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a b s t r a c t 

This paper examines the relationship between climate risk and climate policy uncertainty, 

and CO2 emissions in the US over the 20 0 0–2022 period using a structural Factor- Aug- 

mented Vector AutoRegression (FAVAR) model with a two-step principal component anal- 

ysis based on monthly observations. We employ a very recent measure to proxy for un- 

certainty regarding climate policy based on the Climate Policy Uncertainty Index (CPU) of 

Gavriilidis (2021), while Climate Risk is proxied by financial cost of natural disasters and 

number of deaths. We use different variables for CO2 emissions, based on total and sec- 

toral emission (commercial, electric power, residential sector, transportation, and industrial 

sector). The results indicate that a significant percentage of the variance of CO2 emissions 

in the US, is explained by Natural Disasters Cost, which also seem to account for a sig- 

nificant percentage of the US Total Renewable Energy Consumption variance. Shocks to 

disaster costs seem to decrease all type of emissions significantly and also increase renew- 

able energy use significantly. Natural disasters increase political disagreement among U.S. 

politicians, as well as, the climate policy uncertainty, highlighting the need for efficient 

policymaking and regulations. In further results, we find that an increase in Partisan Con- 

flict decreases emissions and explains a significant amount of renewable energy variance. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Climate risk may be a transmission channel for policy action in the sense that it affects public and political opinion; 

the stronger the impact of climate changes the higher the public pressure for policymakers to adopt appropriate policies 

to address climate change. If that holds, it is important to address climate change through policies that reduce uncertainty 

and mitigate climate risk. This paper examines the relationship between climate risk, climate policy uncertainty, and CO2 

emissions in the US over the 20 0 0–2022 period using a structural Factor-Augmented Vector AutoRegression (FAVAR) model 

with a two-step principal component analysis. We employ a very recent measure to proxy for uncertainty regarding climate 
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policy based on the Climate Policy Uncertainty Index (CPU) of Gavriilidis (2021) , while Climate Risk is proxied by financial 

cost of natural disasters and number of deaths. We use different variables for CO2 emissions based on total and sectoral 

emission (commercial, electric power, residential sector, transportation, and industrial sector). The paper contributes to the 

relevant literature in several ways. 

Firstly, to proxy for Climate Risk we use different variables. More specifically, we study the impact of climate risk using 

two variables, namely the financial cost of natural disasters and the number of deaths caused by each such disaster, collected 

from the National Oceanic and Atmospheric Administration (NOAA). More specifically, NOAA reports the financial cost and 

number of deaths over the span of each of the 249 costly natural disasters identified including wildfires, hurricanes, flooding, 

earthquakes, droughts, tornadoes, freezes, and winter storms. Total costs are in billions of 2019 dollars and the data are 

collected either from national programs but also from agencies such as FEMA, USDA, and Army Corps. 

Secondly, to capture uncertainty regarding climate policy we examine Climate Policy Uncertainty in the US using the 

Climate Policy Uncertainty (CPU) Index of Gavriilidis (2021) . Recently, Gavriilidis (2021) shows that there is uncertainty 

surrounding the implementation of policies to address climate change and introduces a new metric (CPU) that is based on 

information from important US newspapers. Gavriilidis finds a significant and negative impact of climate policy uncertainty 

(CPU) on CO2 emissions, and argues that, on the one hand, policy uncertainty regarding climate regulation may lead to 

delayed investments and/or reduced investments in new technologies and related research, but on the other hand, it may 

also encourage firms to reduce their ecological footprint. Atsu and Adams (2021) find, for the BRICS countries, that fossil fuel 

consumption along with policy uncertainty are contributors to CO2 emissions, while financial development, the quality of 

bureaucracy, and renewable energy, tend to mitigate emissions. They argue that economic policies that support innovation 

and investment in energy efficient technologies tend to reduce emissions. 

Thirdly, we investigate the effect that natural disasters might have on the political alignment in the US Congress and on 

the adoption and formulation of efficient regulations and policies that can force firms to adopt more sustainable practices. 

Baccini and Leemann (2021) find that the experience of natural disasters can positively affect political behavior and support 

the adoption of environmentally friendly policies that deal with global warming. Thus, the final part of our analysis inves- 

tigates how political disagreement among US politicians, elections, and debates over various policies, might impact firms’ 

adoption of sustainable practices and consequently CO2 emissions. To proxy for the political uncertainty, we use the Partisan 

Conflict Index of Azzimonti (2014 , 2018; Federal Reserve Bank of Philadelphia). 

Fourthly, to study energy emissions, we not only use Total CO2 emissions in the US, but also sectoral CO2 emissions from 

the commercial sector, the electric power sector, the residential sector the transportation sector, and the industrial sector. In 

addition, to capture US macroeconomic conditions and financial market behavior for the period 20 0 0 and 2022, we employ 

a structural Factor-Augmented Vector AutoRegression (FAVAR) model with a two-step principal component analysis using 

a balanced panel of 117 monthly variables that, except CO2 emissions, include series like Brent crude oil and Natural gas, 

energy consumption and renewable energy consumption, among others. 

Our paper is motivated by the observation that one of the most significant and difficult challenges that governments, 

policymakers, and societies are facing during the recent period, is how to achieve economic growth that is environmentally 

sustainable. The environmental pollution from human economic activity affects climate change 2 and has a significant impact 

on the global population and the long-term prosperity of future generations. For instance, approximately 99% of the global 

population, especially people in low- and middle-income countries, is breathing air that includes elevated levels of pollutants 

and exceeds the limits of the World Health Organization (WHO). 3 At the same time, climate change has significant costs, not 

only in human lives and livelihoods, but also causes a significant economic cost to societies (see, among others, Smith and 

Matthews, 2015 ). 4 

The results of many studies indicate that economic growth is related to the level of CO2 emissions ( Soytas et al., 2007 ; 

Zhang and Cheng, 2009 ; Sharma, 2011 ; Acheampong, 2018 ; Ajmi et al., 2015 ; among others). 5 Guan et al. (2008) point out 

that China’s CO2 emissions have increased significantly since the 1980s and estimate that they will have a similar increase by 

2030, driven mainly by the consumption of households, capital investment, and growth in exports. They argue that efficiency 

improvements alone may not be able to stabilize emissions. Also note that, emissions tend to increase after prolonged 

periods of uncertainty and volatility. According to the International Energy Agency (IEA), after the Covid-19 pandemic, global 

GDP increased by approximately 6%; at the same time, the CO2 emissions from industrial processes and energy combustion 

increased by 6% in 2021 (the highest annual increase ever). A similar pattern is also observed in 2010, when following the 

Global Financial Crisis, global emissions increased by 6.1% and global GDP increased by 5.1%. 6 

2 As Rovinaru et al (2023) point out, human activity such as burning of fossil fuels, agriculture, the change of land use, and deforestation, among others, 

are also responsible for the growing release of greenhouse gases, that increase the greenhouse effect and affect the climate. 
3 See WHO at: https://www.who.int/health-topics/air-pollution#tab = tab_1 
4 For example, the National Centers for Environmental Information estimate that, in the US, 341 weather and climate disasters for the period between 

1980 to 2022, had a total cost in excess of $2.475 trillion. NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and 

Climate Disasters (2023). https://www.ncei.noaa.gov/access/billions/, DOI: 10.25921/stkw-7w73 
5 For instance, Soytas et al (2007) find that emissions are not long-run Granger-caused by income in the US, while energy use is long-run Granger-caused 

by income, while Sharma (2011) examines 69 countries and finds that, on a country level, GDP per capita, the consumption of energy, trade openness, and 

urbanization, are important determinants of CO2 emissions and all have a positive impact on emissions, except urbanization that has a negative effect. 

When a panel of all countries is examined, only the first two are significant. 
6 International Energy Agency at: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2. 
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On the other hand, more recent empirical studies find a reduction in emissions. For instance, the International Energy 

Agency (IEA) reports that, globally, carbon dioxide emissions related to energy increased by less than 1% in 2022, an increase 

much smaller than anticipated, despite significant events such as the price shocks in energy, rising consumer prices, and 

disruptions in trade flows. 7 Also, Feng et al. (2015) analyze the factors driving US emissions and find that while before 

2007 emissions were driven by economic growth, since then, the recession along with the fuel mix led to a decrease in 

emissions. 8 Wu et al. (2021) , examine 18 countries and find that for many developed economies there is a reduction in 

emissions recently. Their analysis shows that the transition to renewable energy and energy intensity and fossil intensity are 

main factors that drive this reduction in emissions. Moreover, the forecasting results indicated that changes in the renewable 

energy share and fossil CO2 intensity will be the two primary factors for the decline in CO2 emissions in the next thirty 

years, while the contribution from the industrial structure, economic growth, and fossil energy intensity are rather limited. 

