0.3 0.41 0.44 

R2 Calibration 0.47 0.48 0.51 0.54 0.56 
Validation 0.45 0.46 0.51 0.53 0.55 

PBIAS Calibration 24.6 35.09 40.8 45.35 46.8 
Validation 13.1 20.75 25.35 29.04 30.3 

Chera 
 

NSE Calibration 0.59 0.64 0.7 0.74 0.76 
Validation 0.57 0.61 0.65 0.68 0.69 

R2 Calibration 0.6 0.65 0.7 0.75 0.77 
Validation 0.58 0.62 0.68 0.7 0.72 

PBIAS Calibration -8.9 -6.24 -0.25 5.27 8.9 
Validation -11.7 -8.37 -2.85 1.31 5.5 
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4.4.3.3 The validation of the snow dynamics 
 

The snow module is calibrated and validated against the 8-day snow extent derived from 

the improved MODIS dataset (hereafter referred to as the observed snow extent) 

(Muhammad and Thapa, 2020). Grid cells with a snow depth < 5 mm are excluded from 

the analysis to remove very shallow and infrequent snow cover (Khanal et al., 2021). 

The snow extent is only an approximation for the agreement of observed and simulated 

snow dynamics because it lacks snow depth information and is, thus, just a 2-D 

approximation of the 3-D snow storage.  

The snow seasonality is captured by the ensemble throughout the modelling period as 

indicated by the median R2 of 0.63 (Table. 4.9). The median PBIAS is -3% for both 

calibration and validation period, which indicates a very good agreement. The R2 of the 

ensemble ranges between 0.58 and 0.65 which indicates that the ensemble models 

predict a similar seasonality. The PBIAS of the ensemble members ranges between -

11% and +12%. Hence, some members underpredict the observed snow extent while 

other members overpredict it. These performance measures suggest that the differences 

in the temporal dynamics between the ensemble members are small compared to the 

variation in the spatial snow extent. Furthermore, only small differences are observed 

between the calibration and validation periods. The median R2 is 0.63 in both periods 

but the lowest R2 increases from 0.58 to 0.61. The median PBIAS decreases slightly 

from -3.2% to -3.0%.  

The good agreement between the simulated and observed snow extent seasonality is 

also indicated by the snow extent time series (Figure 4.24) and the monthly PBIAS 

(Figure 4.26). The maximum snow extent in the winter (Dec – Feb) is well depicted 

although it is underestimated in 2005 and overestimated in 2012. The timing of the 

transitional periods of snowmelt (Apr – Jun) and snow accumulation (Sep – Dec) are 

reproduced by the model. However, the model tends to accumulate snow earlier than 

observed which leads to positive PBIAS rates in November and December (33 – 47%). 

The snow extent during the melting season in May and June is overestimated by 13 – 

17% (Figure 4.25).  

The hydrological ensemble systematically underpredicts the snow extent during the 

monsoon season (Figures 4.24 and 4.25). The mean observed monsoon season snow 

extent (calibration and validation period) ranges between 6,400 km2 and 7,400 km2. The 

model underestimates the snow extent by up to 90% and in August only 700 (± 300) km2 

are covered with snow. The observed snow cover is lowest in June but it is variable 

throughout the season due to the precipitation falling as snow at higher elevations. This 
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expansion of the monsoon snow extant is not depicted by the modelling ensemble which 

predicts no expansion until September – October.   

 

Table 4.9: Statistics of the performance of the simulated 8-Day snow extent. 

 Period Min P10 Median P90 Max 

PBIAS Calibration -11.1 -8.2 -3.2 6.7 11.4 

Validation -11.0 -8.0 -3.0 7.1 11.9 

R2 Calibration 0.58 0.61 0.63 0.65 0.65 

Validation 0.61 0.62 0.63 0.64 0.65 

 

 

 

Figure 4.24: Time series of the simulated maximum 8-day snow extent and improved MODIS 8-day snow 
extent (Muhammad and Thapa, 2020). The shaded area indicates the interval of the P2.5 and P97.5 of the 
ensemble predictions. 

 

 

Figure 4.25: Monthly mean PBIAS of the simulated 8-day snow extent. The error bars indicate the standard 
deviation of the PBIAS arising from differences between the years and the ensemble members. 
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4.4.3.4 Actual evapotranspiration 
 

The actual evapotranspiration ETact of the modelling ensemble is compared with the 

ETact estimated from satellite-based annual estimates (MOD16A3GF V006) (Running et 

al., 2019) which is hereafter referred to as the observed  ETact. 

The ensemble median underpredicts catchment-mean ETact throughout the modelling 

period but for most years this underprediction is moderate. The mean annual ETact of the 

modelling period is 573 mm/m2 for the ensemble-median while the observed one is 653 

mm/m2. The PBIAS is -11% and -13% in the calibration and validation periods 

respectively (Table 4.10). The underpredictions of the modelling ensemble are low to 

moderate for most years (3 – 15%) but particularly for the years 2005, 2014, and 2015 

it is underpredicted by 22 – 31% (Figure 4.26). However, the ensemble members at the 

upper prediction interval overpredict ETact moderately by up to 10% (Table 4.10).  

The ETact is underpredicted for most of the land cover classes (Figure 4.27).  The highest 

ETact is simulated and observed for the water class which is almost double than the 

catchment-mean ETact. Water is also the only class for which the simulated ETact 

exceeds the observed ETact (median predictions). Further classes with high ETact rates 

are snow and ice, herbaceous vegetation, and bareland. Sparse vegetation has very low 

ETact rates in both, the simulated and observed products. The standard deviation is 

similar between MODIS and SPHY for most classes which indicates that the annual 

variation is higher than the ensemble variation (Figure 4.27). However, this does not 

account for the classes with the highest ETact rates for which the ensemble variation is 

larger than the interannual variation of the MODIS ETact. The largest differences between 

the simulated and observed ETact rates are observed for the deciduous forest with -13% 

and -21%, and for irrigated croplands with -12% and -22% in the calibration and 

validation periods, respectively.   

 

Table 4.10: PBIAS of the annual actual evapotranspiration averaged over the catchment. The reference 
dataset is MOD16A3GF V006 (Running et al., 2019a). The PBIAS for each land cover class is presented in 
Appendix 4.7. 

Period Min P10 Median P90 Max 

Calibration -20 -15 -11 -6 10 

Validation -22 -18 -13 -8 7 
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Figure 4.26: Catchment-mean annual actual evapotranspiration rates of the hydrological simulations 
(SPHY) and satellite estimated (MODIS) (Running et al., 2019). The bars show the ensemble median and 
the error bars indicate the standard deviation of the hydrological ensemble.  

 

 

 

Figure 4.27: Actual evapotranspiration rates for each land cover class of the hydrological simulations 
(SPHY) and satellite estimated (MODIS) (Running et al., 2019). The bars are the annual mean (MODIS) 
and the annual mean of the median predictions (SPHY). The error bars indicate the standard deviation of 
the annual variation (MODIS), and the standard deviation of the ensemble predictions and the annual 
variation (SPHY).  
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4.4.4 The runoff composition 
 

The runoff composition provides information about the hydrological system of the Karnali 

River and the annual and seasonal variations. It provides information about the 

catchment hydrology which can be used to validate the model performance qualitatively 

but may also be used to guide water management. This runoff composition deviates 

between the parameter sets. The knowledge about the hydrology of the Karnali River 

system is limited and hence each parameter set is an equally likely representation of this 

system.  

The first section 4.4.4.1 presents the overall runoff composition of the calibration and 

validation periods. It further assesses the impact of the parameters on the composition 

to gain a better understanding of the model behaviour regarding parameterisation. The 

later sections 4.4.4.2 and 4.4.4.3 present the annual and monthly composition to gain a 

better understanding of the effect of non-linearities on flows, and drivers of the flow 

seasonality.  

 

4.4.4.1 The runoff composition of the calibration and validation periods 
 

Rainfall-runoff dominates the hydrological regime of the Karnali River as it contributes 

more to the discharge than the other components combined (mean predictions1). The 

mean rainfall-runoff contribution to the total discharge is 57% in the calibration period 

and 59% in the validation period (Figure 4.28). Baseflow contributes around one-quarter 

of the total runoff (24% in the calibration period and 23% in the validation period). It is 

followed by snowmelt with 15% in the calibration period and 14% in the validation period. 

Glacier melt contributes the least to the total runoff with 4% in the calibration period and 

3% in the validation period. 

 
1 The ensemble median is commonly used in this to describe the predictions of the hydrological ensemble 

because it is less affected by outliers. However, the ensemble median contributions of the different runoff 

components do not necessarily add up to 100%, and hence the ensemble mean is used to describe the 

runoff composition.  
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Figure 4.28: The composition of the total discharge leaving the catchment for the calibration period (2002 - 
2006) and the validation period (2007 - 2015). 

 

 

 

The ensemble members differ mainly in their allocation of water to rainfall-runoff and 

baseflow (Figure 4.28). The rainfall-runoff contribution ranges from 40 – 70% and the 

baseflow contribution ranges between 15 – 41%. The ensemble members which 

simulate the lowest rainfall-runoff contribution simulate the highest baseflow 

contribution, and the members predicting very high rainfall-runoff contributions (≥ 67%) 

predict the lowest baseflow contributions (≤ 17%). In this light, the ensemble variation of 

the snowmelt (12 – 19%) and glacier melt runoff (1 – 6%) is low.  

The ensemble variation is driven by differences in the rainfall-runoff and baseflow 

allocation, particularly by differences in those parameters that control the infiltration of 

rainfall. The relationship between the parameter value and the runoff contribution is 

presented in Figure 4.29. The ensemble members that vary in the rainfall-runoff and 

baseflow allocations differ distinctively in the alphaInf parameter which describes the 

fraction of the daily rainfall that occurs during the hour of most intense rainfall whereas 

the contributions increase with the parameter value.  

High baseflow contributions are associated with the kEff parameter which defines the 

saturated hydraulic conductivity in the soil, and the deltaGW parameter which controls 

the groundwater recharge delay. The baseflow contributions increase with increasing 

kEff and decreasing deltaGW parameter values (Figure 4.29).  
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Figure 4.29: The relationship between the parameter value and the runoff contribution (total contribution 
over the simulation period 2002 – 2015 in percent).  

 

The recession coefficient recesCoef which determines the speed of transport in the 

channel network also affects the rainfall-runoff and baseflow allocation because high 

parameter values (≥ 0.9) predict high rainfall-runoff contributions (Figure 4.29). However, 

members with lower parameter values (< 0.9) predict low and high contributions which 

indicates that this parameter is not the dominant control except for the upper parameter 

range. The ensemble members with the highest rainfall-runoff contribution were selected 

by the NSE and PBIAShigh performance measures.    

The snowmelt contribution ranges from 12 – 19%. The ensemble differences are caused 

by the sDDF parameter (negative relationship between value and contribution), and the 

tcrit parameter (positive relationship between value and contribution). The glacier melt 

contribution over the simulation period ranges from 1 – 6%, whereas higher glacier 

Degree-Day-Factor values (gDDF_cl, gDDF_db) result in larger glacier melt 
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contributions. The glacF parameter describes the fraction of meltwater which drains as 

surface runoff and higher values facilitate higher glacier melt contributions. However, the 

ensemble differences in the snowmelt and glacier melt contributions are small compared 

to the variation in the rainfall-runoff and baseflow contributions.  

 

4.4.4.2 Yearly runoff composition 
 

The variations in the annual flow composition are characterised by differences in the 

rainfall-runoff and snowmelt contributions while the glacier melt contribution is consistent 

throughout the years (Figure 4.30). The highest ensemble-mean rainfall-runoff 

contribution of 68% is simulated in 2009, and for this year the snowmelt contribution 

reaches its minimum of 7%. Conversely, the lowest rainfall-runoff contribution (52%) is 

simulated for the year 2015 with the highest snowmelt contribution (25%). The baseflow 

and glacier melt contributions are consistent throughout the simulation period with small 

variations between the years. The ensemble-mean baseflow contribution ranges 

between 20 – 26% and the glacier melt contribution between 3 – 5%.  

 

 

Figure 4.30: Mean annual runoff composition of the modelling ensemble. The error bars indicate the 
standard deviation of the composition of the ensemble members. 
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The prediction range of the ensemble is stable throughout the simulation period as 

indicated by the low variations of the standard deviation. This annual standard deviation 

of the contributions decreases with the mean contribution; it is largest for rainfall-runoff 

(5.4 – 6.3%), followed by baseflow (5.2 – 6.0%), snowmelt (0.9 – 2.2%), and glacier melt 

(0.9 – 1.4%). This low variation in the annual standard deviations indicates the consistent 

behaviour of the ensemble members regarding the variation in the climatic boundary 

conditions. 

 

4.4.4.3 Monthly runoff composition 
 

The monthly runoff composition is shaped by the seasonality of the climate, whereas the 

monsoon season (Jun – Sep) is dominated by rainfall-runoff, the post-monsoon (Oct – 

Nov) and winter (Dec – Feb) seasons by baseflow, and the pre-monsoon season (Mar 

– May) by snowmelt (Figure 4.31).  

Most of the runoff during the monsoon season originates from rainfall-runoff. In the early 

monsoon season (Jun), rainfall-runoff and snowmelt are equally important and 

contribute 95% to the monthly discharge. The largest absolute snowmelt rates occur 

during this month. Rainfall-runoff then increases in importance during July and August 

contributing more than three-quarters to the monthly discharge. During these months, 

the groundwater storage refill and the baseflow contributions increase. The importance 

of baseflow increases further in the late monsoon season (Sep) as the rainfall-runoff 

slowly decreases. Glacier melt occurs only during the monsoon season and the highest 

melt rates are predicted for August. 

The monthly discharge in the non-monsoon season (Oct – May) is dominated by 

snowmelt and baseflow (Figure 4.31). The baseflow gains importance in the post-

monsoon season and early winter (Oct – Dec) and the contributions increase from 60% 

in October to 95% in December, whereas rainfall-runoff contributes the remaining 

fraction. Baseflow is the dominant runoff source in January (53%) but the importance of 

the rainfall-runoff increases as the westerlies bring some precipitation. It becomes the 

most important source in February (65%) which is the first month with notable snowmelt 

contributions (12%). Snowmelt then consistently gains importance in the pre-monsoon 

season from 44% in March to 70% in May. The baseflow contributions decrease as the 

groundwater storages deplete with time to the monsoon season, and it only contributes 

5% at the start of the following monsoon season (Jun). 
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Figure 4.31: Mean monthly runoff contribution of the modelling ensemble (2002 – 2015). The error bars 
indicate the standard deviation caused by the annual variation and the ensemble variation. 

 

 

The ensemble variation is largest for the rainfall-runoff and baseflow components (Figure 

4.31). The standard deviation results from the ensemble variation and the annual climate 

variations. The standard deviations of the composition (%) are highest for the baseflow 

and rainfall-runoff, particularly during the transition from high to low flows (Sep – Oct), 

and the beginning of the year (Jan – Mar). The standard deviation of the absolute 

contributions is highest in June to September for rainfall-runoff, and August to October 

for baseflow. For snowmelt, the relative deviations are highest in March and Apr, and 

the absolute deviations are highest in June and July.   
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4.4.5 The simulation of the historic flood events 
 

The modelling ensemble tends to underestimate the flood discharge throughout the 

modelling period (Figure 4.32). This underestimation increases with the magnitude of 

the flow. Flood flows are classified as flows ≥ 5,500 m3/s which is a rough estimate of 

the danger level at stage 10.7m. These flows are underestimated by 25% in the 

calibration period and 16% in the validation period. The Annual Maximum flows (AMAX) 

are underestimated by 34% in the calibration period and by 40% in the validation period 

in which the higher AMAX flows occurred. For several days, flows in the range 5,500 – 

8,000 m3/s are overestimated in the validation period. However, 89% of the flood flows 

are underestimated. 

The AMAX events are underestimated throughout the period, whereas the confidence 

intervals overlap during three events with lower magnitude (6,000 – 7,000 m3/s) (Figure 

4.33). The year 2008 is the only year for which the AMAX flow is overestimated but it is 

delayed by one day. The flows of the three largest floods (2009, 2013, 2014) are 

underestimated by over 50%; the observed flood flows range between 14,500 – 18,000 

m3/s and the simulated ones between 6,700 – 7,800 m3/s. The simulated and observed 

flood hydrographs of these large events differ not only in magnitude but also in duration. 

The observed flood hydrographs (≥ 10,000 m3/s) are sharp and with a quick recession 

and the discharge two days after the flood is similar to the discharge on the day before 

the flood. The simulated hydrographs have a lower magnitude but a longer duration, and 

it takes two additional days to generate the same cumulative discharge as is observed 

from the day before the flood event to the day past the flood event (Figure 4.34).   

 

Figure 4.32: Comparison of simulated and observed annual maximum flows (left) and high flows (> 5,500 
m3/s) (right). The coloured lines indicate linear regression models of the simulated and observed flood flows, 
and the black line indicates the line of the perfect fit. The observations are obtained from DHM.  
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Figure 4.33: Observed and simulated hydrographs of the annual maximum flow events. The solid lines 
indicate the median simulated discharge and the observed discharge (DHM). The shaded areas indicate 
the prediction intervals (Q97.5 – Q2.5) of the BaRatin uncertainty estimation and the hydrological ensemble. 

 

 

Figure 4.34: Cumulative discharge of the three largest observed flood events. Day 0 refers to the day of the 
flood event.  
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4.4.5.1 Flood flow composition 
 

The rainfall-runoff is the most important source of flood water and the contributions are 

higher than on the monthly and yearly scale. It contributes 85% (median predictions) to 

the AMAX event which is considerably higher than the contribution to the overall flow of 

59% (Table 4.11). Consequently, the contribution of the other runoff components 

decreases; the baseflow contribution is 7% (overall composition: 22%), the snowmelt 

contribution is 0.8% (overall composition: 14%), and the glacier melt contribution 

decreases to 3% (overall composition: 4%) (median predictions). However, the baseflow 

and snowmelt components are important contributors for individual AMAX events and 

ensemble members with contributions of up to 40% and 30%, respectively. The range 

of contributions is larger for the AMAX flows compared to the overall composition (Table 

4.11); e.g. the rainfall-runoff prediction range is 40% (56 – 96%) for the AMAX events 

compared to 28% (41 – 69%) in the total simulation period. This larger prediction range 

is caused by differences between the AMAX events and the different parameterization 

of the ensemble members.  

 

Table 4.11: The composition of the flood flows. The ensemble describes the variation in the composition 
arising from the hydrological ensemble and the different hydro-meteorological conditions of the flood events. 
The variation of the hydrological ensemble is removed in the ensemble mean and the variation arises from 
the different hydro-climatological conditions of the flood events. The overall simulation period describes the 
composition of all flows in the total simulation period (2002 – 2015) and is included for comparison. 

 Component Min 
[%] 

P10  
[%] 

Median  
[%] 

P90  
[%] 

Max  
[%] 

Ensemble  
(AMAX) 

Rainfall-runoff 56 74 85 91 96 
Baseflow 0 1 7 20 40 
Snowmelt 0 0 1 16 30 
Glacier melt 0 1 3 5 8 

Ensemble mean 
(AMAX) 

Rainfall-runoff 76 79 83 90 90 
Baseflow 1 3 9 14 17 
Snowmelt 0 0 2 10 22 
Glacier melt 1 2 3 4 4 

Ensemble  
(total simulation 
period)  

Rainfall-runoff 41 51 59 65 69 
Baseflow 14 18 22 30 41 
Snowmelt 12 12 14 16 18 
Glacier melt 1 2 4 5 6 
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The influence of the event characteristics is indicated by the varying composition of the 

ensemble mean which solely results from differences between the AMAX events. The 

rainfall-runoff contribution ranges from 76% in 2015 to 90% in 2009, baseflow contributes 

between 01 – 17%, snowmelt between 0 – 22%, and glacier melt between 1 – 4% (Table 

4.11 and Figure 4.35). The AMAX composition is not, or at least not solely, controlled by 

the flow magnitude; i.e. the 2010 and 2015 events are of comparable magnitude but for 

the 2010 event rainfall-runoff contributes 90% of the flood flow, compared to 76% for the 

2015 event. The reduced rainfall-runoff contribution is compensated by higher snowmelt 

which contributes 22% in the 2015 event and to 3% in the 2010 event (median 

predictions) (Figure 4.35).  

 

 

 

Figure 4.35: Composition of the AMAX events. The error bars indicate the standard deviation of the 
hydrological ensemble.  
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These differences in the AMAX composition relate to the timing of the AMAX event 

(Figure 4.36). Rainfall-runoff is the dominant runoff source throughout the monsoon 

season without clear temporal trends. However, the contributions of the other sources 

are affected by the timing. The snowmelt contribution is higher for earlier events but is 

not relevant after week 30 (Mid-July). Glacier melt contributions increase until week 34 

(Mid-August) and gradually decline afterwards. Baseflow contributions are negligible 

until week 30 (Mid-July) but increase as the monsoon season progresses.  

 

 

 

Figure 4.36: Mean AMAX composition aggregated by the week of the year during which the AMAX event 
occurred. The error bars indicate the standard deviation arising from the hydrological ensemble and the 
hydro-meteorological conditions of the events. 
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4.4.5.2 Ensemble variation 
 

The contribution range is larger for the ensemble than the ensemble mean which 

indicates that the variation in the runoff composition is affected by the hydro-

meteorological conditions of the flood event but also by the model parametrisation (Table 

4.11). The relationship between model parameterisation and runoff composition is 

shown in Figure 4.37.  

The alphaInf and kEff parameters influence the AMAX contribution of the rainfall-runoff 

and baseflow contributions whereas the rainfall-runoff contribution increases with the 

alphaInf value and decreases with the kEff value as also observed for the runoff 

composition of the total simulation period (Figure 4.29 and 4.37). Furthermore, lower 

alphaGW values and higher deltaGW values increase the probability of higher rainfall-

runoff and lower baseflow contributions. The precipitation correction factor does not 

affect the rainfall-runoff contribution.  

For the snowmelt contribution, a clear relation between the sDDF parameter and the 

snowmelt contribution is observed similar to the overall composition. However, unlike for 

the overall contribution, no clear relationship between the tcrit parameter and snowmelt 

is observed for the AMAX contribution. Furthermore, higher precipFactor values 

increase the likelihood of larger snowmelt contributions. The AMAX glacier melt 

contribution is influenced by the glacier DDFs, and the glacF parameter which defines 

the fraction of glacier melt that percolates to the groundwater. 
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Figure 4.37: Comparison of the parameter values and the AMAX runoff contribution (mean of all AMAX 
events) of the 64 ensemble members. The rCoeff is the recession coefficient and the pFactor the 
precipitation correction factor.  
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The model ensemble produces more similar results for events with higher rainfall runoff 

contribution (Figure 4.38). The standard deviations of the individual AMAX events 

indicate the ensemble variations in the runoff contribution resulting solely from the 

parameterization of the ensemble members. A positive relationship between the 

ensemble mean contribution and the standard deviation is observed for the glacier melt 

contribution. The snowmelt and baseflow components show a weaker positive relation. 

This means that the ensemble variation increases with the importance of these sources. 

However, a negative relationship is predicted for the rainfall-runoff component. Hence, 

the ensemble members tend to produce more similar results with increasing rainfall-

runoff contribution. This indicates that the model complexity reduces because the 

infiltration excess runoff increases and hence more water drains as surface runoff and 

less water drains through the soil and groundwater which are controlled by more 

parameters. 

 

 

 

 

Figure 4.38: The relationship between the ensemble mean and the ensemble variation (indicated by the 
standard deviation) of the contribution for each AMAX event. 
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4.5 Discussion of the hydrological predictions 
 

The inherent imperfection of hydrological models arises from the incomplete knowledge 

of catchment hydrology (the modelled system), the incomplete knowledge about the 

catchment behaviour (the modelled catchment), and the simplification of the hydrological 

system by aggregating the processes in time and space which requires the integration 

of parameters that cannot be measured and, therefore, need to be calibrated to replicate 

the catchment behaviour (Gupta et al., 2005). However, different parameter 

combinations can produce similar results so that it is impossible to determine a single 

best parameter set, which is further complicated by the lack of information about the 

internal state of the catchment’s hydrology (Beven and Freer, 2001; Gupta et al., 2005; 

Odoni, 2007). The ensemble modelling accounts for this uncertainty whereas every 

ensemble member represents an equally likely representation of the hydrological system 

(Beven and Binley, 1992; Beven, 2012; Beven and Binley, 2014). Due to the lack of 

information about the internal state of a catchment’s hydrology, the classification of 

behavioural models can only be approximated but any behavioural model should have 

three characteristics:  

i) the input-state-output behaviour is consistent with the observations;  

ii) the model predictions are accurate (small bias) and precise (small prediction range): 

iii) the model behaviour is consistent with the current hydrological understanding of the 

catchment (Gupta et al., 2005). 

The simulations of the Karnali catchment are discussed in light of these characteristics 

to evaluate whether the ensemble predictions are behavioural representations of the 

catchment hydrology of the Karnali River. The following section discusses the simulated 

hydrological regime which provides information about the overall model performance 

(Section 4.5.1), followed by the discussion of the runoff composition which provides 

information about the internal state (Section 4.5.2). These sections are the foundation 

for the assessment of the model’s ability to predict flood hazards (Section 4.5.3).  
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4.5.1 The predicted hydrological regime of the Karnali River 
 

The hydrological ensemble reproduces the observed hydrological regime of the Karnali 

River. The catchment discharge at the mountain outlet aggregates all hydrological 

processes in the mountainous catchment and is therefore an important indicator of the 

model performance. The great variation of flows in Himalayan River systems with high 

flows during the monsoon season and low flows in the non-monsoon season poses a 

challenge for hydrological models (Nepal et al., 2014). However, the established 

hydrological ensemble captures these seasonal dynamics of the Karnali River well as 

indicated by the comparison of the observed and simulated hydrographs (Figure 4.20). 

The transitional periods in the pre-monsoon and post-monsoon seasons are well timed 

by the ensemble. This good depiction of the seasonality is underlined by the high 

coefficient of determination (R2) which is classified as good even for the member with 

the lowest efficiency of 0.77 (Table 4.6) (Moriasi et al., 2015b).  

The monsoon season flows are, in general, well replicated as indicated by the high Nash-

Sutcliffe efficiencies that reach 0.85 in the calibration period and 0.82 in the validation 

period (Table 4.6) (median predictions). The differences in the efficiencies between the 

calibration and validation period are small which indicates that the ensemble depicts the 

hydrological system of the Karnali River and is not overfitted to the calibration data. This 

is also true for the R2 which is 0.85 and 0.84 for the calibration and validation periods, 

respectively (median predictions).  

The NSE and R2 are similar to the efficiencies obtained in other studies of the three 

major river systems in Nepal. These reported efficiencies range between 0.84 – 0.87 

(NSE) and 0.85 – 0.88 (R2) for the Koshi River (Nepal et al., 2014), 0.56 – 0.78 (NSE) 

and 0.63 – 0.84  (R2) for the Gandak River (Bhattarai et al., 2018), and 0.83 – 0.85 (NSE) 

and 0.84 – 0.89 (R2) for the Kanali River (Dahal et al., 2020; Pandey et al., 2020). The 

performance of all members is classified as good to very good regarding the NSE, and 

good regarding the R2 (Moriasi et al., 2015b). The median PBIAS of the discharge is 3% 

for the calibration period and 13% for the validation which is classified as very good and 

satisfactory (Moriasi et al., 2015b). These high efficiencies, the small differences 

between the calibration and validation period, and the visual hydrograph comparison 

indicate that the model ensemble is a behavioural representation of the hydrological 

system of the Karnali River.   
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The good model performance is also indicated by the comparison of the hydrographs of 

the West Seti and Chera subbasins. The performance of the Chera subbasin is 

satisfactory regarding the NSE, R2 and PBIAS efficiencies (Table 4.8)  (Moriasi et al., 

2015b). These efficiencies are not satisfactory for the West Seti subbasin. However, this 

subbasin covers < 0.5% (157 km2) of the catchment. The hydrograph comparison 

indicates that the temporal dynamics are well captured for the West Seti subbasin which 

indicates that the model depicts the hydrologic conditions of the Karnali River on a small 

spatial scale (Figure 4.22). 

Despite the good overall performance, several systematic biases are observed from the 

comparison of the simulated and observed hydrographs at the catchment outlet, namely 

the overestimation of peak flows of the rising limb in the pre-monsoon season and in the 

early monsoon (May – Jun), the overestimation of peak flows outside the monsoon 

season, and the underestimation of flood flows.  

The higher simulated flow of the rising limbs is linked to the overestimation of the 

snowmelt runoff indicated by the underestimation of the snow extent during the monsoon 

season (Figure 4.24). The snow extent is only an indicator of snow storage because it 

does not provide information about the snow volume and, thus, the water stored as 

snow. However, the high contributions of snowmelt (50 - 70% from April – June) indicate 

that a fraction of the overprediction is related to the overestimated snowmelt (Figure 

4.31). However, the seasonality of snow melt and snow accumulation is well timed. 

The overprediction of the non-monsoon season peak flows is related to the use of global 

(in time) model parameters that cannot represent the seasonal variability of the climatic 

conditions, particularly the precipitation. The Indian monsoon system dominates the 

climate in the summer months bringing frequent and intense rainfall events. In the winter 

and pre-monsoon season, the Westerlies cause low-intensity precipitation events 

(Gautam and Acharya, 2012; Krishnan et al., 2019). However, both precipitation systems 

are simulated with a global parameter set which was calibrated with an emphasis on the 

monsoon season. The consistent overprediction of discharge peaks outside the 

monsoon season particularly between Jan – May indicates that the model 

parameterisation does not represent these low-intensity westerly rainfalls. The alphaInf 

parameter defines the fraction of daily rainfall during the hour of most intense rainfall and 

is implemented to simulate infiltration excess runoff. This global parameter cannot reflect 

the different characteristics of the monsoon and non-monsoon season precipitation 

which leads to a fast rainfall-runoff conversion and consequently the overprediction of 

runoff.  
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The overpredicted non-monsoon season peak flows are likely to also be affected by the 

global precipitation correction factor which is unlikely to reflect the precipitation bias of 

both, the monsoon and Westerly systems. The application of this factor may lead to the 

overestimation of the precipitation outside the monsoon season. Furthermore, this 

parameter interacts with the alphaInf parameter. This parameter combination favours, 

the overestimation of surface runoff and, consequently, leads to an underestimation of 

groundwater recharge. The baseflow is the main contributor to runoff in the post-

monsoon season and winter until the start of the snowmelt and the groundwater storage 

depletes with time from the monsoon season (Nepal, 2012). This behaviour of 

overpredicting non-monsoon seasonal peak flows is also occurring in the simulations of 

(Pandey et al., 2020) which emphasises the challenges of representing the diverse 

hydrologic conditions in Himalayan watersheds stated by (Nepal et al., 2014).   



 

151 

 

4.5.2 Runoff composition 
 

The model ensemble reproduces the catchment discharge of the Karnali River well. 

However, the catchment discharge is the sum of the upstream hydrological models and 

hence the ensemble could predict the correct output for the wrong reasons (i.e. model 

equifinality). The representation of the internal catchment behaviour can be investigated 

by comparing the runoff composition with our current understanding of the hydrology of 

Central Himalayan catchments. The runoff contributions in Himalayan catchments are 

not well understood and hence it resorts to modelled datasets which suffer from similar 

uncertainties (Bookhagen and Burbank, 2010; Andermann et al., 2012b; Bookhagen, 

2012). Nonetheless, the comparison of the simulated runoff composition with the ones 

in other studies provides information about whether the obtained results are within 

reason. 

 

4.5.2.1 Overall contribution 
 

The overall composition throughout the simulation period agrees with the current 

understanding of the hydrology in Central Himalayan catchments. Rainfall-runoff 

dominates the composition contributing between 57 – 59% in the calibration and 

validation periods (median predictions) (Figure 4.28). This is consistent with the current 

understanding that monsoon season rainfall dominates the runoff in these river systems 

(Bookhagen and Burbank, 2010; Bookhagen, 2012; Scott et al., 2019). (Lutz et al., 2014) 

simulated the runoff composition of the Upper Ganga River to which the Karnali 

contributes. In their study, the rainfall-runoff contribution is 66% and, thus, slightly higher 

than in this study, and the baseflow contribution is 14% which is 10% lower than in this 

study. However, groundwater storages have a significant impact on retarding the rainfall 

in the Central Himalayas and the role of groundwater is not well understood in this region 

(Andermann et al., 2012; Scott et al., 2019). The simulated baseflow of 24% is 

reasonable in this light and considering the large uncertainties. The overall baseflow 

contribution agrees with the 20% contribution simulated for the central Himalayan Dudh 

Koshi River (Nepal et al., 2014). 

The melt contribution (the combined snowmelt and glacier melt) is 17- 19% and agrees 

with the 20% simulated for the Upper Ganga River (Lutz et al., 2014). The snowmelt 

contribution of 14 – 15% falls within the predictions of other studies for the Karnali River 

which range between 7 – 21% (Bookhagen and Burbank, 2010; Andermann et al., 

2012b; Dhami et al., 2018). The snowmelt contribution varies strongly between the years 
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and hence this discrepancy could result from the different study periods (Figure 4.30). 

The predicted snowmelt contribution is reasonable because it falls within the range of 

contributions provided in the literature and does not exceed the maximum snowmelt 

contributions of 20 – 25% in Central Himalayan catchments (Bookhagen and Burbank, 

2010). 

The predicted snowmelt during the monsoon season is overestimated as indicated by 

the consistently lower monsoon season snow extent compared to the MODIS estimates, 

and the overestimated rising limb (Figures 4.20 and 4.24). This could result from 

interactions between the temperature data and the melt parameters. The regionalisation 

of the temperature data was conducted with a global lapse rate and extrapolated beyond 

the highest gauge at ~3,050 masl. However, it is established that the lapse rate varies 

with elevation (Immerzeel et al., 2012). It is plausible that the global temperature-

dependent melt parameters are too high for the regionalised high mountain 

temperatures. This might be further aggravated by the use of an annual lapse rate which 

does not account for the wet-adiabatic temperature cooling during the monsoon at higher 

elevations.   

Nonetheless, the comparison with studies of other central Himalayan River systems 

suggests that the overall runoff composition is reasonable considering the unique 

catchment characteristics, the temporal variability of the composition, and the reliance 

on modelling approaches for the quantification of runoff sources.  

 

4.5.2.2 Seasonality of the runoff composition 
 

The seasonal dynamics of the runoff components are well reflected by the modelling 

ensemble. The rainfall-runoff dominates during the monsoon season and contributes 60 

– 80% in July – September and snowmelt is the largest contributor in June (Figure 4.31). 

This is consistent with the compositions of the Ghagara River (Lutz et al., 2014), and the 

Dudh Koshi River (Nepal et al., 2014). The baseflow is highest during the transition from 

the monsoon season to the post-monsoon season (Sep – Oct) and is the main runoff 

source until the end of winter (Nov – Feb) after which it declines as the groundwater 

storages deplete which agrees with our knowledge of Central Himalayan catchment 

hydrology (Andermann et al., 2012b; Lutz et al., 2014; Nepal et al., 2014).  
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The snowmelt seasonality is well depicted but the snow storage might deplete too early. 

The highest absolute snowmelt contributions are simulated for the months May to July 

which agrees with Dhami et al. (2018) for the Karnali River, Lutz et al. (2014) for the 

Ghagara River, and (Immerzeel et al., 2013) for the mountainous Langtang River. 

However, the length of the snowmelt season varies in the literature; Dhami et al. (2018) 

simulate contributions ≥ 10% throughout the non-monsoon season (Oct – May) for the 

Karnali; Lutz et al. (2014) simulate notable contributions in the period January – 

September for the larger Gharaga River system; and Bhattarai et al. (2018) predict 

snowmelt between February and August in the neighbouring Gandak River. The longer 

melting season in several studies indicates that the simulated melting season may be 

underestimated and the snow storage may deplete too early.  

The underestimation of the snow extent between July and October provides evidence 

that the snow storage deplete too early (Figure 4.24). Therefore, it is likely that the 

snowmelt contribution is overestimated during June and July and underestimated 

afterwards which is supported by the higher snowmelt rates in Lutz et al. (2014) and 

Dhami et al. (2018). However, the importance of snowmelt declines after June – July in 

every study and hence the effect of these potential underestimations on the monsoon 

hydrograph is low.   

The simulated glacier melt season is shorter than in comparable studies. Glacier melt 

occurs during the monsoon season (Jun – Sep), and small melt rates are simulated in 

October (Figure 4.31). The highest melt rates are simulated during July and August 

which agrees with other Central Himalayan catchments (Immerzeel et al., 2013; Lutz et 

al., 2014; Nepal et al., 2014). However, the melt season is shorter than for the Ghagara 

River (May – Nov) (Lutz et al., 2014), the Dudh Koshi (Apr – Nov) (Nepal et al., 2014), 

and Langtang (May – Oct) (Immerzeel et al., 2013).  

The shorter predicted glacier melt period is somewhat unexpected because the most 

plausible cause for the shorter melting season is the underestimation of high-elevation 

temperatures. This contradicts the snow melt simulations because the most plausible 

cause for the low snow extent during the monsoon season is the overestimation of high-

elevation temperatures. Furthermore, the degree-day factor which positively controls the 

melt rate is 0.6 °C higher for the glacier module than for the snow module. The ensemble 

mean degree-day factors are comparable with the ones used by Lutz et al. (2014) and 

Dhami et al. (2018) and hence these differences are not attributed to an unreasonable 

parameterisation. However, the uncertainty about the actual glacier melt rates in the 

region is large, the total melt rates reasonable, and the shorter melt season has only 
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minor effects on the simulation results due to the dominance of rainfall on the monsoon 

season flows. 

 

4.5.3 The simulation of the historic flood events 
 

The hydrological modelling aims to predict changes in flood flows for the projected 

climates (Chapter 5) and hence the representation of flood peaks is an essential aspect 

of this study. However, the monsoon season flood peaks are consistently 

underestimated and these underestimations increase with the flow magnitude to > 50% 

for the largest flood events (Figures 4.32 and 4.43). There are four potential causes for 

this underprediction:  

i) the model parameterisation that does not reflect the hydrology during heavy rainfall 

events;  

ii) deficits in the process representation that limit the model’s ability to reproduce the 

sharp flood peaks of the Karnali River;  

iii) the underestimation of heavy precipitation and hence the underestimation of the 

water in the catchment;  

iv) the overestimation of the observed flood hydrograph so that the model unknowingly 

reproduces the flood hydrograph.  

The parametric error of the model can relate to the runoff generation that converts rainfall 

on the hillslopes and transports it to the channel network, and/or the runoff routing that 

transports the water in the channel network to the mountain outlet (Beven, 2012). In the 

SPHY model, the runoff routing is described by the recessCoeff parameter that controls 

the travel time within the channel network. The flow velocity changes with flow rate and 

the global recessCoeff parameter cannot account for this non-linearity (Beven, 2012). 

The runoff generation processes depend on the antecedent conditions (the initial 

wetness) and the rainfall characteristics and are, thus, also non-linear which cannot be 

represented by the global parameters, e.g the alphaInf parameter that controls the 

infiltration excess runoff. The observed cumulative flood flow (AMAX ± 1 day) of the three 

largest events is reached after three simulation days (Figure 4.35). This indicates that 

the underestimation of flood flows is affected by deficits in the model’s process 

representation which hamper the reproduction of the rapid rainfall-runoff conversion of 

the Karnali River to the full extent.  
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These deficits of the process representation may arise from the aggregation of the 

hydrological processes to the daily resolution. The Karnali River is, despite its large 

catchment area, highly responsive and the flood peak is reached within 24 hours of the 

rainfall event (MacClune et al., 2015; Shrestha et al., 2015a). It is likely that the 

aggregation of the flood generation and routing processes to the daily resolution 

oversimplifies the system and causes an underprediction of the flood peaks. However, 

the daily time step is constrained by the hydro-meteorological data (precipitation, 

temperature, discharge) which is only available at the daily resolution. Furthermore, 

floods are usually simulated from event-based models that simulate single flood events 

(USDA, 2014; Nathan and Ball, 2019). However, these models require the calibration for 

single events and are sensitive to the antecedent conditions which are unknown for the 

past and projected climates (Berthet et al., 2009; Beven, 2012; Nathan and Ball, 2019). 

Therefore, the application of a continuous model at a daily resolution is required in this 

research and the structural errors must be accepted as part of the research design. The 

prediction of flood flows is a challenge in hydrological modelling, particularly for the most 

extreme events and biases of 50% common (Huang et al., 2017; Hirabayashi et al., 

2021).  

The accurate representation of the flood-triggering rainfall is essential to reproduce the 

flood hydrograph. However, precipitation data is particularly uncertain in mountainous 

areas with steep elevation precipitation gradients and coarse gauge networks (Winiger 

et al., 2005; McMillan et al., 2012; Lutz and Immerzeel, 2016). Furthermore, the 

uncertainty is larger for convective rainfall events which trigger the floods in the Karnali 

River (McMillan et al., 2012). The rainfall intensity and its spatial distribution are 

important variables for hydrological simulations. The global rainfall volume over the 

catchment determines the amount of water in the hydrological system (assuming the 

evapotranspiration is negligible during heavy rainfall events) and, thus, determines the 

runoff volume and the spatial patterns of the rainfall strongly influence the timing of the 

hydrograph (Gupta et al., 2005; Huang et al., 2017; Reaney, 2022).  

The rainfall intensity and the spatial variations are highly uncertain in the study area. The 

gauge network is sparse and concentrates along valleys and the floodplain so that large 

areas of the study area are unobserved. A monthly gridded precipitation product was 

used to overcome this limitation. The poor quality of every investigated gridded product 

at the daily resolution indicates the high uncertainty of gridded precipitation in the 

catchment. The monthly dataset was downscaled to the daily resolution based on the 

sparse gauge network and hence both, the volume and spatial variation are uncertain. 

However, the model ensemble matches the observed flood volume but within a longer 
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duration which indicates that rainfall volume with the applied precipitation correction 

factor is adequate. The timing of the hydrograph can be affected by both, errors in the 

model structure and the spatial rainfall patterns. 

The difference between the simulated and observed flood hydrographs may also result 

from errors in the observed discharge record. The uncertainty in the discharge estimation 

of high and flood flows from stage-discharge rating curves is usually between ± 15 – 

40%  (Westerberg et al., 2011; McMillan et al., 2012; Coxon et al., 2015). These reported 

uncertainty ranges agree with the predicted uncertainty range of ± 30 – 40% in this study 

(Figure 4.16). However, the uncertainty varies between gauging stations and the 

discharge record at the catchment outlet is particularly uncertain because of the lack of 

observation at high flows. The discharge of the three largest floods in 2009, 2013, and 

2014 is 250 – 300% larger than the maximum stage-discharge measurement after 1990, 

and 400 – 500% larger than the largest recent measurement after 2008. These 

extrapolations are well beyond the USGS guidelines that do not extrapolate beyond 

100% of the max. measurement (Wiche and Holmes, 2016). Furthermore, the stage-

discharge relationship may also be altered by changes in the geometry of the riverbed 

and these potential changes may not captured by the coarse temporal resolution of the 

samples.  

The observed high flows could be, in principle, underestimated by the stage-discharge 

conversion but the comparison with other studies suggests an overestimation. Two 

studies conducted hydrological simulations of the Karnali with overlapping periods; 

Dahal et al. (2020) simulated the monthly discharge between 1990 - 2005 using the 

SWAT model and point precipitation data from DHM, and Pandey et al. (2020) simulated 

the daily discharge between 1995 – 2009 using the SWAT model and use a combination 

of the gridded TRMM product and point DHM observations. Both studies consistently 

underestimate the high flows like in this study. The SWAT model is a continuous model 

which suffers from similar structural deficits as the SPHY model and hence this 

underestimation could be caused by structural model errors. However, all three 

simulations underestimate the monsoon season flow during the years 2004 and 2005. 

This is particularly evident in the SPHY simulations of this study, and the monthly SWAT 

simulations which match the monsoon season flow of the previous years well. The 

consistent underprediction in three models which use different precipitation datasets 

suggests that the discharge record may overestimate the actual discharge, at least 

during some years which may be caused by errors or changes in the instrumentation or 

shifts in the stage-discharge relationship.  
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The consistent underprediction of the model ensemble results most probably from the 

combination of uncertainties in the hydrological model and the discharge data. The 

consistent underestimation of more frequent flood events by the ensemble indicates 

structural and parametric errors which can be aggravated by uncertainties in the heavy 

rainfall data. However, it is likely that the observed peaks are overestimated and that the 

true peaks fall within the observed and simulated ones. The prediction of peak flows are 

a common challenge in hydrological modelling and the bias in the prediction of the 

Karnali flood events falls within the bias of comparative studies (Huang et al., 2017; 

Wijngaard et al., 2017; Hirabayashi et al., 2021).   
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4.6 Conclusions 
 

The objective of this chapter was to establish a hydrological model that replicates the 

hydrological system of the mountainous catchment and reproduces the observed 

discharge at the mountain outlet. The established modelling ensemble is a behavioural 

representation that reflects our knowledge of the hydrology of the Karnali River. The 

simulated input-state-output is consistent with the observations as indicated by the high 

efficiencies of the modelling ensemble. The evaluation consists of multiple evaluation 

criteria and hence this conclusion is based on a robust foundation which considers the 

seasonality of flows and the differences between observations and simulations regarding 

the discharge, snow dynamics and actual evapotranspiration.  

The prediction range of the ensemble is accurate as indicated by the good to very good 

performance regarding the R2 and NSE and satisfactory to very good performance 

regarding the PBIAS for all ensemble members (Moriasi et al., 2015b). The small 

differences in the efficiencies between the calibration period and the validation period 

indicate that the modelling ensemble reproduces the catchment hydrology and is not 

overfitted to the calibration data. The main variation within the ensemble relates to the 

different distribution of rainfall into rainfall-runoff and baseflow. The seasonality of the 

composition is consistent with other simulations and reflects the current knowledge of 

the hydrology in Central Himalayan catchments. 

The ensemble has some systematic inaccuracies despite the good overall performance, 

namely the overprediction of the non-monsoon season runoff spikes, the 

underestimation of the flood discharge, and the underestimation of snow cover in the 

monsoon season. These systematic errors are affected by parametric uncertainties and 

deficits in the process representation of the model. In general, the application of 

hydrological models in these catchments is challenging because the models use global 

parameters that cannot represent the diverse seasonality of the hydrological processes. 

This parametric uncertainty manifests in the overprediction of the non-monsoon season 

spikes which is caused by the overestimation of the infiltration-excess runoff due to the 

alphaInf parameter and the precipitation correction factor which cannot reflect the 

different characteristics of the monsoon and Westerly precipitation. The underestimation 

of flood flows arises from the simulation of sub-daily processes on a daily scale which 

reduces the model’s ability to reproduce the fast rainfall-runoff conversion and routing to 

the full extent.  
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The limited data availability and quality pose another challenge for the application of 

hydrological models in the Himalayas. This mainly accounts for the climatic boundary 

conditions and the discharge data. The highest temperature station in the catchment is 

located at 3,050 masl and hence it is not possible to determine the temperature lapse 

rate for the higher elevations in which melt processes are important features of the 

hydrology. The underestimation of the monsoon season snow extent is most likely 

caused by inaccuracies in the temperatures of the high mountainous parts of the 

catchment and consequently the miscalibration of temperature-dependent melt 

parameters.  

The lack of precipitation data in the high mountainous parts of the catchment translates 

into errors in the gridded precipitation product which uses in-situ observation for the 

enhancement of the quality. The station network is coarse and concentrates along 

valleys and in the plain. Therefore, orographic rainfalls and the local variations cannot 

be considered in the downscaling of the monthly precipitation product which is likely to 

reduce the simulation of peak flows. The calibrated precipitation correction factor has 

performed well as indicated by the simulated cumulative discharge of flood events which 

matches the observed one with two days delay. This is a global parameter which was 

calibrated with emphasis on the monsoon season. However, it is unlikely that the 

precipitation bias is similar during the monsoon and non-monsoon seasons and hence 

this correction factor potentially amplifies the overestimation of non-monsoon season 

runoff spikes.  

The discharge data is very uncertain as indicated by the consistent underprediction of 

2005 monsoon season flows in multiple independent studies using different precipitation 

products. This data is essential for the model calibration and hence errors in the 

discharge data propagate to the model. There is evidence that the discharge 

observations overestimate the flood flows and, therefore, the bias of the simulated flood 

flows may be lower as suggested by the comparison with the discharge observations.  

The ensemble captures the catchment’s hydrology well but better performance is limited 

by constraints in the model structure and the available data. It is suggested that the 

following recommendations can help to improve the predictive capability of hydrological 

models in Central Himalayan catchments; 

- Monitoring of high mountainous temperatures: the lack of information on the 

temperatures in the mountains (≥ 3,000 masl) hampers the simulation of the 

hydrological processes in these areas and limits our understanding of the snow and 

glacier dynamics. It is acknowledged that these areas are inaccessible and the 
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resources of the Nepalese government for environmental monitoring are limited. 

However, the Himalayas are the water towers of Asia and provide water resources 

to billions of people downstream. Therefore, the monitoring should not be limited by 

the resources of Nepal and should be supported by the global community.  

- Monitoring of precipitation along the southern Himalayan flank: The Indo-Gangetic 

plain is home to frequent and devastating floods. Monitoring the precipitation is 

essential to understand, reconstruct, and forecast these flood events to provide 

better flood management systems.  The current observation network concentrates 

along valleys and plains. Further stations should be established at strategic locations 

along the slopes and ridges to gain a better understanding of orographic rainfall 

patterns. The Indo-Gangetic Plain is among the most flood-prone areas in terms of 

fatalities and affected population in the world and such investments would have a 

high impact.  

- Discharge data: The discharge data is uncertain due to the dynamic river morphology 

and the large flow range. These characteristics make it very challenging to accurately 

observe the large Nepali River Systems. However, the large uncertainty is rarely 

considered in the modelling of these rivers. It is common to regard the discharge 

data as observations without acknowledging this uncertainty. It could be a simple 

and cost-effective measure to distribute the discharge data with confidence intervals, 

the stage-discharge rating curves, the stage-discharge measurements, and the 

cross-sections. This would raise awareness of the uncertainty in the data, improve 

the understanding of the model behaviour, and potentially improve the calibration of 

hydrological models. 

- Dynamic parameter: The use of global parameters (in time) limits the predictive 

capability of modelling rivers with a strong seasonality of the hydro-meteorological 

conditions. This could be improved by implementing dynamic parameters which are 

calibrated for the specific characteristics of the seasons. This implementation is 

technically not complex but it would require a larger sample size in the calibration 

process and consequently more computational resources. Nonetheless, the effect of 

dynamic parameters on model performance should be explored for these rivers.  

- Calibration of the lapse rate: The vast underestimation of the monsoon season snow 

cover indicates the poor quality of the extrapolation of the lapse rate in catchments 

affected by the monsoon circulation. Biases in the temperature data translate to the 

calibration of the parameters which control the snow and glacier dynamics. 

Therefore, it might provide better results to calibrate the lapse rate for elevation 

bands alongside these parameters. 
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- Coupling continuous and event-based models: The flood flows are underpredicted 

which is caused by the inability of the continuous model to reproduce the fast rainfall-

runoff conversion to the full extent. The continuous model was chosen due to the 

lack of hydro-meteorological data on the sub-daily scale, the lack of information 

about the boundary conditions (e.g. soil moisture), and the complex hydrological 

system with snowmelt and glacier melt contributions. An event-based model can be 

coupled with the simulations of this continuous model to obtain the antecedent 

conditions and the snowmelt and glacier melt runoff. A statistical approach can be 

used to downscale the daily data to the sub-daily resolution. This coupling of 

continuous and event-based models may improve the predictions of flood flows and 

should be further explored. 

The hydrological modelling complemented our knowledge of the hydrology of Central 

Himalayan River systems. Particularly, these simulations have contributed to a deeper 

understanding of the seasonal and annual variation of the runoff composition. The 

simulations have improved our understanding of the processes that govern floodwater 

generation and how these processes vary between the timing and intensity of the flood-

triggering rainfall event.  Furthermore, it has identified key parameters which have a high 

impact on the model's ability to reproduce monsoonal peak flows which may improve 

further modelling applications.  

The established hydrological ensemble (64 parameter sets) is used in the next stage 

(Chapter 5 – Stage 2) to predict the climate change impact on catchment hydrology and 

flood flows. For this, the hydrological ensemble is applied with probabilistic climate 

projections. A Flood Frequency Analysis (FFA) is then conducted for the projected flood 

flows to quantify the changes in flood magnitudes and frequencies for different climate 

scenarios.  
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5 The prediction of the potential flood hazards on 
the catchment scale 

 

This chapter focuses on Stage 2 in the modelling framework to predict the potential flood 

hazards for the projected climatic conditions on the catchment scale. This stage applies 

the calibrated hydrological modelling ensemble of Stage 1 (O1) and a Flood Frequency 

Analysis (FFA) to address the second and third objectives:  

- O2: To predict the flood discharge at the mountain outlet for the projected climates 

from an ensemble of climate models until the end of the century using the 

hydrological model established in O1. 

- O3: To quantify the flood frequencies and magnitudes at the mountain outlet for the 

flood discharge projected in O2. 

The predicted flood discharge is then used to simulate the morphological evolution of 

the Karnali fan in Stage 3 (Chapter 6). The projected flood magnitudes from the FFA 

provide the inflow boundary conditions for the hydrodynamic simulations in Stage 4 to 

predict the spatial flood hazard characteristics (Chapter 7).  

The first Section 5.1 introduces the problem context followed by the description of the 

probabilistic climate projections in Section 5.2. Section 5.3 describes the setup of the 

hydrological modelling and the FFA. The results of the simulations are presented in 

Section 5.4 and discussed in Section 5.5. Section 5.6 concludes the prediction of the 

potential flood hazards for the projected climates and provides recommendations to 

improve future research.  
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5.1 Introduction 
 

Anthropogenic climate change alters the hydrological cycle and consequently impacts 

freshwater availability by changing the runoff composition and seasonality, and the flood 

hazards by changing the frequency and magnitude of flood flows (Douville et al., 2021). 

However, the direction of changes (i.e. increase/decrease) and their drivers (e.g. rainfall, 

snowmelt, and glacier melt) vary in space and time which hampers the transferability of 

projected trends between catchments (Immerzeel et al., 2013; Dankers et al., 2014; Lutz 

et al., 2014; Hirabayashi et al., 2021).  

Previous studies of the climate change impact on the hydrology of Central Himalayan 

catchments focus on the water availability and seasonality without quantifying the impact 

on flood flows (Immerzeel et al., 2013; Lutz et al., 2014; Nepal, 2016; Shea and 

Immerzeel, 2016; Bajracharya et al., 2018; Bhattarai et al., 2018; Dahal et al., 2020; 

Chandel and Ghosh, 2021; Khanal et al., 2021). Several studies quantify the climate 

change impact on flood flows but these studies use coarse global climate projections 

and/or earlier generations of climate models (Hirabayashi et al., 2013; Dankers et al., 

2014; Huang et al., 2017; Pechlivanidis et al., 2017; Wijngaard et al., 2017; Hirabayashi 

et al., 2021). However, the global projections are inferior in capturing the small-scale 

variability of the climate in the Himalayas (Krishnan et al., 2019; Scott et al., 2019). 

This research updates the previous studies by using probabilistic climate projections of 

the latest generation of global climate models which are downscaled and bias-corrected 

to the regional scale to better represent the small-scale climate variation. It uses an 

ensemble of 13 climate projections of the Coupled Model Intercomparison Project 6 

(CMIP6) which were downscaled and bias-corrected by Mishra et al. (2020). Quality 

control is conducted to identify and remove those ensemble members that do not capture 

the climatic characteristics in the Karnali catchment (Section 5.2).  

The CMIP6 climate scenarios combine the CMIP5 anthropogenic radiative forcing 

scenarios with newly added Shared Socioeconomic Pathways (SSPs) which describe 

alternative evolutions of future societies in the absence of climate change or climate 

policies (O’Neill et al., 2016). These SSPs enable the consideration of other socio-

economic variables which affect the climate (e.g. land use change). The descriptor of 

the scenario combines the SSP and the anthropogenic radiative forcing. For example, 

the SSP126 scenario combines SSP1 (economic growth and a shift to renewable 

energy, investments in health and education, well-functioning institutions) with an 
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emission scenario which results in an anthropogenic radiative forcing of 2.6 W m-2 at the 

end of the century (O’Neill et al., 2016).  

The medium-emission scenario SSP245 and the high-emission scenario SSP585 are 

selected for the simulation of the projected streamflow. These scenarios are selected 

because these scenarios continue those of CMIP5 which enables the comparison of the 

predictions with previous studies. The SSP245 scenario represents the medium range 

of future emission pathways and updates the RCP4.5 of CMIP5. The SSP2 assumes a 

central pathway in which past trends are projected into the future (O’Neill et al., 2016). 

The SSP585 describes the upper end of the emission pathways and is the successor of 

RCP8.5. The SSP5 assumes high investments in health and education and the rapid 

growth of a fossil-based economy (O’Neill et al., 2016). These scenarios cover the range 

of medium to high climatic changes. The SSP126 scenario represents the best-case 

scenario which would limit the global climate increase below 2ºC. However, the 

comparison of observed and projected climate change indicates that this scenario is less 

likely (Carvalho et al., 2022; UN, 2023). Therefore this scenario is omitted in light of the 

limited computational resources 

The SSP245 and SSP585 climate projections are used to predict the climate change 

impact on flood flows by combining a catchment-scale hydrological model and a flood 

frequency analysis. For this, the hydrological model that was established for the Karnali 

River in Chapter 4 is applied with climate projections of an ensemble of CMIP6 models 

to predict the flood discharge at the mountain outlet. The baseline scenarios of the past 

climatic conditions are simulated as a reference to quantify the change between the past 

and projected climates. A Flood Frequency Analysis (FFA) is then conducted with the 

simulated flood discharge (the annual maximum flows) to determine the flood hazard 

frequencies and magnitudes. The magnitudes of a given frequency (e.g. the 1-in-100-

years event) is then compared between the scenarios to quantify the climate change 

impact on flood hazards.  
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5.2 The evaluation of the probabilistic climate projections 
 

The hydrological modelling ensemble utilises the same static datasets (i.e. land cover, 

geology, soil, topography) of the historical simulations (Chapter 4) and the reader is 

referred to Section 4.3.1 for information about these datasets. The climate data is 

replaced with projections of the CMIP6 ensemble which is described in the following 

section.  

The CMIP6 ensemble consists of the projected climates predicted from 13 Global 

Circulation Models (GCM) and contains the daily precipitation, and the daily minimum 

and maximum air temperatures. The spatial resolution of these GCMs ranges between 

0.7º and 2.0º. The datasets have been downscaled to 0.25º for South Asia by Mishra et 

al. (2020). This downscaling included a bias correction procedure with empirical quantile 

mapping. The mean temperature which is required by the SPHY model is calculated as 

the mean of the daily minimum and maximum temperature.  

The climate projections are analysed in the next section to gain an understanding of the 

projected changes which is relevant for the interpretation of the hydrological projections 

and to assess their quality and remove those projections that do not capture the climatic 

characteristics of the Karnali catchment in the baseline scenario. Section 5.2.2 presents 

the regionalisation of the CMIP6 data to the resolution of the hydrological model. 

