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Abstract. The Coupled Model Intercomparison Project
(CMIP) is one of the biggest international efforts aimed at
better understanding the past, present, and future of climate
changes in a multi-model context. A total of 21 model in-
tercomparison projects (MIPs) were endorsed in its sixth
phase (CMIP6), which included 190 different experiments
that were used to simulate 40 000 years and produced around
40PB of data in total. This paper presents the main find-
ings obtained from the CPMIP (the Computational Perfor-
mance Model Intercomparison Project), a collection of a
common set of metrics, specifically designed for assessing
climate model performance. These metrics were exclusively
collected from the production runs of experiments used in

CMIP6 and primarily from institutions within the IS-ENES3
consortium. The document presents the full set of CPMIP
metrics per institution and experiment, including a detailed
analysis and discussion of each of the measurements. During
the analysis, we found a positive correlation between the core
hours needed, the complexity of the models, and the resolu-
tion used. Likewise, we show that between 5 %—15 % of the
execution cost is spent in the coupling between independent
components, and it only gets worse by increasing the number
of resources. From the data, it is clear that queue times have
a great impact on the actual speed achieved and have a huge
variability across different institutions, ranging from none to
up to 78 % execution overhead. Furthermore, our evaluation
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shows that the estimated carbon footprint of running such
big simulations within the IS-ENES3 consortium is 1692 t of
CO; equivalent.

As a result of the collection, we contribute to the creation
of a comprehensive database for future community reference,
establishing a benchmark for evaluation and facilitating the
multi-model, multi-platform comparisons crucial for under-
standing climate modelling performance. Given the diverse
range of applications, configurations, and hardware utilised,
further work is required for the standardisation and formula-
tion of general rules. The paper concludes with recommen-
dations for future exercises aimed at addressing the encoun-
tered challenges which will facilitate more collections of a
similar nature.

1 Introduction

Earth system models (ESMs) are an essential tool for un-
derstanding the Earth’s climate and the consequences of cli-
mate change, which are crucial to the design of response
policies to address the current climate emergency resulting
from anthropogenic emissions. Modelling the Earth is inher-
ently complex. ESMs are among the most challenging appli-
cations that the high-performance computing (HPC) indus-
try has had to face, requiring the most powerful computers
available, consuming vast amounts of energy in computer
power, and producing massive amounts of data in the pro-
cess (Wang and Yuan, 2020; Wang et al., 2010; Fuhrer et al.,
2014; McGuffie and Henderson-Sellers, 2001; Dennis et al.,
2012).

Virtually all models are designed to exploit the parallelism
of HPC machines so that the results can be obtained in a rea-
sonable amount of time while trying to make the best use of
the HPC platform. While the technology underneath keeps
improving every year (in petaflops s~!, memory bandwidth,
1/0O speed, etc.) climate software evolves much more slowly.
Balaji (2015) and Liu et al. (2013) show how challenging
it is to adapt multi-scale, multi-physics climate models to
new hardware or programming paradigms. These models, of-
ten community-developed software, are very complex, inher-
ently chaotic, and subject to numerical stability, all of which
contribute to a slower evolution of the codes. Bauer et al.
(2021) illustrate how climate science did take advantage of
Moore’s law (Bondyopadhyay, 1998) and Dennard scaling
(Frank et al., 2001) without much pressure to fundamen-
tally revise numerical methods and programming paradigms,
leading to huge legacy codes mostly driven by scientific con-
cerns. Consequently, such codes achieve notably poor sus-
tained floating-point performance in present-day CPU archi-
tectures. Enhancing the performance of these models is cru-
cial to boost the rate at which they can grow (in the res-
olution, complexity, and features represented). In a context
where energy costs are rising, running faster and more cost-
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effective simulations is key to contributing to the advance-
ment of climate research.

The performance of ESMs is hardly limited by only one
but by multiple bottlenecks that depend on the model itself
and on the properties of the HPC platform on which they
run. For instance, models using higher resolutions may bene-
fit from (or be limited by) the speed of the network as the data
are split into many nodes; memory-bound models will ben-
efit from having more memory available per core and with
faster transmission speed, while compute-bound models will
perform better in faster CPUs; models that produce more out-
put will run faster on infrastructures with higher capacities
for I/O operations; and models that include more individual
components will be limited by the load balance achieved be-
tween them and by the coupler performance.

Balaji et al. (2017) proposed a set of 12 performance met-
rics that define the Computation Performance for Model In-
tercomparison Project (CPMIP), designed explicitly for cli-
mate science by considering the structure of ESMs and how
they are executed in real experiments. This set of metrics in-
cludes the climate experiment and platform properties; the
computational speed and cost (core hours and energy); and
measures for the coupling, I/O overhead, and memory con-
sumption. Each one is described in detail in Table 1 and
Sect. 3.

In this paper, we present in Sect. 2 the collection of CPMIP
metrics from 33 experiments used for climate projections
in the Coupled Model Intercomparison Project phase 6
(CMIP6). The collection effort has been predominantly led
by institutions affiliated with the IS-ENES3 (Joussaume,
2010), a consortium founded by a Horizon 2020 (EU
funding  programme:  https://research-and-innovation.
ec.europa.eu/funding/funding-opportunities/
funding-programmes-and-open-calls/horizon-2020_en,
last access: 2 February 2024) project composed of the most
important weather and climate centres in Europe and devoted
to improving the infrastructure to make the Earth System
Grid Federation (ESGF) and CMIP publication easier. This
compilation is the first of its kind and constitutes a represen-
tative part of the total 124 CMIP6 experiments, involving
45 institutions (http://esgf-ui.cmcc.it/esgf-dashboard-ui/
data-archiveCMIP6.html, last access: 2 February 2024).
Our data encompass 33 different experiments that were
used to simulate almost 500000 years during CMIP6 on
14 different HPC machines and involving 14 independent
modelling institutions. All experiments are listed in Table 2,
along with the institution in charge, the experiment name,
HPC platform, ocean and atmosphere resolutions, and the
main reference to the experiment configuration. In addition,
Table 3 shows the complete collection of CPMIP metrics for
each one of the models, and Table 4 lists the HPC machines
that have been used to run these models. Furthermore, in
Sect. 3, we include the analysis of the metrics to under-
score the most significant insights derived from this data
collection. We study in detail the measurements reported
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by each institution, grouping them based on experiment
configurations, establishing relationships between inter-
twined metrics, and discussing the strengths and difficulties
encountered during the analysis of each metric. For instance,
our analysis reveals that institutions tend to increase the
number of resources used in higher-resolution experiments,
thereby mitigating the expected increase in execution time at
the expense of increasing the core hours required. Similarly,
the addition of extra components simulated increases the
core hours needed and the cost of coupling interactions
and synchronisations between models as well. Institutions
reported that the coupling cost entails an execution cost over-
head typically ranging between 5 %—15 %, and it tends to
be more problematic higher processor counts. Additionally,
the numbers indicate that the volume of data generated by
an experiment does not correspond to increases in resolution
or core hours needed, contrary to expectations. We observed
very different queue times for HPC resources across insti-
tutions, ranging from instantaneous access to introducing
an execution time overhead of up to 78 %. Furthermore,
we present an initial approximation of the carbon footprint
generated from executing these experiments, totalling 1692 t
of CO; equivalent.