These findings highlight the importance of improved energy efficiency and the use of renewable energy in reducing CO2 

emissions. 

Our empirical results indicate that a significant percentage of the variance of CO2 emissions in the US is explained 

by Natural Disasters Cost, which also seems to drive US Total Renewable Energy Consumption variance. Furthermore, the 

cost of natural disasters also affects Partisan conflict importantly. Impulse Response Functions (IRFs) indicate that shocks 

to disaster costs seem to decrease all types of emissions significantly and also increase renewable energy use significantly. 

Natural disasters increase the political disagreement among US politicians, as well as, climate policy uncertainty, highlighting 

the need for efficient policymaking and regulations that can fight global warming ( Baccini and Leemann, 2021 ). In further 

results, we find that an increase in Partisan Conflict decreases emissions, increases Renewable Energy consumption and 

explains a significant amount of renewable energy variance. 

Overall, the findings presented above seem to support the argument (see Gavriilidis, 2021 ) that elevated climate pol- 

icy uncertainty and climate risk might discourage energy consumption and at the same time climate policy uncertainty 

shocks encourage renewable energy consumption and more sustainable practices adoption, thus leading to decreased CO2 

emissions. Moreover, natural disasters affect the political disagreement among US politicians, but also impact the adoption 

and formulation of efficient climate regulations and policies that can force firms adopt more sustainable and environmen- 

tally friendly practices. The rest of the paper is organized as follows. Section 2 presents the data and the methodology, 

Section 3 the results, while Section 4 discusses the conclusions. 

2. Data and testing methodology 

To study the effect of climate risk and various types of uncertainty, we employ a structural Factor-Augmented Vector Au- 

toRegression (FAVAR) model with a two-step principal component analysis ( Bernanke et al., 2005 ; Boivin et al., 2009 ) in a 

large dataset of monthly time series. More specifically, our FAVAR model includes a balanced panel of 117 monthly variables, 

following the standard dataset originally introduced by Stock and Watson (2002) and later used by Bernanke et al. (2005) , 

Boivin et al. (2009) and other studies ( Lutz, 2015 ; Galariotis et al., 2018 and others) . 9 The standard setting captures macroe- 

conomic conditions and financial market behavior and is further enhanced with additional series like Brent crude oil and 

Natural gas, and series of interest such as US imports and exports, 10 energy consumption and renewable energy consump- 

tion and CO2 emissions. 11 This approach copes with the common problem of omitted variables, since it utilizes standard 

VAR methods combined with factor analysis and allows the inclusion of a large set of informational economic variables 

(see, among others, Boivin et al., 2008 ; Lutz, 2015 ; Belke and Osowski, 2019 ; Krokida et al., 2020 ). Appendix I presents a list 

of the variables employed in the FAVAR model. 

Consider a N × 1 vector of variables X t , and assume that the relevant conditions are affected by a K × 1 vector of factors 

( F t ) that are not observed. Subsequently, suppose that there is an observed factor R t such that: 

C t = 

[ 
F t 

R t 

] 
(1) 

With the employment of Principal Components Analysis, we can estimate the following observation equation: 

X t = � f F t + �r R t + e t (2) 

In (2) � f , is the N × K matrix of factor loadings, �r is the N × 1 vector of factor loadings, and e t is the N × 1 vector of 

(zero mean) error terms. The next step is to estimate the standard VAR with the C t as: 

C t = �( L ) C t−1 + u t (3) 

In the above, �(L ) is the lag polynomials of finite order matrix. 

7 IEA: CO2 Emissions in 2022, see https://www.iea.org/reports/co2-emissions-in-2022. 
8 See also, Saidi and Omri (2020) , among others. 
9 Some series are excluded due to limited data availability and replaced where possible. 

10 US Imports and Exports were disaggregated into monthly frequency using cubic spline interpolation (see, among others Abbate, et al., 2016 ; 

Lescaroux and Mignon, 2009 ). 
11 The series of CO2 emissions and energy consumption are seasonally adjusted using the Census X-13 ( Gavriilidis, 2021 ). 
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The variables that enter the model are transformed for stationarity. In addition, they are standardized, since there may 

be issues with different scales in the time series with the factor extraction. We adopt a Cholesky ordering and divide the 

variables in X t to fast moving variables that are presumed to react to uncertainty shocks contemporaneously and slow- 

moving variables that do not (see Bernanke et al., 2005 ), and list policy related uncertainty (climate policy, political uncer- 

tainty/partisan conflict 12 ) and/or risks (natural disasters/climate risk) first in the ordering of the various models to recover 

orthogonal shocks (see Baker et al., 2016 ; Bloom, 2009 ; Caggiano et al., 2014 ; Born et al., 2019 ; Makrychoriti and Spy- 

rou, 2022 ; among others). 

Although previous studies suggest criteria when it comes to the number of the factors employed (see Bai and Ng, 2002 ), 

here, we examine various specifications to exploit how sensitive our results are to different numbers of factors, with our 

baseline model employing 3 lags and 3 factors according to recent studies using as empirical setting the FAVAR model (see 

Krokida et al., 2020 ; Laine, 2020 ; Galariotis et al., 2018 ; Makrychoriti and Spyrou, 2022 ). On the optimal factor selection in 

factor models there exist indeed several methods for the determination; nevertheless, as Bernanke et al. (2005) mention, 

none of those methods can address the question of the optimal number of factors included in VAR model. Note that our 

results remain robust to employing different combinations of factors (3 and 4 factors) and lags (2 and 3 lags). Our analysis 

covers the period January 20 0 0 to June 2022, and our FAVAR model includes a total of 117 informational variables, presented 

in Appendix I . 

As proxies for emissions, we use 6 different variables to examine the impact on different types and origins of emis- 

sions. More specifically, we use the Total US Energy CO2 Emissions (Total CO2), Commercial sector US Energy CO2 Emissions 

(Com CO2), Electric power sector US Energy CO2 Emissions (Elect CO2), Residential sector US Energy CO2 Emissions (Resid 

CO2), Transportation sector US Energy CO2 Emissions (Transport CO2) and Industrial sector US Energy CO2 Emissions (In- 

dust CO2) obtained from EIA (Energy Information Administration). All series are seasonally adjusted using the Census X-13 

( Gavriilidis, 2021 ). 

We first study the impact of climate risk, using two variables, namely the financial cost of natural disasters and the num- 

ber of deaths caused by each such disaster (see Fig. 1 ), collected from the National Oceanic and Atmospheric Administration 

(NOAA) . 13 More specifically, NOAA reports the financial cost and number of deaths over the span of each of the 249 costly 

natural disasters identified, including wildfires, hurricanes, flooding, earthquakes, droughts, tornadoes, freezes, and winter 

storms. Total costs are in billions of 2019 dollars and data collected are from national programs but also from agencies such 

as FEMA, USDA, and Army Corps, and are based on insurance, such as flood insurance, property claims and crop insurance 

(see also, Smith and Katz, 2013 ). 

In order to construct the climate risk proxy, we use the CPI-adjusted financial cost series, and consider the starting date 

of a natural disaster occurrence as the event date. Since multiple disasters might take place in the same month, as monthly 

value we sum the costs of all events that took place in the same month. Our proxy has 152 non-zero cost values monthly 

observations (from T = 270) ( Ludvigson et al., 2020 ). We follow the same concept for our second proxy for climate risk, the 

number of deaths. 14 

In order to investigate the impact of climate policy related uncertainty on CO2 emissions, we employ the Climate Policy 

Uncertainty (CPU) Index of Gavriilidis (2021) . 15 This index is constructed according to the methodology of Baker at al. (2016) 

for measuring Economic Policy Uncertainty and employs textual analysis in articles from 8 leading US newspapers; among 

others, terms used in the analysis are “carbon dioxide”, “climate risk”, “CO2”, “emissions”, etc. We also examine variables 

such as the US Energy Consumption that includes the residential, commercial, industrial and transportation sectors (Energy) 

and the US Total Renewable Energy Consumption (RenEnergy). Fig. 2 presents the evolution of CPU and Total CO2 emissions 

overtime (20 0 0–2022); it can be seen that, total CO2 emissions overtime seem to follow a downward trend with a significant 

downward adjustment since the 20 07–20 09 financial crisis. CPU has its highest spikes from 2016 onwards, indicating intense 

climate policy uncertainty. 

