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A B S T R A C T   

Maize is a globally significant food crop but its future sustainability under rainfed conditions is at risk due to 
climate change and increased climate uncertainty. In Pakistan most maize is rainfed but there is increasing in-
terest in the role of supplemental irrigation to reduce the vulnerability of crop yields to future drought and 
climate risks. Using a crop model (DSSAT CERES-Maize) with downscaled data from a weather generator (LARS- 
WG) and for five selected GCMs, two RCPs (4.5 and 8.5) and two time slices (2050s and 2080s), this study 
assessed the impacts of climate change and climate variability on rainfed maize grown in the Pothwar region of 
Pakistan, and the extent to which irrigation could offset future yield reductions. Model simulations were cali-
brated and validated using experimental data from 2021 and 2022. The outputs showed that on average the yield 
of maize could be increased by 55% with a single irrigation of 60 mm during the reproductive stage. For the 
baseline (1991–2020) the average rainfed yield was 3370 kg/ha. The climate change scenarios for the 2050s 
indicated a −13.5% and −5.8% decline in rainfed yield under RCP4.5 and RCP8.5, respectively. Irrigation ap-
plications (between 162 mm and 180 mm) increased grain yields by 5615 kg/ha and 5732 kg/ha, respectively. 
For the 2080s scenarios there was a projected decrease in yield by -9.3% and -39.7% under RCP4.5 and RCP8.5, 
respectively. Modelling also confirmed significant reductions in maize biomass production which would nega-
tively impact on feedstocks for both livestock and renewable energy generation.   

1. Introduction 

Agriculture plays a pivotal role in economic development and 
poverty reduction but socio economic development and population 
growth is threatening the ability of less developed countries to meet 
their future food demands (Godfray et al., 2011; Rao et al., 2022). Most 
agriculture globally is dependent on rainfed production (80%) and 
contributes to approximately two-thirds of the world’s food production 
needs (Falkenmark et al., 2001). In Pakistan, about 4 million hectares of 
agricultural land (24 Mha) is rainfed (Baig et al., 2013) which underpins 
rural livelihoods and economic development (Adnan et al., 2009; Gov-
ernment of Pakistan, 2008). However, there is increasing recognition of 
the climate risks facing the agricultural sector and the need to develop 
and implement cost-effective adaptation strategies to improve 

productivity (Hafiza et al., 2022), particularly in key staple crops such as 
maize. Globally, maize (Zea mays L.) is one of the most important cereal 
crops and grown under both irrigated and rainfed production (Irshad 
et al., 2002). It represents 1.11 million ha in Pakistan with average 
annual production of 4.04 million tons and productivity of 3620 kg/ha. 
Maize yields remain very low in Pakistan compared to other countries 
such as Italy (9500 kg/ha), Canada (6600 kg/ha), China (4600 kg/ha) 
and Argentina (5700 kg/ha) (Chachar et al., 2020). Maize production is 
also particularly sensitive to drought stress and climate variability 
(Ahmed et al., 2018; Hafiza et al., 2022) with changes in temperature 
and precipitation responsible for shortening the growing season (Ahmed 
et al., 2018; ur Rahman et al., 2018) and reducing yields (Osman et al., 
2021). Getachew et al. (2021) and Suryabhagavan (2017) reported that 
changes in the timing of monsoon seasons and increased frequency of 
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extreme weather events (floods and droughts) can severely affect crop 
production. Ahmad et al. (2020) reported that a 3.4◦C rise in maximum 
temperature and 3.8◦C rise in minimum temperature under hot/dry 
conditions (RCP8.5) would lead to a 28% reduction in current produc-
tion and a 29% decrease in future production by the middle of the 
century (2050). 

To reduce the impacts of climate change on productivity, current 
management practices need to change (Abbas et al., 2017; Yang et al., 
2019), including the introduction of irrigation (Ahmad et al., 2019, 
2020; Babel and Turyatunga, 2015; ur Rahman et al., 2018). Supple-
mental irrigation (SI) helps buffer rainfall shortages during critical 
growth periods (Oweis and Hachum, 2009) to maximize yield and water 
use efficiency (Gao et al., 2017; Li and Sun, 2016). Igbadun et al. (2007) 
reported that more consistent yields can also be achieved by applying 
irrigation during the flowering stage, even if irrigation is limited during 
the vegetative and grain-filling stages. The challenge in understanding 
the potential yield benefits associated with SI and the changing re-
lationships between crop, soil, environment and management is that 
conducting long-term field experiments is both time consuming and 
expensive (Hoogenboom et al., 2021; Jones et al., 2003). Scientists have 
therefore developed biophysical crop models including, for example, 
FAO AquaCrop (Steduto et al., 2012) and APSIM (Keating et al., 2003; 
McCown et al., 1996). The DSSAT (Decision Support System for Agro-
technology Transfer) suite of models has also been widely used to assess 
different agricultural systems under a range of alternate climate and 
agro-economic futures (Ahmed et al., 2018; Amiri et al., 2022; Chisanga 
et al., 2022; Hoogenboom et al., 2019; Jones et al., 2003). The 
Crop-Environment-Resource-Synthesis (CERES)-Maize model 
embedded within DSSAT has also been extensively used to develop 
management strategies to assess climate impacts on maize productivity 
(Abbas et al., 2023; Akumaga et al., 2023; Cecil et al., 2023; Wang et al., 
2023; Yang et al., 2023; Zhu et al., 2023). To design future adaptation 
strategies, many researchers have typically coupled crop models with 
future climate scenarios developed through General Circulation Models 
(GCMs) for selected Representative Concentration Pathways (RCPs) 
(Mohammed et al., 2022; Quan et al., 2022; Rao et al., 2022). Such an 
integrated approach was adopted for this study. 

Assessing climate variability is essential for decision-making in 
climate-sensitive sectors such as agriculture (Abbas et al., 2017). Future 
yield projections therefore need to account for different weather fore-
casting models and scales (general and regional circulation models, 
GCM and RCM) and for different wetting and drying uncertainties 
(Baigorria et al., 2008; Ferrise et al., 2015; Jha et al., 2019). In 
conjunction with GCM developments, weather generators have been 
developed and widely used, including the LARS-WG to simulate and 
downscale weather data for current and future periods for different 
GCMs and RCPs (Khalaf et al., 2022; Mirshekarnezhad, 2023; Semenov 
et al., 2002). Whilst there is extensive data on the impacts of climate 
change on maize in Africa (Knox et al., 2012) and irrigation on crop 
productivity, there is much less reported evidence of these combined 
impacts on maize in Pakistan, where it constitutes a crop of major 
economic importance. The aim of this study was therefore to investigate 
the impacts of climate change on rainfed maize in the Pothwar region of 
Pakistan, and the extent to which supplemental irrigation could mitigate 
future yield reductions due to abiotic stress. 

