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Abstract—This study introduces an innovative violence 

detection framework tailored to the unique requirements of 

smart airports, where prompt responses to violent situations are 

crucial. The proposed framework harnesses the power of 

ViTPose for human pose estimation and employs a CNN-

BiLSTM network to analyse spatial and temporal information 

within keypoints sequences, enabling the accurate classification 

of violent behaviour in real-time. Seamlessly integrated within 

the SAAB’s SAFE (Situational Awareness for Enhanced 
Security) framework, the solution underwent integrated testing 

to ensure robust performance in real-world scenarios. The 

AIRTLab dataset, characterized by its high video quality and 

relevance to surveillance scenarios, is utilized in this study to 

enhance the model's accuracy and mitigate false positives. As 

airports face increased foot traffic in the post-pandemic era, the 

implementation of AI-driven violence detection systems, such as 

the one proposed, is paramount for improving security, 

expediting response times, and promoting data-informed 

decision-making. The implementation of this framework not 

only diminishes the probability of violent events but also assists 

surveillance teams in effectively addressing potential threats, 

ultimately fostering a more secure and protected aviation sector. 

Codes are available at: https://github.com/Asami-1/GDP.  
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I. INTRODUCTION  

The aviation industry is highly sensitive to safety and 
timeliness, and airports face unique challenges in the violent 
events due to security and customs barriers that can com-
plicate evacuations [1]. While surveillance can assist in 
investigating violent events, the low proportion of abnormal 
frames in all video frames makes it particularly challenging to 
detect violent events manually. Smart airports are 
implementing advanced technologies to enhance operational 
efficiency and intelligence [2]. AI-based violence detection 
systems can identify threats in real-time, accelerate response 
times to emergencies, and facilitate data-driven decision-
making regarding resource allocation, which contribute to 
reducing labour costs and preventing violent incidents in smart 
airport [3, 4]. 

The goal of violence detection is to automatically and 
accurately identify violent events [3]. However, the 
subjectivity of violence's definition poses a challenge in 
translating the concept into mathematical expressions or 
computer-understandable language. Past research has used 

feature descriptors based on low-level features such as 
gradients, optical flows, and intensities [4]. The accuracy of 
these methods depends on the selected feature descriptor and 
researchers' understanding of violence. In contrast, image-
based deep learning methods can automatically learn the rules 
of violent behaviour to adapt to different application scenarios 
and identify more complex violent behaviour. Additionally, 
deep learning-based techniques exhibit good accuracy, real-
time performance, scalability, and transferability, which are 
advantageous for the smooth deployment and end-to-end 
optimization of violence detection systems in intelligent 
airports [5, 6]. 

 

Fig. 1: Architecture of the proposed violence detection framework 

Therefore, to enhance airport security, this study aims to 
develop a two-stage violence detection framework to estimate 
human posture and detect violent behaviour in real-time 
surveillance videos. This framework uses the pre-trained 
ViTPose model to detect human posture in each frame, 
preprocesses and extracts features from keypoints information, 
and then inputs these features into the CNN-BiLSTM network. 
This network further extracts features from keypoints 
information and learns the temporal information in keypoints 
sequences for violence detection. By identifying violence in 
real time, this framework can reduce the likelihood of airport 
violence incidents and assist airport surveillance teams in 
making effective responses when such events occur. 

The main contribution of this study is the use of a key-
point-based approach for violence classification, utilizing the 
state-of-the-art ViTPose model for pose estimation instead of 
directly extracting features from images (which may be high-
dimensional and abstract). This approach simplifies feature 
extraction, reduces the sample size and computational 
resources required for training and deployment, and 
accelerates model training, inference, and the entire pipeline's 
execution. Additionally, the use of key points reduces data size, 
decreases storage burden, improves operation speed, and 
facilitates implementation and deployment optimization. By 
focusing solely on human posture and movement information, 
this method minimizes interference caused by changes in 
image backgrounds and human body shape differences, while 
also reducing the influence of differences between datasets [7].  
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II. RELATED WORKS 

A. Pose Estimation 

 Human pose estimation involves detecting the joints or 
keypoints of an individual from 2D or 3D images and videos 
[8].  There are classic methods for human pose estimation like 
HRNet, DCPose, and AlphaPose. HRNet can estimate high-
resolution 2D or 3D poses but requires a lot of resources [9]. 
DCPose can detect and track human poses in real time with 
high efficiency and robustness [10]. AlphaPose combines 
CNN and a bottom-up method to estimate the key points of 
multiple people in real-time [11]. Transformers have recently 
been applied to pose estimation in computer vision, with 
ViTPose+ being the current state-of-the-art method. It uses a 
simple visual transformer to extract features from input images 
and introduces expert blending in the backbone network to 
improve performance. ViTPose+ has achieved new records on 
four challenging benchmarks while maintaining the same 
inference speed as ViTPose, which uses single-instance 
detection and has lower computational costs [12]. 