Our study emphasises the significance of developing stan-
dardised metrics for assessing climate model performance.
This contribution will serve to establish a database for fu-
ture reference and that multiple institution modellers will be
able to use for comparison, which we believe to be essential
for evaluating climate modelling performance. The noise and
variability present in the dataset are the results of the diver-
sity of the applications represented and the hardware under
study, making it challenging to formulate general rules. De-
spite these difficulties, our paper concludes with recommen-
dations for future exercises aimed at addressing these chal-
lenges.

2 Data collection

The collection process was coordinated and supervised to get
the metric results, including meetings, reporting, and surveys
conducted at different stages of the CMIP6 simulations (be-
fore, during, and after the simulation runs). All the partners
listed in Table 2 were invited to participate in the tracking
process. The coordination, meetings, and reporting were use-
ful to evaluate the state of the collection from the partners,
and we provided support to those institutions that required it
during the collection process.

The data collection was divided into two steps: the initial
phase comprehends the collection up to March 2020, coin-
ciding with the first IS-ENES3 general assembly, where the
first results were presented; the second includes the data col-
lected up to the end of 2020, when all the institutions had
finished the CMIP6 runs. Finally, IS-ENES3 completed the
last update to the Earth System Documentation (ES-DOC,

https://doi.org/10.5194/gmd-17-3081-2024

https://es-doc.org/, last access: March 2024) in the middle of
2021, publishing CPMIP along with the other CMIP6 results.

As the reader can see, not all institutions managed to pro-
vide the full set of CPMIP performance metrics. The metrics
frequently missing are the coupling cost, memory bloat, and
data output cost. This is primarily attributed to the challenges
involved in their collection compared to metrics like SYPD
or parallelisation, which are well known within the commu-
nity and relatively easier to obtain. Other impediments to
collect the CPMIP metrics include time and resource con-
straints, particularly considering that the focus of the simu-
lations leans more towards science aspects than towards the
computational realm during CMIP6 runs. Additionally, some
institutions reported that changes in the underlying computa-
tional infrastructure have made the collection process more
difficult.

2.1 Additional data collected

The CPMIP metrics not only serve as a means of com-
putational evaluation but also provide valuable insights for
broader analysis. In light of this, we collaborated with the
Carbon Footprint Group created within the IS-ENES3 con-
sortium, which was responsible for evaluating the total en-
ergy cost associated with the CMIP6 experiments.

Total energy cost = useful simulated years x JPSY €8

The total energy cost of an experiment is defined as the prod-
uct of the useful simulated years, defined as years of sim-
ulation that produced data with a scientific value that was
either shared between the groups or kept within the producer
group for scientific analysis, and the joules per simulated
year (JPSY). This collaboration enabled us to provide for
the first time an estimation of the carbon footprint related to
those experiments. The carbon footprint was calculated fol-
lowing Eq. (2).

Carbon footprint = total energy cost x CF x PUE, 2)

where the total energy cost is in megawatt-hours; CF is the
greenhouse gas conversion factor from megawatt-hours to
kilograms of CO; according to the supplier bill or the country
energy mix; and PUE (power usage effectiveness) accounts
for other costs sustained from the data centre, such as cool-
ing. The results for all the institutions that participated in
the study during the CPMIP collection are shown during the
analysis section in Table 9.

2.2 Uncertainty in the measurements

Understanding measurement uncertainty and machine vari-
ability has a significant role in any performance analysis,
particularly when comparing models running across differ-
ent platforms without advanced performance tools or meth-
ods like tracing or sampling. Before starting the collection

Geosci. Model Dev., 17, 3081-3098, 2024
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Table 1. List of CPMIP metrics collected.

M. C. Acosta et al.: The computational and energy cost of simulation and storage for climate science

Metric Used to evaluate

Resolution (Resol)

Complexity (Cmplx)

Platform

Simulation years per day (SYPD)
Core hours per simulated year (CHSY)
Actual SYPD (ASYPD)
Parallelisation (Paral)

Joules per simulated year (JPSY)
Memory bloat (Mem B)

Data output cost (DO)

Data intensity (DI)

Coupling cost (Cpl C)

Number of grid points NX x NY x NZ per component

Number of prognostic variables per component

Machine measurements: core count, clock frequency, and double-precision operations per clock cycle
Number of simulated years per day (24 h) of execution time

Cost, measured in core hours per simulated year

How queue time and interruptions affect the complete experiment duration
Total number of cores allocated for the run

Energy needed per year of simulation

Ratio between actual and ideal memory size

Computing cost for performing 1/0

Amount of data produced after 1 year of simulation divided by the CHSY
Computing cost of the coupling algorithm and load imbalance

of the metrics, we asked each institution to indicate the ma-
chine variability, which was reported to be below 10 % for
all machines used. This provides an initial rough estimation,
subject to future refinement efforts like the usage of bench-
marking codes for climate science like the one proposed by
van Werkhoven et al. (2023).

It is important to note that not all metrics exhibit the same
variability range. Certain metrics, such as parallelisation, res-
olution, platform, and model complexity, are constant values
determined just by the experimental configurations, the HPC
infrastructure, and model characteristics. These are consid-
ered static metrics.

The rest of the metrics are related to the execution speed
and are therefore subject to different sources of variability.
On the one hand metrics like the SYPD or CHSY are well
known by the community and straightforward to collect: this
results in less margin of error during collection, and any vari-
ability should be attributed solely to the machine. On the
other hand metrics like the actual SYPD, JPSY, coupling
cost, memory bloat, data intensity, and data output cost are
less common to collect, and this can lead to confusion and
human errors (e.g. whether the actual SYPD should include
system interruptions or only queue time can lead to system-
atic misreporting). This represents a second source of vari-
ability, difficult to assess and estimate.

Identifying and understanding this uncertainty is key for
accurately interpreting and comparing the performance of
models across different centres. Special effort has been made
to ensure the quality and correctness of the metrics pre-
sented in this work by providing continuous support to the
groups during data collection and double-checking the re-
ported numbers with the responsible parties of each institu-
tion whenever necessary.

Future collections like this one will contribute to better
identification and addressing of metric uncertainty, while de-
tailed analysis of individual metrics will enhance our under-
standing of their characteristics and exhibit variability. For
instance, studies like Acosta et al. (2023) focus mainly on
the coupling cost and offer valuable lessons for understand-

Geosci. Model Dev., 17, 3081-3098, 2024

ing and measuring this metric, therefore mitigating possible
uncertainties arising from misconception or lack of appropri-
ate tools to collect them in the future.

3 Analysis

Analysing metrics derived from diverse models, executed on
multiple platforms, and managed by independent institutions
presents a non-trivial challenge. Moreover, the presence of
missing values further complicates the analysis, making it
difficult to substitute them with estimations or interpolations,
particularly given the relatively limited size of the dataset.

Our approach consisted of first validating the metrics pro-
vided by the institutions. We have sometimes found that the
metrics reported for some models were orders of magnitude
apart from the rest. In this case, we started actively commu-
nicating with the institutions, asking them to double-check
the values and assisting them in the re-computation process.
After going through this process for each one of the metrics
and models, we came up with the values reported in Sect. 2:
in Tables 2 and 3, the reader can find the complete list of
models for which the CPMIP metrics were collected, with
the name of the institution that was in charge of the run, the
resolution used for the OCN and ATM, the reference for the
experiment configuration, and the CPMIP metrics. Addition-
ally, we include in Table 4 the most relevant information on
the HPC platforms used by the institutions and some supple-
mentary metrics in Table 9 related to the execution costs in
CO; emissions.

