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ABSTRACT 

This paper addresses the significant challenges of robust autonomous navigation in Unmanned Aerial Vehicles (UAVs) within 

densely populated environments. The focus is on enhancing the performance of Position, Navigation, and Timing (PNT), as specified 

by the International Civil Aviation Organization, in terms of accuracy, integrity, continuity, and availability. The novel contribution 

introduces a Robust Multi-Sensor Fusion Architecture (RMSFA) that utilizes a Bayesian-LSTM machine learning algorithm, fusing 

GNSS, INS, and monocular odometry. Unlike existing solutions that rely on sensor redundancies or methods such as Receiver 

Autonomous Integrity Monitoring (RAIM), which have limitations in performance, or adaptability to erroneous signals, the proposed 

system offers improvements in both positioning accuracy and integrity. Furthermore, GNSS data is preprocessed to remove None-

Line-of-Sight data (NLOS) to improve positioning accuracy. Additionally, INS data errors are corrected using a GRU-based error 

correction architecture to improve INS positioning and reduce drifting. The addition of these post-processing steps reduced the 95th 

percentile horizontal error by 97.4% and 71.5% respectively. A CNN-LSTM architecture is used to obtain a Visual Odometer (VO) 

from the camera sensor. The Bayesian-LSTM architecture fusion performance was then compared to a GNSS/IMU/VO EKF-GRU 

architecture. The comparison showed a 95th percentile error improvement in the horizontal direction of 30.1% for the Bayesian-

LSTM. The architecture was tested in a realistic simulated environment utilizing Unreal Engine and AirSim for UAV simulation, 

Spirent GNSS7000 simulator for Hardware-in-the-Loop (HIL) simulation, and OKTAL-SE Sim3D to mimic the effects of multipath 

on GNSS signals. Overall, this work represents a step toward improving the safety and effectiveness of drone navigation by providing 
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a more robust navigation system suitable for safety-critical situations, without the stated disadvantages in previously mentioned 

literatures. 

 

 

1. INTRODUCTION 

 

Unmanned Aerial Vehicles (UAVs) have the potential to revolutionize various industries, from delivery services to emergency 

response, but one of the main challenges in their widespread adoption is the ability to ensure robust autonomous navigation in densely 

populated urban environments (Kuang, Wu, Pan, & Zhou, 2020). Position, Navigation, and Timing (PNT) solutions must be accurate 

and have high integrity, continuity, and availability to meet the safety requirements set by the International Civil Aviation 

Organization (ICAO). Integrity, in particular, is a key performance consideration for UAVs operating in low-altitude urban 

environments, where error tolerances are tighter than in open-sky conditions (Isik, Hong, Petrunin, & Tsourdos, 2020). It is defined 

as the measure of trust that can be placed in the correctness of the navigation system's information and can be characterized by four 

parameters: Alert Limit (AL), Integrity Risk (IR), Time to Alert (TTA), and Protection Level (PL). PL is defined as the statistical 

bound errors computed to guarantee the probability of the position error being smaller than or equal to the targeted integrity. 

Examples of these are shown in Figure 1 (Zabalegui, et al., 2020) (Zhu, Marais, Betaille, & Berbineau, 2018). 

 

 
Figure 1: Illustration of the Relationship between Estimated, True Position, and Required Integrity Levels. 

One of the main issues facing autonomous navigation in UAVs is the reliability of the sensors used for PNT. Global Navigation 

Satellite Systems (GNSS) such as GPS are the primary source of positioning information for many UAVs, but they are prone to 

errors and can be disrupted by various factors such as signal interference and atmospheric conditions (Geragersian, Petrunin, Guo, 

& Grech, Multipath Detection from GNSS Observables Using Gated Recurrent Unit, 2022). Inertial Measurement Units (IMUs) can 

provide complementary information to GNSS, but they are subject to drift over time and are not able to provide absolute position 

information (Unsal & Demirbas, 2012). 

 

Another issue that can affect the accuracy and integrity of GNSS such as GPS is multipath propagation. Multipath occurs when the 

direct signal from the satellite is reflected or refracted off nearby objects before it reaches the receiver, causing the received signal 

to be delayed and distorted. This can result in errors in the position and timing estimates obtained from the GNSS receiver (Zhang 

& Hsu, 2018). Multipath propagation conditions are more likely to occur in urban environments or other areas with a lot of reflective 

surfaces, such as buildings and bridges. It can also be caused by atmospheric conditions, such as ionospheric and tropospheric delays, 

which can affect signal propagation and cause errors in the position estimate (Su, Jin, & Hoque, 2019). 

 

One type of error that can affect IMUs is bias error, which is caused by the drift of the sensor's output over time. Bias error can be 

caused by a variety of factors, such as temperature changes, aging of the sensor, and external forces acting on the sensor (Altinoz & 

Unsal, 2014). It can result in a systematic offset in the measured acceleration and angular velocity, which can accumulate and cause 

errors in the position and orientation estimates. Another type of error that can affect IMUs is scale factor error, which is caused by 

variations in the sensitivity of the sensor's output. Scale factor error can result in errors in the measured acceleration and angular 

velocity, which can affect the accuracy of the position and orientation estimates (Geragersian, Petrunin, Guo, & Grech, An INS/GNSS 

fusion architecture in GNSS denied environment using gated recurrent unit, 2021). 

 



To address these issues, many approaches have focused on fusing GNSS and IMU data to improve the accuracy and integrity of 

PNT solutions. Traditional fusion methods include extended and unscented Kalman filters, which require prior knowledge of the 

system models and assumptions about noise characteristics (Hu, Wang, Zhong, Gao, & Gu, 2018). These methods have shown some 

success in improving navigation performance, but they are not without their limitations. For example, they may not be able to 

accurately model complex non-linear dynamics or cope with large errors in the initial state estimate. In addition, they may not be 

able to detect and mitigate slow-growing failures, such as the drift in IMU measurements over time (Elsanhoury, Koljonen, Valisuo, 

Elmusrati, & Kuusniemi, 2021). 