B. Violence Detection 

Violence detection is an application of Human Activity 
Recognition (HAR) in computer vision, which aims to 
accurately identify human actions from sensor data by 
analysing their spatiotemporal features. This study focuses on 
using human body keypoints to train a classifier, which acts as 
an attention mechanism [6]. Deep learning based models offer 
promising solutions because they can automatically learn and 
extract spatiotemporal features from input. Two main 
approaches are commonly used for HAR: end-to-end 3D CNN 
and the two-stream architecture using RNNs [13]. 

The 3D CNN technique involves using 3D convolutional 
kernels to analyse a video's spatiotemporal information, 
enabling the model to learn features from it. Previous research 
has successfully used this method as an end-to-end architecture 
[14, 15]. However, 3D CNN requires a significant amount of 
computing resources and time to train and infer, making it 
unsuitable for some real-time applications. The CNN+RNN 
approach involves using separate neural networks for spatial 
and temporal information processing. RNNs can model 
temporal dynamics and dependencies between frames but may 
suffer from the vanishing gradient problem, which can be 
addressed using LSTMs. Previous models achieved high 
accuracy using CNNs as spatial feature extractors and LSTMs 
for temporal information processing [16, 17].  

III. METHODOLOGY 

A. Datasets 

Various datasets exist for pose estimation and violence 
detection individually. However, no common dataset is 
available, including ground truth for pose estimation and 
violence detection. Hence, we considered various separate 
datasets for each task and then combined them in a sequence 
to achieve the ultimate objective of violence detection using 
pose estimation. 

1) Dataset Selection 
There are various datasets available for training pose 

estimation models. We used a pre-trained model (ViTPose), 

demonstrating state-of-the-art results on datasets such as 
COCO, AIC (AI Challenger), MPII, CrowdPose, and 
WholeBody for human pose estimation. 

We analysed widely used RWF-2000, UCF-Crime, and 
also AIRTLab dataset. The RWF-2000 dataset comprises 
2,000 real-world video clips, evenly split between violent and 
non-violent content, sourced from movies, surveillance 
cameras, and social media [18]. The UCF-Crime dataset is a 
large-scale collection of real-world surveillance videos 
featuring 13 types of crime and regular activities, such as 
fighting, burglary, and vandalism [19]. Lastly, the AIRTLab 
dataset, created by the University of Rome III's Artificial 
Intelligence and Robotics Laboratory, consists of 350 MP4 
video clips at 1920 x 1080 resolution and 30 fps, varying in 
duration from 2 to 14 seconds, designed specifically for 
automatic violence detection [20]. In AIRTLab Dataset, the 
clips are annotated as either "violent" or "non-violent" based 
on the presence or absence of physical aggression. The 
AIRTLab dataset is characterized by its high video quality, an 
essential feature for accurate and reliable human pose 
estimation. This dataset has been selected to enhance the 
accuracy of our model by providing more precise keypoints 
data. By utilizing the AIRTLab dataset, we aimed to improve 
the performance of our model and make it more effective in 
real-world scenarios. Due to these reasons, this dataset is 
selected. 

2) Dataset Preprocessing 

a) Manual Annotation 

To achieve accurate violence recognition, a frame-level 
manual annotation was conducted on the dataset, categorizing 
individuals as neutral, aggressor, or victim. Noise-contributing 
boundary boxes, resulting from false detections by YOLO or 
discontinuous human behaviour, were eliminated to improve 
training data quality. Misidentified boundary boxes by 
DeepSort were merged, and individuals' behavioural 
categories were labelled by evaluating their behaviour in 
continuous frames. Fig. 1 shows the output of our AI pipeline. 
Fig. 3, Fig. 4 and Fig. 5 show examples of manual labelling 
scenarios. 

 

Fig. 2: An example frame after the three (YOLO, DeepSort and ViTPose) 

models have been applied. 

 



Fig. 3: An example of removing unnecessary track IDs with Python script 
(IDs 2 and 6 removed). 

 

Fig. 4: An example frame having different IDs for the same person across 

frames. 