2. Materials and methods 

In summary, experimental trials were conducted in 2021 and 2022 to 
assess the effects of supplemental irrigation on maize during the vege-
tative, reproductive and maturity growth stages. Soil characteristics 
including changes in soil moisture, local weather data, crop manage-
ment inputs, crop phenology, biomass and yield data were collected. 
Field data were used to calibrate and validate the CERES-Maize model of 
DSSAT version 4.8.0 (Hoogenboom et al., 2023). The impacts of climate 
change on biomass, yield and irrigation needs were simulated for the 

baseline (30 years historical weather), and for the near (2050s) and far 
(2080s) futures. To assess climate uncertainties, five GCMs were 
selected using GCMeval (www.gcmeval.met.no) and the LARS-WG used 
to derive future climatology. A schematic of the integrated methodology 
is given in Fig. 1 and a brief description of the experimental site, data 
collection, and crop and climate modelling approaches are provided 
below. 

2.1. Study site and experimental design 

The study was conducted at the National Agricultural Research 
Centre (NARC) Islamabad in northern Pakistan which has a humid sub- 
tropical climate. The experimental site is located at 33.677371◦ N and 
73.132374◦ E (altitude 498 m above mean sea level). The crops grown in 
the Pothwar region include wheat, maize, barley, bajra, gram and 
groundnut (Imran et al., 2021; Rashid and Rasul, 2011). Fig. 2 shows the 
location of the experimental site and soil characteristics are given in  
Table 1. Islamabad has four distinct agroclimatic seasons: a hot summer, 
a monsoon season, a mild autumn, and a cool winter (Rashid and Rasul, 
2011). The average maximum and minimum temperatures during the 
summer maize season were 36.2 ◦C and 8.85 ◦C in June and March, 
respectively. Average (2011–20) maximum rainfall was recorded in 
March (119 mm) and the minimum in May (45 mm). On average, 
summer maize receives 280 mm of rainfall (Rafique et al., 2023; Rashid 
et al., 2014), but effective rainfall is only 214 mm (Rashid and Rasul, 
2011). Except for a few rainy summers over the last decade (2014–16 
and 2020), supplemental irrigation was required in 2011–13 and 
2017–19 to achieve sustainable maize yields. Irrigation demand peaks 
during April and May. Figure SI-1 shows the weather conditions at the 
experimental site between 2021 and 2022. 

Field experiments were conducted during the summer of 2021 and 
2022. The trial was a randomized complete block design with a split plot 
arrangement. The plot size for each treatment was 25 m2 (5 m × 5 m) 
with a 1 m gap between treatments. The local variety of maize (Haq 
Nawaz Gold) was sown at a rate of 49.40 kg/ha (recommended for row 
sowing). The total crop water requirement for maize in the Pothwar 
region is up to 400 mm (Rashid and Rasul, 2011; Rashid et al., 2014), 
which is traditionally applied as 5 separate irrigations (each 80 mm) on 
an interval of 18–21 days, through the season. Due to high rainfall 
variability in Islamabad, a single irrigation of 75% of 80 mm (i.e. 
60 mm) and 50% of 80 mm (i.e. 40 mm) was applied at different growth 
stages, as suggested by Gao et al. (2017). The trial comprised of seven 
treatments, each with three replicates. These included a control or 
rainfed treatment (T0), 60 mm additional irrigation at the vegetative 
stage (T1), 40 mm additional irrigation at the vegetative stage (T2), 
60 mm additional irrigation at the reproductive stage (T3), 40 mm 
additional irrigation at the reproductive stage (T4), 60 mm additional 
irrigation at the maturity stage (T5), and 40 mm additional irrigation at 
the maturity stage (T6). This also helped to identify the critical growth 
stages at which irrigation for maize were needed (Aluoch et al., 2022; 
Gao et al., 2017; Igbadun et al., 2007; Li and Sun, 2016). The timing for 
irrigation for summer maize at the vegetative and reproductive stages in 
a semi-arid region were consistent with Wang et al. (2023). Figure SI-2 
shows the experimental design. 

2.2. Crop husbandry practices 

Seeds were sown on 2nd and 1st March in 2021 and 2022, respec-
tively. The seed rate was 16 plants/m2, with a plant-to-plant spacing of 
0.20 m and row-to-row spacing of 0.66 m (Hoogenboom et al., 2019; 
Jones et al., 2003). The recommended nitrogen dose in the form of urea 
was 155 kg N/ha (divided into five applications) based on Wang et al. 
(2023), phosphorous (in the form of DAP) was applied at a rate of 
57 kg P/ha (one application at sowing) and potassium (in the form of 
potassium sulphate) at a rate of 30 kg K/ha, was equally applied to all 
treatments. Weed, pest, and disease control measures were maintained 
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across all treatments. Irrigation was applied once at the specified 
amount in each treatment. Table 2 summarises the dates and irrigation 
applied in each treatment. Crop harvest was completed on 10th and 9th 
June in 2021 and 2022, respectively. The management practices (except 
irrigation) were similar to those adopted by local farmers. 

2.3. Brief description of CERES-Maize model 

The CERES-Maize model, embedded within the Decision Support 
System for Agrotechnology Transfer (DSSAT) programme, encompasses 
elements including vegetative and reproductive development, and car-
bon, water, and nitrogen balances, making it a comprehensive tool for 
simulating maize crop growth and development under contrasting 
environmental and resource conditions (Hoogenboom et al., 2019; 

Jones et al., 2003). The CERES -Maize model has been used interna-
tionally to assess climate impacts and adaptation strategies for maize in 
numerous countries including China (Huang et al., 2022; Quan et al., 
2022), Ethiopia (Getachew et al., 2021), Hungary (Zelenák et al., 2022), 
Pakistan (Ahmad et al., 2020; Hafiza et al., 2022), USA (Amiri et al., 
2022), and Zambia (Chisanga et al., 2022), and to design management 
practices considering various integrated approaches (Hoogenboom 
et al., 2019; Wang et al., 2023; Yang et al., 2023). To run the 
CERES-Maize model, data relating to the local weather, soil character-
istics and crop management were required. The genetic coefficients for 
maize were defined using the GLUE (Generalized Likelihood Uncertainty 
Estimator) and sensitivity tool in DSSAT V4.8 (Abbas et al., 2023; 
Rafique et al., 2023). 

Fig. 1. Schematic showing the methodological framework for coupling experimental fieldwork with crop and climate modelling to assess impacts on maize yields 
and irrigation needs. 
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2.4. CERES-Maize model parameterisation 

The growth and production assessment in CERES-Maize required 
management, weather and soils data and details on the genetic char-
acteristics of the cultivar (Hoogenboom et al., 2019). Weather data 

including maximum and minimum temperature (◦C), rainfall (mm), 
solar radiation (MJ/m2/day), relative humidity (%), and sunshine (hrs) 
for a 30 year (1991–2020) historical period and for the experimental 
years (2021–22) were collated. Management data included factors such 
as the previous crop planted, the weight of remaining crop and root 
residue, as well as various aspects of crop management including timing 
of planting, tillage practices, fertilizer and irrigation quantities, and the 
harvest date. The only variable that was modified was the soil root 
growth factor (SRGF) as the soil profile (0.45 m) was shallow compared 
to the typical rooting depth for maize (1.2 m). For a shallow soil profile, 
the SRGF plays critical role in calibration, especially for water stressed 
treatments (Hoogenboom et al., 1999). In our study, we simulated 
different SRGFs in DSSAT, with different combinations ranging between 
0.01 and 1.0 for each of the three soil depths. This resulted in good 
agreement between measured and simulated values, where the SRGF 
was 1.0, 0.65 and 0.30 in the upper (0 – 15 cm), middle (15 – 30 cm) and 
lower (30 – 45 cm) soil layers. All other inputs, including management 
practices, were the same as for the experimental conditions as recom-
mended by Hoogenboom, et al. (2019). The CERES-Maize model was 

Fig. 2. Location map of the experimental site.  