Later, for each of the metrics analysed in detail in the fol-
lowing sections, we filtered by model, selecting those where
the metric was provided and sorting and/or grouping them
by the reported value. Finally, to uncover possible relations
among the metrics, we have used both statistical approaches
(e.g. Pearson’s correlation; Freedman et al., 2007) and qual-
itative analysis.

https://doi.org/10.5194/gmd-17-3081-2024
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Table 2. List of institutions and models that provided the metrics from their CMIP6 executions. Also listed are the HPC platform and
resolution used for the atmosphere (ATM) and ocean (OCN) components. Note that ’resol” in Table 1 is defined as the number of grid points.
For better readability, we present here this information using the more conventional measurement of degrees of latitude and longitude.

Institution Experiment HPC machine Atmosphere resol  Ocean resol  Reference
EC-Earth3 0.7 1.0 .
BSC EC-EarthVeg MareNostrum4 0.7 10 Doscher et al. (2022)
CMCC CM2-SR5 Zeus 1.0 1.0 Lovato et al. (2022)
CNRM-CM6-1-atm 1.4
CNRM-CM6-1 14 1.0 .
CNRM-CERFACS ~CNRM-CMG-I-HR-atm = p ) 6o 0-5 voldole etal. 2019
CNRM-CM6-1-HR 0.5 0.25
CNRM-ESM2-1-atm 14 o
CNRM-ESM2-1 14 10 Séférian et al. (2019)
DKRZ MPI-ESM1-HR Mistral 1.0 0.4 Miiller et al. (2018)
OM4-p5 0.5
ESM4-piC 1.0 0.5
GFDL CM4-piC Gaea 10 025 Dunne et al. (2020)
OM4-p25 0.25
IIT™M IITM-ESM Intel AADITYA 1.875 1.0 Krishnan et al. (2021)
IMPE BESM xc50 1.875 1.0 Veigaetal. (2019)
IPSL IPSL-CM6A Irene-SKL/Curie 2.5 1.0  Boucher et al. (2020)
EC-Earth3 . 0.7 1.0 .
KNMI EC-Earth3-AerChem Rhino 0.7 10 Doscher et al. (2022)
MPI-ESM1-LR-ATM 4.0
MPI MPI-ESM1-LR-LAND  Mistral Miiller et al. (2018)
MPI-ESM1-LR 1.875 1.5
UKESM1-AMIP 4.0
UKESMI-0-LL 1.875 1o Sellaretal. (2020)
NERC HadGEM3-GC3.1.LL  *reher xe30 1.875 1.0
HadGEM3-GC3.1-HM 0.8 0.25  Williams et al. (2018)
HadGEM3-GC3.1-HH 0.8 0.08
NorESM2-LM 2.5 1.0
NorESM2 NorESM2-MM Fram 10 10 Seland et al. (2020)
SMHI EC-EarthVeg Tetralith/Beskow 0.7 1.0  Ddoscher et al. (2022)
UKESM1-0-LL 1.875 1.0 Sellar et al. (2020)
UKMO HadGEM3-GC3.1.LL ¢ x40 1.875 L0 \ittiams et al. 2018)
HadGEM3-GC3.1-MM 0.8 0.25 ! '

3.1 Resolution

We initially attempt to extract valuable information from Ta-
ble 3 by grouping the experiments based on resolution. This
allows for a comparison of the performance achieved by
ESMs with similar targets. We are ignoring here the fact that
for some simulations the set-up has fewer grid points (e.g. re-
duced Gaussian in the atmosphere or removal of land points
in the ocean), and we are using the total size of the corre-

https://doi.org/10.5194/gmd-17-3081-2024

sponding regular grid. The resolution of a component is mea-
sured as the number of grid points it has (NX x NY x NZ),
and the total resolution is given by the sum of the resolutions
of their constituents. There is no strict consensus on the con-
nection between the number of grid points and the categori-
sation of low, medium, and high resolutions. Thus, for the
grouping, we have used both the naming provided by the in-
stitution in charge of the experiment and the total number of
grid points used for each model configuration. Most configu-

Geosci. Model Dev., 17, 3081-3098, 2024
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Table 3. List of institutions with the model and CPMIP metrics. We also include the useful simulated years (useful SYs), which account for the number of years simulated by each

experiment that generated data with scientific value.

Institution Experiment Resol Cmplx SYPD ASYPD CHSY Paral JPSY CplC MemB DO DI  Useful SYs
BSC EC-Earth3 1.99 x 107 34 15.20 9.87 1213 768  4.41x107  0.080 595 1.12  0.041 14020
EC-EarthVeg 1.99 x 107 12.36 7.42 1491 768  4.87x 107  0.100 68.48 1.13 0.059 252
CMCC CM2-SR5 6.94 x 100 397 6.68 6.50 2069 576 1.67x10°  0.074 17.8  1.04  0.050 965
CNRM-CM6-1-atm 2.98 x 100 128 7.30 6.10 1292 393 3.50 x 107 5723
CNRM-CM6-1 1.02 x 107 181 8.10 7.30 1352 400  3.38x 107 22241
7 7
CNRM-CERFACS CNRM-CM6-1-HR-atm  2.36 x 10 128 2.20 1.80 1541 520 4.80x 10 1190
CNRM-CM6-1-HR 1.37 x 108 181 1.50 1.48 4289 840 1.07 x 108 1642
ESM2-1-atm 2.98 x 10° 335 710 640 8520 781  2.28x 108 1759
ESM2-1 1.10 x 107 393 4.70 440 21552 1347 5.28 x 108 11761
DKRZ MPI-ESM1-HR 2.00 x 107 13.33 11.00 4710 2616 3.21x 108 1864
OM4-p5 3.32 x 107 13 15.90 12.22 1962 1300 7.50x 107 0.140 33.61 0.039 300
GFDL ESM4-piC 3.76 x 107 140 8.65 7.46 13576 4893 5.19x 108  0.270 40.57 0.003 1124
CM4-piC 1.28 x 108 31 9.98 8.16 15388 6399  3.72x10%  0.130 47.64 0.018 657
OM4-p25 1.26 x 108 11 11.50 7.05 9748 4671 5.88x 108 0.260 16.09 0.006 300
™ IESM 1.83 x 10° 168 8.00 7.00 996 332 3.81x 107 36.7 845
IMPE BESM 6.88 x 100 132 3.60 3.40 1853 278 0.020 360
IPSL IPSL-CM6A 1.06 x 107 750 12.00 11.50 1900 950 1.16 x 108 0.050 10.00 1.20  0.070 53000
KNMI EC-Earth3 1.99 x 107 34 16.20 16.20 1286 868 1009
EC-Earth3-AerChem 2.06 x 107 3.03 3.03 3549 448 730
MPI-ESM1-LR-ATM 8.66 x 10° 45.90 25.20 163 312 1.11 x 107 991
MPI MPI-ESM1-LR-LAND 833 x 10° 282.80 265.40 3 36 1.39 x 10° 2460
MPI-ESM1-LR 3.12 x 100 55.60 22.70 379 878  2.56 x 107 18 860
UKESM1-AMIP 2.35x 100 202 1.64 1.41 7376 504 1.04 x 108 5250 1.31 0.003 45
UKESM1-0-LL 1.14 x 107 252 2.02 1.10 8554 720 3.18x 108 0.078 28.00 1.19  0.005 195
NERC HadGEM3-GC3.1-LL 1.14 x 107 150 425 1.06 12198 2160 4.33x 108 0.047 56.80 1.41 0.016 70
HadGEM3-GC3.1-HM  1.99 x 108 54 0.58 046 192662 4656 7.70x10° 0210  154.00 0.001 65
HadGEM3-GC3.1-HH 1.26 x 10° 54 0.49 034 588931 12024 2.30 x 1010 183.00 1.41 0.0004 65
NorESM NorESM2-LM 1.01 x 107 13.84 3.03 1665 960  5.60x 107 0.035 0.065 5463
NorESM2-MM 1.14 x 107 8.96 6.14 4886 1824 1.65 x 108 0.32 0.060 1021
SMHI EC-EarthVeg 1.99 x 107 12.44 6.65 1667 864 0.028 6337
HadGEM3-GC3.1-LL 1.14 x 107 228 4.00 3.55 13392 2232 497x 108  0.061 46.00 1.03 0.074 5610
UKMO UKESM1-0-LL 1.14 x 107 372 4.30 3.60 16074 2880  5.97x 108  0.098 460 1.03 0.019 15435
HadGEM3-GC3.1-MM 1.4 x 108 236 1.65 1.32 62836 4320 233x10° 0105 12000 1.02  0.050 2386
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rations have been categorised as low resolution and use up to
2.10 x 107 grid points in total or no less than 0.7° latitude—
longitude grid spacing for any of the components (see Fig. 1
and Table 2). On the other hand, only those experiments
with an ocean/atmosphere resolution under 0.5° are treated
as medium-high-resolution configurations (see Fig. 2).