 
Fig. 5: An example of merging the IDs for the same person (IDs 3 and 7 are 

merged). 

b) Feature Engineering 

In this study, we used two feature engineering strategies 
from pose estimation for the classifier: distance calculation and 
angle calculation. Distance-based features detect violent 
behaviour by assessing deviations from the body's normal 
state, such as leaning, tilting, or limb movements. Angle-based 
features utilize angles between body keypoints to provide 
information about body orientation and movement, aiding in 
violent and non-violent behaviour classification. After 
comparing the two strategies, we found that distance-based 
approaches had better accuracy and selected models 
accordingly. 

c) Extracting Each Individual 

This study trains AI models using individual keypoints data 
to enhance robustness and generalization by capturing unique 
behavioural patterns while avoiding cross-interference. 
Despite requiring higher quality datasets and potentially 
affecting real-time operation speed, this approach is preferable 
given the study's focus on identifying aggressors and victims 
in violent events. Training with multiple individuals' keypoints 
data introduces additional challenges, such as increased model 
complexity, mutual interference, and potential information loss 
due to dimension reduction. Therefore, using individual body 
keypoints data for model training is adopted to meet study 
requirements and ensure higher recognition accuracy while 
maintaining a coherent methodology. 

d) Data Augmentation 

We compared AI model performance using two-time 
intervals: 1-second and 2-second intervals. The 2-second 
interval provided more information per data point but 
generated fewer data points, while the 1-second interval 
created more data points with less information. Using the 
Windows approach to analyse time series data, we broke the 
data into smaller windows to identify violent behaviour 

patterns. Generating more data points with smaller window 
sizes enabled more frequent data sampling, providing a clearer 
view of the data and helping identify subtle behavioural 
changes. This approach improves the classifier's ability to 
accurately identify violent and non-violent behaviours, aiding 
in the development of effective interventions. 

B. Tracking and Object Detection 

To effectively carry out the pose estimation and 
classification, it is necessary to previously detect the bounding 
boxes of each person and track them through the video. While 
considering different methods and pre-trained models, it is 
important to obtain good accuracy while keeping inference 
time low, since the main objective is to deploy in a real-time 
application. In our work, two subsystems have been used 
separately: for the detection of people, it has been decided to 
use the smallest pretrained model of YOLOv8 (nano) that 
offers the fastest inference time with enough accuracy for this 
study; on the other hand, DeepSORT is used for tracking 
people across multiple frames. This method combines the 
classic Simple Online and Realtime Tracking (SORT) 
algorithm with a deep learning model which helps to reduce 
tracking errors due to missed detections or bounding box 
occlusion. 

C. Pose Estimation by ViTPose 

 As in this study people body keypoints are used to identify 
and classify possible violent behaviours, one of the main 
systems in the AI engine pipeline is the pose estimator itself. 
ViTPose is an algorithm that combines the strengths of Vision 
Transformers (ViT) and pose estimation techniques to achieve 
high-precision human pose estimation in images or videos. 
Vision Transformers divide an input image into smaller 
patches and process them using a trans-former architecture, 
while pose estimation focuses on identifying the spatial 
locations of key body parts in the images or videos. Once 
again, being inference time the deciding factor to choose a 
pretrained model, ViTPose+-S was implemented in the study. 

D. Classification 

As mentioned earlier, the output of the pose estimation 
along with the person bounding box track ID generated from 
previous subsystems, are preprocessed to extract the desired 
features (either distance or angle based) from each individual 
in a set duration sequence (one or two seconds long). These 
sequences are the input of the classification model. 

In this study, four different model architectures were 
considered: on the one hand, Long Short-Term Memory 
(LSTM) networks which are Recurrent Neural Networks 
(RNN) specifically designed to address the vanishing gradient 
problem and effectively capture and store long-range 
dependencies within a data sequence; on the other hand, 
Bidirectional Long Short-Term Memory (BiLSTM) networks 
which are an extension of LSTMs that operate in two 
directions, allowing the model to learn from past and future 
con-texts within a sequence; finally, a variation of the two 
previous networks mentioned having Convolutional Neural 
Network (CNN) layers as the first layer of the architecture 
acting as feature extractors, capturing spatial information and 
local patterns within the input data. During training, CNN, 



LSTM and BiLSTM layers were followed by Dropout layers. 
Additionally, a custom callback early stopped the training after 
50 epochs with no improvement to avoid overfitting. 