Note that several recent papers utilize the CPU index to examine the impact of climate policy uncertainty on tourism de- 

mand ( Apergis et al., 2022 ), oil and gas prices ( Guo et al., 2022 ), crude oil futures volatility ( Niu et al., 2022 ) and oil industry 

stock returns ( He and Zhang, 2022 ). Shang et al. (2022) use the CPU index and demonstrate a positive effect on renewable 

energy demand in the long run, while Li et al. (2023) show that the relationship between renewable energy and climate 

policy uncertainty depends on the political ideology of the Administration on environmental issues. Ren et al. (2023) in- 

vestigate the causality between climate policy uncertainty and traditional energy and green markets and find that CPU 

behaves as a risk receiver rather than a risk sender. Zhou et al. (2023) reveal that CPU positively affects oil prices and 

renewable energy consumption, while Liang et al. (2022) show a negative impact of CPU on renewable energy volatility. 

Bouri et al. (2022) show that during turbulent periods the effect of CPU on green energy stocks is positive and homogenous. 

Sarker et al. (2023) provide evidence that climate policy uncertainty positively affects the returns of clean energy prices in 

the US, while Dutta et al. (2023) show a positive CPU effect on green energy assets but negative on their volatility. 

12 Azzimonti (2018) points out that an increase in political uncertainty can potentially cause higher economic policy uncertainty. 
13 Data can be downloaded from ncdc.noaa.gov/billions/events; see also Smith and Katz (2013) , Smith and Matthews (2015) . 
14 Cost of Natural Disasters and Deaths from Natural Disasters are transformed into natural logarithms before entering the model ( Toya and Skid- 

more, 2007 ). 
15 Source: for details see https://www.policyuncertainty.com/climate_uncertainty.html. 
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Fig. 1. Disaster Cost and Disaster Deaths in the US 

The figure plots the Disaster Cost and Disaster Deaths series. The sample covers the period 20 0 0:01 to 2022:6. National Oceanic and Atmospheric Admin- 

istration (NOAA). Data can be downloaded from ncdc.noaa.gov/billions/events; see also Smith and Katz (2013) , Smith and Matthews (2015) . 

The final part of our analysis investigates how political disagreement among US politicians, elections, and debates over 

various policies, might impact firms’ adoption of sustainable practices and consequently CO2 emissions. 16 Recent literature 

shows that the political environment in a country affects the energy provision and consumption ( Moss, 2014 ), energy prices 

( van Beers and Strand, 2013 ), and the energy and growth relationship ( Squalli, 2007 ). More specifically, studies show that a 

stable political system is an important factor to lower CO2 emissions and to slow down environmental degradation ( Su et al., 

2021 ), and that democracy influences climate policy and emission reduction process ( Policardo, 2016 ; Fredriksson and Neu- 

mayer, 2013 ). In addition, political polarization might be beneficial for the environment since political parties might be 

forced to adopt more extreme policies in order to slow down environmental degradation; for instance, Aller et al. (2021) find 

that increased political polarization causes a decline in CO2 emissions through a direct and indirect impact on the envi- 

ronment. The direct impact is through differences among political parties and the environmental policies and regulations 

promoted. 

Garmann (2014) empirically test whether government ideology influences the CO2 levels and find that center and 

left-wing governments tend to contribute more to the emission reduction process than right-wing governments do. 

Managi (2006) shows that doubling effort s to slow down environmental degradation reduces CO2 emissions more than 

twice. Those links show that disagreement among political parties can lead to larger gaps in expenditures claimed for sus- 

tainable practices and technologies on pollution abatement, and eventually lower CO2 levels ( Aller et al., 2021 ). On the 

other hand, the direct impact of political polarization on CO2 levels, is through the effect of policies and regulations on the 

16 We proxy for US political uncertainty with the Partisan Conflict Index of Azzimonti (2014 , 2018; Federal Reserve Bank of Philadelphia). 
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Fig. 2. Climate Policy Uncertainty and CO2 Emissions 

The figure plots the Climate Policy Uncertainty Index and CO2 Emissions in the US for the period 20 0 0–2022. We obtain the Total US Energy CO2 Emissions 

(Total CO2) from the Energy Information Administration, US, and the Climate Policy Uncertainty (CPU) Index of Gavriilidis (2021) from: https://www. 

policyuncertainty.com/climate _ uncertainty.html . 

economies and the environment. A polarized political system causes increased levels of policy uncertainty ( Azzimonti and 

Talbert, 2014 ), with economies slowing down investments (Azzimotti, 2018), which decreases growth and subsequently CO2 

levels. 

3. Results 

This section presents the results of the FAVAR models, in the form of Forecast Error Variance Decompositions (FEVDs) 

and Impulse Response Functions (IRFs). In Table 1 we present Variance Decomposition (VD) results and model R 

2 , where 

we examine the contribution of the shock to the Variance of the Common Component for selected variables, i.e., the% of 

the variance of the selected variables that is explained by Climate Risk as proxied by the Natural Disasters Cost adjusted to 

CPI (Shock: monetary Cost of Natural Disasters, CD). We examine various specifications with regards to lags and factors and 

present here the results from 3 models as follows: in Model 1 we use 3 Factors and 3 Lags, in Model 2 we use 4 Factors 

and 3 Lags and in Model 3 we use 3 Factors and 2 Lags. 

The selected variables of interest are Industrial Production (IP), Personal Consumption (Consumption), the returns of the 

S&P500 Equity Index (S&P500); Imports; Exports; the Baker and Wurgler (2006) Sentiment (BW Sentiment), the Michi- 

gan Consumer Sentiment Index (MCSI), the Total US Energy CO2 Emissions (Total CO2), Commercial sector US Energy CO2 

Emissions (Com CO2), Electric power sector US Energy CO2 Emissions (Elect CO2), Residential sector US Energy CO2 Emis- 

sions (Resid CO2), Transportation sector US Energy CO2 Emissions (Transport CO2), Industrial sector US Energy CO2 Emis- 

sions (Indust CO2). We also examine US Energy Consumption that includes residential, commercial, industrial and trans- 

portation sectors (Energy), US Total Renewable Energy Consumption (RenEnergy), the Climate Policy Uncertainty Index of 

Gavriilidis (2021) (CPU) and the Partisan Conflict Index of Azzimonti (2014 , 2018) (Partisan) . 17 

From Table 1 (columns 2 and 3) we can see that in Model 1 (3 Factors and 3 Lags) approximately 14% (0.141) of the vari- 

ance in Total CO2 emissions is explained by Natural Disasters Cost (R 

2 = 0.718), while 20% (0.20) of Industrial CO2 emissions 

is explained by Natural Disasters Cost (R 

2 = 0.780). For Commercial, Electricity, Residential, and Transport emissions the % 

of the variance explained is below 10% (0.081, 0.084, 0.073, 0.052, respectively). Note that the % of the variance of US Total 

17 The Climate Policy Uncertainty Index and Partisan Conflict Index enter the model in levels ( Gavriilidis (2021 ; Azzimonti, 2014 ). Nevertheless, when 

transformed into natural logarithms, results remain qualitatively the same. 
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Table 1 

Contribution of Climate risk shock (proxied by the Cost of Natural Disasters) to the variance of selected variables. 