We see the low-resolution experiments in Fig. 1. The
number of grid points for each model’s and institution’s
ATM (red) and OCN (blue) components has been listed
in ascending order. Except for EC-Earth, we observe that
all other models run the OCN at a higher resolution than
the ATM. More precisely, the OCN resolution is between
3 and 5 times bigger for MPI-ESM, BESM, CM2-SR2,
CNRM-CM6, HadGEM3-LL, UKESM-LL, and NorESM-
MM, while in EC-Earth, it only accounts for 1/3 of the total
model resolution (the remaining 2/3 is used for the ATM).
Remarkably, the LM configuration used at NorESM uses a
grid for the OCN which is 22 times bigger than the one used
for the ATM. As one would expect, the total number of grid
points of an experiment can be mainly explained by the ATM
and OCN resolution used, but we show later how adding
more components and/or features (in yellow in Fig. 1) can
have a significant impact on the performance as well.

Figure 2 shows the number of ocean and atmosphere grid
points for the medium-high-resolution experiments. We ob-
serve that, like most of the low-resolution ones, all experi-
ments use more grid points for the oceanic component than
for the atmospheric one (notably, the GFDL CM4-piC exper-
iment uses 55 times more grid points for the OCN compo-
nent). The ATM resolutions range between 1 and 0.4°, while
OCN ones mostly run at 1/4° of a degree, except for the
NERC-HadGEM3-GC3.1-HH experiment, which runs the
oceanic component at 1/12°.

3.2 Complexity

The complexity of a coupled model, as defined in Table 1,
accounts for the number of prognostic variables among all
components. Here, “prognostic” refers to variables that the
model directly predicts, such as temperature, atmospheric
humidity, and salinity, in other words, variables that can be
obtained directly as outcomes of the model. This metric is
not well known by the community and has never been col-
lected before, leading to confusion in some cases. Therefore,
the values reported have to be seen as approximations. Only
by continuously measuring these metrics in future collections
will we improve our understanding of model complexity and
its implications for model performance. The data in Table 5
reveal a wide variability in complexity (Cmplx) across the
models, with most models reporting a value that ranges be-
tween 100 and 400. Notably, GFDL (OM4 and CM4) and
EC-Earth have considerably lower Cmplx. The IPSL-CM6A
model stands out in this context, with a Cmplx of 750, which
is markedly higher than the other models, potentially due to
its representation of the carbon cycle. Likewise, we were ex-

Geosci. Model Dev., 17, 3081-3098, 2024



3088

B Atmosphere resolution

MPI-MPI-ESM1-LR-ATM
NERC-UKESM1-AMIP
CNRM-CME-1-atm
CMRM-ESM2-1-atm
MPMPI-ESM1-LR
IITM-ESM

IMPE-BESM
CMCC-CM2-SRE
MNorESM2-LM
IPSL-CMEA
CNRM-CME-1
CNRM-ESM2-1
MERC-HadGEM3-GC3.1-LL
UKMO-HadGEM3-GC31-LL
NERC-UKESM1-0-LL
UKMO-UKESM1-0-LL
NorESM2-MM
BSC-EC-Earth3
BSC-EC-Earthveg
SMHI-EC-EarthVeg
KMMI-EC-Earth3

Experiment

0.00E+00 5.00E+06

W Ocean resolution

M. C. Acosta et al.: The computational and energy cost of simulation and storage for climate science

Qthers

1.00E+07 1.50E+07 2.00E+07

# gridpoints

Figure 1. Atmosphere and ocean grid points for low-resolution experiments. The yellow colour refers to components that contribute to the
atmosphere or the ocean but cannot be counted as a general circulation model per se (e.g. land surface, sea ice, vegetation).
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Figure 2. Atmosphere and ocean grid points for medium-high-resolution experiments.

pecting a much higher value for the EC-Earth-Veg experi-
ment, but it was impossible to get this metric for the vege-
tation component (LPJ-Guess) even after contacting the de-
velopers. This highlights the challenge of obtaining this met-
ric with accuracy, partly due to a lack of awareness of the
number of prognostic variables of the components among
users of the ESMs, leading to an overestimation for this met-
ric, and also because the approximation based on the size

Geosci. Model Dev., 17, 3081-3098, 2024

of the restart files (Balaji et al., 2017, p. 25) is not always
accurate. For instance, the LPJ-Guess restart file size can
measure tens of gigabytes and depends on the parallelisa-
tion used for this component. What is more, explaining why
NERC HadGEM3-GC31 Cmplx is almost 3 times larger for
the lower-resolution configuration (LL) than for the same ex-
periment using more grid points (MM, HM, and HH config-
urations) represents a challenge. Similarly, the notable dif-
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Table 5. Resolution, SYPD, CHSY, Paral, and coupling cost for experiments that reported the complexity metric.