 

5.2.1 The analysis of the climate projections 
 

The Mean Annual Air Temperature (MAAT) (30-year mean) is projected to increase with 

time and emissions (Figure 5.1). The ensemble-mean MAAT increases from 7.3 ºC at 

the end of the baseline scenario in 2014 to 9.8 ºC (SSP245) and 11.8 ºC (SSP585) at 

the end of the century. The variation between the ensemble members increases in time 

from 0.5 ºC (7.1 – 7.6 ºC) in 2014 to 1.5 ºC (9.1 – 10.6 ºC) for SSP245 and 1.9 ºC (11.0 

– 12.9 ºC) for SSP585 in 2099. The temperatures projected by the CanESM5 model are 

notably higher than for the other ensemble members and reach 11.3 ºC and 14.6 ºC for 

the SSP245 and SSP585 scenarios, respectively.  

The temperatures are projected to increase in every season whereas the projected 

change is higher in the winter (Dec – Feb) and the monsoon season (Jun – Sep) (Figure 

5.2). The ensemble-mean temperatures are projected to increase by 3.0 ºC (SSP245) 

and 5.1 ºC (SSP585) in the winter and by 2.6 ºC (SSP245) and 4.5 ºC (SSP585) in the 

,onsoon season. The temperatures of the pre-monsoon (Mar – May) and post-monsoon 
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(Oct – Nov) seasons are projected to increase by 2.1 – 2.2 ºC (SSP245) and 3.9 – 4.1 

ºC (SSP585).  

 

 

Figure 5.1: Time series of the catchment-average Mean Annual Air Temperature (MAAT) (30-year mean) 
for the CMIP6 ensemble members. The red line indicates the ensemble-mean MAAT, and the grey lines 
show the MAAT of the individual members. The period before the year 2014 is obtained from the baseline. 

 

 

 

Figure 5.2: Mean monthly air temperature of the CMIP6 ensemble for the three scenarios. The periods are 
1985 – 2014 for the baseline and 2070 – 2099 for the SSP245 and SSP585 scenarios. The red line indicates 
the ensemble mean, and the grey lines indicate the individual members. The temperatures represent the 
catchment mean.  
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The annual precipitation is projected to increase alongside the temperatures, whereas 

this increase scales with time and emissions (Figure 5.3). The 30-year mean annual 

precipitation (ensemble mean and catchment mean) is 1,030 mm at the end of the 

baseline period in 2014. This precipitation is projected to increase by 11% for SSP245 

and 13% for SSP585 by the year 2065. The difference between both scenarios increases 

towards the end of the century with a moderate further increase of 4% to 1,190 mm for 

SSP245 and a high increase of 23% to 1,400 mm/a for SSP585.  

 

 

 

 

Figure 5.3: Time series of the catchment-mean annual precipitation. The bars show the ensemble-mean 
precipitation and the error bars the standard deviation of the ensemble members. The red line shows the 
30-year mean annual precipitation of the ensemble. The period before the year 2014 is obtained from the 
baseline scenario. 
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The CanESM5 model does not depict the seasonality in the catchment of the Karnali 

River (Figure 5.4). The annual precipitation is dominated by the monsoon precipitation 

which accounts for 80% of the annual precipitation (Gautam and Acharya, 2012; Collier 

and Immerzeel, 2015; Krishnan et al., 2019). This seasonality is captured by the CMIP6 

members with an ensemble mean monsoon precipitation of 74% (60 – 86%) in the 

baseline. The only exception is the CanESM5 model which predicts only 18% of the 

annual precipitation during the monsoon season. Therefore, this model does not 

reproduce the precipitation seasonality and is removed from the ensemble. The 

remaining models are maintained as they reproduce the monsoon seasonality. These 

models predict an increasing contribution of the monsoon precipitation which increases 

to 78% (SSP245) and 79% (SSP585) (ensemble mean).  

 

 

 

 

 

Figure 5.4: Mean monthly precipitation as a percentage of the annual precipitation for the baseline (1985 – 
2014) and the projected scenarios (2070 – 2099). The red line shows the ensemble mean precipitation and 
the grey lines are the precipitation of the ensemble members. The dotted line shows the distribution of the 
CanESM5 model which is distinctively different to the other members. The precipitation was averaged 
(mean) over the catchment. 
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The projected increase in precipitation coincides with an increase in the number of heavy 

rainfall events (Figure 5.5). Events with catchment-mean precipitation rates ≥ 50 mm per 

day occur on average (ensemble-mean) 18 times in the baseline (1985 – 2014). The 

frequency of these events are projected to increase to 40 times (SSP245) and 73 times 

(SSP585) in the period 2070 – 2099. However, the variation between the ensemble 

members is large; several models predict a vast increase in the occurrence of these 

events (e.g. ACESS-ESM1-5; EC-Earth3, EC-Earth3-Veg) while others project a small 

increase (e.g. MPI-ESM1-2-HR) or a decrease (MPI-ESM1-2-LR). This increasing 

ensemble variation manifests in the standard deviation which increases from ±4 events 

in the baseline scenario to ±20 (SSP245) and ±47 (SSP585).  

The trend of increasing occurrence and ensemble variations are also projected for 

events with catchment-mean precipitation rates ≥ 100 mm per day (Figure 5.5). The 

number of these events is projected to increase from 1±1 in the baseline to 4±2 and 

11±9 in the SSP245 and SSP585 scenarios, respectively. The models which project a 

large increase in events ≥ 50 mm per day also project a large increase for events ≥ 100 

mm per day. However, there are deviations for some models; e.g. IN-CM-4-8 projects a 

decrease in the number of ≥ 100 mm per day events, and MPI-ESM1-2-LR projects an 

increase in ≥ 100 mm per day events but a decrease in ≥ 50 mm per day events. 

 

 

Figure 5.5: Total number of heavy rainfall events with catchment mean precipitation rates  ≥ 50 mm per day 
(left) and  ≥ 100 mm per day (right) for the baseline (1985 – 2014) and the projected scenarios (2070 – 
2099) for each CMIP6-ensemble member. The precipitation rates refer to the catchment mean.  
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5.2.2 The regionalisation of the dataset 
 

The CMIP6 climate data has a spatial resolution of 0.25 X 0.25º (~24 km at the latitude 

of the Karnali River catchment) which is too coarse for the hydrological simulations. The 

dataset is therefore downscaled to the modelling resolution of 500 X 500 m.  

The temperature is regionalised using a lapse rate approach. The reference elevation of 

each CMIP6 grid cell is calculated by calculating the mean grid cell elevation from the 

HydroSHED SRTM DEM (see Chapter 4.3.1). The difference between the SPHY 

elevation and the reference elevation is then calculated in the second step. This 

elevation difference is then multiplied with a lapse rate of -0.0054 ºC/m (see Chapter 

4.3.2) to obtain the temperature difference between the reference and modelling 

elevation. The no-data grid cells of the CMIP6 rasters are then filled by bilinear 

interpolation and the obtained raster is resampled to the modelling resolution by bilinear 

interpolation. The temperature difference is then added to the temperature raster to 

obtain the regionalised modelling temperature map. This procedure is the same as the 

regionalisation of the WFDEI temperatures in Chapter 4 with one difference; the 

reference elevation for the WFDEI regionalisation was based on the WFDEI reference 

elevation. However, such a dataset does not exist for the CMIP6 dataset because it was 

downscaled by a statistical approach (Mishra et al., 2020). Therefore, it was assumed 

that the grid-cell mean HydroSHED DEM elevation is an appropriate descriptor of the 

reference elevation. An example of the original and regionalised temperature is shown 

in Figure 5.6. 

 

 

Figure 5.6: The original CMIP6 temperature of Mishra et al. (2020) (left) and the regionalised SPHY input 
map (right). These maps show the 2053-12-24 of the EC-Earth3 SSP245 scenario. The coordinate system 
is WGS84 (EPSG: 4326). 
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The precipitation is downscaled from statistical interpolation because there is no 

information on the precipitation characteristics at higher elevations (> 3,500 masl) and 

lapse rate estimations from glacier mass balance modelling are deemed out of the scope 

of this research (Immerzeel et al., 2015). Instead, it is assumed that the bias-corrected 

CMIP6 data represents the large-scale orographic rainfall patterns reasonably and is 

regionalised without elevation correction. For this, the precipitation of the no-data grid 

cells along the northern border is estimated using bilinear interpolation, and this filled 

dataset is then downscaled to the modelling resolution using bilinear interpolation. An 

example of the original and regionalised precipitation is shown in Figure 5.7.  

 

 

 

 

 

 

Figure 5.7: The original CMIP6 precipitation of Mishra et al. (2020) (left) and the regionalised SPHY input 
map (right). These maps show the 2053-07-22 of the EC-Earth3 SSP245 scenario. The coordinate system 
is WGS84 (EPSG: 4326).  
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5.3 Methods 
 

The calibrated hydrological model (Chapter 4) is linked with a Flood Frequency Analysis 

(FFA) to predict the changes in flood hazard frequencies and magnitudes for the 

projected climates. The setup of the hydrological model is presented in Section 5.2.1 

and a detailed description of the hydrological model was presented in Section 4.2.1. An 

overview of the FFA is presented in section  5.2.2.  

 

5.3.1 The simulation of the projected flood flows 
 

The hydrological model Spatial Processes in Hydrology SPHY (Terink et al., 2015a) was 

calibrated and validated in Chapter 4 and 64 parameter sets were identified as 

behavioural representations of the Karnali River system. This ensemble of 64 

hydrological models is applied with climate projections of the 12 CMIP6 models to 

simulate the hydrological response to these projected climates. A precipitation correction 

factor was implemented for the model calibration to account for the bias in the observed 

precipitation data. This factor is removed from the modelling because it was calibrated 

to a specific dataset with a specific bias, and it is questionable that each of the CMIP6 

members has this specific bias. No other adjustments are made to the hydrological 

ensemble except for the removal of the precipitation correction factor and the 

replacement of the climate data with the CMIP6 projections.  

The hydrological models are applied with climate projections of three different scenarios. 

The baseline scenario represents the past climatic conditions and is applied for 40 years 

from 1975 – 2014 with the years 1971 – 1974 as the warm-up period and is used as the 

reference to quantify the changes of the future scenarios. The medium-emission 

scenario SSP245 and the high-emission scenario SSP585 are applied for the period 

2020 – 2099 with the years 2015 – 2019 as the warm-up period. The CIMP6 ensemble 

comprises 12 different models which are applied to each of the 64 hydrological 

parameter sets. Therefore, the prediction ensemble comprises 768 (12 x 64) models for 

each scenario.   

The hydrological model was validated against the observed catchment behaviour in 

Chapter 4, and it was established that it is a behavioural representation of the 

hydrological system of the Karnali River. It was calibrated (and validated) against specific 

datasets. However, the parameter transfer to the CMIP6 climate data might result in a 

shift in the simulated behaviour. The simulations of the projected climates, therefore, 
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require some sort of validation. A direct comparison with observations is not possible 

because the baseline scenarios do not represent actual events (e.g. the 2013 Karnali 

flood). The comparison of observed and simulated distributions is hampered by the short 

record length (≤14 years) in conjunction with the large internal variability of the climatic 

variables. Therefore, an indirect model evaluation is conducted by comparing the 

baseline simulations with the historical simulations of Chapter 4 to understand the 

implications of the parameter transfer for the hydrological simulations.  

The hydrological model is applied at the daily time step and has a spatial resolution of 

500 x 500m. The simulations are conducted on the High-Performance Computing (HPC) 

facility at Durham University. 

 

5.3.2 The simulation of the flood magnitudes and frequencies 
 

The flood discharge describes the amount of water that is released into the floodplain at 

the individual events. The FFA is applied with these flood discharges to quantify the 

differences between the climate scenarios. The FFA is a statistical method to determine 

the flood magnitudes and frequencies from a flow record. This method standardises 

flood events which enables the comparison of different flood events of similar 

frequencies. For example, the climate change impact on flood hazards can be quantified 

by comparing the magnitudes of 1-in-100-year events of the past climatic conditions (the 

baseline) and the projected scenarios (the medium- and high-emission scenarios). 

The FFA is a data-driven method which requires a record of flood events. A 

comprehensive review of the different methods and limitations of the FFA was provided 

in section 2.3. The extraction of the flood flows requires the definition of flood events 

which is most commonly conducted by the Annual Maximum Flow (AMAX) or Peak-over-

Threshold (POT) approaches (WMO, 1989). The AMAX approach classifies the 

maximum flow of each year as a flood event and this approach is chosen to avoid the 

uncertainty of defining a flood threshold. In this study, the flood record is derived from 

the simulated flow of the hydrological model. The simulated records are split into three 

periods each consisting of 40 years (and hence 40 flood events); the baseline period 

from 1975 – 2014 of the baseline scenario, the near-future from 2020 – 2059 of the 

SSP245 and SSP585 scenarios, and the far-future from 2060 – 2099 of the SSP245 and 

SSP585 scenarios.  
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One of the main uncertainty sources of FFAs is the sampling error that relates to the 

deviation between the sampling distribution and the true distribution of flood magnitudes. 

The sampling error is reduced by increasing the record length from the climate reference 

period of 30 years to 40 years. The sampling error uncertainty is estimated using the 

bootstrapping method proposed by Burn (2003) where the 40-year record is duplicated 

999 times, concatenated and randomly divided into 999 40-year records. A further 

source of uncertainty is related to the errors of the flood flows. This study uses simulated 

flood discharges predicted by an ensemble of 768 model realisations for each scenario. 

These ensemble predictions are used to estimate the measurement uncertainty. The 

estimation of sampling error and measurement error uncertainties results in the fitting of 

767,232 flood frequency curves (12 CMIP6 models X 64 hydrological models X 999 

bootstrapping samples).  

The FFA uses Extreme Value Distributions (EVD) to simulate the distribution of the flood 

record. However, it is impossible to determine which EVD estimates the empirical 

distribution of the flow record best. Therefore, the following EVD are fitted to the 

simulated records (not the bootstrapped records) using the L-Moments parameter 

estimation method as recommended by Hosking and Wallis (1997); the Gumbel 

distribution (GUM), Weibull distribution (WEI), Generalised Extreme Value distribution 

(GEV), Generalised Logistic distribution (GLO), Pearson Type III distribution (PT3), 

Generalized Pareto distribution (GPA), Exponential distribution (EXP), and Wakeby 

distribution (WAK). The evaluation is conducted on the Anderson-Darling and 

Kolmogorov-Smirnov tests since the application of graphical evaluation techniques is 

unfeasible for the number of flood frequency curves. The distribution with the best 

median test statistics for all fitted frequency curves is selected for the final FFA including 

the sampling error uncertainty estimation.  
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5.4 Results: Predicting the projected flood events 
 

This section presents the results of the simulated projections of the flood discharges, 

flood magnitudes, and flood frequencies. Since the hydrological model was calibrated 

from the observed hydro-meteorological conditions (Chapter 4), the parameter transfer 

from the observed data to the simulated CMIP6 data might change the behaviour of the 

hydrological model. Therefore, the first Section, 5.4.1, compares the CMIP6 baseline 

scenario (hereafter baseline simulations) with the observations and the historical 

simulations of Chapter 4 (hereafter historical simulations) to investigate the validity of 

the hydrological model. The catchment response to the projected climates is then 

presented in section 5.4.2. These two sections provide information about the model 

validity and set the foundation for the predicted flood discharges in Section 5.4.3. These 

flood flows are the basis for the FFA and the predicted flood frequencies and magnitudes 

are presented in the final Section 5.4.4. 

 

5.4.1 The comparison of the baseline and historical simulations 
 

The historical simulations are compared with the baseline ones to investigate changes 

in the model behaviour which is introduced by the application of the CMIP6 data and the 

parameter transfer between the climate datasets. River discharge has a large internal 

variability which leads to deviations between the historical simulations with a 14-year 

record and the baseline simulations with a 40-year record (Giuntoli et al., 2018; Martel 

et al., 2018; Bérubé et al., 2022). However, strong and systematic differences indicate 

shifts in this behaviour hence the comparison of historic and baseline simulations 

provides insights into the reliability of the predictions of the CMIP6 simulations. The 

runoff composition is the product of the different paths which water takes through the 

hydrological system and is used as the indicator to compare the model behaviour of the 

historical and baseline simulations. Furthermore, the total discharge is compared with 

the observed discharge record of the respective period 1975 – 2014.  
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5.4.1.1 Catchment discharge 
 

The baseline simulations predict lower annual discharge than observed and predicted 

by the historical simulations (Figure 5.8). The percentage difference between the median 

annual discharge of the baseline simulations (38 Billion m3) is -13% for the median 

observed annual discharge (43 Billion m3) and -19% for the median historical annual 

discharge (46 Billion m3). Therefore, the baseline simulations produce less discharge as 

observed and as simulated with the historical climate data. This lower annual discharge 

is predicted for each CMIP6-baseline member whereas two members (NorESM2-LM, 

ACCESS-CM2) generate higher median annual discharge (40 - 41 Billion m3) than the 

other members (37 – 38 Billion m3) (Figure 5.9). However, the lowest and highest annual 

discharges are predicted for the baseline simulations (10 and 67 Billion m3). This large 

prediction range is due to the large sample size that is composed of 12 CMIP6 models, 

the ensemble of 64 SPHY models, and the record length of 40 years (n = 30,720). This 

is considerably larger than the Historic simulations with 64 SPHY models for 13 years (n 

= 832), and the 40 years of the observed annual flows (n = 40). 

 

 

 

 

Figure 5.8: Comparison of the annual discharge at the catchment outlet of the observations (1975 - 2014), 
the historical simulations (2002 - 2015), and the baseline simulations (1975 - 2014). The ensemble sizes of 
the datasets are 40, 832, and 30,720 respectively. 
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The lower discharge of the baseline simulations results from the deficit of the monsoon 

season discharge (Figure 5.10). The ensemble median baseline discharge is higher than 

the observed one for most months throughout the year. The percentage difference 

between the baseline simulations and the observed discharge is 12 – 17% in the winter 

(Dec – Feb). It increases to 21 – 27% in the pre-monsoon season (Mar – May) and 

declines to 6% at the beginning of the monsoon season in June. The surplus turns into 

a deficit which increases from -26% in July to -43% in September. The highest absolute 

deficit is predicted for August (-3.2 Billion m3). The discharge differences transition from 

under- to overpredictions during the post-monsoon season in October (-10%) and 

November (+14%). The discharge deficit (ensemble median) of the monsoon season is 

-7.6 Billion m3 and exceeds the non-monsoon season surplus of 1.4 Billion m3 by a factor 

of 5.5.    

 

 

 

 

Figure 5.9: Comparison of the median annual discharge of the baseline ensemble members, the historical 
simulations and the observations.  
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Figure 5.10: Comparison of the median monthly discharge at the mountain outlet of the observations (1975 
- 2014), the historic simulations (2002 - 2015), and the baseline simulations (1975 - 2014). 

 

These trends of overpredicted non-monsoon season discharge and underpredicted 

monsoon season discharge are consistent for each baseline ensemble member (Figure 

5.11). The median observed monsoon season discharge accounts for 73% of the annual 

discharge. The highest baseline monsoon season contribution is simulated for the 

ACCESS-ESM1-5 (70%) and EC-Earth3-Veg members (67%) and the lowest one for 

the NorESM2-LM and MRI-ESM2-0 members (59%). The two members with the highest 

median annual discharge (ACCESS-CM2, NorESM2-LM) are among the members with 

the lowest monsoon season contribution. Hence, their high annual discharge is not 

primarily driven by the monsoon season precipitation but is also affected by higher 

precipitation in the non-monsoon season. 

The baseline ensemble predicts the seasonality with high discharge during the monsoon 

season and low flows during the winter and the transition between these seasons well 

despite the systematic over- and underpredictions. This manifests in the high coefficient 

of determination (R2) between simulated and observed median monthly discharge for 

each ensemble member (Figure 5.12). The INM-CM4-8 member has the lowest R2 which 

is with 0.78 still a reasonable representation of the runoff seasonality. The R2 of the other 

members is between 0.88 and 0.99. Hence, more than 88% of the monthly discharge 

variation is reflected in the prediction of the ensemble members. The EC-Earth3 and 

EC-Earth3-Veg members reflect the runoff seasonality exceptionally well as indicated 

by the R2 values of 0.99.  
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Figure 5.11: Median seasonal contribution to the annual discharge for the baseline ensemble members, the 
historical simulations and the discharge observations. 

 
 

 

Figure 5.12: Comparison of the observed and simulated (baseline scenario) median monthly discharge. The 
red line shows the linear regression model and the dashed line shows the line of the perfect fit.  
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5.4.1.2 Runoff composition 
 

The previous section verified that the baseline simulations represent the seasonality in 

the Karnali River system. This discharge is the sum of the hydrological processes in the 

upstream catchment and, as such, an unreasonable quantification of these processes 

could potentially add up to a behavioural discharge representation Furthermore, different 

model parameterisations with different internal behaviour may produce similar outputs 

(model equifinality). This section investigates whether the parameter transfer caused 

changes in the ensemble behaviour by analysing the runoff composition.  

The lower annual discharge predicted for the baseline simulations results from lower 

rainfall-runoff contributions (Figure 5.13). The mean annual contribution2 of this 

component is 27 Billion m3 in the historical simulations and 15 Billion m3 in the baseline 

simulations. Consequently, the rainfall-runoff loses importance for the annual budget of 

the baseline simulations with a mean contribution of 40% compared to the 59% 

contribution in the historical simulations. Higher glacier melt compensates in part for the 

lower rainfall-runoff. This component contributes 1.7 Billion m3 (4%) in the historical 

simulations but is an important runoff source in the baseline simulations with 

contributions of 7.6 Billion m3 (20%). The baseflow runoff is similar for both simulations 

with contributions of 11 Billion m3. However, the relative importance increases from 23% 

in the historical simulations to 28% in the baseline ones due to the lower total annual 

discharge. Snowmelt runoff reduces from 7 Billion m3 (14%) to 4 Billion m3 (11%) in the 

baseline simulations (mean predictions).  

The larger prediction range in the baseline simulations is expected due to their larger 

ensemble size (768 vs 64) and longer record length (40 years vs 14 years). The rather 

small differences in the snowmelt contributions could result from these differences in the 

record length because the historical simulations are more prone to be affected by internal 

climate variability. However, the differences in rainfall-runoff and glacier melt are too 

large to be only caused by internal climate variability.   

 
2 The median is commonly used in this thesis to aggregate the hydrological ensemble. However, the 

median runoff contribution does not add up to 100% which is why the mean is used to describe the runoff 

composition. 



 

181 

 

 

Figure 5.13: Annual runoff composition of the historical simulations (2002 - 2015) and the baseline 
simulations (1975 - 2014). 

 

Most rainfall-runoff drains during the monsoon season, and hence the highest rainfall-

runoff deficit of the baseline simulations is generated during this season (Figure 5.14). 

This deficit is 1.8 Billion m3 at the onset of the monsoon season in June and increases 

to 3.6 Billion m3 in July. Afterwards, it decreases to 2.9 Billion m3 and 2.6 Billion m3 in 

August and September, respectively. However, while the largest absolute difference is 

simulated for the peak monsoon season (Jul – Aug), the percentage-difference is larger 

for the early monsoon season in June (119%) and late monsoon season in September 

(77%). The total difference in the simulated monsoon season rainfall-runoff (10.9 Billion 

m3) is larger than the total runoff deficit (9.3 Billion m3).  
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Figure 5.14: Mean monthly runoff (left column); b) Mean monthly runoff contribution (centre column); c) 
Density curves of the mean monthly runoff (right). The yellow line is the mean monthly runoff of the historical 
simulations (2002 – 2014), the red line is the monthly mean of the baseline ensemble (1975 – 2014), and 
the grey lines are the monthly mean of the baseline members (1975 – 2014). The runoff contribution of the 
total runoff refers to the mean monthly contribution to the annual discharge while the runoff contribution of 
the components refers to the contribution to the monthly discharge.  

 

The timing and duration of the monsoon season differ between baseline and historical 

simulations, which is particularly prevalent in the rainfall-runoff distribution (Figure 5.14). 

The monsoon season starts earlier and lasts longer in the historical simulations. The 

rainfall-runoff contributes 46% to the monthly discharge in June in the historic 

simulations whereas it contributes 17% in the baseline simulations which indicates that 

the monsoon season starts later in the CMIP6 simulations. Furthermore, the CMIP6 data 

has lower late monsoon rainfalls which is indicated by the lower rainfall-runoff 
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contribution in October in the baseline simulations (13%) compared to the historical 

simulations (40%). However, the rainfall-runoff is lower in the baseline simulations 

throughout the monsoon season and this deficit is with -3.6 Billion m3 highest in July and 

decreases to -2.6 Billion m3 in September (mean predictions). 

The lower rainfall contribution of the baseline simulations is, in part, compensated by 

higher baseflow and glacier melt contributions (Figure 5.14). The baseflow contributions 

are 0.4 Billion m3 and 0.3 Billion m3  higher in June and July but 0.3 Billion m3 and 0.6 

Billion m3 lower in August and September and, thus, adding to the total discharge deficit. 

Contrary, glacier melt contributions are considerably larger throughout the year in the 

baseline simulations. This difference ranges between 0.8 – 0.9 Billion m3 in the monsoon 

season. Therefore, glacier melt is more important in the baseline simulations and 

contributes 17 – 29% to the monthly discharge compared to the 4 – 5% contribution of 

the historical simulations. The baseline snowmelt contributions are lower throughout the 

monsoon season, particularly at the peak of the melting season in June for which this 

difference is 1.1 Billion m3 (mean predictions).  

The higher baseline discharge during the non-monsoon season is driven by different 

contributors. In October, the lower rainfall-runoff causes a deficit which is reduced by the 

higher glacier melt contributions.  The baseline discharge is higher from November until 

the start of the next monsoon season. In November, this difference is 0.2 Billion m3 which 

is caused by higher rainfall-runoff and glacier melt rates, whereas the 0.2 Billion m3 lower 

baseflow reduces the runoff differences by 50%. In December and Januarty, the surplus 

(0.4 – 0.5 Billion m3) is caused by higher rainfall-runoff (0.2 – 0.4 Billion m3). In February 

and March, the discharge of both simulations converge and the contributions are similar. 

The baseline simulations predict higher discharge in April and May and this is driven by 

higher glacier melt and, to a lower degree, higher baseflow contributions. The snowmelt 

component predicts lower contributions in the baseline simulations throughout the year.  

The seasonality with low discharge in the non-monsoon season and high discharge 

during the monsoon season is more pronounced in the historical simulations which is 

also prevalent in the density curves of the monthly discharge (Figure 5.14). A density 

curve describes the frequency of samples in the value range, whereas the area under 

the curve equals all samples. A higher density indicates a higher frequency of samples 

for the corresponding value. All density curves have the maximum in the lower 25% 

quantile of the runoff range due to the longer duration of the non-monsoon season (Oct 

– May). However, the density curves of the historical simulations are flatter than the 

baseline ones indicating a more pronounced runoff seasonality. The larger density of 

flows above the 75% quantile in the historical simulations emphasises the higher 



 

184 

 

monsoon season runoff of the historical simulations. This is the case for the total 

discharge and all components except glacier melt, where the density curve of the 

baseline simulation is flatter, indicating the higher baseline glacier melt rates. 

The baseline ensemble reproduces the seasonality of the Karnali river system well and 

agrees with the historical simulations despite the less pronounced seasonality (Figure 

5.15). The rainfall-runoff remains, although on a lower level, the most important runoff 

source with similar seasonal patterns (Figures 5.13 and 5.14). This is also valid for the 

baseflow as the second-largest runoff contributor in both simulations. Snowmelt loses 

importance and is the smallest contributor to the total runoff in the baseline simulations. 

However, its seasonality is well depicted and it remains the dominant runoff source in 

the pre-monsoon season. The largest difference between the baseline and historical 

simulations is the glacier melt which becomes more important than snowmelt in the 

baseline simulations. However, the contribution increase from 4% in the historical 

simulations to 20% in the baseline ones is also caused by the lower total runoff which is 

driven by the reduction of rainfall-runoff. Nevertheless, both simulations predict a similar 

seasonality for the total runoff and each component. This is illustrated by the strong 

linear relationship betwwen the monthly runoff rates predicted for the historical and 

baseline simulations (Figure 5.15). The coefficient of determination (R2) ranges between 

0.94 – 0.98 except for glacier melt. The R2 is lower due to the extended melt season but 

remains on a high level (0.86). The high agreement of the monthly runoff rates indicates 

that both simulations predict a similar hydrological system. 

All CMIP6 ensemble members predict similar glacier melt runoff, and the variation of the 

baseflow runoff is also comparatively low during the monsoon season (Figure 5.16). The 

variation is larger for the snowmelt component and largest for rainfall-runoff. The highest 

rainfall-runoff is predicted for the ACCESS-ESM1-5 member. This member predicts the 

highest mean monsoon season runoff of 27 B m3 despite predicting the lowest snowmelt 

contributions (0.6 B m3). The lowest mean monsoon season runoff of 22 B m3 is 

predicted for the MRI-ESM2-0 and BCC-CSM2-MR models. 
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Figure 5.15: Comparison of the mean monthly runoff of the historical simulations (x-axis) and baseline 
ensemble (y-axis) for the total runoff and the runoff components. The red line indicates the linear regression 
and the black dashed line is the line of perfect fit. The comparison of each baseline ensemble member and 
the historical simulations is presented in Appendix 5.1. 

 

 

 

Figure 5.16: Mean monsoon season runoff composition of the baseline ensemble members (1975 - 2014). 
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5.4.1.3 The flood events of the baseline simulations 
 

This section evaluates the predictions of the flood discharge defined as the Annual 

Maximum flows (AMAX) of the baseline simulations and compares it with the ones of the 

historical simulations and the observed flood record. Both simulations consist of an 

ensemble of 64 hydrological models. This ensemble is applied to the climate data of 12 

CMIP6 models for the baseline simulations and hence the ensemble size of the baseline 

is larger. Furthermore, the compared record lengths, and thus the number of floods, 

differ between the observations and baseline simulations (1975 – 2014, 40 events), and 

the historical simulations (2002 – 2015, 14 events) and hence the historical flood flows 

have a lower sample size and are, thus, more prone to outliers.  

Both simulations predict similar flood discharges of rare events but underpredict the 

observed ones. The baseline AMAX P50 (see Box 5.1) has a magnitude of 5,400 m3/s 

which is lower than the corresponding historical flood discharge (6,200 m3/s) and the 

observed one (7,400 m3/s) (Figure 5.17 and Table 5.1). The difference between the 

baseline and historical flood discharge predictions decreases with the AMAX percentile 

and converges around the AMAX P80 which describes flood flows that statistically occur 

once every 5 years. The baseline simulations predict higher flood discharges ≥ AMAX 

P95 (median predictions).  

The simulated flood discharge of both simulations is lower than the observed flood 

discharge (Figure 5.17 and Table 5.1). This difference is -31% (baseline) and -18% 

(historical) for the AMAX P50. The observed flow duration curve increases stronger than 

the simulated ones and hence the differences increase and reach -43% (baseline) and 

-55% (historical) for the highest flood discharge (AMAX P100) which is  9,900 m3/s for the 

historical simulations,11,300 m3/s for the baseline simulations and 17,400 m3/s for the 

observations (median predictions). 
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Box 5.1: Definition of the AMAX percentiles. 

AMAX percentiles: 
The flood discharge (classified as the AMAX flows) of the ensemble members is 
aggregated (median) by the percentile of the flood discharge which is referred to as 
the AMAX percentile. This AMAX percentile is used for the aggregation of the 
ensemble because it is not reasonable to aggregate it by the year since the 
hydrological models might react differently to the climate input. The individual 
ensemble members may predict the highest (or lowest or medium) flood discharge in 
different years and hence events of different frequencies would be combined. Instead, 
the flood flows are aggregated by their frequency. These AMAX percentiles refer to 
the percentile of the flood discharge (e.g. the highest flood flow predicted by the 
ensemble members) and do not refer to the percentile of the ensemble predictions.  
 
For example, the AMAX P100 is the ensemble median of the highest flood discharge 
predicted by the individual members. The AMAX P95 is the flood discharge which is 
exceeded by 5% of the events. The flood record contains 40 AMAX events for the 
CMIP6 simulations and hence this AMAX P95 is the median of the 2nd highest flood 
prediction of each ensemble member and is hence predicted statistically once every 
20 years. 

 

 

 

 

 

Figure 5.17: The cumulative frequency curves of the flood (AMAX) flows. The hydrological ensembles are 
aggregated (median) by the AMAX percentile. The record length is 40 years except for the historical 
simulations for which it is 14 years.  
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Table 5.1: Median AMAX discharge for selected AMAX percentiles. The P50 is exceeded statistically once 
every two years, the P80 once every 5 years, the P95 once every 20 years and the P100 is the highest flow of 
the record. 

 AMAX [1,000 m3/s] Difference to observed AMAX [%]  
P50 P80 P95 P100 P50 P80 P95 P100 

Baseline 5.4 7.1 9.3 11.3 -31 -21 -45 -43 
Historical 6.2 7.2 9.4 9.9 -18 -19 -44 -55 
Observed 7.4 8.7 14.7 17.4 - - - - 

  

 

The timing of the flood events differs between the baseline and historical simulations 

and the observations but the monsoon seasonality is similar for the three datasets. The 

flood events occur earlier in the baseline simulations than in the historical ones. The 

median week of occurrence is week 31 (beginning of August) in the baseline simulations 

and week 33 in the historical simulations and the observed AMAX (Figure 5.18). The 

different shape of the historical density curve is explained by the smaller sample size of 

the flood record. The comparison of the baseline and observed density curves indicate 

a temporal shift, whereas the flood season starts and ends two weeks earlier for the 

baseline simulations. Furthermore, the curve of the baseline simulation reaches a 

plateau between weeks 30 and 34, while the observed one steadily increases until week 

34 after which it drops. However, despite the temporal shift and the extended peak 

period, both curves follow similar trends and indicate a similar seasonal dynamic. 

Several flood events are predicted outside the monsoon season (weeks 22 – 40) 

whereas all observed flood events fall within the monsoon season (Figure 5.18). These 

non-monsoon season events account for 7.5% of all events for the baseline simulations 

and 6% for the historical simulations. The historical non-monsoon season events are 

predicted for October but not outside the period June - October. The baseline simulations 

also predict some events before June and after October. The baseline non-monsoon 

season events have a median rank of 17 (out of 40) which indicates that the events are 

of below-average magnitude, whereas flows in the post-monsoon season are higher 

(median rank: 28) compared to the pre-monsoon season (median rank: 14). This is 

reasonable because of the wetter antecedent condition after the monsoon season and 

the higher baseflow rates.  
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Figure 5.18: Timing of the Annual Maximum flows. The sample sizes of the records are different due to 
differences in the record length and ensemble size. The sample sizes are 40 (1x40) for the observations, 
869 (14 x 64) for the baseline, 2560 (40 x 64) for the baseline members, and 30,720 (40 x 768) for the 
baseline median.  

 

 

The composition of the flood events is similar between the historical and baseline 

simulations except for the glacier melt component. Most flood events are dominated by 

rainfall-runoff in both simulations. The mean rainfall-runoff contribution to all events is 

79% and 84% in the baseline and historical simulations, respectively (Figure 5.19). The 

predicted baseflow contribution is consistent in both simulations (8 – 9%). Both models 

also agree on the low importance of the snowmelt contribution (2 – 5%). One notable 

difference is, as for the annual and seasonal flows, the higher glacier melt rates of the 

baseline simulations. It contributes 10% (the second largest contribution) in the baseline 

simulations whereas it is the least important source in the historical simulations (3%). 

However, the glacier melt contributions decrease with increasing flow and for the highest 

events the predicted contribution reduces to 5% for the baseline simulations. The largest 

differences in the composition of the maximum events are predicted for the baseflow 

component which contributes 11% in the historical simulations and 4% in the baseline 

ones. However, this difference results from the timing of the event rather than systematic 

differences.  
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Figure 5.19: Ensemble mean composition of the simulated flood events. The left plot is the composition of 
all events, and the right plot is the composition of the flood events with the highest magnitude. The error 
bars indicate the standard deviation in the ensemble predictions. 

 

The rainfall event is the primary control of the flood flow composition. This controlling 

effect of the rainfall characteristics is illustrated by the relationship between the 

composition and the flood discharge (Figure 5.20). The rainfall-runoff contribution 

increases with flow magnitude and, consequently, the other sources lose importance. 

The rainfall-runoff is the dominant source for above-median flood discharge and only for 

a few events in the baseline simulations, the contribution is below 50%. All events above 

the 80th percentile are composed of ≥ 50% rainfall-runoff. In the historical simulations, 

this is true for all events. The composition ≥ 90th percentile is strongly dominated by the 

rainfall-runoff but for a few events higher snowmelt contributions lead to lower rainfall-

runoff contributions of 70 – 75%. However, for the rarer flood flows (≥ 95th percentile), 

the rainfall-runoff increases to ≥ 85%. High contributions of the other components are 

primarily simulated for below-average flood events. It can, therefore, be argued that 

these events are shaped by the absence of a heavy rainfall event during the respective 

year and that the higher contributions result from the misclassification of the flood event 

from the AMAX approach and not from high contributions itself.   

The composition of the flood events is furthermore characterised by the timing of the 

event (Figure 5.20). The highest snowmelt contributions are predicted during the weeks 

22 – 30 (June – Mid-July), higher glacier melt contributions for the mid-monsoon season 

during the weeks 27 – 36 (July and August), and higher baseflow contributions from 

week 33 onwards (Mid-August). The composition of the flood event, thus, follows the 

flow seasonality. However, rainfall-runoff is the dominant source throughout the flood 

season in both simulations. Snowmelt can be the most important runoff source for earlier 

floods in the baseline simulations. However, while the timing affects the flood 

composition the primary driver is the intensity of the rainfall event.  
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Figure 5.20: The relationship between runoff composition and flow magnitude (top), the flow quantile 
(middle), and the timing (bottom). The baseline flood record consists of 30,720 events (12 CMIP6 models x 
64 hydrological models x 40 years), and the historical one of 896 events (64 hydrological models x 14 years). 

  



 

192 

 

The variation of the predicted flood flows between the CMIP6 members increases with 

the magnitude of the flood discharge. The members can be classified into three groups 

according to the prediction of the most extreme floods AMAX P100 (Table 5.2). The 

highest AMAX P100 are predicted by the NorESM2-LM and ACCESS-ESM1-5 members 

which predict flows ranging between 13,000 – 14,000 m3/s. They underpredict the 

observed maximum flood (17,400 m3/s) by 20 – 25%. The second group (MRI-ESM2-0,  

INM-CM5-0, NorESM2-MM, EC-Earth3-Veg, EC-Earth3, MPI-ESM1-2-HR, MPI-ESM1-

2-LR) predict medium flows between 10,800 and 12,300 m3/s. The last group predicts 

considerably lower flows between 8,700 – 9,800 m3/s and, thus underpredicts the 

highest observed flood by 44 – 50%. These members are BCC-CSM2-MR, ACCESS-

CM2, and INM-CM4-8. The prediction range of the ensemble members reduces with the 

percentile and for the AMAX P50, which approximates the 1-in-2-years event, this 

difference is 1,700 m3/s compared to 5,300 m3/s for the AMAX P100. 

 

 

 

Table 5.2: Flood predictions of the CMIP6 ensemble members. The hydrological ensemble is aggregated 
by the median. The non-monsoon columns indicate the median magnitude of the non-monsoon season 
floods and the fraction of non-monsoon season flood events. 

 AMAX Percentile Non-monsoon  
P50 P80 P95 P100 Median 

[1,000 
m3/s] 

Fraction 
[%] 

NorESM2-LM 6.7 9.5 11.4 14.0 2.6 4 
ACCESS-ESM1-5 5.8 8.7 10.8 13.0 5.6 3 
MRI-ESM2-0 4.7 7.0 9.0 12.3 4.0 15 
INM-CM5-0 4.9 7.4 11.8 12.1 6.1 9 
NorESM2-MM 6.2 8.1 10.3 11.7 5.4 4 
EC-Earth3-Veg 5.4 7.1 9.0 11.3 5.2 2 
EC-Earth3 5.3 6.9 8.1 11.2 6.0 1 
MPI-ESM1-2-HR 4.5 5.3 6.8 11.2 5.6 13 
MPI-ESM1-2-LR 5.0 6.7 10.1 10.8 6.0 16 
BCC-CSM2-MR 4.8 5.6 7.4 9.8 4.8 5 
ACCESS-CM2 6.0 7.3 8.2 9.5 5.6 12 
INM-CM4-8 5.2 6.3 7.1 8.7 6.6 7 
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One further difference between the baseline members is the frequency of the non-

monsoon season flood events (Table 5.2). Four members (MPI-ESM1-2-LR, MRI-

ESM2-0, MPI-ESM1-2-HR, ACCESS-CM2) predict > 10% of the flood events outside 

the monsoon season. The median discharge of these events is lower than the AMAX 

P50 for MRI-ESM2-0 and ACCESS-CM2 which indicates that these events occur during 

the monsoon seasons with comparatively low flows and might be a misclassification of 

floods using the AMAX approach. However, for the both MPI-ESM models, the median 

non-monsoon season discharge is larger than the AMAX P50 which indicates that these 

floods are not a misclassification but triggered by the climate predictions of the members. 

Therefore, these members are weaker in predicting the flood seasonality of the Karnali 

River system. The members which predict the highest flood magnitudes generally 

predict fewer events (< 5%) outside the monsoon season (NorESM2-LM, ACCESS-

ESM1-5). The lowest number of non-monsoon season floods are predicted for the EC-

Earth-3 and EC-Earth3-Veg models.  

The baseline members also differ regarding the flow ratio between the more common 

and rare events (Figure 5.21). Particularly the MRI-ESM2-0 and MPI-ESM1-2-HR 

models predict low discharges for most of the AMAX percentile but these discharges 

increase strongly above the AMAX P95. On the contrary, the ACCESS-CM2 model 

predicts high discharges for the lower AMAX percentiles but the increase with the 

percentile is less pronounced and hence the flow duration curve is flatter. The difference 

in the flood discharges between the AMAX P50 and the AMAX P100 is 3,500 m3/s which 

is lower than for any other model. The NorESM2-LM, ACCESS-ESM1-5 and NorESM2-

MM models predict comparatively high flood discharges across the full AMAX percentile 

range. 
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Figure 5.21: AMAX Percentiles of the baseline ensemble members for the period 1975 - 2014. The members 
are ordered according to the predicted flows at the 99th percentile. The AMAX percentile is the median 
discharge aggregated by the rank of the flood event. 

 

 

This section presented the results of the baseline simulations and compared them with 

the observations and the historical simulations to assess the validity of the CMIP6 

simulations. In summary, the baseline simulations reproduce the observed flow 

seasonality with high flows during the monsoon and low flows during the rest of the year. 

However, the flow seasonality is less pronounced than in the historical simulations and 

the observations because the non-monsoon season flow is slightly overpredicted and 

the monsoon flow underpredicted. The composition of the runoff follows the expected 

seasonality with snowmelt dominating flows in the pre-monsoon season, rainfall-runoff 

in the monsoon season, and baseflow in the post-monsoon season and the winter. This 

reflects our understanding of the hydrological system and is also consistent with the 

composition of the historical simulations. The main difference between these two 

simulations is the lower rainfall-runoff and the higher glacier melt in the baseline 

simulations. Glacier melt is predicted throughout the year which is unreasonable 

because glaciers grow during the winter months. However, the effect of the 

overpredicted glacier melt reduces with increasing discharge, and for the flood events, 

the contribution is below average. The glacier melt contribution to the rare flood event is 

marginal and hence this glacier melt bias does not hamper the prediction of the future 

flood flows for the projected climates.  
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5.4.2 The hydrology of the Karnali River for the projected climates 
 

This section compares the simulated hydrology of the CMIP6 baseline scenario and the 

projected medium-emission scenario SSP245 and the high-emission scenario SSP585. 

The model ensemble of each scenario consists of 768 members (64 hydrological models 

x 12 CMIP6 members). The baseline scenario represents the period 1975 – 2014, and 

the projected scenarios are divided into the near future (2020 – 2059) and the far future 

(2060 – 2099). This length of 40 years was chosen over the 30-year climate reference 

period to increase the size of the flood record and, thus, decrease the sampling error of 

the following flood frequency analysis.  

The following section compares the annual discharge of the scenarios to gain insights 

into the temporal long-term trends. Afterwards, the monthly discharge predictions are 

compared to assess changes in flow seasonality. Both sections present the runoff 

composition to understand the drivers of the projected changes, but also to assess the 

validity of the parameter transfer between different climatic patterns which provides the 

fundament for the quantification of changes in the flood hazards in Section 5.4.3.  

 

5.4.2.1 Annual scale  
 

The annual discharge is projected to increase with time and emissions whereas the 

scenario differences increase in the far future. The ensemble median annual discharge 

is projected to increase from 37.8 Billion m3 in the baseline to 43.3 Billion m3 (SSP245) 

and 43.6 Billion m3/a (SSP585) in the near future (Figure 5.22). This change equals an 

increase of 15% and hence the higher emissions do not, initially, result in climatic 

conditions which facilitate notably higher discharges than the lower emissions. The 

predicted annual discharge is projected to increase further in the far future whereas the 

trends of both scenarios decouple. The trend slows down for the medium-emission 

scenario SSP245 in which the annual discharge is projected by a further 10% to 47.0 

Billion m3. On the contrary, the annual discharge projected for the high-emission 

scenario SSP585 increases strongly by another 30% to 54.9 Billion m3.  
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Figure 5.22: The annual discharge predicted for the baseline and projected CMIP6 scenarios. Each record 
consists of 30,720 samples (12 CMIP6-members x 64 hydrological models x 40 years). 

 

 

The projected change of the annual discharge increases with the percentile of the 

ensemble predictions. The annual discharge of the 95th percentile increases with 25% 

(SSP245) and 61% (SSP585) in the far future stronger than the median. On the contrary, 

the discharge at the 5th percentile is projected to increase by 22% (SSP245) and 39% 

(SSP585). Therefore, extreme wet years are projected to become more extreme. 

However, the discharge of the dry years is projected to increase as well and hence the 

extreme dry years become wetter and thus less extreme. 

The projected increase in the annual discharge is driven by increased rainfall-runoff and, 

to a lower degree, increased baseflow and glacier melt contributions. These increases 

compensate for the projected reduction of snowmelt runoff (Table 5.3). Similar trends 

are predicted for both scenarios, and the scenario differences are low in the near future. 

The mean annual rainfall-runoff increases from 15.5 Billion m3 in the baseline to 18.6 

Billion m3 (+20%) and 18.8 Billion m3 (+21%) for the medium-emission and high-

emission scenarios, respectively. It is followed by baseflow which increases by 1.9 and 

2.4 Billion m3 (+18 and +21%). The trends of the temperature-related melt components 

are more pronounced in the SSP585 scenario where the glacier melt increases by 21% 

(+1.6 Billion m3) and the snowmelt decreases by 19% (-0.8 Billion m3/a) compared to a 

17% increase (+1.3 Billion m3/a)  in glacier melt and a 12% decrease (-0.5 Billion m3/a) 

in snowmelt in SSP245 (near future).  
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Table 5.3: Mean composition and the standard deviation of the annual discharge. Note that the mean is 
used for the composition because the median composition does not add up to 100%.  

 1975 - 2014 2020 - 2059 2060 - 2099 

 Baseline SSP245 SSP585 SSP245 SSP585 

Total runoff  [B m3 ] 38.3  ±8.3 44  ±9.8 44.6  ±10.9 47.5  ±10.7 56.9  ±15.3 

Rainfall-runoff [B m3 ] 15.5  ±5.6 18.6  ±6.8 18.8  ±7.6 20.3  ±7.7 25.7  ±11.5 

Baseflow [B m3 ] 10.8  ±3.1 12.7  ±3.6 13.1  ±3.8 14.2  ±4 16.9  ±5 

Snowmelt [B m3] 4.3  ±2.5 3.8  ±2.3 3.5  ±2.3 3.1  ±1.9 2.5  ±1.7 

Glacier melt [B m3 ] 7.6  ±2.7 8.9  ±3.1 9.2  ±3.3 10  ±3.5 11.8  ±4.3 

Rainfall-runoff [%] 40.1  ±10 41.8  ±10 41.5  ±10.8 42.1  ±10.7 43.9  ±11.5 

Baseflow [%] 28.4  ±6.6 29.1  ±6.6 29.5  ±6.7 30  ±6.7 30.1  ±7 

Snowmelt [%] 11.4  ±6.2 8.8  ±5.2 8.1  ±4.9 6.7  ±4.2 4.8  ±3.4 

Glacier melt [%] 20  ±6.5 20.4  ±6.5 20.9  ±6.9 21.2  ±6.8 21.2  ±6.9 

 

 

The trends of increasing rainfall-runoff, baseflow and glacier melt, and decreasing 

snowmelt continue in the far future but are more pronounced in the SSP585 scenario 

(Table 5.3). The biggest scenario difference is predicted for the rainfall-runoff component 

which increases by 10 Billion m3 (compared to the baseline) to 25.7 Billion m3 for SSP585 

which is almost double the projected increase for the SSP245 scenario (+5.4 Billion m3). 

The predicted baseflow and glacier melt increases are stronger for the SSP585 scenario 

in absolute quantities, but the relative contribution is similar for both scenarios. The 

snowmelt contribution decreases from 11.4% in the baseline to 6.7% for SSP245 and 

4.8% for SSP585. The rainfall-runoff gains the most importance in the annual discharge 

budget in the far-future. Its contribution increases by 2% (SSP245) and 4% (SSP585), 

whereas the baseflow and glacier melt increase each by 1% in both scenarios and the 

snowmelt contribution decreases by 4% and 6% respectively. The annual variability is 

largest for the rainfall-runoff contribution and lowest for the snowmelt contribution (Table 

5.3). 

All runoff components follow a distinct temporal trend but this trend is different for the 

medium-emission scenario SSP245 with linear projected increases and the high-

emission scenario SSP585 with exponential increases (Figure 5.23). The glacier melt 

increases consistently with time in both scenarios with small internal variations. 

However, in the SSP245 scenario, it reaches a plateau around the year 2080 whereas 

in the SSP585 scenario, the contribution accelerates around the year 2060. The 

baseflow contribution increases steadily with time in SSP245, and in SSP585 the rate of 

change increases around the mid-century.  
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Figure 5.23: Mean annual discharge composition for the baseline (≤ 2014) and both projected scenarios (≥ 
2020). The bars indicate the ensemble mean contribution and the error bars their respective standard 
deviation. The x-axis shows the year. 
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The different temporal trends of the runoff components and the climate scenarios are 

highlighted by regression modelling of the annual discharge of the components and the 

year of the simulation (Figure 5.24). The lower coefficient of determination (R2) of the 

rainfall-runoff and the snowmelt components in both scenarios indicate the higher annual 

variability of these components. The baseflow and glacier melt contributions have low 

annual variability and increase steadily in both scenarios. However, the SSP245 

scenarios project a linear increase with time and the glacier melt contribution remains 

on a similar level after the year 2080. The rainfall-runoff projections are different for both 

scenarios. For the SSP245 scenarios, these annual variation increases in time but 

overall the projected increase is somewhat linear. For the SSP585 scenario, these 

increases are higher and follow an exponential trend with higher increases around the 

year 2040 and around the 2075.  After the year 2080, all annual contributions exceed 

the ones predicted for the baseline.  

 

 

 

Figure 5.24: The temporal trends of the ensemble mean annual discharge for each runoff component. The 
red line indicates the predictions of the linear regression models. 
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5.4.2.2 Monthly scale 
 

The characteristics of the monthly discharge follow the annual trends and the projected  

changes correlate with time and emissions. The seasonality with high flows during the 

monsoon season and low flows during the non-monsoon season does not change but 

the seasonality is projected to be more pronounced because the monsoon season 

discharge increases more strongly than the non-monsoon season discharge. However, 

the discharge is projected throughout the year and the driving processes vary for the 

seasons (Figure 5.25). 

The largest changes are predicted for the monsoon season (Jun – Sep) which mean 

runoff increases from 24.3 Billion m3 for the baseline to 30.6 Billion m3 for SSP245 and 

37.0 Billion m3 for SSP585 in the far future (Figure 5.25). Hence, around two-thirds of 

the projected increase in the annual discharge occurs during the monsoon season. The 

share of the monsoon season discharge is projected to increase from 63.5% (baseline) 

to 64.4% (SSP245) and 65% (SSP585) in the far future.  

The main source of the monsoon season discharge increase is the rainfall-runoff which 

increases by 4.7 Billion m3 (SSP245) and 9.6 Billion m3 (SSP585) in the far future (Figure 

5.25). Consequently, the rainfall-runoff contribution increases from 51% in the baseline 

to 56% (SSP245) and 60% (SSP585). The baseflow and glacier melt components 

increase by 1.3 - 1.4 B m3 for SSP245 and 2.2 – 2.4 B m3 for SSP585. Their relative 

contributions remain stable (±0.5%) except for the glacier melt for SSP585. This 

contribution decreases by 1% the higher melt rates as a result of the comparatively larger 

increase of rainfall-runoff. The monsoon season snowmelt contribution is projected to 

decrease from 9% (baseline) to 4% (SSP245) and 2% (SSP585). It is further worth 

noting that the standard deviation is highest during the monsoon season, particularly for 

the rainfall-runoff and hence the variation in the annual dischrge is dominated by the 

variation of the monsoon rainfall (mean predictions).  
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Figure 5.25: Comparison of the monthly runoff composition of the baseline climate and the projected 
climates. The left column shows the absolute monthly discharge, the centre shows the relative contribution 
and the right column shows the density of predicted monthly discharge rates. The relative contribution of 
the total runoff (centre column of the top row) shows the monthly contribution to the annual discharge (%). 
The lines indicate the ensemble mean and the error bars their standard deviation which arises from the 
climate variability and the ensemble variation. 
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A fraction of the monsoon precipitation drains as delayed baseflow during the transition 

from the high to low flows in the post-monsoon season (Oct – Nov). Hence, the projected 

increase in the monsoon precipitation translates into increasing post-monsoon season 

discharge (Figure 5.25). However, these increases are with 1.3 Billion m3 (SSP245) and 

2.6 Billion m3 (SSP585) considerably lower than the projected increase of the monsoon 

season runoff (far future). In relative terms, the increase is 25% (SSP245) and 52% 

(SSP585) and, thus, of similar magnitude as the monsoon season increase. The 

projected baseflow contribution is 65 – 66% and the main contributor to the Post-

monsoon season discharge. The baseflow is also the main factor for the projected 

increases (SSP245: +0.9 Billion m3, SSP585: +1.6 Billion m3). However, also the rainfall-

runoff is projected to increase in October which indicates that either, the frequency or 

intensity of late-monsoon season rainfall is projected to increase. However, these 

increases are with 0.2 Billion m3 (SSP245) and 0.4 Billion m3 (SSP585) too small to 

provide strong evidence for a projected prolonging of the monsoon season (mean 

predictions). 

The lowest changes are projected for the dry winter season (Dec – Feb). The discharge 

is projected to increase by 0.7 Billion m3 (SSP245) and 1.7 Billion m3 (SSP585) in the 

far future (Figure 5.25). However, the projected relative changes are with +18% and 

+44% large. Most of the projected increase originates from higher baseflow. The rainfall-

runoff remains constant which indicates that the projected precipitation increase of the 

climate ensemble concentrates during the monsoon season. The simulations predict 

increases in glacier melt by 0.2 Billion m3 (SSP245) and 0.5 Billion m3. However, while 

these increases are comparatively small, the predicted winter glacier melt contributions 

increase from 11% in the baseline to  13% for SSP245 and 16% for SSP585 (mean 

predictions).  

The changes predicted for the pre-monsoon season (Mar – May) are similar to the ones 

projected for the winter. The discharge increases by 1 Billion m3 (SSP245) and 1.7 Billion 

m3 (SSP585) in the far-future (Figure 2.52). This increase is driven by higher baseflow 

and glacier melt which both increase roughly at the same rate of 0.5 Billion m3 (SSP245) 

and 0.8 – 0.9 Billion m3 (SSP585). The rainfall-runoff remains stable but loses 

importance due to the increase in the other components. The snowmelt contributions 

are projected to decline by 0.2 Billion m3 (SSP245) and 0.3 Billion m3 whereas most of 

the decline is predicted for the late pre-monsoon season in May. The decrease of the 

pre-monsoon season snowmelt is lower than for the monsoon season. This is explained 

by changes in the melting season which shifts towards earlier dates with time and 

emissions.  
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The flow seasonality remains similar for the projected climates (Figure 5.25). The timing 

of the rising limb remains in June and the monsoon season ends in September as 

indicated by the low changes of the October rainfall-runoff. The seasonality of the 

rainfall-runoff is more pronounced with stable contributions throughout the non-monsoon 

season but higher contributions during the monsoon season. The baseflow and glacier 

melt seasonality remains similar but on a higher level throughout the year. However, the 

snowmelt contributions change in magnitude and timing. The peak snowmelt is predicted 

for June in the baseline but this shifts to May in both scenarios in the far future.  

The comparison of the baseline and projected scenarios indicates an increasing 

discharge with time and emissions. This increase is driven by the projected increase in 

monsoon precipitation. However, the baseflow delays part of the catchment response 

until the pre-monsoon season in the following year. Consequently, the discharge 

increases throughout the year which is amplified by the projected increase of glacier 

melt, and reduced by lower snowmelt runoff. However, the discharge is projected to 

increase across the full range of low and high flows as also indicated by the runoff density 

curves (Figure 5.25).  

The projected trends correlate with time and emissions, particularly for baseflow and 

glacier melt. The annual variation is highest for the rainfall-runoff. The projected total 

discharge is similar for both scenarios in the near future (2020 – 2059). However, the 

higher glacier melt contributions projected in the near future by SSP585 indicate that the 

temperatures are projected to increase stronger with emissions in the near future but 

this has low effects on the hydrological regime. In the far future, the projections of both 

scenarios decouple which is, to a large degree, caused by higher rainfall-runoff which 

increases around the years 2040 and 2080 in the high-emission scenario. Further 

difference is predicted for the glacier melt and snowmelt which stabilise around the year 

2080 for the medium-emission scenario SSP245 but not for the high-emission scenario 

SSP585.  
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5.4.3 The projected flood discharge 
 

The previous two sections established that the hydrological model predicts similar 

catchment behaviour for the historical and baseline simulations despite the parameter 

transfer from the observed calibration data to the simulated CMIP6 climate data (Section 

5.4.1), and this behaviour does not change for the projected climates which indicates 

that the parameter transfer to different climatic conditions does not limit the predictive 

capabilities of the model (Section 5.4.2).  

The main differences between the historical and baseline simulations are the lower 

baseline discharge caused by reduced rainfall-runoff and the increased glacier melt 

contributions. However, these differences are lower for flood events because the glacier 

melt contribution reduces with increasing discharge and the predicted flood discharge of 

the historical and baseline simulations are similar for the extreme flows ≥ AMAX P95. 

This indicates the good predictive capabilities of the modelling ensemble for the flood 

flows.  