Model 1: 3 Factors - 3 Lags (Shock: 

Cost of Natural Disasters) 

Model 2: 4 Factors - 3 Lags (Shock: 

Cost of Natural Disasters) 

Model 3: 3 Factors - 2 Lags (Shock: 

Cost of Natural Disasters) 

VD R 2 VD R 2 VD R 2 

IP 0.017 0.854 0.023 0.877 0.019 0.851 

Consumption 0.015 0.715 0.021 0.766 0.016 0.713 

S&P500 0.005 0.138 0.003 0.256 0.007 0.138 

Imports 0.005 0.381 0.006 0.650 0.005 0.380 

Exports 0.004 0.329 0.006 0.626 0.004 0.328 

BW Sentiment 0.000 0.043 0.001 0.043 0.000 0.043 

MCSI 0.002 0.083 0.002 0.093 0.002 0.082 

Total CO2 0.141 0.718 0.240 0.887 0.178 0.719 

Com CO2 0.081 0.641 0.241 0.863 0.098 0.640 

Elect CO2 0.084 0.659 0.250 0.887 0.102 0.658 

Resid CO2 0.073 0.583 0.223 0.775 0.088 0.581 

Transport CO2 0.052 0.518 0.055 0.573 0.071 0.522 

Indust CO2 0.200 0.780 0.256 0.864 0.255 0.783 

Energy 0.017 0.335 0.017 0.348 0.023 0.338 

RenEnergy 0.142 0.777 0.329 0.875 0.175 0.777 

CPU 0.028 0.331 0.085 0.450 0.035 0.330 

Partisan 0.057 0.438 0.091 0.443 0.076 0.438 

The Table presents results from FAVAR models with various specifications with regards to lags and factors. More specifically it presents 

the contribution of the shock to Variance of the Common Component for the selected variables, i.e., the% of the variance of the variables 

that is explained by Climate Risk proxied by the Natural Disasters Cost adjusted to CPI (CD) (Models 1 to 3). The selected Variables are 

IP: Industrial Production; Consumption: Personal Consumption; S&P500: The returns of the S&P500 Equity Index; Imports; Exports; BW 

Sentiment: Baker and Wurgler Sentiment; MCSI: Michigan Consumer Sentiment Index; Total CO2: US Total Energy CO2 Emissions; Com 

CO2: Commercial sector US Energy CO2 Emissions; Elect CO2: Electric power sector US Energy CO2 Emissions; Resid CO2: Residential 

sector US Energy CO2 Emissions; Transport CO2: Transportation sector US Energy CO2 Emissions; Indust CO2: Industrial sector US Energy 

CO2 Emissions; Energy: US Energy Consumption (including residential, commercial, industrial and transportation sectors); RenEnergy: US 

Total Renewable Energy Consumption; CPU: Climate Policy Uncertainty Index; Partisan: Partisan Conflict Index. 

Renewable Energy Consumption (RenEnergy) explained is approximately 14% (0.142, R 

2 = 0.777). In columns 4 and 5 we 

present the results from Model 2 where we now use 4 Factors and 3 Lags, and the findings indicate that the % of emission 

variance explained is higher. For instance, approximately 24% of the variance in Total CO2 emissions is explained by Natural 

Disasters Cost (R 

2 = 0.887), while 25.6% of Industrial CO2 is explained by Natural Disasters Cost (R 

2 = 0.864). For Commer- 

cial, Electricity, Residential, and Transport emissions the % of the variance explained is also significantly higher (0.241, 0.250, 

0.223, 0.055, respectively). 

Note that interestingly the % of the variance of US Total Renewable Energy (RenEnergy) explained, is now approximately 

33% (0.329, R 

2 = 0.875). Note that by including one more factor in our model the variance decomposition is affected, and 

the proportions explained are higher, as is the explanatory power for many variables. This is especially true for Renewable 

Energy and can perhaps be attributed to the fact that RenEnergy is associated with the fourth factor added ( Stock and Wat- 

son, 2005 ). Nevertheless, results remain qualitatively the same since the portion of RenEnergy explained appears important 

in both cases. 

The results of Model 3 are similar to the findings from Model 1, i.e., it seems that the addition of a factor in the model 

increases the explanatory power. From all Models 1, 2 and 3, we can also see that Natural disasters affect Partisan conflict 

importantly, explaining 5.7%, 9.1% and 7.6% of the total variance, in Model 1, 2 and 3, respectively. Although there seems to 

be some sensitivity to the number of factors employed; overall, the results remain qualitatively the same. 

In Fig. 3 we present Impulse Response Functions (IRFs) from the FAVAR Model 1, with 3 lags and 3 factors, for selected 

variables to a shock in Climate Risk proxied by the Cost of Natural Disasters. The IRFs seem to indicate that shocks to disaster 

costs seem to decrease all type of emissions significantly and also increase renewable energy use significantly. Interestingly, 

natural disasters increase the political disagreement in Congress as well as the climate policy uncertainty, highlighting the 

need for efficient policymaking and regulations that are able to fight global warming ( Baccini and Leemann, 2021 ). The IRFs 

from Model 2 and 3 (not reported here but are available upon request) are consistent with the findings reported above, in 

the sense that the results are similar to Model 1 but with a stronger response. 

To examine the sensitivity of our results to the proxy of Climate Risk we next re-examine the models presented above, 

replacing the monetary Natural Disasters Cost with the cost in human lives from natural disasters using the Number of 

Deaths from Natural Disasters as our proxy. In Table 2 we present Variance Decomposition (VD) results and model R 

2 , 

where we examine the contribution of the shock to the Variance of the Common Component for selected variables, i.e., the 

% of the variance of the selected variables that is explained by Climate Risk proxied by the Number of Deaths from Natural 

Disasters (Shock: Number of Deaths from Natural Disasters, DD). The Table is organized in the same manner as Table 1 . As 

we can see the results are qualitatively similar: in Model 1 (3 Factors and 3 Lags) approximately 12% of the variance in Total 

CO2 emissions is explained by Natural Disasters Deaths (R 

2 = 0.715), while about 16.8% of Industrial CO2 is explained by 
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Fig. 3. The effect of Climate Risk proxied by the Cost of Natural Disasters 

The Figure presents Impulse Response Functions (IRFs) from a FAVAR model (Model 1: 3 lags - 3 factors) for selected variables to a shock in Climate Risk 

proxied by the Cost of Natural Disasters (adjusted to CPI). 

Natural Disasters Deaths (R 

2 = 0.776). For Commercial, Electricity, Residential, and Transport emissions the % of the variance 

explained is below 10%. Note that the % of the variance of US Total Renewable Energy Consumption (RenEnergy) explained, 

is approximately 12% (R 

2 = 0.775). The results, again, seem to be sensitive to the number of factors employed; nevertheless, 

they remain qualitatively the same. 

In Model 2 (4 Factors and 3 Lags), the findings indicate that the % of CO2 emissions’ variance explained is higher. For 

instance, approximately 20% of the variance in Total CO2 emissions is explained by Natural Disasters Deaths (R 

2 = 0.887), 

while 20% of Industrial CO2 is explained by Natural Disasters Deaths (R 

2 = 0.863). For Commercial, Electricity, Residential, 

and Transport emissions the % of the variance explained is also significantly higher (0.185, 0.183, 0.167, 0.058, respectively). 

Note that interestingly the % of the variance of US Total Renewable Energy Consumption (RenEnergy) explained is now 
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Table 2 

Contribution of Climate risk shock (proxied by the Number of Deaths from Natural Disasters) to the variance of selected variables. 

Model 1: 3 Factors - 3 Lags (Shock: 

Number of Deaths) 

Model 2: 4 Factors - 3 Lags (Shock: 

Number of Deaths) 

Model 3: 3 Factors - 2 Lags (Shock: 

Number of Deaths) 

VD R 2 VD R 2 VD R 2 

IP 0.018 0.854 0.024 0.877 0.017 0.851 

Consumption 0.015 0.715 0.022 0.766 0.014 0.712 

S&P500 0.008 0.138 0.004 0.256 0.010 0.137 

Imports 0.003 0.376 0.003 0.649 0.004 0.376 

Exports 0.003 0.327 0.004 0.627 0.003 0.326 

BW Sentiment 0.005 0.049 0.005 0.049 0.005 0.049 

MCSI 0.003 0.085 0.003 0.095 0.002 0.085 

Total CO2 0.124 0.715 0.198 0.887 0.153 0.717 

Com CO2 0.065 0.640 0.185 0.864 0.079 0.639 

Elect CO2 0.065 0.658 0.183 0.888 0.079 0.657 

Resid CO2 0.057 0.581 0.167 0.775 0.069 0.581 

Transport CO2 0.056 0.521 0.058 0.576 0.071 0.524 

Indust CO2 0.168 0.776 0.206 0.863 0.212 0.780 

Energy 0.022 0.341 0.020 0.353 0.025 0.342 

RenEnergy 0.117 0.775 0.259 0.874 0.145 0.775 

CPU 0.020 0.334 0.060 0.452 0.025 0.334 

Partisan 0.057 0.437 0.087 0.442 0.074 0.438 

The Table presents results from FAVAR models with various specifications with regards to lags and factors. More specifically it presents 

the contribution of the shock to Variance of the Common Component for the selected variables, i.e., the% of the variance of the variables 

that is explained by Climate Risk proxied by the Number of Deaths from Natural Disasters (DD) (Models 1 to 3). The selected Variables 

are IP: Industrial Production; Consumption: Personal Consumption; S&P500: The returns of the S&P500 Equity Index; Imports; Exports; 