 

 
Figure 2: High-Level Concept of Urban Canyon Effects on GNSS Signals 

Another approach to improving navigation integrity is through the use of Receiver Autonomous Integrity Monitoring (RAIM) 

algorithms, which work by classifying GNSS signals as being faulty or not. However, these methods are only effective in situations 

where most signals are not erroneous and may not be suitable for detecting slow-growing failures (Bhattacharyya & Gebre-Egziabher, 

2015). 

 

An additional approach is the use of integrity monitoring techniques that are based on the analysis of the innovation of the Kalman 

filter. One example of this is the Residuals Chi-square Test Method (RCTM), which is suitable for integrity monitoring of 

GNSS/Strapdown Inertial Navigation System (SINS) fusion systems. RCTM is based on the analysis of the innovation of the 

GNSS/SINS Kalman filter, where depending on the χ^2 test statistic, the system will determine if there is a "no-failure" or a "failure" 

system (Zhu & meng, 2018). However, this approach is not suitable for slow-growing ramp failures such as random walks that, as 

noisy sensor data is integrated over time, will cause drifting positioning errors (Liu, Zheng, Wang, & Feng, 2010). 

 

A proposed architecture in literature is based on a multi-sensor fusion of GPS/IMU/LIDAR using a multi-sliding window 

classification adaptive unscented Kalman filter (M-SWCAUKF). This approach can improve the integrity of the navigation solution 

by continuously adapting to changing conditions and utilizing the complementary information provided by multiple sensors (Zheng, 

Fu, Li, & Yuan, 2018). 

 

One approach is the use of map-matching techniques, which involves comparing the vehicle's estimated position to a pre-defined 

map of the environment. By using map constraints and other information, such as the vehicle's heading and speed, it is possible to 

improve the accuracy and integrity of the navigation solution. Map-matching techniques can be used in conjunction with other 

sensors, such as GNSS and IMU, to further improve the performance of the navigation system (Tao, et al., 2022). 

 

In this paper, we present a new approach to improving navigation integrity in UAVs operating in urban environments. By leveraging 

machine learning techniques, our proposed system can continuously monitor and adapt to changing conditions in real time, providing 

reliable position and velocity information with high integrity. Our approach detects and mitigates both sudden and slow-growing 

failures, making it suitable for a wide range of mission scenarios. 

 

 The effectiveness of this proposed approach will be demonstrated through simulation using Spirent SimGEN, Sim3D, and 

GSS7000 simulator. The objectives of the research include reviewing the current state-of-the-art in autonomous navigation for UAVs, 

identifying the limitations of current approaches, proposing a new machine learning-based approach, implementing, and evaluating 

the approach through simulation. The research will be organized into four chapters: an introduction and literature review, a 

description of the proposed approach and implementation, an evaluation, and a conclusion.  



 

2. ROBUST MULTI-SENSOR FUSION ARCHITECTURE (RMSFA) 

 2.1 GATED RECURRENT UNITS 

 

Gated Recurrent Units (GRUs) are a variant of Recurrent Neural Networks (RNNs) introduced by Cho et al. in 2014 (Cho, 

Merrienboer, Bahdanau, & Bengio, 2014). GRUs were developed as a more computationally efficient alternative to Long Short-

Term Memory (LSTM) networks, retaining the capacity to model long-range dependencies in sequential data while utilizing fewer 

parameters. 

The architecture of a GRU consists of recurrent hidden units that include two specific gating mechanisms: the reset gate and the 

update gate. These gates modulate the flow of information within the network, allowing for the selective retention and forgetting of 

information across time steps. 

 

1. Reset Gate: This gate determines the degree to which previous hidden states are considered when computing the current 

hidden state. It is governed by a sigmoid activation function, generating values between 0 and 1 that weigh the contribution 

of previous hidden states. 

2. Update Gate: Operating similarly to the reset gate, the update gate dictates the extent to which the previous hidden state is 

carried over to the current time step. It acts as a blend between the previously hidden state and a candidate's hidden state, 

thus controlling the flow of information. 

 

Mathematically, the operations within a GRU are expressed as follows: 

 

𝑟𝑡 = 𝜎(𝑊𝑟  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) 

 

𝑧𝑡 =  𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) 

 

ℎ�̃� = tanh (𝑊ℎ. [𝑟𝑡  .  ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ 

 

ℎ𝑡 = (1 − 𝑧𝑡). ℎ𝑡−1 + 𝑧𝑡 . ℎ�̃� 

 

Here, 𝑟𝑡 and 𝑧𝑡 represent the reset and update gate, respectively. The weight matric 𝑊 and bias vector 𝑏 are the learnable 

parameter, 𝜎 denotes the sigmoid activation function and 𝑡𝑎𝑛ℎ is the hyperbolic tangent.  

 

 
Figure 3: Inside a Gated Recurrent Unit Neural Network Cell 

The GRU's simplified architecture compared to the LSTM reduces computational overhead and the number of hyperparameters. 

Despite this reduction in complexity, GRUs have been found to perform competitively with LSTMs in various tasks such as language 

modeling, speech recognition, sequence-to-sequence translation and sensor fusion (Xu, Petrunin, & Tsourdos, 2022). One potential 

drawback of the GRU's design is the possible loss of modeling capacity due to the reduced number of gates, particularly in scenarios 

that require highly nuanced control over the information flow. The choice between LSTMs and GRUs thus often hinges on the 

specific demands of the task, the computational resources available, and the nature of the sequential data being processed. 

 



2.2 BAYESIAN-LSTM 

 

LSTM networks are a form of RNNs designed to model sequential data by capturing long-range dependencies. The structure 

includes input, output, and forget gates, along with a continuous-valued cell state, allowing the network to learn and retain complex 

temporal relationships within sequences. Integrating Bayesian principles into LSTMs introduces a probability distribution over the 

model's weights, instead of point estimates. This probabilistic treatment offers a nuanced representation of uncertainty in the model's 

predictions and parameters, enhancing its robustness and generalization capabilities. 