Table 1 
Physical, chemical, and hydrological characteristics of the experimental site, incorporated in CERES-Maize model.  

Depth (cm) Clay (%) Silt (%) LL DUL SWC BD HC pH in water OC CaCO3 SRGF 

0 – 15  35.1  53.2  0.12  0.29  0.36  1.47  1.29  8.3  0.75  7.5  1.00 
15 – 30  34.7  52.1  0.10  0.32  0.39  1.52  1.33  8.0  0.65  4.5  0.65 
30–45  34.2  54.1  0.09  0.34  0.41  1.54  1.35  7.7  0.44  2.2  0.35 

LL is lower limit (permanent wilting point), DUL is drained upper limit (field capacity), SWC is saturated water content, BD is bulk density (g/cm3), SWC is saturated 
hydraulic conductivity (cm/hr), OC is organic carbon (%), CacO3 is calcium carbonate (g/kg), SRGF is soil root growth factor. 

Table 2 
Additional irrigation applications (number and volume) applied in each exper-
imental treatment.  

Treatment Irrigation applications 
(days after planting) 

Irrigation depth (mm) 

2021 2022 

T1 (vegetative stage)  24  24  60 
T2 (vegetative stage)  24  24  40 
T3 (reproductive stage)  57  40  60 
T4 (reproductive stage)  57  40  40 
T5 (maturity stage)  88  80  60 
T6 (maturity stage)  88  80  40  
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then used to assess production traits (assuming current management 
practices) for future climate scenarios (using weather data generated via 
LARS-WG) for both rainfed and irrigated conditions under RCP4.5 and 
RCP8.5 (Abbas et al., 2023; Yasin et al., 2022). 

2.5. CERES-Maize model calibration and validation 

Calibration of the CERES-Maize model was completed using the 
phenology, dry grain yield, dry biomass, and soil moisture data from the 
experimental treatments conducted in 2021. The calibration process was 
divided into two parts, firstly a calibration with the low stressed treat-
ment data (T3 2021) followed by full model calibration with the other 
treatments from 2021, as recommended by Hoogenboom et al. (2019). 
After calibration, the treatments from 2022 were then used for model 
validation to assess the statistical goodness of fit. Weather data for the 
experimental years and for the 30-year period (1991–2020) were ob-
tained from a weather station at NARC, Islamabad. The experimental 
data collected during 2021 and 2022 included soil moisture content 
(cm3/cm3), crop yield (kg/ha), crop biomass or tops weight (kg/ha) and 
crop phenology. Soil samples were collected every 2 weeks from three 
horizons (0–15, 15–30, and 30–45 cm) and from each treatment (Gao 
et al., 2017; Oweis and Hachum, 2009). The soil samples were oven 
dried at 105 ◦C for 24 h to determine dry weight (Jiang et al., 2016) and 
Eq. 1 used to estimate soil moisture content (cm3/cm3) on a dry weight 
basis. The threshed grain yield and dry biomass were obtained after 
harvest. The phenological information (emergence, anthesis and matu-
rity) was recorded at each growth stage, involving 12 plants being 
marked within the central two rows of each experimental plot to 
monitor their duration of development until they reached 50% tasseling, 
silking, and the days required for maturity (Abbas et al., 2023; Ahmed 
et al., 2018; Srivastava et al., 2022). This 2021 data was used to calibrate 
the CERES Maize model (2021) and then data from 2022 used for vali-
dation. Following the calibration process, genetic coefficients were 
derived (Table 3) using GLUE, a coefficient estimator in DSSAT (Hoo-
genboom et al., 2019; Jones et al., 2003). The 30 years weather data was 
used to generate a historical baseline for rainfed yield and biomass, 
which was then compared against the simulated yield and biomass for 
the two future periods (2050s and 2080s). 

θv

(
cm3

cm3

)

=
Ww−Wd

Wd
× ρb × ρw (1)  

where; θv was the volumetric soil moisture content, ww was the wet 
weight of soil (g), wd was the dry weight of soil (g), ρb was the bulk 
density of soil (g/cm3), and ρw was the density of water (g/cm3). 

Model calibration involved assessing the goodness of fit between the 
paired values of observed and simulated moisture content (cm3/cm3), 
grain yield (kg/ha), and harvested biomass (kg/ha) using field data for 
2021. Model validation used datasets for the same variables for 2022 but 
excluded the T3 treatment which had been used for model calibration. 

The statistical tests included root mean-squared error (RMSE) (Eq. 2) 
and relative-root mean-squared error (RRMSE) (Eq. 3): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1

/

n*
∑n

i=n
(Si − Oi)

2

)√
√
√
√ (2)  

RRMSE = 100

/

M*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1

/

n*
∑n

i=n
(Si − Oi)

2

)√
√
√
√ (3)  

where; Si is the simulated and Oi is the observed value, and M is the 
mean of the observed value. Model performance was considered to be 
excellent if the RRMSE was < 10%, good if it ranged between 10% and 
20%, fair if it was > 20% and < 30%, and poor if it was > 30% 
(Pérez-Ortolá et al., 2015; Jamieson, 1991). In addition, linear re-
gressions and their coefficients of determination (R2) were calculated for 
each treatment (observed) and its corresponding CERES Maize simu-
lated values. A paired t-test on the simulated and observed means for dry 
biomass and grain yield were also calculated, where the simulated 
values were deemed not to be statistically significantly different from 
the observed values if the calculated t-values were lower than the critical 
t-value. 

The CERES-Maize model was also used to assess the impacts of irri-
gation on grain yield and biomass for both experimental years. using the 
automatic mode in the simulation (Jiang et al., 2016). Automated irri-
gation was configured assuming a managed allowable depletion (MAD) 
value of 0.5. This assumes that when half of the available water in the 
root zone has been used, then an irrigation is triggered to replenish the 
soil back to field capacity (Chen et al., 2020; Malik and Dechmi, 2019). 
The other management options were kept the same as in the experi-
mental conditions. 