BW Sentiment: Baker and Wurgler Sentiment; MCSI: Michigan Consumer Sentiment Index; Total CO2: US Total Energy CO2 Emissions; 

Com CO2: Commercial sector US Energy CO2 Emissions; Elect CO2: Electric power sector US Energy CO2 Emissions; Resid CO2: Residential 

sector US Energy CO2 Emissions; Transport CO2: Transportation sector US Energy CO2 Emissions; Indust CO2: Industrial sector US Energy 

CO2 Emissions; Energy: US Energy Consumption (including residential, commercial, industrial and transportation sectors); RenEnergy: US 

Total Renewable Energy Consumption; CPU: Climate Policy Uncertainty Index; Partisan: Partisan Conflict Index. 

approximately 25.9% (R 

2 = 0.874). Fig. 4 presents IRFs from the FAVAR Model 1, and a visual inspection indicates that the 

results are similar to Fig. 3 , with the exception of a small spike in IRF at the beginning. We can also see that, as in Table 1 , 

by including one more factor in our model the proportions explained are higher, as is the explanatory power, for many 

variables. Again, the effect of the fourth factor on Renewable Energy is more pronounced, and it may be attributed to the 

fact that RenEnergy is associated with the fourth factor added. As in Table 1 , however, the main result, i.e., that climate risk 

affects emissions, still holds. 

Next, we replace the above Climate risk proxies with the Climate Policy Uncertainty (CPU) Index of Gavriilidis (2021) , to 

investigate the effect of climate related regulations and policies’ uncertainty on CO2 emissions. Table 3 presents the results, 

and we can see that the results are similar as above, and stronger. In Model 1 (3 Factors and 3 Lags) approximately 26% of 

the variance in Total CO2 emissions is explained by CPU (R 

2 = 0.759), while about 31.8% of Industrial CO2 is explained by 

CPU (R 

2 = 0.812). For Commercial, Electricity, Residential, and Transport emissions the % of the variance explained is much 

higher now: 0.20, 0.209, 0.174, and 0.069, respectively. As above the results, seem to be sensitive to the number of factors 

employed, i.e., when more factors are employed the % of the variance explained is much higher for all variables (except 

transportation emissions); nevertheless, they appear to be qualitatively the same. Overall, our results suggest that climate 

policy uncertainty, as captured by uncertainty related to climate regulations and policies has a significant effect on CO2 

emissions. 

A very interesting finding in Table 3 is the effect of CPU on US Total Renewable Energy Consumption (RenEnergy). In 

Model 1 (3 Factors and 3 Lags) approximately 28% of the variance in RenEnergy is explained by CPU (R 

2 = 0.803), in Model 

2 (4 Factors and 3 Lags) approximately 45% of the variance in RenEnergy is explained by CPU (R 

2 = 0.876), in Model 3 (3 

Factors and 2 Lags) approximately 31% of the variance in RenEnergy is explained by CPU (R 

2 = 0.805). This finding indicates 

a strong impact of Climate Policy Uncertainty on US Total Renewable Energy Consumption and a visual inspection of the 

IRFs 18 indicate that this strong relationship is positive, i.e., an increase in CPU increases Renewable Energy consumption. 

Moreover, the IRFs in Fig. 5 seem to indicate that shocks to CPU seem to decrease all types of emissions significantly. 

In Table 4 we present the Contribution of Partisan Conflict (Partisan) to the variance of the selected variables. We can see, 

that in Model 1, Partisan Conflict has a significant contribution of 9% (0.09) to Total CO2 emissions, with a moderate effect 

to other types of emissions, apart from Industrial emissions (0.15), where the effect is quite strong. However, when more 

factors are employed (Model 2), Partisan Conflict seems to explain an even more significant amount in emissions variance: 

about 16% for total emissions, about 16% for electricity emissions, about 19% for residential and industrial emissions. The 

examination of IRFs ( Fig. 6 ) implies that the effect is negative, i.e., an increase in Partisan Conflict decreases industrial 

18 Figure 5 presents the IRFs from Model 1. 
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Fig. 4. The effect of Climate Risk proxied by the Number of Deaths from Natural Disasters 

The Figure presents Impulse Response Functions (IRFs) from a FAVAR model (Model 1: 3 lags - 3 factors) for selected variables to a shock in Climate Risk 

proxied by the Number of deaths from Natural Disasters. 

and transport emissions, while it also decreases the rest of the emissions, as well. An interesting finding is that Partisan 

Conflict explains a significant amount of renewable energy consumption: 15.5% in Model 1, 34.6% in Model 2, 19.4% in 

Model 3. Furthermore, the examination of IRFs ( Fig. 6 ) implies that Partisan Conflict increases importantly Renewable Energy 

consumption, while it also increases the uncertainty in climate related policies and regulations (CPU). 

Note here that Farrell (2016) states that polarization is an effective strategy for creating controversy and delaying environ- 

mental policy progress. Subsequently, that increases climate policy uncertainty, something that is supported from our find- 

ings, with higher levels of partisan conflict causing to higher levels of CPU. Moreover, other studies like Li et al. (2023) show 

that the causality between renewable energy and climate policy uncertainty depends on the political ideology of the Ad- 

ministration on environmental issues. The fact that the impact is not very strong, could be due to the fact that although the 
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Table 3 

Contribution of Climate Policy Uncertainty (CPU) shock to the variance of selected variables. 

Model 1: 3 Factors - 3 Lags (Shock: 

CPU) 

Model 2: 4 Factors - 3 Lags (Shock: 

CPU) 

Model 3: 3 Factors - 2 Lags (Shock: 

CPU) 

VD R 2 VD R 2 VD R 2 

IP 0.017 0.857 0.025 0.877 0.016 0.854 

Consumption 0.015 0.717 0.023 0.769 0.015 0.714 

S&P500 0.004 0.193 0.004 0.266 0.003 0.192 

Imports 0.004 0.401 0.004 0.653 0.003 0.402 

Exports 0.003 0.343 0.003 0.637 0.003 0.344 

BW Sentiment 0.001 0.043 0.001 0.043 0.001 0.043 

MCSI 0.002 0.090 0.002 0.095 0.002 0.090 

Total CO2 0.264 0.759 0.331 0.888 0.298 0.763 

Com CO2 0.200 0.717 0.374 0.871 0.216 0.718 

Elect CO2 0.209 0.744 0.388 0.898 0.224 0.744 

Resid CO2 0.174 0.628 0.327 0.776 0.190 0.628 

Transport CO2 0.069 0.519 0.061 0.577 0.087 0.524 

Indust CO2 0.318 0.812 0.343 0.868 0.362 0.818 

Energy 0.012 0.336 0.012 0.356 0.016 0.339 

RenEnergy 0.281 0.803 0.451 0.876 0.315 0.805 

The Table presents results from FAVAR models with various specifications with regards to lags and factors. More specifically it presents 

the contribution of the shock to Variance of the Common Component for the selected variables, i.e., the% of the variance of the variables 

that is explained by Climate Policy Uncertainty (CPU) (Models 1 to 3). The selected Variables are IP: Industrial Production; Consumption: 

Personal Consumption; S&P500: The returns of the S&P500 Equity Index; Imports; Exports; BW Sentiment: Baker and Wurgler Sentiment; 

MCSI: Michigan Consumer Sentiment Index; Total CO2: US Total Energy CO2 Emissions; Com CO2: Commercial sector US Energy CO2 Emis- 

sions; Elect CO2: Electric power sector US Energy CO2 Emissions; Resid CO2: Residential sector US Energy CO2 Emissions; Transport CO2: 

Transportation sector US Energy CO2 Emissions; Indust CO2: Industrial sector US Energy CO2 Emissions; Energy: US Energy Consumption 

(including residential, commercial, industrial and transportation sectors); RenEnergy: US Total Renewable Energy Consumption. 

Table 4 

Contribution of Partisan Conflict (Partisan) shock to the variance of selected variables. 