 

Three principal techniques are commonly applied to realize Bayesian treatment within LSTMs: Markov Chain Monte Carlo 

(MCMC), Monte Carlo (MC) Dropouts, and Variational Inference (VI). MCMC provides an unbiased estimation of the posterior 

through a sequence of samples, although it may suffer from slow convergence and high computational cost. MC Dropouts implement 

dropout layers during both training and prediction, interpreting them as approximate Bayesian inference, which provides a balance 

between computational efficiency and uncertainty quantification. VI approximates the true posterior with a tractable distribution and 

offers scalability but may miss subtle characteristics of the posterior (Geragersian, Petrunin, Guo, & Grech, Uncertainty-based Sensor 

Fusion Architecture using Bayesian-LSTM Neural Network, 2023). 

 

For this paper, MC Dropouts are chosen due to their advantageous balance between accuracy and computational demands. Unlike 

MCMC, which can be prohibitively slow, or VI, which may require a careful specification of the approximating family, MC Dropouts 

offer an appealing compromise. The mathematics of MC Dropouts in a neural network context can be described by sampling from 

the approximate posterior. Given an input 𝑥, the predictive distribution is obtained through 𝑇 stochastic forward passes, each with 

dropout applied: 

 

𝑝(𝑦|𝑥, 𝐷) ≈
1

𝑇
∑ 𝑝(𝑦|𝑥, 𝜃𝑡)

𝑇

𝑡=1

 

 

Here, 𝜃𝑡 represents the weights in the tth forward pass without dropout, and 𝐷 symbolizes the data. This approach allows Bayesian-

LSTMs with MC Dropouts to provide a robust and computationally amenable framework for sequential modeling, preserving the 

strengths of traditional LSTM networks while incorporating essential uncertainty quantification. By leveraging the advantages of 

dropouts within a Bayesian framework, MC Dropouts present a practical and effective method, aligned with the specific demands 

and objectives of the study at hand. 

 

2.3 CONVOLUTIONAL NEURAL NETWORK – LSTM 

 

The Convolutional Neural Network-LSTM (CNN-LSTM) model brings together the spatial feature extraction capabilities of CNNs 

with the temporal sequence modeling strengths of LSTMs, making it particularly suited for applications like video analysis, time-

series prediction where spatial characteristics matter, and multivariate sequential data with spatial features. In the CNN-LSTM 

architecture, the initial layers consist of a series of convolutional and pooling layers, typical of a CNN. The convolutional layers are 

responsible for the automatic and adaptive learning of spatial hierarchies of features. By applying convolutional filters followed by 

activation functions, they learn to detect patterns such as edges, corners, and more complex shapes within the data. The pooling 

layers reduce dimensionality and computational complexity, focusing on the most salient features. 

 

The output of the CNN component is then reshaped and fed into the LSTM layers. LSTMs are a specialized form of RNNs capable 

of learning long-range dependencies in the data. With their sophisticated gating mechanisms, including input, output, and forget 

gates, LSTMs can selectively remember or forget information, enabling them to capture temporal patterns over extended sequences. 

This makes them adept at modeling the temporal or sequential dimension of the data. 

 

The combination of these two paradigms within a single model allows the CNN-LSTM to operate effectively on data that possesses 

both spatial and temporal dimensions. The CNN component's ability to extract spatial features forms a complementary relationship 

with the LSTM's capacity to model the dependencies across time (Jiao, Jiao, Mo, Liu, & Deng, 2019). 

 

Mathematically, the convolution operation in the CNN part can be represented as: 

 



𝑓𝑖,𝑗 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝑏 + ∑ ∑ 𝑤𝑚,𝑛 .  𝑥𝑖 + 𝑚, 𝑗 + 𝑛 

𝑛𝑚

) 

 

Where 𝑓𝑖,𝑗 is the feature map, 𝑏 is the bias, 𝑤𝑚,𝑛 are the weights of the convolutional filters, and  𝑥𝑖 + 𝑚, 𝑗 + 𝑛 are the elements of 

the input. 

 

The LSTM part can be formulated through the following equations representing the gate activations and state updates: 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

 

𝑖𝑡 =  𝜎(𝑊𝑖  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

 

𝐶�̃� = tanh (𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 

 

𝐶𝑡 = ft . 𝐶𝑡−1 + 𝑖𝑡  . 𝐶�̃� 

 

𝑜𝑡 =  𝜎(𝑊𝑜  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

 

ℎ𝑡 = 𝑜𝑡 . tanh(𝐶𝑡) 

 

 

Here, 𝜎 denotes the sigmoid activation function,. The weight matric 𝑊 and bias vector 𝑏 are the learnable parameter, while 𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡 

represent the forget, input, and output gates, respectively. 

 

 
Figure 4: Diagram of an Individual LSTM Cell with Input Gate, Forget Gate and Output Gate 

The CNN-LSTM architecture thus facilitates a rich, multi-faceted analysis of data, harnessing spatial and temporal dimensions. Its 

versatility and capability to learn complex hierarchical features make it a prominent choice in a variety of applications that demand 

an integrated understanding of spatial and temporal characteristics. 

 

2.4 PROPOSED ARCHITECTURE 

2.4.1 HIGH-LEVEL OVERVIEW 

 

Figure 5 presents a high-level overview of the simulated data generation process and proposed architecture for integrity-based 

multi-sensor positioning. In this architecture design, an accelerometer and gyroscope are used to calculate INS positioning with 

Direction Cosine Matrix (DCM). Using a GRU-based error correction technique, INS errors caused by the integration of sensor data 

that contain bias and random errors are corrected by the GRU error predictions. 