All four model architectures were trained in both distance-

based and angle-based features and in 1-second and 2-second-

long sequences. Furthermore, the models were hyperparameter 

tuned for different fixed values of dropout rates, Batch size, 

number of LSTM Layers in the architecture and Learning rate 

using SGD and Adam Optimizers. 

E. Integration to SAFE 

The work was conducted in collaboration with SAAB and 

DARTeC (Digital Aviation Research and Technology Centre) 

in order to integrate our AI model into one of their applications. 

SAFE is an open-integration software platform for mission-

critical operations. It is utilized in command-and-control 

rooms in various high-security areas such as airports, law 

enforcement operations centres, and maximum security 

correctional facilities. The goal was integrating the developed 

AI model into the SAFE environment, allowing monitoring of 

its predictions in one place. We integrated our AI model into 

an AI Engine. The engine was built using Flask, a python-

based lightweight and modular framework that allows creating 

of applications interacting with AI technologies easily. We also 

built a docker container for the application to make it 

deployable regardless of the environment. We then integrated 

this engine into the SAFE environment.  To communicate with 

SAFE’s application server, we used Kafka, a distributed 
streaming platform that offers high scalability, durability, and 

flexibility to build real-time streaming applications. The 

workflow is shown in Fig. 6. 

 
Fig. 6: System Architecture 

1) Sending video feed to engine and client: To perform 

Violence Detection, video feeds are captured from these 

cameras and given to the AI engine as well as the SAFE client 

terminal directly. 

2) AI engine inference: AI engine receives the video 

feed from the camera system and performs Violence Detection 

on it. A block diagram for the same is given in Fig. 1.  

3) Notifying Gateway and SAFE client: Gateway is used 

to consume the KAFKA message given by the AI engine and 

forward it to SAFE’s client terminal for further display and 
alerts. All alerts for violence can be shown in real-time on this 

layout, and the operator can then take appropriate action. 

IV. MODEL EVALUATION 

A. Classification 

The study employed both angle-based and distance-based 
features derived from raw keypoint datasets with sequence 

lengths of 1-second and 2-seconds to train 2592 models (162 
hyperparameter combinations x 4 different dataset features x 4 
different model types). Results were obtained in terms of 
average and maximum accuracy metrics and training time. It is 
observed that the distance-based features dataset performed 
better compared to the angle-based features dataset for both 1-
sec and 2-secs of sequences, therefore, further analysis is only 
done through the distance-based feature dataset. 

B. Comparison of the Best Models 

After conducting a comprehensive analysis of various 
models using multiple datasets on 2592 models, several 
promising models were identified that meet specific evaluation 
criteria. The assessment included analysing the models' train 
accuracy, test and validation accuracy, and examining the loss 
and accuracy plots to ensure that they are not overfitted. In 
addition, the real-time performance of each model was 
evaluated using the AI Engine application to detect violent 
behaviour in camera footage. It can be concluded that valuable 
information about violent behaviour can be extracted using 
distance features of body keypoints. 

TABLE I.  COMPARISON OF THE TWO CANDIDATE BEST MODELS FOR 

MULTICLASS CLASSIFICATION 

Model Dataset 

Train 

Dataset 

Size 

Train 

Accuracy 

Test 

Accuracy 

CNN-

BiLSTM 

Model (A) 

Distance-

based & 1 

second 

sequence 

(8048, 

10, 24) 
0.813 0.798 

CNN-

BiLSTM 

Model (B) 

Distance-

based & 2 

second 

sequence 

(6558, 

20, 24) 
0.853 0.806 

 

Model (B), trained on a distance-based dataset with 2-
second sequences, achieved the highest train accuracy (0.853) 
and test accuracy (0.806) among several models. Model (A), 
trained on a standard 1-second dataset, performed closely to 
Model (B) in terms of test accuracy (TABLE I). However, in 
real-time classification, Model (A) was observed to outperform 
Model (B), which is important for the study's goal of real-time 
violence detection in live camera feeds (Fig. 10). 

 

Fig. 7: Real-time performance comparison of Model (A) (on the left) and 

Model (B) (on the right) from the AI Engine (Blue bounding box: Victim, 

Red bounding box: Aggressor, Green bounding box: Neutral). 

Model (B) struggles to consistently detect the person in Fig. 
7 as a Victim, unlike Model (A). This performance difference 
can be explained by dataset size and sequence length. Model 
(A) was trained on a larger dataset (8048 samples) and a shorter 
sequence length of 1 second, which may have provided more 
diverse and representative examples, leading to better 



generalization and sensitivity in capturing real-time violence 
cues. Therefore, Model (A) was better suited for real-time 
violence classification from live camera feed and was selected 
as the preferred choice for the final model. 