3089

Institution Experiment Resolution SYPD CHSY Parallelisation  Complexity = Coupling cost
BSC EC-Earth3 1.99 x 107 15.20 1491 768 34 0.080
CNRM-CM6-1-atm 2.98 x 10° 7.30 1292 393 128
CNRM-CM6-1 1.10 x 107 8.10 1541 520 181
7
CNRM-CEREACS CNRM-CM6-1-HR-atm  2.36 x 10 2.20 8520 781 128
CNRM-CM6-1-HR 1.37 x 108 1.50 21552 1347 181
ESM2-1-atm 2.98 x 10° 7.10 1352 400 335
ESM2-1 1.10 x 107 4.70 4289 840 393
OM4-p25 1.26 x 108 11.50 9748 4671 11 0.130
GFDL OM4-p5 3.32x 107 15.90 1962 1300 13 0.140
CM4 1.28 x 108 9.98 15388 6399 31 0.260
ESM4 3.76 x 107 8.65 13576 4893 140 0.270
IIT™M IESM 1.83 x 100 8.00 996 332 168
IMPE BESM 6.88 x 100 3.60 1853 278 132
IPSL IPSL-CM6A 1.06 x 107 12.00 1900 950 750 0.050
KNMI EC-Earth3 1.99 x 107 16.20 1286 868 34
HadGEM3-GC3.1-HM 1.99 x 108 0.58 192662 4656 54 0.210
HadGEM3-GC3.1-HH 1.26 x 10° 049 588931 12024 54
NERC HadGEM3-GC3.1-LL 1.14 x 107 4.25 12198 2160 150 0.047
UKESM1-AMIP 2.35 x 100 1.64 7376 504 202
UKESM1-0-LL 1.14 x 107 2.02 8554 720 252 0.078
HadGEM3-GC31-LL 1.14 x 107 4.00 13392 2232 228 0.061
UKMO HadGEM3-GC31-MM 1.44 x 108 1.65 62836 4320 236 0.105
UKESM1-0-LL 1.14 x 107 4.30 16074 2880 372 0.098

ferences between NERC and UMKO measurements, despite
both running HadGEM-GC3.1 and UKESM1 models but on
different platforms, raise questions about their source, which
requires further investigation.

Nonetheless, the data from CNRM-CERFACS provide
evidence supporting the idea that the Cmplx of a model
should remain consistent regardless of the resolution and
only increase as additional features are simulated by the
ESM. For instance, the Cmplx of CNRM-CM6 ATM stan-
dalone runs (CNRM-CM6-1-atm and CNRM-CM6-1-HR-
atm) is 128 and grows up to 181 when the OCN compo-
nent is included for the coupled configuration (CNRM-CM6-
1 and CNRM-CM6-1-HR). The same is also observed for
the CNRM-ESM2 model, where the Cmplx increases from
335 to 393 when adding the OCN component. Furthermore,
in both cases, the ESMs require more processing elements
when running the coupled version. This shows a clear inter-
connection between the parallelisation and Cmplx, as both
will grow when comparing standalone and coupled sim-
ulations. Other examples are NERC standalone execution
UKESM1-AMIP and UKESM1-LL coupled version; GFDL
standalone OM4 (OCN only) runs and the coupled configu-

https://doi.org/10.5194/gmd-17-3081-2024

rations ESM4 and CM4; and CNRM-CM6-atm (ATM only),
CNRM-CM6-1 (ATM and OCN), and IPSL-CM6A (ATM,
OCN and chemistry).

Therefore, Cmplx usually reduces the SYPD achieved
and/or increases the CHSY given that adding a new com-
ponent will, at best, only increase the latter. Maintaining the
same throughput when increasing the Cmplx requires the use
of more parallel resources, which translates into more costly
executions and is usually correlated to parallel efficiency loss
due to the need for coupling synchronisations and interpola-
tions (see GFDL results in Table 5). The relation between
Cmplx and the coupling cost is further discussed in Sect. 3.5.

3.3 Data output

ESMs generate a large amount of output data, including
model results, diagnostics, and intermediate variables, which
need to be written to storage. Writing and saving this mas-
sive amount of data to disk or other storage mediums is time-
consuming and can affect the overall performance of the
model. Concurrent access to storage resources by multiple
processes or multiple model instances can create contention,
may represent an I/O bottleneck, and can eventually degrade

Geosci. Model Dev., 17, 3081-3098, 2024
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performance and scalability. CPMIP metrics add two metrics
to quantify and evaluate the I/O workload: the data output
cost (DO), which reflects the cost of performing I/O and is
determined as the ratio of CHSY with and without I/O, and
the data intensity (DI), which measures the data production
efficiency in terms of data generated per compute hour (i.e.
gigabytes per core hour).

3.3.1 Data output cost

From Table 6, we see that all the experiments conducted by
UKMO and CMCC reported a data output cost below 1.05,
even though the data intensity varies considerably between
the different experiments. Moreover, we observe that the data
output cost is much higher for the same ESM (HadGEM-
GC31-LL and UKESM1-0-LL) when executed by NERC,
reaching 1.19 for UKESM1-0-LL and 1.41 for HadGEM3-
GC31-LL. It is not possible to know, however, if this is due
to the difference between the HPC platform used or to differ-
ences in the model I/O configuration. This underscores the
importance of the specific model’s I/O configuration in influ-
encing the data output cost metric. Besides, neither the met-
rics collected from UKMO nor the ones reported from NERC
show that the data output cost should increase when running
higher-resolution experiments (HadGEM3-GC31-MM and
HH configurations). Moreover, EC-Earth and EC-Earth-Veg
data output cost measurements are almost the same, suggest-
ing that adding the vegetation model to EC-Earth does not
increase the cost of the I/0, while UKESM runs conducted
by NERC show that the data output cost is much higher when
running the ATM standalone configuration, UKESM-AMIP,
than the coupled run, UKESM-1-LL. Thus, the increase in
complexity or resolution does not increase the cost of the
1/0O but the cost of the whole ESM simulation, which can di-
minish the data output cost metric if the I/O workload stays
constant.

3.3.2 Data intensity

As seen in Table 6, the data intensity is generally of the or-
der of megabytes per core hour and gets smaller as we move
to higher-resolution experiments (i.e. higher CHSY), mean-
ing that the amount of data generated does not grow propor-
tionally with the number of grid points nor with the execu-
tion cost. For instance, the data intensity reported for NERC-
HadGEM, UKMO-HadGEM, NorESM2, and GFLD-OM4
experiments decreases when increasing the resolution. Thus,
we observe a positive correlation between the SYPD and the
data intensity.

3.4 Workflow and infrastructure costs

The real execution time of climate experiments cannot be ex-
plained only by the speed at which a model can run. Queue
times before having access to the HPC resources (usually
managed by an external scheduler), service disruption, er-

Geosci. Model Dev., 17, 3081-3098, 2024

# Experiments

0.00 0.10 020 030 040 050 060

Actual SYPD overhead

Figure 3. Histogram of the actual SYPD overhead.

rors in the model and/or workflow manager, etc. can heavily
extend the time to solution of ESMs. From the data in Ta-
ble 1, we see that the difference between the reported SYPD
and ASYPD varies a lot between institutions. Some claim
that they had no overhead in their runs (KNMI), while for
others, it can account for up to 78 % (NorESM2-LR). The
histogram in Fig. 3 helps illustrate the spread of the ASYPD
overhead: it rarely surpasses 50 %, and half of the institutions
reported it to be less than 20 %. Judging from the spread of
this metric and from the discussions after the collection, we
consider that there are two groups: (1) institutions that in-
cluded solely the queue time, which reported an overhead
under 20 %, and (2) institutions including not only the queue
time but also the system interruptions and/or workflow man-
agement, which reported much higher values.

The results support the idea that queuing time represents
an increment of around 10 %—-20 % of the speed of the ESM.
On the other hand, if interruptions and workflow manage-
ment overhead are also included, the total execution time can
grow by up to 40 %—50 % compared to simulation time alone.
We do not have enough supporting data to draw any defini-
tive conclusions, so we believe that it would be essential to
add finer granularity to the ASYPD metric to be able to dif-
ferentiate both factors. BSC CMIP6 results using the same
configuration on two different platforms (Marenostrum and
CCA) proved that the percentage of each part (queue time,
interruptions, or post-processing) could change among plat-
forms even though the CMIP6 experiment is the same. From
the metrics listed in Table 3, we see that the difference be-
tween SYPD and ASYPD for the same model can signifi-
cantly vary depending on the machine used for execution. For
EC-Earth3 (standard and vegetation experiments), the over-
head ranges from 0% at KNMI to 0.35 %-0.40 % at BSC
and up to 0.47 % at SMHI. However, it is important to note
that the value provided by KNMI only accounts for the queue
time, and they reported having instant access to the HPC re-
sources. Furthermore, for HadGEM3-GC3.1-LL, we observe
that NERC and UKMO runs are similar in the model execu-
tion speed, achieving approximately 4 SYPD, but totally dif-
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Table 6. Experiments that reported the data output cost (DO) and data intensity (DI) metrics.