2.6. GCM selection and statistical downscaling 

The historical weather data were used to generate future climatology 
for two RCPs (4.5 and 8.5) and for two time slices (near (2050s) and far 
(2080s) futures). A similar approach was adopted elsewhere globally by 
Mohammed et al. (2022), Quan et al. (2022) and Srivastava et al. 
(2022). Given the wide range of GCMs available it is important to select 
an appropriate ensemble for a specific location (Abbas et al., 2017). In 
this study, the GCMeval tool was used (Brunton et al., 2023; Parding 
et al., 2020). The evaluation technique in GCMeval is based on concepts 
described in McSweeney and Jones (2016). The tool evaluates the 
CMIP5 climate model ensemble in terms of how well each model sim-
ulates the current climate in each region (Parding et al., 2020), 
considering factors such as seasons, climate variables (precipitation and 
temperature), and skill scores (bias, spatial correlation, spatial SD ratio, 
and RMSE of annual cycle). The ensemble selection using GCMeval was 
then further verified by reviewing relevant literature that reported 
which GCMs had been used for modelling climate impacts in Pakistan 
(see Supplementary Information). We ultimately selected 5 GCMs 
including MIROC5, INMCM4, MPI_ESM_MR, CanESM2, and GFDL_CM3 
to represent the climate uncertainty of cold/wet, cold/dry, middle, 
hot/wet, and hot/dry climates, respectively. Table 4 summarises the 
characteristics of the selected GCMs, and Table 5 summarises the pro-
jected changes in precipitation and temperature for the near and far 
futures for the 5 GCMs under the RCP 4.5 and RCP 8.5, respectively. 

A weather generator known as LARS-WG (Semenov et al., 2002) was 
then used to statistically downscale the GCM data for the five GCMs. The 
LARS-WG includes 19 climate models based on the CMIP5 ensemble as 
used in the IPCC 5th Assessment Report (Semenov et al., 2013). The 
model produces histograms from the observed historical climatology to 
categorize daily maximum and minimum temperature and precipita-
tion, as well as assessing the durations of dry and wet day sequences 
(Osman et al., 2022). For each future scenario, 30 years of synthetic 

Table 3 
Genotype parameters used in CERES Maize for the local maize variety (Haq- 
Nawaz-Gold).  

Parameter Description Value Unit 

Development variable 
P1 Thermal time from seedling emergence to 

end of juvenile phase  
26.5 days 

P2 Photoperiod sensitivity (0–1)  0.913 days 
P5 Thermal time from silking to physiological 

maturity (days)  
759.7 days 

Growth variable 
G2 Maximum kernel number per plant  819.3 unitless 
G3 Kernel growth rate under optimum 

condition  
12.76 mg/day 

Phint Thermal time between successive leaf tip to 
emergence  

45.00 0C days/ 
tip  
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weather data were generated and used as an input into the CERES-Maize 
model. The model was run firstly for the baseline and then for each 
future scenario to assess projected changes in dry biomass, dry grain 
yield (threshed) and irrigation need. 

3. Results and discussion 

3.1. CERES Maize model calibration and validation 

The model was initially calibrated using the T3 treatment (less 
stressed treatment) data for 2021 for crop phenology, dry grain yield, 
dry biomass, and soil moisture (Table 6), because the T3 treatment was 
used to derive the cultivar coefficients using the GLUE estimator within 
the DSSAT software. The other treatments from 2021 were then used for 

full model calibration (Table 7). The model simulated production traits 
with a high degree of accuracy (97.03% and 97.55%). Based on the T3 
calibration, the CERES Maize model predicted emergence, anthesis and 
maturity with a high degree of statistical confidence. The RMSE values 
obtained in this study for days to anthesis and days maturity were 
consistent with those of Ahmed et al. (2018) who reported a RMSE of 
2.73 days and 2.44 days for days to anthesis and days to maturity, 
respectively. Amouzou et al. (2018) reported RMSE (and nRMSE) values 
of 1 day (2%) and 1 day (1%) for predicting anthesis and maturity dates 
for maize. Kadiyala et al. (2015) reported RMSE (and nRMSE) values for 
predicting anthesis, maturity, grain yield and biomass as 1.4 days (2%), 
1.15 days (9%), 1.55 tons/ha (18.4%) and 0.23 tons/ha (3.60%), 
respectively. For biomass, the calibrated values were also in close 
agreement with Ahmed et al. (2018), their RMSE values ranging be-
tween 449 and 1172 kg/ha and with Amouzou et al. (2018) for grain 
yield (RMSE 47–413.6 kg/ha and RRMSE 2–19%). Malik and Dechmi 
(2019) reported the RMSE (and nRMSE) values for predicting grain yield 
and biomass as 694 kg/ha (5%) and 2522 kg/ha (22%), respectively. 
The simulated soil moisture was close to the measured values (Fig. 3) for 
both calibration and validation periods. For soil moisture in the top layer 
(0–15 cm) in T3 2021, the CERES-Maize model simulated values for 
RMSE and RRMSE were 0.013 cm3/cm3 and 7.83%, respectively. For the 
15–30 cm layer, the equivalent values were 0.011 cm3/cm3 and 6.28%, 
and for the 30–45 cm layer, values of 0.01 cm3/cm3 and 5.47% were 
obtained. 

For full model calibration, the simulated yields from CERES-Maize 
showed very good statistical performance with minimum and 
maximum RMSE values of 85 and 272 kg/ha, and RRMSE of 3.12 and 
6.55%, respectively. The maximum and minimum RMSE and RRMSE 
values while predicting the biomass were 296 and 642 kg/ha, 3.54 and 
6.54%, respectively. The findings from our study for predicting the 
maize yield and biomass are in close agreement with studies conducted 
by Abbas et al. (2023), Ahmed et al. (2018), Amouzou et al. (2018) and 
Tovihoudji et al. (2019). Abbas et al. (2023) reported a slightly higher 
RMSE (391–476 kg/ha) for yield and RMSE of 572.5–779.5 kg/ha for 
biomass. Ahmed et al. (2018) reported an RMSE for biomass (tops 
weight) and grain yield as 449–1172 kg/ha, and 451–963 kg/ha for 
their calibration based on experimental treatments. Amouzou et al. 
(2018) reported a very close agreement with our findings for grain yield 
and biomass. They showed an RMSE (and nRMSE) of 47–252 kg/ha 
(2–7%) and 253–621 kg/ha (3–7%), respectively. Tovihoudji et al. 
(2019) reported a CERES-Maize calibration with an RMSE (and RRMSE) 
for above ground biomass and yield of 569 kg/ha (8%) and 327 kg/ha 
(12%), respectively. There were no directly comparable results of model 
efficiency. The model performance for calibrating soil moisture content 
was also very good. The RMSE was up to 0.014 cm3/cm3 and RRMSE 
was up to 7.83%. Amouzou et al. (2018) reported RMSE values for soil 
moisture ranging from 6% to 13% which was within the range of our 
RRMSE values for 2021. Jiang et al. (2016) also reported RMSE values 
for CERES-Maize for predicting soil water content as 11.5% (0–5 cm 
depth), 11.8% (5–20 cm), 10.3% (20–40 cm) and 8.7% (for 40–120 cm). 