This section presents the flood discharge predictions for the projected climates, focusing 

on the flood discharge magnitudes, their composition and timing. These results are the 

foundation of the quantification of the changes in the flood hazard frequencies and 

magnitudes in Section 5.4.4. 

 

5.4.3.1 The CMIP6 ensemble projections 
 

The projected flood discharge of the CMIP6-ensemble increases with time and 

emissions (Figure 5.26 A). The median AMAX remains stable between 4,000 – 6000 

m3/s throughout the baseline period. It increases in the projected scenarios, whereas it 

is similar for the SSP245 and SSP585 scenarios until the year 2050. The median AMAX 

of both scenarios decouple in the second half of the century, and a stronger increase is 

projected for SSP585. This trend of increasing flood discharge intensifies after the year 

2080 for SSP585. For SSP245, the median AMAX remains stable in the second half of 

the century, although on a higher level than before the year 2050. The increase in flood 

discharge is more pronounced for the higher percentiles of the ensemble predictions, 

and an increase in flood discharge towards the end of the century is also predicted at 

the Q95 (the 95th percentile of the ensemble predictions) for SSP245. However, the strong 

variation between the years and the CMIP6-ensemble members hampers the 

identification of less pronounced trends at the lower percentiles, especially for the 

SSP245 scenario. 
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Figure 5.26: A) Time-series of the predicted flood discharge (classified as AMAX). B) Time-series of the 30-
year mean flood flows (note that the projected flows before the year 2044 contain predictions of the baseline 
simulations). The solid line is the median, the dashed lines are the 32nd and 68th percentiles, and the dotted 
lines are the 2.5th and 97.5th percentiles of the ensemble (n = 768).  
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The long-term (30-year) mean AMAX negates the annual variation and emphasises the 

long-term trends. This long-term mean decreases by 2% from 1981 to 1997 after which 

it increases by 6% to 6,000 m3/s  at the end of the baseline period in 2014 (Figure 5.26 

B). This increasing trend is projected into the future for both scenarios, whereas the 

differences between both increase with time (Figure 5.26 B). The long-term mean AMAX 

is similar in both scenarios until 2025 because the later baseline AMAX values are used 

for the calculation at the beginning of the projected period. After the year 2025, the 

running mean is slightly higher in the SSP585 scenario. However, these scenario 

differences are small and by the end of the near future (the year 2059) the 30-year mean 

AMAX increases by 24% and 26% to 6,800 m3/s and 6,900 m3/s in the SSP245 and 

SSP585 scenarios, respectively (Table 5.4). The differences between both scenarios 

increase with time, particularly after the year 2060. After this year, the long-term AMAX 

increases moderately to 7,300 m3/s in 2099 (+34% compared to 2014) for the medium-

emission scenario. For the high-emission scenario, however, the trend intensifies and 

the long-term AMAX increases to 9,400 m3/s in 2099 which is an increase of 71% 

compared to 2014 (median predictions).  

The increase of the flood discharge scales with the quantile of the ensemble predictions. 

In 2099, the Q2.5 of the long-term AMAX increases by 20% for SSP245 and 40% for 

SSP585. The Q97.5 increases by 54% for SSP245 and 103% for SSP585 compared to 

2014. Consequently, the ensemble mean long-term AMAX increases more than the 

ensemble median, and the standard deviation increases from 43% in the baseline 

scenario to 54% (SSP245) and 60% (SSP585) in the far future (Table 5.4). This indicates 

that the increasing uncertainty range is driven by the higher percentiles of the ensemble. 

However, while the long-term mean emphasises the trends it also attenuates the 

extremes, and the response of the trends is delayed because it contains information 

about the previous 29 years. 

 

Table 5.4: Statistics of the long-term AMAX (30-year mean AMAX discharge) of the CMIP6-ensemble. The 
SD is the 30-year mean standard deviation in percent of the median. Qn indicates the discharge predicted 
by the nth percentile of the modelling ensemble (e.g. the Q50 is the median).  

  30-year mean AMAX 
 [1000 m3/s] 

 Change to Baseline 
[%] 

 Year Mean Q50 Q2.5 Q97.5 SD [%] Mean Q50 Q2.5 Q97.5 
Baseline 2014 6.0 5.5 2.8 12.2 43 - - - - 
SSP245 2059 7.4 6.8 3.3 15.5 47 24 24 16 27 
SSP585 2059 7.7 6.9 3.2 17.6 53 29 26 14 44 
SSP245 2099 8.2 7.3 3.4 18.8 54 38 34 20 54 
SSP585 2099 10.8 9.4 3.9 24.8 60 80 71 40 103 
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The flood events are projected to increase for all AMAX percentiles (see box 1), whereas 

this increase scales with time and emissions (Figure 5.27). The projected AMAX 

discharge is similar for both scenarios in the near future (2020 – 2059). The discharge 

increases from 5,400 m3/s in the baseline to 6,500 m3/s (SSP245) and 6,800 m3/s 

(SSP585) for the AMAX P50, which is statistically exceeded once every two years (Table 

5.5). For the most extreme floods of the P100, the flow is projected to increase from 

11,300 m3/s in the baseline to 13,700 m3/s and 13,800 m3/s for SSP245 and SSP585 

respectively. The predicted increases in the near future range between 20 – 28% for 

both scenarios and the projected increases do not scale with the AMAX percentile 

(median predictions).  

In the far future (2060 – 2099), the projected flood discharge of both scenarios decouples 

(Figure 5.27). The AMAX P50 increase from 5,400 m3/s in the baseline to 7,200 m3/s for 

SSP245 and to 9,300 m3/s for SSP585. The most extreme flows (AMAX P100) increase 

from 11,300 m3/s in the baseline to 16,700 m3/s (SSP245) and 20,900 m3/s (SSP585). 

For both scenarios the projected changes increase with the AMAX percentile from +33% 

(SSP245) and +72% (SSP585) for the AMAX P50 to 48% (SSP245) and 85% (SSP585) 

for the AMAX P100 (median predictions).  

However, the flood time series (Figure 5.26) indicates that the AMAX flows are not 

stationary but increases with time, particularly for the SSP585 scenario. This non-

stationarity is not reflected in the flow frequency curves of the AMAX percentiles (Figure 

5.27) which are based on 40-year records and hence the expected increase for the 

SSP585 far future is even higher at the end of the century than indicated by this analysis.  
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Figure 5.27: Flow duration curves of the CMIP6-ensemble predictions. The ensemble is aggregated by the 
median. 

 

 

Table 5.5: Flood flows of the CMIP6-ensemble for different AMAX percentiles (ensemble median). The P50 
represents the ensemble median AMAX discharge which is exceeded by 50% of the events and the P100 is 
the ensemble median of the highest predicted AMAX event.  

 AMAX Percentile 
[1000 m3/s] 

Change to 

Baseline [%] 

 P50 P80 P90 P95 P100 P50 P90 P100 

Baseline (1975 - 2014) 5.4 7.1 8.3 9.3 11.3  -  -  - 

SSP245 (2020 - 2059) 6.5 8.9 10.3 11.3 13.7 20.4 24.1 21.2 

SSP585 (2020 - 2059) 6.8 9.1 10.6 12.1 13.8 25.9 27.7 22.1 

SSP245 (2060 - 2099) 7.2 9.6 11.3 12.7 16.7 33.3 36.1 47.8 

SSP585 (2060 - 2099) 9.3 13 14.9 16.7 20.9 72.2 79.5 85.0 
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5.4.3.2 The projections of the CMIP6 members 
 

The large prediction range of the flood discharges of the ensemble (Figure 5.26) 

indicated the great variation between the CMIP6-ensemble members. This section 

presents the predictions of the individual ensemble members which differ greatly in their 

projected magnitudes of the projected flood discharge and change rate. 

The ensemble members can be classified into three groups with low, moderate, and high 

projected changes (the year 2099 compared to the year 2014) according to the long-

term 30-year mean AMAX (Figure 5.28 and Table 5.6). The high change group 

comprises the members EC-Earth3, EC-Earth3-Veg, and ACCESS-ESM1-5, which 

project increases of 131 – 142% (SSP585) and 55 – 72% (SSP245), and MRI-ESM2-0, 

NorESM2-LM, NorESM2-MM, and ACCESS-CM2 which project increases of 70 – 90% 

(SSP585) and 40 – 46% (SSP245). The group projecting moderate changes of 52 – 58% 

(SSP585) and 21 – 28% (SSP245) includes the INM-CM4-8, INM-CM5-0, and BCC-

CSM2-MR members. While these changes are still high, they are considerably smaller 

than for the previous group. The low change group comprises the MPI-ESM1-2-HR and 

MPI-ESM1-2-LR members. The long-term AMAX of MPI-ESM1-2-LR increases by 3% 

for SSP245 and 5% for SSP585. For MPI-ESM1-2-HR, it increases by 6% in the SSP245 

scenario. However, for SSP585, the projected increase of 35% is considerably larger 

than for MPI-ESM1-2-LR (median predictions).  

The difference in the projected increase between SSP245 and SSP585 is lowest for the 

ensemble member with the lowest simulated increase (MPI-ESM1-2-LR: 2%), and 

highest for the three members with the highest simulated increase (EC-Earth3, EC-

Earth3-Veg, ACCESS-ESM1-5: 67 – 87%) (Table 5.6). For the remaining ensemble 

members, these differences are 25 – 44% (median predictions).  
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Figure 5.28: Long-term (30-year) mean AMAX predicted for each CMIP6 ensemble member (note that the 
projected flows before the year 2044 contain predictions of the baseline simulations). The solid line is the 
median, the dashed lines are the 32nd and 68th percentiles, and the dotted lines are the 2.5th and 97.5th 
percentiles of the hydrological ensemble (n = 64). 

 

Table 5.6: Statistics of the 30-year mean AMAX in the year 2099 (SSP245 and SSP585) and the year 2014 
(baseline). These statistics are the median predictions of the hydrological ensemble. The ensemble 
members are sorted based on the changes projected for the SSP585 scenario. The predictions at the 2.5th 
and 97.5th percentiles are presented in Appendix 5.4. 

 30-year mean AMAX  
[1,000 m3/s] 

Change to 
baseline [%] 

Baseline SSP245 SSP585 SSP245 SSP585 
EC-Earth3 5.9 9.2 14.3 55 142 
EC-Earth3-Veg 5.9 10.2 14.3 72 142 
ACCESS-ESM1-5 7.1 11.1 16.3 57 131 
MRI-ESM2-0 4.9 7.2 9.3 46 90 
NorESM2-LM 6.9 9.7 12.6 40 82 
NorESM2-MM 6.8 9.5 11.9 41 76 
ACCESS-CM2 6.2 8.9 10.5 44 70 
INM-CM4-8 5.4 6.8 8.5 25 58 
BCC-CSM2-MR 4.9 5.9 7.5 21 52 
INM-CM5-0 5.9 7.5 8.9 28 52 
MPI-ESM1-2-HR 4.9 5.2 6.6 6 35 
MPI-ESM1-2-LR 5.4 5.5 5.6 3 5 
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The ensemble members vary further in the magnitude of the predicted flood discharge 

(Figure 5.29 and Table 5.7). The AMAX P50, which is statistically exceeded once every 

two years, ranges from 4,500 m3/s (MPI-ESM1-2-HR) to 6,700 m3/s (NorESM2-LM) in 

the baseline. The highest AMAX P50 for SSP245 is predicted for ACCESS-ESM1-5 with 

10,100 m3/s in the far future. The EC-Earth-3-Veg, EC-Earth3, NorESM2-LM, and 

NorESM2-MM models predict an increase to 8,900 – 9,100 m3/s. The MPI-ESM1-2-LR 

and MPI-ESM1-2-HR models predict a very small increase, and the flow remains 

between 4,600 – 4,800 m3/s. A similar behaviour is predicted for the SSP585 scenario 

for which ACCESS-ESM1-5 predicts with 15,600 m3/s the highest AMAX P50. However, 

the difference increases between the EC-Earth-3-Veg and EC-Earth3 models (13,200 – 

14,300 m3/s), and the NorESM2-LM, and NorESM2-MM models (11,100 – 11,200 m3/s). 

The lowest flow magnitude is predicted for the MPI-ESM1-2-LR and MPI-ESM1-2-HR 

models (4,900 – 5,300 m3/s) (median predictions).  

 

 

 

 

 

Figure 5.29: The median (hydrological ensemble) discharge of the AMAX percentiles for the CMIP6 
ensemble members. 
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Table 5.7: The predicted discharge of selected AMAX percentiles of the CMIP6-ensemble members for the 
baseline (1975 – 2014) and the projected scenarios (2060 – 2099). The flood discharge and the projected 
changes present the median predictions of the hydrological ensemble (n = 64). The non-monsoon events 
indicate the fraction of all AMAX events that are predicted during the non-monsoon (Oct – May). The AMAX 
P50 is statistically exceeded once every two years and the AMAX P100 is the highest simulated flood event 
in the 40-year record. The predictions for the near future (2020 – 2059) are summarised in Appendix 5.5. 

  AMAX percentile 
 [1000 m3/s] 

Change to 
baseline [%] 

Non-
monsoon 
events [%]  

  P50 P80 P90 P95 P100 P50 P95 P100  
ACCESS-CM2 Baseline  6.0 7.3 7.8 8.2 9.5 - - - 12 

SSP245  7.9 11.2 11.8 12.6 15.4 32 54 62 7 
SSP585  9.5 12.1 15.1 17.3 23.4 58 111 146 4 

ACCESS-
ESM1-5 

Baseline  5.8 8.7 9.5 10.8 13.0 - - - 3 
SSP245  10.1 12.4 15.3 16.6 22.6 74 54 74 0 
SSP585  15.6 20.1 21.7 24.3 28.1 169 125 116 0 

BCC-CSM2-
MR 

Baseline  4.8 5.6 6.4 7.4 9.8 - - - 5 
SSP245  5.5 7.5 8.5 8.9 10.9 15 20 11 5 
SSP585  6.8 9.4 10.4 12.4 16.6 42 68 69 7 

EC-Earth3 Baseline  5.3 6.9 7.6 8.1 11.2 - - - 1 
SSP245  8.9 11.2 12.2 13.7 14.7 68 69 31 0 
SSP585  14.3 17.4 17.9 20.1 23.8 170 148 112 0 

EC-Earth3-
Veg 

Baseline  5.4 7.1 8.6 9.0 11.3 - - - 2 
SSP245  8.9 11.3 14.1 15.9 17.7 65 77 57 2 
SSP585  13.2 16.6 19.4 23.9 31.5 144 166 179 0 

INM-CM4-8 Baseline  5.2 6.3 6.9 7.1 8.7 - - - 7 
SSP245  6.4 8.1 9.3 10.8 11.7 23 52 34 12 
SSP585  8.0 10.1 11.4 11.8 15.1 54 66 74 1 

INM-CM5-0 Baseline  4.9 7.4 9.9 11.8 12.1 - - - 9 
SSP245  6.0 9.3 10.9 11.1 21.0 22 -6 74 6 
SSP585  8.2 11.1 12.3 13.1 20.4 67 11 69 5 

MPI-ESM1-2-
HR 

Baseline  4.5 5.3 6.0 6.8 11.2 - - - 13 
SSP245  4.6 6.5 7.4 8.3 12.5 2 22 12 18 
SSP585  5.3 8.1 9.9 11.7 13.3 18 72 19 29 

MPI-ESM1-2-
LR 

Baseline  5.0 6.7 8.1 10.1 10.8 - - - 16 
SSP245  4.8 5.7 7.4 10.3 13.6 -4 2 26 10 
SSP585  4.9 6.7 7.8 8.6 11.4 -2 -15 6 8 

MRI-ESM2-0 Baseline  4.7 7.0 7.5 9.0 12.3 - - - 15 
SSP245  5.5 8.4 11.1 13.5 21.7 17 50 76 1 
SSP585  7.8 14.6 17.0 18.8 25.2 66 109 105 1 

NorESM2-LM Baseline  6.7 9.5 11.2 11.4 14.0 - - - 4 
SSP245  9.0 11.3 13.9 15 28.5 34 32 104 5 
SSP585  11.2 18.2 20.1 22.6 24.8 67 98 77 1 

NorESM2-MM Baseline  6.2 8.1 9.6 10.3 11.7 - - - 4 
SSP245  9.1 11.6 13.9 14.9 18.5 47 45 58 2 
SSP585  11.1 15.0 16.4 18.9 20.3 79 84 74 0 
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The predictions of the most extreme flows AMAX P100 differ from the AMAX P50 (Figure 

5.29 and Table 5.7). These flows range between 8,700 m3/s (INM-CM4-8) and 14,000 

m3/s (NorESM2-LM) in the baseline. In the far future, the NorESM2-LM model predicts 

the highest discharge for the SSP245 scenario (28,500 m3/s). This is considerably higher 

than the second-highest prediction of 22,600 m3/s of the ACESS-ESM1-5 member. The 

lowest discharge is predicted for BCC-CSM2-MR with 10,900 m3/s. This order changes 

for the high-emission scenario SSP585 for which the highest discharge is predicted by 

EC-Earth3-Veg with 31,500 m3/s, followed by ACCESS-ESM1-5 with 28,100 m3/s. The 

NorESM2-LM model predicts with 24,800 m3/s a lower discharge than for SSP245. The 

lowest AMAX P100 is predicted by MPI-ESM1-2-LR with 11,400 m3/s.   

The members differ in the projected changes and the projected magnitudes. However, 

the models also show different behaviour regarding the AMAX percentile for which they 

predict the largest changes (Figure 5.30 and Table 5.7). The EC-Earth3-Veg model 

predicts higher increases above the AMAX P90  (SSP585). A similar behaviour is 

predicted for ACCESS-CM2, and NorESM2-LM (SSP245). On the contrary, the EC-

Earth3 and ACESS-ESM1-5 models predict higher changes below AMAX P80. However, 

the ACCESS-ESM1-5 model predicts high baseline flood discharge and hence this 

model still projects high increases for the upper AMAX percentiles. The MPI-ESM1-2-

LR model stands out from the ensemble because it predicts low changes and is the only 

model which predicts a decrease in flood flows except for the most extreme AMAX P100.  

 

 

Figure 5.30: The changes of the AMAX percentiles between the baseline (1975 – 2014) and the projected 
climate scenarios (2060 – 2099) for each CMIP6-ensemble member. These changes are the median of the 
hydrological ensemble.  
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5.4.3.3 The composition of the projected flood events 
 

The projected increase of the flood flows is dominated by increasing rainfall-runoff which 

contributes 90 – 93% to the projected increases in the flood discharge. Rainfall-runoff is 

the most important source with a mean contribution of 78% in the baseline scenario 

(Figure 5.31). This share increases to 80% in the near future (2020 – 2059), and to 81% 

(SSP245) and 83% (SSP585) in the far future (2060 – 2099). The absolution rainfall-

runoff contribution increases by 1,953 m3/s (SSP245) and 4,255 m3/s (SSP585) in the 

far future. This projected increase vastly exceeds the projected increase of the baseflow 

and glacier melt components (100 – 250 m3/s). The share of the baseflow and glacier 

melt contributions remain stable at 8 – 10% for SSP245 but decrease by one percent for 

SSP585. The absolute and relative share of snowmelt decreases and 1.1% (SSP245) 

and 0.3% (SSP585) of the flood water originates from snowmelt in the far future. This 

decrease in the snowmelt contribution could either result from decreases in snowfall or 

an earlier melting season.  

 

 

Figure 5.31: mean contribution of the runoff components to the flood discharge for the CMIP6 simulations. 
The error bars indicate the standard deviation of the composition resulting from the ensemble variation and 
the event variation. 
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While rainfall-runoff dominates the periodic mean contribution the other components can 

contribute a large share to individual events (Figure 5.32). The importance of these 

components decreases with the flood discharge and the events with the highest 

magnitudes are composed of ≥ 90% rainfall-runoff. The snowmelt contribution can reach 

up to 75% for lower flood flows (≤ 5,000 m3/s), whereas the number of events with high 

snowmelt contributions decreases with time and emissions. However, the composition 

of the flood flows shares similar characteristics for all scenarios and the increase in the 

flow magnitude is more pronounced than the compositional changes.  

There are distinct differences in the timing of high contributions between the 

components. High snowmelt contributions are simulated in the pre-monsoon season, 

glacier contributions increase during the monsoon season, and the baseflow ones 

increase towards the post-monsoon season (Figure 5.32). No substantial differences in 

the timing of large contributions between the scenarios are predicted except for the 

snowmelt component. High contributions (≥ 50%) are occurring until week 25 in the 

baseline. The timing of such high snowmelt contributions shifts towards earlier dates and 

these events occur only until week 22 in the far future of the high-emission scenario 

SSP585. This coincides with the projected shift of the snowmelt season to earlier months 

(Figure 5.25).  
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Figure 5.32: The relationship between the runoff contribution and the flood discharge (left) and between the 
runoff contribution and the timing of the flood event (right) for the CMIP6 simulations. Each plot consists of 
30,720 samples (12 CMIP6 models x 64 hydrological models x 40 years).   



 

217 

 

5.4.3.4 The timing of the projected flood events 
 

The timing of the flood events remains similar in the projected scenarios. The median 

week of the flood occurrence is week 31 in all scenarios. This week marks the break of 

July and August which are the months with the highest simulated discharge. The high 

agreement in the flood timing is also visible in the density curves in Figure 5.33 which 

indicate no systematic differences between the scenarios.  

The number of floods occurring in the non-monsoon season (Oct – May) decreases for 

the projected scenarios whereas this trend scales with the emission scenario. In the 

baseline period, 7.5% of the simulated flood flows occur in the non-monsoon season. 

This decreases to 5.2% (SSP245) and 5.1% (SSP585) in the near future. In the far 

future, the share of non-monsoon season floods decreases further to 4.7% in the 

SSP585 scenario, while it increases slightly to 5.6% in the SSP245 scenario. The 

ensemble members which predict high flood discharges generally predict fewer flood 

events outside the monsoon season. The models with the highest projected flood flows 

simulate no such events (e.g. ACCESS-ESM1-5, EC-Earth3) (Table 5.7). The MPI-ESM-

1-2-LR and MPI-ESM-1-2-HR models predict the lowest change in the flood discharge 

and for these models, the largest number of non-monsoon season floods are projected. 

For MPI-ESM1-2-HR an increase is predicted from 13% in the baseline to 18% (SSP245) 

and 29% (SSP585) in the far future. Therefore, a contradictory behaviour of more non-

monsoon season events for the higher emissions is simulated for this member.   

 

 

Figure 5.33: The timing of the flood events for the CMIP6 ensemble. Each group consists of 30,720 events 
(12 CMIP6 members x 64 hydrological models x 40 years).   
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5.4.3.5 The duration of the projected flood events 
 

Conventional approaches to estimate the flood duration (e.g. flow duration analysis) 

require the definition of a flow threshold and quantify the duration for which this threshold 

is exceeded. However, the flood flow threshold is unknown for the Karnali River at the 

catchment outlet. Therefore, the flow of the rising and recession limbs is scaled relative 

to the flood discharge to investigate changes in the flood duration between the scenarios. 

This is only conducted for events ≥ AMAX P50 of the flood time series to remove events 

which are potentially misclassified by the AMAX classification approach.   

The scaled flow of the days before and after the flood peak decreases with time and 

emissions (Figure 5.34). The scaled discharge two days before the flood event is 66% 

of the flood discharge in the baseline which decreases to 60% in the near future, and to 

58 – 60% in the far future. The scaled discharge one day after the flood event reduces 

from 94% in the baseline to 93% in the far future. This behaviour of reduced relative 

discharge is predicted consistently for the interval ±10 days to the flood event, and hence 

the simulations projected a higher increase for the flood discharge than for the rising 

limb and the flood recession. This suggests that the flood duration is not projected to 

increase. However, the flood discharge is projected to increase and hence the rising limb 

and the recession may increase in absolute discharge rates but at a lower rate than the 

flood discharge. Therefore, the out-of-bank flow might last longer which cannot be 

investigated without knowing the bankfull flow rate. Nonetheless, the flood projections 

do indicate that the flood-triggering rainfall events increase in intensity since the flood 

flow increases, but do not increase in duration which would result in shifts of the rising 

or recession limbs of the scaled discharge (median predictions).   
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Figure 5.34: The scaled discharge (median) before and after the flood event. The discharge is scaled with 
the flood peak. Only events ≥ AMAX P50 are considered (events which are statistically exceeded once every 
two years) to remove misclassifications from the AMAX approach.  

 

 

The comparison of baseline and projected flood discharge indicates an increase with 

time and emissions. This projected increase is higher for higher percentiles of the 

modelling ensemble. The increase in the flood discharge is predominantly driven by 

higher rainfall-runoff which contributes  90 – 93% to this increase. On the contrary, 

snowmelt loses significance for the flood flows. The comparison of the baseline and 

projected runoff composition indicates no shift in the model behaviour. Therefore, the 

parameter transfer to the projected climates does not cause an unreasonable behaviour 

of the hydrological modelling ensemble. The projected flood discharge indicate no trend 

in the timing and duration of flood events.  

However, while the comparison of baseline and projected flows provides a clear trend of 

increasing flood discharges, it lacks the quantification of the changes in the flood 

magnitudes. This is due to the high temporal variability of extreme events which hampers 

a direct comparison of single events. The mean over a period counteracts this variability 

but loses information about the largest extremes which are naturally most interesting to 

flood managers. It is, therefore, necessary to standardise the AMAX events to quantify 

the changes for past and projected climates. Therefore, a Flood Frequency Analysis is 

conducted to standardise the flood events and quantify the changes in the projected 

flood magnitudes.   
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5.4.4 The flood frequency analysis for the Karnali River 
 

The flood frequencies and magnitudes of the Karnali River are predicted by a Flood 

Frequency Analysis (FFA) which is conducted for the observed and the simulated floods 

of the CMIP6-modelling. The predicted flood flows of the CMIP6 simulations comprise 

three scenarios, the baseline (1975 – 2014) as a reference of the current climatic 

conditions, the medium-emission scenario SSP245 and the high-emission scenario 

SSP585 (both 2020 – 2099). The projected scenarios are split into the near future (2020 

– 2059) and the far future (2060 – 2099). The floods are classified from the Annual 

Maximum Flow (AMAX) approach and each record, therefore, consists of 40 flood 

events.  

The FFA is conducted by fitting an Extreme Value Distribution (EVD) to the flood record 

but it is unknown which EVD best represents the distribution of the flood samples. The 

first Section 5.4.4.1 presents the EVD selection process and Section 5.4.4.2 compares 

the FFAs of the observed flood record and the simulated baseline ones to gain insight 

into the accuracy of the flood frequencies and magnitudes of the CMIP6 simulations. 

The projected changes in flood frequencies and magnitudes are quantified by comparing 

the FFA of the baseline and projected flood records in Section 5.4.4.3. 

 

5.4.4.1 Model selection 
 

A set of eight Extreme Value Distributions EVDs were fitted for each simulated AMAX 

record resulting in 3840 fitted distributions for each EVD (12 CMIP6 x 64 SPHY x 5 

periods). The efficiency of each modelled distribution is evaluated by comparing it with 

the distribution of the AMAX record. The median test statistics are presented in Table 

5.8, and the full range of these statistics is visualised in the boxplots of Figure 5.35.  

All EVDs have a very high median Coefficient of Determination (R2) of ≥ 0.96 and low 

Root Mean Square Errors (RMSE) of ≤ 0.06. The best performance is observed for the 

Wakeby distribution followed by the Generalised Extreme Value distribution, 

Generalised logistic distribution, Pearson Type III distribution, Weibull distribution, and 

the Generalised Pareto distribution. The performances of the distributions are, in 

general, very similar but the Gumbel distribution and Exponential distribution have the 

highest number of frequency curves with R2 < 0.9 and RSME > 0.1. 
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Table 5.8: Median efficiencies for the flood frequency curves fitted for different Extreme Value Distributions. 

Extreme value 

distribution 

Anderson-

Darling Test 

statistic 

Anderson-

Darling Test  P-

Value 

R2 RMSE 

Wakeby 0.205 0.977 0.992 0.028 

Gen. extreme value 0.287 0.947 0.989 0.033 

Gen. logistic 0.331 0.911 0.988 0.036 

Pearson Type III 0.27 0.91 0.988 0.033 

Weibull 0.247 0.839 0.988 0.034 

Gumbel 0.414 0.833 0.984 0.041 

Exponential 0.401 ≤ 0.05 0.968 0.056 

Gen. pareto 0.277 ≤ 0.05 0.984 0.039 

 

 

 

 

Figure 5.35: The performance of the Extreme Value Distributions fitted to the simulated AMAX records. 
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A low Anderson-Darling-Test (AD) value indicates a better fit between the modelled 

distribution and the data. The Wakeby distribution has the lowest AD value but all EVDs 

except for the Gumbel distribution, the Exponential distribution, and the Generalized 

logistics distribution are very similar (median AD values 0.20 – 0.29). However, the 

Pearson Type III distribution, Weibull distribution, the Exponential distribution, and the 

Generalised Pareto distribution contain higher numbers of EVD for which the null-

hypothesis (P-Value ≤ 0.05) cannot be rejected. Therefore, these distributions are 

excluded. The Gumbel distribution is eliminated for the higher RMSE, and the 

Generalised logistic distribution is excluded for the higher AD value. The remaining 

Generalised Extreme Value distribution and Wakeby distribution have high efficiencies 

and are both suitable candidates. The Wakeby distribution has a slightly better AD test 

statistic and is therefore selected for the FFA.  

 

5.4.4.2 The comparison of the baseline predictions with observations 
 

The FFA is a statistical data-driven method and, thus, prone to errors in the dataset. The 

measurement uncertainty which describes errors in the discharge of the flood record is 

accounted for by the ensemble predictions of 64 hydrological models and the 12 CMIP6 

datasets. The sampling error describes the uncertainty arising from deviations between 

the true flood discharge distribution and the sampled one, which is most commonly 

exacerbated by the short record length. This sampling uncertainty is estimated from a 

bootstrap approach (Burn, 2003). The bootstrap size was set to 999 and it was tested 

that a larger size does not alter the predictions. Consequently, 64,000 frequency curves 

are for each CMIP6 member (999 synthetic records + 1 simulated record x for each of 

the 64 hydrological models).  

A random sampling approach is used to estimate the measurement uncertainty in the 

discharge observations. For this, the AMAX events are extracted from the discharge 

observations. This record is duplicated 64 times (to equal the measurement uncertainty 

sample size of the hydrological modelling), and each element of these records is 

multiplied with a random value in the range of 0.6 – 1.4 to incorporate the uncertainty in 

the discharge measurements which ranges between ± 40% for flood discharges 

(McMillan et al., 2012 and Figure 4.16). The bootstrap approach (n = 999) is used to 

estimate the sampling uncertainty which results in 64,000 frequency curves of the 

observed discharge record. The predictions of these flood frequency curves are 

hereafter referred to as the observed flood magnitudes. For clarification, these observed 

flood magnitudes are simulated from discharge observations.  
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The flood magnitudes (FM) of the baseline record are lower than the observed FM 

across the full range of investigated flood frequencies (Figure 5.36). The slope of the 

observed FFA is steeper than the one of the baseline FFA and hence the differences 

increase with the return period. The baseline FM of the 1-in-10-years event is 8,300 m3/s 

and is 43% lower than the observed FM (12,900 m3/s). This difference increases to 65% 

for the 1-in-100-years event for which the baseline FM is 11,600 m3/s and the observed 

FM 22,600 m3/s (median predictions).  

The differences between the baseline FM and the observed FM decrease with increasing 

percentile of the ensemble predictions (Figure 5.36). The underestimations are highest 

for the P2.5 and range between 70 – 76% for the 1-in-10-years to 1-in-100-years return 

periods. For the P97.5, these underpredictions range between 20 – 46% for the 1-in-10-

years to 1-in-100-years return periods. However, the absolute underpredictions increase 

with the percentile from 7,400 m3/s (P2.5) to 11,600 m3/s (P97.5) for the 1-in-100-years 

event.  

 

 

 

 

Figure 5.36: Flood frequency curves of the AMAX observations(1975 – 2014), and the one simulated from 
the CMIP6 baseline predictions (1975 – 2014). The solid line indicates the median and the dashed ones are 
the P2.5 and P97.5 of the ensemble. The ensemble sizes are 64,000 for the observed FFA and 768,000 for 
the baseline FFA. 
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5.4.4.2 The flood magnitudes of the projected climates 
 

The Flood Magnitudes (FM) and Flood Frequencies (FF) are projected to increase for 

the projected climate scenarios. This projected FM increase scales with time and 

emissions (Figure 5.37). The Flood Frequency Analysis (FFA) indicates that the flood 

magnitudes increase for all percentiles of the ensemble predictions and across the full 

range of investigated return periods. 

The median flood magnitude of the 1-in-10-year event increases from 8,300 m3/s in the 

baseline to 10,300 m3/s (SSP245) and 10,700 m3/s (SSP585) in the near future, and to 

11,300 m3/s (SSP245) and 15,200 m3/s (SSP585) in the far future (Table 5.9). Therefore, 

the projected 1-in-10-years magnitudes are close to or exceed the baseline 1-in-100-

year magnitude. This baseline 1-in-100-years magnitude is 11,600 m3/s, which 

increases by 23 – 26% to 14,300 – 14,600 m3/s (SSP245 and SSP585) in the near future, 

and increases by 40% to 16,200 m3/s (SSP245) and 79% to 20,700 m3/s (SSP585) in 

the far future. The median flood frequency curves of the baseline and projected 

scenarios differ in magnitude but have a similar shape above the 1-in-10-years return 

period, and hence similar changes are projected for all return periods between 1-in-10-

years and 1-in-100-years (median predictions). 

 

 

 

Figure 5.37: The flood frequency analysis for the baseline and projected scenario of the CMIP6 ensemble. 
The solid lines indicate the median the dashed lines indicate the P2.5 and P97.5 of the ensemble predictions.  
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Table 5.9: The median flood magnitudes of the CMIP6 ensemble for selected return periods and the 
projected changes to the baseline. 

Scenario Flood magnitude  [1,000 m3/s] Change to baseline [%] 

10 y 20 y 50 y 100 y 10 y 20 y 50 y 100 y 
Baseline (1975 - 2014) 8.3 9.4 10.7 11.6 - - - - 
SSP245 (2020 - 2059) 10.3 11.5 13.1 14.3 24 23 23 23 
SSP585 (2020 - 2059) 10.7 12 13.5 14.6 29 28 27 26 
SSP245 (2060 - 2099) 11.3 12.8 14.8 16.2 37 37 39 40 
SSP585 (2060 - 2099) 15.2 17 19.2 20.7 83 82 80 79 

 

 

The projected changes in the flood magnitudes are similar to the projected flood flow 

changes (Section 5.4.3.1). These also predict increases with time and emissions as well 

as growing scenario differences in the far future. Furthermore, the projected changes of 

the AMAX percentiles are of similar magnitude as for the FFA predictions (Table 5.5 and 

Table 5.9). The AMAX P90 is projected to increase by 24% for SSP245 and 27% for 

SSP585 in the near future. This rate of change is similar to the projected change of the 

1-in-10-year flood magnitude of 24% and 29% for both scenarios respectively. 

Furthermore, the predicted AMAX percentile and the predicted flood magnitudes are of 

similar magnitude. The difference between the AMAX P90 and the 1-in-10-years 

magnitude is within ±300 m3/s for each scenario. The rate of change of the P100 is similar 

(±6%) to one of the 1-in-100-year events and the flow differences are within ±800 m3/s. 

The only exception is the SSP245 (far future) for which higher AMAX P100 changes are 

predicted (+48%) than for the 1-in-100-years FM (+40%) (median predictions). 

The projected increase of the flood magnitudes scales with the percentile of the 

ensemble predictions (Figure 5.37 and Table 5.10). For example, the flood magnitudes 

of the 1-in-100-years event of the far-future SSP585 are projected to increase by 40%, 

and 85% at the P2.5 and P97.5 of the FFA ensemble, respectively. This behaviour is 

consistent for each scenario in both periods for all return periods. Furthermore, the slope 

of the flood frequency curves is steeper at the higher percentiles which means the 

prediction range of the ensemble increases with the return period. For example, the 

prediction range (P2.5 – P97.5) is 9,200 m3/s (4,800 – 14,000 m3/s) for the 1-in-10-years 

event and increases to 14,600 m3/s (6,000 - 20,600 m3/s) for the 1-in-100-years event 

of the baseline scenario. (Table 5.10).  

  



 

226 

 

Table 5.10: The flood magnitude prediction intervals of the CMIP6 ensemble for the 1-in-10-years and 1-in-
100-years return periods.  

 Flood magnitude  

 [1,000 m3/s] 

Change to baseline  

[%] 

 10 y 100 y 10 y 100 y 

 P2.5 P97.5 P2.5 P97.5 P2.5 P97.5 P2.5 P97.5 

Baseline (1975 - 2014) 4.8 14,0 6,0 20.6 - - - - 

SSP245 (2020 - 2059) 5.2 17.4 6.8 25.1 7 24 12 22 

SSP585 (2020 - 2059) 5.3 20.3 7.2 27.3 11 45 20 32 

SSP245 (2060 - 2099) 5.5 20.3 7.8 33.5 14 45 30 62 

SSP585 (2060 - 2099) 6.3 28.6 8.4 38.2 32 105 40 85 

 

While the shape of the frequency curves differs between percentiles of the ensemble 

predictions, the shape of the respective curves is largely similar for the three scenarios 

(Figure 5.37). The projected frequency curves at the P2.5 are moderately steeper than 

the baseline one and hence the projected change increases with the return period. For 

example, the projected change of P2.5 increases from 14% to 30% between the 10 – 100 

year return period for SSP245 (far future). The shape of the median flood frequency 

curves is largely similar for the three scenarios. The slope of the baseline P97.5 flood 

frequency curve is steeper than the projected flood frequency curves, and hence the 

projected change decreases with the return period. For example, the projected changes 

of SSP585 (far future) decrease from 105% for the 1-in-10-years event to 85% for the 1-

in-100-years event (Table 5.10).  

The differences between the medium-emission scenario SSP245 and the high-emission 

scenario SSP585 are stable for the return periods except for the P97.5 predictions (Figure 

5.38). The P97.5 flood frequency curve of the SSP245 scenario (far future) is steeper than 

the one of SSP585 and hence the difference between both scenarios decreases with 

the return period. Figure 5.38 shows the cumulative frequency curves of the FFA 

ensemble predictions for the 1-in-100-years event (far future) and is a cross-section 

through the flood frequency curves of Figure 5.37 at the 1-in-100-years return period. It 

shows that the difference in the predicted flood magnitudes between both projected 

scenarios increases until the 80th percentile of the FFA ensemble. At higher percentiles, 

this difference decreases, particularly above the 95th percentile. The scenario differences 

at P99 are 3,200 m3/s (SSP245: 37,600 m3/s, SSP585: 40,800 m3/s) and hence very 

small. Therefore, almost similar results are predicted for the most extreme ensemble 

predictions of SSP245 and SSP585 for the 1-in-100-years event in the far future.  
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The flood frequencies are the counterpart of the magnitudes and therefore decrease with 

time and emissions (Table 5.11). The discharge of the baseline 1-in-100-year flood event 

(11,600 m3/s) is projected to be exceeded every 21 years for SSP245 and 16 years for 

SSP585 in the near future (median predictions). The return periods are projected to 

decrease further in the far future and the baseline 1-in-100-year magnitude is exceeded 

every 11 years (SSP245) and 3 years (SSP585) (median predictions). When also 

including the P2.5 and P97.5 predictions, the baseline 1-in-100-year magnitude is 

exceeded every 21 – 34 years (SSP245) and 11 – 23 years (SSP585) in the near future, 

and every 11- 16 years (SSP245) and 2 – 7 years (SSP585) in the far future.  

 

 

 

Figure 5.38: Cumulative frequency curves of the flood frequency analysis ensemble predictions for the 1-in-
100-years flood event in the far future. This figure shows a cross-section of the flood frequency curves of 
the 1-in-100-years event shown in Figure 5.37. 

 

Table 5.11: The projected return periods of the baseline 1-in-100-years flood magnitudes for different 
percentiles of the CMIP6 ensemble predictions. 

 P2.5 P50 P97.5 

 
Baseline (1975 – 2014) 100 100 100 
SSP245 (2020 - 2059) 34 21 29 
SSP585 (2020 - 2059) 23 16 11 
SSP245 (2060 - 2099) 16 11 11 
SSP585 (2060 - 2099) 7 3 2 
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The FFA of the CMIP6 ensemble predicts increases in the flood magnitudes and 

frequencies which scale with time and emissions. Furthermore, the steepness of the 

flood frequency curves increases with the percentile of the ensemble predictions. This 

leads to an uncertainty interval which increases with time, emissions, and the return 

period.  

 

5.4.4.3 The flood magnitudes of the CMIP6 ensemble members 
 

The results of the Flood Frequency Analysis (FFA) of the CMIP6-ensemble showed two 

main characteristics; i) the increase of flood magnitudes with time and emissions and; ii) 

the increasing uncertainty (indicated by the increasing prediction range) with time,  

emissions, and return period. Both these characteristics dominate the FFA of the CMIP6-

ensemble members.  

The CMIP6-ensemble members predict the increase of Flood Magnitudes (FM) with time 

and emissions. Furthermore, the differences between the ensemble members increase 

with time and emissions which is one reason for the increasing uncertainty. These 

increasing differences are illustrated by the flood frequency curves (Figure 5.39) and the 

predicted flood magnitudes (Tables 5.12 – 5.14) of the CMIP6 ensemble members.  

In the baseline scenario, the median 1-in-100-years FM ranges between 8,400 m3/s 

(INM-CM4-8) and 15,700 m3/s (INM-CM5-0). The magnitudes of both members have a 

considerable distance to the next closest members which are BCC-CMS 2-MR (9,500 

m3/s) and ACCESS-ESM1-5 (14,000 m3/s) (Table 5.12). This prediction range increases 

for the projected climates. In the far future of SSP245, the lowest median 1-in-100-years 

magnitude is 11,100 m3/s predicted by BCC-CM2-MR, and the highest one is 22,900 

m3/s predicted by NorESM2-LM (Table 5.13). For SSP585, the projected FM ranges 

between 11,500 m3/s (MPI-ESM1-2-LR) and 28,100 m3/s (EC-Earth3-Veg), whereas the 

MPI-ESM1-2-LR is considerably lower than the second lowest prediction of INM-CM4-8 

(14,400 m3/s) (Table 5.14). Therefore, the difference in the median magnitudes of the 

CMIP6 members increases from 7,300 m3/s in the baseline to 11,800 m3/s (SSP245) 

and 16,600 m3/s (SSP585) in the far future. This indicates that the difference between 

the climate projections of the CMIP6 members increases with time and emissions, which 

translates into an increasingly uncertain response of the flood hazards to the projected 

climates and explains the increasing uncertainty interval with time and emissions.  
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Figure 5.39: Median flood frequency curves of the CMIP6-ensemble members. The flood frequency curves 
of the 2.5th and 97.5th percentiles are included in the Appendices 5.6 and 5.7. 

 

 

Table 5.12: Flood magnitudes of the 1-in-100-years event for each CMIP6-ensemble member for the 
baseline scenario (1975 - 2014). 

CMIP6 member Flood magnitude [m3/s] 
 Median P2.5 P97.5 
ACCESS-CM2 9.7 7.0 12.8 
ACCESS-ESM1-5 14.0 8.7 21.5 
BCC-CSM2-MR 9.5 5.2 15.2 
EC-Earth3 11.2 6.6 18.0 
EC-Earth3-Veg 11.5 6.6 18.5 
INM-CM4-8 8.4 5.2 12.9 
INM-CM5-0 15.7 9.7 23.0 
MPI-ESM1-2-HR 9.5 5.1 18.3 
MPI-ESM1-2-LR 13.1 7.1 20.9 
MRI-ESM2-0 12.0 7.1 20.4 
NorESM2-LM 13.7 9.1 21.1 
NorESM2-MM 12.3 7.7 18.9 
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Table 5.13: Flood magnitudes of the 1-in-100-years event for each CMIP6-ensemble member for the 
SSP245 scenario (2060 - 2099). 

CMIP6 member Flood magnitude [1000 m3/s] Change to baseline [%] 
 Median P2.5 P97.5 Median P2.5 P97.5 
ACCESS-CM2 15.0 10.1 22.7 55 44 78 
ACCESS-ESM1-5 21.9 12.8 35.3 57 47 64 
BCC-CSM2-MR 11.1 6.8 17.4 17 32 14 
EC-Earth3 15.3 9.9 23.3 37 51 29 
EC-Earth3-Veg 19.5 11.7 28.2 69 78 52 
INM-CM4-8 12.6 7.7 17.9 50 46 39 
INM-CM5-0 17.2 9.3 32.8 10 -3 43 
MPI-ESM1-2-HR 11.6 6.3 22.5 22 23 23 
MPI-ESM1-2-LR 15.0 6.9 27.9 15 -3 33 
MRI-ESM2-0 20.3 10.1 38.0 69 43 86 
NorESM2-LM 22.9 12.1 42.9 67 33 103 
NorESM2-MM 17.8 10.5 27.4 45 36 45 

 

Table 5.14: Flood magnitudes of the 1-in-100-years event for each CMIP6-ensemble member for the 
SSP585 scenario (2060 - 2099). 

CMIP6 member Flood magnitude [1000 m3/s] Change to baseline [%] 
 Median P2.5 P97.5 Median P2.5 P97.5 
ACCESS-CM2 23.5 14.1 33.0 143 102 158 
ACCESS-ESM1-5 28.0 17.9 38.8 100 106 80 
BCC-CSM2-MR 16.7 8.7 27.5 76 67 80 
EC-Earth3 22.8 14.5 31.6 103 120 76 
EC-Earth3-Veg 28.1 17.0 45.7 144 159 147 
INM-CM4-8 14.4 9.7 19.8 71 86 53 
INM-CM5-0 18.1 9.8 30.2 15 2 31 
MPI-ESM1-2-HR 15.0 6.9 27.4 58 34 50 
MPI-ESM1-2-LR 11.5 6.4 20.7 -12 -10 -1 
MRI-ESM2-0 27.8 14.8 41.0 132 109 101 
NorESM2-LM 25.8 15.0 39.7 88 66 88 
NorESM2-MM 20.7 13.5 28.8 68 76 52 

 

 

The uncertainty of the projected flood magnitudes is, aside from the climate models, 

caused by the hydrological model and the Flood Frequency Analysis (FFA). The 

comparison of the prediction intervals of the FM of the CMIP6 ensemble, the FM of the 

CMIP6 members, and the AMAX percentiles enables the estimation of the impact of the 

uncertainty sources (Table 5.15). The AMAX percentiles provide information about the 

uncertainty arising from the ensemble of the hydrological models, the FM of the CMIP6 

members provides information about the uncertainty of the FFA, and the CMIP6 

ensemble provides information about the uncertainty in the climate projections. The 

AMAX P90 has a similar frequency as the 1-in-10-years event, and the AMAX P95 has a 

similar frequency as the 1-in-20-years event. 
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The mean (CMIP6-ensemble members) prediction interval of the AMAX percentile 

increases with the flood discharge. For example, the interval increases from 5,800 m3/s 

of the AMAX P90 to 8,400 m3/s of the AMAX P100 in the baseline period (Table 5.15). 

Since the flood discharge increases with time and emissions, the prediction interval 

increases alongside to 14,300 m3/s for the AMAX P100 projected in the far future of 

SSP585. Since these are the means of the CMIP6 ensemble members the increasing 

prediction range indicates that the uncertainty introduced by the hydrological model 

increases with time and emissions. 

The uncertainty introduced by the FFA is added to the hydrological uncertainty. This FFA 

uncertainty can be estimated by comparing the mean prediction ranges of the AMAX 

percentiles and the flood magnitudes of respective frequencies. This difference between 

the 1-in-10-years magnitude and the AMAX P90 prediction intervals ranges between 

1,100 – 2,000 m3/s and increases to 1,200 – 2,800 m3/s for the 1-in-20-years magnitude 

and the AMAX P95. These differences are low in comparison to the mean prediction 

range of the AMAX percentiles which indicates that a large fraction of the uncertainty in 

the FFA originates from the hydrological ensemble. However, the mean prediction 

interval of the FM consistently increases with the return period, e.g. from 6,900 m3/s (1-

in-10-years event) to 11,400 m3/s (1-in-100-years event) in the baseline period (Table 

5.15). This indicates that the uncertainty of the FFA increases with the return period of 

the event and hence the prediction of rare events is more uncertain than for more 

common events. 

The differences between the mean FM prediction intervals of the CMIP6 ensemble and 

the CMIP6 members provide information about the uncertainty that arises from the 

variation in the climate projections. This difference increases from 2,300 m3/s (9,200 

m3/s – 6,900 m3/s) in the baseline to 9,500 m3/s (22,300 m3/s – 12,800 m3/s) in the far 

future of SSP585 for the 1-in-10-years events (Table 5.15). This indicates that climate 

uncertainty increases with time and emissions and is one of the main uncertainty sources 

in the far future.  

This comparison of the prediction intervals of the AMAX percentiles, the ensemble 

members, and the ensemble indicates that the main sources of the uncertainty are the 

hydrological modelling, and the climate projections. The FFA uncertainty is caused by 

the short record length mainly affects the extreme 1-in-100-years magnitudes. However, 

this comparison is an approximation of the uncertainty sources and not an exact 

quantification.   
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Table 5.15: The mean prediction range of the flood magnitudes of the CMIP6-ensemble (left), the CMIP6-
members (centre), and the mean prediction range of AMAX percentiles of the CMIP6-members. The 
prediction range is the difference of the predicted values at the 2.5th and 97.5th percentiles of the ensembles. 
The AMAX percentiles (right) refer to the rank of the AMAX event. The P100 is the highest simulated AMAX 
event, the P95 is the 2nd highest event which is statistically exceeded once every 20 years, and the P90 is the 
4th highest event which is statistically exceeded once every 10 years. 

 Prediction range of the 

flood magnitudes of the 

CMIP6-ensemble  

[1000 m3/s] 

Mean prediction range of 

the flood magnitudes of 

the CMIP6-members  

[1000 m3/s] 

Mean prediction 

range of the AMAX 

percentiles of the 

CMIP6-members 

[1000 m3/s] 

 10 

years 

20 

years 

100 

years 

10 

years 

20 

years 

100 

years 

P90 P95 P100 

Baseline  

(1975 - 2014) 

9.2 10.6 14.6 6.9 8 11.4 5.8 6.8 8.4 

SSP245  

(2020 - 2059) 

12.2 13.8 18.3 8.5 9.9 14 7.1 8.3 10.2 

SSP585  

(2020 - 2059) 

15 16.5 20 9 10.3 13.8 7.8 9 10.4 

SSP245  

(2060 - 2099) 

14.8 17 25.7 9.8 12 18.5 8.3 9.2 13.5 

SSP585  

(2060 - 2099) 

22.3 24.4 29.7 12.8 14.6 19.6 10.8 12.2 14.3 

 

 

The uncertainty of the CMIP6 climate projections is indicated by the member variation 

of the projected changes. The CMIP6 ensemble pronhects and increase with time and 

emissions and this is, to a varying degree, reflected by the ensemble members but a 

different behaviour is predicted for several members (Figure 5.40). The median 1-in-100-

years flood magnitude is projected to increase by 23% for the CMIP6-ensemble in the 

near future (2020 – 2059) of the medium emission scenario SSP245. However, the MPI-

ESM1-2-LR member predicts a decrease of this magnitude by 21%. This is considerably 

lower than the second-lowest projection of INM-CM5-0 with an increase of 7%. The 

largest changes are projected for INM-CM4-8 (+70%) and, with a large distance 

ACCESS-CM2 (+44%). The ensemble predicts an increase in the median flood 

magnitude with a 100-year return period of 26% for SSP585 (near future). The INM-

CM5-0 contradicts this behaviour and is the only member projecting a decrease of this 

magnitude (-16%). The largest changes are projected for EC-Earth-3 (+81%) and, with 

a large distance, INM-CM4-8 (+55%). Several members project a higher increase for 

SSP245 than for SSP585 in the near future. These models are ACCESS-CM2, INM-

CM4-8, BCC-CSM2-MR, NorESM2-MM, and INM-CM5-0 (Figure 5.40). 
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Figure 5.40: Change of the projected flood magnitude to the baseline of each CMIP6-ensemble member 
(median predictions). 

 

 

In the far future (2060 – 2099), only the MPI-ESM1-5-LR model predicts a higher 

increase for SSP245 (+15%) than for SSP585 (-21%) (Figure 5.40). The lowest change 

for the SSP245 scenario is projected by the INM-CM5-0 member (+10%), and the 

highest one for the EC-Earth3-Veg and MRI-ESM2-0 members (+69%). For the SSP585 

scenario, there is a large difference between the projections of the two members 

predicting the lowest change which are MPI-ESM1-5-LR (-12%) and INM-CM5-0 

(+15%). The largest increases are projected for EC-Earth3-Veg and ACCESS-CM2 

(+144 and +143%) (median predictions). 

The MPI-ESM-1-5-LR member stands out from the ensemble by consistently predicting 

low changes and, thus a small response of flood hazards to climate change. This is, to 

a lower degree also valid for the INM-CM5-0 model which predicts the highest flood 

magnitudes in the baseline period. However, the members which predict high increases 

in flood discharge (Section 5.4.3.2) predict high increases in flood magnitudes.   
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5.5 Discussion of the projected flood hazards 
 

The prediction of future flood hazards was conducted by applying the hydrological model 

with an ensemble of climate projections from 12 downscaled and bias-corrected CMIP6 

models within a parameter uncertainty estimation framework. The projected flood 

discharge was then analysed with a Flood Frequency Analysis (FFA) to quantify changes 

in the flood magnitudes and frequencies. Each stage of the modelling process introduces 

uncertainty which propagates through the modelling cascade, in particular the transfer 

of hydrological parameters from the observed hydro-meteorological conditions in 

Chapter 4 to the CMIP6 climate simulations, the transfer of these hydrological 

parameters between the past and projected climates, the uncertainty of the projections 

of the future climates, and the statistical analysis of the projected floods.  

The first Section 5.5.1 discusses the performance of the hydrological model by 

comparing the model behaviour of the baseline period with the behaviour of the historical 

simulations of the observed hydro-meteorological conditions. Section 5.5.2 discusses 

the projected changes in the hydrological system of the projected climate scenarios. 

These two sections provide information about the robustness of the model predictions 

and are the foundation for the discussion of the projected flood flows in 5.5.3.   

 

5.5.1 The effects of the parameter transfer to the climate projections 
 

The hydrological model was calibrated from the observed hydro-meteorological 

conditions and 64 parameter sets were identified which replicate the observed 

catchment behaviour (Chapter 4). This hydrological ensemble was applied to the 

projected climate of an ensemble of 12 CMIP6 models for the baseline scenario, and 

two projected emission scenarios. This is an accepted and robust modelling strategy for 

assessing the climate change impact on the catchment hydrology in the region 

(Immerzeel et al., 2013; Lutz et al., 2014; Nepal et al., 2014; Bhattarai et al., 2018; 

Chandel and Ghosh, 2021). However, this approach introduces additional uncertainty 

because parameters are transferred between datasets with individual biases.  

The performance of the hydrological simulations regarding the flow seasonality and the 

runoff composition was discussed for the historical simulations in Chapter 4.5. The 

behaviour of these simulations reflects our knowledge of Central Himalayan catchment 

hydrology. Since it is established that the simulations are a behavioural representation 

of the hydrology of the Karnali River system, this section focuses on the differences 
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between the baseline and historical simulations. The two main differences are the 

reduced rainfall-runoff which translates into lower annual discharge predictions due to 

its dominating role on catchment hydrology, and the increased glacier melt runoff and 

the prolonged glacier melt period which partly compensates for the reduced rainfall-

runoff in the annual budget.  

 

5.5.1.1 The differences in the rainfall-runoff 
 

The median annual rainfall-runoff of the baseline simulations (15 Billion m3/a) is 

significantly lower than the historic ones (27 Billion m3/a) (Figure 5.13). Most of this deficit 

is generated during the monsoon season, leading to lower predicted monsoon season 

runoff in the baseline simulations. These large difference in rainfall-runoff between both 

sets of simulations is systematic and related to the removal of the precipitation correction 

factor in the baseline simulations. This factor increases the precipitation by 35 – 42% 

(ensemble median: 40%) in the historical simulations to compensate for a negative bias 

in the precipitation data. The rainfall-runoff difference between both simulations is 57% 

and hence it is likely that a large fraction of the lower baseline rainfall-runoff is caused 

by the removal of the precipitation correction factor. The lower rainfall-runoff is the main 

cause of a deficit in the annual discharge of the baseline simulations. This suggests that 

the precipitation correction factor could have transferred from the historical data to the 

climate scenarios as also conducted by Lutz et al. (2014). However, it was not 

transferred for three reasons: i) the CMIP6 dataset is a regional, downscaled product 

that is already bias-corrected (Mishra et al., 2020); ii) it is unlikely that each CMIP6 

member inherits a similar bias which coincides with the bias of the observed precipitation 

data and; iii) the climate change impact assessment implies the non-stationarity of the 

climate which raises the question whether the bias is stationary, and thus whether a 

stationary precipitation correction factor is applicable (Bérubé et al., 2022; Majone et al., 

2022). 

The lower rainfall-runoff might further be affected by parameter interactions. While the 

transfer of the bias-correction factor to the CMIP6 data would have introduced 

uncertainty, its removal also introduces uncertainty because the other parameters were 

calibrated in combination with it (Odoni, 2007). The median annual baseflow is 11 Billion 

m3 and is similar in the baseline and historical simulations which means, in conjunction 

with the lower total discharge, that a larger fraction of the rainfall is converted to baseflow 

in the baseline simulations. The sensitivity analysis of the model parameter in Chapter 

4 showed the sensitivity of the rainfall-runoff and baseflow allocation, particularly for the 
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AlphaInf parameter (fraction of daily rainfall during the hour of most intense rainfall) 

which simulates the infiltration-excess runoff, and the kEff parameter which describes 

the saturated hydraulic conductivity. These parameters were calibrated in conjunction 

with the precipitation correction factor and the removal of the correction factor alters their 

behaviour leading to a larger baseflow contribution. However, these parameters were 

also calibrated for the historical data and the parameter transfer to the CMIP6 data also 

changes their behaviour. This type of uncertainty is inherent in the research design. 

This different allocation between rainfall-runoff and baseflow raises the question of 

whether the baseline simulations are less behavioural representations of the 

hydrological system. This question is difficult to address because the true runoff 

composition is unknown, and every quantification is based on hydrological modelling. 

The comparison of the contributions with other studies is hampered by differences in the 

catchment properties, climate data, study periods and simulation lengths, and model 

structures. However, the median annual rainfall-runoff composition (40%) is lower than 

the one simulated for the Upper Ganga Basin (66%) to which the Karnali River 

contributes (Lutz et al., 2014). On the other hand, the allocation of baseflow and rainfall-

runoff is not well understood for Central Himalayan catchments and the simulated 

combined contribution of rainfall-runoff and baseflow 68% is similar to the 66% estimated 

for the Dudh Koshi basin (Nepal et al., 2014). The high correlation of the monthly 

discharge and the monthly runoff contributions between the historical and baseline 

simulations indicates that the model behaviour has not shifted which would limit the 

predictive capability of the baseline simulations (Figure 5.15).  