 



GNSS signals received from Ublox-F9P are then fed into a GRU multipath detection algorithm that utilizes GNSS observables to 

classify signals into either Line-of-Sight (LOS), multipath, and None-Line-of-Sight (NLOS) conditions. NLOS signals are then 

excluded from the Position, Velocity, and Timing (PVT) calculation to improve GNSS positioning performance.  

 

CNN-LSTM architecture is utilized to provide monocular Visual Odometry (VO) information from a camera simulated in AirSim. 

The data output from this neural network is the change in position. This information is accumulated over time to provide VO position 

prediction. 

 

Lastly, a Bayesian-LSTM architecture is used to fuse the position data from the previously mentioned parts of the system. This 

provides an improved position accuracy performance over using individual components of this architecture. The neural network 

output is the estimated position and the uncertainty in the prediction. 

 

 
Figure 5: High-Level Overview of Simulated Data Generation Process and Proposed Architecture 

2.4.2 INS ERROR CORRECTION USING GRU 

 

A detailed diagram regarding the INS error correction system is shown in Figure 6. The training phase of the GRU involves 

measuring specific forces and angular velocities using an accelerometer and a gyroscope, which together constitute the system's 

Inertial Measurement Unit (IMU). 

 

The calculation of the Inertial Navigation System (INS) position and velocity necessitates the utilization of the current system 

orientation to compute the Direction Cosine Matrix (DCM), which is essential for translating accelerometer and gyroscope readings 

from the body frame to the navigational frame. Subsequently, these translations are integrated to yield the position, velocity, and 

updated orientation information, which is employed as the reference INS for error estimation. The feature input for the GRU at each 

timestep comprises the navigation frame acceleration, angular rate, current orientation, and the time elapsed since the last Global 

Navigation Satellite System (GNSS) update. The target output for training is the position error, computed as the difference between 

the INS position and the GNSS ground truth data. The neural network consists of a two-layer GRU architecture with each layer 

containing 256 and 32 cells respectively with the sequence length input being 20. A fully connected layer is used to provide the 

output from the neural network. The batch size used is 64, the dropout rate is set at 0.2 and the activation function is a RELU. The 

ADAMAX optimizer is employed during the training to optimize the neural network weights and minimize the discrepancies between 

the predicted and actual position errors. Furthermore, the loss is calculated using Root Mean Squared Error (RMSE). 

 

The second mode of the Neural Network is the prediction phase, which is active throughout the simulation. During this phase, the 

trained GRU predicts the positioning and velocity errors based on the given navigation frame acceleration, angular rate, current 

orientation and the time elapsed since the last GNSS update. The predicted errors are then deducted from the INS velocity and 

position readings to generate the system prediction. For evaluation purposes, the updated position prediction will be deducted from 

the ground truth information available in the simulation to assess system performance. 

 



 
Figure 6: INS Error Correction Algorithm 

2.4.3 MULTIPATH DETECTION AND EXCLUSION USING GRU 

 

Figure 7 presents a classification algorithm based on the Gated Recurrent Unit (GRU) that leverages Global Navigation Satellite 

System (GNSS) to ascertain the presence of multipath conditions for signals. The algorithm utilizes pseudorange, ephemerides, 

Doppler shift, Carrier-to-Noise ratio (C/N0), and elevation data from each satellite. Employing a GRU facilitates the identification 

of nonlinear relationships and enables the utilization of past error dependencies for predicting multipath conditions. The 

aforementioned features serve as the input to the Neural Network, which then processes the data using various weights, biases, and 

non-linear functions to establish a connection between the input features and the output decision. The selection of these inputs was 

informed by a review of the current literature and existing systems. For instance, C/N0 was successfully employed in NLOS 

classification, while an elevation-based C/N0 was highlighted in (Kubo, Kobayashi, & Furukawa, 2020) as a critical factor in 

determining the presence of multipath. Moreover, Doppler shift and pseudorange were employed to enhance the classification 

performance of Support Vector Machines (SVM). 

 

In the proposed system, the information received from each satellite is processed and classified every second into one of three 

distinct categories: LOS, multipath, and NLOS. LOS refers to signals that travel directly from the satellite to the receiver without 

any obstructions or reflections. Signals affected by multipath, on the other hand, are those that reach the receiver after reflecting off 

various surfaces, such as buildings or the ground, often resulting in a delay in signal reception and leading to inaccurate positioning. 

These signals are typically mixed with LOS signals and therefore can provide GNSS positioning information in situations where 

most are affected by interference. NLOS signals are those that do not have a direct path from the satellite to the receiver, usually 

because of obstructions like buildings, trees, or other structures. 

 

If a signal is classified as NLOS, it is excluded from the Position, Velocity, and Time (PVT) calculations to ensure more accurate 

positioning. This classification is crucial for applications that require precise positioning, as it helps in filtering out inaccurate signals 

that could potentially degrade the system's performance. To compute the PVT, a minimum of four satellites is required, with the 

pseudorange and satellite positions information fed into the MATLAB 'receiver position' function to determine the receiver's position. 

When a multipath condition is detected and the corresponding signal is excluded, the corresponding satellite is flagged for a duration 

of one second. Consequently, the pseudorange measurement and position of that particular satellite are not utilized for receiver 

position calculation for that one-second duration. The neural network consists of a single-layer GRU architecture with 128 cells and 

a sequence length input of 60. A fully connected layer is used to provide the output from the neural network. The batch size used is 

64, the dropout rate is set at 0.2 and the activation function is a RELU. The ADAMAX optimizer is employed during the training to 

optimize the neural network weights and minimize the discrepancies between the predicted and actual position errors. Furthermore, 

the loss is calculated using cross-entropy loss. 



 
Figure 7: Multipath Detection and Exclusion 

2.4.4 CNN-LSTM BASED VISUAL ODOMETRY 

 

Figure 9 outlines an advanced visual odometry algorithm, leveraging a hybrid architecture that combines CNN and LSTM 

networks. Instead of processing single images independently, this approach concatenates two sequential images, thus including 

temporal information directly into the input data. The architecture consists of a modified ResNet-based CNN followed by two LSTM 

layers. 