The grain yield, biomass, and soil moisture content data from 2022 
were then used to validate the CERES-Maize model. Table SI-3 sum-
marises the RMSE and RRMSE values for the validation. Across all 
experimental treatments, the RMSE for grain yield ranged between 79 
and 140 kg/ha. The RRMSE values ranged between 3.29% and 10.85%, 
respectively. For biomass, the RMSE and RRMSE ranges were 
123–384 kg/ha and 2.15–4.75%, respectively. These results confirm a 
very good level of accuracy for the CERES-Maize model in predicting 
production traits. For soil moisture content (cm3/cm3) in 0–15 cm layer, 
the RMSE and RRMSE values were 0.006–0.009 cm3/cm3 and 
3.39–5.16%. For soil depth of 15–30 cm, the values for RMSE and 
RRMSE were 0.006–0.008 cm3/cm3, and 3.23–6.56%, respectively. For 
30–45 cm depth, the equivalent values were 0.005–0.007 cm3/cm3 and 
3.15–5.07%. Finally, a summary of the linear regressions, coefficients of 
determination (R2), and paired t-test statistics using the simulated and 

Table 4 
General information of the GCM’s selected in this study (Zhang et al. 2020). 
Details for each GCM can be found online (https://www.ametsoc.org/PubsAc 
ronymList).  

Model name Institute Country Resolution 

MIROC5 Atmosphere and Ocean Research 
Institute (AORI) 

Japan 1.5◦ × 1.5◦

INMCM4 Institute of Numerical Mathematics Russia 1.5◦ × 2◦

MPI_ESM_MR Max Planck Institute for 
Meteorology 

Germany 1.875◦ ×

1.875◦

CanESM2 Canadian Centre for Climate 
Modelling and Analysis (CCCma) 

Canada 2.8◦ × 2.8◦

GFDL_CM3 Geographical Fluid Dynamics 
Laboratory (GFDL) 

USA 2.5◦ × 2.0◦

Table 5 
Projected changes in temperature and precipitation for selected GCM’s for the 
near (2050 s) and far (2080 s) futures.  

RCP Climate 
Uncertainty 

Global climate 
model (GCM) 

Change 

Temperature 
(0C) 

Precipitation 
(mm/day) 

Near Future (2050 s) 
4.5 Cold/wet MIROC5  +0.96  +0.33 

Cold/dry inmcm4  +0.36  -0.09 
Middle MPI_ESM_MR  +1.0  +0.15 
Hot/wet CanESM2  +1.31  +0.33 
Hot Dry GFDL_CM3  +1.49  +0.12 

8.5 Cold/wet MIROC5  +1.04  +0.21 
Cold/dry inmcm4  +0.68  +0.04 
Middle MPI_ESM_MR  +1.15  +0.15 
Hot/wet CanESM2  +1.56  +0.29 
Hot Dry GFDL_CM3  +1.57  +0.14 

Far Future (2080 s) 
4.5 Cold/wet MIROC5  +1.81  +0.60 

Cold/dry inmcm4  +1.09  +0.09 
Middle MPI_ESM_MR  +1.75  +0.32 
Hot/wet CanESM2  +2.25  +0.30 
Hot Dry GFDL_CM3  +2.83  +0.41 

8.5 Cold/wet MIROC5  +3.06  +0.84 
Cold/dry inmcm4  +2.47  +0.22 
Middle MPI_ESM_MR  +3.70  +0.38 
Hot/wet CanESM2  +4.16  +0.55 
Hot Dry GFDL_CM3  +4.58  +0.55  

Table 6 
Observed and simulated crop phenology, dry grain yield and dry biomass for a 
less stressed treatment (T3) in 2021.  

Date Observed range Simulated RMSE RRMSE (%) 

Emergence 10th Mar ± 1 days 10th Mar 0.82 days  10.21 
Anthesis 15th Apr ± 2 days 13th Apr 2.58 days  5.94 
Maturity 30th May ± 2 days 25th May 3.42 days  3.96 
Yield (kg/ha) 4932–5196 5283 229  4.51 
Biomass (kg/ha) 10852–11432 11622 502  4.49  
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observed data for biomass and grain yield are summarised in Table 8. 
For all treatments the R2 values were very high (>0.9), and the paired t- 
tests confirmed that the simulated and observed means were not 
significantly different (P < 0.05) since the calculated t-values were 
lower than the critical t-value for both biomass and yield. This statistical 
analysis in conjunction with the RMSE and RRMSE values described 
above confirmed that the validated model was suitable for assessing 
climate change impacts on maize in the Pothwar region of Pakistan. 

3.2. Impacts of supplemental irrigation on production traits 

Based on irrigation applications of 60 mm and 40 mm at the repro-
ductive stage for the T3 and T4 treatments, maize yields were found to 
increase by +55.5% and +34.1%, and biomass by +40.7% and +24.3%, 
respectively (Fig. 4). The same irrigation applications at the vegetative 
stage (T1 and T2) also improved yields (+10% and +5.29%) and biomass 
(+10% and +7%) production. However, at maturity there was only a 
negligible impact in both years (+2.4% in 2021; +1.7% in 2022). These 
findings are consistent with Igbadun et al. (2007) and Li and Sun (2016) 
who reported that the reproductive stage (tasseling and grain filling) is 
the most critical growth stage of maize in semi-arid regions and is highly 
sensitive to water stress. An adequate irrigation at this stage can 
therefore increase yield. Gao et al. (2017) reported that a single sup-
plemental irrigation applied at the vegetative (such as V6, and V12) and 
reproductive (tasseling and silking) stages improved maize productivity 
compared to un-irrigated experiments. Similar findings were reported 
by Babel and Turyatunga (2015), Hammad et al. (2018), Jiang et al. 
(2016), Khan et al. (2021a), (2021b) and Wang et al. (2023). 

3.3. Evaluation of DSSAT automatic irrigation on experimental 
conditions 

The calibrated CERES-Maize model was used to assess the impacts of 
supplemental irrigation on grain yield and biomass through an auto-
matic irrigation option. The rainfed production traits were then 
compared with the simulations assuming automatic irrigation. Under 
rainfed conditions in 2021 and 2022, maize yields and biomass were 
2731 kg/ha and 1168 kg/ha, and 8163 kg/ha and 5672 kg/ha. In 2021, 
automatic irrigation (182 mm applied across 5 events) increased grain 
yield and biomass to 7186 kg/ha (+62%) and 14,021 kg/ha (+42.5%), 
respectively. During 2022, the automatic irrigation (258 mm applied 
across 7 events) increased grain yield and biomass by 85.8% (up to 
8230 kg/ha) and 64.6% (up to 16,009 kg/ha), respectively. Chen et al. 
(2020) assessed the application of the automatic irrigation option in the 
CERES-Maize model and reported that rainfed grain yield could be 
increased by between 6153 kg/ha (119 mm irrigation) to 12,077 kg/ha 
(280 mm irrigation). Kadiyala et al. (2015) also evaluated automatic 
irrigation at 60% threshold of field capacity in CERES- Maize and 
observed an increase in grain yield of up to 7960 kg/ha. 