 

5.5.1.2 The differences in the glacier melt runoff 
 

The second difference between the baseline and historic simulations is the increased 

glacier melt runoff. This component contributes (median) 4% to the annual runoff in the 

historical simulations but 20% in the baseline ones. While this increase is also caused 

by the lower rainfall-runoff, the glacier melt also increases strongly in absolute quantities 

from 1.6 Billion m3/a in the historical simulations to 7.6 Billion m3/a in the baseline ones 

(Figure 5.13). The importance of glacier melt for the annual budget in the region is 

strongly affected by the glaciated area of the catchment. The Ganga which comprises 

Central Himalayan catchments but also large parts of the Indo-Gangetic plain is supplied 

to 4% by glacier melt (Immerzeel et al., 2010). This contribution increases to 11.5% for 

the Upper Ganga Basin which comprises a lower fraction of the plain (Lutz et al., 2014). 

The contribution further increases for high mountainous subbasins and in the Dudh 
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Koshi River and the Langtang River, glacier melt contributes 17% and 50% respectively 

(Immerzeel et al., 2013; Nepal et al., 2014). The Karnali River is located, in terms of the 

glaciated area, somewhat between the Langtang River and the Upper Ganga River and 

hence the 20% contribution is not out of the boundary of predicted contributions in the 

region.  

The glacier melting season increases in the baseline simulations and is longer than for 

other regional studies. The glacier melt season lasts from June to September in the 

historical simulations and increases from April to November in the baseline simulations. 

Other studies predicted melt season lasting from May – October and June – September 

for the Langtang River (Immerzeel et al., 2012, 2013), May – September for the Dudh 

Koshi (Nepal et al., 2014), and June – October for the Upper Gahagara River to which 

the Karnali contributes (Lutz et al., 2014). Furthermore, low glacier melt runoff is also 

predicted throughout the winter which is not predicted in any other study and which 

contradicts the seasonality with glacier growth during the winter and glacier melt during 

the summer. This indicates that the glacier melt runoff is overestimated and that the 

performance of the glacier module decreases in the baseline simulations.  

The glacier melt is temperature dependent and hence the shift in the glacier 

representation results from temperature differences between the observed temperature 

data and the CMIP6 baseline temperature data. The glacier processes are controlled by 

temperature-dependent melt parameters (degree-day factors). Temperature differences 

between the datasets change the behaviour of these parameters and lead to an increase 

in the melt rates.  

The variation in the predicted melt rates between the 12 CMIP6 members is small 

(Figure 5.14). This consistent behaviour for 12 different climate models alongside the 

vast increase from the historical to the baseline simulations provides evidence for a 

systematic difference between the datasets which may not only result from the 

parameter transfer. One plausible explanation is that the empirical lapse rate (Chapter 

4) which was used for the regionalisation is not transferable to the CMIP6 data and leads 

to a warm bias in the high mountainous parts of the catchment. However, the uncertainty 

in the precipitation projections is larger than the uncertainty in the temperature 

projections. Hence the lower variation in the temperature-driven glacier melt than in the 

other, precipitation-driven components may also result from the climate model 

uncertainty (Wu et al., 2022).  
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5.5.2 The projected changes in the hydrological system 
 

The calibrated parameters are projected onto the future climate. Thus, the modelling 

strategy is based on the assumption of stationarity because the model is calibrated to 

climatic conditions that are no longer valid for the projected climates (Jehanzaib et al., 

2020; Bérubé et al., 2022). This problem is more pronounced for precipitation than for 

temperature because the internal variability (the natural variation in precipitation) is 

larger, the response to anthropogenic forcing is later, and the uncertainty in the climate 

projections is larger (Giuntoli et al., 2018; Martel et al., 2018; Bérubé et al., 2022; Wu et 

al., 2022). Thus, the use of global parameters for past and projected climates introduces 

uncertainty, and this uncertainty might vary between CMIP6-ensemble members due to 

different degrees of non-stationarity. However, this uncertainty resulting from the non-

stationarity is smaller than the structural uncertainty of the hydrological model (Poulin et 

al., 2011; Bérubé et al., 2022). 

The next sections discuss the projected hydrological systems to investigate the drivers 

of changes in flood hazards and to gain an understanding of the reliability of the 

simulations. 

 

5.5.2.1 Annual discharge 
 

The annual discharge is projected to increase with time and emissions in comparison 

with the baseline reference scenario (1975 – 2014). This projected increase is consistent 

with our knowledge of the climate and hydrological systems and agrees with regional 

observations. The water vapour content of the atmosphere increases with rising 

temperatures and hence wet seasons become wetter (Douville et al., 2021). The 

Himalayas have warmed by 0.2 ˚C per decade since the 1970s and increasing annual 

precipitation has been observed since the 1990s (Ren et al., 2017; Krishnan et al., 2019). 

The annual and monsoon precipitation is projected to increase with the temperature in 

the Himalayas (Krishnan et al., 2019; Douville et al., 2021). It is, thus, reasonable that 

the annual discharge rates are projected to increase as the monsoon season dominates 

the hydrological regime of the Karnali River. The projected increases scale with time and 

emissions and hence this projected evolution correlates with the temperature projections 

(Figure 5.2).  
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The differences between the medium and high emission scenarios increase in time, and 

similar trends are predicted in the near future (2020 – 2059) (Figure 5.22 and Table 5.3). 

This similar annual discharge can be attributed to similar precipitation projections in the 

first decade of the period as indicated by the similar rainfall-runoff predictions. 

Furthermore, the internal variability of precipitation is large and is projected to increase 

for the South Asian monsoon precipitation (Martel et al., 2018; Douville et al., 2021; 

Bérubé et al., 2022). Therefore, the precipitation response to climate change, and thus 

runoff response, is overlayed by the internal variability in the near future and manifests 

from the 2040s (Massei et al., 2020; Douville et al., 2021). The annual discharge 

increases by 24% (SSP245) and 56% (SSP585) in the far future (2060 – 2099) and 

hence the streamflow response to the higher emissions intensifes with time (Figure 5.22 

and Table 5.3). This behaviour of increasing discharge, and increasing scenario 

differences is consistent with global and South Asian projections (Douville et al., 2021) 

and agrees with assessments for single Central Himalayan watersheds (Immerzeel et 

al., 2013; Bajracharya et al., 2018; Dahal et al., 2020). Furthermore, the projected 

change increases with the percentile of the ensemble predictions which is consistent 

with global streamflow projections and the ones for the South Asian monsoon discharge 

(Douville et al., 2021).  

The simulated changes fall within the range of projected changes in the region, but the 

differences in catchment characteristics and assessed periods hamper the direct 

comparison. Previous studies have used the RCP4.5 and RCP8.5 scenarios which are 

the predecessors of the SSP245 and SSP585 scenarios, respectively. The global mean 

discharge is projected to increase by 8% (RCP4.5) and 19% (RCP8.5) in the period 2081 

– 2100 (Douville et al., 2021). The projected increase of the South Asian monsoon 

discharge is higher and reaches 11% and 30% for these scenarios, respectively 

(Douville et al., 2021).  

The Himalayas are more sensitive to climate change and hence the higher increase 

compared to global and regional studies that comprise larger fractions of lowlands is 

reasonable (Krishnan et al., 2019). The projected response of Central Himalayan Rivers 

varies between the studies and the projected change of this study falls within the 

reported range. Bharati et al. (2014) project a 2 – 4% increase in the annual discharge 

until 2050 for the Koshi River. In a climate change impact assessment of the Karnali 

River, the annual discharge increased by 8% (RCP4.5) and 11% (RCP8.5) in the period 

2071 – 2100 (Dahal et al., 2020).  The annual discharge of the Upper Ganga River Basin 

to which the Karnali contributes is projected to increase by 6% for RCP4.5 and 14% for 
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RCP8.5 (mean), and by 10% for RCP4.5 and 27% for RCP8.5 (maximum) by 2041 – 

2050 (Lutz et al., 2014).  

Other regional studies project significantly higher annual runoff increases. The discharge 

of the small and high mountainous Langtang River (160 km2, 3,800 – 7,300 masl) is 

projected to increase by up to 88% at the end of the century (Immerzeel et al., 2013), 

and the annual discharge of the neighbouring, medium-sized Kaligandaki River (12,000 

km2, 200 – 8,100 masl) is projected to increase by ~40% (RCP4.5) and ~60% (RCP8.5) 

in the 2090s  (Bajracharya et al., 2018).  

 

5.5.2.2 Runoff seasonality 
 

The projected increase of the annual runoff is driven by increased rainfall which drains 

rapidly as rainfall-runoff or drains delayed as baseflow. Consequently, the monsoon and 

post-monsoon season discharge gains further importance to the annual budget (Figure 

5.25). This agrees with our current understanding of the climate change impact on the 

South Asian monsoon system with projected increases in the monsoon precipitation and 

projected increases in the runoff seasonality (Douville et al., 2021). The projected 

increases of rainfall-runoff and baseflow in the Karnali River Basin fall in line with the 

projections for other Central Himalayan catchments (Immerzeel et al., 2013; Bharati et 

al., 2014; Bajracharya et al., 2018; Bhattarai et al., 2018) and the large South Asian 

River systems Ganga and Brahmaputra (Lutz et al., 2014; Scott et al., 2019).  

The CMIP6 climate projections provide some evidence for the lengthening of the Indian 

Summer Monsoon at the end of the century, particularly for the SSP245 scenario 

(Douville et al., 2021). The increase in the post-monsoon season discharge is dominated 

by higher baseflow and the rainfall-runoff only contributes a small fraction to the 

projected increase (Figure 5.25). Therefore, this study does not provide evidence for a 

prolonging of the monsoon season in the Karnali River catchment. However, it could be 

that the signal of the lengthening is lost by the monthly aggregation or by averaging the 

projections over 40 years.  

The discharge in the dry winter and pre-monsoon season is projected to increase but to 

a lower degree than the monsoon and post-monsoon season discharge (Figure 5.25). 

The rainfall-runoff remains stable and hence there is no evidence of a change in the 

westerly precipitation during the winter. Instead, the projected changes are caused by 

higher baseflow, a delayed response to the higher monsoon season precipitation, and 

changes in snowmelt and glacier melt runoff. The snowmelt runoff is projected to 
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decrease in the annual budget but the melting season shifts to earlier dates and hence 

an increase in snowmelt runoff is projected for some months. These projections 

complement regional climate change assessments which project that the snow cover 

duration decreases, the snowmelt shifts to an earlier date, and snowmelt contributions 

decrease (Immerzeel et al., 2013; Bolch et al., 2019; Douville et al., 2021; Chandel and 

Ghosh, 2021; Khanal et al., 2021).  

The implications of these projected snowmelt changes (seasonality and melt rates) for 

the total discharge are ambiguous. Some studies suggest that the lower snowmelt 

causes a decrease in the pre-monsoon season discharge of Ganga River tributaries 

(Bharati et al., 2014; Scott et al., 2019). Other studies suggest that the reduced snowmelt 

is overcompensated by higher baseflow (Immerzeel et al., 2013), or that the earlier 

melting season causes higher pre-monsoon discharge (Bajracharya et al., 2018; Dahal 

et al., 2020; Chandel and Ghosh, 2021). 

The glacier melt runoff is projected to increase with time and emissions, but the relative 

contribution remains stable due to the projected increases in rainfall-runoff (Table 5.3). 

The large difference between the simulated melt rates of the historical and baseline 

simulations, and the prediction of glacier melt throughout the winter indicates errors in 

the representation of glacier processes. Furthermore, the projected linear (SSP245) and 

exponential (SSP585) increases of glacier melt with time contradicts regional 

projections. Himalayan glaciers have lost mass as a result of the warming climate with 

increased loss rates from the 2000s (Bolch et al., 2019; Masson-Delmotte et al., 2021). 

This trend is projected to continue with glacier volumes decreasing by 33 – 66% 

(RCP1.26 – RCP8.5) at the end of the century (Bolch et al., 2019). The increased glacier 

melt results in an increased glacier melt runoff in the near future (Immerzeel et al., 2013; 

Lutz et al., 2014). Therefore, the projected near future increase in glacier melt is 

somewhat reasonable.  

The projections of the glacier melt in the far future (2060 – 2099) contradict the 

projections of other regional studies. These studies project decreasing glacier melt runoff 

in the second half of the century which is caused by the reduction of glacier storage 

(Immerzeel et al., 2013; Shea and Immerzeel, 2016; Nepal, 2016; Chandel and Ghosh, 

2021; Khanal et al., 2021). This is not replicated by the model which projects further 

increases of the glacier melt runoff. This projected increase is contradictory because the 

overestimated length of the melt season of the baseline scenario indicates the 

overestimation of glacier melt and hence the effect of the glacier shrinkage on melt runoff 

should be more pronounced than in other studies. One reason for the absence of this 

response could be the overestimation of the glacier volume from the ice thickness and 
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glacier outlines. The large differences between the historic and baseline simulations and 

the contradiction with the projected trends indicate that the glacier runoff predictions are 

uncertain and should be interpreted cautiously. This is particularly the case for the winter 

and pre-monsoon seasons with low discharge rates and higher glacier melt 

contributions. The total runoff could decrease during some months in the non-monsoon 

season which is concealed by overestimated glacier melt rates.  

 

5.5.3 The projected flood hazards 
 

The hydrological simulations and flood frequency analysis project an increase in flood 

discharge, flood magnitudes, and flood frequencies. The classification of these results 

is hampered by large biases of hydrological models in the reproduction of extreme flows 

(Huang et al., 2017; Seneviratne et al., 2021), the uncertainty in the precipitation 

projections of climate models, particularly over the Himalayas (Scott et al., 2019; IPCC, 

2023), and the complex response of rivers to extreme precipitation (Seneviratne et al., 

2021; Caretta et al., 2022).  

 

5.5.3.1 The predicted changes in the flood hazards 
 

The flood discharge is projected to increase with time and emission. The ensemble-

median long-term flood discharge (30-year mean) increases by 24% (SSP245) and 26% 

(SSP585) by the year 2059. This projected trend continues in SSP245 to an increase of 

34% by the year 2099, whereas the trend accelerates in the high emission scenario 

SSP585 particularly after the year 2080 to an increase of 71% by 2099 (Figure 5.26 and 

Table 5.4). The flood magnitudes are projected to increase at slightly higher rates and 

this increase is consistent across all investigated return periods (1-in-10-years to 1-in-

100-years). These increases range between 37 – 40% (SSP245) and 79 – 83% 

(SSP585) in the far tuture (median predictions) (Figure 5.37 and Table 5.9). Thus, the 

extreme discharge increases stronger than the annual discharge which increases by 

24% and 48% at the end of the century (Figure 5.22).  

The higher increase in the extreme flows is consistent with the precipitation over Central 

Himalayan catchments where the extremes are projected to increase stronger than the 

averages (Chhetri et al., 2021; Talchabhadel, 2021). However, the increase in flood 

magnitudes is consistent over the range of frequencies between the 1-in-10-years to 1-

in-100-years events, whereas the projected changes in extreme precipitation events are 
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non-linear and with larger increases for rarer events (Seneviratne et al., 2021). This 

discrepancy could be related to the complex response of rivers to extreme rainfalls 

(Seneviratne et al., 2021). It can be further caused by the deficits in the process 

representation of the hydrological model which causes a delayed drainage of a fraction 

of the rainfall-runoff (Chapter 4). This delayed response may increase with the intensity 

of the rainfall and, thus, may lead to an increasing underestimation with increasing flood 

magnitude.  

The projected trends of the floods agree with our current understanding of the climate 

change impact on flood hazards. Precipitation extremes intensify with increasing 

temperatures which translates into increasing flood magnitudes and frequencies on the 

global scale (Hirabayashi et al., 2013, 2021; Seneviratne et al., 2021; Caretta et al., 

2022). However, the response of rivers to changing precipitation extremes varies 

because of the changes in the hydrological system (e.g. melt seasonality), and 

anthropogenic influences (e.g., land use, water management) and hence the regional 

climate change impact is more uncertain (Seneviratne et al., 2021; Caretta et al., 2022).  

There is evidence that flood hazards in the Central Himalayas and the foreland in the 

Ganga Plain have intensified in the past decades (Elalem and Pal, 2015; Seneviratne et 

al., 2021; Tellman et al., 2021). However, these trends are uncertain because of the 

large internal variability of flood flows in conjunction with the relatively short study period, 

and the superimposing socio-economic factors (e.g. population growth, urbanisation, 

land use change). The climate change impact on floods is insufficiently studied in this 

region but, although the uncertainties remain large, there is a consensus that flood 

hazards will intensify as a result of the increasing intensity and frequency of heavy 

rainfall events (Lutz et al., 2014; Pechlivanidis et al., 2017; Wijngaard et al., 2017; Scott 

et al., 2019; Chhetri et al., 2021; Ranasinghe et al., 2021; Seneviratne et al., 2021; 

Talchabhadel, 2021; Caretta et al., 2022). The simulated flood hazards fit into this 

context and are reasonable because they are projected to increase with time and 

emissions, and this increase is driven to more than 90% by increasing rainfall-runoff 

(Figures 5.31 and 5.32).  

The projected flood magnitudes and frequencies align with regional studies, but the 

direct comparison is difficult because these studies are applied at different spatial and 

temporal scales, and use different generations of climate models and different ensemble 

sizes. Wijngaard et al. (2017) project an increase in flood magnitudes (1-in-50-years 

event for the period 2071 - 2100) in the Upper Ganga Basin using the SPHY model and 

an ensemble of 8 CMIP5-GCMs. These projected increases are 80% (SSP245) and 

108% (SSP585) and are higher than the projected increases predicted for the Karnali 
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River in this study (+39% for SSP245 and +80% for SSP585) (Figure 5.37 and Table 

5.9). Pechlivanidis et al. (2017) project an increase of 20 – 100% of the 100-year flood 

magnitudes (SSP585) for the Ganga River at the end of the century from an ensemble 

of five hydrological models and 20 CMIP5-GCMs. Hirabayashi et al. (2013) project an 

increase in the 100-year flood magnitude of 20 – 40% (11 CMIP5-GCMs) in the Central 

Himalayas and the Indo-Gangetic Plain at the end of the century. Dankers et al. (2014) 

project an increase of 20 – 100% for the 30-year flood from an ensemble of 5 CMIP5-

GCMs in this region. A higher increase (70 – 120%) is projected for the Brahmaputra 

River from 12 SRES GCMs for the A1B and A2 scenarios which are located between 

the SSP245 and SSP585 in terms of global temperature increases (Gain et al., 2011). 

Thus, the projected changes in flood hazard magnitudes for the Karnali River fall within 

the range of other regional assessments.  

The flood frequencies are projected to increase in the Karnali River which agrees with 

other regional assessments. The baseline 100-year flood event (1975 – 2014) is 

projected to occur every 11 – 16 years for SSP245 and every 2 – 7 years for SSP585 at 

the end of the century (Table 5.11). This falls within the range frequency increases of 

the 1-in-100-years event to 5 – 50 years (SSP245) and 2 – 25 years (SSP585) which is 

projected from an ensemble of 9 CMIP6-GCMs for the Central Himalayas and the Indo-

Gangetic plain at the end of the century (Hirabayashi et al., 2021). The vast increase in 

the occurrence of these rare floods is also projected by Ali et al. (2019) which are 

projected to occur up to 12 times per century if the temperature increases by 4 ºC.   

The timing and duration of the flood events are not projected to change. The changes in 

flood duration are investigated by comparing the fraction of the flood discharge that 

occurs before/after the event and no shift is detected in these fractions. However, the 

AMAX flow is projected to increase and hence the discharge before and after the event 

increases if the relative flow remains stable (Figure 5.34). Therefore, it is likely that the 

duration that the bankfull flow is exceeded increases. A throughout investigation of flood 

discharge changes was not conducted because the daily resolution is too coarse to 

accurately quantify flood durations in the highly responsive Karnali River. The lack of an 

accurate estimation of the bankfull flow rate hampers the quantification of the event 

duration and the annual flood duration from the flow magnitude. The number of heavy 

precipitation events is projected to double in the period 2021 - 2050 (SSP585) (Chhetri 

et al., 2021; Talchabhadel, 2021). It is therefore likely that the number of floods and, 

thus, the flood days per year increase which cannot be detected from the AMAX flood 

classification approach. 

  



 

245 

 

 5.5.3.2 The uncertainty in the flood hazard projections 
 

The uncertainty of the projected flood hazards originates from the uncertainty in the 

climate projections, the hydrological modelling, and the Flood Frequency Analysis (FFA).  

The variation in the climate projections, particularly the precipitation, is a main driver of 

the uncertainty of the projected flood hazards. This variation increases with time and 

emissions and hence the prediction of flood hazards becomes increasingly uncertain. 

This behaviour is reasonable because projections regarding a system tend to become 

more uncertain with the passage of time and the magnitude of changes that occur within 

the system. The climatic uncertainty is exaggerated in the Himalayas by the complex 

topography in conjunction with the coarse modelling resolution, and the data scarcity to 

identify and correct biases (Nepal et al., 2014; Scott et al., 2019). Precipitation processes 

are characterised by a more complex spatial and temporal variability and a higher 

sensitivity to local and regional features than temperature which amplifies the 

uncertainties for the projection of the rainfall-induced flood events in the Karnali River 

(Giorgi, 2010; Wu et al., 2022). 

The variation of the climate projections translates into a broad range of predicted 

changes in the flood magnitudes. The projected increases in the median 1-in-100-years 

flood magnitudes of the CMIP6 members range between +10% and +69% for the 

medium-emission scenario SSP245, and between -12% and +144% for the high-

emission scenario SSP585 in the far future (Tables 5.13 and 5.14). This large prediction 

range emphasises the uncertainty in climate projections and the necessity to use 

probabilistic climate projections for climate change impact assessments.  

The ensemble-modelling approach assumes that each ensemble member is an equally 

likely representation of the future climate but the simulations indicate that the members 

projecting higher changes may be more behavioural representations of the system. The 

models projecting lower changes, particularly the MPI-ESM1-2-LR and MPI-ESM1-2-HR 

models predict the largest fraction of non-monsoon season flood events (13 – 16%) and 

are, thus, inferior in capturing the monsoon seasonality of the Karnali catchment (Table 

5.7). While other CMIP6 members predict > 10% non-monsoon season events, this 

fraction is projected to decrease while the MPI-ESM1-2-LR and MPI-ESM1-2-HR 

members project increases to up to 29%. Contrarily, the models which predict the 

highest changes are the ones that reproduce the flood seasonality best indicating that 

the projected higher increases are more likely than the lower ones. These members also 

tend to have the highest agreement with the observed distribution of monsoon and non-

monsoon season discharge (Figure 5.11). The better performance of high-change 
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models agrees with comparisons of observed and predicted global temperature changes 

which are best reflected by the models which predict a higher response (Carvalho et al., 

2022).   

The conversion of the climate forcing to streamflow using hydrological models adds 

another layer of uncertainty to the uncertainty in the climate projections (Krysanova et 

al., 2017; Giuntoli et al., 2018, 2018; Seneviratne et al., 2021). The different structures 

of hydrological models influence the projected streamflow to a degree that can change 

the direction of the trends (i.e. decrease/increase) on the local and regional scale 

(Dankers et al., 2014). The sensitivity of projected streamflow extremes to the choice of 

hydrological model is illustrated by several studies that use an ensemble of different 

hydrological models (Dankers et al., 2014; Huang et al., 2017; Giuntoli et al., 2018; 

Krysanova et al., 2017; Pechlivanidis et al., 2017). The hydrological model uncertainty 

is high for low flows and for extremely high flows (1-in-50-years and more) and can 

exceed the climate uncertainty, particularly if snowmelt and glacier melt processes are 

important sources (Krysanova et al., 2017; Huang et al., 2017; Giuntoli et al., 2018, 

2021). The prediction range of the hydrological simulations of the Karnali catchment 

increases with the discharge and is, together with the climate uncertainty,  the main 

source of uncertainty for the projection of flood flows (Table 5.15).  

The comparison of the simulated and observed flood discharge indicates the 

underestimation of flood flows for the baseline and historical simulations. This 

hydrological uncertainty is caused by the model’s inability to reproduce the fast runoff 

generation and routing of the Karnali River system to the full extent. The observed flood 

flows, estimated from stage observations, likely overestimate the true flood flows and 

hence the actual flood flow deficit is likely to be smaller than indicated by the comparison 

of simulated and predicted floods. This uncertainty was discussed in Chapter 4.  

The hydrological model is calibrated for the historical hydro-meteorological conditions 

and these parameters are transferred to the CMIP6 climate data. A similar hydrological 

system is predicted for the historical and baseline simulations with some deviations. One 

difference is the lower runoff of the baseline simulations which is caused by the lower 

rainfall in the CMIP6 data. However, the predicted flood flow of the historical and 

baseline simulation is similar for the most extreme flows which are exceeded statistically 

once in five years or less (5.17). Therefore, the lower annual and seasonal discharge 

does not translate into the prediction of lower extreme flows.  

The removal of the precipitation correction factor introduces uncertainty due to 

parameter interactions which particularly affect the distribution of rainfall into rainfall-
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runoff and baseflow. These differences mostly affect the below-flood discharge because 

the composition of the flood flows is similar in the historical and baseflow simulations 

(Figures 5.19 and 5.20). The CMIP6 simulations predict non-behavioural glacier melt 

rates which are higher than in the historical simulations. However, the importance of the 

glacier melt decreases with increasing runoff and therefore, the uncertainty introduced 

by the parameter transfer is low. 

The projected changes are reasonable and agree with other regional climate change 

impact assessments except for the glacier melt projections. However, the glacier melt 

contributions to the flood discharge are low and, particularly for the highest floods this 

contribution is marginal. This suggests that the uncertainty introduced by the parameter 

transfer is larger for the simulation of low to medium flows than for the high to extreme 

flows which have the largest effect on the determination of the flood magnitudes.  

The Flood Frequency Analysis (FFA) introduces uncertainty to the prediction of flood 

magnitudes and frequencies. In particular, the difference between the true and sampled 

(in this case simulated) flood discharge distributions, and the extrapolation from the 40-

year records to the 1-in-100-year event (Apel et al., 2008; Kjeldsen et al., 2014; Parkes, 

2015). This uncertainty manifests in the larger prediction range of the 1-in-100-year 

events compared to the more frequent events (Table 5.15). However, the comparatively 

larger prediction range of the CMIP6-ensemble and the hydrological ensemble, and the 

high agreement between the simulated flood flows and the predicted flood magnitudes 

indicates that the uncertainty introduced by the FFA is lower than the ones introduced 

by the climate projections and the hydrological modelling (Table 5.15).  

It is worth mentioning that this assessment focused solely on the climate change impact 

on flood flows. However, other anthropogenic factors alter flood hazards. For example, 

land use changes alter the hydrological cycle and can aggravate or reduce flood hazards  

(Douville et al., 2021; Pearson et al., 2022). This effect could be implemented in the 

modelling framework by simulating the climate projections with different land cover 

maps. 
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5.6 Conclusions 
 

The potential climate change impact on the hydrology of the Karnali River catchment 

was assessed by forcing the calibrated hydrological modelling ensemble with climate 

projections of an ensemble of 12 CMIP6 climate models for the medium-emission 

scenario SSP245, and the high-emission scenario SSP585. It is, to the best knowledge 

of the author, the first climate change impact assessment of Central Himalayan 

catchments that uses the latest generation of CMIP6 models. Previous studies on the 

catchment scale used climate projections of CMIP5 models (Immerzeel et al., 2013; Lutz 

et al., 2014; Bajracharya et al., 2018; Dahal et al., 2020) or Hadley Centre Coupled 

Model HadCM3 (Nepal, 2016; Bharati et al., 2014; Bhattarai et al., 2018). These studies 

use single climate models or a subset of extreme projections (i.e., dry-cold, dry-warm, 

wet-cold, wet-warm) to quantify the extreme bounds of climate impact on catchment 

hydrology. Several studies assessed the climate change impact on flood hazards on the 

global or regional scale which may not capture the small-scale variability of the climatic 

conditions in Central Himalayan catchments (Gain et al., 2011; Hirabayashi et al., 2013, 

2021; Dankers et al., 2014; Lutz et al., 2014; Pechlivanidis et al., 2017; Wijngaard et al., 

2017). 

This study complements previous studies by using probabilistic climate projections (12 

models) of the latest generation of downscaled and bias-corrected climate models 

(CMIP6) in a hydrological model within an uncertainty framework to assess the climate 

change impact on flood hazards on the catchment scale. The hydrological ensemble 

was calibrated and validated for the observed historical catchment behaviour (Chapter 

4) and the behavioural parameterisations were transferred to the climate projections. 

The CMIP6 baseline simulations were compared with the historical simulations (Chapter 

4) to investigate whether this parameter transfer altered the predicted catchment 

behaviour.  

The comparison of the baseline and historical simulations indicates that the hydrological 

predictions reproduce the hydrological system of the Karnali River well and are 

behavioural. However, the parameter transfer between the simulations and the removal 

of the precipitation correction factor in conjunction with parameter interactions adds 

uncertainty to the hydrological simulations. These uncertainties can potentially be 

reduced by calibrating the model from the climate data of the baseline ensemble. Such 

an approach could aim to optimise the observed and simulated flood frequency curves, 

to maximise the probability that flow extremes belong to a similar statistical distribution, 

or to weight the GCM against the discharge observations (Gain et al., 2011; Majone et 
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al., 2022). The high agreement of the flow seasonality and the runoff composition, 

particularly for the flood flows, between both simulations indicates that this uncertainty 

is low compared to the uncertainty of the hydrological model and the climate projections. 

The consistent underestimations of the annual, seasonal, and flood discharges of the 

baseline scenario indicate that the precipitation bias of climate simulations is one main 

challenge for climate-change impact assessments. This bias could be, potentially, 

determined by calibrating a precipitation correction factor for the baseline simulations. 

However, the model uses stationary (in time and space) parameters and assumes a 

constant bias. Furthermore, it is questionable that this bias is transferable to the climate 

projections. The precipitation in Central Himalayan Catchments is elevation-dependent 

and hence the spatial patterns could change with increasing temperatures  (Winiger et 

al., 2005; Lutz and Immerzeel, 2016). Therefore, the bias of precipitation projections 

remains a challenge for the hydrological climate change impact assessment. 

The parameter transfer to the CMIP6 climate data altered the predictions of the glacier 

dynamics. The model overestimates the glacier melt as indicated by the simulated melt 

during winter and the large differences between baseline and historical predictions. 

Furthermore, the glacier melt increases continuously until the end of the century which 

contradicts a majority of studies that project a decrease of glacier melt in the second half 

of the century. Therefore, the glacier melt processes are not depicted well by the models 

which is arguably the biggest weakness of the model. However, the importance of glacier 

melt decreases with the flow rate and hence the implications for the projections of flood 

flows are marginal and do not affect the meaningfulness of the projected changes in 

flood hazard magnitudes and frequencies.  

The hydrological simulations and the Flood Frequency Analysis (FFA) provide strong 

evidence for the intensification of flood hazards with time and emissions which is driven 

by an increase in the frequency and intensity of heavy rainfall events. The 30-year mean 

flood flow is projected to increase by 34% in the medium-emission scenario SSP245, 

and by 71% in the high-emission scenario SSP585 until the end of the century compared 

to the year 2014 (median projections). The flood magnitudes are projected to increase 

at slightly higher rates (SSP245: 37 – 40%; SSP585: 79 – 83%) for all investigated return 

periods (1-in-10-years to 1-in-100-years). The magnitudes of the 1-in-100-years event 

are projected to increase by 40% (SSP245) and 79% (SSP585) in the far future (2060 – 

2099) (median projections). However, a strong increase in flood discharge is projected 

around the year 2080 for SSP585 which is attenuated in the 40-year record used for the 

FFA. Hence the flood magnitudes will have intensified more as quantified in this study. 
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The flood frequencies are projected to increase with the flood magnitudes. The baseline 

1-in-100-year flood magnitude is projected to occur every 11-16 years (SSP245) and 

every 2 – 7 (SSP585) in the far future and hence flows which are currently extremely 

rare are projected to occur frequently in the future.  

Two CMIP6 ensemble members project decreases or low increases in the flood 

magnitudes. These models do not capture the flood seasonality of the Karnali River and 

may be less likely projections. The vast majority of the members predict increases 

between 37 – 69% (SSP245) (8/12 CMIP6 models) and 68 – 144% (SSP585) (9/12 

CMIP6 models).  

This chapter has updated our knowledge about the climate change impact on the 

hydrology of Central Himalayan river systems to the latest generation of climate models. 

It has improved our understanding of how climatic changes alter the magnitude and 

timing of hydrological processes that characterise the hydrological regime and govern 

flood water generation. This has improved our understanding of the uncertainty in 

climatic projections and its implications for projecting future flood hazards. Furthermore, 

this chapter has highlighted key challenges for the application of hydrological models 

with probabilistic climate projections.  

The high performance of the hydrological modelling ensemble of the historical 

simulations (Chapter 4), the high agreement between the historical and baseline 

simulations, and the similar model behaviour of the baseline and projected simulations 

indicate that the flood hazard projections are behavioural. Furthermore, the projected 

changes fall within the range of projections of other studies in this region which further 

increases the trust in the simulations. The projected flood discharge (the AMAX 

discharge) is used in the next chapter to simulate the morphological evolution of the 

Karnali fan. These projected fan topographies are combined with the projected flood 

magnitudes to predict the potential future flood hazards in Chapter 7.  
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6 The prediction of the morphological evolution of 
the Karnali Fan 

 

This chapter presents Stage 3 of the modelling framework to predict the morphological 

evolution of the Karnali fan downstream of the mountain outlet of the Karnali catchment 

to address O4. This stage uses the projected flood discharge (O2) (Stage 2, Chapter 5)  

of the modelling framework to predict potential future fan topographies from 

morphodynamic modelling. These topographies will be used in Stage 4 (Chapter 7) to 

map the potential flood hazard characteristics from hydrodynamic modelling. 

 

6.1 Introduction 
 

Alluvial fans form at the intersection of the mountainous catchments and the downstream 

plains. These fans aggrade as they store the sediments that are discharged from the 

mountains but can also degrade and deliver previously stored sediments downstream. 

Hence, alluvial fans are dynamic landscape features which act as sediment sinks and 

sources (Coulthard et al., 2002; Harvey, 2018). Large alluvial megafans have formed at 

the mountain outlets of the Central Himalayan Rivers and there is increasing evidence 

that the flood risk is connected to the morphodynamic behaviour of these fans because 

it alters the channel capacity and flow pathways (Sinha, 2008; Dixit, 2009; Sinha et al., 

2014; Dingle et al., 2016, 2020a).  

The fan topography and flood hazards are interlinked because floods are the primary 

driver of sediment influx to the fan and are essential for the redistribution and 

downstream discharge of sediments (Kleinhans et al., 2013; Harvey, 2018; Dingle et al., 

2020b). On the other hand, the flow pathways and, thus, the flood hazard are controlled 

by the fan topography, the sediment characteristics, and the fan behaviour (i.e. 

aggradation vs degradation). The channel degradation (also referred to as channel 

incision) increases the channel capacity and, thus, reduces the overbank flow. It further 

decreases the risk of channel avulsions because it increases the elevation difference 

between channel and floodplain (Dingle et al., 2016). Contrarily, the channel 

aggradation (the deposition of sediments in the riverbed) decreases the channel 

capacity and, thus, increases the overbank flow. It decreases the elevation difference 

between the channel and the floodplain which increases the risk of channel avulsions 

(Lane et al., 2007; Sinha, 2008; Dixit, 2009; Sinha et al., 2014; Dingle et al., 2016). 

Furthermore, lateral processes (outer bank erosion and inner bank deposition) may 
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cause the migration of channels and, thus, alter the pathways of flood water, and 

potentially alter the channel capacity (e.g. channel widening). 

The morphological evolution of alluvial fans is controlled by endogenic and exogenic 

processes. The tectonically-induced basin subsidence (endogenic) is a primary control 

for the evolution of fans in the region (Dingle et al., 2016). This is superimposed by 

exogenic processes which control the sediment production (e.g. landslides, rockfalls, 

glacial erosion)  in the upstream catchment and the delivery to the fan by the flood flows 

(Dingle et al., 2016, 2017; Harvey, 2018; Quick et al., 2019). Changes between 

degrading and aggrading states can be caused by changes in the base level, land use, 

sediment production, and flood magnitudes and frequencies (Coulthard et al., 2002; 

Lane et al., 2007; Harvey, 2018; Quick et al., 2019). Furthermore, the degradation and 

aggradation are controlled by the fan characteristics whereas sediments are relocated 

from steeper to flatter sections (Coulthard et al., 2002; Dingle et al., 2020a). 

Consequently, alluvial fans are a complex system whereas processes of aggradation 

alternate in time and space.  

Climate change potentially impacts the morphological evolution of the Karnali fan by 

altering external and internal processes. The sediment production is projected to 

increase as a result of an increase in the frequency of rainfall-induced landslides 

(Crozier, 2010; Gariano and Guzzetti, 2016; Wijaya et al., 2023). Furthermore, 

permafrost melting in the high mountains decreases the slope stability and increases the 

frequency of rockfalls (Savi et al., 2021). The projected increase in the flood discharge 

at the fan inlet (which is the mountain outlet) (Chapter 5) increases the sediment 

transport capacity and, thus, may increase the sediment delivery to the fan. This 

projected increase in the flood flows may also change the internal fan behaviour 

(degradation and aggradation) by altering the redistribution of fan sediments. However, 

we currently lack an understanding of the climate change impact on the sediment 

cascade including the sediment production, the sediment delivery, and the 

morphological evolution in Central Himalayan River systems.  

This research applies a morphodynamic model in the Karnali fan to better understand 

the controls of the topographic change under consideration of the projected climate 

change impact on flood flows. The study area is a 545 km2 large subsection of the 

complete Karnali fan that covers the gravel reaches between the mountain outlet in the 

north and the Gravel-Sand Transition (GST) 30 – 35 km south of the outlet (Figure 6.1). 

The terrace in the east of the Karnali River is excluded because it is superelevated over 

the channel and not at risk of channel avulsion, channel migration or flooding. The study 

area has been described in Section 2.3 and is hereafter referred to as the Karnali fan.  
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Figure 6.1: The study area of the morphodynamic modelling in the Karnali fan. The white lines show the 
distance from the fan inlet. The topography is the DEM used in the morphodynamic modelling which is 
described in Section 6.3.1. 

 

The morphodynamic simulations are designed as an experiment to explore the 

sensitivity of the morphological evolution to the climate-change-induced flood flow 

changes until the end of the 21st century at the mesoscale (5 – 50 km). Our current 

understanding of the morphological system with multiple processes, which vary in their 

temporal and spatial scales and interact nonlinearly, is limited and the models with the 

best representation of the physical processes are too complex for the application at the 

required spatial and temporal scales (Section 3.5).  

All morphodynamic models are sensitive to the boundary condition which is problematic 

as there is limited data on the morphological characteristics of the Karnali fan. The lack 

of knowledge about key variables (e.g., bedload sediment transport rates) forces the use 

of assumptions (e.g. sediment transport at capacity). Furthermore, there is a lack of data 
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which could be used for model calibration (e.g., consecutive topographic 

measurements). Therefore, there are many unknown variables and hence this study is 

designed as a conceptual experiment to provide an exploratory investigation of the 

climate change impact on the morphological evolution of the Karnali fan and better 

understand the factors which control the fan evolution.    

The rest of this chapter is structured as follows, Section 6.2 presents the methodology, 

Section 6.3 presents the data which define the boundary conditions, followed by the 

results (Section 6.4), the discussion (Section 6.5), and the conclusions (Section 6.6).  

 

6.2 Methods 
 

The model selection is presented in Section 6.2.1, followed by a description of the 

morphodynamic model (Section 6.2.2), the model parameterisation (Section 6.2.3), the 

experimental design (Section 6.2.4), and the methodology to prepare the topographic 

data of the modelling domain (Section 6.2.5). 

 

6.2.Model selection 
 

The morphodynamic model must be able to simulate the governing processes which 

control the morphological evolution of the braided river shaping the Karnali fan. The 

dominant sediment transport mode for such rivers is the bedload transport of the sand 

and gravel fractions (Murray and Paola, 1994; Williams et al., 2016; Harvey, 2018; Dingle 

et al., 2020b). Braided river systems are characterised by the splitting, switching and 

migration of channels, and the formation and migration of bars (Murray and Paola, 1994; 

Kleinhans et al., 2013). This evolution of channels and bars is attributed to mechanisms 

which are affected by multi-directional and lateral flow such as central bar development, 

transverse bar conversion, lateral bar development, chute cutoff of point bars, bar edge 

trimming, bank erosion, channel degradation and aggradation, and overbank deposition 

(Murray and Paola, 1994; Kleinhans et al., 2013; Williams et al., 2016). The simulation 

of the morphological evolution in this system, therefore, requires a model which 

incorporates bedload sediment transport models. Furthermore, the model must simulate 

flows in the longitudinal and lateral directions to predict the evolution of braided 

channels. 
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The main criteria for the model selection are the process description and the 

computational efficiency. The morphodynamic simulation experiment with ensemble 

simulations (12 climate projections each comprising three scenarios and three flow 

percentiles) of a 545 km2 large area over 40 years (baseline) to  80 years (projected 

scenarios) is computationally expensive and excludes 3D models which do not exist at 

the scale of enquiry. The computationally efficient 1-D models do not predict lateral 

movement and are not suitable for the application in the Karnali River. Therefore, a 2-D 

model is selected.  

These 2-D models are classified into lower-complexity cellular models and higher-

complexity physics-based models. The benefit of the cellular models is the 

computational efficiency which enables the simulation of an ensemble over larger spatial 

and temporal scales (Nicholas et al., 2006; Nicholas, 2013a). However, physics-based 

models are superior in capturing the morphological processes in braided river systems 

(Williams et al., 2016). The inferior performance of cellular models arises from the simple 

flow routing algorithms which neglect the momentum conservation, and the use of local 

bed slope to calculate sediment transport rates (Nicholas, 2013a). The selection of a 2-

D model needs a balance between the process representation and the computational 

efficiency.  

The CAESAR-LISFLOOD model (Bates et al., 2010; Coulthard et al., 2013) is a hybrid 

cellular model which overcomes the strongest critic of the poor flow algorithms by 

incorporating a more complex hydrodynamic flow model (Coulthard et al., 2013; Ziliani 

et al., 2020). This hydrodynamic model is an approximation of the Shallow Water 

Equations (SWE) which is computationally efficient while providing good estimates of 

flow velocity and depth and significantly improves the flow representation in braided 

rivers compared to the original CAESAR flow model (Neal et al., 2012; Ziliani et al., 

2020). This model has a good balance between the process representation for 

simulating braided river systems and computational efficiency for ensemble simulations.  
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6.2.2 The CAESAR-LISFLOOD model 
 

The CAESAR-LISFLOOD (C-L) model combines the cellular morphodynamic CAESAR 

model (Coulthard et al., 2002; Van De Wiel et al., 2007) with the hydrodynamic 

LISFLOOD-FP model (Bates and De Roo, 2000; Bates et al., 2010). The initial CAESAR 

model (Coulthard et al., 2002) is a catchment scale model to simulate the landscape 

evolution on large temporal scales (up to millennia). Van De Wiel et al. (2007) modified 

this model to improve the representation of hydraulic and geomorphic processes in 

alluvial environments. The included processes improve the representation of overbank 

flow, sediment erosion and deposition, suspended and bed load transport, lateral 

erosion and bank failure which enables the simulation of channel degradation and 

aggradation, channel migration, bank erosion, point bar formation, and terrace formation 

(Van De Wiel et al., 2007). This model was then combined with the physics-based 

LISFLOOD-FP model to improve the representation of flow processes (Coulthard et al., 

2013).  

The C-L model can be applied either in the catchment mode to simulate the rainfall-

runoff conversion and erosion within a catchment, or in the reach mode to simulate the 

evolution of a channel and floodplain for predefined water and sediment influxes. The 

reach model comprises a hydrodynamic flow model and a sediment transport model.  

 

6.2.2.1 The LISFLOOD-FP flow model 
 

The flow model is a 2D storage cell inundation model (Bates et al., 2010) which 

approximates the full Shallow-Water-Equations SWE and integrates an inertia term. 

These equations simulate 1D flow but are solved in the x and y directions to simulate 2D 

flow over a raster grid. The discharge Q is simulated from the equation (Bates et al., 

2010; Coulthard et al., 2013): 

� =  Ç� ?;��·È ∆� ∆(NÉÊ)∆Q(R@ ?;��·È ∆��� |Ç|/  ;��·È�U/q  ∆�       Eq. 6.1 

The water depth of a cell is calculated from the equation: 

∆;�,�
∆� =  ÁQ� �,�� ÁQ�,��ÁÌ�,� �� ÁÌ�,�

∆ �        Eq. 6.2 

Where t is time (s), q is the flow of the previous time step (m2 s-1), g is the acceleration 

due to gravity (m s-1), n is Mannings roughness coefficient (m1/3 s-1), h is the depth (m), 
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z is the elevation (m), hflow is the maximum depth of flow between the cells, x is the grid 

cell width (m), and i and j are the cell coordinates. 

The modelling time step is controlled by the Courant-Friedrichs-Levy condition and 

hence the time step scales linearly with the grid resolution unlike diffusive models for 

which it scales exponentially with the grid resolution (Bates et al., 2010):  

∆��� =∝  ∆ '?;         Eq. 6.3 

where ∝ is a coefficient which enhances the stability of shallow floodplain flows and is 

typically within the range of 0.2 – 0.7 (Bates et al., 2010).  

This SWE approximation has lower computational costs due to the larger time steps 

imposed while the predicted flow velocity and depth are not inferior to other 

approximations and fall within 10% interval of full SWE codes (Neal et al., 2012). 

However, this model should only be used in sub-critical flow conditions and with steady 

or gradually-varying flows and cannot predict shallow flows over steep terrain (Bates et 

al., 2010; Neal et al., 2012). Furthermore, the model simulates flow in the four cardinal 

directions and cannot predict flow to the four diagonal cells which can cause 

inaccuracies if the grid resolution exceeds the channel width (Coulthard et al., 2013).  

 

6.2.2.2 The sediment transport model 
 

The predicted flow depths and velocities are used to calculate the sediment transport 

processes (erosion, transport, deposition). C-L allows the separation of the sediments 

into nine grain size fractions and the sediment transport is calculated for each fraction 

separately (Coulthard et al., 2013). The finest fraction can be transported as suspended 

load which is simulated based on the sediment concentration and the settling velocity of 

the water column (Coulthard et al., 2013). The bedload can be simulated from three 

equations (Meyer-Peter and Müller, 1948; Einstein, 1950; Wilcock and Crowe, 2003). 

The model of Wilcock and Crowe (2003) is an empirical model which is chosen because 

it was developed for the sand and gravel fractions, performs well for braided river 

systems, does not require information on subsurface grain sizes, and requires no 

calibration (Wilcock and Crowe, 2003; Ziliani et al., 2020). 

The bedload sediment is transported and deposited in the downstream cells with lower 

bed elevation whereas the proportion is based on the local bed slope between the source 

cell and the target cells. The deposited material can be re-eroded in the next time step. 

The suspended load is distributed to all neighbouring cells for which the bed elevation is 
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lower than the water level of the source cell (Van De Wiel et al., 2007). The sediment 

transport of bedload and suspended load is both, capacity-limited whereas this limit is 

defined by the sediment transport equation, and supply-limited by the volume of the 

material in the active layer of the riverbed (Van De Wiel et al., 2007). The model includes 

a threshold for the maximum erosion rate which limits the time step of the sediment 

transport calculations. However, since the flow model also includes a time step 

calculation, the lower time step of both models is chosen at every iteration (Coulthard et 

al., 2013). 

This active layer is the upper layer of the bed sediments. The thickness of the active 

layer is flexible as it increases when sediment is deposited and decreases when 

sediment erodes. However, it is converted to a strata layer when the thickness exceeds 

150% of the strata thickness which is a predefined model parameter. The strata layers 

(up to 20 layers) are sediment storages which represent the alluvial sediments. The first 

strata layer underneath the active layer can be added to the active layer when the active 

layer thickness is smaller than 25% of the strata thickness. The bedrock layer is the 

lowest layer representing the bedrock which can erode by a predefined fixed erosion 

rate (Van De Wiel et al., 2007; Coulthard et al., 2013).  

The model uses a simple rule-based algorithm to predict bank erosion rates and is 

explained in detail in Van de Wiel et al. (2007). In short, this algorithm predicts bank 

erosion as a function of near-bank flow velocity and water height to the radius of the 

curvature of the river bank. The eroded bank sediment is deposited within the channel 

whereas it is distributed laterally based on the cross-channel gradient of the curvature. 

This representation of lateral transport lacks physical justification and simulates the 

symptoms rather than the causes of bank erosion (Van De Wiel et al., 2007).  

The model further includes routines to simulate in-channel lateral erosion. The in-

channel lateral erosion is integrated to prevent unreasonable narrowing of channels to 

single cells caused by the positive feedback between flow concentration and higher 

erosion rates. This lateral in-channel erosion is controlled by a parameter which 

represents the cohesion of the modelled substrate. A high cohesion results in narrower 

channels and a low cohesion in the formation of flatter and wider channels (Coulthard et 

al., 2013).  
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6.2.3 Model parameterisation 
 

The model parameterisation is based on values provided in the literature, particularly the 

C-L user manual (C-L Manual, 2023), and the calibration of the CAESAR and C-L 

models for two braided rivers in the Italian Alps (Ziliani et al., 2013, 2020). The parameter 

descriptions, the used values, and their justification are presented in Table 6.1. The 

reader is referred to the user manual (C-L Manual, 2023) for further details about these 

parameters. Most of the parameter values can be determined either from the grid 

resolution (25m in this study – see Section 6.2.4) or the modelled river system.   

Three parameter values are obtained from measurements. The first of these parameters 

is the number of passes for the edge smoothing of the lateral erosion algorithm. This 

value should be set to the distance between river bends which was measured in Google 

Earth for several well-defined bends in the Eastern and Western river branches. The 

second parameter is the input/output difference which determines the selection of the 

time step of the sediment transport and flow models. Usually, C-L uses the lower of both 

time steps for both models, but a threshold can be defined to speed up the simulations 

during low flow conditions. This threshold should describe the low flow discharge and 

was obtained from the DHM discharge observations. The third parameter describes the 

slope of the edge cells at the boundaries of the modelling domain. This slope was 

measured from the DEM (Section 6.2.4).  
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Table 6.1: The description and definition of the CAESAR-LISFLOOD parameters 

Module Parameter Unit Value Description Justification Reference 

Sediment 
transport 

Max. velocity - 5  Maximum velocity for sediment transport 
calculations 

Default. Only required for 
very steep rivers 

C-L Manual, 2023 

Max. erode limit m 0.02 Limits the amount of erosion / deposition 
per cell and, thus, controls the time step 

Cell size dependent. 0.01 for 
10 m, higher for coarser grids  

C-L Manual, 2023 

Active layer thickness m 0.1 The thickness of the active layer 0.1 – 0.2.  
Minimum 4x max. erode limit 

C-L Manual, 2023 

in-channel lateral 
erosion rate 

N m-2 25 Represents the cohesion of the sediments   Typically between 10 – 20. 
Tested in initial runs  

C-L Manual, 2023 
Tested 

Lateral erosion rate  0.002 Parameter for the bank erosion 
calculation. 

0.001 – 0.01 for braided 
rivers 

Ziliani et al., 2013; 
C-L Manual, 2023 

Number of passes for 
edge smoothing 

grid 
cells 

60 Describes the smoothing of the curvature 
for the lateral (bank) erosion calculation 

Distance between river 
bends in no. of cells. 

(C-L Manual, 2023; 
Measured in 
Google Earth 

Downstream shift of 
lateral erosion 

grid 
cells 

6 Number of cells to shift lateral (bank) 
erosion downstream 

10% of edge smoothing 
passes 

C-L Manual, 2023 

Max difference in 
cross-channel 
smoothing 

- 0.00001 Affects the lateral sediment transport of 
the sediments eroded from river banks 

0.00001 for channels wider 
than 10 grid cells 

C-L Manual, 2023 

Flow 
module 

input/output 
difference 

m3/s 360 Affects runtime as it enables a fast model 
during low flows  

Low flow or mean annual 
flow 

DHM Discharge 
record 

Water depth 
threshold 

m 0.01 Water depth above which erosion is 
calculated 

0.01 for DEM > 5m and < 
50m 

C-L Manual, 2023 

Slope for edge cells m m-1 0.001 Defines water depth for outflow cells. 
Affects deposition / scouring at outflow 
cells. 

Slope at downstream 
boundary 
 

Measured from 
DEM 

Courant number - 0.7 Controls the numerical stability and speed 
of the calculations 

0.7 for 20 – 50 m grids  
 

C-L Manual, 2023 

hflow threshold m 0.00001 Prevents water flow between cells if the 
water surface gradient is very small 

Default C-L Manual, 2023 

Froude number - 0.8 Ratio of inertial and gravitational forces  Default; 0.8 causes  
sub-critical flow 

C-L Manual, 2023 

Manning’s n - 0.04 Roughness coefficient Surface roughness Section 6.2.4.3 
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The lateral erosion rate is a sensitive parameter and, thus, should be calibrated for the 

study area (Ziliani et al., 2013). However, a calibration requires information about the 

morphological change which is not available for the Karnali fan. Furthermore, 

morphological models are sensitive to the boundary condition and hence even a 

behavioural model might produce simulations which deviate from the observations 

(Nicholas et al., 2006; Papanicolaou et al., 2008; Hardy, 2013). This lateral erosion rate 

should fall within 0.01 – 0.001 for braided rivers (C-L Manual, 2023). In the absence of 

field observations, the value calibrated to the braided Tagliamento River (0.002) was 

tested and transferred to the Karnali River (Ziliani et al., 2013).  

The in-channel lateral erosion rate affects the lateral transfer of bank erosion material. 

This parameter represents the cohesion of the sediments and the values range between 

10 – 20 for most river systems (C-L Manual, 2023). However, braided rivers and alluvial 

fans are characterised by a low sediment cohesion and hence a lower cohesion (higher 

value) is used (Murray and Paola, 1994; Kleinhans et al., 2013). A high cohesion 

produces narrow channels, and a low cohesion produces shallower and wider channels. 

The value of 25 was determined from initial test runs aiming to predict reasonable 

channel widths. However, the channel widths are wider at the inlet and in the Western 

branch than in the Eastern ones and hence this global value cannot represent the 

heterogeneity of the study area. However, the value of 25 neither simulated neither 

unreasonable wide nor unreasonable narrow channels and is deemed as a sufficient 

approximation of the cohesion of the Karnali fan sediments.  
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6.2.4 Experimental design 
 

The C-L model is used to simulate the morphological evolution for the projected 

hydrology of the CMIP6 scenarios. However, several assumptions are made to account 

for the data scarcity and the available computational resources. These assumptions are 

described in the following Sections 6.2.4.1 – 6.2.4.3. The model setup is then described 

in Section 6.2.4.4.  

 

6.2.4.1 Sediment influx 
 

The dominant sediment transport mode of braided rivers on alluvial fans is bedload 

transport for which no records are available for the Karnali River (Murray and Paola, 

1994; Kleinhans et al., 2013; Harvey, 2018). The bedload transport dominance in the 

Karnali river system is also emphasised by the dominance of gravel (and the lack of fine 

sand, silt and clay) in the grain size distributions of the bed and bank material (Quick et 

al., 2019; Dingle et al., 2020b). 

Several studies estimate the sediment influx into the fan from either suspended sediment 

records or detrital Cosmogenic Radionuclide (CRN) analysis of the fan sediments both 

of which cannot be used for this study. The first method estimates the average erosion 

rates of Himalayan catchments and these studies suggest that the sediment transport is 

supply-limited (Andermann et al., 2012a; Morin et al., 2018; Sinha et al., 2019) However, 

suspended sediments bypass the fan and deposit in the Ganges-Brahmaputra delta in 

Bangladesh (Lupker et al., 2011; Dingle et al., 2020b). The CRS Analysis also considers 

coarser sediments which are transported as bedload but the obtained estimates are 

averaged over long periods (250 – 600 years) and cannot be linked to single flow events 

(Lupker et al., 2012). Hence, the estimates of both methods cannot be used to determine 

the sediment influx into the Karnali fan. 

The sediment which is released into the fan and makes up the riverbed and banks is 

sourced in a small fraction of the catchment located 10 – 30 km upstream of the fan 

(Quick et al., 2019). Most of the gravel which is supplied to the rivers in the upstream 

catchment abrades to sand and bypasses the fan (Dingle et al., 2017). Instead, most of 

the coarse sediments (up to 100%) which make up the fan originate from the loose and 

poorly consolidated Upper Siwalik conglomerates (Upreti, 1999; Quick et al., 2019). The 

high density of gullies and landslides demonstrates the high sediment production and 

these sediments are efficiently transported in the river network (Hurtrez et al., 1999; 
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Upreti, 2001; Ghimire et al., 2013). Furthermore, extensive gravel bars are exposed in 

the Karnali and Bheri rivers upstream of the mountain gauge which indicates the 

presence of gravel storage along the rivers that can be mobilised during high flow events. 

In these sections, the river flows through wide valleys and is, unlike other rivers upstream 

of the mountain gauge (e.g. the Koshi River), not laterally confined which further 

suggests the presence of vast gravel deposits. The high sediment production, the 

efficient sediment transport and the vast gravel storage in proximity to the mountain 

outlet do not indicate a limited supply of coarse sediments. 

It is, therefore, assumed that the sediment influx is limited by the transport capacity of 

the river. This capacity is calculated from the Bedload Assessment for Gravel-bed 

streams (BAGS) model (Pitlick et al., 2009). This model calculates transport capacities 

at the cross-section resolution (1-D) and is established at the inlet of the C-L modelling 

domain. The bedload transport is calculated from the Wilcock and Crowe (2003) bedload 

equation for the same nine grain size classes used in the C-L model. The grain size 

distribution of the Siwalik conglomerates is used as surface grain size distribution (Quick 

et al., 2019). Manning’s roughness coefficient is set to 0.04 s m-1/3 (Section 6.2.4.3). The 

cross-section topography and the longitudinal slope (0.0013 m m-1) are derived from the 

DEM used in the C-L model (Section 6.3.1).   

 

6.2.4.2 Temporal subset 
 

The morphological evolution of alluvial fans is dominated by flood flows which deliver 

most sediments to the fan and redistribute the fan sediments (Kleinhans et al., 2013; 

Harvey, 2018). The largest sediment pulses are delivered by extreme floods and these 

sediments are redistributed during smaller floods (Kleinhans et al., 2013). Hence, it is 

assumed that flood flows are the dominant control on the morphological evolution of the 

Karnali fan.  

The importance of flood flows for the morphological evolution varies in the Karnali fan 

because the grain sizes decrease with distance to the mountain outlet. The coarse bed 

material in the fan head is only transported during extreme and rare floods (≥ 1-in-500-

years flood) but the grain sizes decrease in the lateral and longitudinal direction and are 

transported at lower and more frequent flows (Dingle et al., 2020b). Therefore, the 

impact of this assumption on the predictions varies in space and is higher for the 

southern channel sections. However, this assumption that the morphological evolution 

is controlled by the flood flows is required to maintain the feasibility of the simulations. 