 

The CNN extracts spatial features using a modified ResNet architecture. This step transforms the raw image data into a more compact 

and informative representation. The spatial features are then fed into two LSTM layers, which are designed to model temporal 

dependencies and predict the vehicle's position difference between the two timesteps. The final prediction, representing the position 

difference, is made by a fully connected layer receiving the output of the LSTM layers. The predicted position differences from the 

model are accumulated over time to estimate the overall trajectory of the vehicle. This model is particularly beneficial for applications 

such as autonomous navigation and robotics, which require real-time and precise trajectory estimations. The hybrid CNN-LSTM 

architecture enables the model to capture both spatial and temporal dependencies in the data which can lead to improved positioning 

performance.  

 

The neural network consists of a series of convolutional layers based on a modified ResNet-18 architecture, followed by a flattening 

layer, two LSTM layers, and a fully connected layer. Each LSTM layer contains 100 cells, a dropout rate is at 0.2 and the activation 

function is based on RELU. ADAMAX optimizer is employed during the training to optimize the neural network weights and 

minimize the discrepancies between the predicted and actual position differences. 

 

 
Figure 8: CNN-LSTM VO 

2.4.5 BAYESIAN-LSTM SENSOR FUSION AND PROTECTIONAL LEVEL ESTIMATION 

  

Once post processing for each sensor has been carried out, the data is then fused using a Bayesian-LSTM architecture. The input 

to the architecture is in form of a matrix which contains the input features: GNSS Position NED, INS Position NED and VO Position 

NED. Each input has a sequence length of 20 and a batch size of 64. The Bayesian-LSTM uses two layers of 128 and 64 cells each 

with a RELU activation function layer and a fully connected layer at the end for a 3-dimensional vector output in the form or NED 

frame positioning. Furthermore, to provide uncertainty, a Monte Carlo dropout layer is added after the LSTM layer to provide 



randomized dropouts during the prediction phase of the algorithm. Once training is completed, the architecture provides 100 

predictions of each timestamp. These are then used to calculate the mean and standard deviation of each prediction. To calculate the 

protection levels estimation, the below equation is used. 

 

𝑯𝑷𝑳 = 𝑲𝑯𝒅 

 

𝑑 = √
𝜎𝐸

2 + 𝜎𝑁
2

2
+ √(

𝜎𝐸
2 − 𝜎𝑁

2

2
)

2

+ (𝜎𝐸𝜎𝑁)2  

 

Where 𝜎𝐸 is the standard deviation in the East direction (m) and 𝜎𝑁 is the standard deviation in the North direction. 𝐾𝐻 is the scalar 

factor that are both set to one in this scenario which represents an integrity risk of 0.1%. 

 

2.5  EXPERIMENTAL SETUP 

2.5.1 HARDWARE-IN-THE-LOOP CONFIGURATION 

 

The predominant portion of drones is equipped with a Companion Computer (CC), generally employed for data processing from 

external sensors, like monocular cameras, or for the deployment of AI-based models to aid the Flight Control Unit (FCU) in managing 

the computational load associated with the UAV's navigation, control, and stability. A critical step in validating the sensor fusion 

framework, outlined in the prior section, is conducting a Hardware-In-the-Loop (HIL) simulation. The process commences by 

integrating a Pixhawk 2.4 board as an FCU, which is directly interfaced with a local computer serving as a CC. Utilizing Unreal 

Engine and AirSim enables the integration of the FCU into a photorealistic environment. The integration of photogrammetry data 

into the Unreal Engine facilitates the recreation of urban landscapes, thereby enhancing the level of detail in aspects such as light 

intensity, authentic weather effects, and material properties. The primary objective of this photorealistic environment is to assist in 

the validation and testing of optical sensors installed on the UAV, making it possible to define camera intrinsic and distortion 

parameters. Photogrammetry data from San Francisco was employed in the simulation, as illustrated in the figure below. 

 

 
Figure 9: San Francisco 3D Environment in Unreal Engine with AirSim 

Upon successfully establishing the connection between the FCU, AirSim, and the Unreal Engine, trajectory commands, derived 

from a Python file linked to the AirSim plugin, are relayed to the Spirent GSS7000 simulator. This enables the execution of HIL tests 

in an iterative manner, maintaining consistent trajectory assumptions. Concurrently, the trajectory estimated by the monocular camera 

is documented in an Excel file. 

 

To accurately assess the proposed architecture's performance, it is essential to conduct training sessions using realistic scenarios, 

derived from the Spirent GSS7000 simulator and SimSENSOR. Both the Spirent GSS7000 and SimGEN are designed to simulate 

the Global Navigation Satellite System (GNSS) Radio Frequencies (RF) emitted by each constellation's satellites. Adjusting the 

simulation time and constellation settings enhances the realism of the scenario, enabling precise time-accurate comparisons. The 



UAV trajectory chosen for this test is shown in Figure 10. The trajectory is part of a longer journey and represents an area in San 

Francisco with very dense urban canyons that can reduce GNSS performance. Furthermore, error tolerances in these urban canyons 

are considerably lower than clear-sky conditions and therefore require any positioning system used to be robust. Additionally, going 

around a block provides a challenge for both IMU and VO to keep track. 

 

 To enhance realism further, particularly in Urban Canyon scenarios, OKTAL-SE Sim3D software was employed to simulate the 

multipath effect on GNSS signals using ray-tracing method. The software accounts for the specific geometry of the urban 

environments simulated in this study. Additionally, the distinct material properties that influence signal reflection characteristics 

were also considered, adding another layer of realism. This simulation generated LOS, multipath, and NLOS conditions for the GNSS 

signals processed by the receiver. No additional multipath mitigation techniques, aside from those developed in this paper or are 

already provided by the receiver manufacturer, were used to assist under these conditions. 