Model 1: 3 Factors - 3 Lags (Shock: 

Partisan) 

Model 2: 4 Factors - 3 Lags (Shock: 

Partisan) 

Model 3: 3 Factors - 2 Lags (Shock: 

Partisan) 

VD R 2 VD R 2 VD R 2 

IP 0.007 0.855 0.007 0.879 0.008 0.851 

Consumption 0.006 0.715 0.006 0.768 0.007 0.712 

S&P500 0.002 0.145 0.001 0.258 0.003 0.144 

Imports 0.003 0.391 0.004 0.654 0.003 0.390 

Exports 0.002 0.327 0.003 0.627 0.002 0.326 

BW Sentiment 0.000 0.043 0.000 0.043 0.000 0.043 

MCSI 0.001 0.083 0.001 0.093 0.001 0.082 

Total CO2 0.090 0.715 0.158 0.890 0.131 0.717 

Com CO2 0.041 0.642 0.135 0.873 0.060 0.642 

Elect CO2 0.051 0.657 0.166 0.889 0.073 0.656 

Resid CO2 0.061 0.590 0.194 0.777 0.080 0.589 

Transport CO2 0.022 0.549 0.025 0.613 0.038 0.553 

Indust CO2 0.150 0.776 0.188 0.864 0.213 0.780 

Energy 0.006 0.371 0.005 0.389 0.011 0.374 

RenEnergy 0.155 0.804 0.346 0.894 0.194 0.804 

CPU 0.021 0.331 0.069 0.448 0.030 0.330 

The Table presents results from FAVAR models with various specifications with regards to lags and factors. More specifically it presents 

the contribution of the shock to Variance of the Common Component for the selected variables, i.e., the% of the variance of the variables 

that is explained by Partisan Conflict (Partisan) (Models 1 to 3). The selected Variables are IP: Industrial Production; Consumption: Per- 

sonal Consumption; S&P500: The returns of the S&P500 Equity Index; Imports; Exports; BW Sentiment: Baker and Wurgler Sentiment; 

MCSI: Michigan Consumer Sentiment Index; Total CO2: US Total Energy CO2 Emissions; Com CO2: Commercial sector US Energy CO2 Emis- 

sions; Elect CO2: Electric power sector US Energy CO2 Emissions; Resid CO2: Residential sector US Energy CO2 Emissions; Transport CO2: 

Transportation sector US Energy CO2 Emissions; Indust CO2: Industrial sector US Energy CO2 Emissions; Energy: US Energy Consump- 

tion (including residential, commercial, industrial and transportation sectors); RenEnergy: US Total Renewable Energy Consumption; CPU: 

Climate Policy Uncertainty Index. 

index is considered as US specific, it includes global climate events (not only US) that are covered in US newspapers, and 

some of those issues are beyond the power of just the US politics but are considered politically on a global level; for that 

reason although the sign is the expected one, the magnitude appears less strong. Overall, our results show a positive effect 

of partisan conflict on CO2 emissions with a stronger effect on industrial CO2 emissions. This may be because the industrial 

sector is more directly influenced by policy decisions and regulations, making it more susceptible to the effects of political 
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Fig. 5. The effect of Climate Policy Uncertainty on selected variables 

The Figure presents Impulse Response Functions (IRFs) from a FAVAR model (Model 1: 3 lags - 3 factors) for selected variables to a shock in Climate Policy 

Uncertainty. 

conflict and uncertainty. In addition, the industrial sector is a major contributor to greenhouse gas emissions in the US and 

globally (IPCC, 2014), highlighting the need for effective policies and regulations to address emissions from this sector. 

Thus, political governance appears to be an important determinant in climate policy, especially since political polar- 

ization in environmental issues has become extremely intense over time ( Daniels et al., 2012 ). Partisan polarization is a 

significant obstacle in climate policy actions, with Democrats being in favor of climate policy adoption, while Republicans 

appear opposed to climate legislation ( Coley and Hess 2012 ; Trachtman 2020 ; McCright and Dunlap, 2011 ). Left-wing par- 

ties appear to be more engaged with environmental issues, supporting and promoting actions to prevent climate change 

(Biressieloglu and Karaibrahimoglu, 2012). Recent literature shows that left and central-oriented parties are more in favor of 

strengthened climate policies and regulations ( Chang and Berdiev, 2011 ), support and promote renewable energy consump- 

tion ( Biresselioglu and Karaibrahimoglu, 2012 ) and renewable energy investments ( Abban and Hasan, 2021 ; Cadoret, and 

Padovano, 2016 ). 

Finally, in Table 5 we present the Contribution of Renewable Energy consumption (RenEnergy) to the variance of the 

selected variables. We can see, that in Model 1, Renewable Energy consumption contributes significantly to the variance 

of emissions. For Model 1, the contribution in Total CO2 emission variance is 31.6% (R 

2 = 0.757), for Industrial emissions 

39.1% (R 

2 = 0.853), for Electricity emissions 35.2% (R 

2 = 0.770), for Residential emissions 26.3%, for Commercial emissions 

25.5%, while for Transportation emissions only 2.5%. The contribution is also significant in Model 3, and less significant in 

Model 2; nevertheless, results appear to be qualitatively the same. As expected, the examination of IRFs ( Fig. 7 ) implies that 

Renewable Energy consumption decreases importantly CO2 emissions. 19 

19 We also examine the Contribution of Energy Consumption (Energy) to the variance of the selected variables, (results not reported here but are available 

upon request) and we find that the effect is somehow weaker compared to the results presented above, but still important; the highest contribution 
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Fig. 6. The effect of Partisan Conflict on selected variables 

The Figure presents Impulse Response Functions (IRFs) from a FAVAR model (Model 1: 3 lags - 3 factors) for selected variables to a shock in Partisan Conflict. 
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Table 5 

Contribution of Renewable Energy Consumption (RenEnergy) shock to the variance of selected variables. 

Model 1: 3 Factors - 3 Lags (Shock: 

RenEnergy) 

Model 2: 4 Factors - 3 Lags (Shock: 

RenEnergy) 

Model 3: 3 Factors - 2 Lags (Shock: 

RenEnergy) 

VD R 2 VD R 2 VD R 2 

IP 0.003 0.862 0.003 0.877 0.000 0.859 

Consumption 0.003 0.728 0.003 0.771 0.000 0.726 

S&P500 0.000 0.289 0.000 0.297 0.000 0.288 

Imports 0.002 0.501 0.000 0.652 0.000 0.501 

Exports 0.002 0.413 0.000 0.649 0.000 0.413 

BW Sentiment 0.000 0.046 0.000 0.049 0.000 0.046 

MCSI 0.001 0.094 0.000 0.095 0.000 0.094 

Total CO2 0.316 0.757 0.125 0.885 0.363 0.758 

Com CO2 0.255 0.702 0.122 0.869 0.291 0.701 

Elect CO2 0.352 0.770 0.203 0.888 0.387 0.769 

Resid CO2 0.263 0.653 0.147 0.770 0.294 0.652 

Transport CO2 0.025 0.501 0.010 0.654 0.023 0.506 

Indust CO2 0.391 0.853 0.270 0.874 0.443 0.856 

The Table presents results from FAVAR models with various specifications with regards to lags and factors. More specifically it presents the 

contribution of the shock to Variance of the Common Component for the selected variables, i.e., the% of the variance of the variables that 

is explained by US Total Renewable Energy Consumption (RenEnergy) (Models 1 to 3). The selected Variables are IP: Industrial Production; 

Consumption: Personal Consumption; S&P500: The returns of the S&P500 Equity Index; Imports; Exports; BW Sentiment: Baker and Wur- 

gler Sentiment; MCSI: Michigan Consumer Sentiment Index; Total CO2: US Total Energy CO2 Emissions; Com CO2: Commercial sector US 

Energy CO2 Emissions; Elect CO2: Electric power sector US Energy CO2 Emissions; Resid CO2: Residential sector US Energy CO2 Emissions; 

Transport CO2: Transportation sector US Energy CO2 Emissions; Indust CO2: Industrial sector US Energy CO2 Emissions. 

Fig. 7. The effect of Renewable Energy Consumption on selected variables 

The Figure presents Impulse Response Functions (IRFs) from a FAVAR model (Model 1: 3 lags - 3 factors) for selected variables to a shock in Renewable 

Energy Consumption. 

in Model 1 is to the variance of industrial emissions (14.1%), while the highest contribution in Model 2 is also for Industrial emissions (18.7%). Total 

CO2 emissions’ variance is explained by 9.3% in Model 1 and 14.3% in Model 2. As expected, the IRFs indicate that the higher the Energy Consumption, 

the higher the CO2 emissions. We adopt a Cholesky ordering and divide the variables in X t to fast moving and slow-moving variables and list energy 

consumption first in the ordering assuming that it affects contemporaneously real output ( Squalli, 2007 ; Ebohon, 1996 ; Chien and Hu, 2008 ). Nevertheless, 

results remain qualitatively the same for alternative orderings. 
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Overall, the findings presented above seem to support the argument (see Gavriilidis, 2021 ) that Climate Policy Uncer- 

tainty and Climate Risk may be a transmission channel; elevated climate policy uncertainty and climate risk (proxied in 

this paper with Natural Disasters Cost, CPU, etc.) might discourage energy consumption and at the same time climate policy 

uncertainty shocks encourage renewable energy consumption and more sustainable practices adoption, thus leading to de- 

creased CO2 emissions. Moreover, natural disasters affect the political disagreement among US politicians, but also impact 

the adoption and formulation of efficient climate regulations and policies that can force firms adopt more sustainable and 

environmentally friendly practices. 