3.4. Projected changes in climate for RCP 4.5 and 8.5 

The projected climate changes under RCP 4.5 in Islamabad indicate a 
rise in both temperature and precipitation. The maximum temperature 
and precipitation increase for the near future (2050s) was +1.49 ◦C in 
hot/dry (GFDL_CM3) conditions and +0.33 mm/day in both cold/wet 
(MIROC5) and hot/wet conditions (CanESM2). The MPI_ESM_MR model 
(middle/average uncertainty) indicates a rise in temperature and pre-
cipitation by +1.0 ◦C and +0.15 mm/day, respectively. For the far 
future (2080 s), the maximum increase in temperature and precipitation 
was +2.83 ◦C in hot/dry conditions and +0.66 mm/day under cold/wet 
conditions. The minimum increase in temperature was observed under 
the cold/dry (INMCM4) conditions for both periods, i.e., 2050s 
(+0.36 ◦C) and 2080s (+1.09 ◦C). However, the cold/dry conditions for 
the near future indicates a precipitation decline of -0.09 mm/day. Ali 
et al. (2019) estimated the projected rise in minimum temperature 
across different regions in Pakistan to be +1.5 ◦C (+2.5 ◦C) and +2.2 ◦C 
(+4.5 ◦C) under the RCP4.5 (RCP 8.5) in the 2050 s and 2080 s, 
respectively. Such changes in temperature and precipitation for Islam-
abad have been reported by Bint-e-Mehmood et al. (2023). Table 5 
summarises the projected temperature and precipitation changes for 
each climate condition for both future time periods. 

The RCP8.5 scenarios depict significant increase in temperature and 
precipitation specially in far future (2080s). The climate projections 
show +4.58 ◦C as the maximum increase in temperature for hot/dry 
conditions in the far future and +2.47 ◦C as the minimum temperature 
increase under cold/dry conditions. The maximum increase in precipi-
tation for the cold/wet condition showed an increase of +0.84 mm/day 
and a minimum of +0.22 mm/day for the cold/dry condition. For the 
near future (2050s), the projections show maximum and minimum in-
creases in temperature of up to +1.57 ◦C and +0.68 ◦C under the hot/ 
dry and cold/dry conditions, respectively. The mid-range uncertainty 
(MPI_ESM_MR model) projects a rise in temperature and precipitation of 
+1.0 ◦C and +0.15 mm/day, respectively. Janes et al. (2019) projected 
an increase in temperature of +4.5 ◦C in summer for 2070–2099, over 
South Asia by downscaling data from three GCMs. Similarly, Pakistan is 
likely to experience a rise in minimum temperature and summer days 
+1.3 to +1.9 ◦C and 6–20 days under RCP4.5 and RCP8.5, respectively 
(Sajjad and Ghaffar, 2019). Table summarises the projected changes in 
temperature and precipitation for the selected GCM models under 
different climate uncertainties. 

3.5. Climate change impacts on maize yield in the 2050 s and 2080 s 
under RCP4.5 

Fig. 5 shows the projected impacts of climate change on rainfed and 
irrigated maize yield in the 2050s and 2080s under RCP4.5. The 
modelling shows that the average rainfed yield in the 2050s would 
decrease by −13.5% and −4.2% in cool/wet and cool/dry scenarios, 
respectively, compared to the baseline yield (3370 kg/ha). These results 
are consistent with Tesfaye et al. (2016) who reported that grain yields 

Table 7 
Statistical performance indicators of CERES-Maize for simulating dry grain yield and dry biomass for the calibration period (2021).  

Treatment Productiontrait (kg/ha) Observed range Simulated value RMSE (kg/ha) RRMSE (%) 

T0 Yield 2560–2784  2731  114  4.277 
Biomass 7652–8324  8163  341  4.28 

T1 Yield 2768–3044  2967  127  4.375 
Biomass 7988–8680  8312  296  3.54 

T2 Yield 2712–2988  2967  162  5.681 
Biomass 7796–8396  8312  305  3.75 

T4 Yield 4036–4264  4399  272  6.554 
Biomass 9564–10104  10423  642  6.54 

T5 Yield 2672–2904  2731  121  4.302 
Biomass 7756–8528  8163  316  3.87 

T6 Yield 2608–2808  2731  85  3.121 
Biomass 7596–8372  8163  363  4.54  
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Fig. 3. Observed and simulated soil moisture content (cm3/cm3) in 0–15 cm, 15–30 cm, and 30–45 cm soil depths, for each treatment for the calibration (2021) and 
evaluation (2022) periods. 
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in South Asia would reduce by −5% to −12.5% if existing cultivars were 
grown under a future climate. A large part of South Asia may face re-
ductions in grain yield of more than −25% by 2050. Our results are also 
in agreement with research by Mohammed et al. (2022) in Ethiopia 
which reported that grain yield could decrease by up to −26% in the 
2050 s under RCP4.5. Srivastava et al. (2021) reported that the reduc-
tion in rainfed yield in eastern India would range between −7.5% and 
−10.5% and −4.3% to −10.6% in the 2050s and 2080s, respectively. For 
hot/wet, hot/dry, and middle scenarios we observed a slight increase in 
rainfed yield of up to +14.2%, +6.7%, and +6.1%, respectively. Han 
et al. (2021) observed that rainfed yields in China could increase by 
+16.4% and +12.6% by 2060 and 2090, respectively. Supplemental 
irrigation could improve average grain yields by +30.1% to +69.8% 
under all scenarios for RCP4.5 for the 2050s. In India, Rao et al. (2022) 
reported that supplemental irrigation of 50 mm could increase maize 
yields from +5% to +15% by the mid-century. For the 2080s, our 
modelling shows a decline in rainfed yield by −3.3%, −9.3% and −1.3% 

Table 8 
Summary statistics for the CERES-Maize model validation for dry grain yield and 
dry biomass (R = replicate (observed); n = 5, p<0.05).  

Statistic Dry biomass Dry grain yield 

Regression and coefficient of determination (R2) 
R1 v simulated y = 1.074x – 1063 

R2 = 0.997 
y = 1.0134x - 175.38 
R2 = 0.998 

R2 v simulated y = 0.6704x + 2963.5 
R2 = 0.984 

y = 0.8103x + 619.37 
R2 = 0.997 

R3 v simulated y = 0.85x + 1123.8 
R2 = 0.958 

y = 0.8949x + 275.38 
R2 = 0.987 

Paired t-test (two-tailed) on simulated and observed means 
P value 0.0785 0.1436 
t-statistic 2.206 1.733 
Critical value 2.571 2.571  

Fig. 4. CERES-Maize simulated and observed dry grain yields (a and b) and dry biomass (c and d) for each treatment for the calibration (2021) and evaluation 
(2022) periods. 
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for the hot/dry, cool/dry, and cool/wet condition uncertainties, 
respectively. However, a subsequent increase in rainfall coupled with 
increased temperature shows that grain yield could increase by +12.9% 
and +7.9% under hot/wet and middle conditions, respectively. Moradi 
et al. (2013) reported that grain yields in Iran could decline by −11% to 
−38% with climate change. Rao et al. (2022) reported that rainfed grain 
yields in India could reduce from −16% to −46% under a future climate 
scenario of RCP4.5. Similarly, research by Xiao et al. (2020) showed that 
grain yields could reduce by −3.5% to −19.7% in the 2080s under 
RCP8.5. Xiao et al. (2020) also reported yield reductions of −4.1% to 
−14% in China using a multi-GCM approach for the 2040s and 2080s. 
Supplemental irrigation has been shown to increase grain yields by 
+34.1 to 56.7% under all climate uncertainties for RCP8.5. Grain yields 

are highly sensitive to temperature, so increases in temperature lead to 
greater reductions in yield. Table SI-4 summarises the impacts of climate 
change on grain yield under rainfed and irrigated conditions for RCP4.5. 