 

 
Figure 10: Ground Truth UAV Trajectory for Simulation 

Moreover, the repeatability of the simulation setup permits direct algorithm technique comparisons, thereby minimizing the 

independent variables required for testing. These signals are then fed into a GNSS receiver for position data capture. To generate the 

required IMU data for training, SimSENSOR is utilized to produce the accelerometer and gyroscope measurements exhibited by the 

vehicle. SimSENSOR also permits the simulation of realistic sensor errors by modifying the SimSENSOR's deterministic and 

stochastic error parameters, such as the random walk rate and bias offset. In this study, the IMU stochastic and deterministic errors 

were adjusted to replicate the characteristics of an Advanced Navigation Orientus IMU sensor, the specifications of which are 

provided in Table I. This data is then relayed via the User Datagram Protocol (UDP) communication protocol to the AirSim simulator. 

 

 
Table I: IMU Random Error and Bias for Gyroscope and Accelerometer 

IMU Sensor A 

Accelerometer Gyroscope 

Scaling factor (ppm) 600 Scaling factor (ppm) 500 

Bias (ug) 20 Bias (deg/h) 3 

ARW (ug/sqrt(Hz)) 100 GRW (deg/s/sqrt(h)) 0.004 

Update rate (Hz) 100 

 

2.5.2 DATA COLLECTION 

 

The sensor and simulation system data were collected and stored in CSV file format, with each timestep's time and date documented. 

This data was then processed in MATLAB to produce the ground truth data, which was used as the target for training. The input data 

comprised the IMU sensors' raw output (accelerometer and gyroscope in XYZ) and the GNSS latitude, longitude, and height 

information, recorded at a rate of 1 Hz. The data was synchronized to the same timestep as the accelerometer and gyroscope data, 

recorded at 100 Hz, using interpolation. 

 



3. RESULTS AND DISCUSSION 

3.1 GRU-BASED ERROR CORRECTION PERFORMANCE 

 

Figure 11 shows a comparison between the Ground Truth data and the GRU Error Correction Algorithm that is applied to the 

calculated INS position. The plot shows that with the correction applied by the GRU, the INS position follows the ground truth 

trajectory. This is especially true for sections between 0 m and -80 m in the east direction where the INS error did not exceed greater 

than 10 m of error. However, there is a greater variation between -10 m and 100 m in the North direction. This may indicate areas 

that are not represented as well in the training data as earlier segments and therefore lead to an increase in prediction errors. 

 

 
Figure 11: Comparison between Ground Truth and GRU Error Correction Algorithm in the Horizontal Direction 

Table II compares the mean, standard deviation, and 95th percentile error between INS and GRU error correction algorithms in the 

north and east direction. The mean error exhibited in the North and East directions for INS and GRU is 19.9 m, 20.2 m, 2.45 m, and 

5.38 m respectively. This indicates that the GRU outperforms the INS positioning estimate by up to 87.7%. This may be due to the 

biases and random walk effects associated with INS systems due to the constant integration of IMU information over a period leading 

to a drift in the position prediction from the ground truth if not corrected promptly. In contrast, the GRU architecture can model the 

highly non-linear relationship between the feature inputs and the output to obtain the estimated position error which is then subtracted 

from the INS position estimate. A similar story emerges when comparing the standard deviation between INS and GRU with a 

reduction of up to 86.1% being observed. Lastly, the 95th percentile shows a reduction of up to 86.7% when comparing INS with 

GRU. In terms of 95th percentile error in the horizontal direction for the whole trajectory, INS exhibits a 77.5 m error compared to 

GRU with a 22.1m error. This is a reduction of 71.5% in the horizontal direction which indicates the effectiveness of GRU for the 

prediction of INS position errors. 

 
Table II: Comparison of Mean, Standard Deviation, and 95th Percentile Error between INS and GRU Error Correction in the North and East 

Direction 

 
𝝈 error(m) 𝝁(m) 95th Error (m) 

N E N E N E 

INS Sensor 19.9 20.2 16.7 18.2 53.3 56.6 

GRU Error Correction 2.45 5.38 2.32 7.77 7.09 20.92 

 

 

3.2 GRU-BASED MULTIPATH DETECTION & EXCLUSION PERFORMANCE 

 

Figure 12 is a confusion matrix result from the testing of the GRU classification architecture with 3 categories. Class 0 represents 

situations where the signal is LOS. Class 1 represents signals that are Multipath (LOS signal + Reflected Signals), and Class 2 

represents signals that are NLOS. The aim of this confusion Matrix is to have a majority of the classified signals along the diagonal 

of the grid. This would indicate the Predicted Class matches the True Class. In the testing dataset, this is shown to be the case with a 

robust performance seen for classifying Multipath and NLOS signals correctly. The accuracy of the GRU classification algorithm is 

87.1%.  The precision regarding LOS was 64.2%, recall (sensitivity) was 62%, and specificity 92.5%. Precision for the Multipath 

class was 89.7%, recall 91.5%, and specificity 63.4%. Precision for the NLOS class was 90.1%, recall 83.9%, and specificity 98.9%. 



This shows that the classification algorithm accurately predicts NLOS classes with the ability to classify instances when signals are 

NLOS and when signals are not NLOS. Therefore, it is of benefit to use this algorithm to filter out signals that are classified as NLOS 

to improve positioning performance from the GNSS receiver. 

 

 
Figure 12: Confusion Matrix Result for GRU-GNSS LOS, Multipath, and NLOS Classification 

Figure 13 shows a comparison of the receiver-calculated position estimate with the ground truth trajectory. Some of the position 

estimates from the GNSS receiver closely match the Ground Truth which indicates areas of low multipath and NLOS interference 

with the receiver. However, certain sections see large errors of position compared to the ground truth due to NLOS signals interfering 

with the receiver-based estimated position. This indicates that there is a need for a technique to identify and exclude NLOS signals 

to use it reliably for GNSS fusion.  