C. Final Model Results 

Based on the analysis of model results, the CNN-BiLSTM 
model utilizing a distance-based approach and a dataset with 
1-second sequences, Model (A) (1 CNN layer, 5 BiLSTM 
layers with dropouts and a final densely connected output layer 
with softmax activation), has been identified as the optimal 
choice for multiclass classification. The model was trained 
using a training dataset size of (8048, 10, 24), a learning rate 
of 0.1, batch size of 64, dropout rate of 0.4, and the stochastic 
gradient descent (SGD) optimizer. The model achieved a train 
accuracy of 0.813 and a test accuracy of 0.798 at the best epoch 
(114). 

 

Fig. 8: Loss and accuracy plots of final model in train and validation 

datasets 

TABLE II.  CLASSIFICATION REPORT OF THE FINAL MODEL (MODEL 

(A)) 

 Precision 
Recal

l 
F1-score Support 

Neutral 0.86 0.91 0.89 1465 

Aggressive 0.59 0.61 0.60 376 

Victim 0.52 0.28 0.36 205 

 

Fig. 9: Confusion matrix for multi-class violent behaviour classification. 

The model's loss and accuracy plots indicate that it 
achieved its highest test accuracy around the 115th epoch while 

preventing overfitting using a custom callback (Fig. 8). The 
F1-score, which provides a balanced measure of both precision 
and recall, was used to evaluate the model's performance, and 
it showed that the 'Neutral' class had the highest F1-score of 
0.89, while the 'Victim' class had the lowest F1-score of 0.36 
(TABLE II).  However, this could be attributed to the smaller 
number of instances in the 'Victim' class compared to other 
classes. Overall, this final model is utilized in the AI engine to 
detect violent behaviour in real-time by classifying individuals 
as Aggressor, Victim, and Neutral. 

D. SAFE Interface Development and Demonstration 

We deployed our development model in HILDA, received 
frames from DARTeC’s camera to AI engine for inference, and 
classified violent behaviour in the video. Fig. 10 shows the 
output of our model’s classification on DARTeC’s camera. 
Our model managed to classify aggressors and victims 
adequately. Our model achieves a total real-time classification 
speed of 0.1 seconds, allowing for accurate processing of video 
streams at 10 frames per second, which has proven sufficient 
for achieving accurate classification. 

 

Fig. 10: Output of the model on DARTeC’s camera feed. 

Fig. 11 shows SAFE’s layout, we can see that our KAFKA 
messages were successfully received, alarms have been 
activated on the client's side.   

 

Fig. 11: SAFE user-interface during inference of the model 

V. FUTURE WORKS 

The proposed activity recognition framework shows 
promise, but there are potential avenues for future work to 
enhance its performance and adaptability. Incorporating 
attention mechanisms into the classifier can improve the 



model's ability to capture temporal relationships between 
keypoints, potentially boosting performance. Additionally, 
replacing traditional AI models (CNN, LSTM, BiLSTM) with 
transformer models can handle long-range dependencies and 
parallel computation, making them suitable for tasks with large 
input data. Transformer models' parallelization capabilities 
may also speed up training and inference, making the 
framework more scalable for real-time applications. Increasing 
data diversity through multiple datasets and applying data 
augmentation techniques can improve performance, especially 
in cases where the sample size is small, or behavior type 
distribution is imbalanced. Moreover, considering camera 
calibration and normalization can ensure effective 
generalization across different angles and scenes, enhancing 
the framework's robustness and adaptability. 

VI. CONCLUSION 

In conclusion, the implementation of a violence detection 
model employing a two-stage approach pose estimation and 
violence classification provides an effective solution for 
detecting violent behaviour in real time. This system is 
particularly beneficial in high-security environments such as 
smart airports, where ensuring public safety is of importance. 
The success of this approach is primarily attributed to the use 
of ViTPose for pose estimation, the CNN-BiLSTM model for 
violence classification, and the carefully curated AIRTLab 
dataset, which minimizes false positives. To ensure the 
practicality and effectiveness of the system, end-to-end testing 
was conducted at the DARTeC building at Cranfield 
University, incorporating live feed from the camera and real-
time alert notifications on the SAFE client. This 
comprehensive testing demonstrated the model's ability to 
detect violence accurately and efficiently in real-world 
environment. 
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