3.6. Climate change impacts on maize yield in the 2050 s and 2080 s 
under RCP8.5 

Fig. 6 shows the impacts of climate change on rainfed and irrigated 
maize yield the in 2050s and 2080s under RCP8.5. For 2050s, the 
average rainfed yield is expected to decrease by −5.8% in the cool/dry 
condition. The increased rainfall and temperature would increase grain 
yield by +9.2%, +8.5%, +7.2%, and +6.9% in the hot/wet, hot/dry, 
middle, and cool/wet climate condition uncertainties, respectively. Our 

Fig. 5. Modelled impacts of climate change on dry grain yield for the near (2050 s) and far (2080 s) under rainfed conditions (top panel (a) and (b), and under 
supplemental irrigation (lower panel) (c) and (d) under RCP 4.5. 
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findings are consistent with Yasin et al. (2022) who reported that pro-
jected grain yields in Pakistan would decrease by −8% to −55% due to 
climate change in the mid-century (2050s) under RCP8.5. Ahmad et al. 
(2020) reported that grain yields in Faisalabad (an irrigated region of 
Pakistan) were expected to decline by up to −28% by the mid-century 
(2050s), under RCP 8.5. Mohammed et al. (2022) reported that maize 
yield in Ethiopia could reduce by −29% in the 2050s under RCP8.5. Rao 
et al. (2022) reported that the grain yield of rainfed maize in India could 
reduce by −21% to −80% under a future climate scenario in RCP8.5. 
Supplemental irrigation could increase grain yield by +34.7%, +32.1%, 
+40%, +34.1%, and +50.8% for the climate uncertainties projected by 
CanESM2, GFDL_CM3, MPI_ESM_MR, MIROC5, and INMCM4 models, 
respectively. For the 2080 s, the combination of increased temperature 
with comparatively less rainfall would decrease grain yields by up to 
−16.9%, −39.7%, −2.6%, and −5.6% under the hot/dry, middle, 
cool/wet, and cool/dry climate condition scenarios. A +6.9% increase in 
grain yield was observed for the hot/wet climate. Our study findings are 
consistent with those of Abbas et al. (2023) who estimated that grain 
yields would decrease by −17% to −29% in Multan under future climate 
change scenarios of RCP8.5. Supplemental irrigation would help to in-
crease grain yields by between +24.4% and +54.2% for all climate 
condition uncertainties. These results are consistent with Babel and 
Turyatunga (2015) who predicted that supplemental irrigation (80 mm) 
could increase maize yields in Iran by between +28.6% and +42.1% 
across all future climate scenarios for the 2050s and 2080s. Kassie et al. 
(2015) and Moradi et al. (2013) also reported on the benefits of 

supplemental irrigation in mitigating the adverse impacts of climate 
change during the moisture-sensitive growth stages of maize produc-
tion. Adaptation strategies including the increased reliance on supple-
mental irrigation will be needed to offset the negative impacts of climate 
change on maize yields. Table SI-5 summarises the impacts of climate 
change on rainfed and irrigated maize yields under the RCP8.5 scenario. 

3.7. Climate change impacts on maize biomass under RCP 4.5 and 8.5 

Understanding the climate impacts on maize biomass is also critical 
given its use both as a feedstock for livestock and as a fuel supply for 
renewable energy generation. The experimental trials conducted in this 
study confirmed that a single irrigation (60 mm) could increase average 
biomass production by +35.2%. Reduced rainfall in the future could 
result in reduction of biomass by up to −7% compared to the baseline. 
Figure SI-6 summarises the projected impacts of climate change on 
biomass production for future time periods under RCP4.5. Rainfed 
biomass production in the 2080 s is more affected than in the 2050 s 
where decreases by −1.9% and −6.3% in cool/wet and cool/dry con-
ditions were projected. The increase in rainfall and temperature in the 
hot/wet, hot/dry, and middle climate condition scenarios increases 
biomass by up to +9.5%, +4.6%, and +4.2%, respectively. Supple-
mental irrigation of 131–180 mm increases biomass production by 
+21.2 to +41.2% under all future scenarios. In the 2080 s, the only 
decrease in rainfed biomass is observed under the cool/dry climate 
conditions by −4.7%. The increased rainfall in the far future increases 

Fig. 6. Modelled impacts of climate change on rainfed yield (dry) for the near future (a), impacts of supplemental irrigation on dry grain yield in near future (b), 
climate change impacts on rainfed grain yield (dry) in far future under (c), impacts of supplemental irrigation on dry grain yield in far future (d), under RCP8.5. 
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biomass by +7.9%, and +6.1% in the hot/wet and middle climate 
condition uncertainties, respectively. However, there would be a smaller 
increase (+0.6%) and negligible decrease (-0.2%) in rainfed biomass 
under the cool/wet and hot/dry conditions, respectively. Supplemental 
irrigation ranging from 134 mm to 171 mm as an adaptation strategy in 
the far future could increase biomass by +23.9 to +34.6%. Table SI-7 
summarises the impacts of climate change on rainfed and irrigated 
maize biomass under RCP4.5. 

Figure SI-8 shows the impacts of climate change on biomass pro-
duction in 2050 s and 2080 s under RCP8.5. In the 2050 s, a modest 
increase in rainfed biomass production is observed by +5.8%, +6.4%, 
+4.9%, and +4.2% in the hot/wet, hot/dry, middle, and cool/wet 
climate condition scenarios, respectively. The only biomass reduction 
was under the cool/dry conditions (-3.4%). Compared to the baseline, 
supplemental irrigation can increase biomass by +23.9%, +22.9%, 
+28.4%, +23.5%, and +30.7% as projected by the CanESM2, 
GFDL_CM3, MPI_ESM_MR, MIROC5, and INMCM4 models, respectively. 
In 2080 s, the biomass under rainfed conditions will be affected by 
climate change. There was a projected decrease in rainfed biomass of up 
to −6.6%, −15.5%, and −2.6% for the hot/dry, middle, and cool/dry 
climate conditions, respectively. The hot/wet and cool/dry scenarios 
show an increase in biomass production of +4.8%, and +0.7%, 
respectively. However, supplemental irrigation could increase biomass 
by +17.9%, +18.8%, +26.3%, +23.9%, and +32.2% under the hot/wet, 
hot/dry, middle, cool/wet, and cool/dry scenarios, respectively. 
Table SI-9 summarises the impacts of climate change on biomass under 

rainfed and irrigated conditions for RCP8.5. 