An initial model run of 80 flood events predicted for one climate scenario (SSP585) by 
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one CMIP6 member (ACCESS-CM2) required 281 hours of simulation. The simulation 

of longer periods (e.g., the monsoon season) is, due to the complex computations and 

the required runtimes, beyond the scope of this research.  

The model runtimes further restrict the simulated period of each flood event to three 

days. The two consecutive days following the flood are simulated to account for the 

impact of the flood recession on the morphological evolution and allow for the 

redistribution and sorting of delivered sediments. However, initial tests with variable 

periods (flood event ±10 days) indicated that it is not feasible to simulate periods longer 

than two days after the flood.  

 

6.2.4.3 Surface roughness 
 

The surface roughness describes the effect of the surface friction of the channel and 

floodplain on the flow. The flow models are sensitive towards this roughness coefficient 

which is commonly calibrated for the channel and floodplain separately. This calibration 

is commonly conducted from the comparison of the simulated and observed inundation 

extents or flood wave travel times (Horritt and Bates, 2002; Horritt, 2006; Di Baldassarre 

et al., 2010; Komi et al., 2017). Furthermore, it can also be estimated from high-

resolution topographic data and flow measurements (Pearson, 2020).  

The roughness coefficient is not calibrated but obtained from the literature in this study. 

Several factors hamper the calibration of the roughness coefficient which is represented 

by Manning’s n friction coefficient in the C-L model. The main reason is the lack of 

accurate datasets of flood inundations of past events. The calibration would be 

challenging even with such datasets available due to the high uncertainty in the 

discharge data during flood events, and the temporal discrepancy between the daily 

averaged discharge data and the inundation maps which either describe the flood 

patterns at a specific point in time or the maximum inundation. This hampers the 

identification of the site-specific roughness coefficients, and hence literature values are 

transferred to the Karnali River instead.  

The Manning’s n roughness coefficient of mountain streams with no in-channel 

vegetation and gravel and cobbles in the riverbed is taken from Chow (1959). The 

Manning’s n of such streams ranges between 0.03 – 0.05. The normal roughness of 

these streams is 0.04 which is used in this study for the channel and floodplain. This 

selection is supported by the roughness obtained from field measurements of the Central 

Himalayan East Rapti River (Pearson, 2020; Pearson et al., 2022), sensitivity analyses 
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of the LISFLOOD-FP model (Di Baldassarre et al., 2010; Komi et al., 2017), and 

literature values used in studies of comparable river systems (Yan et al., 2014; Feeney 

et al., 2020).  

This study assumes a uniform roughness coefficient in the channel and floodplain 

whereas most studies use a higher roughness in the floodplain than in the channel (e.g., 

Yan et al., 2014; Komi et al., 2017; Pearson, 2020). This assumption is made because 

the locations of the channel and floodplain change with the morphological evolution of 

the fan which would require the classification of channel and floodplain and roughness 

mapping after each flood event.   

 

6.2.4.4 Modelling setup 
 

The C-L model is applied for the flood discharge projected by the 12 CMIP6 models 

(Chapter 5). These projections comprise the baseline (1975 – 2014) which is applied as 

a reference to simulate the morphological evolution under the current conditions, the 

medium-emission scenario SSP245, and the high-emission scenario SSP585 (both 

2020 – 2099) which are applied to simulate the morphological evolution for the projected 

hydrological conditions.  

The flood events are classified using the Annual Maximum flow (AMAX) classification 

approach and hence one flood event is simulated per year (i.e. 40 events for the baseline 

scenario, and 80 events for the projected scenarios SSP245 and SSP585). For each 

flood event, 3.5 days are simulated; the first 12h are simulated with a constant influx of 

3,000 m3/s to wet the channel cells, followed by the flood hydrograph of the flood event 

and the consecutive two days of the flood recession. However, each flood event consists 

of 64 predictions of the hydrological modelling ensemble. This ensemble is reduced to 

the median, the 2.5th percentile (P2.5), and the 97.5th percentile (P97.5)because it is 

unfeasible to simulate each ensemble member. Therefore, 36 flood records are 

simulated for each scenario (12 CIMP6 model X 3 flow percentiles). The model is 

restarted after each year whereas the output (topography, grain size distribution) of the 

previous simulation is used as the boundary conditions for the following simulation. 
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As previously mentioned, the lack of data to determine the boundary conditions, and the 

available computational resources requires the use of assumptions. These assumptions 

are: 

- Flood events dominate the morphological evolution of the Karnali fan, and hence 

only the flood events are simulated (Section 6.2.4.1). 

- The sediment influx into the fan is limited by the transport capacity and not by the 

sediment supply (Section 6.2.4.2).  

- The surface roughness is uniform in time and space (Section 6.2.4.3). 

- Bedload transport is the dominant sediment transport mode and the suspended 

sediment transport is not simulated. This assumption is supported by our knowledge 

of braided rivers with gravel beds and alluvial fans (Murray and Paola, 1994; 

Kleinhans et al., 2013; Ziliani et al., 2013; Williams et al., 2016; Harvey, 2018). It is 

also supported by our knowledge of the sediment dynamics of the Central Himalayan 

River systems and the Karnali fan although the sand may be transported in 

suspension during floods with a high magnitude (Lupker et al., 2011; Dingle et al., 

2020b).  

- The vegetation does not control the morphological evolution of the fan. Vegetation 

stabilises islands and bars in braided river systems and retains sediments in the 

floodplains (Murray and Paola, 2003; Kleinhans, 2010; Kleinhans et al., 2013; Ziliani 

et al., 2013). However, the interactions between vegetation, flow, and sediment 

transport are complex as the vegetation can be destroyed by water and sediments 

(Coulthard et al., 2002; Kleinhans et al., 2013). The effect of sediments on the 

morphology of the Karnali fan is unclear, and the growth and destruction of 

vegetation cannot adequately be simulated in this simulation framework which only 

simulates 3.5 days per year. Therefore, the simulation of the vegetation effects 

introduces another layer of uncertainty and is, thus, disregarded in this study. 

- The basin subsidence does not control the morphological changes for the simulated 

flows and time scale. The basin subsidence is an important control of the fan 

evolution on longer time scales and the subsidence rate of the Karnali is 0.4 ± 0.2 

mm/yr (Dingle et al., 2016, Harvey, 2018). However, the gravel supply of the mean 

monsoon season flow (1985 – 2014, excluding AMAX flood events and assuming 

sediment transport at capacity) exceeds the accommodation space of the basin 

subsidence. It is therefore argued that it is unreasonable to include the basin 

subsidence in the current modelling setup which only simulates the flood events.  
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The simulations of the morphodynamic evolution for the projected climates are designed 

as an experiment to gain insight into the morphodynamic system of the Karnali fan. This 

design as an experiment is constraint by:  

- the limited understanding of morphological processes (Mosselman, 2012; Hardy, 

2013; Ancey, 2020a); 

- the sensitivity of morphodynamic models towards the boundary conditions 

(Papanicolaou et al., 2008; Hardy, 2013; Williams et al., 2016); 

- the lack of information to determine the boundary conditions and to calibrate the 

model for the Karnali fan; and consequently the use of the described assumptions. 

These experimental simulations provide information about the climate-change impact on 

the morphological evolution, the controls of the morphological evolution, and the 

uncertainty propagation when linking climate models (the CMIP6 projections), 

hydrological models (Chapter 5), and morphological models. The results are further used 

to gain a better understanding of the impact of morphological changes on spatial flood 

hazard patterns (Chapter 7).  
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6.2.5 The generation of a digital terrain model 
 

A method is developed to generate a Digital Terrain Model (DTM) from stereo satellite 

images. These images are converted to point clouds which are the basis for the 

generation of the DTM. The main challenge is the lower density of ground points 

compared to scans at lower altitudes (i.e. drones or airborne surveys). Due to this low 

ground-point density, the point cloud can be processed to a Digital Surface Model (DSM) 

which includes surface objects (e.g., buildings and trees) but the ground elevation cannot 

be estimated from existing algorithms.  

The generation of a DTM is further complicated by the lack of in-situ data of the ground 

elevation (e.g. in forested areas). This lack prevents the removal of surface objects in 

the DSM using machine learning techniques (e.g., Hawker et al., 2022). An approach to 

estimate the terrain elevation without in-situ data was tested but did not provide reliable 

results in areas with dense object cover (Lindsay, 2018). Therefore, a novel method is 

developed which uses interpolation techniques and focal filters to remove trees, forests, 

and buildings, estimate the riverbed elevation, and remove sensor noise. 

The basis of the DTM are three panchromatic stereo images from the WorldView-1 and 

WorldView-2 satellites which were captured during low flow conditions (29/11/2020, 

07/01/2021; 03/03/2021). These images were converted to a point cloud using the 

Agisoft Metashape software. These points were then classified into ground points (e.g. 

bare ground, roads) or surface object points (e.g. trees, buildings) and interpolated to 

generate one DTM and one DSM which both include the elevation of objects (hereafter 

called raw DTM and raw DSM). The raw DTM does not, despite its name, represent the 

ground surface which is attributed to the lower point density compared to drone/airborne 

products which results from the larger distance of the satellite sensor. 

The generation of the DTM from the raw DTM includes four processing stages (Figure 

6.2). The first stage masks areas that are covered by forests and water which have a 

poor elevation representation in the raw DTM. The second and third stage estimate the 

ground elevation of these inundated and forested areas. The final stage applies filters to 

remove noise to generate the final DTM.  
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Figure 6.2: Processing workflow of the Digital Terrain Model (DTM) generation. The DTM is generated from 
a Digital Surface Model (DSM) by estimating the ground elevation of forests and inundated areas. The raw 
DTM does contain, despite its name, the surface elevation in areas with dense object cover. The different 
arrow styles (dashed, solid) are used to enhance visibility and do not represent conceptual differences.    
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6.2.5.1 Masking 
 

The initial step is the identification of areas covered by forests and water. The water 

areas are classified from Sentinel-2 imagery using the Automated Water Extraction 

Index (AWEI) (Feyisa et al., 2014). This water mask is resampled from the Sentinel-2 

resolution (10 m) to the resolution of the raw DTM (1.8m) and a median filter (21x21 

pixels) is used to smooth the riverbanks. 

The forests are masked from a DEM of Difference (DoD) of the raw DTM and the raw 

DSM. It is found that this DOD is a good descriptor of forested areas. However, these 

differences occurred also in some channel sections and hence areas classified as water 

are removed from the forest mask. Small patches of a few pixels are removed using a 

majority filter (5x5 pixels) three consecutive times because these small patches may be 

misclassifications and will be removed in the final noise-removal stage. 

A point gap mask Is created which includes pixels which lack any points in the point 

cloud. These gaps are most frequent in the channel. This mask is used to prevent the 

use of such pixels in the later interpolation process. 

 

6.2.5.2 Ground elevation in forests 
 

A statistical approach is used to estimate the ground elevation of forests. It was tested 

to remove forests from two global Canopy Height Models (CHM) (Potapov et al., 2021; 

Lang et al., 2022). However, these products overestimate the tree height which causes 

large pits and depressions in the DTM. Therefore, the forest is removed from the 

interpolation of edge elevations. 

The forest ground elevation is estimated by projecting the elevation at the forest outline 

onto the forested areas using Inverse Distance Weighting (IDW) interpolation (Philip and 

Watson, 1982; Watson, 1985). The dominating tree species in the area is the Sal tree 

with an average height of 23.8 m (DFRS, 2014). A maximum threshold of 25 m is used 

to prevent the prediction of unreasonably low ground elevations. The ground elevation 

is replaced by the raw DSM height minus 25 m for the pixels that exceed this 25 m 

threshold. Afterwards, the ground elevation is smoothed using a mean filter (50x50 

pixels) to remove local peaks and pits.  

In the final step, the ground elevation of forested areas is raised by 1 m. This follows the 

rationale that forests develop in less frequently flooded areas and, therefore, are 

elevated higher than their surrounding which is not accounted for when interpolating the 
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edges. This 1 m value was obtained from iterative testing and provides elevations which 

appear reasonable but cannot be validated due to the lack of in-situ data. The resulting 

temporary DTM is referred to as the forest DTM. 

 

6.2.5.3 Riverbed elevation 
 

The riverbed elevation is poorly represented in the raw DTM because the water surface 

changes between the satellite images. The areas of the water mask and point gap mask 

are removed and a local minimum filter (9x9 pixels) is applied to identify the lowest local 

elevation. This elevation is interpolated using IDW interpolation (Philip and Watson, 

1982; Watson, 1985) and is then smoothed with a large median filter (1,200x1,200 

pixels) to obtain a downstream gradient. The predicted channel elevation is then lowered 

by 1 m to cut the channel into the DTM because the water-covered pixels must be lower 

than their neighbours. This 1 m value was tested iteratively and provided reasonable 

cross-section topographies but cannot represent the variation of water depths across 

the fan. However, this operation is conducted on the inundated channel section and 

hence the effect of the under- or overestimation of the riverbed elevation decreases with 

increasing flow rate. 

The obtained channel DTM is then merged with the forest DTM and an adaptive filter 

(3x3 pixels, standard deviation threshold: 0.75) to smooth the channels in the updated 

DTM in the lateral direction while maintaining the steep riverbanks observed in the 

Eastern branch. This filter is only applied within a 20-pixel buffer of the channel outline.   

  

6.2.5.4 The removal of small features and noise 
 

The updated DTM still contains smaller objects such as buildings and tree patches, and 

noise from the generation of the raw DTM. Larger noise and surface objects (e.g. trees 

and buildings) are masked using a standard deviation filter (21x21 pixels). Pixels for 

which this standard deviation ≥ 4% are buffered and replaced by the elevation of a 

smoothed DTM (median filter: 55x55 pixels). This approach was tested by comparing it 

with satellite images in Google Earth and efficiently classified and removed surface 

objects of lower density (e.g. tree patches, buildings).  

The resulting DTM is checked for remaining larger areas which are noisy and are 

updated with manually derived elevations. This DTM is then smoothed using a median 

filter (21x21 pixels) to remove small noise relics. This final DTM is shown in Figure 6.1.  
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6.3 Boundary conditions 
 

The C-L model requires data about the surface topography, the bedrock layer, the grain 

size distribution across the modelling domain, and the influx of water and sediments.  

 

6.3.1 Topography 
 

The DTM is generated following the method described in section 6.2.5. The spatial 

resolution of the modelling is a trade-off between the model runtimes and the 

preservation of topographic details. Cross-section profiles showed that the topography 

of smaller channels in the floodplain is maintained at the 25 m resolution. Therefore, the 

DTM is then resampled from 1.8 m to 25 m (bilinear interpolation) which reduces the 

number of grid cells from ~170M to ~1M. This reduction of the spatial resolution 

decreases the model runtime and enables the simulation of the ensemble.  

An artificial drainage ring is added to the boundaries of the study area. This ensures that 

water and sediments can leave the modelling domain at any cell of the model boundary 

and are not artificially trapped within the fan. The slope at the downstream border is set 

to 0.001 m m-1 which represents the river slope at the downstream edge measured from 

the DTM and agrees with Dingle et al. (2020a). 

The C-L model requires the definition of the bedrock elevation. However, the study area 

does not contain a bedrock layer but is an alluvial fan located on the Indo-Gangetic plain 

which comprises up to 1,500 m thick alluvium (Upreti, 1999). Therefore, a theoretic 

bedrock surface is set 40 m below the DTM elevation. This layer is not activated in the 

modelling because the erosion does not reach 40 m in any cell.  
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6.3.2 Grain sizes 
 

The Grain Size Distribution (GSD) is estimated from the measured GSD of seven gravel 

bars along a transect of the Karnali River in the fan (Figure 6.3 A). C-L simulates 

sediment transport for up to nine grain sizes. The taxonomic grain size classification 

(coarse sand, fine gravel, medium gravel, etc.) is not feasible due to the large variations 

in the GSD with coarse sediments at the fan apex (D50: 238 mm) and much finer 

sediments at the downstream border of the study area close to the Gravel Sand 

Transition GST (D50: 53 mm). Ziliani et al. (2013) determined the grain size classes from 

the measured GSD and not from the grain size taxonomy. A similar approach is used in 

this study where the class boundaries are chosen to reflect the mean grain size 

distribution of the seven samples (Figure 6.3 B).  

The C-L model uses a single grain size for each class (and not the grain size range of 

each class) and these grain sizes are defined as the grain size with the mean density of 

each group (Table 6.2). The only exception is the finest class for which the size is set to 

2 mm to have a sand fraction in the system. Sand gains importance towards the 

downstream border but this is not reflected by the mean GSD of the seven samples 

(Quick et al., 2019; Dingle et al., 2020b).  

 

 

 

Figure 6.3: The grain sizes of the Karnali fan. Figure A shows the grain size distributions of gravel bars 
measured at seven locations along the Karnali River in the fan. The distance upstream inlet (the mountain 
outlet) is included in the brackets. The grain size distribution is obtained from Quick et al. (2019). Figure B 
shows the mean grain size distribution of the seven samples (solid black line), the boundaries of the nine 
grain size classes used in the C-L modelling (dashed black lines), and the grain sizes used in the C-L model 
(red lines). See also Table 6.2 for the grain sizes of the classes.   

A) B) 
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Table 6.2: The grain size classes used in the C-L modelling. The boundaries are the lower and upper 
boundaries of each class and the grain size is the grain size used in the C-L model.  

Grain size 

class 

Lower boundary 

[mm] 

Upper boundary 

[mm] 

Grain size 

[mm] 

1 2 2 2 

2 2 22 12 

3 22 43 31 

4 43 63 53 

5 63 83 72 

6 83 104 94 

7 104 124 112 

8 124 200 155 

9 200 630 341 

 

 

 

 

The fraction of each grain size class on the total composition along the longitudinal river 

profile is then interpolated from statistical modelling (Figure 6.4). The choice of the model 

is based on the longitudinal distribution. An exponential model is used for the smaller 

grain size classes which increase in the downstream direction (classes 1-4; 2 mm – 63 

mm). The medium grain sizes classes that have the highest fraction in the central areas 

(10 – 25 km downstream of the inlet) are predicted from General Additive Models (GAM) 

(Class 5 – 7; 63 mm – 124 mm), and an exponential decay function is used for the largest 

two classes 8 and 9 (124 mm – 475 mm) for which the fraction decreases in the 

downstream direction. This approach produces a map with grain size fining in the 

longitudinal direction but without fining in the lateral direction and hence the gravel bar 

and bed are assumed to have a similar GSD. 
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The information about the presence of sand (≤ 2 mm) in the fan is contradictory. The 

grain size measurements of Quick et al. (2019) indicate that sand is absent in the study 

area. Grain size measurements shared by Dingle (personal comment) indicate that the 

riverbank at the bifurcation (5-6 km downstream of the inlet) comprises 3% sand. 

Furthermore, the downstream border is located close to the gravel-sand transition (GST) 

which marks a sudden shift from gravel to sand dominated material (Dingle et al., 

2020b). The presence of sand in the steeper upstream parts and the location of the GST 

indicate that it is unreasonable to simulate this system without any sand. Therefore, it is 

assumed that the sand fraction increases moderately from 3% at the inlet to 6% at the 

outlet. This moderate increase is somewhat subjective but the decision is a trade-off 

between observed downstream grain size fining and the measured sand at the 

bifurcation on the one hand (Dingle et al., 2020b), and the sand-free downstream 

samples of Quick et al. (2019).  

 

 

 

 

 

 

Figure 6.4: The interpolated grain size class fractions used to generate the grain size layer for the C-L 
modelling. The points indicate the fractions of each class measured on the riverbank at seven locations 
(Quick et al., 2019). The lines show the statistical models used for the interpolation of the grain size fractions 
to obtain the spatially distributed grain size layer. The grain sizes of the classes are presented in Table 6.2.  
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6.3.3 The influx of water and sediment 
 

The influx of water is determined from the hydrological modelling of the CMIP6 ensemble 

(Chapter 5). This water influx comprises the hydrograph of the AMAX event and the two 

consecutive days as described in section 6.2.4.2.  

The sediment influx is the transport capacity of the respective flow as described in 

Section 6.2.4.2. This transport capacity is calculated for all projected flows for the nine 

grain size classes using the bedload equation of Wilcock and Crowe (2003). The 

sediment transport capacity is converted from kg/min to m3/day assuming a rock density 

of 2,650 as also used by Dingle et al. (2017) for the Karnali fan. The predicted transport 

capacity for the range of simulated flood flows used to determine the sediment influx is 

presented in Figure 6.5.  

 

 

 

Figure 6.5: Bedload sediment transport capacity predicted by the BAGS model which is used to determine 
the sediment influx into the Karnali fan.  
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6.4 Results: The predicted evolution of the Karnali fan 
 

This section presents the analysis of the morphodynamic simulations of the baseline 

scenario (1975 – 2014), the medium-emission scenario SSP245 (2020 – 2099), and the 

high-emission scenario SSP585 (2020 – 2099). The first section 6.4.1 describes the 

results of the initial model evaluation to establish the internal validity (mass balance) of 

the simulations and identify the warm-up period of the model predictions. This provides 

the basis for the analysis of the morphological evolution (Section 6.4.2), the sensitivity 

of the simulations to the sediment influx (Section 6.4.3) and the evolution of the flow 

pathways (Section 6.4.4).   

 

6.4.1 The initial model evaluation 
 

The mass balance of sediment and water provides information about the model validity 

as no mass should be gained or lost except at the model boundaries. The difference 

between inflow, outflow, and the mass stored in the modelling domain is 2% for the flow 

model and hence 2% of water is lost in the calculations (Figure 6.6 A). No sediments are 

lost as the balance is even for the sediment transport model (Figure 6.6 B).  

The model initialises the topography and grain sizes during the first five years of the 

simulations. All ensemble members simulate a decrease in the fan elevation in the first 

five years (Figure 6.7). This predicted change does not appear to be driven by the flow 

rate as the behaviour is similar for every ensemble member and all three scenarios. 

Rather, this is a period in which the interpolated elevation and grain sizes are initialised 

by flushing out fine sediments and degrading (incising) channels into the predefined flat 

(in the lateral direction) interpolated channel sections of the input DTM. The highest 

change is simulated in the first year, and the initialisation is finished after five years. 

Therefore, the first five years are disregarded in the further analysis.  
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Figure 6.6: The mass balance of the C-L simulations. Figure A presents the water balance and Figure B 
presents the sediment mass balance. The domain refers to the mass which is stored within the modelling 
domain at the end of the simulation. The mass balance is calculated from a model run with an influx of 5,000 
m3/s and sediment influx at transport capacity for 72 hours. 

 

 

 

 

Figure 6.7: The mean topographic change of the fan to the previous year. The black line indicates the 
ensemble mean and the grey lines present the evolution of the ensemble members for the median flood 
discharge. 

 

  

A) B) 
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6.4.2 The predicted morphological evolution 
 

The simulations predict morphological changes at different spatial scales from a few 

hundred metres to a few kilometres. The fan is divided into three zones with distinct 

characteristics to analyse the large-scale changes. These three zones are: 

- the fan head which covers the area between 0 – 10 km downstream of the fan inlet 

(the fan inlet is the mountain outlet). This is the steepest fan section with a channel 

slope of ~ 0.002 m m-1 (Dingle et al., 2020); 

- the fan centre which covers the area between 10 – 20 km downstream of the fan 

inlet. The Karnali flows in two branches (the Eastern and the Western branches) and 

the slopes decrease from ~ 0.002 m m-1  to ~ 0.0015 m m-1 (Dingle et al., 2020b); 

- the lower fan which covers the area between 20 – 30 km downstream of the fan inlet. 

The channel slopes decrease further to ~ 0.001 m m-1 in this zone (Dingle et al., 

2020b).   

 

6.4.2.1 Longitudinal evolution 
 

The highest morphological activity is predicted for the fan head in the upstream 10 km 

of the fan (Figure 6.8). The single-threaded channel degrades at the inlet and 

aggradation is predicted after the first kilometre where the Karnali River widens as it 

enters the fan. The largest aggradation is predicted at the transition from the single-

threaded channel to the braided channels 2-3 km downstream of the inlet. A second 

smaller aggradation peak is predicted at the bifurcation into the Eastern and Western 

branches 7 km downstream of the inlet.  
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Figure 6.8: The longitudinal fan evolution of the CIMP6 scenarios at 1 km resolution predicted for the median 
flood discharge. The top row shows the total predicted topographic change and the bottom row indicates 
the mean topographic change of the active fan area (grid cells with simulated elevation change). The solid 
line indicates the ensemble mean and the grey lines the individual CMIP6 members.  

 

The geomorphic activity decreases in the fan centre (10 – 20 km downstream of the 

inlet) and the lower fan (20 – 30 distance to the inlet). The predicted change alternates 

between degradation and aggradation in the fan centre but this change is low and the 

channel remains comparatively stable (Figure 6.8). The morphological change increases 

in the lower fan whereas alternating sections of degradation and aggradation are also 

predicted in this zone. However, the predicted changes are much lower than predicted 

for the fan head. This difference in upstream and downstream activity is particularly 

pronounced when considering the mean predicted change in the active fan area (the 

area for which changes are predicted). The ensemble mean change for the baseline 

scenario ranges between -2.6 m/m2 to 0.6 m/m2 in the fan head, between -0.008 m/m2 

and 0.007 m/m2 in the fan centre, and between -0.006 m/m2 and 0.01 m/m2 in the lower 

fan (Figure 6.8). 

The predicted spatial patterns of degradation and aggradation are consistent for the 

scenarios, but the magnitude increases with the emissions (Figure 6.8). The degradation 

at the inlet increases from -2.6 m/m2 in the baseline to -5.5 m/m2 and -6.9 m/m2 in the 

medium- and high-emission scenarios, respectively. Consequently, more sediment 

deposits at the transition from the single-threaded to the braided channel (2-3 km 
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distance to the inlet) and at the bifurcation (7 km downstream of the inlet) and hence 

these depositional areas expand. The magnitudes of degradation and aggradation also 

increase further downstream in the fan centre and lower fan.   

Similar trends are predicted for the projected scenarios but some sections switch the 

mode (degradation and aggradation) between the baseline and the projected scenarios. 

The ratio of the morphological change between the baseline and projected scenarios is 

shown in Figure 6.9. A negative ratio indicates a shift between degradation and 

aggradation. Such shifts occur at the transition between degradation and aggradation 

zones and are caused by a spatial extension of the aggradation zone (e.g. at 5, 8, and 

23 km distance to the inlet) or an extension of the degradation zone (e.g. at 1, 13 -16 km 

distance to the inlet). The ratios of the medium- and high-emission scenarios follow a 

similar trend whereas it is more pronounced for the high-emission scenario. However, 

the ratios of both scenarios are similar in some sections (e.g. at 15 – 17, 24 – 26 km 

distance to the inlet). This might indicate that the differences between the baseline and 

projected scenarios are caused by the longer simulation length (baseline: 35 years, 

projected scenarios 75 years) rather than the projected changes in the flood discharge.  

 

 

 

Figure 6.9: A) The mean (CMIP6 ensemble) topographic change at the end of the simulation period for the 
median flood discharge. B) The ratio of the topographic change between the ensemble means of the 
baseline and projected scenarios. A negative ratio indicates a shift between degradation and aggradation. 
The topographic change is the net change at 1 km resolution and is predicted for the median flood discharge.  



 

282 

 

A net aggradation is predicted for the fan head and the lower fan while a net degradation 

is predicted for the fan centre (Figure 6.10). The zonal sediment budget indicates that 

the fan head is the most active zone and acts as a sink for the sediments discharged 

into the fan. The sediment discharge increases with the flood discharge (assumption of 

sediment transport at capacity) and hence the amount of stored sediments increases 

from 0.6 Million m3 in the baseline to 3 Million m3 and 4.6 Million m3 in the medium-

emission and high-emission scenarios whereas a part of this increase is also facilitated 

by the longer simulation length of the projected scenarios. A net loss of 0.2 – 0.3 Million 

m3 is predicted for the fan centre for the three scenarios. Hence, this area is less 

sensitive to the flood discharge changes compared to the other zones. The lower fan 

stores 0.2 Million m3 in the baseline which equals the net loss of the fan centre. However, 

for the projected scenarios, the stored sediment increases to 0.5 Million m3 and 0.7 

Million m3 and exceeds the sediment loss of the fan centre. This means that some 

sediments originating from the upstream catchment and/or from the fan head must 

bypass the fan centre and deposit in the lower fan. 

The aggradation of the fan head (0 – 10 km distance to the inlet) increases with the 

simulation time for each of the three scenarios whereas this trend is more pronounced 

for the projected scenarios (Figure 6.11). The mean sediment aggradation is 0.6 Million 

m3 after 35 years in the baseline scenario, and 1.1 Million m3 and 1.3 Million m3 in the 

medium-emission and high-emission scenarios, respectively. The projected change 

increases linearly after 35 years in the medium-emission scenario (after the year 2060) 

while it intensifies in the high-emission scenario, particularly after the year 2080.  

 

 

 

Figure 6.10: Ensemble mean topographic change for the fan head, the fan centre, and the lower fan for the 
median flood discharge. These areas are classified by the distance to the inlet whereas the fan head the 
area at 0 – 10 km distance, the fan centre at 10 – 20 km, and the lower fan at 20 – 30 km.  
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The model predicts the net degradation for the fan centre (10 – 20 km distance to the 

inlet) in all three scenarios. The degradation rate is highest in the first 10-15 years of the 

simulations after which it decreases. The fan remains stable with low predicted changes 

after the year 2000 in the baseline scenario. However, in the projected scenarios, the 

fan shifts from the net degradation to the net aggradation around the period 2060 – 2070. 

The lower fan (20 – 30 km distance to the inlet) is projected to aggrade continuously 

even after the predicted shift from degradation to aggradation in the fan centre. However, 

the aggradation rate decreases at the time of this upstream shift for the medium-

emission scenario SSP245, while the aggradation rate do not change for the high-

emission scenario SSP585 (Figure 6.11).  

 

 

 

 

Figure 6.11: The predicted topographic change in time for the fan head (0 – 10 km distance to the inlet), the 
fan centre (10 – 20 km), and the lower fan (20 – 30 km). The solid line indicates the ensemble mean and 
the grey lines indicate the ensemble members. These changes are predicted for the median flood discharge.  
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The longitudinal evolution is characterised by alternating sections of degradation and 

aggradation on different spatial scales (Figure 6.12). The extent of these sections ranges 

between several hundred metres to a few kilometres. The largest sections are predicted 

at the fan head, particularly at the inlet (degradation), the conversion from the single-

threaded to the braided channel (2 – 3 km distance to the inlet), and the bifurcation (7 

km distance to the inlet) (both aggradation). Further downstream, extended sections are 

predicted (e.g. 24 – 26 km distance to the inlet) but these are intersected by sections 

with low changes. In general, the spatial scale of degradation and aggradation is smaller 

in the fan centre and lower fan. Here, the evolution can change multiple times between 

degradation and aggradation within a few kilometres (e.g. 12 – 15 km distance to the 

inlet).  

 

Figure 6.12: The ensemble mean topographic change at 100 m resolution for the simulation period. The a-
axis shows the year of the simulation. The changes are predicted for the median flood discharge.  
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The predicted longitudinal evolution is consistent in time and space (Figure 6.12). Similar 

trends are predicted for each scenario at the same location. In other words, the sections 

with high degradation or aggradation are similar in the baseline and projected scenarios. 

However, the magnitude of the projected change increases in the projected scenarios, 

and the spatial extent of these zones increases which is most prominent in the fan head. 

In the fan centre and the lower fan, sections of degradation and aggradation extend 

further and the transitional zones with low predicted change decrease. The predicted 

trend intensifies with time in most sections. In a few sections however, the net change 

decreases at a certain point in time, indicating a shift from degradation to aggradation 

(e.g. 20 km distance to the inlet) or from aggradation to degradation (e.g. 15 km distance 

to the inlet). 

 

6.4.2.2 Lateral evolution 
 

The lateral evolution comprises in-channel, riverbank, and floodplain processes such as 

channel degradation and aggradation, bank erosion and development, and floodplain 

deposition. The predicted lateral evolution has two distinct characteristics; i) the 

geomorphic activity is highest in the channel and decreases with the distance and; ii) the 

evolution intensifies with emissions whereas the predicted spatial patterns remain similar 

(Figure 6.13). Furthermore, the predicted evolution differs in the fan head, fan centre, 

and lower fan.  

The fan head is the zone with the highest predicted lateral changes but the evolution is 

constrained to the channel (Figure 6.13). The mean aggradation is 17 mm/m2 in the 

baseline scenario which increases to 79 mm/m2 and 124 mm/m2 in the medium-emission 

scenario SSP245 and the high-emission scenario SSP585, respectively. The higher 

aggradation rates of the projected scenarios are, in part, caused by the longer simulation 

length (75 years compared to 35 years of the baseline). However, the difference between 

both projected scenarios indicates that the evolution is influenced by the increase in 

projected flows and the higher sediment influx. The geomorphic activity decreases with 

the channel distance and no changes are predicted at ≥ 500 m distance. This is because 

the channels cover most of the fan head.  
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Figure 6.13: Mean topographic change at the end of the simulation periods with distance to the channel for 
the fan head (0 – 10 km), fan centre (10 – 20 km), and the lower fan (20 – 30 km). The solid line indicates 
the ensemble mean change and the grey lines the individual ensemble members. The channel is defined 
as the inundated area during medium flow (3,000 m3/s) for the initial topography after the initialisation period. 
The changes are predicted for the median flood discharge and are the net change predicted for each zone. 

 

The fan centre is characterised by the degradation of the initial channels. Alternating 

patterns of degradation and aggradation are predicted for the floodplain with a channel 

distance ≥ 500 m whereas the areas of degradation are smaller channels which drain 

the floodplain. However, the mean elevation change of the floodplain (> 500 m distance 

to the channel) is < 1 mm/m2 in each scenario, which indicates that the floodplain is 

reworked but does not act as a significant storage for the upstream sediments. The 

channel (≤ 250 m distance to the channel) degrades but this degradation decreases with 

the emissions from 6 mm/m2 in the baseline to 4 mm/m2 and 3 mm/m2 in the medium-

emission and high-emission scenarios, respectively. However, the degradation of the 

transition zones (250 – 500 m distance to the channel) increases from 4 mm/m2 

(baseline) to 15 mm/m2 (SSP245) and 24 mm/m2 (SSP585). 

The channels in the lower fan aggrade by 6 mm/m2 (baseline) which increases to 14 

mm/m2 (SSP245) and 20 mm/m2 (SSP585). The transitional zones (250 – 500 m 

distance to the channel) degrade by 8 mm/m2 (baseline), 19 mm/m2 (SSP245) and 27 

mm/m2 (SSP585). The mean change in the floodplain (> 500 m distance to the channel) 

is < 1mm/m2. Therefore, the predicted lateral evolution is similar to the one predicted for 
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the fan centre except for the channels which aggrade in the lower fan and degrade in 

the fan centre.  

 

6.4.2.3 The evolution of the Eastern and Western branches of the Karnali River 
 

The Karnali River splits after the bifurcation (7 km downstream of the inlet) into the 

Eastern and Western branches. The Eastern branch is characterised by braided 

channels throughout the fan, while the channels of the Western branch are generally 

wider and confluence to a single channel in several sections. These different channel 

characteristics manifest in different predicted evolutions. Higher change rates are 

predicted for the Eastern branch at 10 – 15 km distance to the inlet, particularly in the 

baseline scenario (Figure 6.14). Further downstream, higher change rates are predicted 

for the Western branch in each scenario (15 – 27 km distance to the inlet). Similar 

change rates are predicted at the downstream end of the modelling domain (≥ 27 km 

distance to the inlet). In the lower fan, aggradation dominates the evolution of the braided 

Eastern branch. In the Western branch, aggradation sections are intersected by sections 

with high degradation in the lower fan (e.g. 24 – 25 distance to the inlet) (Figures 6.14 

and 6.15).  

The model predicts a different lateral evolution of both branches (Figure 6.15). Generally, 

the predicted changes are larger in the Western branch, both in the channel (lateral 

distance < 250 m), and the floodplain (lateral distance ≥ 250 m). One distinct difference 

is the predicted change at 250 – 500 m channel distance. In the Western branch, this 

section is dominated by degradation, and aggradation is only predicted in two areas (10 

and 23 km distance to the inlet). The predicted rates are particularly large between 17 – 

30 km distance to the inlet. In the Eastern branch, the highest degradation rates are 

predicted between 10 – 15 km distance to the inlet, and ≥ 20 km distance to the inlet the 

evolution is dominated by aggradation. Alternating patterns of degradation and 

aggradation are predicted for both branches in areas with ≥ 500 m channel distance, 

whereas these changes are larger in the Western branch. However, in both branches, 

the predicted changes increase with the emissions, but the spatial patterns remain 

similar.  
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Figure 6.14: Ensemble mean longitudinal change at the end of the simulation period for the Eastern and 
Western branches of the Karnali River. Areas with a greater distance to the initial channel of 500 m are 
excluded from the calculation of the mean. These changes are predicted for the median flood discharge. 

 

 

 

Figure 6.15: The ensemble mean longitudinal and lateral elevation change at the end of the simulations of 
the Eastern and Western branches. The distance to the channel refers to the initial channel after the 
initialisation periods. These changes are predicted for the median flood discharge. 
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6.4.2.4 The predicted changes at modelling resolution 
 

The predicted changes at the modelling resolution (25 m) of the three scenarios are 

presented as DEMs of Difference (DoD) in Figure 6.16. These DoDs indicate that the 

areas of degradation and aggradation are in proximity. Furthermore, the predicted 

changes are in the magnitude of metres which is considerably larger than the scale of 

the mean changes in the longitudinal and lateral directions (mm – cm). This emphasizes 

that a significant contribution of the predicted changes is the redistribution of fan 

sediments on the local scale. The model predicts two different modes of sediment 

redistribution: 

- The redistribution of bank material: The river banks erode and this material deposits 

within tens to hundreds of metres in the channels. This process dominates the 

evolution of the channels throughout the fan (e.g. the inset of the Eastern branch in 

Figure 6.16).  

- The redistribution of channel material: The simulations predict the channel 

degradation and the downstream channel aggradation. This process is predicted in 

in channel sections where the river flows in a single channel (e.g. at the fan inlet), or 

in sections in which the channel width decreases (for example the inset of the 

Western branch in Figure 6.16). This eroded channel material is then deposited 

further downstream where the channel width increases. This redistribution occurs on 

a scales of up to a few kilometres.  

Furthermore, the model predicts the channel aggradation downstream of channel 

bifurcations. This is most distinctively predicted in the channel head at the conversion 

from the single-threaded to the braided channel. However, this behaviour is predicted 

throughout the fan but is superimposed by the lateral redistribution.   

The locations of degradation and aggradation are consistent in the different scenarios. 

However, the magnitude and the spatial extent of these degrading or aggrading areas 

increase with the emissions. One difference between the scenarios is the evolution of 

the floodplains. Few areas along small channels in the floodplains change in the baseline 

scenario but this area expands in the projected scenarios (Figure 6.16). However, the 

change concentrates on the Western floodplain and the Island between both branches, 

while the areas located east of the Eastern branch remain unchanged in each scenario.  
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Figure 6.16: DEM of Difference (DoD) of the three CMIP6 scenarios. These DODs show the ensemble mean elevation difference between the topographies at the beginning of 
the modelling period (after the model initialisation; baseline: 1980; projected scenarios: 2025) and the end of the modelling period (baseline: 2014; SSP245 and SSP585: 2099). 
Positive values indicate predicted aggradation and negative values indicate predicted degradation. The changes are predicted for the median flood discharge. The white lines in 
the insets present the outline of the initial channel at  3,000 m3/s. The coordinate system is WGS84 UTM Zone 44 N in kilometres. 
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6.4.2.5 The predicted evolution of the ensemble members 
 

The individual ensemble members predict similar spatial patterns of degradation and 

aggradation whereas the manifestation of these patterns increases with the emission 

scenario, the inflow water and sediments, and the inflow percentile (the percentiles of 

the hydrological ensemble predictions) (Figure 6.17). This behaviour is most pronounced 

in the fan head (0 – 10 km distance to the inlet) where all models predict the degradation 

at the inlet, the aggradation at the conversion from the single-threaded to the braided 

channel (2 - 3 km distance to the inlet), and the aggradation at the bifurcation (7 km 

distance to the inlet).  

The spatial extent and the magnitude of degradation and aggradation increase with the 

emissions and the inflow percentile. The initial degradation expands, the 1st aggradation 

zone expands and shifts downstream, and the 2nd aggradation zone expands with 

emissions and the inflow percentile (Figure 6.17). These trends are also predicted for 

the ensemble members (note that the ensemble members are sorted in decreasing order 

according to the mean (time) inflow rate of the SSP585 scenario). This is particularly 

evident when comparing the position and magnitude of change in these zones of the 

MPI-ESM1-2-HR (lowest flood flows) and the ACESS-ESM1-5 (highest flood flows) 

members for the projected scenarios.  

The ensemble members predict similar patterns of degradation and aggradation for the 

fan centre (10 – 20 km distance to the inlet) and lower fan (20 – 30 km distance to the 

inlet). Degradation and aggradation are predicted at similar locations for each ensemble 

member (Figure 6.17). The predicted changes increase with the emissions and inflow 

percentile, and the area increases by a few 100 m for simulations with higher inflows. 

However, no downstream shift of the centre of the degradation and aggradation zones 

is predicted unlike for the fan head. The predicted changes scale with the flood 

discharge, and the predicted change is generally lower for models with lower flood flows, 

as also predicted for the fan head.  

The predicted morphological change scales with the flood discharge. Figure 6.18 

presents the relationship between the mean (time) flood discharge and the predicted 

morphological change at the end of the simulations. A strong linear relationship is 

observed for the fan head and the lower fan. The predicted change of the baseline period 

is lower compared to the projected scenarios which is also affected by the shorter 

simulation period (35 years compared to 75 years).  
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The relationship between the inflow rate and the predicted morphological change is 

weaker for the fan centre, particularly for the high-emission scenario SSP585. The 

predicted degradation rates decrease above mean inflow rates ≥ 12,000 m3/s and hence 

this relationship appears non-linear but rather v-shaped. This different relationship might 

be caused by the switch from degradation to aggradation after ~40 years of simulation 

(Figure 6.11). However, the predicted change is low compared to the fan head and the 

lower fan and hence the model predicts a strong linear relationship between inflow rate 

and morphological change.  

 

 

 

 

 

Figure 6.17: The longitudinal evolution of the individual ensemble members at 100 m resolution. The 
evolution is presented for the 2.5th, 50th and 97.5th percentiles of the flood discharge predictions. The models 
are sorted in decreasing order according to the mean (time) median (ensemble) flood discharge of the high-
emission scenario SSP585.  
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Figure 6.18: The relationship between the mean flood discharge (time) and the predicted topographic 
change at the end of the simulation period for the fan head (0 - 10 km distance to the inlet), the fan centre 
(10 - 20 km distance to the inlet), and the lower fan (20 - 30 km distance to the inlet). This plot combines the 
simulations of the P2.5, P50, and P97.5 flood discharge percentiles.  

 

 

6.4.3 The sensitivity of the morphological change to the sediment 
influx 
 

The NorESM2-LM SSP585 scenario was simulated with different sediment influx rates 

to investigate the sensitivity of the morphological simulations to the assumption of 

sediment influx at the transport capacity. This model was run with the sediment influx at 

0%, 50%, and 75% of the sediment transport capacity. Furthermore, one model was run 

with a random influx of 50 – 100% of the sediment transport capacity to investigate how 

varying sediment pulses affect the fan evolution. The NorESM2-LM SSP585 scenario 

was selected because it is one of the models with the highest predicted flood flows, and 

thus, sediment influxes.   

The sediment influx strongly affects the evolution of the fan head (Figures 6.19 and 

6.20). The aggradation peaks at the shift from the single-threaded channel to the braided 

channel (3 km distance to the inlet) and the bifurcation (7 km distance to the inlet) 

develop also for the simulation without any sediment influx. This indicates that the 

material of the single-threaded channel is deposited at the top of the fan. However, 

degradation is simulated between both peaks which indicates that the second peak at 

the bifurcation is, at least to some degree, a product of the reworking of fan material. 
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The differences between the sediment scenarios are largest at the transition of single-

threaded to the braided river, whereas the predicted aggradation rates increase with the 

sediment influx. Therefore, most of the sediment influx is stored within a zone of 3 – 5 

km distance to the inlet. Hence, the predicted change scales with the sediment influx 

which is also indicated by the sediment budget (Figure 6.20). The fan head degrades if 

no sediment enters the modelling domain and it aggrades increasingly with higher 

sediment influx.    

 

 

 

 

 

 

Figure 6.19: Topographic change of the NorESM2-LM SSP585 (median flood discharge) scenario for 
different sediment scenarios. The topographic change is the net change at 1 km resolution. The sediment 
influx is scaled with the transport capacity (0%: no sediment influx; 100%: sediment influx at transport 
capacity). The influx of the 50 – 100% sediment scenario varies randomly between the years and is within 
50 – 100% of the transport capacity.  
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Figure 6.20: The sediment budget of the fan head (0 – 10 km distance to the inlet), the fan centre (10 – 20 
km), and the lower fan (20 – 30 km) for the different sediment influxes in percentage of the transport capacity.  

 

 

The longitudinal evolution of the fan centre and the lower fan are insensitive to the 

sediment influx (Figures 6.19 and 6.20). The spatial patterns of degradation and 

aggradation remain similar regardless of the sediment influx, and for most parts, the 

scenario differences are barely noticeable. However, scenario differences manifest in 

two regions, 19 – 20 km and 25 – 25 km downstream of the inlet. The simulation without 

sediment influx has a lower aggradation rate at 19 km downstream of the inlet and a 

lower degradation rate at 20 km downstream of the inlet than the simulations with 

sediment influx. Further downstream, at 24 km distance to the inlet, the simulation 

without sediment influx degrades stronger than the scenarios with sediment influx. The 

section at 25 km distance to the inlet aggrades in the 0% sediment influx scenario, 

whereas this section degrades for the remaining sediment scenarios. Interestingly, the 

scenario differences do not scale linearly in both sections. The differences between the 

simulation without sediment influx and 50% sediment influx are larger than the ones 

between no sediment influx and 100% sediment influx (Figure 6.19).  

The fan centre degrades in each sediment influx scenario whereas this degradation does 

not scale linearly with the sediment influx as the highest degradation is predicted for the 

0% sediment influx scenarios and the lowest one for the 50% sediment influx (Figure 

6.20). This non-linearity is also predicted for the lower fan whereas the scenario 

differences are very low. This indicates that the aggradation of the lower fan is caused 

by sediments originating from the fan head and not from the sediment influx. 

Furthermore, the degradation of the fan head and fan centre of the 0% sediment 

scenario (1,8 Million m3) exceeds the aggradation of the lower fan (1,1 Million m3) which 

indicates that some fan sediments are discharged from the modelling domain.  
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The Western branch is more sensitive to the sediment influx than the Eastern branch 

(Figure 6.21). The sediment scenario differences in the fan centre and the lower fan 

(Figures 6.19 and 6.20) are mainly caused by differences predicted in the Western 

branch. The Eastern branch is insensitive towards the sediment influx except for the first 

few kilometres after the bifurcation. The Western branch is more sensitive, particularly 

in the lower fan where the channel is wider and less braiding occurs. However, the fan 

head is the by far most sensitive towards the sediment influx.  

 

 

Figure 6.21: DEMs of Difference (DoD) of the NorESM-LM SSP585 sediment scenarios (median flood 
discharge). These maps show the elevation difference between the predictions of the sediment scenarios 
(influx at 0%, 50%, 75%, 50 – 100% of the transport capacity) and the predictions with sediment influx at 
the transport capacity (DEM sediment scenario – DEM transport capacity). The coordinate system is 
WGS84 UTM Zone 44 N in kilometres. 
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6.4.4 The evolution of flow pathways 
 

The flow pathways are controlled by the topography and may change with the 

morphological evolution. The observed changes in the channel location provide 

information about topographic changes which can be used to evaluate the model 

performance (Section 6.4.4.1). The largest topographic changes are predicted in the fan 

head which is a crucial area because it controls the distribution of flow to the downstream 

fan. The impact of these predicted changes on the flow pathways is presented in Section 

6.4.4.2.  

 

6.4.4.1 Observed and simulated changes in the channel locations  
 

The observed changes in the channels concentrate on the fan head and the Eastern 

branch. Figure 6.22 shows the observed channels in the period 1990 - 2021 classified 

from Landsat images (Landsat 5 – Landsat 8) using the Automated Water Extraction 

Index (AWEI) (Feyisa et al., 2014). The channels are characterized by stable sections 

which have been active throughout the past 30 years and unstable sections in which the 

channels migrate and are only active during a few years. While stable and unstable 

sections are observed across the whole fan, the stable sections dominate in the Western 

branch. The channels in the fan head and the Eastern branch are mostly unstable except 

for the first 2-3 km at the upstream model boundary and the last 2-3 km at the 

downstream model boundary. The change of the location of channel bars, bends and 

banks occurs on the scale of 50 – 500m in unstable sections and these changes occur 

between the acquisition of consecutive images (~1 year).  

The flood event in 2009 altered the topography at the bifurcation and shifted the 

allocation of water in favour of the Western branch (Figure 6.23). This event indicates 

the potential of flood flows to alter the topography and the flow pathways. However, the 

two largest flood events in the past 30 years (2013 and 2014) have not caused a 

significant change in the location of the channels of the Eastern branch (Figure 6.23). 

This indicates that the channel mobility decreased in the Eastern branch after the 

bifurcation shift in 2009. Conversely, these floods have caused the reshifting of the 

location of multi-threaded channels in the Western branch which indicates that the 

channel stability in this branch decreased after the flood event. However, these changes 

occur within the bankfull channel which might be attributed to the ongoing construction 

of embankments since the year 2011.  
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Figure 6.22: Observed channel composite generated from 23 Landsat-5 to Landsat-8 images covering the 
period 1989 - 2021. The images are taken during the post-monsoon season or, if post-monsoon season 
images are unavailable, from the pre-monsoon season. Images captured between 2003 – 2012 have data 
gaps due to an error of the Landsat-7 sensor and are not used for the composite image. The water is 
classified by the Automated Water Extraction Index (AWEI). The observed discharge at the fan inlet (DHM) 
of the acquisition dates ranges between 300 m3/s and 1470 m3/s (median: 1,000 m3/s). The discharge of 
the images taken after 2016 is unknown. The white line indicates the boundary of the modelling domain. 
The coordinate system is WGS84 UTM Zone 44 N in kilometres. 
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Figure 6.23: The channels observed in individual Landsat-7 and Landsat-8 images. The images are captured before (left) and after (centre) the bifurcation change in 2009. The 
two largest flood events since 1990 (17,000 – 18,000 m3/s) occurred between the acquisition of the images in 2012 (centre) and 2014 (right). The striped data gaps in the 2012 
image are caused by the failure of the Landsat-7 scan line corrector. The water is classified by the Automated Water Extraction Index (AWEI). The grey line indicates the boundary 
of the modelling domain. The observed discharge at the fan inlet (DHM) is presented at the top of each image. The coordinate system is WGS84 UTM Zone 44 N in kilometres.



 

300 

 

The model predicts the reoccupation and abandonment of channels rather than the 

channel migration for the baseline simulations. Figure 6.24 presents the number of years 

during which a channel is active during post-monsoon season flow conditions (1,160 

m3/s) for the three ensemble members with the lowest, medium and highest predicted 

morphological changes.  

The location of the channels remains stable for the member with the lowest predicted 

morphological change, whereas a few channels in the upper third of the Eastern branch 

are abandoned and one channel of the Western branch is reoccupied (Figure 6.24). 

Both, the abandonment of channels in the Eastern branch, and the reoccupation of 

channels in the Western branch increase for the medium- and high-change members.  

The member with the highest predicted morphological change predicts the abandonment 

of most channels in the Eastern branch which indicates that the bifurcation changes and 

more water is routed through the Western branch. Therefore, this model predicts a 

behaviour that is also observed in the Landsat images (Figures 6.22 and Figures 6.23). 

However, the location of the channels remains similar and hence the model does not 

predict considerable migration of channels and bars.  

The ensemble variation of the channel locations at the end of the simulation periods 

increases with the emissions (Figure 6.25). This variation is low in the baseline scenario 

for which some members predict channels in the Island between both branches but, 

overall, the ensemble variation is low. This variation increases for the projected 

scenarios, particularly in the Island between the branches. The divergence of channels 

into the Island occurs at the fan head (~ 10 km distance to the inlet), at the Eastern 

branch (~20 km distance to the inlet) and at the lower Western branch (~25 km distance 

to the inlet). The Eastern and Western floodplains remain free of channels except for 

one member which predicts a channel in the Western floodplain in the medium-emission 

scenario SSP245.  

Generally, the location of the main branches remains stable between the three scenarios 

which indicates that the ensemble variation is caused by the abandonment and 

reoccupation of channels rather than the channel migration (Figure 6.25). One exception 

is the fan head, particularly in the transition from the single-threaded to the braided 

channel (~2 – 3 km downstream of the inlet). This transition migrates upstream whereas 

this shift is larger for the high-emission scenario SSP585. In the braided channels of the 

Eastern branch, more members predict the inundation of more channels with the 

emissions which indicates an increase of the braiding intensity with higher flows.  
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Figure 6.24: The predicted evolution of the channel locations for the baseline period for three ensemble members. The gradient colour indicates for how many years in the period 
1980 – 2014 a channel is active and the orange outline indicates the location of the channel at the beginning of the simulation period in 1980. The ensemble members are chosen 
by their predicted elevation change (baseline scenario) and represent the full range of ensemble predictions from the lowest change (left), medium change (centre), and highest 
change (right). The channels are classified as pixels which are inundated at 1,160 m3/s inflow to the fan. This inflow is the median discharge observed by DHM during October 
(1990 – 2016) and was chosen to ensure the comparability with the observed channels in Figures 6.22 and 6.23. The coordinate system is WGS84 UTM Zone 44 N in kilometres. 
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Figure 6.25: The location of the channels at the end of the morphodynamic simulations for the ensemble members. The gradient colour indicates how many of the 12 CMIP6 
members predict a channel at a particular location and the orange outline indicates the location of the channel at the beginning of the simulation period. The channels are classified 
as pixels which are inundated at 3,000 m3/s inflow to the fan. Note that this inflow rate is higher than the one in Figure 6.24. The higher inflow rate was chosen because it delineates 
a larger fraction of the channel without inundating the floodplain. The coordinate system is WGS84 UTM Zone 44 N in kilometres. 
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6.4.4.2 The prediction of bifurcation changes 
 

The changes in the observed and simulated channels indicate the sensitivity of the flow 

pathways to the topographic change at the fan head. The bifurcation controls the 

allocation of the flow between the Eastern and Western branches and hence controls 

the hydrodynamic and morphodynamic processes in the downstream fan. The projected 

changes in this flow distribution are analysed by applying a flow model for the 

topographies projected for the high-emission scenario SSP585 for three members which 

represent the prediction range of the ensemble. The selection of the ensemble members 

is based on the total predicted change across the whole fan and the members with the 

lowest, highest, and median predicted change are selected. 

The impact of the bifurcation changes on the flow allocation to the branches varies with 

the flow rate, and the ensemble differences decrease with increasing inflow (Figure 

6.26). For the initial conditions, two-thirds of the inflow drains through the Western 

branch and one-third through the Eastern branch at lower flows (3,000 m3/s). With 

increasing inflow, the fraction draining through the Western branch decreases and 40% 

of the inflow drains through the Eastern branch (< 7,000 m3/s). For higher inflows, the 

fraction draining through the Eastern branch remains stable at ~40%, while the fraction 

decreases for the Western branch and increases for the Island. For the highest 

investigated inflow (17,500 m3/s), 48% drain through the Western branch, 37% through 

the Eastern branch, and 15% through the Island channels. 

The projected flow allocation varies between the ensemble members, particularly for 

inflows < 10,000 m3/s. For the lower-change member, the Western branch gains 

importance and 85% drains through it at 3,000 m3/s inflow. The contrary change is 

predicted for the high-change member for which the fraction draining through the  

Western decreases to 36%. The differences between the initial and projected flow 

allocations decrease with the inflow rate. However, the Western branch drains the 

largest fraction of water for all investigated flows (≤ 17,500 m3/s) for the low-change 

projections, while the Eastern branch drains the largest fraction of water for the high-

change projections. The allocation of water for the median-change projections deviates 

least from the one of the initial topography. Hence, the larger topographic change of this 

member compared to the low-change member does not translate into higher changes in 

the flow allocation between the branches.  
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The channels of the Island between the two branches become more connected to the 

channel system for all ensemble members. For the initial topography, the Island 

channels start to receive water at 7,500 m3/s (Figure 6.26). This threshold decreases to 

5,000 m3/s for the low- and medium-change members, and for the high-change member, 

the channels in the Island carry flow throughout the investigated inflow range.  

The morphological changes at the bifurcation control the allocation of water between the 

branches. The predictions of this allocation vary between the ensemble members. 

However, this variation mainly concerns smaller flood events. The projected flow 

allocation approaches the one predicted for the initial topography for inflows ≥ 10,000 

m3/s (Figure 6.26).  

 

 

 

 

 

Figure 6.26: The allocation of water between the Western and Eastern branches and the Island channels. 
The allocation of the initial topography is compared with the topographies predicted for the high-emission 
scenario SSP585 (2099). Three ensemble members are selected based on the projected changes of the 
fan topography and cover the full range of predictions for the SSP585 scenario from the smallest projected 
change (MPI-ESM1-2-HR) to the highest projected change (ACCESS-ESM1-5). The ACCESS-CM2 model 
represents the median projected change. 
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6.5 Discussion of the morphological simulations 
 

The morphodynamic simulations predict an increase in the morphological changes 

which scales with the flood discharge and, thus, with the emissions. These changes 

concentrate in the fan head at the transition from a single-threaded to the braided river 

and the bifurcation into the Eastern and Western branches. The fan head (0 – 10 km 

downstream of the inlet) acts as the main sediment sink and hence most of the 

sediments which are discharged from the Himalayas deposit within the first few 

kilometres downstream of the mountain range. The evolution of the fan centre (10 – 20 

km downstream of the inlet) and the lower fan (20 – 30 km downstream of the inlet) is 

mostly caused by the redistribution of fan sediments, and hence these areas are 

insensitive to the magnitude of sediment inflow for the investigated period. Furthermore, 

the allocation of water between the river branches is sensitive to the fan head 

topography.  

This section discusses the predicted morphological evolution of the fan and their controls 

(Section 6.5.1), the changes in the flow pathways (Section 6.5.2), the predicted sediment 

dynamics (Section 6.5.3), and the uncertainty of the simulations in the final Section 6.5.4. 