Institution  Experiment Resolution  Complexity SYPD CHSY  Parallelisation DO DI
BSC EC-Earth3 1.99 x 107 34 15.20 1213 768 1.12 0.0410
EC-EarthVeg 1.99 x 107 12.36 1491 768 1.13  0.0590
CMCC CM2-SR5 6.94 x 100 397 6.68 2069 576 1.04 0.0500
OM4-p5 3.32 x 107 13 15.90 1962 1300 0.0392
GFDL OM4-p25 1.26 x 108 11 11.50 9748 4671 0.0178
ESM4-piC 3.76 x 107 140 8.65 13576 4893 0.0032
CM4-piC 1.28 x 108 31 9.98 15388 6399 1.24 0.0058
IMPE IMPE-BESM 6.88 x 100 132 3.60 1853 278 0.0200
IPSL IPSL-CM6A 1.06 x 107 750 12.00 1900 950 1.20 0.0700
HadGEM3-GC3.1-LL 1.14 x 107 150 4.25 12198 2160 141 0.0160
HadGEM3-GC3.1-HM  1.99 x 108 54 0.58 192662 4656 0.0006
NERC HadGEM3-GC3.1-HH  1.26 x 10° 54 0.49 588931 12024 1.41 0.0004
UKESM1-AMIP 2.35 % 100 202 1.64 7376 504 1.31 0.0030
UKESM1-0-LL 1.14 x 107 252 2.02 8554 720 1.19  0.0050
NorESM NorESM2-LM 1.01 x 107 13.84 1665 960 0.0650
NorESM2-MM 1.14 x 107 8.96 4886 1824 0.0600
SMHI EC-EarthVeg 1.99 x 107 12.44 1667 864 0.0280
UKESM1-0-LL 1.14 x 107 372 4.30 16074 2880 1.03 0.0190
UKMO HadGEM3-GC31-LL 1.14 x 107 228 4.00 13392 2232 1.03 0.0740
HadGEM3-GC31-MM  1.44 x 108 236 1.65 62836 4320 1.02 0.0500

ferent in the ASYPD. The overhead due to the workflow at
UKMO is just 11 %, whereas at NERC it takes 75 %. We see
something similar when comparing the same institutions for
the UKESM-LL execution, where the overhead in UKMO
is almost the same as before (16 %), but it has drastically
decreased at NERC. As we expected, the ASYPD overhead
is related to the model SYPD, but more importantly to the
workload of the platform used for the runs. Furthermore, we
observed that for UKMO and MPI the smaller the paralleli-
sation, the smaller the overhead due to the workflow.

3.5 Coupling cost

Coupling cost (Eq. 3) is an essential metric evaluated in
this study. It quantifies the overhead introduced by coupling
within an Earth system model (ESM). This overhead en-
compasses various factors, including the coupling algorithms
used for grid interpolations and calculations for conservative
coupling. Additionally, it incorporates the impact of the load
imbalance, which arises when different independent compo-
nents of the ESM finish their computations at varying rates,
potentially leaving processing elements idle. It is defined as
follows:

TvmPv— )  TcPc
Tv Pm

Coupling_Cost = . 3)

https://doi.org/10.5194/gmd-17-3081-2024

where Ty and Py are the runtime and parallelisation for the
whole coupled model, and 7¢c and Pc are the same for each
individual component it uses.

Figure 4 shows the list of institutions ordered from lower
to higher coupling cost. Most institutions reported that the
cost increase due to the coupling accounts for around 5 %-—
15 % of the total. Only 4 (of the 16 that reported this met-
ric) show an increase of over 20 %. The data from GFDL
(OM4-p5, OM4-p25, ESM4-piC, and CM4-piC) and UKMO
(UKESM-LL and UKESM-AMIP) suggest that the increase
in complexity leads to higher coupling cost and lower SYPD.
This aligns with the expectations, as the addition of a new
component to the ESM will likely slow down the model
and make the load balancing harder. It is noteworthy that
a similar trend is observed in EC-Earth experiments. Even
though we do not know the exact value for EC-EarthVeg Cm-
plx, it is known to be higher than in the standard EC-Earth
(ATM-OCN) configuration due to the inclusion of vegetation
and chemistry models. When comparing the performance of
these two runs, we see a decrease in the SYPD and a concur-
rent increase in the Cmplx and coupling cost, as discussed in
more detail in Sect. 3.2.

In general, the coupling cost tends to rise when running
experiments that use a higher parallelisation. This could re-
flect a problem in the coupling phase. It can occur that the

Geosci. Model Dev., 17, 3081-3098, 2024
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coupling algorithm is not scaling correctly or that the higher-
resolution configuration is not well balanced. It is also likely
that since the computing cost of running configurations in
lower resolutions is smaller and less time-consuming, insti-
tutions can afford to run more spin-up tests and come up with
a better distribution of processes among the coupled com-
ponents to obtain a better load balance. In comparison, the
contrary will happen for higher resolutions. Since there are
no specific tools to balance a coupled model, these institu-
tions are forced to use a trial-and-error approach, which is
not trivial for complex configurations with several compo-
nents and/or differences in the time stepping among them.

For these cases, a finer granularity in the coupling cost
metric and new ways to achieve a well-balanced configura-
tion could be needed, splitting interpolation algorithm and
waiting time in different sub-metrics or providing some of
the CPMIPs (SYPD, CHSY, etc.) not only for the coupled
version but also per component.

3.6 Speed, cost, and parallelisation

The speed of execution (SYPD) of a model is a fundamen-
tal metric that requires careful consideration. However, taken
alone, it may not be enough to shed light on the model’s per-
formance itself. The meaning of a model’s speed can only
be fully understood when correlated to other important met-
rics. Among these, parallelisation (i.e. the number of parallel
resources allocated) stands out as a factor closely related to
model speed and directly influences the computational cost
(CHSY) of the model execution. This section shows a de-
tailed analysis of these three interconnected metrics. Con-
trary to what one would expect, the SYPD achieved by the
models in this study is not always related to the resolution
used nor to the parallelisation allocated. However, if we anal-
yse how the same model performs on different HPC ma-
chines (Table 7), we note that higher values of parallelisa-
tion usually correspond to faster but more energy-consuming
simulations.