4. Conclusion 

One of the most significant and difficult challenges that governments, policy makers, and societies are facing during the 

recent period is how to achieve economic growth that is environmentally sustainable. This paper examines the relationship 

between climate risk and climate policy uncertainty and CO2 emissions in the US. Recent empirical results seem to indicate 

that there is a significant and negative effect of climate policy uncertainty on CO2 emissions. Gavriilidis (2021) points out 

that, on the one hand, policy uncertainty regarding climate regulation may lead to delayed investments and/or reduced 

investments in new technologies and related research, but on the other hand, it may also encourage firms to reduce their 

ecological footprint. 

Motivated by this observation, we examine the relationship between climate risk, climate policy uncertainty, and CO2 

emissions in the US. To proxy for Climate Risk and Climate Policy Uncertainty in the US, we use the financial cost natural 

disasters, the number of deaths caused by each such disaster, and the Climate Policy Uncertainty Index of Gavriilidis (2021) , 

and examine the effects on Total emissions and emissions from the commercial sector, the electric power sector, the res- 

idential sector, the transportation sector and the industrial sector. The empirical analysis covers the period between 20 0 0 

and 2022, and we employ a structural Factor-Augmented Vector AutoRegression (FAVAR) model with a two-step principal 

component analysis using a balanced panel of 117 monthly variables to capture US economic conditions. Moreover, we in- 

vestigate the effect that natural disasters might have on the political alignment in the US Congress and on the adoption and 

formulation of efficient regulations and policies. 

Our results indicate that a significant percentage of the variance of CO2 emissions in the US is explained by Natural 

Disasters, which also seem to account for a significant percentage of the US Total Renewable Energy Consumption variance. 

Furthermore, Natural Disasters also affect Partisan conflict importantly; that is, Natural Disasters tend to increase the dis- 

agreement among political parties, Congress and the President, as well as, the climate policy uncertainty, highlighting the 

need to strengthen policies against global warming. When we replace the Climate risk proxies with the Climate Policy Un- 

certainty (CPU) Index of Gavriilidis (2021) the results are similar as above, and stronger; also approximately 28% to 45% of 

the variance in Total Renewable Energy Consumption is explained by CPU and this strong relationship is positive, i.e., an 

increase in CPU increases Renewable Energy consumption. Moreover, shocks to CPU seem to decrease all type of emissions 

significantly. 

Overall, the findings presented above seem to support the argument that climate policy uncertainty and climate risk may 

be related to CO2 emissions; elevated climate policy uncertainty and climate risk might discourage energy consumption and 

at the same time climate policy uncertainty shocks encourage the consumption of renewable energy and the adoption of 

more sustainable practices, thus leading to decreased CO2 emissions. Moreover, natural disasters affect the political dis- 

agreement among US politicians, but also impact the adoption and formulation of efficient climate regulations. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

Data availability 

The data that has been used is confidential. 

Appendix I 

Notes to Appendix I . Our dataset is a monthly balanced panel including 117 time series of global variables, various macroe- 

conomic aggregates, and financial variables. We use the dataset from Lutz (2015) (following Boivin et al., 2009 ; Stock and 

Watson, 2005 ) updated with additional variables of interest from January 20 0 0 to June 2022. Some series are excluded due 

to limited data availability and replaced where possible. Our dataset includes additional variables featuring in the categories 

Trade, Oil and Gas, CO2 Emissions and Energy Consumption. The format adopted is from Stock and Watson (2002) and 

transformations according to Bernanke et al. (2005) , Boivin et al. (2009) . More specifically, 1 stands for – no transformation; 

2 for – first difference; 4 for – logarithm; 5 for– first logarithmic differences. EIKON is Thomson Reuters EIKON Database, 

FRED is FRED Economic Database of the Federal Reserve Bank of St. Louis, Shiller is Robert Shiller’s website, BW is Baker and 

Wurgler (2006) and Baker and Wurgler (2007) and EIA is US Energy Information Administration. 

624 



K. Guesmi, P. Makrychoriti and S. Spyrou Journal of Economic Behavior and Organization 212 (2023) 610–628 

Number Mnemonic Description Trans. Source 

Real Output and Income 

1 USIPPRDTD US Gross Value of Production - Industrial Production – Products Total 

(2009 Dollars, SA) 

5 EIKON 

2 USIPMPROG Industrial Production – Final Products & Nonindustrial supplies 5 EIKON 

3 USIPMCOGG Industrial Production – Consumer Goods (2007 = 100, SA) 5 EIKON 

4 USIPMDUCG Industrial Production – Durable Cons. Goods (2007 = 100, SA) 5 EIKON 

5 USIPMNOCG Industrial Production – Nondurable Cons. Goods (2007 = 100, SA) 5 EIKON 

6 USIPMBUQG Industrial Production – Business Equipment (2007 = 100, SA) 5 EIKON 

7 USIPINTDD US Gross Value of Production - Industrial Production – Intermediate 

Products (2009 Dollars, SA) 

5 EIKON 

8 USIPMNEMG Industrial Production – Materials Nonenergy (2007 = 100, SA) 5 EIKON 

9 USIPMDUMG Industrial Production – Nonenergy Durable Goods Materials 

(2007 = 100, SA) 

5 EIKON 

10 USIPMNDMG Industrial Production – Nonenergy Nondurable Goods Materials 

(2007 = 100, SA) 

5 EIKON 

11 USIPMAN.G Industrial Production – Manufacturing (2007 = 100, SA) 5 EIKON 

12 USIPNALGG Industrial Production – Nondurables, Apparel & Leather Goods 

(2007 = 100, SA) 

5 EIKON 

13 USIPMIN.G Industrial Production – Mining (2007 = 100, SA) 5 EIKON 

14 USIPUTL.G Industrial Production – Electric and Gas Utilities (2007 = 100, SA) 5 EIKON 

15 USIPTOT.G Industrial Production – Total Index (2007 = 100, SA) 5 EIKON 

16 USMBS076Q Rate of Capacity Utilization – Manufacturing (% of Capacity, SA) 1 EIKON 

17 USCNFBUSQ ISM Purchasing Managers Index (SA) 1 EIKON 

18 USPMCHBB Chicago Purchasing Manager Business Barometer Index (SA) 1 EIKON 

19 USNAPMPR ISM Manufacturers Survey – Production Index (SA) 1 EIKON 

20 USPERINCD Personal Income (2009 Chained Prices, SA) 5 EIKON 

21 USPERXTRD Personal Income Less Transfer Payments (2009 Chained Prices, SA) 5 EIKON 

Employment 

22 USEMPTOTO Total Civilian Employment (Thousands, SA) 5 EIKON 

23 USUN%TOTQ Unemployment Rate (16–65 Years,%, SA) 1 EIKON 

24 USUNWKMDO Median Duration of Unemployment in Weeks (Median, SA) 1 EIKON 

25 USUNWK5.O Unemployed for Less Than 5 Weeks (Thousands, SA) 1 EIKON 

26 USUNWK14O Unemployed for 5 to 14 Weeks (Thousands, SA) 1 EIKON 

27 USUNPLNGE Unemployed for 15 Weeks or More (Thousands, SA) 1 EIKON 

28 USUNWK26O Unemployed for 15 to 26 Weeks (Thousands, SA) 1 EIKON 

29 USCOINARB Employees On Nonagricultural Payrolls (Thousands, SA) 5 EIKON 

30 USEMIP..O Employed – Total Private (Thousands, SA) 5 EIKON 

31 USEMPG..O Employed – Goods-Producing (Thousands, SA) 5 EIKON 

32 USEW23..O Employed Production Workers – Construction (Thousands, SA) 5 EIKON 

33 USEMPMANO Employed – Manufacturing (Thousands, SA) 5 EIKON 

34 USEMIMD.O Employed – Durable Goods (Thousands, SA) 5 EIKON 

35 USEMPP..O Employed – Private Service Producing (Thousands, SA) 5 EIKON 

36 USEMIT..O Employed – Trade, Transportation, & Utilities (Thousands, SA) 5 EIKON 

37 USEMIR..O Employed – Retail Trade (Thousands, SA) 5 EIKON 

38 USEM42..O Employed – Wholesale Trade (Thousands, SA) 5 EIKON 

39 USEMPS..O Employed – Service Providing (Thousands, SA) 5 EIKON 

40 USEMIG..O Employed – Government (Thousands, SA) 5 EIKON 

41 USHKIM..O Avg Weekly Hours – Manufacturing (SA) 1 EIKON 

42 USHXPMANO Avg Weekly Overtime Hours – Manufacturing (SA) 1 EIKON 

43 USNAPMEM ISM Manufacturers Survey – Employment Index (SA) 1 EIKON 

Consumption 

44 USN4BXR3E Personal Consumption Expenditure (2009 = 100, SA) 5 EIKON 

45 USN4DCPHE Personal Consumption Expenditure – Durable Goods (2009 = 100, 

SA) 