  

6.5.1 The predicted morphological evolution 
 

The predicted morphodynamic evolution varies in different zones of the fan. Generally, 

the model predicts alternating patterns of degradation and aggradation in both, the 

longitudinal and the lateral directions. The spatial scales of these patterns vary from a 

few hundred metres in the braided river sections of the fan centre and lower fan to 

kilometres at the fan head and in sections where the Western branch flows in a single 

wide channel. The predicted magnitude of change scales with the inflow of water and 

sediments but the ensemble members predict degradation and aggradation at similar 

locations. Hence, increasing flood flows intensify the morphological evolution but do not 

cause a shift in the behaviour (e.g., from degradation to aggradation).  
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6.5.1.1 Fan head 
 

The spatial variation of the dominant processes (degradation and aggradation) in the fan 

head (0 – 10 km distance to the inlet) reflects our understanding of the system. This area 

is the most active zone in which most of the predicted change occurs, and in which areas 

of degradation and aggradation have the largest extent (Figure 6.8). The single-threaded 

channel at the inlet degrades in the first 1 – 2 km after which the channels start 

aggrading. Both, the predicted degradation and aggradation appear reasonable from our 

understanding of the evolution of alluvial fans. 

These landscape features develop at the intersection between the parts of a catchment 

which deliver sediments and the parts which store these sediments (Coulthard et al., 

2002). The degradation is predicted for the mountain gauge in which the river flows in a 

narrow and well-confined channel which is still part of the delivery (degrading) system 

and hence the channel degradation is reasonable (Kleinhans et al., 2013). The change 

to an aggrading state occurs after 1 – 2 km where the river widens which results in the 

decrease of the stream power and, thus, in the sediment transport capacity. The highest 

aggradation rates are predicted at the transition from the single-threaded to the braided 

river which is reasonable because the water is distributed between different channels 

resulting in the decrease of the sediment transport capacity (Coulthard et al., 2002). A 

second, albeit smaller, aggradation peak is predicted at the bifurcation where the 

transport capacity reduces further as the number of channels increases. Therefore, the 

fan head aggradation is a reasonable prediction for the modelled system which is further 

complemented by flume experiments of alluvial fans which show similar patterns of 

aggradation just downstream of the feeder channel for high sediment supply rates 

(Leenman and Eaton, 2022). This predicted aggradation of the fan head increases the 

risk of an avulsion because it increases the topographic gradient between the channel 

and the western floodplain (Kleinhans et al., 2013; Sinha et al., 2014).  

The fan head evolution is controlled by the sediment influx and the channel slope. This 

area can switch between aggrading and degrading phases whereas the direction of 

change is commonly controlled by the sediment influx (Schumm et al., 1987; Kleinhans 

et al., 2013; Harvey, 2018; Leenman Eaton, 2022). The model predictions indicate that 

the fan head is currently in an aggrading phase. Furthermore, the model replicates the 

sensitivity towards the sediment influx because the net degradation of the fan head is 

predicted when no sediment enters the fan (Figure 6.20). However, the predicted phase 

must switch to degradation at some point in time even with continuous sediment supply 

because the aggradation increases the slope between the fan head and the downstream 
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fan which facilitates higher sediment transport from the head to the downstream fan 

areas (Dingle et al., 2020a). Therefore, the morphological predictions cannot be 

extrapolated beyond the simulated period (the year 2099). 

The fan sections at the transition from the single-threaded to the braided river and the 

bifurcation aggrade even in the scenario without sediment influx. These sediments 

originate from the degradation of the channel at the mountain gauge. In this section, the 

river flows in a confined channel and no changes in either width or location have been 

observed in the satellite images of the past 30 years (Figure 6.22). The predicted 

channel widths increase from 250 m up to 600 m in the high-emission scenario SSP585 

(Figure 6.16). Thus, while the degradation of the bed appears reasonable, the bank 

erosion is overestimated (the reasons are discussed in Section 6.5.4). Consequently, 

the aggradation is overestimated because these zones act as the sink of the bank 

sediments. This aggradation affects the downstream allocation of water (i.e. the Eastern 

and Western branches) and, thus, controls the evolution of the downstream fan. 

 

6.5.1.2 Fan centre and lower fan 
 

The predicted evolution of the fan centre (10 – 20 km distance to the inlet) and the lower 

fan (20 – 30 km distance to the inlet) is characterised by: 

- the lower predicted change rates compared to the fan head, e.g. the predicted net 

sediment change is ~ 4.6 Million m3 in the fan head and ~ 0.75 Million m3 in the lower 

fan at the end of the high-emission scenario SSP585 (Figure 6.10);  

- the alternating patterns of degradation and aggradation in the longitudinal direction 

which occur on a smaller scale of a few hundred metres (Figures 6.12 and 6.17);  

- the insensitivity of most river sections (particularly the Eastern branch) towards the 

sediment influx into the fan (Figures 6.19 and 6.20).  

The morphological evolution of the fan centre and the lower fan is mainly caused by the 

redistribution of fan sediments in both, the longitudinal and lateral directions as indicated 

by the insensitivity of the morphological evolution to the sediment influx. This 

redistribution occurs in most parts on a scale of less than one kilometre. However, net 

degradation is predicted for the fan centre and net aggradation is predicted for the lower 

fan. The lower fan aggradation exceeds the fan centre degradation and is of similar 

magnitude for each of the sediment influx scenarios. Therefore, fine sediments are 

eroded in the fan head and these sediments bypass the fan centre and deposit in part 

in the lower fan. This predicted behaviour is reasonable because the channel slope is 
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steeper in the fan centre and decreases in the lower fan, and the sediment transport 

capacity decreases in the lower fan (Dingle et al., 2020b).  

The evolution of the fan centre and the lower fan differ in the temporal characteristics 

and the drivers of the predicted change. The fan centre degrades in the first ~35 years 

of the simulations whereas the degradation rate decreases with time and after these 35 

years it shifts to an aggradation (Figure 6.11). The differences between the medium-

emission scenario SSP245 and the high-emission scenario SSP585 are small and 

hence this shift from degradation to aggradation is not driven by the increasing flow 

rates. This is also supported by the variation between the ensemble members which 

differ greatly in the projected flood flows, but all predict the initial degradation and the 

shift to aggradation. Therefore, the shift from degradation to aggradation is not caused 

by the climate change-induced increase in flood flows but may occur in the baseline 

scenario on a longer time scale. However, the rate of the initial degradation scales with 

the emissions and is considerably lower in the baseline scenario. Therefore, the 

evolution of the fan centre is, to some degree affected by the flood flow changes but this 

sensitivity is small compared to the fan head and the lower fan.  

Contrary, the evolution of the lower fan is driven by the projected increase in flood flows. 

This is particularly evident in the temporal evolution because the aggradation rates 

decelerate around the year 2060 in the medium-emission scenario SSP245 but continue 

at similar rates for the high-emission scenario SSP585 (Figure 6.11). This is the time at 

which the projected flood flows of both scenarios decouple which indicates that the 

aggradation is affected by the flood flow (Figure 5.26). However, it is not controlled by 

the sediment influx into the fan because similar aggradation rates are predicted for the 

different sediment inflow scenarios (Figures 6.19 and 6.20). This means that the 

increasing flood flows facilitate the higher redistribution of fan head sediments to the 

lower fan.    
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6.5.1.3 The controls of the morphological evolution 
 

The heterogeneity of the fan enables the identification of the controls of the fan evolution. 

Three characteristics can be identified that control the predicted evolution which are the 

number of channels, the channel width, and the channel slope. 

The number of channels controls the predicted rate of change in the longitudinal and 

lateral directions. The predicted change in both longitudinal and lateral directions 

decreases with the increasing number of channels. This predicted behaviour is 

reasonable as the flow rate and, thus, stream power in the individual braid-channels 

decreases as the water is distributed over more channels. A good example of this 

behaviour is the lower predicted change of the braided Eastern branch in the lower fan 

(high number of channels) compared to the Western branch (low number of channels) 

with larger channel changes and bank erosion (Figure 6.15).  The confluence of 

channels increases the stream power and may cause downstream channel degradation. 

However, this process is overlayed by other processes, such as the lateral redistribution 

of sediments, and the degradation is not predicted downstream of each confluence.  

The channel width is another important control of the morphological evolution. An 

increase in the width facilitates the aggradation of the channel bed. The most prominent 

example is the channel at the inlet which degrades initially but starts aggrading as the 

channel width increases (Figure 6.16). The converse effect is predicted in the Western 

branch 24 – 26 km downstream of the inlet and at the outlet where degradation is 

predicted as the channel width decreases (Figure 6.16). These predictions are 

reasonable from the physical perspective because a decrease in the channel width 

increases the velocity and, thus, stream power which increases the sediment transport 

capacity (Ritter, 2003).  

The reduction of the channel slope favours the aggradation. The channel slopes have 

not been systematically mapped due to technical challenges in accurately determining 

the flow length of the multi-threaded channels for the ensemble of predicted 

topographies. However, the fan slope decreases from ~0.002 m m-1 at the mountain 

gauge to 0.001 m m-1 at the downstream model boundary (Dingle et al., 2020b). The 

reduction of the slope reduces the stream power and consequently, the sediment 

transport capacity in the downstream direction. The variation of the slope explains the 

large-scale redistribution of fan material from the fan head to the lower fan (Figures 6.10 

and 6.20).  
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6.5.2 Channel characteristics 
 

The quantitative analysis of the predicted channel characteristics such as the channel 

width, bank erosion, channel migration, and bar development and migration is not trivial 

for ensemble simulations. The reasons for these difficulties are: 

- the determination of the bankfull flow rate: the bankfull flow might vary in time, space, 

and between the ensemble members. The bankfull flow is, however, important to 

determine the channel width which then can be used to determine the channel 

capacity; 

- the sensitivity to bifurcation changes: The distribution of water between the branches 

varies with the inflow rate (Figure 6.26). For example, it was tested to determine 

changes in the channel width by counting the inundated cells for a given flow rate. 

However, the calculated channel widths were the product of changes in the water 

allocation rather than projected channel changes. This sensitivity also hampers the 

determination of the braiding intensity which depends on the number of channels but 

varies with the flow rate (Kleinhans et al., 2013).  

- The small-scale variation of degradation and aggradation: This variation hampers 

the analysis of cross-section profiles which could be used to determine the channel 

widths and capacity but are very sensitive to the selection of the location.  

- The ensemble size: The quantitative analysis requires automated approaches to 

determine the channel characteristics because manual approaches are unfeasible 

for larger ensembles. However, such approaches are either computationally 

expensive (e.g. the flow routing through the modelling domain to delineate the 

channels for different flow rates) or need to be developed for braided river systems. 

Due to these challenges, the channel characteristics were analysed qualitatively by 

comparing the observed and predicted variations of the channel locations. This analysis 

of the channel characteristics indicates that the model predicts the reoccupation and 

abandonment of channels but does not replicate the dynamics at the bar scale.  

The model predicts a stable evolution in time and space (i.e. the location of degrading 

and agrading channel sections remains stable) which indicates that channels do not 

migrate. Instead, the changes in the course of water are dominated by the abandonment 

and the reoccupation of previously abandoned channels (Figure 6.24). Bars grow in 

some sections and the most prominent example is the bar at the transition from the 

single-threaded to the braided channel at the inlet (Figure 6.25). In other sections, in 

particular, in the braided Eastern branch, bars are eroded and/or submerged during 

medium flow (3,000 m3/s). However, the observed channels vary stronger than the 
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model predictions which indicates that the model underpredicts the reworking of the bars 

and banks and, consequently, the channel migration (Figures 6.22 and 6.25). This 

indicates that the model has limited predictive capabilities to replicate the 

morphodynamic processes at the bar scale which agrees with simulations of a braided 

river in the Italian Alps (Ziliani et al., 2020).   

The simulations predict shallower and wider rivers which is caused by the deposition of 

bank material on the riverbed. The DEMs of Difference (DoD) (Figure 6.16) indicate the 

model's tendency to erode the river banks and deposit the material in the channel in 

many sections throughout the fan. The aggrading sections are intersected by sections 

of degradation where channels confluence or the channel width reduces. This pattern of 

bank erosion and in-channel aggradation suggests that the channel width increases and 

the channel depth decreases. This predicted evolution to generate wider and shallower 

channels has been observed in natural and experimental rivers in braided river systems 

characterized by the low cohesion of bank sediments (Xu, 2004; Kleinhans, 2010). This 

suggests that the predictions are reasonable. However, the magnitude of this 

phenomenon may be underestimated as suggested by the lower predicted than 

observed channel migration (Figures 6.22 and 6.24). The algorithms controlling the bank 

erosion and channel aggradation have a weak physical basis and are controlled by 

parameters that were transferred from a different river system to the Karnali fan (Van De 

Wiel et al., 2007; Ziliani et al., 2013). However, this bias cannot be quantified without 

information about the past topographic change.  

The sediment delivery and the flow rate are the primary control of the evolution of braided 

rivers (Leopold and Wolman, 1957; Ferguson, 1987; Kleinhans, 2010; Kleinhans et al., 

2013). However, the similar predicted morphological evolution for the sediment 

scenarios downstream of the fan head (0 – 10 km downstream of the inlet) indicates that 

the sediment delivery is not a main control of the channel evolution of the fan centre and 

the lower fan (Figures 6.19 and 6.20). The scenario differences are larger for the 

Western branch which could imply that this branch is more sensitive to changes in the 

sediment delivery (Figure 6.21). However, these scenario differences may also be 

caused by the different fan head evolution which alters the allocation of water between 

the branches.  

The braiding intensity should increase with the projected increase in flood flows (Egozi 

and Ashmore, 2008). The model predicts a decrease in the number of channels in the 

Eastern branch and an increase of these in the Western branch in the baseline scenario 

(Figure 6.24). This shift is caused by bifurcation changes and the increased routing of 

water through the Western branch. For the projected scenarios, the number of channels 
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increases throughout the fan which results from the increased flood flows (Figure 6.25). 

Therefore, the model replicates the increased braiding intensity with the flow volume 

caused by morphological changes (i.e. changing flow due to alterations of the 

bifurcation) and upstream hydrological changes (i.e. the increased flood flows of the 

projected climates).  

The fan head is the most active area and impacts the morphological changes in the 

downstream fan because it controls the distribution of water between the branches. The 

temporal evolution of the channels indicates that this distribution changes in the baseline 

which is consistent with the observed changes indicating an unstable bifurcation 

(Figures 6.22 – 6.24). For the current conditions, more water drains through the Western 

branch but the allocation assimilates with increasing flow. The higher drainage through 

the Western branch for lower flows and the assimilation with increasing flow is consistent 

with field measurements and hydrodynamic simulations (Dingle et al., 2020a). The 

bifurcation projections range from a continuing shift in favour of the Western branch to 

the increased routing through the Eastern branch. Furthermore, the changes in the 

allocations do not scale linearly with flow (Figure 6.26). Therefore, this evolution is most 

difficult to predict but it has implications for the water and flood risk management of the 

downstream areas. However, the bifurcation changes have higher implications for 

smaller and more frequent floods (< 10,000 m3/s). This suggests that the morphological 

evolution may be more relevant for water management and nature conservation 

because it affects the water availability throughout the year.  

The braided channels of the Eastern branch are stable in the baseline but become 

increasingly variable in the projected scenarios (Figure 6.25). These channels are 

characterized by the migration and reworking of the channel as indicated by the variation 

in the observed course of water whereas the activity has decreased after the bifurcation 

change in 2009 (Figure 6.23). Therefore, the low geomorphic activity in the baseline 

simulations is reasonable since the initial DEM marks the topography after the year 

2009. For the projected simulations, the flood flows increase and the projected changes 

in the fan head increase the routing through the Eastern branch resulting in an increasing 

channel activity which was observed before the year 2009 (Figure 6.22 and Figure 6.25).  

The Karnali River reoccupies the Island in the projected scenarios whereas this 

reoccupation scales with the emission scenario (Figure 6.25 and Figure 6.26). The water 

inflow into the Island is controlled by irrigation gates which hampers the comparison of 

simulations and observations. One divergence is predicted at the lower Western branch 

(25 km distance to the inlet). In this area, embankments are constructed to prevent the 

flooding of the Island. Satellite images indicate high bank erosion before the construction 
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of the embankment in 2011. Furthermore, a 250 m long section of the embankment was 

washed away between 2021 and 2023 emphasising the force of the river in this section 

(Figure 2.2). Therefore, the location of the predicted divergence is reasonable. 

Furthermore, water enters the Island at the fan head and a bifurcation of the Eastern 

branch. These two locations are controlled by irrigation gates (which are represented as 

a embankments in the DEM). The erosion of these gates appears to be a reasonable 

location for the reoccupation of the Island. In general, it appears reasonable that the river 

reoccupies the Island when it is not controlled by human interventions.  
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6.5.3 The fate of Himalayan sediments 
 

The evolution of the sand-bed rivers downstream of the simulated fan is a product of the 

redistribution of floodplain material through bank erosion (Dingle et al., 2020b). This area 

is insensitive to the sediment discharge of the Himalayas because the coarser gravel 

sediments are deposited in the fan and finer sediments bypass this area and deposit in 

the Ganga-Bramaputhra basin (Lupker et al., 2011; Dingle et al., 2020b). The predictions 

suggest that the fan evolution (≥ 10 km distance to the inlet) is the product of the 

redistribution of fan material rather than of the discharge of Himalayan sediments. These 

upstream sediments deposit on the fan head as indicated by the similar sediment 

budgets of the different sediment scenarios in the fan centre and the lower fan (Figure 

Figure 6.20). This redistribution occurs in the lateral direction as bank erosion and in-

channel deposition, and in the longitudinal direction by the degradation and aggradation 

of channels which is e.g. caused by changes in the channel width or the confluence of 

channels (Figure 6.16). 

The fan evolution is, however, also controlled by the sediment supply from the mountain 

range, whereas this control is active on larger time scales than the simulations. The 

aggradation of the lower fan indicates that sediments originating from the fan head (and 

the fan centre) deposit in the lower fan (Figures 6.10 and 6.11). This aggradation of the 

lower fan is independent of the sediment supply as indicated by the sediment scenarios 

and is, hence, caused by the redistribution of fan material (Figure 6.20). However, this 

fan material originates from the Himalayas. Hence, the Himalayan sediments are 

deposited throughout the fan but this incorporation to the downstream fan occurs on 

longer time scales than the simulated 75 years. Therefore, the lag time of the 

geomorphic response to sediment pulses is considerably larger in the lower fan than in 

the fan head.  

The predicted evolution is a snapshot in time that will shift in the future. The predicted 

fan head aggradation leads to an increase of the channel slopes to the downstream fan 

which then facilitates the fan head degradation and an increased sediment transport to 

the fan centre and the lower fan. The predicted shift from degradation to aggradation in 

the fan centre might be the beginning of such a change in fan behaviour. Thus, the 

predictions provide information about the fan development for the current fan state but 

should not be extrapolated in time (centuries – millennia) or space.  
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6.5.4. Uncertainty sources 
 

The morphological simulations were designed as an experiment to understand the 

controls of the fan evolution but were constrained by data scarcity. This section 

discusses the main sources of uncertainty which can be attributed to the determination 

of the boundary conditions, the model parameterisation, and the assumptions made in 

the experimental design which may help to improve the quality of future studies.  

The predicted evolution of the fan head illustrates the challenges of determining the 

boundary conditions and parameterising the model in a heterogeneous mountain 

environment. The evolution of the fan head controls the flow of water and, thus, the 

morphological evolution of the downstream fan which demonstrates how inaccuracies in 

the predictions propagate from the upstream model boundary to the downstream 

boundary. The overestimated lateral erosion at the inlet, which is indicated by the 

predicted but not observed channel widening (Figures 6.16 and 6.22), and the 

subsequent overestimation of the downstream aggradation at the transition from the 

single-threaded to the braided river and the bifurcation is affected by the model 

parameterisation using global parameter in a heterogeneous environment.  

This overestimation of the lateral erosion is caused by the different cohesion of the 

material at the mountain gauge and the downstream fan which cannot be represented 

with a single global parameter. The channel at the inlet is confined by the Siwalik 

mountains and these properties are very different to the fan characteristics for which the 

model is parameterised (Upreti, 1999). The cohesion is controlled by the in-channel 

lateral erosion rate parameter which is parameterised for the fan and not for the 

mountain gauge. This leads to the underestimation of the cohesion and the 

overestimation of the bank erosion at the inlet. 
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The overestimation of the channel bed degradation at the inlet is affected by the 

determination of the boundary conditions. The channel degradation may reasonable 

from a physical perspective because the channel at the inlet is still part of the feeder 

system (Kleinhans et al., 2013). However, this channel should degrade in the modelling 

setup because the sediment influx is at transport capacity and hence the river should 

not have the energy to mobilize any more bed sediments. A combination of factors can 

influence this degradation: 

- transport capacity: There can be differences between the transport capacity 

calculations of the C-L model and the BAGS model used to calculate the sediment 

influx. Furthermore, the cross-section of the BAGS calculation is static while the 

cross-section of the C-L model is constantly changing;  

- grain sizes: The grain sizes of the bed sediments are underestimated and are, thus, 

mobilised at lower flows. This is illustrated by grain size measurements at the 

bifurcation where the D50 is 65 mm on the bar and 231 mm in the bed (Dingle et al., 

2020b). This is particularly relevant at the inlet where the river flows in a single 

narrow channel and has the highest stream power to mobilise sediments;  

- model initialisation: The flow predictions are noisy at the upstream boundary 

because the model requires some distance to fully develop the flow patterns (Ingham 

& Ma, 2005). This noise can be reduced by moving the boundary further upstream 

and increasing the flow length. However, such an extension might increase the 

sediment delivery to the fan because the channel section of the poorly parameterised 

mountain channel would be extended. 

The model parameterisation is further hampered by the lack of calibration data. One 

example is the underprediction of the bar-scale dynamics. These dynamics are affected 

by the lateral erosion rate which is one of the most sensitive parameters (Ziliani et al., 

2013). The used rate (0.002) is within the range of recommended rates for braided rivers 

(0.001 – 0.01) (C-L Manual, 2023). However, it is difficult to determine this rate from the 

satellite observations of rivers alone because water classification from the images is 

sensitive to the flow rate during the acquisition date, contains misclassifications, and 

contains no information about quantitative sediment changes. Furthermore, the model 

is sensitive towards the thickness of the active layer (Mosselman, 2012; Ziliani et al., 

2013). The lack of data about topographic changes hampers a quantitative calibration 

using a combination of performance measures. The model calibration is further 

complicated by the sensitivity to the boundary conditions and parameter interactions 

(model equifinality) (Hardy, 2013). 
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The model equifinality can be illustrated by the lateral erosion rate used by Ziliani et al. 

(2020). The authors used a very high rate of 30 (low bank stability and high erosion) in 

combination with a vegetation module which stabilises the banks. This rate was tested 

for the Karnali fan in the initial model testing without the vegetation module which 

resulted in the massive overestimation of the bank erosion and the dissolution of the 

channels. One solution to account for the model equifinality is the application of a GLUE 

approach as used for the hydrological simulations (Chapters 4 and 5). However, the 

simulation of the 36 ensemble members (12 CMIP6 models X 3 flow percentiles) 

required > 15,000 h of computations for a single parameter set. This illustrates that a 

GLUE approach is unfeasible for ensemble modelling even using a reduced-complexity 

approach. 

The model predictions are further affected by the assumptions, namely: 

- The simulation of flood discharge: The modelling framework simulates only one flood 

event per year. While this is the flow with the highest stream power and, thus, the 

highest potential to alter the fan topography, the fan is also reworked by lower flows 

(Kleinhans et al., 2013). The simulation of more days per year may increase the 

sediment delivery from the fan head to the downstream areas. Furthermore, it 

potentially increases the geomorphic activity of the finer-grained lower fan because 

these sediments are mobilised at lower flows. Furthermore, the frequency of floods 

increases with time and emissions, and hence the AMAX classification approach 

underestimates the number of flood events increasingly with time and emissions. 

- The sediment transport capacity: More fan sediments can be mobilised if the 

sediment delivery from the Himalayas reduces. One sediment scenario included a 

random sediment influx which did not result in systematic differences compared to 

the other scenarios. This indicates, alongside the low sediment scenario variation in 

the fan centre and lower fan, that the sediment transport capacity assumption has 

no significant impact on the predicted fan evolution. However, it is assumed that the 

grain size distribution (GSD) of the sediment supply does not change over time. This 

is an important aspect because the area of deposition is determined by this GSD 

(finer sediments should deposit further downstream). It is further worth noting that 

the definition of the grain size classes in the model might affect the modelling results 

and that this uncertainty was not investigated in this study.   

- The focus on bedload sediment transport: Sand is the finest simulated sediment 

fraction and may be transported as bedload or suspended load depending on the 

flow magnitude. The focus on the bedload sediment potentially causes an 

underestimation of the sand transfer from the channel to the floodplain particularly 
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during high-magnitude flows that transport sand in suspension and inundate larger 

areas of the floodplain. This suspended sediment would deposit in the floodplain and 

raise the floodplain relative to the channel, but this process cannot be predicted from 

bedload sediment transport.  

- The role of vegetation: The vegetation stabilises river banks and affects the flow field 

(Murray and Paola, 2003; Kleinhans et al., 2008, 2013; Kleinhans, 2010; Ziliani et 

al., 2013). The implementation of the vegetation cover is somewhat difficult for long-

term predictions because it depends on the land use and hence ideally the climate 

projections are combined with land use scenarios which would increase the 

ensemble size. However, the role of vegetation for the morphological evolution 

needs to be investigated in future studies to increase the quality of the predictions. 

- The basin subsidence: The basin subsidence is an important control of the fan 

evolution (Dingle et al., 2016; Harvey, 2018). The accommodation space generated 

by basin subsidence is lower than the gravel supply during the average monsoon 

season (excluding the flood event) which is why the basin subsidence was excluded 

in the experimental design. However, it may be required to incorporate basin 

subsidence if the simulation period is extended (e.g. to monsoon seasons). 

Further sources of uncertainty are errors in the topography, particularly in forested areas 

which have been interpolated without knowledge of the surface elevations, and smaller 

channels where the banks are vegetated by trees. Furthermore, uncertainty is inherent 

in the models due to our limited understanding of the sediment transport processes 

(Mosselman, 2012; Hardy, 2013; Ziliani et al., 2013, 2020; Ancey, 2020a).  
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6.6 Conclusions 
 

The experimental simulations of the fan evolution provide robust evidence that the 

geomorphic activity increases with the flood discharge and, thus, with the emissions. 

Consequently, the prediction of the evolution becomes increasingly uncertain because 

the uncertainty of the climate projections increases with time and emissions (Chapter 5).  

The fan head evolution is sensitive to the changes occurring in the fan head which 

control the flow of water downstream. The sediment delivery from the Himalayas deposit, 

at the current development stage of the river and for the investigated period (until the 

year 2099) in the fan head. This leads to an increased risk of channel avulsions because 

the topographic gradient between the channel and the Western floodplain increases 

(Kleinhans et al., 2013).  

The evolution of the fan centre and lower fan (≥10 km distance to the inlet) is insensitive 

to the sediment delivery from the Himalayas in the investigated period. Instead, the 

evolution is driven by the redistribution of fan sediments on different spatial and temporal 

scales. The response time of these areas to sediment pulses (e.g. induced by 

earthquakes) is longer than for the fan head.  

The evolution is characterised by a sequence of degradation and aggradation in the 

longitudinal and lateral directions. The channels degrade in sections where the channel 

width decreases which leads to the subsequent downstream aggradation. This has 

important consequences for flood management because embankments constrain the 

channel width fostering the local degradation and downstream aggradation which 

potentially aggravates the downstream flood hazard. The projected increase in the flood 

discharge increases this problem because in natural systems the river would respond 

by increasing the width in low-cohesion systems. 

The predictions provide further evidence that the bifurcation is unstable and that this 

variation particularly affects lower flood flows (< 10,000 m3/s). Therefore, the potential 

bifurcation changes affect the water availability for ecosystems, agriculture, industrial 

and household use.  

These findings illustrate the necessity to consider the morphodynamic evolution in water 

resource management and flood risk management and to evaluate the impact of 

structural engineering (e.g. the construction of embankments) on the morphological 

evolution. Such assessments require the consideration of the climate change impact on 

the discharge since such changes alter the geomorphic evolution. 
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The climate change impact assessment poses a dilemma which inevitably increases the 

uncertainty in the predictions. This dilemma results from the incomplete understanding 

of the processes and their interactions, and the knowledge about the simulated river 

system whereas this knowledge decreases with time (i.e. we can measure the current 

state but need to estimate the future states). Therefore, we need to apply ensemble 

modelling to consider a range of future pathways (i.e. climate ensembles and scenarios). 

This ensemble modelling can be achieved by reducing the complexity of the physical 

process representation which in turn increases the uncertainty in the morphodynamic 

predictions. Therefore, it is beyond the scope of most applications to account for the 

morphological and climatic uncertainties.   

Alluvial fans are systems with heterogeneous conditions which complicates the 

application of morphodynamic models. This heterogeneity challenges the determination 

of the boundary conditions because it requires denser sampling (e.g. of the grain sizes). 

It increases the parameter uncertainty because global parameters cannot represent the 

full range of channel and floodplain characteristics. Furthermore, the determination of 

the sediment delivery to the fan is a challenge. A common approach for rivers with 

unknown sediment influx is to reroute the sediment discharge (or a fraction of it) at the 

downstream model boundary back into the upstream model boundary (Ziliani et al., 

2013, 2020). This is not possible for fans due to the high rates of downstream fining 

which would result in the lack of coarse sediment influx when rerouting the sediments 

(Quick et al., 2019; Dingle et al., 2020b).  

The mountain gauge is a crucial area for the simulations of alluvial fans because it affects 

the simulations until the downstream model boundary and it needs to be investigated 

how this area is best simulated. There are two conflicting aspects for the simulation of 

the mountain gauge. Firstly, the different characteristics of the gauge cannot be 

adequately parameterised when the modelling focus is on the fan. Secondly, the flow 

model requires some space to develop the flow patterns and hence the predictions at 

the upstream boundary are noisy. The parameterisation issue suggests moving the 

model boundary downstream to exhibit the mountain gauge from the model while the 

flow initialisation suggests to extent the model boundary upstream which would move 

the noise predictions further away from the fan. One solution could be to reduce the 

erodible layer at the upstream boundary to prevent degradation. However, this might 

move the noise downstream because it introduces a sudden jump in the erodibility. 

Therefore, it needs to be investigated how to incorporate the mountain gauges best into 

a morphodynamic model.   
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The accuracy of the predictions is constrained by our knowledge of the Karnali fan. The 

following studies have the potential to improve future predictions: 

- Topography: The generation of multiple DTMs to quantify the morphodynamic 

change which can be used to calibrate and validate the model. Furthermore, ground 

control points of forested areas are valuable to improve the quality of the DTM in 

forested areas. Cross-section surveys would further improve the channel 

representation and enable a more precise representation of the channel capacity.  

- Grain size distributions of the bed material: The lateral variation of the GSD could 

not be considered in the model which leads to the mobilisation of the bed at lower 

flows. The sampling in the bed along the fan would fill this data gap and enable a 

better representation of the fan heterogeneity.  

- Sediment delivery: The fan head evolution is controlled by the sediment supply from 

the mountains. A better understanding of the sediment production in the Siwaliks 

and the transport to the fan is crucial for a better understanding of the long-term fan 

evolution and the avulsion risk.  

- The effect of vegetation on bank stability: Vegetation is an important factor of the 

morphological evolution and should be considered in future studies. This might 

provide useful information about the potential of revegetating riverbanks for sediment 

and flood management.  

- Algorithms for the morphological characteristics: There is a lack of open-source 

algorithms to determine the channel characteristics (e.g. channel width, slope) for 

high-resolution datasets where the channel is wider than a grid cell and for braided 

rivers with divergences and confluences. The development of such algorithms would 

benefit the analysis of ensemble predictions which depend on automated 

approaches for the analysis.  

This chapter presented, to the best knowledge of the author, the first application of a 

morphodynamic model to predict the potential evolution of large alluvial fans in the Terai 

for climate projections. It, therefore, extends our knowledge of the climate change impact 

on Himalayan river systems by assessing its impact on geomorphological processes. 

The simulations improved our understanding of the fan behaviour by identifying 

processes that control the morphological evolution and contributed to our knowledge 

about the sediment cascade. Furthermore, this chapter identified key challenges to 

simulate these large alluvial fans which may provide useful guidelines for future 

modelling applications.  
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7 The prediction of the potential flood hazards on the 
floodplain scale 

 

 

7.1 Introduction 
 

This chapter investigates the spatial patterns of the current and projected flood hazards 

in the Karnali fan in the Terai to locate those areas that are potentially affected by the 

projected changes in the flood magnitudes and fan topography. The flood magnitude of 

the 1-in-100-years event is projected to increase by 40% (medium-emission scenario 

SSP245) and 79% (high-emission scenario SSP585) at the end of the century (median 

predictions) (Table 5.9). The morphological simulations indicate that the geomorphic 

changes increase with the projected flood discharge (Chapter 6). This chapter evaluates 

how the projected changes of the flood magnitudes and fan topographies alter the spatial 

flood hazard characteristics (i.e. inundation extent and depth) in the Karnali fan.   

The Karnali fan is located in the flood-prone and densely populated Terai (Figure 7.1). 

The Terai occupies 13% of Nepal but is home to 50% of the population and hence floods 

in this region affect many people and cause high damage to properties (Khanal et al., 

2007; MoHA, 2009; CBS, 2017). Furthermore, the Terai accommodates most of the 

fertile land in Nepal and is important for the food supply of the Nepalese population 

(Perera et al., 2015; CBS, 2017). Floods destroy crops and irrigation infrastructure and 

kill livestock which threatens the livelihood of the local population and the food security 

of the country (Dixit et al., 2007; MoHA, 2009; Perera et al., 2015; NPC, 2017; Okura et 

al., 2020).  

The Karnali fan is densely populated and intensively used for agriculture. Approximately  

240,000 people live in the 545 km2 study area (Figure. 7.1 and Table 7.1). The population 

density of 441 persons/km2 is more than twice the national average of 198 persons/km2 

(NSO, 2022). The population is concentrated on the Western floodplain (142,000 

people) which is located below the elevation of the river banks, and on the Island 

between both Karnali branches (74,000 people). The outskirts of Tikapur city,  the only 

city in the study area located in Tikapur municipality, are located within two kilometres 

of the Western branch. Most of the fan is used either for housing or for agriculture, except 

for the extended forest in the Bardiya National Park which stretches along the Eastern 

edge of the fan. It is therefore important to understand how changes in the flood hazard 
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manifest spatially because the potential increases in flood extents have potential 

implications for the local population and the food security of the country.  

 

 

 

 

 

Figure 7.1: The hydrodynamic modelling domain in the Karnali fan. The topography is derived from the DTM 
described in Section 6.3.1. The population density of the municipalities (persons / km2) is shown in the 
brackets (CBS, 2022). The buildings are obtained from OSM (2023). The channels are manually delineated 
based on Google Earth images.  
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Table 7.1: The population statistics in the study area. The statistics are provided for the total municipality 
(including areas outside the study area) and the fraction of each municipality located within the study area. 
The population of the study area is estimated from the population density of the municipality. The population 
is obtained from the Nepal census 2021 (CBS, 2022), and the number of buildings from OSM (2023). 

 Municipality Karnali fan 
Region Area 

[km2] 
Population Population 

density 
[km2] 

Area 
[km2] 

Population No. of 
buildings 

Karnali fan - - 441 544 239,778 76,870 
Bardiya N.P. 896 0 0 73 0 134 
Bhajani 176 53,795 306 39 11,962 3,786 
Geruwa 78 33,742 431 78 33,742 14,033 
Janaki 107 49,835 465 104 48,221 10,557 
Joshipur 65 37,167 568 11 6,493 728 
Lamkichuha 225 90,941 405 20 8,169 2,228 
Madhuwan 130 51,173 395 24 9,357 2,906 
Rajapur 127 61,431 484 83 40,187 17,692 
Thakurbaba 104 49,360 487 12 5,986 1,457 
Tikapur 118 90,115 763 99 75,661 23,349 

 

 

The objective of this chapter is the mapping of the spatial flood hazard patterns for the 

projected flood magnitudes and topographies (Objective 5). This objective is addressed 

by applying a hydrodynamic model with the current and projected flood magnitudes of 

the 10-year, 50-year, and 100-year return periods, and with the current and projected 

topographies. The hydrodynamic simulations provide maps of the flood inundation 

depths to identify the areas which are most prone to floods, and which are projected to 

be most affected by the changes in the flood magnitude and/or the morphology.  

Furthermore, it is assessed which models contribute to the uncertainty in the flood 

hazard predictions. This research stage builds upon the hydrological simulations and the 

flood frequency analysis for the quantification of the flood magnitude (Chapter 5), and 

the morphodynamic simulations for the prediction of the topography (Chapter 6). These 

simulations contain uncertainty that propagates to the hydrodynamic predictions, 

particularly the uncertainty in the climate projections, the hydrological model, the Flood 

Frequency Analysis (FFA), and the morphodynamic simulations. The quantification of 

the sources of uncertainty is needed to improve the predictions in future studies by 

targeting the largest sources of uncertainty, e.g. by focusing the field surveys on specific 

elements of the modelling cascade.  

Section 7.2 introduces the hydrodynamic model, the ensemble design, and the used 

datasets. Section 7.3 presents the results of the hydrodynamic simulations, which are 

then discussed in section 7.4. The last section 7.5 concludes this chapter.  
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7.2 Methods 
 

7.2.1 The hydrodynamic model 
 

The 2-D LISFLOOD-FP inertia flow model (Bates et al., 2010) is applied in the Karnali 

fan to conduct the mapping of the spatial flood hazard characteristics for the current and 

projected flood magnitudes and topographies. This model simulates the flow of water in 

the two cardinal directions based on derivatives of the 1-D shallow water equations 

which are solved in the longitudinal and lateral directions (Bates et al., 2010). It is the 

same model that was used to simulate the water flow in the morphodynamic simulations 

of Chapter 6 and was described in Section 6.2.2.1. The model was chosen because it is 

computationally efficient while maintaining good accuracy for gradually varied, 

subcritical flow conditions that prevail in the Karnali fan (Bates et al., 2010; Neal et al., 

2012). This fast computation is beneficial because the research design requires the 

simulation of ensembles which will be described in the next section.  

The model is applied within the CAESAR-LISFLOOD C-L code (Bates et al., 2010; 

Coulthard et al., 2013) which was used for the morphodynamic simulations in Chapter 

6. The parameterisation is maintained from the morphodynamic simulations (see Table 

6.1) but the sediment transport model is deactivated and only the flow of water is 

simulated. The parametric uncertainty is not estimated for the hydrodynamic models to 

maintain a feasible ensemble size for the simulations.  

 

7.2.2 Ensemble design 
 

The simulation ensemble is, conceptually, divided into two groups based on their 

objective. The first group is the ensemble to map the current and future flood hazards to 

quantify the changes (O5) and the second group is simulated to understand the 

uncertainty in the simulations . These sources of uncertainty are: 

- The climatic uncertainty: An ensemble of 12 CMIP6 climate models was used to 

predict the flood discharge at the fan inlet for the projected climates (Chapter 5). 

These 12 models represent climate uncertainty. 

- The hydrological uncertainty: The flood magnitudes were obtained from an ensemble 

of 64 hydrological models and 1,000 Flood Frequencies Analyses resulting in 64,000 

flood magnitudes for each climate model and scenario (Chapter 5).  
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- The topography: The topographies were simulated for three flood discharge 

percentiles (P2.5, P50, P97.5) of the hydrological ensemble (64 models) for each climate 

model (Chapter 6). The parameter uncertainty of the morphological model was not 

assessed. However, the impact of the morphological evolution can be quantified by 

comparing simulations with the initial and the projected topographies.  

The first ensemble is applied for the baseline scenario (1975 – 2014) to represent the 

current climatic conditions, and the medium- and high-emission scenarios SSP245 and 

SSP585 (2060 – 2099) which represent the potential future climatic conditions. This 

ensemble comprises three members to consider the lower, median, and upper flood 

mangitudes predictions. These are represented by the climate model CM with the lowest, 

median, and highest predicted flood magnitudes at the  2.5th (CMlower),  50th (CMmedian), 

and 97.5th (CMupper) percentile of the FFA of each climate scenario (Table 7.2). The 

topography is represented by the topography simulated for the respective flood 

discharge interval, climate model, and climate scenario.  

The second ensemble to assess the uncertainty sources consists of 18 models for each 

climate scenario. Each ensemble member of the first ensemble (Table 7.2) is simulated 

with the P2.5, P50, and P97.5
 percentiles of the FFA (the ensemble of flood frequency 

curves of the respective CMIP6 member). Hence, nine ensemble members are 

simulated for each climate scenario and return period. These nine members are 

simulated for both, the initial and projected topographies resulting in 18 ensemble 

members.  

The number of climate models is uneven which hampers the selection of the median 

model which would be the mean of the models with the sixth and seventh highest 

predictions. However, each ensemble member has a corresponding projected 

topography and calculating the mean topography of two members might distort the 

channel patterns and hence both members would need to be simulated. Therefore the 

climate model with the sixth highest flood magnitude is considered the median member 

to reduce the required simulations. 

The flood hazard is simulated for the flood magnitudes generated from the observed 

discharge record for the P2.5, P50, and P97.5
 percentiles (Figure 5.36). These simulations 

are conducted with the initial topography and used for comparison with the baseline 

simulations to investigate how the underestimation of the baseline magnitudes translate 

into the spatial hazard characteristics.  
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Table 7.2: The ensemble members for the quantification of the climate change impact on the spatial flood 
hazard characteristics. The descriptor is the synonym used in the text to refer to the ensemble member. The 
CMIP6 interval represents the lowest, median (6th highest) and highest predicted flood magnitudes of the 
CMIP6 ensemble, and the hydrological interval refers to the percentile of the Flood Frequency Analysis 
predictions used for the ensemble member. 

Return 

period 

[years] 

Climate 

Scenario 

Des-

criptor 

CMIP6 

interval 

Hydro. 

Interval 

CMIP6- 

member 

Flood 

mag. 

[m3/s] 

10 

 

Baseline CMlower Lowest P2.5 MPI-ESM1-2-HR 4,087 

SSP245 CMlower Lowest P2.5 MPI-ESM1-2-HR 4,552 

SSP585 CMlower Lowest P2.5 MPI-ESM1-2-HR 5,153 

Baseline CMmedian Median P50 MRI-ESM2-0 8,079 

SSP245 CMmedian Median P50 ACCESS-CM2 12,327 

SSP585 CMmedian Median P50 MRI-ESM2-0 16,814 

Baseline CMupper Highest P97.5 NorESM2-LM 15,779 

SSP245 CMupper Highest P97.5 ACCESS-ESM1-5 23,400 

SSP585 CMupper Highest P97.5 ACCESS-ESM1-5 31,760 

50 

 

Baseline CMlower Lowest P2.5 MPI-ESM1-2-HR 4,818 

SSP245 CMlower Lowest P2.5 MPI-ESM1-2-HR 5,732 

SSP585 CMlower Lowest P2.5 MPI-ESM1-2-LR 6,177 

Baseline CMmedian Median P50 MRI-ESM2-0 10,837 

SSP245 CMmedian Median P50 INM-CM5-0 15,417 

SSP585 CMmedian Median P50 ACCESS-CM2 20,755 

Baseline CMupper Highest P97.5 INM-CM5-0 20,206 

SSP245 CMupper Highest P97.5 NorESM2-LM 34,802 

SSP585 CMupper Highest P97.5 EC-Earth3-Veg 40,065 

100 

 

Baseline CMlower Lowest P2.5 MPI-ESM1-2-HR 5,104 

SSP245 CMlower Lowest P2.5 MPI-ESM1-2-HR 6,266 

SSP585 CMlower Lowest P2.5 MPI-ESM1-2-LR 6,434 

Baseline CMmedian Median P50 MRI-ESM2-0 12,009 

SSP245 CMmedian Median P50 INM-CM5-0 17,174 

SSP585 CMmedian Median P50 EC-Earth3 22,763 

Baseline CMupper Highest P97.5 INM-CM5-0 22,954 

SSP245 CMupper Highest P97.5 NorESM2-LM 42,916 

SSP585 CMupper Highest P97.5 EC-Earth3-Veg 45,705 

  



 

328 

 

7.2.3 Boundary conditions 
 

The model requires topography and flood inflow as boundary conditions. The initial and 

projected topographies of the morphological simulations are used to represent the 

topographic boundary conditions. However, the initial topography is represented by a 

DEM after five years of morphological simulations because it has a more realistic 

representation of the bed topography which has no lateral gradient in the raw DEM. The 

spatial resolution of the modelling is similar to the morphodynamic modelling in Chapter 

6 (25 X 25 m).  

The flood flow is represented by the flood magnitudes predicted by the FFA in Chapter 

5. These were generated from the daily mean discharge and, thus, represent daily 

means and are simulated for 24 hours. The model is initiated for 12 hours with a constant 

discharge of 3,000 m3/s which is below bankfull flow. The rising and recession limbs 

have a duration of 12 hours each and are linearly interpolated between 3,000 m3/s and 

the flood magnitude.  
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7.2.4 Modelling setup 
 

The hydrodynamic model is run for 72 hours whereas the flood discharge is inserted into 

the upstream border between the hours 24 – 48. It takes 12 hours for the water to travel 

from the upstream border to the downstream border in the channels. This travel time is 

longer for floodplain flows. However, the water levels remain similar after 24 hours after 

the peak discharge which indicates that all water that is not trapped in depressions drains 

within a day of the flood. Therefore, the model is run for three days, the first day is the 

warmup period, the second day is the flood event, and the third day is the flood 

recession.  

The predicted water levels are written as raster files at hourly resolution. The maximum 

water level of the 72 rasters is calculated for each grid cell and this maximum water level 

is used to determine the inundation extent and the inundation depth. The inundation 

extent is classified as cells with water depths ≥ 0.1 m. The inundation extent refers unless 

stated otherwise, to the area inundated by depths ≥ 0.1 m. 

The depth-damage ratio describes the damage potential of different inundation depths 

(although the flood duration is an important factor too). The depth-damage ratios vary 

between different building types, crop types and growth stages, and are unknown for 

Nepal due to the lack of inundation mapping and damage surveys (ADPC, 2010). 

Shallow inundations have damage potential (e.g. structural and functional damages to 

buildings, loss of hosing interiors, etc.) (ADPC, 2010). Therefore, a shallow 0.1 m 

inundation depth threshold is chosen for the calculation of the inundation extent to 

prevent the underestimation of the damage potential by overestimating the unknown 

depth threshold.  

The population affected by the flood hazard is estimated from the location of the 

buildings in the study area (Figure 7.1) (OSM, 2023). For this, a boolean raster is created 

which describes whether a cell contains a building or not. However, this raster is an 

approximation of the population at risk and not an exact quantification because one cell 

may include multiple buildings, one building may occupy multiple cells, and the number 

of people living in a populated cell is variable.  
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7.3 Results: The predicted flood hazard characteristics  
 

This section presents the results of the hydrodynamic simulations. The flood hazard 

characteristics of the three climate scenarios are compared in the first section to 

investigate the projected changes (O5). Section 7.3.2 compares the flood hazard 

patterns simulated for the observed flood magnitudes and the simulated flood 

magnitudes of the baseline scenario which provides insight into the BIAS of the flood 

magnitude predictions. Section 7.3.3 investigates the uncertainty propagation through 

the modelling cascade by presenting the predictions of the uncertainty ensemble. The 

last Section 7.3.4 compares the simulations conducted with the initial topography and 

with the ones conducted with the projected topographies to assess the sensitivity of the 

flood hazards to the morphological evolution. 

Certain areas are of particular interest for the analysis and discussion because they are 

at higher flood risk or the predictions are more uncertain. The locations of these areas 

are presented in Figure 7.2. The area between the Eastern and Western branches is 

prone to flooding and is referred to as the Island. Furthermore, the flood water 

accumulates in a topographic depression (hereafter referred to as the depression) in the 

South-Western corner of the study area. Tikapur city has a high population density and 

is used as a landmark. Tikapur city is separated from the Western branch by a forest. 

This forest is relevant because the ground elevation in the DTM is estimated (Chapter 

6) and hence the flood predictions in this area have a higher uncertainty. This forest is 

referred to as the Tikapur forest. The Western floodplain describes the area West of the 

Western branch.  
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Figure 7.2: The locations of areas of particular interest for the flood inundation simulations. These areas of 
interest are delineated by the dashed black line. The solid black line demarks the modelling domain and the 
blue lines indicate smaller channels which drain the floodplain. The background image is a Sentinel-2 
composite.  

 

 

7.3.1 The predictions for the climate scenarios  
 

The comparison of the climate scenarios provides information about how the projected 

increases in the flood magnitudes translate into the spatial flood hazard characteristics 

in the Karnali fan. This section compares these characteristics for the prediction interval, 

whereas the CMlower is the P2.5 flood magnitude of the climate model with the lowest 

respective flood magnitudes, CMmedian is the median flood magnitude (P50) of the climate 

model with the 6th highest respective flood magnitude, and CMupper is the P97.5 of the 

climate model with the highest predicted respective flood magnitudes. These simulations 

are conducted with the projected topographies of the respective climate model and flood 

discharge percentile of Chapter 6.  
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The median inundation extent (inundation depth ≥ 0.1 m) increases with the return period 

and the emission scenario. The 1-in-10-year flood magnitude inundates 141 km2 in the 

baseline (Table 7.3). This extent increases by 55% to 217 km2 for the medium-emission 

scenario SSP245 and by 94% to 273 km2 for the high-emission scenario SSP585 in the 

far future (2060 – 2099). The projected increase is lower for the higher return periods; 

the 1-in-50-year flood extent increases from 197 km2 in the baseline to 261 km2 (+33%) 

for SSP245 and to 309 km2 (+57%) for SSP585. The 1-in-100-years flood extent 

increases from 214 km2 in the baseline to 276 km2 (+29%) for SSP245 and to 324 km2 

(+51%) for SSP585. This projected increase in the inundation extent concentrations on 

the Island and the Western floodplain (excluding the northern parts) while the areas 

along the eastern and north-western borders remain dry in all scenarios (Figure 7.3). 

The more hazardeous inundations (inundation depth ≥ 1 m) increase with the emissions 

particularly along the channels in the island and in the South-Western depression (Figure 

7.4). For the 1-in-10-years event, such floodplain inundations are not predicted for the 

baseline but for both projected scenarios whereas the extent increases with the 

emissions (median predictions).  

 

 

 

 

Table 7.3: Inundation extents of the Karnali fan (inundation depth ≥ 0.1 m) predicted for the climate 
scenarios. 

  Inundation extent 
[km2] 

Change to 
baseline [%] 

Return period Prediction  
interval 

Baseline SSP245 SSP585 SSP245 SSP585 

1-in-10-years 
 

Lower 62 69 74 11 20 
Median 141 217 273 55 94 
Upper 259 331 366 28 41 

1-in-50-years 
 

Lower 70 84 89 19 28 
Median 197 261 309 33 57 
Upper 302 375 387 24 28 

1-in-100-years 
 

Lower 73 90 93 23 27 
Median 214 276 324 29 51 
Upper 324 392 397 21 23 
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Figure 7.3: The inundation extent (inundation depth ≥ 0.1 m) for the median predictions (CMmedian) of the three CMIP6 scenarios for the 1-in-10-years, 1-in-50-years and 1-in-100-
years flood events. The buildings are obtained from OSM (2023). The coordinate system is UTM Zone 44 N in km. The inundation extents (inundation depth ≥ 0.5 m) are presented 
in Appendix 7.1.  
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Figure 7.4:  The inundation extent (inundation depth ≥ 1.0 m) for the median predictions (CMmedian) of the three CMIP6 scenarios for the 1-in-10-years, 1-in-50-years and 1-in-
100-years flood events. The buildings are obtained from OSM (2023). The coordinate system is UTM Zone 44 N in km. The inundation extents (inundation depth ≥ 0.5 m) are 
presented in Appendix 7.1.
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Climate change increases the frequency of extreme events and hence current extremes 

are projected to occur frequently in the future. The 1-in-100-years event of the baseline 

(1975 – 2014) inundates 39% of the fan (Figure 7.5). This extent occurs statistically once 

every 10 years in the far future (2060 – 2099) of the medium-emission scenario SSP245 

(40%). Furthermore, the flood frequencies vary greatly between both projected 

scenarios. The inundation extent of the 1-in-100-years extent projected for the medium-

emission scenario SSP245 (51%) is similar to the extent of the 1-in-10-years event 

projected for the high-emission scenario SSP585 (50%). Hence, the frequency of flood 

hazard increases with the emissions and the current extremes are projected to occur 

frequently in the future (median predictions).  

 

 

 

Figure 7.5: The proportion of the study area (Karnali fan) and the municipalities which are inundated for 
different climate scenarios during flood events of different return periods. The numbers indicate the 
percentage of the municipality that is inundated deeper ≥ 0.1 m. The numbers in the brackets indicate the 
inundation extent that is inundated deeper ≥ 0.5 m. The x-axis is the prediction interval of the modelling 
ensemble. The spatial extent of these predictions is shown in Figure 7.6.   
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The municipalities most affected by the projected increase in flood magnitudes are the 

densely populated municipalities Geruwa, Rajapur (both located on the Island) and 

Tikapur (Western floodplain). These municipalities are inundated to 49 – 50% 

(inundation depth ≥ 0.1 m) during a 1-in-100-years event in the baseline (Figure 7.5). 

This fraction increases to 64 – 68% (SSP245) and 73 – 83% (SSP585). Large fractions 

of these municipalities are projected to be inundated by inundation depths with a higher 

damage potential (inundation depth ≥ 0.5 m). These higher depths are predicted for 32% 

in the baseline and increase to 43 – 51% (SSP245) and 52 – 67% (SSP585). 

Furthermore, the Bhajani municipality and the Bardiya National Park are projected to be 

inundated (inundation depth ≥ 0.1 m) by ≥ 50% in the projected scenarios. However, the 

inundation in the Bardiya National Park is predicted for the channels while the floodplain 

remains dry due to its superelevation over the channel (Figure 7.3) (median predictions).  

The variation of the ensemble predictions exceeds the variation of the climate scenarios. 

The inundation of CMlower is restricted to the channels and a small section in the South 

of Tikapur city and no floodplain flow is predicted for the 1-in-10-years event (Figure 7.6). 

The variation between return periods and climate scenarios is low for CMlower and ranges 

between 11% (baseline 1-in-10-years) to 17% (SSP585 1-in-100-years) of the Karnali 

fan (Figure 7.5). The variation in the inundation extent is larger for CMupper and ranges 

between 48% (Baseline 1-in-10-years) to 73% (SSP585 1-in-100-years). The variation 

in the inundation extents is larger for the prediction interval than for the climate scenarios 

for all return periods (Table 7.3). For example, the difference between CMlower and 

CMupper 1-in-10-year extents is 197 km2 (62 – 259 km2) in the baseline, which is larger 

than the climate scenario variation of 132 km2 between the baseline and SSP585 for 

CMmedian.   

The inundation extent increases with the emissions for each prediction interval. These 

increases are lower for the boundaries CMlower and CMupper than for CMmedian (Table 7.3). 

The inundation extents of CMlower increases by 11% (SSP245) and 20% (SSP585) for 

the 1-in-10-years event and by 23% (SSP245) and 27% (SSP585) for the 1-in-100-years 

event. The inundation extent of CMupper is projected to increase by 28% (SSP245) and 

41% (SSP585) for the 1-in-10-years event and by 21% (SSP245) and 23% (SSP585) 

for the 1-in-100-years event. The highest increases are predicted for CMmedian in absolute 

and relative terms for each return period (Table 7.3).  
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Figure 7.6: The inundation extents (inundation extents ≥ 0.1 m) in the Karnali fan for the lower, median, and 
upper prediction intervals. The buildings are obtained from OSM (2023). The coordinate system is UTM 
Zone 44 N in km. 

 

The projected increase of the flood magnitudes leads to deeper inundations in most 

parts of the Karnali fan. In the baseline, the water level is between 5 – 10 m in the 

channels of the Eastern and Western branches (Figure 7.7). The floodplain water levels 

are mostly below 1 m except for the depression in the South-Western part of the fan. 

This depression fills with floodwater and the inundation depth increases with the return 

period and the flood magnitude interval to 2 – 3 m, and up to 5 m for the upper prediction 

boundary (Figure 7.7).   
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Figure 7.7: The maximum water level (≥ 0.1 m) of the baseline predicted for flood events with different return 
periods. The left column shows the predictions of the lower boundary of the prediction interval (CMlower), the 
centre column the ones of the median predictions (CMmedian), and the right column the ones of the upper 
boundary of the prediction interval (CMupper). The buildings are obtained from OSM (2023) and the 
coordinate system is UTM Zone 44 N in km. Note that the scale is non-linear.  

 

The inundation depths increase with the emissions for most areas throughout the 

floodplain (Figure 7.8). The depths increase by 0.1 – 0.5 m in most parts of the Island 

and the Western floodplain in the medium-emission scenario SSP245 (median 

predictions). Larger increases (> 0.5 m) are predicted in the depression and along 

floodplain channels (see Figure 7.2 for their locations) in the northern half of the Island. 

These increases of > 0.5 m are predicted for larger areas across the fan, particularly in 

the Island and the depression, for the SSP585 scenario (median predictions). For 

CMupper, increases of > 0.5 m dominate throughout the fan for the 1-in-50-years and 1-

in-100-years flood events in both scenarios. 
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Figure 7.8: The difference between the inundation depths predicted for the projected scenarios (left: medium-emission scenario; right: high-emission scenario) and the baseline 
for flood events with different return periods. Negative values indicate a decrease of the inundation depth for the projected scenarios and positive values indicate an increase. The 
columns show the predictions for CMlower, CMmedian and CMupper. The buildings are obtained from OSM (2023) and the coordinate system is UTM Zone 44 N in km. Note that the 
scale is not linear and that the changes are capped at -1 m  and +1 m and might exceed these values locally. See the Appendices 7.2 and 7.3 for the water levels. 
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For some areas, a decrease in the inundation depths is predicted despite the projected 

increase in the flood magnitudes (Figure 7.8). These decreases are generally predicted 

along the riverbanks of the Karnali branches. Decreasing inundation depths are 

furthermore predicted locally along floodplain channels around Tikapur city. However, 

the projected increases dominate the fan and areas with decreasing inundation depths 

are sparse.  

Despite these local inundation depth decreases, the projections predict increases in the 

for most flood-prone areas which is indicated by the increase in the median inundation 

depth (Table 7.4). The median depth divides the inundated area in half and hence 50% 

of the inundated area is inundated by shallower depths and 50% by deeper depths. This 

median depth increases with the emission scenario for all return periods. The median 

depth of CMmedian increases from 0.86 m in the baseline scenario to 0.95 m for SSP245 

and 1.05 m for SSP585 for the 1-in-100-years event. The median depth of CMupper 

increases from 1.09 m in the baseline to 1.6 m (SSP245) and 1.66 m (SSP585).  The 

exception is CMlower for which the median depth decreases with the emissions. For 

example, the median depth decreases from 1.27 m in the baseline to 1.15 m (SSP245) 

and 1.11 m (SSP585) for the 1-in-100-years event.  