3.8. Projected changes in irrigation needs 

Fig. 7 summarises the irrigation needs (mm) for the near and far 
futures under both RCP’s (4.5 and 8.5). For the 2050 s, the RCP4.5 re-
sults show that the average grain yield could increase to 5239 kg/ha 
(+35.7%), 4823 kg/ha (+30.1%), 5464 kg/ha (+38.3%), 5016 kg/ha 
(+32.8%), and 5723 kg/ha (+69.8%) if irrigations amounting to be-
tween 131 mm and 180 mm were applied during the season under the 
five future climate conditions. In contrast with Rao et al. (2022), our 
results are much higher. They reported that irrigated grain yields by the 
mid-century (2050 s) would only increase by +5–15% assuming a single 
irrigation of 50 mm, under the RCP4.5 scenarios. This might be because 
of the different climate and irrigated conditions. For the 2080 s 
(RCP4.5), the average grain yield could increase by up to 5215 kg/ha, 
5116 kg/ha, 5655 kg/ha, 5249 kg/ha, and 5252 kg/ha, if supplemental 
irrigation was applied ranging between 134 mm and 171 mm during the 
season, under the five climate condition scenarios. The findings of 
Umesh et al. (2022) are more consistent with our study. They observed 
that supplemental irrigation of 50 mm could increase rainfed yields by 
+28.4% (near mid-century) to +74.8% (end century) under future 
climate change scenarios of RCP4.5. For the 2050 s under RCP8.5, we 
observed an increase in grain yield (kg/ha) of up to 5161, 4963, 5615, 
5115, and 5082 kg/ha when supplemental irrigation (mm) was applied 
(142, 134, 156, 149 and 162 mm) under the projected changes in 

Fig. 7. Modelled supplemental irrigation requirements (mm) in 2050 s under RCP4.5 (a), supplemental irrigation requirements in 2080 s under RCP4.5 (b), sup-
plemental irrigations requirements in 2050 s under RCP8.5 (c), and supplemental irrigation requirements in 2080 s under RCP8.5 (d). 
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weather by CanESM2, GFDL_CM3, MPI_ESM_MR, MIROC5, and 
INMCM4, respectively. For the 2080 s, supplemental irrigation of be-
tween 127 mm and 165 mm, could increase yields (kg/ha) by up to 
4554, 4459, 5336, 5114, and 5196 kg/ha for the five climate condition 
scenarios, respectively. The results of our study agree with Babel and 
Turyatunga (2015) who predicted that supplemental irrigation of 
80 mm in Iran could increase maize yields by +28.6% to +42.1% under 
all future climate scenarios for the 2050s and 2080s. Umesh et al. (2022) 
also reported that supplemental irrigation of 50 mm for a rainfed region 
in India could increase maize yields by +34.8% (in 2025) to +85.9% (in 
2090) under RCP8.5. 

3.9. Methodological limitations 

This modelling study has a number of inherent limitations and as-
sumptions. It was a single site experiment so extrapolation to other re-
gions within Pakistan or elsewhere in South Asia should be exercised 
with caution. For different soils, weather, and management options the 
climate and impacts adaptation strategies would be different. In this 
study, climate projections based on climate models were derived, which 
have implicit uncertainties, due to the complex and incomplete un-
derstandings of the climate systems and coarse resolution. The study 
findings are contingent on the accuracy of these models, and any biases 
or limitations in the models can influence the outputs. Moreover, the 
assumption of stationarity in certain aspects of climate and crop 
response may not hold true under changing climate conditions, poten-
tially affecting the reliability of long-term predictions (Ali et al., 2019). 
The crop model used to simulate maize growth and yield were based on 
assumptions regarding crop physiology and response to environmental 
factors, which may not fully capture the complexity of real-world agri-
cultural systems. Furthermore, the study’s findings were specific to the 
geographical area and period studied and generalizing them to other 
regions or future timeframes may require additional research and 
consideration of local factors. Socioeconomic factors, such as farmers’ 
decision-making and adaptation strategies, are also critical but may not 
be fully integrated into the analysis. Finally, the study may not fully 
explore the impact of extreme weather events, such as droughts or 
floods, on maize sustainability, despite their potential severity and sig-
nificance in a changing climate. 

3.10. Implications for future sustainability of maize production 

From the findings of this study, it is understood that the production 
of rainfed maize in Pothwar region is not sustainable. The grain yield 
and biomass could be extensively increased with adequate irrigation 
applications, especially if applied during critical growth stages. There is 
a need for policy reforms and irrigation management in the study region 
to take maximum economic benefits from the maize production with 
very less input or human efforts. Rainwater harvesting (construction of 
ponds/reservoirs) should be adopted in the region to avoid water losses 
during extreme rainy seasons/monsoon, which can be used to irrigate 
the crops in dry spells of the summer season. The solar water pumps 
could also be installed for supplemental irrigation purposes in rainfed 
regions to avoid production losses (Ali Shah and Akbar, 2021). Climate 
change can severely impact the maize yield by shortening the crop 
season through increased temperature and less precipitation. The 
inadequate rainfall is projecting an agitate scenario for irrigation de-
velopments in 2050 s and 2080 s to achieve sustainable production 
targets. Shifts in sowing and harvesting dates and climate resilient 
management practices should be studied to generate adaptation mea-
sures for future periods. The services of non-governmental organizations 
(NGO’s), research and development foundations and extension workers 
need to be invoked to train local farmers for climate-smart irrigation 
management to minimize the region’s economic loss. Despite of highly 
precipitated region of Pakistan there is still need for irrigating summer 
crops in the Pothwar region, which indicates that other rainfed regions 

are at the risk of production-related economic losses. Therefore, this 
study will provide a useful basis for understanding the impacts of 
climate change on both rainfed and irrigated maize and evaluating the 
beneficial impacts of supplemental irrigation on grain yield in other 
rainfed regions of Pakistan. 

4. Conclusions 

Supplemental irrigation is necessary to achieve sustainable produc-
tion of cereal crops in rainfed regions, like Pothwar. Especially in 
summer season, the crop yields are severely affected due to water stress 
(due to less rainfall) in critical growth stages. In comparison of rainfed 
yield, the single supplemental irrigation of 60 mm and 40 mm applied at 
reproductive stage of maize revealed a significant increase in grain yield 
up to 5083 kg/ha and 3472 kg/ha, followed by the vegetative growth 
stage (increased by 9.98% and 5.19%), respectively. The results confirm 
that the reproductive stage is most critical for water stress. The climate 
change assessment shows the hot/dry scenario has maximum increase in 
temperature. The maximum increase in temperature would be 4.58 ◦C 
and 2.83 ◦C in 2080s under RCP 4.5 and 8.5 with a minimal increase in 
precipitation of 0.14 mm/day (15.4 mm/season) and 0.55 mm/day 
(60.5 mm/season), respectively. These climate projections have resulted 
the higher irrigation demands in hot/dry conditions compared to other 
uncertainties. These climate change scenarios suggest the rainfed yield 
could be reduced by 4.2–13.5% in RCP 4.5 and 2.6–39.7% in RCP 8.5. 
The irrigation-based adaptations developed in this study suggest the 
grain yield could be increased by 30.1–69.8% in RCP 4.5 and 
24.4–54.2% in RCP8.5. The maximum increase in grain yield was 
recorded with the middle uncertainty when supplemental irrigation is 
applied. In the Pothwar region, rainfed maize will be negatively affected 
by climate change but supplemental irrigation could mitigate these 
impacts if implemented as an adaptation management strategy. 
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