As seen in Fig. 5, the Paral and the CHSY are closely
correlated in low-resolution models (e.g. CMCC-CM2-SRS,
NorESM2-LM, IPSL-CM6A, NERC-HadGEM3-GC3.1-LL,
UKMO-HadGEM3-GC3.1-LL, = UKMO-UKESM1-0-LL,
NorESM2-MM,  BSC-EC-Earth3,  BSC-EC-EarthVeg,
KNMI-EC-Earth3, SMHI-EC-EarthVeg), showing that
models do not scale in the current generation of HPC
platforms. Otherwise, one would see that the CHSY of
ESMs with similar resolution do not increase when using
more processors given that the models run faster (i.e. higher
SYPD). From the data, it is also clear which models are
underperforming. Take for instance KNMI-EC-Earth3-
AerChem, which, despite using a smaller parallelisation
compared to its family counterparts (BSC-EC-Earth3, BSC-
EC-EarthVeg, KNMI-EC-Earth3, and SMHI-EC-EarthVeg),
exhibits a higher CHSY. Similarly, NERC-UKESM1-AMIP
and NERC-UKESMI1-0-LL employ less parallelisation
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compared to UKMO-UKESM1-0-LL, yet the CHSY does
not decrease proportionally. Also, as illustrated in Fig. 6,
the level of parallelisation tends to increase as we move to
higher-resolution experiments. Thus, and given that we do
not observe a relation between the resolution and the SYPD
achieved, we conclude that most institutions try to maintain
at high-medium resolution the same SYPD achieved when
running lower-resolution configurations, at the cost of
increasing the CHSY. Future collections that include more
medium-high-resolution experiments will help in creating
further relationships for these experiments.

In addition, and as already discussed in Sect. 3.5, the cou-
pling cost grows together with the parallelisation, although
there is no sign that it limits the speed of the models.

3.7 Memory bloat

The memory bloat (Eq. 4) is the only CPMIP metric to evalu-
ates models’ memory usage by computing the ratio between
the real and the ideal memory size. It is defined as

M — Parallelisation - X
Memory_Bloat = 7 , )
i

where M is the actual memory size, X is the binary file size,
and M; is the ideal memory size. The ideal memory size rep-
resents the size of the complete model state, which can be
obtained by exploring the restart file size. This ratio typically
falls between 10-100. Large memory bloat values signal ex-
cessive buffering. As an example (Balaji et al., 2017), for a
rectangular grid with a halo size of 2 in the x and y directions
and a 20 x 20 domain decomposition, the 2-D array includ-
ing halos is 576 (24 x 24) instead of 400 (20 x 20), resulting
in a bloat factor of 1.44. Similarly, a 10 x 10 decomposition
would yield an array area of 196 and a bloat ratio of 1.96.
Table 8 presents the memory bloat values reported for
various models along with other CPMIP metrics. We ob-
serve how the memory bloat increases with the resolution
(e.g. NERC-HadGEM31), likely due to larger subdomains
assigned to each compute unit in higher resolutions if the
parallelisation does not increase proportionally. Additionally,
memory bloat also increases when complexity grows, and the
parallelisation remains constant (e.g. BSC-EC-Earth3 with
and without the vegetation model) as it requires keeping
more data in memory. It is important to acknowledge the
challenges in obtaining accurate memory usage for such ap-
plications, and the authors are aware that institutions faced
difficulties in providing these data. Therefore, the reliability
of the reported values varies between sources and should be
contrasted by future measurements (e.g. CPMIP collection
for CMIP7). Precise memory measurements, however, can
only be achieved with more advanced tools and approaches
(memory profilers, MPI environment variables, etc.).

https://doi.org/10.5194/gmd-17-3081-2024
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MERC-UKESM1-0-LL
BSC-EC-Earth3
UKMO-UKESM1-0-LL
BSC-EC-EarthVeg

Experiment

UKMO-HadGEM3-GC31-MM
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Coupling Cost
Figure 4. Coupling cost for all the institutions that provided the metric.
Table 7. Metrics for models available on different HPC platforms.
Experiment Institution ~ Resolution SYPD CHSY  Parallelisation
BSC 1.99x 107 1520 1213 768
EC-Earth KNMI  199x107 1620 1286 868
BSC 1.99 x 107 12.36 1491 768
EC-Earth3Veg SMHI 199 x 107 1244 1667 864
NERC 1.14 x 107 425 12198 2160
HadGEM3- 1-LL
adGEM3-GC3 UKMO 1.14 x 107 4.00 13392 2232
NERC 1.14 x 107 2.02 8554 720
UKESM1-0-LL
UKMO 1.14 x 107 430 16074 2880

3.8 Carbon footprint

In addition to the CPMIP collection, we have also gathered
the general metrics shown in Table 9. These metrics provide
both useful (only accounting for simulations that produced
data with scientific value) and total (encompassing all simu-
lations, including spin-up and any runs that were finally dis-
carded) numbers for the complete execution of CMIP6 ex-
periments at the different institutions. They can be used to
provide an idea about the total and useful number of years
simulated, data produced, and core hours consumed to finish
the European community CMIP6 experiments. Although we
did our best to collect the most updated data, we are aware
that these numbers could have changed since the data collec-
tion was finished. We know that some institutions were do-
ing some minor and final executions and updating databases
such as ESGF. However, we consider Table 9 to be a very
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good representation of the effort made for the collection dur-
ing CMIP6. In any case, and taking into account the previ-
ous reasons, we do not analyse the results themselves, and
we will use this information to evaluate the carbon footprint
associated with running models for large-scale projects like
CMIP6, which is also a very interesting example for the com-
munity. By considering the useful simulated years, the HPC
machine efficiency, and the kilowatt-hour-to-CO; conversion
rates provided by each energy supplier, we calculated the car-
bon footprint (in tonnes of COy) using Eq. (2). As the reader
can see, NERC reported zero carbon footprint due to their
green tariff power supplier. Among other institutions, CMCC
is the one with the highest CF, followed by EC-Earth. Both
significantly surpass the emissions of the other institutions:
CERFACS, MPI, and UKMO have very small CO, emissions
per kilowatt-hour. Regarding machine efficiency, CMCC re-
ported that Zeus is the least power-efficient machine, with a

Geosci. Model Dev., 17, 3081-3098, 2024
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Figure 5. Comparison between CHSY and parallelisation for both low- and medium-high-resolution experiments. Experiment configurations
are arranged from left to right in ascending number of grid points. Note that the vertical axis uses a logarithmic scale for better visualisation.
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Figure 6. Parallelisation for low- (grey) and medium-high-resolution (black) models.

power usage effectiveness (PUE) of 1.84. CERFACS, IPSL,
EC-Earth, and UKMO reported similar values for their ma-
chines, while DKRZ, MPI-M, and NERC have reported a
PUE under 1.2. We believe that CMCC’s carbon footprint
may be overestimated, considering they simulated less than
1000 years yet reported nearly double the CO, emissions
compared to EC-Earth or IPSL, despite these institutions
having simulated longer experiments (in simulated years,
SYs). The total energy cost of UKMO seems too high com-
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pared to the reported useful simulated years. However, this
can be attributed to the cost of maintaining the useful data
produced, which amounts to 10.4 PB of disk space. The total
carbon footprint is 1692t CO,, even when accounting for the
experiments executed by only 8 out of the 49 institutions that
are enlisted in CMIP6 (WCRP CMIP6 controlled vocabular-
ies: https://wcrp-cmip.github.io/CMIP6_CVs/docs/CMIP6_
institution_id.html, last access: 2 February 2024). Based on a
2018 study by Acosta and Bretonniere (2018), the Earth Sci-
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Table 8. Resolution, SYPD, CHSY, parallelisation, and memory bloat results for UKESM, EC-Earth, and HadGEM3-GC31 experiments.