The projected change in the inundation depth varies locally but the projected increases 

dominate which is also indicated by the distribution of inundation depths for the total fan 

(Figure 7.9). The area inundated by a certain depth increases with the emissions 

throughout the range of predicted depths for the CMlower and CMmedian. The inundated 

area decreases with increasing depth and hence the largest fraction is inundated by 

shallow inundations (< 0.5 m). The distribution of CMupper has a different shape, 

particularly for the 1-in-50-years and 1-in-100-years events. The inundated area 

increases until inundation depths of 1.0 – 1.5 m after which it declines. This means that 

larger areas are inundated by deeper flows than by shallower flows. Very deep 

inundations (≥ 4 m) are predicted within the channel and hence the variation between 

the prediction intervals is small for the very deep flows.  
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Table 7.4: Median inundation depths (ID) of flood events with different return periods. The area columns 
present the spatial extent of the median ID. This area is inundated by depths < the median ID and depths > 
the median ID and hence the total inundated area is twice this area. Only inundated pixels with depths ≥ 0.1 
m are included in the calculations.  

  Baseline Medium-
emissions 
[SSP245] 

High-
emissions 
[SSP585] 

  ID 
[m] 

Area 
[km2] 

ID 
[m] 

Area 
[km2] 

ID 
[m] 

Area 
[km2] 

1-in-10-
years 

Lower 
1.36 31 1.2 34 1.23 37 

1-in-10-
years 

Median 
0.83 70 0.81 109 0.91 136 

1-in-10-
years 

Upper 
0.9 129 1.04 165 1.27 183 

1-in-50-
years 

Lower 
1.29 35 1.15 42 1.12 45 

1-in-50-
years 

Median 
0.83 99 0.9 131 1.01 154 

1-in-50-
years 

Upper 
1.02 151 1.37 187 1.51 193 

1-in-100-
years 

Lower 
1.27 37 1.15 45 1.11 46 

1-in-100-
years 

Median 
0.86 108 0.95 138 1.05 162 

1-in-100-
years 

Upper 
1.09 162 1.6 196 1.66 198 

 

 

 

 

Figure 7.9: The spatial distribution of inundation depths for different return periods. The x-axis shows the 
depth (< 7.5 m) and the y-axis shows the area which is inundated by the respective depth. The solid lines 
indicate the distributions of CMmedian and the dotted lines indicate the distributions of CMlower and CMupper. 
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The population affected by flooding is projected to increase with emissions for all return 

periods. The fraction of inundated cells containing buildings (hereafter referred to as 

populated cells) quadruples from 8% in the baseline to 32% in the high-emission 

scenario SSP585 during the 1-in-10-years event (Figure 7.10). The projected 1-in-10-

years event of SSP245 affects a larger population (20%) than the baseline 1-in-100-

years event (19%). The most affected municipalities are the densely populated 

municipalities of Geruwa and Rajapur in the Island, and Tikapur in the Western floodplain 

(see Figure 7.1 for the location of the municipalities). In these municipalities, 22 – 27% 

of the populated pixels are inundated during the 1-in-100-years event in the baseline, 

which increases to 37 – 49% (SSP245) and 52 – 69% (SSP585) (median predictions). 

The predictions of the affected population vary strongly between the prediction intervals 

(Figure 7.10). CMlower predicts the inundation of 1-3% of the populated cells, and CMupper 

predicts the inundation of 45 – 72% of the populated cells for the 1-in-100-years event 

(all scenarios). As for the inundated area, the variation within the prediction interval 

exceeds the variation of the climate scenarios. For example, the scenario variation of 

the 1-in-10-years event of CMmedian is  16% (8 – 32%), while the difference between 

CMlower and CMupper is 29% (0 – 29%) in the baseline and 59% (1 – 60%) in the high-

emission scenario. However, an increase in the inundated populated pixels is predicted 

for each prediction interval and return period. The most extreme projections (CMupper for 

SSP245 and SSP585) predict that 80 – 100% of the populated pixels of the densely 

populated municipalities Geruwa, Rajapur and Tikapur are inundated during the 1-in-

100-years flood event.  

The inundation depth, and thus the damage potential is projected to increase with the 

emissions (Table 7.5). The median inundation depth (50% of the populated cells are 

inundated deeper and 50% are inundated shallower than the median depth) increases 

from 0.41 m in the baseline to 0.51 m (SSP245) and 0.57 m (SSP585) for the 1-in-100-

years event. The scenario differences in the inundation depths increase with the depth 

percentile, and the depth at the 90th percentile (10% of the populated cells are inundated 

deeper) increases from 1.05 m in the baseline to 1.15 (SSP245) and 1.35 (SSP585) for 

the 1-in-100-years event (median predictions). Both these characteristics, the increase 

of inundation depth with emissions, and the increasing variations with the depth 

percentile are consistent for all return periods for CMmedian and CMupper. CMlower projects 

a decrease in the median depth for some return periods. This is caused by the increase 

of inundated populated cells which leads to a relative decrease in the inundation depths.  

 



 

343 

 

 

Figure 7.10: The fraction of the populated cells in the total study area (Karnali fan) and the municipalities 
which are inundated by at least 0.1 m. The populated cells are classified as the cells of the modelling grid 
which are occupied by at least one building in the OSM (2023) dataset The x-axis plots the prediction interval 
of the ensemble. 

 

Table 7.5: Statistics of the inundated populated area. The inundated cells present the number of cells which 
contain at least one building (OSM, 2023) and are inundated by ≥ 0.1 m. The inundation depths present the 
depths of the median and the 90th percentile.      

 Pre-

diction 

interval 

Inundated cells Median inundation 
depth [m] 

P90 inundation 
depth [m] 

Return period BL SSP-

245 

SSP-

585 

BL SSP-

245 

SSP-

585 

BL SSP-

245 

SSP-

585 

1-in-10-years Lower 230 471 646 0.36 0.38 0.41 0.75 0.85 0.95 

1-in-10-years Median 4,100 10,411 16,578 0.36 0.39 0.48 0.95 1.05 1.15 

1-in-10-years Upper 14,779 24,461 30,517 0.45 0.6 0.77 1.15 1.35 1.75 

1-in-50-years Lower 420 902 1,240 0.42 0.42 0.4 0.95 0.95 1.05 

1-in-50-years Median 8,179 14,968 21,165 0.39 0.47 0.55 0.95 1.15 1.25 

1-in-50-years Upper 20,349 32,427 34,889 0.55 0.88 0.97 1.25 1.75 1.95 

1-in-100-years Lower 498 1,186 1,388 0.44 0.42 0.4 0.95 1.05 1.05 

1-in-100-years Median 9,849 16,860 23,583 0.41 0.51 0.57 1.05 1.15 1.35 

1-in-100-years Upper 23,294 35,918 36,782 0.6 1.05 1.1 1.35 1.95 2.15 

 



 

344 

 

7.3.2 The comparison of the flood hazard predicted for the baseline 
and observed flood magnitudes 
 

This section compares the hydrodynamic simulations for the flood magnitudes predicted 

from the simulated flood flows of the baseline simulations and those predicted for the 

observed discharge record. This provides information about the bias in the flood 

magnitudes of the hydrological simulations, which results from the climate and 

hydrological models, and propagates into the spatial flood hazard predictions. For this, 

the lower prediction interval CMlower (lowest climate model and 2.5th percentile of the 

flood magnitude), the median prediction interval CMmedian (6th highest climate model and 

median flood magnitude), and the upper prediction interval CMupper (highest climate 

model and 97.5th percentile of the flood magnitude) are compared with the 2.5th 

percentile, the median, and the 97.5th percentile of the flood frequency analysis of the 

observed discharge record (referred to as the observed predictions) (Figure 5.36). These 

simulations are conducted with the initial topography to compare them with 

hydrodynamic simulations of other studies and hence the baseline extents and depths 

are different to the ones in the previous section.  

The flood magnitudes of the baseline record are lower than the observed ones which 

results in the underprediction of the spatial flood hazard characteristics. The baseline 

simulations underpredict the inundation extent for all return periods. These 

underpredictions decrease with the prediction interval. The lower prediction interval 

CMlower predicts an inundation extent (inundation depth ≥ 0.1 m) of 73 km2 (Baseline) 

and 224 km2 (observed) for the 1-in-100-years event (Table 7.6). This equals a 

percentage difference of 102%. This percentage difference decreases to 43% for the 

CMmedian and further to 13% for CMupper. These percentage differences in the inundation 

extent are consistent for the three investigated return periods.  
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Table 7.6: The inundation extent and depth predicted for the observed (obs) and baseline (base) flood 
magnitudes. The floods are predicted for the initial topography and hence the baseline extents are different 
to the ones in Table 7.3. The Diff-column present the percentage difference (inundation extent) and absolute 
difference (inundation depth) between the observed and baseline predictions. The prediction interval 
represents the lower, median, and upper predictions of the baseline ensemble and the 2.5th, median and 
97.5th percentiles of the flood magnitudes of the observed record. 

  Inundation extent Median depth 

Return period Prediction 

interval 

Obs 

[km2] 

Base 

[km2] 

Diff 

[%] 

Obs 

[m] 

Base 

[m] 

Diff 

[m] 

1-in-10-years Lower  175 58 100 0.71 1.41 0.70 

1-in-10-years Median 219 139 45 0.78 0.68 0.10 

1-in-10-years Upper  271 257 5 0.88 0.84 0.04 

1-in-50-years Lower  215 68 104 0.77 1.23 0.46 

1-in-50-years Median 294 190 43 0.94 0.73 0.21 

1-in-50-years Upper  346 302 14 1.16 0.96 0.20 

1-in-100-years Lower  225 73 102 0.79 1.16 0.37 

1-in-100-years Median 322 207 43 1.03 0.75 0.28 

1-in-100-years Upper  369 324 13 1.32 1.04 0.28 

 

 

The spatial characteristics of the observed and baseline predictions are similar for the 

median and upper prediction interval (Figure 7.11). The inundation patterns of the 

median predictions are, on a large scale, similar to the ones of the median observed 

predictions. The inundation of the Western floodplain and the Island is predicted for both 

simulations. However, the inundated areas have a larger lateral extent in the observed 

predictions which is particularly evident in the South-Western border of the Karnali fan. 

Therefore, the baseline predictions underestimate the full extent of the inundation but 

the large-scale patterns are well reproduced. The differences between the baseline and 

observed inundation extents are small for the upper prediction interval. Particularly for 

the 1-in-10-years events, differences are marginal and only predicted on the local scale.  
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Figure 7.4: The inundation extents (inundation depth ≥ 0.1 m) predicted for the flood magnitudes derived 
from the observed discharge record and the simulated record of the baseline scenario. The columns show 
the prediction intervals of the lower, median, and upper predictions of the baseline ensemble, and the 2.5th, 
median and 97.5th percentiles of the flood frequency analysis ensemble of the observed record. The 
buildings are obtained from OSM (2023) and the coordinate system is UTM Zone 44 N in km. 

 

The baseline inundation extent of the lower prediction interval vastly underestimates the 

observed one and does not replicate its spatial characteristics (Figure 7.11). The 

Western floodplain and the Island are flooded in the observed predictions for all three 

return periods. In the baseline simulations, the inundation is restricted to the main 

channels for the 1-in-10-years event. A narrow area is flooded in the South of Tikapur 

City for the higher return periods but the inundation in the Western floodplain is largely 

underestimated. The Island remains dry in the baseline simulations for all return periods 

while it is flooded in the observed predictions.   
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The baseline simulations underpredict the inundation depth alongside the inundation 

extent (Table 7.6). The median inundation depth of the lower prediction interval is greater 

in the baseline predictions than in the observed predictions. This is caused by the larger 

fraction of channel cells due to the underestimation of floodplain inundation in the 

baseline predictions. The median depths are higher in the observed predictions for the 

median and upper prediction interval. This difference increases from 0.1 m for the 1-in-

10-years event to 0.28 m for the 1-in-100-years event (median predictions). The 

difference between the median depths of the upper prediction interval is marginal for the 

1-in-10-years event (0.04 m). Hence, the baseline predictions do not only reproduce the 

spatial inundation extent but also the depth with high accuracy. For the 1-in100-years 

event, this difference increases to 0.28 m.  

The spatial flood hazard characteristics (inundation extent and depth) of the baseline 

simulation are lower compared to the observed simulations but the differences are small 

for the upper prediction interval and reasonable for the median predictions. However, 

the lower prediction interval underestimates the flood hazard characteristics as most of 

the flood water remains within the channels and hence the flood-prone areas are not 

identified. The highest agreement between the baseline and observed simulations is 

predicted for the 1-in-10-years event of the upper prediction interval for which the 

percentage difference of the inundation extents is 5% and median depth difference is 

0.04 m (Table 7.6). 
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7.3.3 The sources of uncertainty in the flood hazard predictions 
 

Section 7.3.1 has shown that the ensemble variation in the predictions of the inundation 

extent is great and exceeds the variation of the climate scenarios (Table 7.3). This 

variation arises from the uncertainty in the flood magnitudes, the climate models, and 

the projected topographies. This section quantifies the contribution of each of these 

sources to the total variation. For this, the hydrodynamic simulations have been 

conducted for each combination of the: 

- Climate models (CM): the climate models with the lower, median (6th highest), and 

highest predicted flood magnitudes CMlower, CMmedian and CMupper; 

- Flood magnitudes (FM): the flood magnitudes predicted at the 2.5th, median and 

97.5th percentiles of the FFA ensemble of each climate model 2.5th FM, median FM 

and 97.5th FM; 

- Morphology: the initial topography and the projected topography of the 

morphodynamic simulations (Chapter 6). 

This results in 18 simulations with an individual combination of the three CM, the three 

FM, and the two topographies. The predicted inundation extents of these simulations are 

presented in Figures 7.12 and 7.13 and summarised in Table 7.7.  

The uncertainty in the predictions of the inundation extent is driven by the uncertainty in 

the Climate Models (CM) and Flood Magnitudes (FM) while the influence of the 

topography is low. This influence of the CM and FM is illustrated by the variation in the 

inundation extents of the 1-in-100-years event (Figure 7.13). The extent predicted by 

CMlower and CMupper varies by 109 km2 (146 – 255 km2) for the median FM of the baseline 

scenario with the initial topography (Figure 7.13). The extent predicted by the 2.5th and 

97.5th FM varies by 179 km2 (116 – 289 km2) for the CMmedian (baseline, initial 

topography).  
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Table 7.7: The mean prediction range of the inundation extent. This range is calculated for each combination 
of the remaining variables and then aggregated to the mean. For example, the mean prediction range of the 
topography is the mean range of the inundation extents predicted for the initial and projected topographies 
for each combination of climate scenario, climate model, and flood magnitude (27 combinations). The 
prediction range of the flood magnitudes is the difference between the extent predicted for the 2.5th and the 
97.5th percentiles for each combination of climate scenario, climate model, and topography (18 
combinations).   

 Variable 1-in-10-years 1-in-50-years 1-in-100-years 

Mean 

prediction 

range [km2] 

Climate scenarios 93 87 85 

Climate models 123 120 124 

Flood magnitudes 136 157 163 

Topography 7 6 5 

 

 

 

Figure 7.5: The ensemble variation of the inundation extents predicted for the 1-in-10-years flood event. The 
x-axis shows the prediction interval of the climate models (CM) (lower: CM with the lowest predicted flood 
magnitude; median: CM with the 6th highest predicted flood magnitude; upper: CM with the highest predicted 
flood magnitude). The y-axis is the percentile of the flood frequency analysis ensemble of the respective 
climate model.
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Figure 7.6: The ensemble variation of the inundation extents predicted for the 1-in-50-years flood event (left) and the 1-in-100-years flood event (right). The x-axis shows the 
prediction interval of the climate models (CM) (lower: CM with the lowest predicted flood magnitude; median: CM with the 6th highest predicted flood magnitude; upper: CM with 
the highest predicted flood magnitude). The y-axis is the percentile of the flood frequency analysis ensemble of the respective climate model. 
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Both, the FM and CM are important sources and none dominates the other. This is 

illustrated by the fact that the inundation extent of one category (CM or FM) is not larger 

than each inundation extent of a lower category and hence the three highest extents of 

each scenario and return period are not predicted for either, the 97.5th FM or CMupper. 

For example, the extent of the median FM of CMupper exceeds the 97.5th FM of CMlower, 

and the extent of the 97.5th FM of CMlower exceeds the 2.5th FM of CMupper (Figures 7.12 

and 7.13). 

The dominance of the CM and FM for the uncertainty is also illustrated by the great mean 

range of the predicted inundation extents (Table 7.7). This range describes the mean 

prediction range of the inundation extents in Figures 7.12 and 7.13 for the different 

categories (i.e. climate scenario, climate model, flood magnitude, and topography). The 

mean prediction interval is greatest for the FM and increases with the return period from 

136 km2 (1-in-10-years) to 163 km2 (1-in-100-years). The second greatest variation is 

predicted for the CM but this uncertainty is independent of the return period as indicated 

by the stable prediction range for the return periods (120 – 124 km2). The uncertainty of 

the FM and CM exceeds the variation of the climate scenarios as indicated by the lower 

mean prediction range of the climate scenarios (85 – 93 km2). This range decreases with 

the return periods. The topographic changes only cause a small variation in the predicted 

inundation extent which is indicated by the low mean prediction range of 5 – 7 km2 (Table 

7.7).  

All ensemble members predict an increase in the inundation extent from the baseline 

scenario to the projected scenarios for each return period (Figure 7.14). This increase 

ranges between 10 – 103% for SSP245 and between 19 – 151% for SSP585. Higher 

increases are predicted for SSP585 than for SSP245 except for one member (CMlower 

97.5th FM) for the 1-in-10-years event.  

The projected changes decrease with increasing flood magnitude interval, particularly 

for CMmedian and CMupper (Figure 7.14). The climate models have no clear trend of higher 

or lower changes with the interval. The highest changes are predicted for the 2.5th FM 

of  CMmedian and these changes are greater for the projected topographies than for the 

initial topographies. For this member, the projected topographies reduce the inundation 

extent in the baseline and increase the inundation extent in the projected scenarios 

which causes these greater increases (Figures 7.12 and 7.13). The initial topographies 

generally predict greater increases than the projected topographies for CMmedian and 

CMupper except for the 2.5th FM combinations) (Figure 7.14).  
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Figure 7.7: The projected increases in the inundation extent for the median- and high-emission scenarios 
for each ensemble member. The x-axis shows the prediction interval of the climate models CM (lower: CM 
with the lowest predicted flood magnitude; median: CM with the 6th highest predicted flood magnitude; upper: 
CM with the highest predicted flood magnitude). The y-axis is the percentile of the flood frequency analysis 
ensemble of the respective climate model.  
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7.3.4 The effect of the morphological evolution 
 

The morphological evolution of the fan topography has low effects on the predicted 

inundation extents of the flood hazards (Table 7.7). However, the topography defines 

the pathways of the flood water and hence the morphological evolution potentially alters 

the locations of the inundation and the inundation depths. These aspects are analysed 

in this section by comparing the spatial flood hazard patterns of the ensemble predicted 

for the initial and projected topographies.  

The large-scale patterns of the inundation extents remain similar for both topographies 

for all scenarios (Figures 7.15 and 7.16). For most of the inundated areas throughout 

the fan, the inundation is predicted for both topographies. Differences occur mostly on 

the local scale of a few thousand square metres. The differences in the inundation 

extents are most pronounced for CMlower. which predicts inundations in the Island for the 

initial topography but not for the projected topographies. Furthermore, CMlower predicts 

inundations in the north of Tikapur city only for the initial topography, and the inundations 

in the South-Western parts of the fan extend further in the initial topography for the 1-in-

50-years and 1-in-100-years events. 

The median and upper prediction interval CMmedian and CMupper predict a decrease in the 

inundation extent along the Eastern and Western edges of the flooded area (Figures 

7.15 and 7.16). The extent decreases locally in the north and east of Tikapur city, 

particularly for the 1-in-10-years event. Furthermore, parts of the Eastern floodplain are 

inundated by the most 1-in-100-years event of the projected scenarios for CMupper but 

only for the initial topography. Hence, the inundated areas spread further to the edges 

for the initial topography.  

The connectivity of the Island increases for the projected topographies of CMmedian and 

CMupper. The increase of the inundation extent on the Island is most prominent for the 1-

in-10-years events of the medium- and high-emission scenarios (Figure 7.15). These 

increases are predicted in the intersection of the main branches and the Island which 

indicates a better connectivity. Furthermore, the inundation extent increases in the 

Southern parts of the Island also at greater distance (3-4 km) to the branches. However, 

for the largest parts of the fan, inundation is predicted for both topographies and small-

scale variations are predicted throughout the fan.  
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Figure 7.8:  The inundation extents (inundation depth ≥ 0.1 m)  predicted for the initial and projected 
topographies for the 1-in-10-years event. Further details are provided in the description of Fig. 14.



 

355 

 

 

Figure 7.9: The inundation extents ( inundation depth ≥ 0.1 m) predicted for the initial and projected topographies for the 1-in-50-years event (left) and for the 1-in-100-years event 
(right). The columns show the predictions for CMlower, CMmedian, and CMupper. The buildings are obtained from OSM (2023) and the coordinate system is UTM Zone 44 N in km.
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The morphological evolution alters the inundation depth throughout the fan. These 

inundation depth differences for the initial and projected topographies are shown in 

Figures 7.17 and 7.18. The highest differences (≥ 1.5 m) are predicted in the channels 

whereas areas of increased and decreased depths are in proximity to each other. 

Generally, the areas with decreased inundation depth for the projected topographies 

dominate throughout the fan. However, the influence of the morphological evolution on 

the inundation depth is complex and varies between the scenarios, the prediction 

interval, and the return periods.  

The influence of the topography on the inundation depth varies between the scenario 

which is illustrated by the inundation depths of the median predictions (CMmedian) of the 

1-in-100-years event (Figure 7.18). In the baseline scenario, the inundation depths are 

higher for the projected topography in the Island and most of the Western floodplain. 

Decreasing depths in the projected topographies are predicted along a floodplain 

channel in the north and east of  Tikapur city, and a section in the depression in the 

south-west of the fan. These patterns change in the median-emission scenario SSP245 

for which the inundation depths also decrease along floodplain channels in the South of 

Tikapur city. The change from increased to decreased inundation depths for the 

projected scenarios is also predicted along channels in the Island. For the high-emission 

scenario SSP585, the inundation depth differences change further and lower depths for 

the projected topographies are predicted for most areas throughout the fan. 

Furthermore, the magnitude of the differences increases in the high-emission scenario 

SSP585. The depth differences in the floodplain are mostly between ±0.1 m in the 

baseline and medium-emission scenarios, but in SSP585 decreasing depths between -

0.1 m and -0.5 m are predicted in extended areas throughout the fan (median 

predictions).  

The prediction interval also affects the impact of the morphological evolution on the 

inundation depths. This is illustrated by the simulations of the 1-in-100-years event of 

the medium-emission scenario SSP245 (Figure 7.18). The inundation depths increase 

for the projected topographies in the depression for the CMmedian predictions while these 

decrease for the CMupper predictions. The comparison of the lower prediction interval 

CMlower is hampered by the low inundation extent.  

The sensitivity of the topography also varies for the return periods. The inundation depth 

decreases for the projected topography in the depression for the 1-in-10-years event for 

the CMmedian of the median-emission scenario SSP245 (Figure 7.17). This ensemble 

member predicts an increase in the inundation depth for the 1-in-50-years and 1-in-100-

years events at this particular location (Figure 7.18).  



 

357 

 

The morphological evolution alters the predicted inundation depths throughout the fan. 

The inundation depths increase or decrease locally. Generally, it appears that lower 

inundation depths are predicted for the projected topographies for larger areas with 

increasing flood flow (i.e. with higher return periods, emissions, and the prediction 

interval). However, a consistent increase is predicted by all simulations of CMmedian and 

CMupper in a section of the Island 3-4 km east of the Western branch which stretches 

parallel to the channel in a north-south direction until the downstream boundary (Figures 

7.17 and 7.18).  

 

 

 

Figure 7.10: The differences in inundation depths between the predictions for the initial and projected 
topographies for the 1-in-10-years event. Positive values indicate that the depth is higher for the projected 
topographies. The depths are capped at ± 3 m and may exceed these values locally. Note that the scale is 
not linear. The buildings are obtained from OSM (2023) and the coordinate system is UTM Zone 44 N in 
km.
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Figure 7.11: The differences in inundation depths between the predictions for the initial and projected topographies for the 1-in-50-years event (left) and the 1-in-100-years event 
(right). Positive values indicate that the depth is higher for the projected topographies. The depths are capped at ± 3 m and may exceed these values locally. Note that the scale 
is not linear. The buildings are obtained from OSM (2023) and the coordinate system is UTM Zone 44 N in km. 
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The morphological evolution influences the inundation extent and the inundation depth. 

This influence varies with the flood discharge into the fan (Figure 7.19). For the lowest 

simulated flows (< 6,000 m3/s), the predicted inundation extent is higher and the depth 

is lower for the projected topographies than for the initial topographies. For flows 

between 6,000 – 9,500 m3/s, the influence of the morphological evolution is not 

systematic because for some ensemble members greater inundation extents are 

predicted for the initial topography while greater inundation extents are predicted for the 

projected topography for other members. Above this flow, 5 – 16 km2 greater inundation 

extents and lower depths are predicted for the projected topographies. The difference in 

the predicted inundation extent decreases with the flow rate and similar extents are 

predicted for flows ≥ 15,000 m3/s.  For the highest simulated flows (≥ 30,000 m3/s), larger 

inundation extents are predicted for the initial topography. However, the median 

inundation depth is 0.01 – 0.08 m lower for the projected topographies for all simulations 

with flows ≥ 10,000 m3/s independent of whether lower or greater inundation extents are 

predicted for the projected topographies (Figure 7.19).   

 

 

 

 

 

Figure 7.12: The influence of morphological evolution on the inundation characteristics. Figure A shows the 
relationship between the flood magnitude and the inundation extent and Figure B shows the relationship 
between flood magnitude and the median inundation depth. These relationships include the predictions of 
all ensemble members and return periods presented in Figures 7.11 and 7.12.  
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7.4 Discussion of the predicted flood hazards in the Karnali 
fan  
 

The previous section presented the predictions of the hydrodynamic simulations of the 

1-in-10-years, 1-in-50-years, and 1-in-100-years flood events for the observed record 

and the climate scenarios. This section discusses these predictions with a focus on their 

reliability by comparing them with other studies (Section 7.4.1), the changes for the 

projected climates (Section 7.4.2), the sources of uncertainty (Section 7.4.3), and the 

sensitivity of the flood hazards to changes in the topography (Section 7.4.4).  

 

7.4.1 Comparison with other studies 
 

The performance assessment of the simulation of the flood hazard characteristics is 

hampered by the lack of observations of the inundation extent and depths of past flood 

events. Instead, the results are compared with the ones of other studies to investigate 

whether the predicted characteristics are realistic. For this, predictions are chosen that 

match the return period or flood discharge of the simulations of Meteor Consortium 

(2019) and Dingle et al. (2020a) (Figure 7.20).  

The simulations in this study predict the inundation of the Island which is consistent with 

the other studies (Figure 7.20). The flood water enters this Island at the northern edge 

and traverses it until the downstream border of the modelling domain. This is consistent 

with the simulations of the other studies and the spatial patterns of the inundations agree 

between the studies despite local deviations. Most of the flood water drains in the south-

eastern direction in the lower half of the Island which is consistent with the predictions 

of Meteor Consortium (2019) (Figure 7.20 A and B). Dingle et al. (2020a) predict the 

inundation of larger areas in the Island than this study which is likely to be attributed to 

the spatial representation in the model (structured mesh with increasing size with 

distance to the branches) (Figure 7.20 C and D).  Flood water enters the Island at several 

locations from the Eastern and Western branches which is also predicted by Meteor 

Consortium (2019). The inundation maps of Dingle et al. (2020a) predict connections of 

channel and floodplain throughout the length of the Island for both branches. The high 

flood risk predicted in the simulations is complemented by Duwal et al. (2023) who 

predict moderate to very high flood susceptibility throughout the Island. 
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Figure 7.20: Comparison of the predicted flood hazard maps with other studies. Figure A shows the 
predicted flood inundation of the 1-in-100-years event of the baseline (initial topography). Figure B shows 
the flood inundation of the 1-in-100-years event of Meteor Consortium (2019). Figures A and B share the 
same legend. Figures C and D show the predicted flood inundation at 17,000 m3/s of this study (Figure C) 
and Dingle et al. (2020a, Figure S3 C).  

 

 

The Western floodplain is flood-prone but the location where the flood water enters the 

floodplain varies in the studies. The Western floodplain is inundated during the 1-in-100-

years event in all studies. In this study, the overbank flow drains the Western floodplain 

in the south-western direction and accumulates in a topographic depression at the south-

western border of the modelling domain. These spatial patterns are similar to the ones 

predicted by Meteor Consortium (2019) and Dingle et al. (2020a). However, the locations 

where the Western branch starts flooding differ between the studies: 
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- On the fan head (~11 km downstream of the inlet) from where it drains in the south-

western direction until the depression. This location is predicted in this study and the 

one of Dingle et al. (2020a).  

- North of Tikapur forest (~15 km downstream of the inlet). This is the entry point of 

flood water into the Western floodplain for the predictions of Meteor Consortium 

(2019) but is not predicted by the other studies.  

- In a section in the south-west of Tikapur city (~20 km downstream of the inlet). This 

location is predicted in this study and by Dingle et al. (2020a). However, the flood 

water drains in the south-western direction in this study while it drains parallel to the 

Western branch in the predictions of Dingle et al. (2020a). 

- In the lower fan (~ 25 km downstream of the inlet). This location is predicted in each 

study. However, more locations of overbank flow into the Western floodplain in the 

lower fan are predicted in this study and by Dingle et al. (2020a) than by Meteor 

Consortium (2019).  

The predictions of this study are uncertain in forests and downstream of these forested 

areas which concerns the Western floodplain in the south and south-west of Tikapur city. 

The drainage in the south-western direction is only predicted at this location in this study. 

Dingle et al. (2020a) predict some inundation which may be the reoccupation of a 

previously abandoned channel rather than floodplain flows. The different predictions of 

all studies arise from the utilisation of different topographic datasets and procedures to 

remove the forest cover. The predicted pattern in this study may result from an 

underestimation of the ground elevation during the statistical forest removal procedure. 

The forested areas along the Eastern border of the modelling domain are not affected 

by this because these are located high above the channel and are neither flooded in this 

study nor in any other of the evaluated studies.   

The Western floodplain and areas in the south-eastern corner of the modelling domain 

are prone to floodings of smaller rivers originating in the southern flanks of the first 

Siwalik mountain range (Figure 7.20 B; Duwal et al., 2023). These rivers have not been 

considered in this study and hence the inundations may be larger and deeper if these 

contributing rivers and the Karnali River flood simultaneously. Particularly in the 

depression, the actual inundations would be deeper than the predicted ones because 

three Siwalik rivers confluence in this area (Meteor Consortium, 2019). 
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7.4.2 The climate change impact on the flood hazard 
 

The hydrodynamic simulations provide robust evidence that flood hazards intensify with 

emissions for all return periods. The inundation extent of the 1-in-100-years event is 

projected to increase by 29% for the medium-emission scenario SSP245 and by 51% 

for the high-emission scenario SSP585 at the end of the century (2060 – 2099) (Table 

7.3). The inundation extent of the more frequent events are projected to increase 

stronger, and this increase is 55% (SSP245) and 94% (SSP585) for the 1-in-10-years 

event (median predictions).  

The impact of increased climate forcing on flood hazards is illustrated by the projected 

increase in flood frequencies. The inundation extent of the 1-in-10-years event projected 

for SSP245 (217 km2) is similar to the one predicted for the baseline 1-in-100-years 

event (217 km2). The inundation extent of the SSP585 1-in-10-years event (273 km2) 

equals the one predicted for the SSP245 1-in-100-years event (276 km2) (Table 7.3 and 

Figure 7.5). This increase in the projected frequencies emphasises the intensification of 

the flood hazards with the emissions. The scale of the projected increases of the 

inundation extent agrees with the projected increases in the flood frequencies where the 

baseline 1-in-100-years event is projected to occur every 11 years for SSP245 and every 

3 years for SSP585 (Table 5.11). The scale of the projected increases in flood 

frequencies agrees with regional projections which project return periods of 5-25 years 

(SSP245) and 2-25 years (SSP585) for the Ganga Plain (Hirabayashi et al., 2021) 

(median predictions).  

The confidence is high that the flood hazards will intensify with the emissions in the 

Karnali fan because increases in the inundation extent are projected for the full prediction 

range of the ensemble (Table 7.3). These projected increases are lower for the lower 

and upper boundaries (CMlower and CMupper) of the prediction interval than for the median 

predictions (CMmedian). The causes for the lower projected increases are different CMlower 

and CMupper. For CMlower, the cause is related to the lower projected increases in the flood 

magnitudes (Figure 5.37 and Table 5.10). This cannot be the case for CMupper because 

the projected increases in the flood magnitude are greater for CMupper than for CMmedian 

(Tables 5.9 and 5.10). However, this greater projected increase in the flood magnitude 

does not translate into greater inundation extents. This lower projected increase in the 

inundation extent is caused by the topographic characteristics of the fan.  

The topography divides the Karnali fan into areas that are very prone to floods and areas 

that are not inundated even during the highest simulated flows (≥ 40,000 m3/s). The 
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longitudinal gradient is larger than the lateral gradient in the Island and the Western 

floodplain, and hence overbank flow drains on the floodplain to the downstream study 

area boundary rather than draining back into the Karnali River (Figure 7.6). As a 

consequence, large areas are inundated at comparatively low flows (< 15,000 m3/s). The 

areas along the eastern model boundary are superelevated above the channel, and the 

areas along the north-western model boundary are protected by the south-western 

elevation gradient and these areas remain dry even for the highest simulated events. 

This polarisation of high-risk and no-risk areas causes a deceleration in the inundation 

extent with increasing flood magnitude ≥ 15,000 m3/s (Figure 7.19) which explains why 

the projected relative increase in the inundation extents decreases with the return 

periods and prediction interval. However, the inundations get deeper as the increase in 

the flood magnitude is higher than the increase in the inundation extent (Figures 7.8 and 

7.9). This is illustrated by the increase in the median inundation depths of the upper 

prediction interval which increases from 1.09 m in the baseline scenario to 1.60 m 

(SSP245) and 1.66 m (SSP585) for the 1-in-100-years event (Table 7.4). Hence, the 

inundation extent is not a sufficient metric to capture the full extent of the intensification 

of the projected flood hazards.  

The projected intensification of the flood hazard characteristics (inundation extent and 

depth) affects the most densely populated regions of the fan. The 1-in-100-years event 

of the baseline scenario affects 8% of the populated area which increases to 20% 

(SSP245) and 32% (SSP585) at the end of the century (Figure 7.10). The densely 

populated municipalities Geruwa (Northern Island), Rajapur (Southern Island), and 

Tikapur (Western floodplain) are the most affected regions. In these municipalities, the 

affected populated area increases from 22 – 27% in the baseline scenario to 37 – 49% 

(SSP245) and 52 – 69% (SSP585). Furthermore, the topographic depression along the 

south-western border of the study area is sensitive to increased flooding. Aside the 

projected increase in the affected population, this population is also exposed to more 

dangerous flows with higher damage potential (Table 7.5) (median predictions). 

The combination of the increased inundation extent and depth decreases safe non-

flooded areas and access to these areas. Such safe zones are particularly important 

because many areas may be inundated from multiple directions. The Geruwa and 

Rajapur municipalities on the Island are surrounded by both Karnali branches in all 

directions. The population of the Western floodplain is exposed to floodings from multiple 

directions. Several Siwalik rivers traverse the floodplain West or within the study area 

and drain into the Mohana River which flows along the India-Nepal border in the South-

Eastern direction and drains into the Karnali 2-3 km South of the study area. Hence the 
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municipalities of the Western floodplain are surrounded by water from the Western 

branch to the East, by the Siwalik rivers to the West, and by the Mohana River to the 

South (Meteor Consortium, 2019; Duwal et al., 2023). Areas that are located ≥ 4-5 km 

from the Siwalik foothills are furthermore surrounded by flood flows of the Karnali River 

to the North (Figures 7.6, 7.7, and 7.20). If the centre of the flood-triggering rainfall is 

located over the Siwalik range, as for the 2014 flood event, the Karnali River and Siwalik 

rivers experience simultaneous floodings (MacClune et al., 2015; Shrestha et al., 

2015a). In such a situation, large areas of the fan are surrounded to all sides by water 

which hampers the evacuation of the population from the risk areas, and the access of 

rescue teams to the risk areas. The projected increase in the inundation extent and the 

water levels intensifies this situation (Figure 7.8).  

It is further worth noting that the population in the Terai is projected to increase due to 

population growth and migration which has not been considered in this study (UNFPA 

Nepal, 2017). Hence, the affected population will increase not only due to the 

intensification of the flood hazards but also due to the population dynamics. The 

projected increase in inundation extent and depth potentially increases agricultural 

damages which is the main source of income for 80% of the population (Dixit et al., 2007; 

ADPC, 2010; Perera et al., 2015). Furthermore, the projected changes potentially alter 

the water quality and reduce access to clean water (Hannah et al., 2020; Kosow et al., 

2022).  

 

7.4.3 The uncertainty in the predictions 
 

The areas at risk of flooding vary largely for the ensemble predictions. For example, the 

inundation extent of the1-in-100-years event of the baseline varies between 13 – 59% 

(Figure 7.5). The inundations of CMlower are constrained to the channels and a small area 

in the south of Tikapur city, while most of the Island and the Western floodplain (except 

for the Northern areas) are inundated for CMupper (Figure 7.6). This large prediction range 

is caused by the uncertainty propagation through the modelling cascade. The sources 

of uncertainty arise from the hydrological model, the Flood Frequency Analysis (FFA), 

the variation in the climate ensemble, and the morphological evolution. Furthermore, the 

morphodynamic model and the hydrodynamic model add uncertainty to the predictions 

(e.g. parameter uncertainty). The uncertainty of these models has not been quantified to 

not increase the ensemble size further and is not assessed in this study. The sources of 

the assessed uncertainty are the hydrological uncertainty (from the hydrological model 

and FFA) and the climatic uncertainty from the CMIP6 ensemble.  
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The hydrological uncertainty (hydrological model and FFA) has the highest prediction 

interval with a mean range of the inundation extent of 136 km2 for the 1-in-10-years event 

(Table. 7.7). This uncertainty arises from the hydrological modelling and is then amplified 

by the FFA. The significant contribution of the hydrological modelling uncertainty is 

illustrated by the prediction range of the baseline AMAX P90 which is 5,800 m3/s and 

hence only slightly lower than the prediction range of the 1-in-10-years flood magnitude 

of 6,800 m3/s (Table 5.15). However, this difference increases with the return period and 

hence the contribution of the FFA to the hydrological uncertainty increases with the 

return period to 163 km2 (Table 7.7). 

The climate uncertainty describes the fraction of the uncertainty arising from the variation 

in the climate input (temperature, precipitation) of the 12 CMIP6-ensemble members. 

This uncertainty is the second largest source of uncertainty with a mean variation of 120 

– 124 km2 (Table 7.7). While it is lower than the flood magnitude uncertainty it remains 

an important source of uncertainty. This uncertainty increases with the emission 

scenarios. This is illustrated by the increasing range in the inundation extent of the 1-in-

100-years event from 109 km2 in the baseline scenario to 128 km2 for SSP245 and 153 

km2 for SSP585 (median flood magnitudes and initial topography) (Figure 7.13). This 

increasing uncertainty range is caused by an increasing discrepancy in the projections 

of the climate members (Tables 5.12 – 5.14).  

The majority of climate models project an increase in the 1-in-100-years flood magnitude 

of 37 – 69% for SSP245 (8/12 members) and 68 – 143% for SSP585 (9/12 members) 

while the lowest members predict a lower 12% increase (SSP245) and a decrease of 

12% (SSP585) (Tables 5.13 and 5.14). The climate models predicting lower changes 

are the ones which capture the flood seasonality of the monsoon system poorly and are 

less probable realisations (Chapter 5). Note that the lower climate boundary still predicts 

an increase in the inundation extent for SSP585 because the lower climate boundary is 

represented by different climate models for the baseline and projected scenarios (Table 

7.3).  

The inundations predicted for the simulated records underpredict the ones for the 

observed records but the difference decreases with the prediction interval. This is 

indicated by the comparison of the simulation with the flood magnitudes of the baseline 

and observed flood magnitudes (Figure 7.11 and Table 7.6). This underestimation arises 

from deficits in the process description of the hydrological model which cannot reproduce 

the full extent of the fast rainfall-runoff conversion, the parameter transfer from the 

observed climate data to the CMIP6 data, and the bias of the CMIP6 models.  
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The differences between the baseline and observed simulation are largest for the lower 

prediction interval (CMlower). The poor performance of this interval results from the 

combination of the climate models and the hydrological predictions. The hydrological 

ensemble underpredicts the flood peaks and this underprediction is largest for CMlower. 

Furthermore, the simulated peaks are lower for the CMIP6 climate forcing than for the 

observed forcing and this combination results in inundation extents that are restricted to 

the channel even for the 1-in-100-years event. The underestimations decrease with the 

prediction interval and CMupper of the baseline ensemble reproduces the patterns of the 

observed simulations well, both in terms of inundation extent and depth (Figure 7.11 and 

Table 7.6). Hence, the lower boundary is unbehavioural and vastly underestimates the 

flood hazards but the CMmedian and CMupper are behavioural representations and 

reproduce the spatial flood hazard characteristics as also indicated by the comparison 

with other studies (Figure 7.20).  

The variation in the inundation extents of the climate scenarios (85 km2 for the 1-in-100-

years event) is lower than the variation introduced by the flood magnitudes and climate 

ensemble. Nonetheless, the confidence is high that the flood hazards intensify with 

emissions. All ensemble combinations project an increase for the projected climate and 

this increase is higher for the high-emission scenario except for one member for the 1-

in-10-years flood (CMlower 97.5th FM) (Figure 7.14). The high agreement of all models 

provides a strong signal that floods intensify with emissions. The highest increases (≥ 

90%) are projected for CMmedian FM2.5 while the increases are lower for the higher FM 

and CM intervals. The reason for this is the topography where the inundation extent 

increases more slowly with increasing magnitude (see the previous section).  

The main contributions to the uncertainty are the hydrological model and the climate 

projections. This is consistent with the uncertainty analysis for flood projections of 

Giuntoli et al. (2018) who predict that both sources are important contributors to the 

overall uncertainty and that the uncertainty of the hydrological model can exceed the 

one of the climate models in catchments for which melt processes are important 

components of the hydrological cycle. It also agrees with the uncertainty analysis of 

global high flow (Q95) projections of Giuntoli et al. (2015) who predict that the hydrological 

model contributes most to the uncertainty in the Central Himalayas. However, it is worth 

noting that both studies investigate the structural uncertainty by applying an ensemble 

of hydrological models while this research applies an ensemble of parameter sets of a 

single hydrological model. The increasing hydrological uncertainty with the return period 

is reasonable as the most extreme flows are most difficult to predict by the hydrological 

model, these events are most affected by the internal climate variability, the FFA is 
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extrapolated beyond the 40-year record, and are more sensitive to the slope of the flood 

frequency curves (Kjeldsen et al., 2014; Huang et al., 2017; Giuntoli et al., 2018, 2021; 

Li et al., 2018).  

This research followed a “one model one vote“ approach which regards each ensemble 

member as an equally likely predictor of the potential flood hazard. However, the poor 

performance of the ensemble members (both climate and hydrological ensemble) 

indicates that the predictions of some members are inferior to others. The ranking of the 

ensemble members based on their agreement with the historical observations may 

improve the projections (Padrón et al., 2019; Giuntoli et al., 2021).  

The climate and flood magnitude uncertainty is caused by the variation of the flood 

discharge into the Karnali fan (the morphological impact will be assessed later). 

However, the topographic representation also introduces uncertainty. The DTM was 

generated without ground-truth data and contains noise which affects the predicted flood 

hazard characteristics (Chapter 6). Certain landscape features are particularly affected 

by noise and these features are: 

- The channel representation – main channels: The bed elevations of the Karnali 

branches are unknown and are interpolated from the elevation along the edges of 

the inundated channel sections. This uncertainty of the bed elevation affects the 

channel capacity and hence the bankfull flow rate might be under- or overestimated.  

- The channel representation – floodplain: The floodplains are intersected by small 

channels (< 10 m width) and these are difficult to represent at the 25 m modelling 

resolution (see Figure 7.1 for the location of some of these rivers). In some river 

sections, the banks are covered by trees and hence there is no information about 

the bank and bed elevation. In such areas, the channel elevation might be 

overestimated and the channels superelevated to the adjacent floodplain. This also 

causes a disturbance in the longitudinal gradient. As a consequence, these small 

channels cannot drain the floodplains as efficiently and might cause false local 

floodings. 

- Forested areas: The forest elevation is unknown and might be over- or 

underestimated. This is particularly relevant for the forested riverbank of the Western 

branch (see Tikapur forest in Figure 7.2). The models predict overbank flow in this 

location which is not predicted in other studies (Meteor Consortium, 2019; Dingle et 

al., 2020a). Hence, this elevation might be underestimated leading to false 

inundation prediction in this area and the areas along the downstream flow pathway.  
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- Buildings: The noise caused by buildings is particularly relevant for Tikapur city. In 

this area, not all buildings may have been removed and the ground elevation might 

be overestimated in some sections. The inundation patterns in the city should not be 

interpreted on the local scale of hundreds of metres because artefacts of the 

buildings remain in the topographic data.  

The similar inundation patterns predicted in this research and other studies indicate that 

the DEM depicts the large-scale topography well (Meteor Consortium, 2019; Dingle et 

al., 2020a). However, the predictions should not be used on the local scale of hundreds 

of metres. Such high-resolution flood hazard mapping requires a more detailed 

topographic representation based on ground surveys and a higher modelling resolution.   

 

7.4.4 The sensitivity towards morphological changes 
 

The morphological evolution of the fan topography alters the flood hazard characteristics 

but this response is complex and varies spatially and between the ensemble members. 

The ensemble variation in the inundation extent of the fan is 5 – 7 km2 and is very low 

compared to the variation introduced by the climate flood magnitude ensembles (Table 

7.7). However, the topographic changes alter the flow pathways and hence change the 

spatial patterns of inundation extent and depth. This predicted response to the 

morphodynamic evolution varies spatially and between the ensemble members. 

Both sets of simulations predict inundations at similar locations for most of the fan and 

differences are predicted on the local scale of a few thousand square metres. The 

morphological evolution increases the connectivity of the Island and the lower Western 

floodplain (20 – 30 km distance to the inlet) to the Karnali branches which results in 

locally increased inundation extents and depths (Figures 7.17 and 7.18). This higher 

connectivity potentially results from the erosion of the irrigation gates which control the 

upstream influx to the Island, and the erosion of embankments along the main channels 

particularly in the lower fan which are represented in the initial topography. Contrarily, 

the connectivity to the channels decreases in sections along the North-Western and 

South-Eastern study area boundaries which causes the decrease of the inundation 

extent and depth. Decreasing inundation depths are predicted for larger areas with 

increasing flood discharge into the fan (i.e. return period, prediction interval, emission 

scenario).  
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The comparison of the simulations with the initial and projected topographies does not 

indicate a clear trend that the morphological evolution intensifies or weakens the flood 

hazard. The total inundation extent increases for the projected topographies for flood 

flows between 9,500 – 15,000 m3/s but above this magnitude, the extents are similar for 

both topographies. For the highest simulated flood flows (≥ 30,000 m3/s), the inundation 

extent decreases for the projected topographies (Figure 7.19). The simulations do not 

suggest that the morphological evolution causes an intensification of the flood hazard 

through channel aggradation as observed for the Koshi River system (Sinha, 2008; Dixit, 

2009; Sinha et al., 2014). However, the simulations do not indicate a weakening of the 

flood hazards through channel degradation which would increase the channel capacity.  

The response of the flood hazards to morphological changes is complex and varies for 

the topographies predicted by the ensemble members. This complexity is illustrated by 

the variation of the predicted inundation depths in the depression (see Figure 7.2 for the 

location of the depression). The inundation depths decrease for the projected 

topographies (compared to the simulations with the initial topography) of the baseline 

and the high-emission scenario SSP585 but increase for the topography of the medium-

emission scenario SSP245 for the 1-in-50-years simulation of CMmedian. Furthermore, the 

predictions also vary between the simulated flood events in this area. The CMmedian 

predicts a decrease in the depths for the 1-in-10-years event for SSP245. However, for 

the 1-in-50-years and the 1-in-100-years events, a relative increase compared to the 

initial topography is predicted (Figures 7.17 and 7.18). The CMmedian is represented by 

the ACCESS-CM2 member for the 1-in-10-years event, and by the INM-CM5-0 member 

for the 1-in-50-years and 1-in-100-years events. The most likely explanation for this shift 

from decreased to increased inundation depths is that the morphological evolution 

predicted for SSP245 for the ACCESS-CM2 member causes a decrease of the overland 

flow in the North-East of Tikapur city and hence less water is delivered to the depression, 

while this decrease is not predicted for the morphological evolution of the INM-CM5-0 

member.  

The projected topographies have an increased channel capacity and more efficient 

drainage of the small channels in the floodplain. The increased channel capacity is 

indicated by the decrease in the inundation extent and an increase in the median 

inundation depth for flood flows between 6,000 – 9,500 m3/s (Figure 7.19). The bankfull 

flow rate increases with the channel capacity and hence the inundation extent 

decreases. Consequently, the median inundation depth increases because the water is 

kept within the deeper channels. The more efficient drainage is indicated by the 

predictions of higher flood magnitudes ≥ 18,000 m3/s. In this range, similar inundation 
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extents are predicted for the initial and projected topography, but the water levels are 

lower for the projected topographies. This is most pronounced for the most extreme flood 

flows ≥ 30,000 m3/s for which the inundation extent and the depths are lower for the 

projected topographies. However, the depths should increase if the same amount of 

water inundates a smaller area. The lower depths for similar or lower inundation extent 

are caused by the more efficient drainage of flood water and hence the water is routed 

faster to the downstream boundary which reduces both, the inundation extent and depth.  

The improved drainage raises the question of how much of the variation is caused by 

the morphological evolution and how much by the noise in the initial DEM. The small 

floodplain channels contain noise in the initial channel (see previous section). Such noise 

introduces obstacles in the longitudinal direction and increases the inundation depth in 

the adjacent floodplain because less water can drain through the channel. The 

morphological simulations erode such obstacles which increases the drainage efficiency 

for the projected topographies. The inundation depths of the projected topographies 

decrease compared to the initial topography along a floodplain channel in the Island 

flowing from the upstream beginning of the Island to the downstream boundary in the 

South-East, and along smaller channels North, Central, and South of Tikapur city 

(Figures 7.1 and 7.18) which indicates that water can drain more efficiently in these 

channels in the projected topographies. However, this decrease is more evident for the 

upper prediction interval and the projected climate scenarios. The reason for this is that 

these small floodplain channels are inundated more frequently for ensemble members 

with high flood flows (i.e. higher climate interval, hydrological interval and emission 

scenario). Thus, more noise is removed by the morphodynamic modelling of these 

members which explains why particularly the upper prediction interval drains more 

efficiently.  

The noise in the main channels of the Karnali has been removed in the DEM generation 

process and these channels drain efficiently even in the initial topography. However, the 

riverbeds have been interpolated and are flat in the lateral direction. Changes in the 

channel capacity can be, at least to some extent, caused by erosional and depositional 

processes to generate a more realistic bed topography. 
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7.5 Conclusions 
 

A hydrodynamic model was applied with the flood magnitudes (Chapter 5) and the 

topographies (Chapter 6) predicted for an ensemble of projected climates to predict the 

spatial characteristics of the flood hazards at the end of the century (O5). The model 

was also applied with the initial topography to evaluate the sensitivity to the 

morphological change. The predictions provide realistic flood pathways in the Island and 

the Western floodplain which agrees with other studies (Meteor Consortium, 2019; 

Dingle et al., 2020a). This agreement indicates that the hydrodynamic model is 

behavioural and can be used to predict potential flood hazards. 

The flood hazards are projected to intensify with emissions with high confidence. The 

Karnali fan will experience more frequent flooding in a larger area. The inundation extent 

of the baseline (1975 – 2014) 1-in-100-years event (39%) is exceeded by the 1-in-10-

years event of the medium-emission scenario SSP245 (40%) at the end of the century 

(2060 – 2099). The extent projected for the 1-in-10-years event of the high-emission 

scenario SSP585 (50%) is similar to the one of the 1-in-100-years event of the medium-

emission scenario SSP245 which indicates the high impact of increased climate forcing 

on the flood hazards (median predictions). An increase in the inundation extent and 

depth with the emissions is predicted for all ensemble members and hence the 

confidence is high that the flood hazards in the Karnali River intensify with climate 

change.  

The areas most prone to the projected intensification of flood hazards are densely 

populated. The most flood-prone areas are located in the Island (Geruwa and Rajapur 

municipalities), and the Western floodplain (Tikapur municipality). For the current 

climatic conditions, 19% of the populated area is inundated by the 1-in-100-years event. 

This is projected to increase to 33% for the medium-emission scenario SSP245 and to 

46% for the high-emission scenario SSP585 (median predictions).  

The projected increase in the inundation extent and the inundation depths reduce the 

availability and access to save not inundated areas. The evacuation and emergency 

response is complicated by the branching of the Karnali River and the drainage of the 

Siwalik by smaller rivers traversing the Terai. The flood-prone areas in the Island and 

Western floodplain are surrounded by the Karnali River and Siwalik rivers from all sides. 

The Karnali River and the Siwalik rivers potentially flood simultaneously if the centre of 

the rainfield is located over the Siwaliks such as during the 2014 flood event (MacClune 
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et al., 2015). Therefore, flood adaptation and mitigation plans need to assess the risk of 

the Karnali and the Siwalik rivers jointly.  

The main sources of uncertainty are the hydrological uncertainty arising from the 

hydrological ensemble (Chapter 4) and the Flood Frequency Analysis (Chapter 5), and 

the climatic uncertainty arising from the variation in the climate projections of the CMIP6 

ensemble. The increasing climate uncertainty with emissions is problematic because it 

means that the flood hazards will intensify but are more difficult to predict and prepare 

for.  

The predictions of the lower uncertainty boundary underestimate the flood hazards and 

predict only minor floodings. This underestimation arises from the underestimation of the 

flood discharge into the fan (hydrological uncertainty) and the underestimation of the 

flood-triggering rainfall events (climatic uncertainty). The hydrological ensemble 

underpredicts the flood flows (Chapter 4) and the climate models with the lowest 

predicted flood magnitudes are the ones that are inferior in capturing the flood 

seasonality of the Karnali River system (Chapter 5). The reduction of the hydrological 

ensemble and/or the climate ensemble (e.g. by redefining the selection criteria of the 

ensembles) could improve the performance of the predictions for the lower interval.  

The morphological evolution has a low predicted impact on the overall hazard but affects 

the local flood hazard characteristics. The morphological evolution increases the 

connectivity of the Island by the erosion of man-made features such as irrigation gates 

and embankments. This leads to an increase in the inundation extent on the local scale 

of a few thousand square metres in the Island. Contrary, the inundated areas reduce in 

areas at the edges of the predicted inundations in the Western and Eastern floodplains. 

However, the response of the flood hazard to the morphological evolution is complex 

and varies between the ensemble members but no simulation indicates that this 

evolution is a driver of increased or weakening of flood hazards.  

The quantification of the sensitivity of flood hazards to morphological evolution is 

hampered by noises in the DEM and uncertainties in the morphodynamic model. 

Particularly, the poor representation of the geometry of the small channels draining the 

floodplain hampers this impact assessment. The predicted decreases in the inundation 

depths throughout large parts of the fan are merely a result of the improved drainage by 

the removal of noise by the morphodynamic simulations. The morphodynamic model 

underpredicts the lateral erosion and, thus, the lateral channel migration which 

potentially alters the flow pathways and the flood hazards. Furthermore, the predicted 
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fan head aggradation increases the topographic gradient between channel and 

floodplain and this increases the risk of channel avulsions which would largely alter the 

flood hazards but is not depicted by the morphodynamic model (Chapter 6).  

The low predicted sensitivity should not be interpreted in the way that the morphological 

evolution is not important for the evolution of flood hazards. Rather, the impact cannot 

be quantified with the available datasets and needs to be further investigated. Such an 

investigation needs topographic data with a good topographic representation of the 

riverbed and the floodplain channels. Furthermore, repetitive surveys of the topography 

would enable a better parameterisation of the morphodynamic model to further improve 

the model predictions. 

The hydrodynamic simulations have contributed to a better understanding of how 

sensitive flood hazards are to climatic and morphological changes. These have updated 

our knowledge about the climate change impact to the latest climate projections and 

have greatly improved the spatial resolution of projected flood hazards in the Karnali fan 

which were previously only available from coarse global modelling. This chapter 

presents the first flood inundation mapping for projected topographies for fans in 

mountainous foreland and underlines the necessity of accounting for morphological 

changes when predicting potential future flood hazards in alluvial fans. Furthermore, the 

variation in the hydrodynamic predictions improves our understanding of the uncertainty 

sources and propagation through the modelling cascade.  
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8  Research summary and conclusions 
 

Section 8.1 summarises the main findings of the modelling framework and the individual 

research stages. Section 8.2 presents the main sources of uncertainty in this research, 

followed by recommendations for future studies to decrease these uncertainties and 

improve the modelling framework (Section 8.3), contributions of this research to 

knowledge (Section 8.4), and final remarks in the last Section 8.5.  

 

8.1 Summary of this research 
 

The aim of this research was the prediction of the evolution of flood hazards until the 

end of the 21st century for the Central Himalayan Karnali River in Nepal. To address this 

aim, a geospatial modelling framework was developed that combines environmental 

modelling techniques on the catchment scale and floodplain scale to predict the 

projected climate change impacts on the flood discharge, flood magnitudes, and flood 

frequencies (catchment scale), to predict the morphological evolution of the Karnali fan 

for the projected flood discharge (floodplain scale), and to map the spatial flood hazard 

characteristics for the projected flood magnitudes and topographies (floodplain scale).  

Stage 1 of this research (Chapter 4) addressed the first objective (O1): To establish a 

hydrological model that replicates the hydrological system of the mountainous 

catchment and reproduces the observed discharge at the mountain outlet. For this, 

the hydrological model SPHY (Terink et al., 2015a) was calibrated and validated for the 

Karnali catchment. A multi-criteria approach was used to identify 64 parameter sets that 

provide behavioural simulations of the catchment’s hydrology. This hydrological 

ensemble has a median R2 of 0.84, median Nash-Sutcliffe efficiency (NSE) of 0.82, and 

median PBIAS of 14% for the validation period indicating that it reproduces the 

hydrological system well. The confidence in the simulations is supported by the 

seasonality of the runoff composition which matches our knowledge of the hydrology of 

Central Himalayan River systems. The hydrological ensemble was the foundation for the 

climate change impact assessment on catchment hydrology in Chapter 5 (O2 and O3).  

Stage 2 of this research applied the hydrological model parameter sets ensemble with 

probabilistic climate projections of 12 CMIP6 climate models for three scenarios, the 

baseline which represents the current climatic conditions (1975 – 2014), the medium-

emission scenario SSP245 and the high-emission scenario SSP585 (both 2020 – 2099) 
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and met the second objective (O2): to predict the flood discharge at the mountain 

outlet for the projected climates from an ensemble of climate models until the end 

of the century using the hydrological model established in O1. A Flood Frequency 

Analysis (FFA) was then applied and met the third objective (O3):  to quantify the flood 

frequencies and magnitudes at the mountain outlet for the flood discharge 

projected in O2. 