 

 
Figure 13: Comparison of Receiver Calculated Position Plot and Ground Truth without Post-Processing. 

Figure 14 compares the position estimate with NLOS signals removed using the GRU classification algorithm with the ground 

truth trajectory. This graph showcases the improvements that can be achieved with a deep learning classification algorithm with 

temporal dependencies accounted for in the GRU architecture. A majority of the position estimates calculated after removing NLOS 

signals are close to the ground truth trajectory with only minor points being off the ground truth. However, comparing areas between 

-10 m and 30 m in the North direction with Figure 13 shows that some NLOS signals have successfully been identified but some 

may have remained. Furthermore, Multipath signals are still present in the readings which can interfere with LOS signals and reduce 

positioning accuracy. However, these effects are minor compared to the significance of NLOS which contributes to the overall 

positioning accuracy. Furthermore, we start to see gaps in areas such as -30 m and -40 m in the North direction. This is due to the 

number of satellites available after removing NLOS signals dropping below 4 and there cannot calculate a 3D position. This, 

therefore, requires other sensors such as IMUs to aid in GNSS outages.    

 



 
Figure 14: Comparison of Position Estimate with NLOS Signals Removed using GRU and Grund Truth 

Table III compares the mean, standard deviation, and 95th percentile error between INS and GRU error correction algorithms in the 

North and East directions. The mean error exhibited in the North and East directions for INS and GRU is 10.1 m, 4.3 m, 1.64 m, and 

1.46m respectively. This shows an improvement in the mean error position performance from GNSS by up to 83.8%. This indicates 

that the algorithm is effectively able to classify NLOS signals which then leads to an improvement in the positioning accuracy. 

Regarding standard deviation, the same story is true with the GRU outperforming the receiver. For the 95th percentile in the horizontal 

direction, a 147 m error is observed by the receiver compared to 3.8 m for the GRU. This is a reduction of 97.4% in the error observed.   

 
Table III: Comparison of Mean, Standard Deviation, and 95th percentile Error between Receiver and GRU Multipath Detection Algorithm in the 

North and East Direction 

 
𝝈 error(m) 𝝁(m) 95th Error (m) 

N E N E N E 

Receiver 10.1 4.3 49.9 48.3 109 100 

GRU Multipath Detection 1.64 1.46 0.41 0.63 2.46 2.9 

 

3.3 CNN-LSTM-BASED VISUAL ODOMETRY PERFORMANCE 

 

Figure 15 shows a comparison between the CNN-LSTM VO output and the ground truth trajectory of the vehicle. In general, the 

CNN-LSTM VO output closely follows the ground truth trajectory. This illustrates that the CNN-LSTM can predict the position 

change between two consecutive frames effectively. However, as with INS, there is some drifting occurring. This is due to each new 

prediction being accumulated to the existing prediction to get a new position. Furthermore, between -50 m and 0 m in the East 

direction when returning to base, the drift becomes significant as to diverge completely from the trajectory. This may indicate further 

training that is required to reduce consecutive prediction errors and increase positioning accuracy and longevity for relying on the 

position estimate. 

 
Figure 15: Comparison of CNN-LSTM VO Performance with Ground Truth 



Table IV provides two important performance aspects. First, it outlines the CNN-LSTM VO performance regarding the mean, 

standard deviation, and 95th percentile position error. Here, we can see that the mean error in the north and east direction is 1.12 m 

and 0.88 m respectively. Furthermore, the horizontal 95th percentile error is 8.13 m. Regarding the second important comparison, the 

table assesses the CNN-LSTM VO performance with the existing GRU architectures examined above. In regards to the mean error, 

CNN-LSTM VO outperforms both the GRU-GNSS receiver and GRU-INS position. However, for both standard deviation and 95th 

percentile error, the GRU-GNSS outperforms both algorithms. This is to be expected as both INS and VO suffer from errors that 

accumulate over time and therefore diverge from the ground truth whilst GNSS is not affected by such a phenomenon. 

 

 
Table IV: CNN-LSTM VO position Mean, Standard Deviation, and 95th Percentile Error in the North and East Direction with a Comparison to 

Previously Mentioned Architectures 

 
𝝈 error(m) 𝝁(m) 95th Error (m) 

N E N E N E 

CNN-LSTM VO 1.12 0.88 1.08 3.32 3.28 7.44 

GRU Multipath Detection 1.64 1.46 0.41 0.63 2.46 2.9 

GRU Error Correction 2.45 5.38 2.32 7.77 7.09 20.92 

 

 

3.4 BAYESIAN-LSTM FUSION PERFORMANCE 

 

Figure 16 compares the output of all individual architectures with ground truth vehicle trajectory before fusion using Bayesian-

LSTM. This is a complementary visual comparison to Table IV to demonstrate the need for the fusion of sensors to provide cm-level 

accuracy in Urban Canyons environments where GNSS navigation is affected. 

 

 
Figure 16: Comparison of GRU-INS, CNN-LSTM VO, and GRU-GNSS with Ground Truth before Sensor Fusion 

In Figure 17, the output of the Bayesian LSTM is presented and compared against the ground truth. In contrast to Figure 16, this 

shows a position performance improvement over any single sensor output provided thus far. It indicates that the sensor fusion can 

utilize the position information from each sensor after error correction (in the case of INS and GNSS) to provide increased 

accuracy. However, tiny fluctuations still exist. This is seen between -20 m and -40 m in the north direction and corresponds to the 

reduced number of available satellites exhibited in Figure 14. The behavior is to be expected in urban canyons with a large degree 

of satellites blocked. To improve conditions for GNSS further, more constellations can be utilized to improve signal availability for 

position calculation. However, due to the fusion of these sensors, the Bayesian-LSTM is not fully reliant on accurate GNSS and 

therefore provides improvement over single sensors for navigation. 