Experiment Resolution  SYPD CHSY  Parallelisation Memory bloat
BSC-EC-Earth3 1.99 x 107 15.2 1213 768 59.50
BSC-EC-EarthVeg 1.99 x 107 124 1491 768 68.48
NERC-HadGEM3-GC3.1-LL 1.14 x 107 4.3 12198 2160 56.80
NERC-HadGEM3-GC3.1-HM  1.99 x 108 0.6 192662 4656 154.00
NERC-HadGEM3-GC3.1-HH 1.26 x 10° 0.5 588931 12024 183.00
UKMO-HadGEM3-GC31-LL 1.14 x 107 4.0 13392 2232 46.00
UKMO-HadGEM3-GC31-MM  1.44 x 108 1.7 62836 4320 120.00
NERC-UKESM-AMIP 2.35 x 10° 1.6 7376 504 52.50
NERC-UKESM-LL 1.14 x 107 2.0 8554 720 28.00

Table 9. Other CMIP6 measurements. The “useful” metric, whenever used, accounts only for experiments that led to scientific value. The
power usage effectiveness (PUE) depends on the HPC machine used (Table 4). The metric “person/months” quantifies the amount of work
contributed by each institution to run the simulations, calculated as the product of the number of full-time personnel and the duration in

months.

Institution Useful Total Useful data Total Data  Useful core  Total core Total Total PUE Conversion Carbon
simulated  simulated produced  produced hours hours  person/ energy cost factor (MWh —  footprint
years* years (PB) (PB) (millions)  (millions)  months (TJ) kg COzeq) (tCO»)
CMCC 965 0.097 1.99 7 1.61 1.84 408 329
CNRM-CERFACS 47000 1.350 248 160.00 365.00 450 6.18 143 40 97
DKRZ 1276 1321 0.600 5.52 5.90 041 1.19 184 24
EC-Earth 28 105 38854 0.800 1.41 31.13 46.36 115 124 135 357 165
IPSL 75000 165 000 1.800 7.60 150.00 320.00 200 872 143 50 172
MPI-M 24175 35000 1.930 16.31 0.62 1.19 184 37

NCC-NorESM2 23096 0.600 27.23 80.00 150 1.69
NERC 640 0.460 55.50 217 1.10 0 0
UKMO 37237 10.400 683.00 26.70  1.35 87 868

* The useful simulated years column values can differ from Table 1 given that some of the experiment runs are not shown in that table.

ence Group at the BSC, comprising around 80 people, had
a CO; equivalent of commuting (29t CO,eq per year), com-
puting infrastructure (397 t CO,eq per year), building and in-
frastructure (117 tCOzeq per year), and travel (255t COjeq
per year). The total budget was, therefore, estimated to be
near 800tCOseq per year. Consequently, the carbon foot-
print from the execution of only this small subset of exper-
iments more than doubles our budget in a single year. This
finding is consistent with observations from other groups
within the community, such as a similar study conducted by
CERFACS between 2019 and 2021, which reported a total
budget of around 700 t CO;eq per year. Nonetheless, the con-
tributions that CMIP6 has made to climate science are invalu-
able and beyond the immediate costs associated with running
the simulations.

4 Drawbacks and actions recommended

Thanks to the experience learned from the data collection
and analysis done, we recognise the importance of highlight-
ing the specific drawbacks we have found during this first
collection, as well as our recommendations to improve the
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collection and analysis for future iterations of multi-model
climate research projects, such as CMIP7. The authors will
continue working on this topic in the future not only to pro-
vide new approaches to facilitate the collection, but also in
fostering the collaboration of the weather and climate sci-
ence community to address the computational challenges of
Earth modelling. Table 10 shows a list of the main drawbacks
along with suggested actions for improvement.

5 Conclusions

One of the limiting factors for climate science is the com-
putational performance that Earth system models (ESMs)
can achieve on modern high-performance computing (HPC)
platforms. This limitation imposes constraints on the num-
ber of years that can be simulated, the number of ensem-
bles that can be used, the resolution used by the models, the
number of features simulated in one experiment, I/O inten-
sity, data diagnostics calculated during the run, etc. Evalu-
ating the performance of an ESM is a tremendous amount
of work that generally requires profiling the application, us-
ing tools to visualise and understand the profiling informa-

Geosci. Model Dev., 17, 3081-3098, 2024
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Table 10. Drawbacks and recommended actions for CMIP6 metrics.

Drawbacks

Recommended actions

CPMIPs are not enough to compare the performance of
different ESMs running on different HPC platforms.

Multi-model comparisons will be better grounded once more data are
available. Integrating the CPMIPs in the high-performance climate and
weather (HPCW; van Werkhoven et al., 2023) benchmark to evaluate
the performance of the different machines used by the community.

Lack of resources and time to collect metrics after
CMIP experiments.

Perform metric collection before or during CMIP experiments. Develop
portable and automated processes for efficient collection.

Inconsistencies in metric collection hinder inter-model
comparisons.

Normalise metric collection methods across institutions before multi-
model runs. Develop tools to automatise the collection (e.g. integrated
into the workflow manager).

Difficulty in identifying computational bottlenecks due
to limited information.

Split sensitive metrics into sub-metrics for finer analysis. For instance,
the coupling cost should separate interpolation from load-imbalance
cost, and the ASYPD should differentiate between queue time and sys-

tem interruptions.

tion, and developing and applying solutions based on the bot-
tlenecks found. This process becomes even more complex
when dealing with models used in large-scale, multi-model
projects like CMIP6, where multiple ESM are executed by
different institutions that have access to diverse HPC plat-
forms. To address these challenges, the Computational Per-
formance Model Intercomparison Project (CPMIP) metrics
were designed to be universally available, easy to collect, and
representative of the actual performance of ESMs and of the
entire life cycle of modelling (i.e. simulation and workflow
costs).

This paper presents, for the first time, the results obtained
from the CPMIP collection during the CMIP6 exercise. It
provides a list of the 14 institutions involved, primarily from
the IS-ENES3 consortium, along with the 33 CMIP6 exper-
iment configurations and the CPMIP metrics collected for
each experiment. Furthermore, it goes well beyond mere data
presentation and offers an in-depth analysis for each metric
collected to demonstrate the broader utility of the CPMIP
collection. For instance, this study investigates the resolution
used by each model on the oceanic and atmospheric com-
ponents; explores the relationship between execution speed
and cost with the other metrics; assesses the impact of run-
ning models with higher processor counts, complexity, or I/O
requirements; examines the overhead caused by queuing and
workflow management; and explores the coupling cost across
different configurations.

Besides the CPMIP metric analysis, this paper highlights
results obtained from collaborations with other groups, such
as the Carbon Footprint Group. This collaboration under-
scores the shared concern of multiple institutions regarding
computational performance in climate science and the joint
effort to estimate the carbon footprint of the simulations con-
ducted during the CMIP6 exercise.

Finally, the paper addresses the main issues and drawbacks
encountered during the collection and analysis of the met-
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rics, including the heterogeneity of the models and HPC ma-
chines used, as well as uncertainty in the metric measure-
ments reported. These points should be of particular interest
to the partners, aiming to improve and facilitate future col-
lections. The paper also proposes recommendations to con-
front these challenges, which the community can adopt for
the development of novel tools and more finely grained met-
rics that will facilitate upcoming similar works. Moreover,
the improvement and development of benchmarks specially
designed for climate science will significantly enhance multi-
platform performance comparisons. Continuous collection of
these metrics in future multi-model projects (e.g. CMIP7)
will facilitate the development of a shared database for the
community and vendors.
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