These simulations provide strong evidence that the flood hazards in the Karnali River 

intensify with the emissions. The hydrological modelling projects an increase in the 30-

year mean flood flows (O2) by 38% for the medium-emission scenario SSP245 and 80% 

for the high-emission scenario SSP585 at the end of the century (2070 – 2099) 

compared to the baseline (1985 – 2014) (median projections). This projected increase 

translates into higher flood magnitudes for the projected climates (O3). The FFA projects 

an increase of the flood magnitude of the 1-in-100-years event by 40% for the medium-

emission scenario SSP245 and by 79% for the high-emission scenario SSP585 at the 

end of the century (2060 – 2099) compared to the baseline (1975 – 2014) (median 

projections). Consequently, the flood frequencies increase and the FFA projects that the 

current 1-in-100-year flood magnitude will occur every 11 years in the medium-emission 

scenario SSP245, and every 3 years in the high-emission scenario SSP585 (median 

projections).  

The impact of the increased climate forcing of the high-emission scenario manifests in 

the second half of the century. The projections of both scenarios are similar in the near 

future (2020 – 2059) and decouple in the far future (2060 – 2099). The ensemble median 

flood magnitude of the 1-in-100-years event increases by 23% (SSP245) and by 26% 

(SSP585) in the near future. In the far future, the rate of the projected increase 

decelerates to 40% for the medium-emission scenario and the flood hazards stabilise, 

even though on a higher level compared to the baseline. In the case of high emissions, 

the rate of change accelerates to 79%, and particularly large flood events are predicted 

after the year 2080. Hence, the projections indicate that future flood hazards will be of 

higher magnitude and occur more frequently than currently, but that the reduction of 

greenhouse gas emissions limits this hazard intensification. 

The consensus of the flood hazard intensification is high among the climate model 

ensemble but the uncertainty increases alongside the time and emissions. This research 

used an ensemble of 12 climate models rather than a subset of the extremes (i.e. cold-

wet, cold-dry, warm-wet, warm-dry) to analyse the probabilities of the projections. The 

majority of models predict higher increases while few models predict low increases or 

decreases. The 1-in-100-years flood magnitude (2060 – 2099) is projected to increase 
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between 37 – 69% for the medium-emission scenario SSP245 (8/12 models) and 

between  68 – 143% for the high-emission scenario (9/12 models) (median predictions). 

This agreement of the climate models provides high confidence that the flood hazards 

intensify. However, the CMIP6 variation of the projected changes increases (SSP245: 

+10% to +69%, SSP585: -12% to +144%) indicating that the uncertainty in the projected 

flood hazard increases with the emissions. This means that flood hazards intensify with 

increasing emissions but become more difficult to predict and, thus, more difficult to 

anticipate and prepare for.  

The projected intensification of the flood hazards is driven by the intensification of heavy 

rainfall events during the monsoon season. Rainfall-runoff is the most important source 

of flood water contributing > 75% to the mean flood event and this importance increases 

with time, emissions and flow magnitude. The largest simulated events are composed 

of over 90% rainfall-runoff. Baseflow, snow and glacier melt can contribute significantly 

to individual events of lower magnitudes but the projected intensification of the flood 

hazards is driven to more than 90% by rainfall-runoff increases. The simulations do not 

predict changes in the seasonality or duration of flood events.  

Stage 3 (Chapter 6) applied the morphodynamic CAESAR-LISFLOOD model (Bates et 

al., 2010; Coulthard et al., 2013) to meet the fourth objective O4: to predict the 

morphological evolution of the Karnali fan until the end of the century for the 

projected flood discharge (O2) from morphodynamic modelling. This stage was 

challenged by the lack of data to determine the sediment delivery to the fan and calibrate 

and validate the model. As a consequence, this stage was designed as an experiment 

to better understand the fan behaviour and the controls of the morphological evolution.  

The morphodynamic simulations indicate that the fan evolution is, at the current state 

and for the simulated time (40 – 80 years), driven by the redistribution of fan sediments 

and not by the sediment delivery from the upstream catchment. The delivered sediments 

are deposited on the fan head within 5 – 10 km of the mountain outlet and the 

downstream evolution is caused by the redistribution of the fan material. The geomorphic 

activity increases with the projected flows throughout the fan. The fan head aggradation 

alters the bifurcation and, therefore, the downstream water availability, and increases 

the risk of channel avulsions because the topographic between the channel and the 

Western floodplain increases. The simulations predict local channel degradation at the 

confluence of braid channels and channel sections with decreasing channel width, and 

the channel aggradation downstream of these sections. Furthermore, the simulations 

predict lateral bank erosion and channel aggradation which leads to the development of 

wider and shallower channels. The geomorphic changes scale with the flood discharge 
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and hence greater changes (both degradation and aggradation) are predicted for the 

members with higher predicted flood discharge.  

These experimental simulations emphasise the necessity to assess the impact of river 

engineering on the morphological evolution and that this assessment should ideally 

consider the projected flow conditions. For example, the construction of embankments 

constrains the tendency to increase the channel width which might lead to the local 

channel degradation and downstream aggradation which in turn decreases the channel 

capacity, alters the flood hazard and increases the risk of channel avulsions. The 

intensification of the geomorphic activity with increasing flow indicates that the 

construction of structures with long (i.e. decades) design life needs to consider projected 

flow rather than the past flow.  

Stage four (Chapter 7) concluded the modelling framework by applying the 

hydrodynamic LISFLOOD-FP model (Bates and De Roo, 2000; Bates et al., 2010) and 

met the fifth objective (O5): to map the spatial flood hazard characteristics 

(inundation extent and depth) for the projected flood magnitudes (O3) and 

topographies (O4). The spatial flood hazard characteristics predicted for the historical 

(observed) flood magnitude and topography showed good agreement with previous 

studies which indicates that the model is behavioural and can be used to map the 

changes of the flood hazards for the projected flood magnitudes and topographies.  

The hydrodynamic simulations provide strong evidence that the flood hazards intensify 

with the emissions. The 1-in-100-years flood event inundates 39% of the Karnali fan in 

the baseline (1975 – 2014). This extent increases to 51% for the medium-emission 

scenario SSP245 and to 60% for the high-emission scenario SSP585 (2060 – 2099) 

(median predictions). The impact of the emissions is also indicated by the fact that the 

inundation extent of the SSP245 1-in-10-years event is similar to the one of the baseline 

1-in-100-years event, and that the SSP585 1-in-10-years event has the same inundation 

extent as the SSP245 1-in-100-years event. This increase in the flood frequencies 

means that current extreme events will occur frequently in the future, even in the 

medium-emission scenario but that high emissions will intensify this trend even further. 

The inundations are projected to increase for all predictions which emphasises the high 

confidence in the sensitivity the flood hazards to climate change.  

The fan topography constrains the pathways of the flood flow and divides the fan into 

areas at high risk and areas at no risk. The elevation gradient of the Western floodplain 

and the Island between the two Karnali branches is steeper in the longitudinal direction 

than in the lateral direction. In these areas, the overbank flow that enters the floodplain 
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drains the study area on the floodplain and does not flow back into the main channels. 

On the contrary, the areas along the Eastern border of the fan and at the foot of the 

Siwalik hills are superelevated over the channels and are not inundated by the highest 

simulated flood events of ≥ 40,000 m3/s. This topographic setting causes a steep 

increase in the inundation extent with flood discharge until flows < 15,000 m3/s. The 

additional water of higher discharges increases the inundation depths stronger than the 

inundation extent, although the extent still increases.  

The areas most exposed to floods and most sensitive to the projected intensification are 

the densely populated areas in the Island and the Western floodplain. The populated 

area inundated during the 1-in-100-years event increases from 19% in the baseline to 

33% for the medium-emission scenario SSP245, and to 46% for the high-emission 

scenario SSP585 (2060 – 2099) (median predictions). The inundation depths increase 

alongside the inundation extent from 0.41 m in the baseline to 0.51 m for SSP245 and 

0.57 m for SSP585 (median water level of the median predictions) and hence the 

population is exposed to more damaging and dangerous floods. Furthermore, the 

projected intensification of the inundation extent and inundation depths increases the 

damage potential to agriculture and livestock which is the main source of income of the 

population.  

Large areas of the fan are exposed to flooding from multiple directions which threatens 

the access to and escape from the areas at risk. The municipalities Geruwa, Rajapur 

(Island) and Tikapur (Western floodplain) are surrounded by floodwater of the Karnali. 

Furthermore, the fan population is also exposed to flooding from smaller Siwalik rivers 

which have not been studied in this research but add additional flood water to the fan, 

whereas this interaction depends on the spatial and temporal characteristics of the 

rainfall event. However, flood management needs to consider all contributing rivers 

because the simultaneous flooding of the Karnali River and the Siwalik rivers would lead 

to larger and deeper inundations as predicted by this study. The population in large parts 

of the fan would be locked in by flood water from all directions limiting the access to safe 

areas, and escape routes, and hampering the emergency response.  

This research provides no clear evidence that the morphodynamic evolution intensifies 

or decreases the flood hazards. The projected topographies alter the flow pathways 

leading to changes in the inundation extent on the local scale of a few thousand of 

square metres. Generally, the connectivity of the Island to the Karnali branches is 

projected to increase which is caused by the erosion of water and flood management 

structures and leads to a slight increase in the inundation extent in the Island. Contrary, 

the Eastern and Western inundation boundaries decrease in some areas. However, the 
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predicted effect of the morphological evolution on the flood hazard is low and 

superimposed by the uncertainty in the topographic data and needs further investigation.  

This research presented the first application of a modelling framework that assesses the 

joint impact of climatic and geomorphic changes on flood hazards in a sediment-rich, 

mountainous catchment. These simulations indicate that the potential future flood 

hazards change significantly from the current flood hazards and that long-term flood risk 

management needs to consider these potential changes for the development of effective 

adaptation and mitigation strategies. Although the effect of morphological changes on 

the flood hazard patterns was low compared to the climate-change-induced increase in 

flood magnitudes, it alters the flow pathways to a degree that varies between the climate 

models and scenarios. This indicates that the prediction of potential future flood hazards 

requires the integrative simulation of climate, catchment hydrology, morphological 

evolution and flood hazards. The modelling framework provides a tool for such a 

comprehensive analysis.  

The developed framework is transferable to other mountainous and sediment-rich river 

systems both within and beyond the Himalayas. However, it may be adjusted or 

extended to the catchment-specific requirements. For example, the impact of land-use 

changes on flood flows may be estimated by adding land-use scenarios to the 

hydrological simulations in catchments which are characterised by rapid socio-economic 

changes (e.g. urbanisation). Furthermore, the framework could be extended by 

simulating the sediment delivery from the hillslopes to the channel for different climate 

scenarios to better constrain the sediment inflow boundary condition. As such, the 

developed modelling framework can be used as a blueprint for the prediction of potential 

future flood hazards and may be adapted to the specific characteristics of the study area. 
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8.2 The sources of uncertainty in the modelling framework 
 

The modelling framework links a set of environmental and statistical models and each 

of these models adds uncertainty that propagates to the next stages. The uncertainty 

arises from the incomplete knowledge of the modelled system (the theoretical 

knowledge and its translation into the model) and the incomplete knowledge of the 

modelled area (the catchment and fan). The developed framework was designed to 

incorporate this uncertainty, but not all uncertainty sources could be quantified due to 

restrictions in the computational resources, data, and science’s understanding of the 

hydrological processes, and pathways within the Karnali fan system. This section 

discusses these quantified and not-quantified uncertainties.  

 

8.2.1 Uncertainty in the catchment modelling of Stages 1 and 2 
 

The uncertainty in the hydrological simulations of Stages 1 and 2 arises from the scarcity 

of data particularly in the high-mountainous parts of the catchment, the process 

representation of the hydrological model, the model parameterisation and the parameter 

transfer from the observed climate data to the simulated climate of the CMIP6 ensemble. 

The hydrological model underestimates the flood discharge because the model cannot 

reproduce the fast nature of the rainfall-runoff conversion of the Karnali River to the full 

extent and hence a fraction of the flood discharge drains on consecutive days. This 

process representation deficit leads to the underestimation of the flood magnitudes, the 

flood discharge for the prediction of the morphological evolution, and the 

underestimation of the spatial flood hazard characteristics by the hydrodynamic model.  

The parameter uncertainty was quantified from ensemble modelling based on the 

exploration of 64 parameter sets with different combinations of 15 parameters using the 

GLUE framework. The parameters that control the allocation of rainfall to rainfall-runoff 

and baseflow have the largest effect on the predictions, while the ensemble variation in 

the snowmelt and glacier melt contribution is comparatively low. Furthermore, the runoff 

coefficient that controls the speed of transport within the channel network and thus the 

timing of the hydrograph is a sensitive parameter. The uncertainty analysis in the last 

Stage 4 indicates that the parameter uncertainty of the hydrological modelling 

contributes a significant proportion to the total uncertainty. The Regional Sensitivity 

Analysis (RSA) and the comparison of the parameterisation and the runoff contribution 

indicate that the parameter uncertainty is mainly caused by a few parameters which 
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control the runoff routing (within the channel network) and the allocation into rainfall-

runoff and baseflow.  

Generally, the simulation of Central Himalayan catchment hydrology is challenging 

because of the pronounced seasonality of the climate and hydrological regime. This 

seasonality cannot be captured to the full extent by global (temporal dimension) 

parameters. For example, the precipitation correction factor and the alphaInf parameter 

(fraction of rainfall during the hour of most intensity) cannot depict the characteristics of 

both, monsoon and non-monsoon season precipitation. The model calibration favoured 

the performance during the monsoon season which resulted in systematic errors during 

the non-monsoon season (i.e. the overprediction of peak flows in the winter and pre-

monsoon seasons). Furthermore, the use of global (spatial dimension) cannot capture 

the heterogeneity of the hydrological conditions in the catchment. Instead, the 

parameters are averaged over the catchment which adds another source of uncertainty.   

It is further worth noting that the hydrological ensemble was calibrated with discharge 

observations with inherent uncertainties. The discharge observations are based on 

sparse stage-discharge observations during low to medium flow conditions and hence 

the observations of high discharges are particularly uncertain. This uncertainty was 

estimated from Bayesian stage-discharge rating curve fitting and considered in the 

calibration process by using a deviation of the eGLUE approach. However, the lack of 

in-situ data of the cross-section at the gauging station and the poor temporal resolution 

of the stage-discharge observations pose a challenge for the uncertainty estimation of 

the discharge observations.  

The transfer of the parameter from the observed climate to the simulated climate of the 

CMIP6 ensemble adds further uncertainty. The seasonality and composition of the 

discharge have a high agreement between both sets of simulations which indicates that 

the model behaviour remained similar. However, the removal of the precipitation 

correction factor and its interaction with other parameters reduced the discharge in the 

CMIP6 simulations leading to the underestimation of the flood discharge in the FFA, the 

morphodynamic simulations and the hydrodynamic simulations. 

The lack of climate observations in the high mountains and along the slopes and ridges 

throughout the catchment hampers the downscaling of the remote sensing observations 

and climate models. This affects both temperature and precipitation:  

- The temperature is downscaled with a lapse rate generated from observations up to 

3,500 masl. This lapse rate is extrapolated to above 7,000 masl which led to the 

overestimation of the temperatures at higher elevations, and the overestimation of 
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snowmelt. The transfer of this lapse rate to the CMIP6 data, and the parameter 

transfer increased the glacier melt predictions.  

- The precipitation bias was estimated from the calibration of a correction factor. This 

factor was removed for the CMIP6 simulations because this data was bias-corrected 

by Mishra et al. (2020). However, the lack of observations in the catchment hampers 

the bias-correction, and the lower predicted discharge for the CMIP6 simulations 

indicates that this dataset underestimates the precipitation.  

 

8.2.2 Uncertainty in the morphodynamic simulations of Stage 3 
 

The simulation of the morphodynamic fan evolution is the most uncertain part of the 

modelling framework and this uncertainty is most difficult to quantify because: 

- The morphodynamic system involves different processes that interact on different 

spatial and temporal scales and we lack the theoretical understanding to construct 

models that can accurately quantify these processes and their interactions 

(Mosselman, 2012; Hardy, 2013; Ancey, 2020a).  

- The lack of data on the channel geometries (main channel and floodplain channels), 

the sediment delivery from the Himalayas, and the past morphological changes 

challenge the determination of the boundary conditions and identification of the ideal 

model parameterisation.  

- The complexity of the computations and the resulting long computational runtimes 

prevent the simulations of large ensembles to estimate the parameter uncertainty 

which is especially problematic because the model could not be calibrated to the 

conditions of the Karnali fan. The simulated ensemble considers the climatic 

uncertainty (12 CMIP6 models) and the hydrological uncertainty (P2.5, P50, P97.5 of 

the hydrological ensemble) but all members use the same parameter set which was 

determined from the literature and initial testing.  

These limitations only allow for experimental simulations to better understand the 

geomorphic system which have limited predictive conclusiveness for the projected flood 

hazards. Paradoxically, while this is the most uncertain stage of this research, it adds 

little uncertainty to the prediction intervals because this uncertainty cannot be quantified.  
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8.2.3 Uncertainty in the hydrodynamic simulations of Stage 4 
 

The uncertainties of all models are combined in the hydrodynamic simulations of Stage 

4. The high agreement of the inundation pathways with other studies indicates that the 

hydrodynamic simulations are behavioural and represent the large-scale flood hazard 

characteristics. There might be small-scale uncertainty introduced by the hydrodynamic 

simulations which has not been quantified. However, it is assumed that this uncertainty 

is low compared to the uncertainty propagating from the previous models considering 

the physics-based flow model, the low number of parameters, the agreement of the used 

parameters with the literature, and the agreement of the inundation characteristics with 

other studies.  

The hydrological uncertainty arising from the hydrological modelling and the FFA and 

the climate uncertainty arising from the variation in the climate projections from the 

CMIP6 ensemble are the main uncertainty sources. The comparison of the spatial 

hazard patterns between the baseline predictions and the ones of the observed flood 

magnitudes indicates that the lower uncertainty boundary underestimated the flood 

hazard but that the median and upper prediction intervals are reasonable 

representations of the flood hazards.  

A further source of uncertainty is inaccuracies in the Digital Terrain Model (DTM) that 

represents the fan topography. The estimation of the ground elevation of forests along 

the riverbanks (particularly west of Tikapur city) and the channel bed of the Karnali 

branches affect the channel capacity and might cause the under- or overestimation of 

the bankfull flow rate. The poor representation of small channels draining the floodplains, 

particularly in sections with vegetated riverbanks, which introduce a flow barrier in the 

longitudinal direction, leads to a local overestimation of the inundation extent and depth 

because it reduces the drainage of the floodwater. Such flow barriers have been 

removed by the morphodynamic simulations which increased the drainage efficiency. 

This introduces an artificial discrepancy between the initial and projected DTMs which 

impedes an accurate assessment of the impact of the morphological evolution on the 

flood hazards.  

The linking of environmental and statistical models introduces uncertainty that 

propagates through the modelling cascade. The main sources of uncertainty arise from 

the hydrological modelling and the climate projections but not all uncertainty could be 

quantified due to restrictions in the available data and the computational resources. 

Furthermore, not all future developments are considered by the modelling framework 

(e.g. land use change, urbanisation, river engineering). However, the good agreement 
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of the simulated and observed behaviour indicates that the developed modelling 

framework provides reasonable projections, that flood hazards will intensify, and that 

flood risk management needs to consider the evolution of flood hazards.  
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8.3 Recommendations  
 

The developed modelling framework may be refined by altering or extending it or 

increasing the database of the river system. Additional datasets for a better 

determination of the boundary conditions potentially improve the modelling performance 

in each stage of the modelling framework. Each of these areas for improvement is 

covered in the following sections. 

The following alterations of the environmental models may improve the predictions of 

the modelling framework: 

- Hydrological modelling: The implementation of seasonal parameters (e.g. monsoon 

and non-monsoon seasons) could improve the prediction of the runoff seasonality of 

Central Himalayan river systems. This would increase the required sample size in 

the calibration process and it is, therefore, recommended to focus on those 

parameters that affect the rainfall-runoff conversion. 

- Hydrological modelling: It is recommended to investigate the potential of coupling 

continuous and event-based hydrological models to predict flood discharge. The 

continuous model can be applied to predict long-term processes (e.g. glacier 

dynamics, snow dynamics, groundwater re- and discharge) and provide the 

boundary conditions (e.g. soil moisture, snowmelt runoff, glacier melt runoff, 

baseflow) for the event-based model that is used to predict the rainfall-runoff 

conversion for the flood-triggering rainfall events. 

- Hydrological modelling: The extrapolation of the lapse rate from the observations in 

the hills to the high mountains is not recommended. Instead, the lapse rate at 

unobserved elevations could be calibrated against the snow cover and glacier mass 

balance observations. 

- Hydrological modelling: The model was calibrated for the observed historical 

conditions. It is worth investigating to calibrate the model for the simulated baseline 

climate data. Such a calibration could aim to maximize the fit between the simulated 

and observed distributions of different hydrological variables (e.g. Majone et al., 

2022; Wu et al., 2022). This direct calibration for the CMIP6 climate data would 

remove the uncertainty added by the parameter transfer between different climate 

datasets.  

- Morphodynamic modelling: The ensemble of the morphodynamic modelling could be 

reduced which provides resources to simulate the parameter uncertainty. The 

evolution was predicted for each of the 12 CMIP6 members for three discharge 

percentiles to account for the non-linear nature of the morphodynamic system. 
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However, the model predicted a somewhat linear response. Therefore, it could be 

valuable to reduce the climate ensemble in Stage 3 and instead include multiple 

parameter sets to estimate the parameter uncertainty. The reduced ensemble size 

could also be used to apply a more complex model with an improved physical 

process representation.  

- Morphodynamic modelling: The morphodynamic simulations in this thesis were 

experimental, exploratory predictions and further studies are required to address the 

following questions: How much physical complexity is necessary and feasible for 

ensemble predictions of the large fans in the Terai Plain? This question could be a 

first step to establishing guidelines for predicting the long-term impact of the 

evolution of flood hazards in these environments. How can we best depict the 

heterogeneous environment of the fan and mountain gauge? The use of global 

parameters to represent the gauge and the fan causes inaccuracies at the fan inlet 

which affect the prediction until the downstream border. An investigation of the 

representation of this heterogeneity may improve future predictions. How many flow 

events need to be simulated to capture the evolution? This research only simulated 

the evolution caused by flood flows which may not be adequate to capture the 

evolution to the full extent, particularly further downstream where the grain sizes 

decrease.  

- Modelling framework: The predictions of the lower prediction interval underpredicted 

the observed behaviour (i.e. flood discharge, inundation extent). The performance 

could be improved by redefining the selection criteria of the climate data (e.g. by 

considering the flood seasonality) and the hydrological ensemble (e.g. by focusing 

more strongly on the flood discharge predictions). Furthermore, better-performing 

members could be assigned a higher leverage on the ensemble predictions because 

the members which better reproduce the historical behaviour are likely more reliable 

in predicting the future (Padrón et al., 2019; Giuntoli et al., 2021).  

- Modelling framework: The modelling framework could be extended thematically to 

consider more factors. For example, the effect of landuse change could be 

considered by adding different landuse scenarios to the hydrological modelling in 

Stage 2. These scenarios could be integrated into the climate scenarios which also 

include socio-economic pathways that could be used to develop the landuse 

scenarios. This integration has the benefit that the ensemble size would not increase 

but it would not be possible to separate the impact of the landuse change and climate 

change on the flood hazard.  

- Modelling framework: The modelling framework could be extended spatially to 

include the Siwalik rivers that add floodwater to the floodplain. This extension 
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challenges the calibration of the hydrological model because these small rivers have 

different hydrological characteristics and need a separate calibration. However, the 

flood hazard mapping for flood risk management and flood forecasting simulations 

must consider these rivers because otherwise the inundation extent and depth may 

be underestimated when the rainfield is located over the Siwaliks.  

The following datasets could improve our understanding of flood hazards and catchment 

hydrology and improve the predictions by providing additional information to apply and 

validate environmental models:  

- Temperature data (high potential): The extension of the temperature station network 

to higher elevations (> 3,500 masl) would improve our understanding of the mountain 

climate and more accurately represent temperatures in environmental modelling 

(hydrological and glaciological models). These high elevation temperature datasets 

would be useful for a better determination of lapse rates and to improve the bias-

correction of remote sensing and reanalysis products which would decrease the 

uncertainty in the temperature representation in environmental modelling. The 

extension of the station network has a high potential to improve our water 

management, flood risk management and climate adaptation.  

- Precipitation data (high potential): The small-scale variability of the precipitation and 

the high-mountainous precipitation patterns are not well understood due to the 

concentration of the precipitation station network along the plains and valleys. So 

far, the information about high-mountainous precipitation is ambiguous; the 

precipitation in gridded precipitation products decreases with elevation (> 4,000 

masl) but this lower precipitation cannot sustain the observed mass balance of 

glaciers (Winiger et al., 2005; Immerzeel et al., 2015; Lutz and Immerzeel, 2016). 

However, an accurate representation of the precipitation in the high mountains is 

crucial for hydrological, glaciological and climate modelling. The extension of the 

station network to the high mountains would improve the modelling predictions which 

would benefit water management, flood risk management, and climate adaptation. 

Furthermore, dense measurements along cross-sections covering the ridges, slopes 

and valleys would potentially improve our understanding of the small-scale variability 

of precipitation patterns and would expand our knowledge about the climatology and 

hydrology in the Himalayas.Soil moisture data (medium potential): The simulation of 

flood peaks is sensitive towards the parameters that control the distribution of rainfall 

between rainfall-runoff and baseflow. Soil moisture data could be used to better 

parameterise hydrological models and have the potential to decrease the uncertainty 

in peak flow predictions. 
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- Discharge data (low potential): The discharge data includes considerable uncertainty 

due to the large range of flows and the sampling during low – medium flow 

conditions. The discharge uncertainty is, to this date, only a side note in most 

hydrological studies in this region. The publication of the discharge uncertainty, 

stage-discharge samples, stage-discharge rating curves and cross-section profiles 

is a cheap and easy-to-implement way to communicate this uncertainty. It would 

enable the calibration of hydrological models with the limits of the acceptability 

approach. 

- High-resolution Digital Terrain Models (high potential): A time series of DTMs 

(stereo) satellite or drone imagery of the fans before and after events with high 

geomorphic activity would be very useful to better understand the morphological 

processes in the fan, the sediment delivery during single events and could be used 

to constrain the sediment influx boundary condition and/or to calibrate and validate 

morphodynamic models. The choice of the carrier system depends on the financial 

resources and the area of interest. Drone-based DTMs have a higher spatial 

resolution than satellite-based DTMs and represent the ground elevation (e.g. in 

forested areas) more accurately. These DTMs can accurately represent the channel 

topography if the drone is equipped with green LIDAR. For large study areas such 

as the Karnali fan, satellite-based DTMs can be a cost-effective alternative, 

particularly for the application of morphodynamic models because these models are 

constrained by the computational resources and hence DTMs need to be 

downscaled for the application in large areas. However, ground surveys (i.e. ground 

elevation, channel geometry) need to be integrated when generating a DTM from 

satellite imagery.   
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8.4 Contribution to knowledge 
 

The developed modelling framework extends existing frameworks to predict future flood 

hazards and links climate change and sediment dynamics which is a novel approach. 

Commonly, potential flood hazard changes are predicted either for different climatic 

conditions (e.g. Hirabayashi et al., 2013; 2021; Dankers et al., 2014; Wijngaard et al., 

2017; Huang et al., 2017) or topographies (e.g. Pender et al., 2016; Dingle et al., 2020a). 

This thesis presents to the best knowledge of the author the first framework that relates 

climate, catchment hydrology and geomorphological processes to predict future flood 

hazards and contributed to the process understanding and methodological 

advancements.  

Contribution to new knowledge and process understanding 

The hydrological simulations of the Karnali River (Chapter 4) complement our knowledge 

of the hydrology of Central Himalayan River systems. It provides insight into the 

contribution of hydrological processes to the discharge (e.g. snow melt and glacier melt) 

and their seasonal and annual variation. These simulations also improve our 

understanding of the flood peak generation and how the spatial and temporal 

characteristics of the precipitation events shape the flood hydrographs.  

The hydrological simulations with the climate projections (Chapter 5) update our 

knowledge about the climate change impact on the hydrology of Central Himalayan river 

systems by applying an ensemble of the latest generation of CMIP6 climate projections 

on the catchment scale. Furthermore, this study improves our knowledge about the 

implications of climate uncertainty on catchment hydrology by applying probabilistic 

ensemble modelling (12 climate models) instead of climate model subsets (i.e. cold-dry, 

cold-wet, warm-dry, warm-wet). These simulations contribute to a deeper understanding 

of how climatic changes alter the hydrological processes for flood peak generation and 

how these trends evolve until the end of the century and establish that the projected 

increases in flood runoff generation are driven by increases in rainfall intensity. 

The morphodynamic simulations (Chapter 6) extend our knowledge of the climate 

change impact on Himalayan River systems and sediment-rich mountainous river 

systems more broadly. This research presents, to the best knowledge of the author, the 

first application of a morphodynamic model using flow projections of probabilistic climate 

modelling to predict potential future topographies for different climate scenarios. These 

simulations indicate that the morphological evolution of alluvial fans is affected by 
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greenhouse gas emissions and, thus, deepen our understanding of the climate change 

impact on mountainous river systems.  

The morphodynamic simulations (Chapter 6) improve our understanding of the 

behaviour of the Karnali fan, its potential evolution until the end of the 21st century, and 

the factors which control this evolution. Furthermore, these simulations provide evidence 

that the construction of embankments constrains the river and potentially increases the 

downstream flood risk.  

The flood hazard mapping (Chapter 7) complements our knowledge of the spatial flood 

inundation patterns of current flood hazards and provides novel information about areas 

at risk of potential future flooding. Previously, information about flood projections was 

only available from global flood inundation mapping with coarse resolution and this 

research updates this information to the latest generation of climate models and a fine 

25 m resolution.  

The flood hazard mapping (Chapter 7) has improved our knowledge of how 

morphological changes potentially alter flood hazards and has identified regions that 

may be at higher risk due to the morphological evolution. The wide range of simulated 

inflows has further improved our understanding of how flood waves propagate through 

the Karnali fan. These simulations emphasise the necessity to consider the potential 

future flood hazards regarding both, climatic and morphological changes for effective 

flood risk management.  

Methodological advancements 

The hydrological modelling of the historical flood flows (Chapter 4) has advanced our 

understanding of how to predict flood flows in these Central Himalayan river systems. 

The peak flow predictions are sensitive to the parameters that control the allocation of 

rainfall between rainfall-runoff and baseflow. Furthermore, the ensemble variation 

decreases with increasing flood flow because more rainfall is converted into rainfall-

runoff. This information may help for model selection and parameterisation to improve 

the simulation of flood flows from hydrological modelling.  

The hydrological simulations (Chapters 4 and 5) complemented our understanding of 

the challenges of simulating the hydrology of Central Himalayan catchments with current 

models (e.g. global parameters) and assessing the climate change impact on the 

catchment hydrology in mountainous river systems (e.g. parameter transfer between 

datasets).  
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The simulations of the morphodynamic evolution of the Karnali fan for probabilistic flow 

projections (Chapter 6) have identified challenges in predicting the potential evolution of 

large alluvial fans such as the representation of the heterogenous fan characteristics 

and the conflict between model complexity and climate uncertainty. This information may 

help develop further research projects to better understand and simulate fan 

environments.  

A hydrodynamic model was applied with projected topographies and flood flows for 

probabilistic climate scenarios (Chapter 7). These simulations advanced our 

understanding of the uncertainty sources and propagation through modelling cascades 

which may improve the linkage of environmental simulation techniques in future 

research projects.  

A novel approach was developed to generate Digital Terrain Models for point clouds 

based on stereo satellite data with lower point density than airborne LiDAR (Chapter 6). 

This approach needs refinement and the integration of ground-truth datasets but is 

potentially applicable for a wide range of disciplines that study earth surface deformation 

processes. 
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8.5 Final remarks 
 

I would like to conclude this thesis with the following two statements that are my personal 

opinion. 

It takes a global effort to limit climate change and it is our responsibility, particularly for 

the industrial countries, to reduce the emissions as quickly and as much as possible. 

The flood hazard projections in this and other studies provide very strong evidence that 

climate change intensifies these hazards. From the analysis presented in this thesis, the 

population of the Karnali fan are projected to experience the current 1-in-100-years flood 

event every 2 – 7 years in the worst-case scenario (high-emission scenario, 2060 – 

2099). It is questionable whether and how the people could sustain their livelihoods 

under such extreme conditions particularly because Nepal is one of the poorest countries 

in the world and the climate change impact is neither restricted to the Terai Plain nor to 

flood hazards. We need to move beyond our national, cultural, historical and ideological 

differences to tackle the climate crisis. We owe this to the Nepalese and global 

communities at risk who have never been the driver of this crisis but are strongly 

threatened by the consequences.  

The rivers sourced in the Himalayas connect countries with heterogeneous political, 

religious and cultural backgrounds and may be used to foster confrontation or promote 

collaboration. Examples of conflict potentials are the construction of dams and river 

rerouting that reduce the water availability in the downstream country, or the construction 

of embankments along national borders that intensify flood hazards in the upstream 

country. Climate change increases the hydrological extremes and with that the conflict 

potential. However, the water resources can only be effectively managed on a 

supranational scale that integrates the interests of all members in this large, densely-

populated and diverse region, particularly in light of climate change. For example, flood 

forecasting systems would benefit from meteorological observations in the Nepalese 

Himalayas. Thus, these rivers have the potential to connect people and societies. It 

remains to see whether climate change will unite or divide this region that hosts more 

than one-tenth of the population of the world. 
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Appendices 
 
 

 

 

Appendix 4.1: Comparison of gridded daily precipitation and DHM observations for 20 precipitation gauges 
in the region – Part 1. The daily gridded precipitation is based on monthly GPM data which was diaggregated 
to the daily resolution following Arias-Hidalgo et al. (2013). The investigated period is 2000 - 2009. The red 
line indicates the linear regression and the black dashed line indicates the line of the perfect fit. The location 
of the gauges are presented in Figure 2.1. 



 

395 

 

 

 

 

 

Appendix 4.2: Comparison of gridded daily precipitation and DHM observations for 20 precipitation gauges 
in the region – Part 2. The daily gridded precipitation is based on monthly GPM data which was diaggregated 
to the daily resolution following Arias-Hidalgo et al. (2013). The investigated period is 2000 - 2009. The red 
line indicates the linear regression and the black dashed line indicates the line of the perfect fit. The location 
of the gauges are presented in Figure 2.1. 
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Appendix 4.3: Regional Sensitivity Analysis (RSA) of the all parameters and performance measures – Part 
1. The red line indicates the cumulative frequency of the non-behavioural realisations and the blue line is 
the cumulative frequency of the behavioural simulations. 
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Appendix 4.4: Regional Sensitivity Analysis (RSA) of the all parameters and performance measures – Part 
2. The red line indicates the cumulative frequency of the non-behavioural realisations and the blue line is 
the cumulative frequency of the behavioural simulations. 
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Appendix 4.5: Regional Sensitivity Analysis (RSA) of the all parameters and performance measures – Part 
3. The red line indicates the cumulative frequency of the non-behavioural realisations and the blue line is 
the cumulative frequency of the behavioural simulations. 



 

399 

 

 

 

 

 

Appendix 4.6: Regional Sensitivity Analysis (RSA) of the all parameters and performance measures – Part 
4. The red line indicates the cumulative frequency of the non-behavioural realisations and the blue line is 
the cumulative frequency of the behavioural simulations. 
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Appendix 4.7: The percentage bias  of the actual evapotranspiration each land cover class. 

ID Land cover Period PBIAS 
Min P10 Median P90 Max 

11 Irrigated croplands Calibration -18 -17 -12 -2 20 
Validation -27 -26 -22 -13 7 

14 Rainfed croplands Calibration -19 -16 -12 -1 21 
Validation -27 -24 -20 -11 9 

20 Cropland / vegetation Calibration -18 -16 -11 -3 20 
Validation -26 -24 -20 -13 7 

30 Vegtation / cropland Calibration -17 -16 -11 -3 19 
Validation -25 -23 -20 -12 7 

40 Semi-decidous forest Calibration -17 -15 -11 -2 20 
Validation -22 -21 -17 -8 11 

50 Closed decidous forest Calibration -19 -19 -13 -4 18 
Validation -26 -26 -21 -13 7 

70 Closed evergreen forest Calibration -18 -15 -10 0 25 
Validation -26 -22 -18 -8 14 

100 Mixed forest Calibration -18 -16 -11 -1 21 
Validation -25 -23 -19 -10 9 

110 Forest / grassland Calibration -16 -12 -8 2 27 
Validation -25 -21 -17 -8 13 

120 Grassland / forest Calibration -18 -15 -11 0 25 
Validation -26 -23 -19 -10 12 

130 Shrubland Calibration -16 -16 -12 -1 20 
Validation -23 -22 -18 -9 10 

140 Herbaceous vegetation Calibration -22 -19 -13 -8 0 
Validation -18 -15 -8 -3 1 

200 Bareland Calibration -20 -17 -8 -3 0 
Validation -17 -13 -5 1 4 

210 Water Calibration -3 -1 3 6 9 
Validation 0 6 9 12 15 

220 Snow and Ice Calibration -25 -21 -8 -1 2 
Validation -22 -17 -4 3 8 
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Appendix 5.1: The comparison of the mean monthly discharge predicted for the historical simulations 
(Chapter 4) and the baseline simulations for each CMIP6 ensemble member (Chapter 5). The hydrological 
ensemble is aggregated by the median. The dashed line is the line of perfect fit and the red line is the linear 
regression model. 
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Appendix 5.2: The comparison of the mean monthly component runoff for the historical simulations (Chapter 
4) and the baseline simulations for each CMIP6 ensemble member (Chapter 5) – Part 1. The hydrological 
ensemble is aggregated by the median. The dashed line is the line of perfect fit and the red line is the linear 
regression model 
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Appendix 5.3: The comparison of the mean monthly component runoff for the historical simulations (Chapter 
4) and the baseline simulations for each CMIP6 ensemble member (Chapter 5) – Part 2. The hydrological 
ensemble is aggregated by the median. The dashed line is the line of perfect fit and the red line is the linear 
regression model.  
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Appendix 5.4: The predicted 30-year mean annual maximum flows (AMAX) for each CMIP6 member. 

Model Scenario Year 30-year AMAX [1,000 m3/s] Change to baseline [%] 

Median P2.5 P97.5 Median P2.5 P97.5 

ACCESS-CM2 Baseline 2014 6.2 4.4 7.9 - - - 

ACCESS-CM2 SSP245 2059 8.4 6.2 10.7 36 39 35 

ACCESS-CM2 SSP585 2059 7.9 5.7 10 28 28 27 

ACCESS-CM2 SSP245 2099 8.9 6.2 11.5 44 40 45 

ACCESS-CM2 SSP585 2099 10.5 7.3 13.7 70 65 72 

ACCESS-ESM1-5 Baseline 2014 7.1 4.9 9.5 - - - 

ACCESS-ESM1-5 SSP245 2059 9.1 6.3 12.5 29 29 31 

ACCESS-ESM1-5 SSP585 2059 10.6 7.2 14.7 50 46 54 

ACCESS-ESM1-5 SSP245 2099 11.1 7.4 15.5 57 51 62 

ACCESS-ESM1-5 SSP585 2099 16.3 11.1 22.1 131 125 132 

BCC-CSM2-MR Baseline 2014 4.9 3.3 6.8 - - - 

BCC-CSM2-MR SSP245 2059 5.4 3.6 7.6 10 10 12 

BCC-CSM2-MR SSP585 2059 5.6 3.7 7.9 14 12 15 

BCC-CSM2-MR SSP245 2099 5.9 3.9 8.4 21 18 23 

BCC-CSM2-MR SSP585 2099 7.5 4.7 10.6 52 41 55 

EC-Earth3 Baseline 2014 5.9 4 8.1 - - - 

EC-Earth3 SSP245 2059 8.2 5.6 11.3 39 39 39 

EC-Earth3 SSP585 2059 8.7 6 11.7 47 49 44 

EC-Earth3 SSP245 2099 9.2 6.3 12.6 55 56 54 

EC-Earth3 SSP585 2099 14.3 9.8 19.4 142 143 139 

EC-Earth3-Veg Baseline 2014 5.9 4 8.1 - - - 

EC-Earth3-Veg SSP245 2059 7.4 5 10.1 25 24 25 

EC-Earth3-Veg SSP585 2059 8 5.4 11.1 36 34 36 

EC-Earth3-Veg SSP245 2099 10.2 6.7 14.2 72 65 75 

EC-Earth3-Veg SSP585 2099 14.3 9.3 19.6 142 131 141 

INM-CM4-8 Baseline 2014 5.4 3.7 7.6 - - - 

INM-CM4-8 SSP245 2059 6.9 4.8 9.6 27 29 27 

INM-CM4-8 SSP585 2059 7 4.7 9.8 29 27 29 

INM-CM4-8 SSP245 2099 6.8 4.8 9.3 25 29 23 

INM-CM4-8 SSP585 2099 8.5 5.9 11.6 58 60 53 

INM-CM5-0 Baseline 2014 5.9 4 8.1 - - - 

INM-CM5-0 SSP245 2059 7 4.9 9.8 20 21 22 

INM-CM5-0 SSP585 2059 7.4 5.1 10.1 27 27 25 

INM-CM5-0 SSP245 2099 7.5 5.1 10.1 28 27 25 

INM-CM5-0 SSP585 2099 8.9 5.8 12.5 52 44 55 

MPI-ESM1-2-HR Baseline 2014 4.9 3.3 6.5 - - - 

MPI-ESM1-2-HR SSP245 2059 4.8 3.3 6.4 -2 -1 -2 

MPI-ESM1-2-HR SSP585 2059 4.7 3.2 6.4 -4 -3 -3 

MPI-ESM1-2-HR SSP245 2099 5.2 3.4 7.1 6 1 9 

MPI-ESM1-2-HR SSP585 2099 6.6 4.1 9.1 35 24 39 

MPI-ESM1-2-LR Baseline 2014 5.4 3.6 7.3 - - - 

MPI-ESM1-2-LR SSP245 2059 5.3 3.5 7.2 -2 -3 -2 

MPI-ESM1-2-LR SSP585 2059 5.6 3.7 7.7 5 5 6 

MPI-ESM1-2-LR SSP245 2099 5.5 3.6 7.6 3 1 3 

MPI-ESM1-2-LR SSP585 2099 5.6 3.8 7.6 5 7 3 
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Continuation of appendix 5.4 

Model Scenario Year 30-year AMAX [1,000 m3/s] Change to baseline [%] 

Median P2.5 P97.5 Median P2.5 P97.5 

ACCESS-CM2 Baseline 2014 6.2 4.4 7.9 - - - 

ACCESS-CM2 SSP245 2059 8.4 6.2 10.7 36 39 35 

ACCESS-CM2 SSP585 2059 7.9 5.7 10 28 28 27 

ACCESS-CM2 SSP245 2099 8.9 6.2 11.5 44 40 45 

ACCESS-CM2 SSP585 2099 10.5 7.3 13.7 70 65 72 

ACCESS-ESM1-5 Baseline 2014 7.1 4.9 9.5 - - - 

ACCESS-ESM1-5 SSP245 2059 9.1 6.3 12.5 29 29 31 

ACCESS-ESM1-5 SSP585 2059 10.6 7.2 14.7 50 46 54 

ACCESS-ESM1-5 SSP245 2099 11.1 7.4 15.5 57 51 62 

ACCESS-ESM1-5 SSP585 2099 16.3 11.1 22.1 131 125 132 

BCC-CSM2-MR Baseline 2014 4.9 3.3 6.8 - - - 

BCC-CSM2-MR SSP245 2059 5.4 3.6 7.6 10 10 12 

BCC-CSM2-MR SSP585 2059 5.6 3.7 7.9 14 12 15 

BCC-CSM2-MR SSP245 2099 5.9 3.9 8.4 21 18 23 

BCC-CSM2-MR SSP585 2099 7.5 4.7 10.6 52 41 55 
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Appendix 5.5: The AMAX percentiles for each CMIP6 ensemble member. The AMAX P50 is statistically 
exceeded once every two years and the AMAX P100 is the highest simulated flood event in the 40-year 
record. The hydrological ensemble is aggregated by the median. The periods are 1975 – 2014 (Hist) for the 
baseline and 2020 – 2059 (NF) and 2060 – 2099 (FF) for the projected scenarios. 

Model Scenario Per-
iod 

AMAX Percentile 
 [1,000 m3/s] 

Change to 
baseline [%] 

   P50 P80 P90 P95 P100 P80 P95 P100 

ACCESS-CM2 Baseline Hist 6 7.3 7.8 8.2 9.5 - - - 
ACCESS-CM2 SSP245 NF 8.1 9.5 10.7 11.7 13.6 30 43 43 
ACCESS-CM2 SSP585 NF 8 9.3 10.7 11.1 11.9 27 35 25 
ACCESS-CM2 SSP245 FF 7.9 11.2 11.8 12.6 15.4 53 54 62 
ACCESS-CM2 SSP585 FF 9.5 12.1 15.1 17.3 23.4 66 111 146 
ACCESS-ESM1-5 Baseline Hist 5.8 8.7 9.5 10.8 13 - - - 
ACCESS-ESM1-5 SSP245 NF 8 11 12.2 15 18.3 26 39 41 
ACCESS-ESM1-5 SSP585 NF 9.6 13 15.5 15.6 18.7 49 44 44 
ACCESS-ESM1-5 SSP245 FF 10.1 12.4 15.3 16.6 22.6 43 54 74 
ACCESS-ESM1-5 SSP585 FF 15.6 20.1 21.7 24.3 28.1 131 125 116 
BCC-CSM2-MR Baseline Hist 4.8 5.6 6.4 7.4 9.8 - - - 
BCC-CSM2-MR SSP245 NF 5.2 6.1 6.6 8.2 14.9 9 11 52 
BCC-CSM2-MR SSP585 NF 5.2 6.3 7.5 8.8 10.1 13 19 3 
BCC-CSM2-MR SSP245 FF 5.5 7.5 8.5 8.9 10.9 34 20 11 
BCC-CSM2-MR SSP585 FF 6.8 9.4 10.4 12.4 16.6 68 68 69 
EC-Earth3 Baseline Hist 5.3 6.9 7.6 8.1 11.2 - - - 
EC-Earth3 SSP245 NF 7.6 10.2 12.3 12.8 13.4 48 58 20 
EC-Earth3 SSP585 NF 7.4 9.5 11.6 15.2 20.5 38 88 83 
EC-Earth3 SSP245 FF 8.9 11.2 12.2 13.7 14.7 62 69 31 
EC-Earth3 SSP585 FF 14.3 17.4 17.9 20.1 23.8 152 148 113 
EC-Earth3-Veg Baseline Hist 5.4 7.1 8.6 9 11.3 - - - 
EC-Earth3-Veg SSP245 NF 6.6 9.6 10.1 10.5 12.9 35 17 14 
EC-Earth3-Veg SSP585 NF 6.9 10.4 11.9 13.3 16.4 47 48 45 
EC-Earth3-Veg SSP245 FF 8.9 11.3 14.1 15.9 17.7 59 77 57 
EC-Earth3-Veg SSP585 FF 13.2 16.6 19.4 23.9 31.5 134 166 179 
INM-CM4-8 Baseline Hist 5.2 6.3 6.9 7.1 8.7 - - - 
INM-CM4-8 SSP245 NF 5.7 7.5 9.9 11.1 12.4 19 56 43 
INM-CM4-8 SSP585 NF 6.2 8.5 9.7 10.9 11.7 35 54 35 
INM-CM4-8 SSP245 FF 6.4 8.1 9.3 10.8 11.7 29 52 35 
INM-CM4-8 SSP585 FF 8 10.1 11.4 11.8 15.1 60 66 74 
INM-CM5-0 Baseline Hist 4.9 7.4 9.9 11.8 12.1 - - - 
INM-CM5-0 SSP245 NF 5.4 8.8 9.3 10.1 13.6 19 -14 12 
INM-CM5-0 SSP585 NF 6.7 9.1 10.4 10.9 12.6 23 -8 4 
INM-CM5-0 SSP245 FF 6 9.3 10.9 11.1 21 26 -6 74 
INM-CM5-0 SSP585 FF 8.2 11.1 12.3 13.1 20.4 50 11 69 
MPI-ESM1-2-HR Baseline Hist 4.5 5.3 6 6.8 11.2 - - - 
MPI-ESM1-2-HR SSP245 NF 4.5 5.6 6.8 8.3 9.7 6 22 -13 
MPI-ESM1-2-HR SSP585 NF 4.4 5.5 6 8.5 9.7 4 25 -13 
MPI-ESM1-2-HR SSP245 FF 4.6 6.5 7.4 8.3 12.5 23 22 12 
MPI-ESM1-2-HR SSP585 FF 5.3 8.1 9.9 11.7 13.3 53 72 19 

 

  



 

407 

 

Contiunation of appendix 5.5. 

Model Scenario Per-
iod 

AMAX Percentile 
 [1,000 m3/s] 

Change to 
baseline [%] 

   P50 P80 P90 P95 P100 P80 P95 P100 

MPI-ESM1-2-LR Baseline Hist 5 6.7 8.1 10.1 10.8 - - - 
MPI-ESM1-2-LR SSP245 NF 4.8 6.1 7.1 8.3 9.4 -9 -18 -13 
MPI-ESM1-2-LR SSP585 NF 5 6.4 7.3 9.2 12.9 -5 -9 19 
MPI-ESM1-2-LR SSP245 FF 4.8 5.7 7.4 10.3 13.6 -15 2 26 
MPI-ESM1-2-LR SSP585 FF 4.9 6.7 7.8 8.6 11.4 0 -15 6 

MRI-ESM2-0 Baseline Hist 4.7 7 7.5 9 12.3 - - - 

MRI-ESM2-0 SSP245 NF 6.1 9.2 11.2 12 14.8 31 33 20 

MRI-ESM2-0 SSP585 NF 6.5 9.7 11.4 11.7 13.5 39 30 10 

MRI-ESM2-0 SSP245 FF 5.5 8.4 11.1 13.5 21.7 20 50 76 

MRI-ESM2-0 SSP585 FF 7.8 14.6 17 18.8 25.2 109 109 105 

NorESM2-LM Baseline Hist 6.7 9.5 11.2 11.4 14 - - - 

NorESM2-LM SSP245 NF 7.8 10.5 13.1 14.1 15.2 11 24 9 

NorESM2-LM SSP585 NF 9.3 13.2 16.3 16.9 19.7 39 48 41 

NorESM2-LM SSP245 FF 9 11.3 13.9 15 28.5 19 32 104 

NorESM2-LM SSP585 FF 11.2 18.2 20.1 22.6 24.8 92 98 77 

NorESM2-MM Baseline Hist 6.2 8.1 9.6 10.3 11.7 - - - 

NorESM2-MM SSP245 NF 8.8 10.9 12.7 14.7 18.3 35 43 56 

NorESM2-MM SSP585 NF 7 8.9 10.7 12.8 14.5 10 24 24 

NorESM2-MM SSP245 FF 9.1 11.6 13.9 14.9 18.5 43 45 58 

NorESM2-MM SSP585 FF 11.1 15 16.4 18.9 20.3 85 84 74 
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Appendix 5.6: The flood frequency curves of the CMIP6 ensemble members for the near future (2020 – 
2059). The solid line indicates the median and the dashed lines indicate the 2.5th and 97.5th percentiles of 
the flood frequency analysis. The flood frequency curves of the baseline (1975 – 2014) are provided for 
reference. 

 

 

Appendix 5.7: The flood frequency curves of the CMIP6 ensemble members for the far future (2060 – 2099). 
The solid line indicates the median and the dashed lines indicate the 2.5th and 97.5th percentiles of the flood 
frequency analysis. The flood frequency curves of the baseline (1975 – 2014) are provided for reference. 
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Appendix 5.8: The 1-in-100-years flood magnitudes predicted for each CMIP6 ensemble member. 

Model Scenario Year Flood magnitude 
 [1,000 m3/s] 

Change to baseline [%] 

Median P2.5 P97.5 Median P2.5 P97.5 

ACCESS-CM2 Baseline 2014 9.7 7 12.8 - - - 
ACCESS-CM2 SSP245 2059 15 10.1 22.7 55 44 78 
ACCESS-CM2 SSP585 2059 13.8 9.2 18.7 43 32 46 
ACCESS-CM2 SSP245 2099 23.5 14.1 33 143 102 158 
ACCESS-CM2 SSP585 2099 12.4 9.4 16.6 28 34 30 
ACCESS-ESM1-5 Baseline 2014 14 8.7 21.5 - - - 
ACCESS-ESM1-5 SSP245 2059 21.9 12.8 35.3 57 47 64 
ACCESS-ESM1-5 SSP585 2059 18.4 10.7 29.6 31 23 38 
ACCESS-ESM1-5 SSP245 2099 28 17.9 38.8 100 106 80 
ACCESS-ESM1-5 SSP585 2099 19.2 11.9 26.6 37 37 24 
BCC-CSM2-MR Baseline 2014 9.5 5.2 15.2 - - - 
BCC-CSM2-MR SSP245 2059 11.1 6.8 17.4 17 32 14 
BCC-CSM2-MR SSP585 2059 12.8 6.1 24.6 34 17 61 
BCC-CSM2-MR SSP245 2099 16.7 8.7 27.5 76 67 80 
BCC-CSM2-MR SSP585 2099 10.8 6.3 17.5 13 22 15 
EC-Earth3 Baseline 2014 11.2 6.6 18 - - - 
EC-Earth3 SSP245 2059 15.3 9.9 23.3 37 51 29 
EC-Earth3 SSP585 2059 14.5 9.1 21.2 30 38 18 
EC-Earth3 SSP245 2099 22.8 14.5 31.6 103 120 76 
EC-Earth3 SSP585 2099 20.2 11.3 33.9 81 71 88 
EC-Earth3-Veg Baseline 2014 11.5 6.6 18.5 - - - 
EC-Earth3-Veg SSP245 2059 19.5 11.7 28.2 69 78 52 
EC-Earth3-Veg SSP585 2059 13.2 8.4 20 14 28 8 
EC-Earth3-Veg SSP245 2099 28.1 17 45.7 144 159 147 
EC-Earth3-Veg SSP585 2099 16.7 10.2 26 45 55 40 
INM-CM4-8 Baseline 2014 8.4 5.2 12.9 - - - 
INM-CM4-8 SSP245 2059 12.6 7.7 17.9 50 46 39 
INM-CM4-8 SSP585 2059 14.3 8.4 21.4 70 61 66 
INM-CM4-8 SSP245 2099 14.4 9.7 19.8 71 86 53 
INM-CM4-8 SSP585 2099 13 8.5 19.6 55 62 52 
INM-CM5-0 Baseline 2014 15.7 9.7 23 - - - 
INM-CM5-0 SSP245 2059 17.2 9.3 32.8 10 -3 43 
INM-CM5-0 SSP585 2059 14.5 8.6 24 -7 -11 5 
INM-CM5-0 SSP245 2099 18.1 9.8 30.2 15 2 31 
INM-CM5-0 SSP585 2099 13.1 8.1 18.9 -16 -16 -18 
MPI-ESM1-2-HR Baseline 2014 9.5 5.1 18.3 - - - 
MPI-ESM1-2-HR SSP245 2059 11.6 6.3 22.5 22 23 23 
MPI-ESM1-2-HR SSP585 2059 10.1 5.3 17.3 6 4 -5 
MPI-ESM1-2-HR SSP245 2099 15 6.9 27.4 58 34 50 
MPI-ESM1-2-HR SSP585 2099 10.3 5.5 17.1 8 7 -7 
MPI-ESM1-2-LR Baseline 2014 13.1 7.1 20.9 - - - 
MPI-ESM1-2-LR SSP245 2059 15 6.9 27.9 15 -3 33 
MPI-ESM1-2-LR SSP585 2059 10.3 5.8 17.4 -21 -18 -17 
MPI-ESM1-2-LR SSP245 2099 11.5 6.4 20.7 -12 -10 -1 
MPI-ESM1-2-LR SSP585 2099 13.3 6.9 21.2 2 -3 1 
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Contiunation of appendix 5.8 

Model Scenario Year Flood magnitude 
 [1,000 m3/s] 

Change to baseline [%] 

Median P2.5 P97.5 Median P2.5 P97.5 

ACCESS-CM2 Baseline 2014 12 7.1 20.4 - - - 
ACCESS-CM2 SSP245 2059 20.3 10.1 38 69 43 86 
ACCESS-CM2 SSP585 2059 15.3 8.8 25.3 27 25 24 
ACCESS-CM2 SSP245 2099 27.8 14.8 41 132 109 101 
ACCESS-CM2 SSP585 2099 14.9 8.1 23.6 24 15 16 
ACCESS-ESM1-5 Baseline 2014 13.7 9.1 21.1 - - - 
ACCESS-ESM1-5 SSP245 2059 22.9 12.1 42.9 67 33 103 
ACCESS-ESM1-5 SSP585 2059 16.4 11.3 21.6 20 25 2 
ACCESS-ESM1-5 SSP245 2099 25.8 15 39.7 88 66 88 
ACCESS-ESM1-5 SSP585 2099 19.7 11.9 29.9 44 31 41 
BCC-CSM2-MR Baseline 2014 12.3 7.7 18.9 - - - 
BCC-CSM2-MR SSP245 2059 17.8 10.5 27.4 45 36 45 
BCC-CSM2-MR SSP585 2059 16.7 9.6 27.9 35 24 48 
BCC-CSM2-MR SSP245 2099 20.7 13.5 28.8 68 76 52 
BCC-CSM2-MR SSP585 2099 15.3 9.3 22.5 24 20 19 
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Appendix 7.1: The inundation extent (inundation depth ≥ 0.5 m) for the median predictions (CMmedian) of the three CMIP6 scenarios for the 1-in-10-years, 1-in-50-years and 1-in-
100-years flood events. The buildings are obtained from OSM (2023). The coordinate system is UTM Zone 44 N in km.
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Appendix 8.2: The maximum water level (≥0.1 m) predicted for the medium-emission scenario SSP245. The 
left column shows the predictions of the lower boundary of the prediction interval (CMlower), the centre column 
the ones of the median predictions (CMmedian), and the right column the ones of the upper boundary of the 
prediction interval (CMupper). The buildings are obtained from OSM (2023) and the coordinate system is UTM 
Zone 44 N in km. Note that the scale is non-linear. 
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Appendix 7.3: The maximum water level (≥0.1 m) predicted for the high-emission scenario SSP585. The left 
column shows the predictions of the lower boundary of the prediction interval (CMlower), the centre column 
the ones of the median predictions (CMmedian), and the right column the ones of the upper boundary of the 
prediction interval (CMupper). The buildings are obtained from OSM (2023) and the coordinate system is UTM 
Zone 44 N in km. Note that the scale is non-linear. 
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