 



 
Figure 17: Comparison of Bayesian-LSTM Output with Ground Truth Vehicle Trajectory 

Figure 18 highlights the variation in position error from the Bayesian-LSTM prediction over the trajectory of the vehicle. This 

shows two peaks that correspond to the reduced number of GNSS satellites available for position estimation. This, therefore, provides 

the estimated impact of the GNSS position accuracy in the fusion architecture (up to 2.5 m in the horizontal direction). 

 
Figure 18: Horizontal Position Prediction Error of Bayesian-LSTM 

Table V is a comparison of the mean, standard deviation, and 95th percentile error between Bayesian-LSTM and a GNSS/IMU/VO EKF-GRU 

algorithm that was developed previously. This architecture uses two local EKF filters to integrate GNSS-IMU and IMU-VO. Then, using a GRU 

for each navigation frame direction, the data is fused to provide a final position output. The mean error exhibited in the North and East direction 

for Bayesian-LSTM and the GNSS/IMU/VO EKF-GRU architecture is 0.001 m, 0.0006 m, 0.12 m, and 0.09 m respectively. Improved performance 

is to be expected as the GNSS signals are filtered to remove NLOS and the use of a CNN-LSTM architecture for VO. The same story is true for the 

standard deviation and 95th percentile with a horizontal error improvement of 30.1% for the Bayesian-LSTM. 

Table V: Comparison of Mean, Standard Deviation, and 95th Percentile Error Between Bayesian-LSTM and State-Of-Art Literature Architecture 

in the North and East Direction 

 
𝝈 error(m) 𝝁(m) 95th Error (m) 

N E N E N E 

GNSS/IMU/VO EKF-GRU  

(Negru, Geragersian, Petrunin, Grech, & Busenel, 2023) 
0.12 0.09 0.28 0.28 0.68 0.65 

Proposed System 0.001 0.0006 0.233 0.231 0.467 0.463 

 

 

3.5 INTEGRITY ANALYSIS 

 

Figure 19 shows an example output from the Bayesian-LSTM compared to the ground truth trajectory and calculated PL based on 

the uncertainty output from the architecture. PL is defined as the statistical bound errors computed to guarantee the probability of the 

position error being smaller than or equal to the targeted integrity. The diagram shows the Bayesian-LSTM position output closely 



following the ground truth. Furthermore, any slight differences in these are still within the bounds of the calculated protection level 

which provides integrity in the sensor fusion architecture. 

 

 
Figure 19: Example output of Bayesian-LSTM Uncertainty with Protection Level Calculation 

Figure 20 provides an example case where the Bayesian-LSTM mean position output does not closely track the ground truth, 

however the protection level is still able to estimate the uncertainty in its position estimate and therefore correctly predicts the bounds 

that the position will lie between. Furthermore, it can be seen that in areas where the fused position is not tracking the ground truth 

closely due to increased noise from sensors, the estimated protection level size is greater (timestamp 1.17 to 1.2). However, areas 

with better tracking (timestamp 1.2 to 1.23) show a reduced protection level size which is the desired behavior.  

 

 
Figure 20: Example of Protection Level Capturing Position Uncertainty 

In Figure 21, a comparison is made between the Bayesian-LSTM output, the calculated protection level based on the uncertainty 

output from the Bayesian-LSTM, the GRU-INS position estimate, and ground truth. In this example, the Bayesian-LSTM does not 

track the ground truth well. This is also true for the protection level estimates that do not account for the increased uncertainty in 

this scenario. However, this may be due to several factors including not enough training examples that would aid in better tracking 

these specific segments or due to increased sensor noise. Compared to just GRU-INS, it can be seen that this does not closely 

match the ground truth and performs worse than the GRU-INS. This may provide additional insight into the reason why the 

Bayesian-LSTM did not perform as expected in this scenario. However, as discussed in the previous section, the Bayesian-LSTM 

architecture performs better than both the individual sensors and the compared algorithm. 



 
Figure 21: Comparison of Bayesian-LSTM, Protection Level, GRU-INS, and Ground Truth 

4. CONCLUSION & FUTURE WORK 

 

In conclusion, the paper demonstrated a proposed robust multi-sensor fusion algorithm using sensor data from GNSS, IMU, and 

Camera. The data collected from IMU was used to provide INS position data in the local navigation frame. The INS error was then 

estimated based on the feature inputs and target output using a GRU algorithm. Results showed a reduction of up to 86.7% when 

comparing INS with GRU.  Furthermore, regarding 95th percentile errors in the horizontal direction, INS exhibits a 77.5 m error 

compared to GRU with a 22.1 m error. This is a reduction of 71.5%. GNSS signals were recorded and classified as either LOS, 

Multipath, or NLOS. If the signal was classified as NLOS, it would not be used for GNSS positioning. The results showed a reduction 

in 95th percentile errors in the horizontal direction of 143.2 m. This is a reduction of 97.4% in the error observed. A CNN-LSTM 

architecture was developed based on a ResNet-18 architecture and LSTM layers. The output from two consecutive images from the 

camera was the translation of the motion of the vehicle. The outputs were accumulated to obtain the position estimation. Here, the 

results showed a mean error in the north and east directions of 1.12 m and 0.88 m respectively. The processed data from each sensor 

was then fed into a Bayesian-LSTM algorithm for data fusion and estimation of the positioning uncertainty. The architecture was 

then compared to a GNSS/IMU/VO EKF-GRU architecture. The comparison showed a 95th percentile error improvement in the 

horizontal direction of 30.1% for the Bayesian-LSTM. Lastly, the uncertainty data provided by the architecture was then processed 

to provide the protection level estimate which was then compared against the ground truth with promising results. The introduction 

of this architecture provides the foundation for building a robust fusion architecture that can be deployed in UAVs that are traveling 

in urban canyons scenarios which require an accurate and reliable positioning system to safely navigate complex environments. 

Future work includes running the architecture on multiple scenarios with an increase in data for machine learning training. 

Furthermore, expansion into additional complimentary sensors is being explored to improve positioning accuracy further. 
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