5 EIKON 

46 USN0SVK4E Personal Consumption Expenditure – Nondurable Goods 

(2009 = 100, SA) 

5 EIKON 

47 USNY1H9FE Personal Consumption Expenditure – Services (2009 = 100, SA) 5 EIKON 

Housing Starts and Sales 

48 USHOUSE.O New Private Housing Units Started (Total, Thousands, SA) 4 EIKON 

49 USHBRN..O Housing Started – Northeast (Thousands, SA) 4 EIKON 

50 USHBRM..O Housing Started – Midwest (Thousands, SA) 4 EIKON 

51 USHBRS..O Housing Started – South (Thousands, SA) 4 EIKON 

52 USHBRW..O Housing Started – West (Thousands, SA) 4 EIKON 

53 USHOUSATE New Private Housing Units – Authorized Permits (Thousands, SA) 4 EIKON 

54 USIP321HG Manufactured Home (Mobile Home) (2007 = 100, SA) 4 EIKON 

Real Inventories, Orders 

55 USNAPMNO ISM Manufacturers Survey – New Orders Index (SA) 1 EIKON 

Exchange Rates 

56 SWXRUSD. Swiss Francs to USD 5 EIKON 

57 JPXRUSD. Japanese Yen to USD 5 EIKON 

58 UKXRUSD. US Dollar to UK Pound 5 EIKON 

( continued on next page ) 
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Number Mnemonic Description Trans. Source 

59 CNXRUSD. Canadian Dollar to USD 5 EIKON 

Stock Prices 

60 S&PCOMP(DY) S&P500 Composite Dividend Yield 1 EIKON 

61 S&PCOMP(PI) S&P500 Composite Price Index 5 EIKON 

62 S&PCOMP(PE) S&P500 Composite P/E Ratio 1 EIKON 

63 NYSEALL New York Stock Exchange Composite Index 5 EIKON 

64 DJINDUS Dow Jones Industirals 5 EIKON 

65 NASCOMP NASDAQ Composite 5 EIKON 

66 NASA100 NASDAQ 100 5 EIKON 

Interest Rates 

67 FEDFUNDS Effective Federal Funds Rate 1 FRED 

68 TB3MS 3-Month Treasury Bill: Secondary Market Rate 1 FRED 

69 TB6MS 6-Month Treasury Bill: Secondary Market Rate 1 FRED 

70 GS1 1-Year Treasury Constant Maturity Rate 1 FRED 

71 GS5 5-Year Treasury Constant Maturity Rate 1 FRED 

72 GS10 10-Year Treasury Constant Maturity Rate 1 FRED 

73 AAA Moody’s Seasoned Aaa Corporate Bond Yield 1 FRED 

74 BAA Moody’s Seasoned Baa Corporate Bond Yield 1 FRED 

75 TB3MS –

FEDFUNDS 

3 Month Treasury Rate minus the Fed Funds Rate 1 FRED 

76 TB6MS –

FEDFUNDS 

6 Month Treasury Rate minus the Fed Funds Rate 1 FRED 

77 GS1 – FEDFUNDS 1 Year Treasury Rate minus the Fed Funds Rate 1 FRED 

78 GS5 – FEDFUNDS 5 Year Treasury Rate minus the Fed Funds Rate 1 FRED 

79 GS10 – FEDFUNDS 10 Year Treasury Rate minus the Fed Funds Rate 1 FRED 

80 AAA – FEDFUNDS AAA Corp Bond Yield minus the Fed Funds Rate 1 FRED 

81 BAA – FEDFUNDS BAA Corp Bond Yield minus the Fed Funds Rate 1 FRED 

Money and Credit Aggregates 

82 M1SL M1 Money Stock 5 FRED 

83 M2SL M2 Money Stock 5 FRED 

84 

MABMM301USM189S 

M3 for the United States 5 FRED 

85 BOGMBASE Monetary Base; Total 5 FRED 

86 BUSLOANS Commercial and Industrial Loans, All Commercial Banks 5 FRED 

87 TOTALSL Total Consumer Credit Owned and Securitized, Outstanding 5 FRED 

Price Indices 

88 WPSFD49207 Producer Price Index by Commodity: Final Demand: Finished Goods 

(1982 = 100) 

5 FRED 

89 WPSFD4111 Producer Price Index by Commodity: Final Demand: Finished 

Consumer Foods (1982 = 100) 

5 FRED 

90 WPSID611 Producer Price Index by Commodity: Intermediate Demand by 

Commodity Type: Materials and Components for Manufacturing 

(1982 = 100) 

5 FRED 

91 PCEPI Personal Consumption Expenditures: Chain-type Price Index 5 FRED 

92 CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food 

& Energy 

5 FRED 

93 CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel 5 FRED 

94 CPITRNSL Consumer Price Index for All Urban Consumers: Transportation 5 FRED 

95 CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care 5 FRED 

96 CUSR0000SAC Consumer Price Index for All Urban Consumers: Commodities 5 FRED 

97 CUSR0000SAD Consumer Price Index for All Urban Consumers: Durables 5 FRED 

98 CUSR0000SAS Consumer Price Index for All Urban Consumers: Services 5 FRED 

Trade 

99 IMPGS Imports of Goods and Services (Billions of Dollars) 5 FRED 

100 EXPGS Exports of Goods and Services (Billions of Dollars) 5 FRED 

Oil and Gas 

101 POILBREUSDM Global price of Brent Crude, U.S. Dollars per Barrel 5 FRED 

102 PNGASEUUSDM Global price of Natural gas, EU, U.S. Dollars per Million Metric British 

Thermal Unit 

5 FRED 

Investor Sentiment 

103 BW Sentiment Baker and Wurgler (2006) , Baker and Wurgler (2007) Sentiment 

Index 

2 BW 

104 MCSI University of Michigan: Consumer Sentiment 2 FRED 

105 AdvSent Advisors Sentiment 2 EIKON 

Other Stock Market 

Variables 

106 PE10 Shiller’s 10-Year P/E Ratio 1 Shiller 

107 CBOEVIX CBOE SPX Volatility VIX (New) - Price Index 1 EIKON 

( continued on next page ) 
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Number Mnemonic Description Trans. Source 

Average Hourly Earnings 

108 CES2000000008 Average Hourly Earnings of Production and Nonsupervisory 

Employees: Construction 

5 FRED 

109 CES3000000008 Average Hourly Earnings of Production and Nonsupervisory 

Employees: Manufacturing 

5 FRED 

CO2 Emissions 

110 Total CO2 US Total Energy CO2 Emissions 4 EIA 

111 Commercial CO2 Commercial sector US Energy CO2 Emissions 4 EIA 

112 Electric power CO2 Electric power sector US Energy CO2 Emissions 4 EIA 

113 Residential CO2 Residential sector US Energy CO2 Emissions 4 EIA 

114 Transportation CO2 Transportation sector US Energy CO2 Emissions 4 EIA 

115 Industrial CO2 Industrial sector US Energy CO2 Emissions 4 EIA 

Energy 

Consumption 

116 Energy 

Consumption 

US Energy Consumption (including residential, commercial, industrial 

and transportation sectors) 

4 EIA 

117 Renewable Energy 

Consumption 

US Total Renewable Energy Consumption 4 EIA 
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